

รายงานวิจัยฉบับสมบูรณ์

การออกแบบเปปไทด์ทำลายเชื้อแบคทีเรียด้วยวิธี De novo และศึกษากลไกการฆ่าเชื้อแบคทีเรียของเปปไทด์

โดย ดร.นวลใย ญารักษา และคณะ

กุมภาพันธ์ 2562

สัญญาเลขที่ MRG6080030

รายงานวิจัยฉบับสมบูรณ์

การออกแบบเปปไทด์ทำลายเชื้อแบคทีเรียด้วยวิธี De novo และศึกษากลไกการฆ่าเชื้อแบคทีเรียของเปปไทด์

ผู้วิจัย

2. รศ.ดร.ศักดา ดาดวง

สังกัด

1. ดร. นวลใย ญารักษา มหาวิทยาลัยราชภัฏอุบลราชธานี มหาวิทยาลัยขอนแก่น

> สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ.และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป) รหัสโครงการ : MRG6080030

ชื่อโครงการ : การออกแบบเปปไทด์ทำลายเชื้อแบคทีเรียด้วยวิธี De novo และศึกษา กลไกการฆ่าเชื้อแบคทีเรียของเปปไทด์

ชื่อนักวิจัย: ดร.นวลใย ญารักษา มหาวิทยาลัยราชภัฏอุบลราชธานี

E-mail Address : nualyai.yaraksa@gmail.com

ระยะเวลาโครงการ : 2 ปี (3 เมษายน 2560 ถึงวันที่ 3 เมษายน 2562)

ทำการออกแบบและสังเคราะห์เปปไทด์ทำลายเชื้อแบคทีเรียที่มีขนาดสั้น และ ประกอบด้วยกรดอะมิโนอย่างง่าย ที่มีประสิทธิภาพในการนำไปพัฒนาเป็นยารักษาโรคติดเชื้อ ได้ เปปไทด์ KL12 เป็นเปปไทด์ที่ออกแบบให้มีกรดอะมิโน 12 ตัว มีประจุบวกในโครงสร้าง และ มีโครงสร้างระดับทุติยภูมิเป็นแบบ α-helix ซึ่งเป็นลักษณะเฉพาะตัวของเปปไทด์ทำลายเชื้อ แบคทีเรียที่ดี โดยเปปไทด์ KL12 มีประจุ +6 และมีความเป็น hydrophobic เท่ากับ 50% เมื่อ ทดสอบความสามารถในการยับยั้งเชื้อแบคทีเรียของเปปไทด์ KL12 ต่อเชื้อทดสอบ พบว่า สามารถยับยั้งการเจริญของเชื้อแบคทีเรียได้ 5 สายพันธุ์ ได้แก่ Staphylococcus aureus ATCC25923, Staphylococcus saprophyticus ATCC15035, Staphylococcus aureus MRSA DMST20654, Salmonella typhi DMST22842 และ Escherichia coli ATCC25922 โดยมีค่า ความเข้มขันต่ำสุดที่เปปไทด์สามารถยับยั้งการเจริญของเชื้อแบคทีเรียทดสอบ (MICs) อยู่ ในช่วง 2 ไมโครกรัมต่อมิลลิลิตร ถึง 64 ไมโครกรัมต่อมิลลิลิตร และมีความเป็นพิษต่อเซลล์สัตว์ เลี้ยงลูกด้วยน้ำนมต่ำ เมื่อทดสอบความสามารถในการจับกับ Lipopolysaccaharide (LPS) และ Lipotheicoic acid (LTA) ของเปปไทด์ KL12 พบว่า เปปไทด์ KL12 มีความสามารถในการจับ กับ endotoxin ทั้ง 2 ชนิดได้ จากนั้นศึกษากลไกการฆ่าเชื้อแบคทีเรียของเปปไทด์ KL12 ด้วย สารฟลูออเรสเซนต์และกล้องจุลทรรศน์อิเล็กตรอน พบว่า เปปไทด์ KL12 มีตำแหน่งการเข้า ทำลายที่บริเวณเมมเบนของแบคทีเรีย

คำหลัก : เปปไทด์ทำลายเชื้อแบคทีเรีย การออกแบบเปปไทด์ การสังเคราะห์เปปไทด์ กลไกการฆ่าเชื้อแบคทีเรีย **Abstract**

Project Code: MRG6080030

Project Title: De novo design of potent antimicrobial peptides and their mode of

action

Investigator: Nualyai Yaraksa, Ph.D., Ubon Ratchathani Rajabhat University

E-mail Address : nualyai.yaraksa@gmail.com

Project Period: 2 years (3 April 2017-3 April 2019)

As potential therapeutic, antimicrobial peptides (AMPs) with shorter length and simple amino acid composition can be better candidates for clinical and commercial development. KL12, a novel cationic **α**-helical antimicrobial peptide consisting of 12 amino acid residues, was designed by de novo design based on unique characteristics of naturally occurring AMPs and chemically synthesized. The peptide has a net charge of +6 with a total hydrophobic ratio of 50%. The antimicrobial experiments revealed that KL12 strongly inhibited the growth of human pathogenic bacteria. The analysis of minimum inhibitory concentrations (MICs) which inhibited the five pathogenic bacteria namely Staphylococcus aureus ATCC25923, Staphylococcus saprophyticus ATCC15035, Staphylococcus aureus MRSA DMST20654, Salmonella typhi DMST22842 and Escherichia coli ATCC25922 using broth microdilution assay showed that MICs of KL12 was ranging from 2 μg/mL to 64 μg/mL. Interaction with lipopolysaccaharide (LPS) and lipotheicoic acid (LTA) suggests that the peptide was able to bind and neutralize LPS and LTA. Fluorescence studies and electron microscopy analyses indicated that KL12 kills microbial by permeabilizing the cell membrane and damaging membrane integrity.

Keywords: antimicrobial peptides, designed peptides, peptides synthesis, mode of action

1. Introduction to the research problem and its significance

Pathogens resistances to antibiotics are becoming a global incidence for human health worldwide. Almost all antibiotics are baffled by the great ability to adaptation of pathogens and the emergence of new agents, discovered with up-dated technologies. The development of new antibiotic compounds like antimicrobial peptides (AMPs) is necessary. AMPs are good candidates as new antibiotics since they are natural defenses of most living organisms against invading pathogens. These peptides are small, cationic and amphipathic molecules. AMPs induce the direct destruction of a wide diversity of microorganisms. Owing to their ability to attack different microorganisms, including bacteria, viruses and fungi, together with the growing problem of resistance to conventional antibiotics, AMPs have been regarded as promising candidates for the development of novel antibiotics. The fact that microorganisms are less efficient in developing effective resistance mechanisms against AMPs than against classical antibiotics. While thousands of AMPs are identified, only few of them are developed in view of clinical applications. The natural AMPs are far from perfect (poor pharmaceutical and pharmacokinetic properties) and some of them cause toxicity to the eukaryotes. Further, the high manufacturing cost of peptides is arguably the principal problem preventing the widespread clinical use of this class of antibacterial therapeutic. In this respect, an AMP with a short size and a simple amino acid composition would be a more favorable lead molecule to reduce production costs and to facilitate pharmaceutical optimization. Rational design and thereafter chemical synthesis are important approaches in the search for substitutes of conventional antibiotics because it can overcome the limitations in large-scale production and application of natural peptides.

Rational design methods aim to create novel peptides with improved antimicrobial activity, lower toxicity to human cells and reduced size. In other words, it is much more specific in creating a pharmaceutical with higher specificity to microorganisms, avoiding side effects. The rational design methods can be classified into three major classes: physicochemical, template-based and *de novo* methods. This study focuses on *de novo* methods because they are very interesting in terms of achieving a yield from multiple AMPs with little amino acid conservation. Instead of using one pivotal sequence to develop analogues, *de novo* methods can use amino acid patterns or amino acid frequencies and positioning preferences, generating several sequences with no clear relation.

Therefore, the aim of this project is to create novel potent antimicrobial peptides by $de\ novo$ design based on unique characteristics of naturally occurring AMPs: short, preferably cationic, with α -L-amino acids, and with more than 30% of hydrophobic residues. The Antimicrobial Peptide Database (APD: http://aps.unmc.edu/AP/ main.html) are anticipated to build short peptides with cationic properties. In addition, APD has a prediction interface, which allows input of peptide sequences, and prediction of whether the new peptide has the potential to be antimicrobial based on known factors. Two types of amino acid side chains play important roles in antimicrobial activity of peptides, which are (i) the bulky nonpolar side chains, for instance proline (P), phenylalanine (F) and

tryptophan (W) providing a distinct preference for the interfacial region of lipid bilayers as well as (ii) the cationic side chains arginine (R), lysine (K) and histidine (H) mediating peptide interactions with negatively charged membranes or cell walls of bacteria. However, a previous result have shown that arginine (R)-containing peptides cause relatively strong calcein leakage from zwitterionic 1-palmitoyl-2-oleoylphosphatidylcholine, eukaryotic mimic membrane, whereas lysine (K)-substituted analogues showed less membrane lytic activity. Therefore, in this study we choose lysine (K) as a positively charged provider in the peptide structure instead of arginine (R) and some of designed peptides will be end-tagging by hydrophobic amino acid (W) stretches to enhance bactericidal potency. The sequences and physicochemical properties of six designed peptides are show in Table 1. The designed peptides will be chemically synthesized using solid-phase methodology with Fmocprotected amino acids. Then, elucidation of their antimicrobial activity is planned to be achieved by microbiological techniques. Further, the cytotoxicity of antimicrobial peptides will be tested against human red blood cells (HRBCs) and Vero cells. Finally, to better understand the effects of the peptides on bacterial cells, the fluorescence probes technique will be performed for determination of membrane potential and permeability as well as the scanning electron microscopy (SEM) to directly observe the peptide-membrane interaction will be used. In conclusion, the knowledge gained from the proposed project may open up novel approaches towards the development of potent antimicrobial peptides that reduce the antibiotic drug resistance in bacteria and towards the understanding of their killing mechanism of action on live bacterial cells.

 Table 1 The sequences and physicochemical properties of six designed peptides.

Name	Sequence	Design	The APD	The total	molecular	Protein-binding
			defined total	net charge	weight (Da)	Potential (Boman
			hydrophobic			index) (kcal/mol)
			ratio (%)			
KL8	KLLKKLLK	The sequence of peptide contains a standard	50	+4	983.335	0.31
		α-helix (KLLK).				
KL12	KLLKKLLKKLLK	The sequence of peptide contains a standard	50	+6	1465.995	0.31
		α-helix (KLLK).				
KLW9	KKWLKKLLK	N-terminal domain contains two cationic lysine	55	+4	1169.548	0.02
		(K) residues and one tryptophan (W), a well-				
		known membrane anchor. C-terminal is a				
		standard $lpha$ -helix (KLLK).				
KW8	KWKKWWKK	The sequence of peptide consisting exclusively	37	+5	1217.504	2.59
		lysine (L) and tryptophan (W).				
KL8-WWW	KLLKKLLKWWW-NH ₂	KL8 end-tagging by hydrophobic amino acid	63	+4	1541.974	-0.4
		(W) stretches to enhance bactericidal potency.				
		C-terminal amidation stabilizes the peptide.				
KL12-WWW	KLLKKLLKKLLKWWW-	KL12 end-tagging by hydrophobic amino acid	60	+6	2024.634	-0.21
	NH ₂	(W) stretches to enhance bactericidal potency.				
		C-terminal amidation stabilizes the peptide.				

2. Objectives

- 2.1 To design and synthesis short cationic antimicrobial peptides by *de novo* method based on characteristics of natural AMPs with high potent antimicrobial activity and low cytotoxicity.
 - 2.2 To investigate the mechanism of action of short cationic antimicrobial peptides.

3. Methodology

3.1 Microorganisms

Gram negative; Salmonella typhi DMST22842 and Escherichia coli ATCC25922

Gram positive; Staphylococcus aureus ATCC25923, Staphylococcus saprophyticus ATCC15305, Staphylococcus aureus MRSA DMST20654, Bacillus subtilis and Enterococcus faecalis

3.2 Design of Antimicrobial Peptides

The short cationic antimicrobial peptides were designed using the Antimicrobial Peptide Database (APD: http://aps.unmc.edu/AP/main.html). The peptides sequences were chosen base on following rules: (i) containing positive charged amino acids, (ii) containing α-helix, and (iii) containing hydrophobic amino acids. The sequences and physicochemical properties of six designed peptides are shown in Table 1. Then, the Peptides were synthesized using solid-phase methodology with Fmoc-protected amino acids. Purification by preparative reversed phase-HPLC gave final products that were >95% pure. Then, Peptide structures will be characterized by electrospray ionization-MS.

3.3 Circular dichroism (CD) spectroscopy

The secondary structures of peptides were examined by CD spectroscopy. Each peptide was dissolved in 10mM sodium phosphate buffer pH 7.2 or membrane mimic conditions in the presence of 50% 2,2,2-Trifluoroethanol (TFE) to a final concentration of 0.1 mg/ml. The molar ellipticities of peptides were determined using a CD spectroscopy. Each spectrum was the average of five scans over the range 190–260 nm using a quartz cell of 1mm optical path length at room temperature. The scanning speed was 20 nm/min at an interval of 0.1 nm, 1-s response time and 1.0 nm bandwidth. Before calculation of the final ellipticity, all spectra were smoothed and corrected for buffer blanks.

3.4 Antimicrobial susceptibility assay

The antibacterial activity of peptides against several Gram-negative and Gram-positive bacteria was measured using disc diffusion assay. The minimum inhibitory concentration (MIC) was determined by liquid growth inhibition assays as described in Duval et al. (2009), using a broad spectrum AMP Magainin2 as the positive control. The MIC of each peptide was defined as the lowest peptide concentration that completely inhibited growth. To confirm if the peptides were killing the bacteria, the minimal bactericidal concentration (MBC) was determined.

3.5 Mammalian cytotoxicity assays

Both hemolytic and MTT assays were performed as described in Yaraksa et al. (2013).

3.6 Time-kill assay

The bacterial strains including *S. aureus* and *E. coli* were grown overnight at 37 °C in NB and harvested at the logarithmic phase of growth by centrifugation at 3000 xg for 5 min, washed three times with 10 mM sodium phosphate (NaPB) pH 7.2. The bacterial cells re-suspended in same buffer at an approximate density of 10⁷ CFU/ml. Then, separately exposed to the peptide at a final concentration of 2xMIC for 0, 3, 5, 10, 20, 40 and 60 min at 37 °C. After each observation, samples were serially diluted and plated onto Nutrient agar (NA) plates to obtain viable colonies.

3.7 Mode of action of peptides assay

3.7.1 Binding affinity for lipopolysaccharide (LPS) and lipotheicoic acid (LTA)

The outer membranes of Gram-positive and Gram-negative bacteria differ significantly in their composition. Gram-positive bacteria have a thicker peptidoglycan layer and they have LTA exposed in the outer membrane, whereas Gram-negative bacteria have a thin peptidoglycan layer and an outer lipid bilayer covered with LPS. These negatively-charged molecules activate multiple signal transduction pathways and constitute the first physical barrier which needs to be transversed by AMPs. Therefore, the ability of the peptides to bind to LPS and LTA was examined and compared using a LAL assay as describe in Torcato et al., 2013.

3.7.2 Outer membrane permeabilization by NPN uptake assay

The outer membrane permeability of the peptides was determined by using the fluorescent dye N-phenyl-1-napthylamine (NPN) uptake assay, as previously described. Briefly, *E. coli* were washed and resuspended in buffer (5 mM HEPES, 5 mM glucose, pH 7.4). NPN was added to the cell suspension in 96 black well plates to give a final concentration of 10 μ M. Peptide samples were added to 96 black well plates and fluorescence was recorded (excitation λ =350 nm, emission λ =420 nm) for 5 min. Changes in fluorescence were recorded using an the microplate reader. As the outer membrane permeability increased due to the addition of peptide, NPN incorporated into the membrane resulted in an increase in fluorescence. Polymyxin B (PMB) is used as a positive control because of its strong outer membrane permeabilizing properties.

3.7.3 Inner membrane permeabilization assay

3.7.3.1 Cytoplasmic membrane depolarization assay

The effect of peptides on the membrane potential of bacterial cell was probed by membrane sensitive $DiOC_{5}$ -(3) fluorescent assay.

3.7.3.2 NucSpot® 470 influx assay

Inner membrane permeability was determined by measuring NucSpot® 470 influx influx assay. NucSpot® 470 influx can penetrate cells with a compromised plasma membrane but will not cross the membranes of live cells. The experiment was performed according to Li et al., (2012) with some modifications. Melittin peptide (10 µg/mL; cell lytic factor) was used as a positive control.

3.7.3.3 Cytoplasmic β -galactosidase activity assay

Inner membrane permeabilization was determined by measuring the release of cytoplasmic β -galactosidase activity from $E.\ coli$ into the culture medium using ONPG as the substrate (Ibrahim, Sugimoto, & Aoki, 2000). Logarithmic-phase bacteria grown in nutrient broth containing 2% lactose were harvested, washed and resuspended in 0.5% NaCl solution. The final

cell suspension was adjusted to obtain an A420 of 1.2. Bacterial suspension (200 μ I) was pipetted into microtubes. Then the peptide was added and the final concentration adjusted to MIC. The reactions were incubated for 30 min at 37 °C, the cells centrifuged and the β -galactosidase activity measured in the resulting supernatant (Marri, Dallai, & Marchini, 1996). The supernatant (200 μ I) was pipetted into the wells of a standard microtiter plate followed by 10 μ I ONPG (30 mM) added to each well. The production of o-nitrophenol over time was determined by monitoring the increase in A₄₁₅ using a spectrophotometer.

3.7.4 Scanning Electron microscopy

Scanning electron microscopy (SEM) was performed according to Lau et al. (Lau et al., 2004) with slight modifications. Bacterial cell was grown in nutrient broth and harvested at the logarithmic phase of growth by centrifugation at 3000 xg for 5 min. The bacterial cells were then washed twice with 10 mM sodium phosphate buffer pH 7.2 and re-suspended with the same buffer to a final concentration of $1x10^8$ CFU/ml (OD₆₀₀=0.1). Aliquots of suspensions of Bacterial cell were individually incubated with MIC and 5xMIC of peptides at 37 °C for 1 h. The 100 µl solutions of the bacterial cells were carefully pipetted and applied to a 0.2 µm polycarbonate membrane filter for 30 min whereupon cells were fixed with 300 µl of 2.5% (v/v) glutaraldehyde for 1 h. The fixed material was dehydrated by rinsing (for 15 min) repeatedly with a series of ethanol solutions containing 30%, 50%, 70%, 90% and finally 100% ethanol. Dry materials were coated with a sputter coater (SC7620, Polaron, England) with gold palladium and examined by SEM operating at 12-20 kV.

4. Schedule for the entire project

Step				l	Month			
	1-6		6-12		13-18		19-24	
	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24
Design and synthesis of short cationic antimicrobial peptides.	\longleftrightarrow							
2. Determination of secondary of synthetic peptides by using CD spectroscopy	-	-						
Antibacterial activity, minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) test		←						
Cytotoxicity of synthetic peptides on mammalian cells (HRBCs and Vero cell)			\longleftrightarrow					
5. Binding affinity of synthetic peptides for LPS and LTA assay								
6. Antibacterial mechanism analysis by fluorescence probe					•	-		
7. Cytoplasmic β -galactosidase activity assay and Scanning electron microscopy (SEM)				_		-	•	_
Report and manuscript preparation for publication						-		-

5. Expected outputs

Title: De novo design of potent antimicrobial peptides and their mode of action.

Journal publication: The Journal of Antibiotics

Impact factor: 2.1

6. Budget details

Budget item	Year 1	Year 2	Total
1. Honorarium			
- Principal investigator (13,000/month, 2 years)	156,000	156,000	312,000
Sub-total Sub-total	156,000	156,000	312,000
2. Materials			
- Office materials	2,000	2,000	4,000
- lab material	15,000	15,000	30,000
- Synthesis of peptides (designed peptides and two	50,000	30,000	80,000
antimicrobial peptides for use as positive control, magainin2 and			
Melittin)	3,000	-	3,000
- Chemical reagent for secondary structures analysis	10,000	-	10,000
- Chemical reagent for antibacterial activity, MIC and MBC test	25,000	-	25,000
- Chemical reagent for cytotoxicity assay	30,000	-	30,000
- Chemical reagent for binding affinity of synthetic peptides for			
LPS and LTA assay	-	65,000	65,000
- Chemical reagent for antibacterial mechanism analysis by			
fluorescence, ONPG uptake and Atomic force microscopy (AFM)			
Sub-total	135,000	112,000	247,000
3. Other expenses			
- Transportation fee for attend the Academic Research Division	5,000	5,000	10,000
activity	-	-	-
- Presentation costs	-	15,000	15,000
- Copy print	2,000	2,000	4,000
- CD spectroscopy, Fluorescence spectrophotometer and AFM	2,000	10,000	12,000
analysis			
Sub-total	9,000	32,000	41,000
GRAND TOTAL	300,000	300,000	600,000

เนื้อหางานวิจัย

1. วัตถุประสงค์

- 1.1 เพื่อออกแบบและสังเคราะห์เปปไทด์ต้านเชื้อแบคทีเรียที่มีประจุบวกและมีขนาดสั้นด้วย วิธี De novo ตามลักษณะทั่วไปของเปปไทด์ต้านเชื้อแบคทีเรียที่ต้องมีความสามารถในการต้าน เชื้อแบคทีเรียสูงแต่มีความเป็นพิษต่อสัตว์เลี้ยงลูกด้วยน้ำนมต่ำ
 - 1.2 เพื่อศึกษากลไกการฆ่าเชื้อของเปปไทด์ต้านเชื้อแบคทีเรียสังเคราะห์

2. วิธีทดลอง

2.1 สังเคราะห์เปปไทด์ที่ออกแบบวิธี De novo โดยวิธี F-moc synthesis

- 2.1.1 ทำการออกแบบเปปไทด์ทำลายเชื้อแบคทีเรียโดยใช้ Antimicrobial Peptide

 Database (APD: http:aps.unmc.edu/AP/main.html)
- 2.1.2 สังเคราะห์เปปไทด์ด้วยวิธี F-moc synthesis จากบริษัท GL Biochem (Shanghai)

2.2 ศึกษาโครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ด้วยเครื่อง Circular dichroism (CD) spectroscopy

- 2.2.1 ละลายเปปไทด์แต่ละเส้นในสารละลาย 10 mM sodium phosphate buffer, pH 7.2 หรือ 50% 2,2,2-Trifluoroethanol (TFE) ซึ่งเป็นแบบจำลองของเยื่อหุ้มเซลล์แบคทีเรีย โดย ให้มีความเข้มข้นเท่ากับ 0.1 มิลลิกรัมต่อมิลลิลิตร (mg/ml)
- 2.2.2 นำสารละลายเปปไท ด์ในสองสภาวะไปวิเคราะห์ด้วยเครื่อง CD spectrophotometer โดยทำการสแกนความยาวคลื่นระหว่าง 190-260 นาโนเมตร (nm) ใช้ Quartz cell ที่มี optical path length เท่ากับ 1 mm ความเร็วในการสแกน เท่ากับ 20 นาโนเมตรต่อนาที (nm/min) วิเคราะห์ที่อุณหภูมิห้อง โดยใช้ 10 mM sodium phosphate buffer, pH 7.2 หรือ 50% TFE เป็น Blank ของแต่ละสภาวะ
- 2.2.3 นำค่าที่ได้ไปคำนวณหาค่า [heta] mrw, λ = MRW x $heta_{\lambda/_{10 \times d \times c}}$ เพื่อใช้ในการ วิเคราะห์หาโครงสร้างระดับทุติยภูมิใน K2D3 method (website: http://cbdm-01.zdv.uni-mainz.de/~andrade/k2d3/)

2.3 ทดสอบฤทธิ์ยับยั้งเชื้อแบคทีเรียของเปปไทด์สังเคราะห์ด้วยเทคหิค Disc diffusion

2.3.1 นำไม้พันสำลีปลอดเชื้อ จุ่มลงในหลอดที่มีเชื้อจุลินทรีย์ที่ปรับความขุ่นให้ได้ค่า ความขุ่นที่ 600 นาโนเมตร เท่ากับ 0.1 ซึ่งมีปริมาณเชื้อประมาณ 10⁷ CFU/mL จากนั้นทำการ ป้ายเชื้อลงบนผิวหน้าอาหารแข็ง Nutrient agar (NA) ให้ทั่ว

- 2.3.2 ทิ้งไว้ประมาณ 5 นาทีเพื่อให้ผิวหน้าอาหารแห้ง
- 2.3.3 จากนั้นใช้คีมคีบปลอดเชื้อคีบกระดาษกรองขนาดเส้นผ่านศูนย์กลาง 6 มิลลิเมตร (mm) วางบนผิวหน้าอาหาร แล้วเติมสารละลายเปปไทด์ 20 ไมโครกรัม (µg) /disc ยามาตรฐาน คือ Streptomycin โดยมีปริมาณความเข้มข้น 25 µg เป็นตัวควบคุมเชิงบวก (Positive control) และใช้น้ำกลั่นปลอดเชื้อเป็นตัวควบคุมเชิงลบ (Negative control)
- 2.3.4 นำไปบ่มที่อุณหภูมิ 37 องศาเซลเซียส (°C) เป็นเวลา 16-18 ชั่วโมง วัดขนาด ของ Inhibition zone ที่เกิดขึ้นทั้งแนวตั้ง และแนวนอน แล้วนำค่าที่ได้มาหาค่าเฉลี่ย (Mean) ถ้า Inhibition zone ที่เกิดขึ้นมีค่า ≥ 6 mm แสดงว่าเชื้อแบคทีเรียมีความไวต่อเปปไทด์ชนิดนั้นๆ และนำไปทำการทดสอบหาความเข้มข้นต่ำสุดที่สารสามารถยับยั้งเชื้อได้ (MIC) ต่อไป

2.4 หาค่าความเข้มข้นต่ำสุดที่เปปไทด์สามารถยับยั้งการเจริญของเชื้อแบคทีเรีย (ค่า MIC) และค่าความเข้มข้นต่ำสุดของเปปไทด์ที่สามารถฆ่าเชื้อแบคทีเรีย (MBC)

- 2.4.1 เตรียมเชื้อโดยเพาะเลี้ยงเชื้อด้วยการบ่มเขย่าที่อุณหภูมิ 37 °C เป็นเวลา 4-6 ชั่วโมง ปรับความขุ่นที่ 600 นาโนเมตร (nm) เท่ากับ 0.002 โดยใช้เครื่องวัดความขุ่น
- 2.4.2 เตรียมเปปไทด์ที่ต้องการทดสอบโดยทำการเจือจางด้วยอาหารเหลว Nutrient broth (NB) โดยเตรียมความเข้มข้น Stock solution ของเปปไทด์แต่ละชนิดเท่ากับ 512 ไมโครกรัมต่อมิลลิลิตร (µg/mL) แล้วเจือจางทีละ 2 เท่า (Two-fold dilution) ใน 96 well-plate จำนวน 50 µl/well
- 2.4.3 ใส่เชื้อที่เตรียมไว้จำนวน 50 ไมโครลิตร (µI) โดยทดสอบเปรียบเทียบกับตัว ควบคุมโดยตัวควบคุมที่ใช้มี 3 แบบ คือ ใช้ Streptomycin ความเข้มข้น 10 µg/ml เป็น Positive control ใช้ NB เป็น Negative control
 - 2.4.4 นำไปบ่มที่อุณหภูมิ 37 °C เป็นเวลา 16-18 ชั่วโมง
- 2.4.5 เมื่อบ่มครบตามเวลาที่กำหนด จึงเติมสารละลาย 0.01 % (w/v) Rezasurin ปริมาตร 10 µI ใส่ลงไป แล้วนำไปบ่มต่อที่อุณหภูมิ 37 °C เป็นเวลา 2 ชั่วโมง แล้วบันทึกค่าผล การยับยั้งเชื้อแบคทีเรีย
- 2.4.6 อ่านผลค่าความเข้มข้นต่ำสุดของเปปไทด์ที่สามารถยับยั้งเชื้อได้ (MIC) โดยทำ การสังเกตสีของ Resazurin ที่เติมลงไป ถ้า Resazurin เปลี่ยนจากสีน้ำเงินเป็นสีชมพู แสดงว่า เชื้อสามารถเจริญได้ แต่ถ้า Resazurin ยังคงสีน้ำเงินอยู่ แสดงว่า เชื้อแบคทีเรียถูกยับยั้งการ เจริญเติบโตโดยเปปไทด์ที่ทดสอบ
- 2.4.7 ส่วนการหาค่า MBC ทำได้โดยนำ 96 well plate ที่เติม Resazurin ไปบ่มที่ 37 °C เป็นเวลา 18 ชั่วโมง อ่านผลค่า MBC โดยทำการสังเกตสีของ Resazurin ที่ยังคงสีน้ำ เงินอยู่

2.5 การทดสอบความเป็นพิษต่อเซลล์สัตว์เลี้ยงลูกด้วยน้ำนมของเปปไทด์ สังเคราะห์

- 2.5.1 ทดสอบความเป็นพิษต่อเซลล์เม็ดเลือดแดงของมนุษย์ (hemolysis)
- 2.5.1.1 ปั่นเลือดแล้วเก็บเอาเฉพาะเซลล์เม็ดเลือดแดงมาปั่นล้างด้วย 0.85% NaCl เป็นจำนวน 3 ครั้ง
- 2.5.1.2 จากนั้นเตรียมสารละลายเซลล์เม็ดเลือดแดงเข้มข้น 4% red blood cell (RBC) ในสารละลาย Phosphate buffer saline (PBS) ซึ่งประกอบด้วย 35 mM sodium phosphate buffer, pH 7.0 และ 150 mM NaCl
- 2.5.1.3 บ่มสารละลายเปปไทด์แต่ละความเข้มข้น (2, 4, 8, 32, 64, 128, 256 และ 512 µg/ml) 50 µl ร่วมกับ 4% RBC 50 µl อุณหภูมิ 37 °C เป็นเวลา 1 ชั่วโมง
- 2.5.1.4 จากนั้นนำไปปั่นเหวี่ยงที่ 5000 rpm เวลา 5 นาที เก็บเอาเฉพาะส่วนใส (supernatant) ไปวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 415 nm โดยใช้ PBS เป็น negative control และใช้ 0.1% Triton X-100 เป็นสารที่จะทำให้เซลล์เม็ดเลือดแดงแตก 100%
- 2.5.2 ทดสอบความเป็นพิษต่อเซลล์เพาะเลี้ยงชนิด Vero cells โดยใช้เทคนิค MTT assay
- 2.5.2.1 เตรียมเซลล์ Vero cells ใน 96-well plates ให้ได้ $1x10^5$ cells/well ใน อาหาร Dulbecco's modified Eagle's medium-F12 (DMEM-F12) (มี L-glutamine และ 10 % fetal bovine serum เป็น supplemented) บ่มที่ 37 °C ภายใต้ ความดันบรรยากาศ 95 % และ CO_2 5 % เป็นเวลา 24 ชั่วโมง
- 2.5.2.2 ดูดอาหารเก่าออก เติมอาหารเลี้ยงเซลล์ที่มีเปปไทด์ (เจือจางให้มีความ เข้มขัน 1, 2, 4, 8, 16, 32, 64, 128, 256 µg/ml) ลงใน 96-well plates แล้วบ่มที่ 37 °C ภายใต้ ความดันบรรยากาศ 95% และ CO₂ 5% เป็นเวลา 24 ชั่วโมง
- 2.5.2.3 ดูดอาหารเก่าออก แล้วเติมอาหารที่มีสาร Thiasolyl Blue Tetrazolium Bromide (MTT) อยู่ บ่มเป็นเวลา 30 นาที โดยสาร MTT จะถูกเปลี่ยนเป็นสารประกอบสีม่วง formazan โดยเอ็นไซม์ mitochondrial dehydrogenase ที่ยังสามารถทำงานได้เฉพาะในเซลล์ที่ มีชีวิต
 - 2.5.2.4 ดูดอาหารที่มี MTT ออก จากนั้นเติม DMSO เพื่อละลายผลึก fomazan
- 2.5.2.5 นำเซลล์ไปวัดสีที่เกิดขึ้นที่ความยาวคลื่น 570 นาโนเมตร แล้วคำนวณหา เปอร์เซนต์การรอดชีวิตของเซลล์ (% Cell viability)

2.6 ทดสอบความสามารถในการฆ่าเชื้อแบคทีเรียของเปปไทด์สังเคราะห์ เปรียบเทียบกับเวลา

- 2.6.1 เลี้ยงแบคทีเรียที่ต้องการทดสอบในอาหารเหลว NB ให้อยู่ในช่วง log-phase จากนั้นปั่นล้างเซลล์ด้วย 10mM sodium phosphate buffer pH 7.2
 - 2.6.2 จากนั้นเตรียมเซลล์แบคทีเรียทดสอบให้มีจำนวนเซลล์เท่ากับ 10⁷ CFU/mI

- 2.6.3 บ่มเชื้อแบคทีเรียทดสอบร่วมกับเปปไทด์ที่ความเข้มข้นเป็นสองเท่าของค่า MIC (2xMIC) ที่ 37 °C ทำการเก็บเซลล์แบคทีเรียที่เวลา 0, 3, 5, 10, 20, 40 และ 60 นาที มาเจือ จางโดยการทำ serial dilution เพื่อนับจำนวนเซลล์ที่รอดชีวิตด้วยวิธี spread plate
- 2.6.4 บ่ม plate เชื้อแบคทีเรียที่ 37 °C ข้ามคืน จากนั้นนับจำนวนโคโลนีของเซลล์ที่ รอดชีวิตมาสร้างกราฟแสดงความสัมพันธ์ระหว่างจำนวนเซลล์แบคทีเรียกับเวลาที่ใช้บ่ม

2.7 ทดสอบความสามารถในการจับกับสาร endotoxin 2 ชนิด คือ สาร lipopolysaccharide (LPS) จากเชื้อ *E. coli O111:B4* และ lipotheicoic acid (LTA) จาก เชื้อ *S. aureus*

- 2.7.1 บ่มสารละลายเปปไทด์ที่ความเข้มข้นต่างๆ ร่วมกับสาร LPS 1 EU/ml หรือสาร LTA 500 ng/ml ใน 96 well plate ที่ 37 °C ใน heating block เป็นเวลา 30 นาที
- 2.7.2 จากนั้นเติมสารละลาย Limulus Amebocyte Lysate (LAL) ปริมาตร 50 µl เขย่า เบาๆประมาณ 10 วินาที แล้วบ่มที่ 37 °C ใน heating block เป็นเวลา 10 นาที
- 2.7.3 เติม Chromogenic substrate ปริมาตร 100 µl เขย่าเบาๆ ประมาณ 10 วินาที แล้วบ่มที่ 37 °C ใน heating block เป็นเวลา 6 นาที
 - 2.7.4 เติม 25% (v/v) glacial acetic acid ใส่ well ละ 50 µl เพื่อหยุดปฏิกิริยา
 - 2.7.5 วัดค่าการดูดกลืนแสงที่ความยาวคลื่น 405 nm ด้วยเครื่อง microplate reader
- 2.7.6 คำนวณหาปริมาณ endotoxin ที่เหลืออยู่เทียบกับกราฟมาตรฐานของสาร LPS (0.125-1.0 EU/ml) หรือสาร LTA (62.5-500 ng/ml)
- 2.7.7 คำนวณความสามารถในการจับกับ endotoxin โดยใช้สูตร Bound endotoxin = 1-free endotoxin

2.8 ศึกษากลไกการเข้าทำลายเชื้อแบคทีเรียของเปปไทด์

- 2.8.1 การศึกษาการเกิด Permeabilization ที่เมมเบรนชั้นนอกของแบคทีเรีย (Outer Membrane Permeabilization Assay)
- 2.8.1.1 เลี้ยงเชื้อแบคทีเรีย *E. coli* ในอาหารเหลว NB บ่มที่ 37 °C ให้อยู่ในช่วง log-phase จากนั้นปั่นล้างเซลล์ด้วยบับเฟอร์ (5 mM HEPES, 5 mM glucose, pH 7.4)
 - 2.8.1.2 เตรียมสารละลายเซลล์ในบับเฟอร์เดิม ให้ได้ค่า OD_{600} = 0.1
- 2.8.1.3 ปีเปตสารละลายเซลล์แบคทีเรียใส่ใน 96 black well plate ปริมาตร 100 µl จากนั้นเติมสาร NPN ให้ความเข้มข้นสุดท้ายเท่ากับ 10 ไมโครโมลาร์ (µM)
- 2.8.1.4 เติมสารละลายเปปไทด์โดยใช้ความเข้มข้นสุดท้ายเท่ากับค่า MIC ต่อเชื้อ E. coli
- 2.8.1.5 วัดค่าความเข้มของฟลูออเรสเซนต์ (fluorescence intensity) (excitation λ =350 nm, emission λ =420 nm) เป็นเวลา 5 นาที ใช้ยาปฏิชีวนะ Polymyxin B (PMB)

และเปปไทด์ Melittin เป็น positive control และวัดค่าความเข้มข้นของฟลูออเรสเซนต์ เทียบกับ กลุ่มควบคุมที่มีเฉพาะสารละลายเซลล์ และสารละลายเซลล์กับ NPN

2.8.2 การศึกษาการเกิด Permeabilization ที่เมมเบรนชั้นในของแบคทีเรีย (Inner Membrane Permeabilization Assay)

2.8.2.1 Cytoplasmic membrane depolarization assay

- (1) เลี้ยงเชื้อแบคทีเรีย *E. coli* ในอาหารเหลว NB บ่มที่ 37 °C ให้อยู่ ในช่วง log-phase จากนั้นปั่นล้างเซลล์ด้วยบับเฟอร์ที่มี 5 mM HEPES, 20 mM glucose และ 0.1 M KCl, pH 7.4
- (2) เตรียมสารละลายเซลล์ในสารละลายบับเฟอร์เดิมให้ได้ค่า OD₆₀₀ = 0.1
- (3) บ่มสารละลายเซลล์ร่วมกับ 3,3'-Diethyloxacarbocyanine, iodide (DiOC $_5$ (3), Iodide โดยให้ความเข้มข้นสุดท้ายของสาร DiOC $_5$ (3), Iodide เท่ากับ 0.4 μ M โดย บ่มไว้ประมาณ 30 นาที หรือจนกว่าค่าความเข้มของฟลูออเรสเซนต์จะคงที่
- (4) ปิเปตสารละลายเซลล์จากข้อ 2.8.2.3 ใส่ลงใน 96 black well plate หลุมละ 90 µl จากนั้นเปปไทด์ 10 µl (ความเข้มขันสุดท้ายเท่ากับค่า MIC) ใช้ 5 mM HEPES, 20 mM glucose, pH 7.4 เป็น negative control และ Melittin เป็น positive control
- (5) เริ่มอำนค่า fluorescence intensity (excitation λ =482 nm, emission λ =497 nm) นาทีที่ 0-30

2.8.2.2 NucSpot® 470 green influx assay

- (1) เลี้ยงเชื้อแบคทีเรีย *E. coli* ในอาหารเหลว NB บ่มที่ 37 °C ให้อยู่ ในช่วง log-phase จากนั้นปั่นล้างเซลล์ด้วยบับเฟอร์ PBS, pH 7.4 แล้วละลายเซลล์ในบับเฟอร์ เดิมให้ค่า OD₆₀₀ = 0.1
- (2) ปีเปตสารละลายเซลล์ใส่ใน 96 black well plate หลุมละ 90 μl จากนั้นเติมสารละลายเปปไทด์โดยใช้ความเข้มขันเท่ากับค่า MIC ต่อเชื้อ *E. coli* ที่ผสมอยู่กับ 1x NucSpot® 470 ใส่หลุมละ 10 μl
- (3) เริ่มอ่านค่าความเข้มของฟลูออเรสเซนต์ (excitation λ =460 nm, emission λ =546 nm) นาทีที่ 0-60 โดยใช้เปปไทด์ Melittin เป็น positive control

2.8.2.3 Cytoplasmic β -galactosidase activity assay

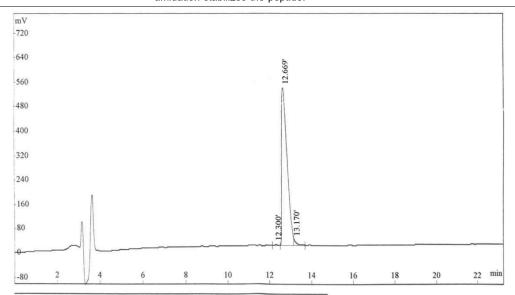
- (1) เลี้ยงเชื้อแบคทีเรีย *E. coli* ในอาหารเหลว NB ที่มี 2 % lactose บ่ม ที่ 37 °C ให้อยู่ในช่วง log-phase จากนั้นปั่นล้างเซลล์ด้วยสารละลาย 0.5 % NaCl แล้วละลาย เซลล์ในสารละลายเดิมให้ค่า OD₄₂₀=1.2
- (2) ปีเปตสารละลายเซลล์ใส่ในไมโครทิวบ์ปริมาตร 200 µl จากนั้นเติม สารละลายเปปไทด์ให้ความเข้มข้นสุดท้ายเท่ากับค่า MIC ต่อเชื้อ *E. coli* เทียบกับยาปฏิชีวนะ PMB

- (3) บ่มเชื้อที่ 37 °C เป็นเวลา 30 นาที จากนั้นนำไปปั่นเหวี่ยงที่ ความเร็วรอบ 10,000 รอบต่อนาที เป็นเวลา 10 นาที
- (4) ปีเปตเอาเฉพาะส่วนใส่ลงใน 96 well plate จากนั้นเติมสารตั้งต้น สำหรับเอนไซม์ β-galactosidase คือ 30 mM ortho-Nitrophenyl-β-galactoside (ONPG) ปริมาณ 10 μl บ่มไว้ประมาณ 5 นาที
- (5) นำ 96 96 well plate ไปวัดค่า OD415 nm เพิ่มวัดผลิตภัณฑ์ที่ เกิดขึ้นจากปฏิกิริยานี้คือ o-nitrophenol ซึ่งเป็นสารสีเหลือง
 - (6) คำนวณ % β -galactosidase activity

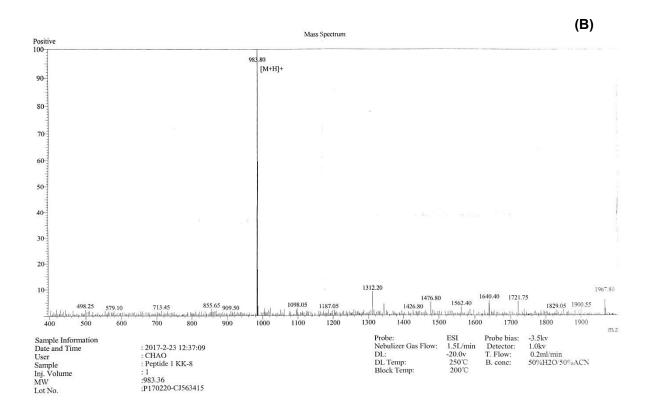
2.9 การศึกษาผลของเปปไทด์ต่อเซลล์แบคทีเรียด้วยกล้องจุลทรรศห์อิเล็กตรอน แบบส่งกราด ชนิดฟิลด์อิมิสชั่น (Field Emission Scanning Electron Microscopy, FESEM)

- 2.9.1 ขั้นตอนการเตรียมตัวอย่าง
- 2.9.1.1 ทำการเลี้ยงเชื้อทดสอบในอาหารเหลว NB ที่อุณหภูมิ 37 °C จนเชื้อ เจริญในช่วง log-phase
- 2.9.1.2 ทำการปั่นเหวี่ยงที่ 3,000 g เป็นเวลาประมาณ 10 นาที เพื่อเก็บเซลล์ แบคทีเรีย
- 2.9.1.3 ทำการล้างเซลล์ด้วย 10 mM sodium phosphate buffer (NaPB) pH 7.0 ประมาณ 2 ครั้ง
- 2.9.1.4 จากนั้นทำการละลายเซลล์ด้วย 10 mM NaPB ให้ได้ค่า OD600 ประมาณ 0.2
- 2.9.1.5 ปิเปตสารละลายเซลล์แบคทีเรีย 100 ไมโครลิตร และสารละลายเปปไทด์ 100 ไมโครลิตร (1:1) โดยความเข้มข้นของเปปไทด์ใช้เท่ากับค่า MIC และ 5xMIC ลงใน microtube ขนาด 1.5 ml จากนั้นทำการ incubated ที่ 37 °C เป็นเวลาประมาณ 1 ชั่วโมง
- 2.9.1.6 ทำการ fix เซลล์ด้วย 2.5% glutaraldehyde (w/v) ประมาณ 1 ชั่วโมง วางบน polycarbonate membrane
 - 2.9.1.7 ล้างด้วย 10 mM NaPB
- 2.9.1.8 นำเซลล์บน membrane มาทำการ dehydrate ด้วย 30% ethanol, 50% ethanol, 70% ethanol และ 90% ethanol อย่างละ 1 ครั้ง ครั้งละ 15 นาที ตามลำดับ จากนั้น ล้างด้วย 100% ethanol 2 ครั้ง ครั้งละ 15 นาทีเช่นกัน
 - 2.9.2 ขั้นตอนการส่องด้วย กล้องจุลทรรศน์อิเล็กตรอน
 - 2.9.2.1 นำ membrane เข้าเครื่อง CPD จากนั้นทำการเคลือบทองลงบนผิวเซลล์ 2.9.2.2 นำมาส่องด้วยกล้องจุลทรรศน์อิเล็กตรอน

3. ผลการทดลอง

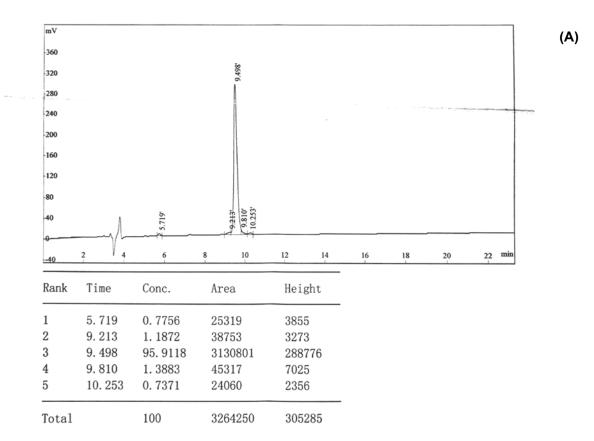

3.1 สังเคราะห์เปปไทด์ที่ออกแบบด้วยวิธี De novo โดยวิธี F-moc synthesis

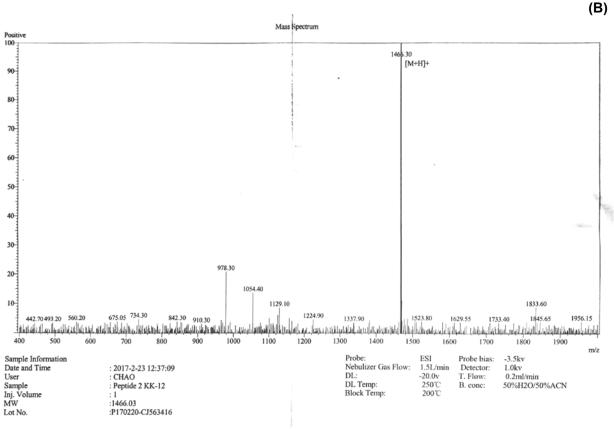
ทำการสังเคราะห์โดยวิธี F-moc synthesis ดังแสดงในตารางที่ 1 จากบริษัท GL Biochem (Shanghai) จากนั้นได้ตรวจสอบความบริสุทธิ์และบอกชนิดของเปปไทด์โดย HPLC และ Mass spectrometry ผลแสดงดังรูปที่ 1-6

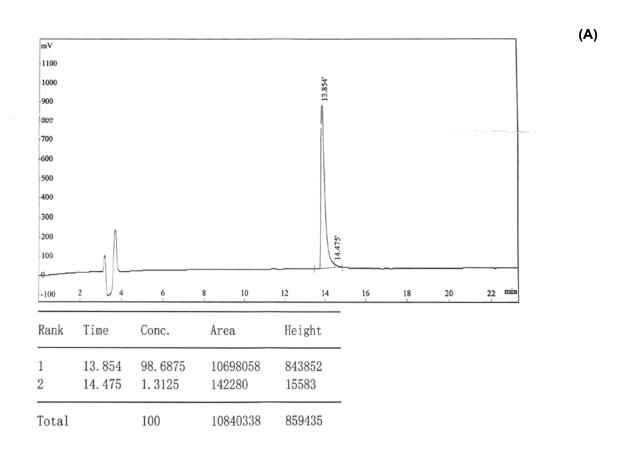

ตารางที่ 1 แสดงลำดับกรดอะมิโนของเปปไทด์ทั้ง 6 เส้น ที่ออกแบบด้วยวิธี De novo

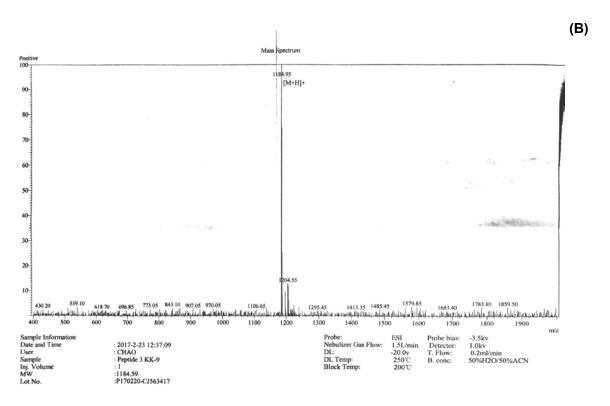
Name	Sequence	Design	The APD defined total hydrophobi c ratio (%)	The total net charge	molecular weight (Da)	Protein- binding Potential (Boman index)
						(kcal/mol)
KL8	KLLKKLLK	The sequence of peptide contains a standard α -helix (KLLK).	50	+4	983.335	0.31
KL12	KLLKKLLKKLLK	The sequence of peptide contains a standard α -helix (KLLK).	50	+6	1465.995	0.31
KLW9	KKWLKKLLK	N-terminal domain contains two cationic lysine (K) residues and one tryptophan (W), a well-known membrane anchor. C-terminal is a standard α-helix	55	+4	1169.548	0.02
KW8	KWKKWWKK	(KLLK). The sequence of peptide consisting exclusively lysine (L) and tryptophan (W).	37	+5	1217.504	2.59
KL8- WWW	KLLKKLLKWWW- NH ₂	KL8 end-tagging by hydrophobic amino acid (W) stretches to enhance bactericidal potency. C-terminal amidation stabilizes the peptide.	63	+4	1541.974	-0.4
KL12- WWW	KLLKKLLKKLLKW WW-NH ₂	KL12 end-tagging by hydrophobic amino acid (W)	60	+6	2024.634	-0.21

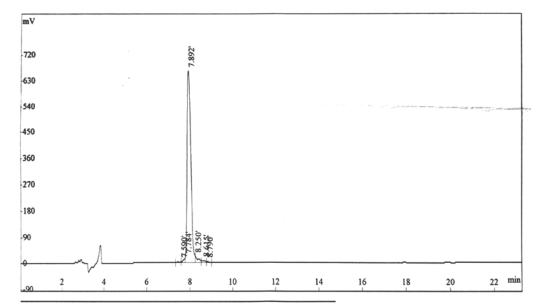
stretches to enhance bactericidal potency. C-terminal amidation stabilizes the peptide.



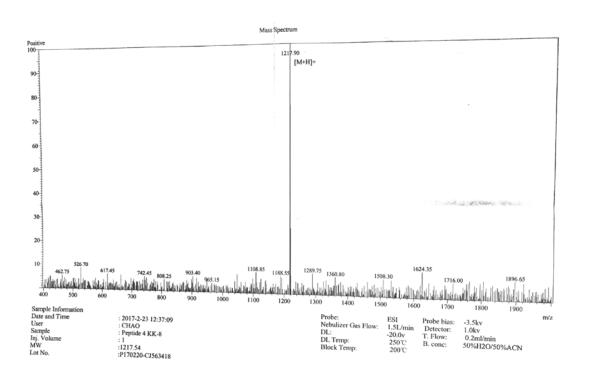

Rank	Time	Conc.	Area	Height
1	12. 300	0. 2283	20697	2581
2	12.669	98. 2991	8913200	511928
3	13. 170	1. 4726	133532	18359
Total		100	9067429	532868


(A)

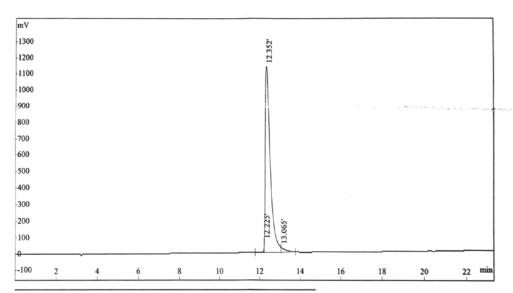

ร**ูปที่ 1** การตรวจสอบความบริสุทธิ์และบอกชนิดของเปปไทด์โดย HPLC และ Mass spectrometry (A) HPLC profile และ (B) Mass Spectrum ของ KL8

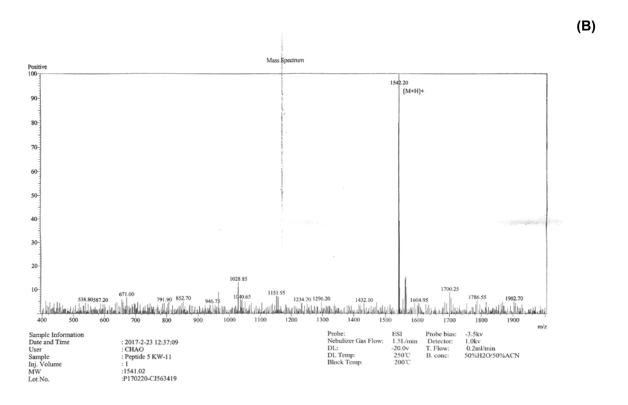


รูปที่ 2 การตรวจสอบความบริสุทธิ์และบอกชนิดของเปปไทด์โดย HPLC และ Mass spectrometry (A) HPLC profile และ (B) Mass Spectrum ของ KL12



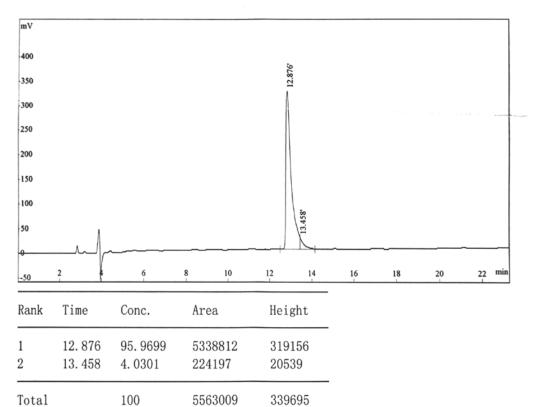
ร**ูปที่ 3** การตรวจสอบความบริสุทธิ์และบอกชนิดของเปปไทด์โดย HPLC และ Mass spectrometry (A) HPLC profile และ (B) Mass Spectrum ของ KLW9

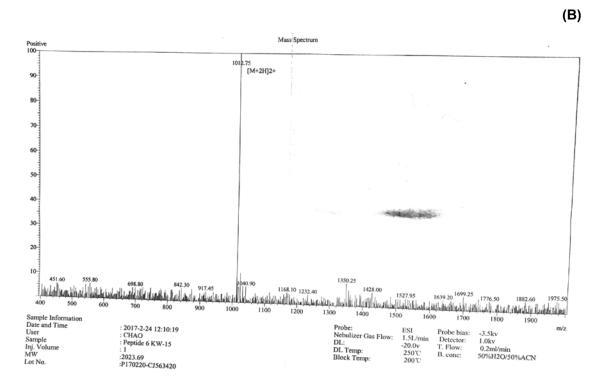

Rank	Time	Conc.	Area	Height
1	7. 590	0. 1521	11904	2135
2	7.784	1. 1321	88612	16045
3	7.892	95. 3806	7465786	658043
4	8.250	2. 2122	173157	18477
5	8.615	0.9407	73635	6807
6	8. 790	0. 1823	14268	2465
Total		100	7827362	703972


(B)

(A)

ร**ูปที่ 4** การตรวจสอบความบริสุทธิ์และบอกชนิดของเปปไทด์โดย HPLC และ Mass spectrometry (A) HPLC profile และ (B) Mass Spectrum ของ KW8




Rank	Time	Conc.	Area	Height
1 2 3	12. 225 12. 352 13. 065	0. 3073 97. 8745 1. 8182	57769 18400811 341825	56606 1132289 25802
Total		100	18800405	1214697

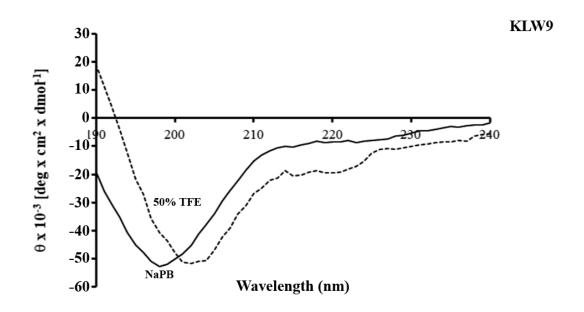
(A)

รูปที่ 5 การตรวจสอบความบริสุทธิ์และบอกชนิดของเปปไทด์โดย HPLC และ Mass spectrometry (A) HPLC profile และ (B) Mass Spectrum ของ KL8-WWW (A)

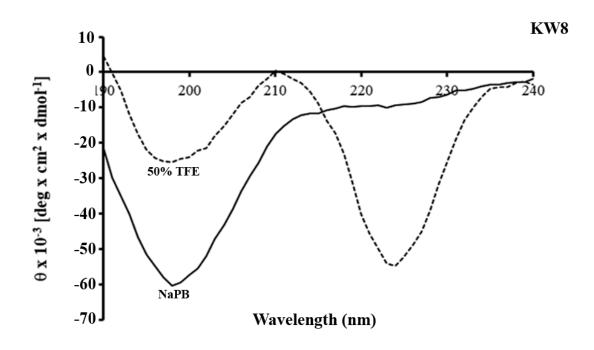
ร**ูปที่ 6** การตรวจสอบความบริสุทธิ์และบอกชนิดของเปปไทด์โดย HPLC และ Mass spectrometry (A) HPLC profile และ (B) Mass Spectrum ของ KL12-WWW

3.2 ศึกษาโครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ด้วยเครื่อง CD spectroscopy

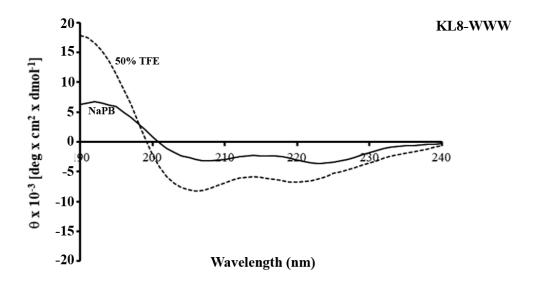
การศึกษาโครงสร้าง 2 มิติ โดย CD เป็นเทคนิคที่วัดโครงสร้างระดับทุติยภูมิ การเรียง ตัว และการผ่าน (penetrate) ของเปปไทด์ เข้าไปในชั้นเยื่อหุ้มเซลล์ (lipid bilayer) ของ แบคทีเรีย เทคนิคนี้ทำให้เข้าใจรายละเอียดปฏิสัมพันธ์ของเปปไทด์กับเยื่อหุ้มเซลล์ของ แบคทีเรีย โดยสภาพแวดล้อมที่ผิวเยื่อหุ้มเซลล์ของแบคทีเรียจะกระตุ้นให้เปปไทด์มีการเปลี่ยน โครงรูปเป็น α-Helix ที่ทำให้เกิดการจับและสอดเปปไทด์เข้าไปในชั้นเยื่อหุ้มเซลล์ได้ดีขึ้น ส่งผลให้เปปไทด์สามารถทำลายเซลล์แบคทีเรียได้เป็นอย่างดี ดังนั้น จึงทำการศึกษาโครงสร้าง ระดับทุติยภูมิของเปปไทด์สังเคราะห์ด้วยเครื่อง CD spectroscopy โดยศึกษาใน 2 สภาวะ คือ 1) ในสารละลาย 10mM NaPB pH 7.2 และ 2) ในสารละลาย 50% TFE โดยผลพบว่า มีเปปไทด์ 3 เส้น คือ KL12, KL8-WWW และ KL12-WWW ที่เมื่ออยู่ในสารละลาย 50% TFE ซึ่งเป็นแบบจำลองเมมเบรนของแบคทีเรีย (mimic membrane) มีการเปลี่ยนแปลงโครงสร้าง ระดับทุติยภูมิเป็นแบบ α-Helix เพิ่มสูงขึ้นจากในสารละลาย 10mM NaPB, pH 7.2 ซึ่งเป็น ลักษณะสำคัญของสารที่เป็นเปปไทด์ทำลายเชื้อแบคทีเรีย ผลการทดลองแสดงดังตารางที่ 2 และรูปที่ 7-12 แสดงโครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ที่อยู่ในสารละลาย 10 mM NaPB, pH 7.2 และ 50 % TFE

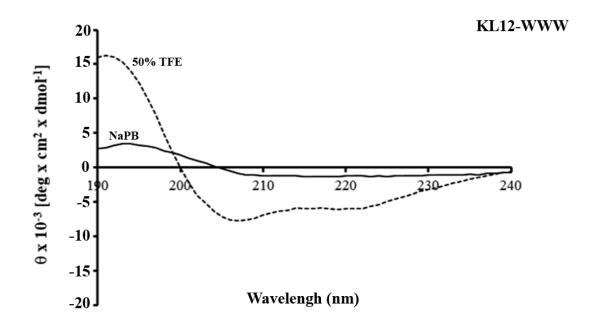

ตารางที่ 2 แสดงเปอร์เซ็นต์โครงสร้างระดับทุติยภูมิแบบ **α**-Helix และ β-Sheet ของเปปไทด์ สังเคราะห์ในสารละลาย 10mM sodium phosphate buffer pH 7.2 (NaPB) ในสารละลาย 50% 2,2,2-Trifluoroethanol (TFE)

Dontidoo	% Of content	in 10mM NaPB ^a	% Of content in 50% TFE			
Peptides	α -Helix	β-Sheet	α -Helix	β-Sheet		
KL8	8.88	7.49	17.13	5.15		
KL12	11.65	5.60	85.49	0.03		
KLW9	8.88	7.48	49.55	0.23		
KW8	8.90	7.19	40.02	1.18		
KL8-WWW	26.04	22.82	69.09	0.28		
KL12-WWW	1.88	40.98	66.75	0.85		


^{*} K2D3 method ใน website<u>http://cbdm-01.zdv.uni-mainz.de/~andrade/k2d3/,</u> estimated maximum error เท่ากับ > 0.32

ร**ูปที่ 7** โครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ KL8 ที่อยู่ในสารละลาย 10 mM NaPB, pH 7.2 และ 50 % TFE

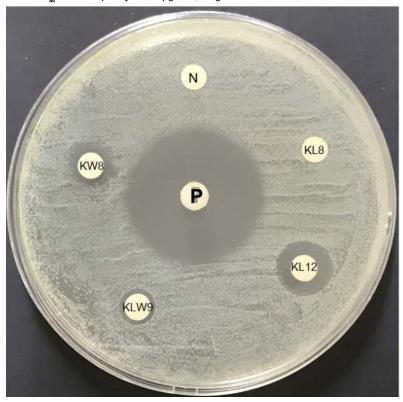

ร**ูปที่ 8** โครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ KL12 ที่อยู่ในสารละลาย 10 mM NaPB, pH 7.2 และ 50 % TFE


ร**ูปที่ 9** โครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ KLW9 ที่อยู่ในสารละลาย 10 mM NaPB, pH 7.2 และ 50 % TFE

ร**ูปที่** 10 โครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ KW8 ที่อยู่ในสารละลาย 10 mM NaPB, pH 7.2 และ 50 % TFE

ร**ูปที่ 11** โครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ KL8-WWW ที่อยู่ในสารละลาย 10 mM NaPB, pH 7.2 และ 50 % TFE

ร**ูปที่ 1**2 โครงสร้างระดับทุติยภูมิของเปปไทด์สังเคราะห์ KL12-WWW ที่อยู่ในสารละลาย 10 mM NaPB, pH 7.2 และ 50 % TFE


3.3 ทดสอบฤทธิ์ยับยั้งเชื้อแบคทีเรียของเปปไทด์สังเคราะห์ด้วยเทคหิค Disc diffusion

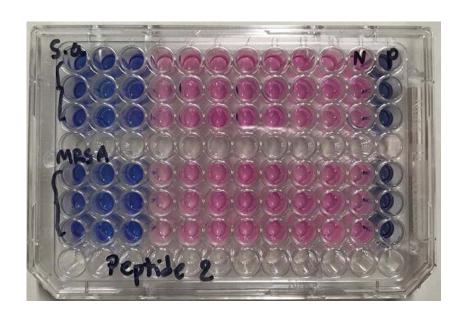
นำเปปไทด์สังเคราะห์ทั้ง 6 เส้นมาทดสอบความสามารถในการยับยั้งเชื้อแบคทีเรีย 7 สายพันธุ์ ประกอบด้วยแกรมบวก 5 สายพันธุ์ คือ Staphylococcus aureus ATCC25923, Staphylococcus saprophyticus ATCC15305, Bacillus subtilis, Enterococcus faecalis และ Staphylococcus aureus MRSA DMST20654 และแกรมลบ 2 สายพันธุ์ คือ Salmonella typhi DMST22842 และ Escherichia coli ATCC25922 โดยผลพบว่า เปปไทด์ KL12 มีความสามารถในการยับยั้งเชื้อแบคทีเรียได้ดีที่สุด โดยยับยั้งได้ทั้งหมด 5 สายพันธุ์ คือ S. aureus, S. saprophyticus, S. typhi, E. coli และ S. aureus MRSA เปปไทด์ KL8-WWW และ KL12-WWW สามารถยับยั้งเชื้อแบคทีเรียทดสอบได้ 2 สายพันธุ์ คือ S. saprophyticus และ S. aureus MRSA เปปไทด์ KLW9 และ KW8 สามารถยับยั้งการเจริญของแบคทีเรียทดสอบได้เพียง 1 สายพันธุ์ คือ S. saprophyticus ส่วนเปปไทด์ KL8 ไม่สามารถยับยั้งการเจริญของแบคทีเรียทดสอบได้ ผลแสดงในตารางที่ 3 และตัวอย่างการยับยั้งเชื้อ Staphylococcus saprophyticus ของเปปไทด์สังเคราะห์ แสดงดังรูปที่ 13

ตารางที่ 3 ผลการทดสอบฤทธิ์ยับยั้งเชื้อแบคทีเรียของเปปไทด์สังเคราะห์ด้วยเทคนิค Disc diffusion

 เชื้อแบคทีเรียทดสอบ	Positive	Negative	เปปไทด์สังเคราะห์					
	control	control	KL8	KL12	KLW9	KW8	KL8-	KL12-
							WWW	WWW
Gram Positive								
Staphylococcus aureus	$\sqrt{}$	-	-		-	-	-	-
ATCC25923								
Staphylococcus	$\sqrt{}$	-	-		$\sqrt{}$			
saprophyticus								
ATCC15305								
Bacillus subtilis	$\sqrt{}$	-	-	-	-	-	-	-
Enterococcus faecalis	-	-	-	-	-	-	-	-
Staphylococcus aureus	-	-	-		-	-	$\sqrt{}$	
MRSA DMST20654								
Gram Negative		-	-		-	-	-	-
Salmonella typhi	-							
DMST22842								
Escherichia coli	$\sqrt{}$	-	-		-	-	-	-
ATCC25922								

√ = ยับยั้งการเจริญของเชื้อแบคทีเรียทดสอบได้, -= ยับยั้งการเจริญของเชื้อแบคทีเรียทดสอบไม่ได้ Positive control = ยาปฏิชีวนะ streptomycin 25 µg/disc, Negative control = น้ำกลั่นปลอดเชื้อ

ร**ูปที่ 13** ตัวอย่างแสดงการยับยั้งเชื้อ *Staphylococcus saprophyticus* ของเปปไทด์สังเคราะห์ โดย P = Positive control ใช้ยาปฏิชีวนะ streptomycin 25 µg/disc, N = Negative control ใช้ น้ำกลั่นปลอดเชื้อ และ KL8, KL12, KLW9 และ KW8 คือ เปปไทด์สังเคราะห์ 20 µg/disc


3.4 หาค่าความเข้มข้นต่ำสุดที่เปปไทด์สามารถยับยั้งการเจริญของเชื้อแบคทีเรีย (ค่า MIC) และค่าความเข้มข้นต่ำสุดของเปปไทด์ที่สามารถฆ่าเชื้อแบคทีเรีย (MBC)

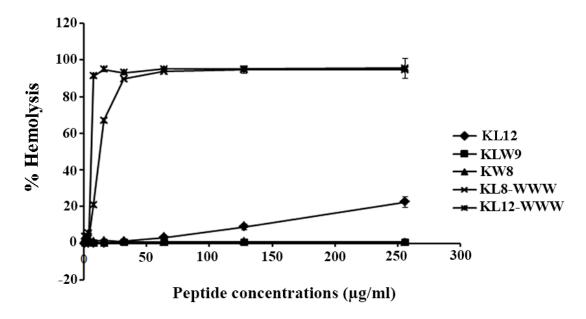
หาค่า MIC และ MBC ของเปปไทด์สังเคราะห์ ทำโดยวิธี Resazurin microtiterassay plate method (รูปที่ 5) โดยใช้เปปไทด์ Magainin2 เป็น positive control ผลการทดลองพบว่า เปปไทด์ KL12 มีค่า MIC ต่อเชื้อ S. aureus, S. saprophyticus, S. aureus MRSA, S. typhi และ E. coli เท่ากับ 64, 4, 64, 2 และ 8 µg/ml ตามลำดับ เปปไทด์ KL8-WWW และ KL12-WWW มีค่า MIC ต่อเชื้อ S. saprophyticus เท่ากับ 2 และ 8 µg/ml ตามลำดับ และมีค่า MIC ต่อเชื้อ S. aureus MRSA เท่ากับ 4 และ 32 µg/ml ตามลำดับ เปปไทด์ KLW9 และ KW8 มีค่า MIC ต่อเชื้อ S. saprophyticus เท่ากับ 64 และ 32 µg/ml ส่วนค่า MBC ผลพบว่า เปปไทด์ KL12 มีค่า MBC ต่อเชื้อ S. aureus, S. saprophyticus, S. aureus MRSA, S. typhi และ E. coli เท่ากับ 128, 64, 128, 4 และ 16 µg/ml ตามลำดับ เปปไทด์ KL8-WWW และ KL12-WWW มีค่า MIC ต่อเชื้อ S. saprophyticus เท่ากับ 4 และ 256 µg/ml ตามลำดับ และมีค่า MIC ต่อเชื้อ S. saprophyticus เท่ากับ 4 และ 256 µg/ml ตามลำดับ เปปไทด์ KLW9 และ KW8 มี

ค่า MIC ต่อเชื้อ S. saprophyticus เท่ากับ 256 และ 64 µg/ml ผลแสดงดังตารางที่ 4 และรูปที่ 14 แสดงผลการทดสอบหาค่า MIC และค่า MBC ของเปปไทด์ KL12 ต่อเชื้อ S. aureus และ S. aureus MRSA

ตารางที่ 4 แสดงค่า MIC และ MBC ของเปปไทด์สังเคราะห์ต่อเชื้อทดสอบ

เชื้อแบคทีเรีย				MIC (µ	ıg/ml)		MBC (μg/ml)					
ทดสอบ	KL12	KLW9	KW8	KL8- WWW	KL12- WWW	Magainin2	KL12	KLW9	KW8	KL8-	KL12- WWW	Magainin2
Gram Positive												
Staphylococcus												
aureus	64	>512	>512	>512	>512	32	128	>512	>512	>512	>512	128
ATCC25923												
Staphylococcus												
saprophyticus	4	64	2	2	8	2	64	256	64	4	256	128
ATCC15305												
Staphylococcus												
aureus MRSA	64	>512	>512	4	32	32	128	>512	>512	8	256	128
DMST20654												
Gram Negative												
Salmonella typhi	_											
DMST22842	2	>512	>512	>512	>512	64	4	>512	>512	>512	>512	256
Escherichia coli	8	>512	>512	>512	>512	32	16	>512	>512	>512	>512	64
ATCC25922												

รูปที่ 14 การทดสอบหาค่า MIC และค่า MBC ของเปปไทด์ KL12 ต่อเชื้อ S. aureus และ S. aureus MRSA


3.5 การทดสอบความเป็นพิษต่อเซลล์สัตว์เลี้ยงลูกด้วยน้ำนมของเปปไทด์สังเคราะห์

3.5.1 ความเป็นพิษต่อเซลล์เม็ดเลือดแดงของมนุษย์ (Hemolytic activity)

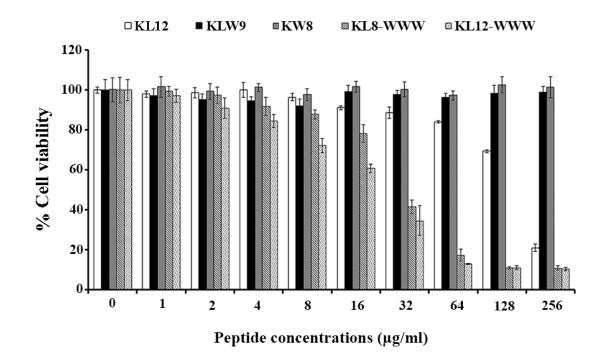
นำเปปไทด์ 5 เส้นที่มีความสามารถในการยับยั้งการเจริญของเชื้อแบคทีเรีย คือ KL12, KLW9, KW8, KL8-WWW และ KL12-WWW มาทดสอบความเป็นพิษต่อเซลล์เม็ดเลือด แดงของมนุษย์โดยการเตรียมเปปไทด์ที่ความเข้มข้นต่างๆ โดยใช้ PBS เป็น negative control และใช้ 0.1% Triton X-100 เป็นสารที่จะทำให้เซลล์เม็ดเลือดแดงแตก 100% คำนวณ % การ แตกของเซลล์เม็ดเลือดแดงดังสูตรต่อไปนี้

% hemolysis = [(Abs415nm in peptide solution - Abs415nm in PBS)] x100 [Abs415nm in 0.1% TritonX-100 - Abs415nm in PBS)]

ผลการทดสอบพบว่า เปปไทด์ KLW9 และ KW8 ไม่มีความพิษต่อเซลล์เม็ด เลือดแดงของมนุษย์ เปปไทด์ KL12 ความเป็นพิษต่อเซลล์เม็ดเลือดแดงจะเพิ่มขึ้นตามความ เข้มขัน โดยจะพบว่า เมื่อใช้ความเข้มขันสูงถึง 256 µg/ml จึงจะทำให้เซลล์เม็ดเลือดแดงแตก ประมาณ 22 % แต่ถ้าความเข้มขันต่ำกว่า 128 µg/ml นั้นความเป็นพิษต่อเซลล์เม็ดเลือดแดงจะ ต่ำมาก ส่วนเปปไทด์ KL8-WWW และ KL12-WWW นั้นมีความเป็นพิษต่อเซลล์เม็ดเลือดแดง ของมนุษย์สูงมาก แม้จะใช้ในความเข้มขันที่ต่ำ ผลการทดลองแสดงดังรูปที่ 15

ร**ูปที่ 15** การทดสอบความเป็นพิษต่อเซลล์เม็ดเลือดแดงมนุษย์ของเปปไทด์สังเคราะห์

จากนั้นคำนวณหาค่า Therapeutic index (TI) ของเปปไทด์ต่อเชื้อแบคทีเรียแต่ละสายพันธุ์ โดยหาได้จากอัตราส่วนระหว่างค่า MHC/MIC โดยให้ผลดังตารางที่ 5 โดย ค่า TI ที่สูงแสดงว่า เปปไทด์นั้นมี antimicrobial specificity เชื้อสายพันธุ์นั้นที่สุด


ตารางที่ 5 แสดงค่า Therapeutic index (TI) ของเปปไทด์สังเคราะห์ต่อเชื้อแบคทีเรียแต่ละ ชนิด

		Therapeutic index (TI)								
Peptides	Sequence	S. aureus	S. saprophyticus	S. aureus MRSA	S. typhi	E. coli				
KL12	KLLKKLLKKLLK	1	16	1	32	8				
KLW9	KKWLKKLLK	n.a.ª	>4	n.a.	n.a.	n.a.				
KW8	KWKKWWKK	n.a.	>128	n.a.	n.a.	n.a.				
KL8-WWW	KLLKKLLKWWW-NH ₂	n.a.	2	1	n.a.	n.a.				
KL12-WWW	$\begin{aligned} & KLLKKLLKKKLLKWWW- \\ & NH_2 \end{aligned}$	n.a.	0.5	0.125	n.a.	n.a.				

^a ไม่สามารถหาค่า TI ได้ เนื่องจากมีฤทธิ์ต้านเชื้อแบคทีเรียต่ำ

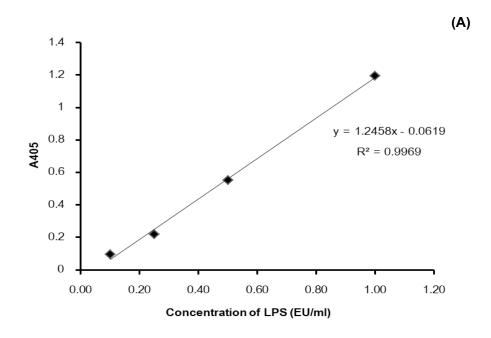
3.5.2 ความเป็นพิษต่อเซลล์เพาะเลี้ยงชนิด Vero cells (Cytotoxicity)
นำเปปไทด์ 5 เส้นที่มีความสามารถในการยับยั้งการเจริญของเชื้อแบคทีเรีย คือ
KL12, KLW9, KW8, KL8-WWW และ KL12-WWW มาทดสอบความพิษต่อเซลล์เพาะเลี้ยง

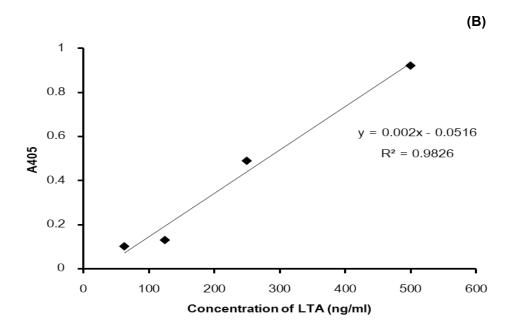
ชนิด Vero cells โดยการบ่มเปปไทด์ที่ความเข้มข้นต่างๆ ร่วมกับเซลล์เพาะเลี้ยง Vero cells โดยผลการทดสอบนี้ให้ผลสอดคล้องกับการทดสอบความเป็นพิษต่อเซลล์เม็ดเลือดแดงมนุษย์ ของเปปไทด์สังเคราะห์ กล่าวคือ เปปไทด์ KLW9 และ KW8 ไม่มีความพิษต่อเซลล์ เปปไทด์ KL12 ความเป็นพิษจะเพิ่มขึ้นตามความเข้มขัน โดยจะพบว่า เมื่อใช้ความเข้มขันสูงถึง 256 µg/ml ทำให้เซลล์รอดชีวิตเพียง 21 % แต่ถ้าความเข้มขันต่ำกว่า 128 µg/ml นั้นความเป็นพิษ เซลล์เพาะเลี้ยง Vero cells จะต่ำ ส่วนเปปไทด์ KL8-WWW และ KL12-WWW นั้นมีความเป็น พิษมากเมื่อใช้ความเข้มขันตั้งแต่ 32 µg/ml ขึ้นไป ผลการทดลองแสดงดังรูปที่ 16 เนื่องจาก เปปไทด์ KL12 นั้นมีความสามารถในการต้านเชื้อแบคทีเรียได้ดีที่สุด และยังมีความเป็นพิษต่อ เซลล์สัตว์เลี้ยงลูกด้วยน้ำนมต่ำ ดังนั้น จึงเลือกเปปไทด์ KL12 ไปศึกษากลไกการฆ่าเชื้อ แบคทีเรียต่อไป

รูปที่ 16 การทดสอบความเป็นพิษต่อเซลล์เพาะเลี้ยงชนิด Vero cells ของเปปไทด์สังเคราะห์

3.6 ทดสอบความสามารถในการฆ่าเชื้อแบคทีเรียของเปปไทด์สังเคราะห์ เปรียบเทียบกับเวลา

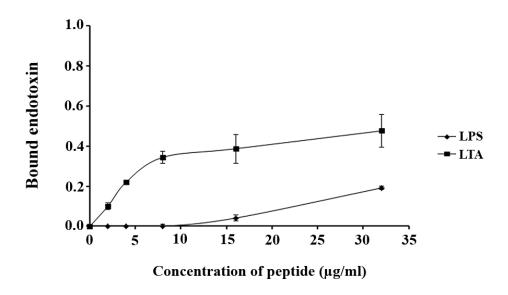
นำเปปไทด์ KL12 มาทดสอบความสามารถในการฆ่าเชื้อแบคทีเรีย 2 สายพันธุ์ คือ S. aureus และ E. coli ซึ่งจะใช้ 10mM sodium phosphate buffer pH 7.2 เป็นตัวควบคุมเชิง ลบ (negative control) ผลการทดลองพบว่า เปปไทด์ KL2 มีความสามารถในการฆ่าเชื้อ แบคทีเรียทั้งสองสายพันธุ์ได้อย่างรวดเร็ว ซึ่งจะเห็นได้จากเมื่อเวลาผ่านไป 5 นาที ไม่มีเซลล์ แบคทีเรียรอดชีวิต ผลแสดงดังรูปที่ 17


(B)


ร**ูปที่ 17** (A) การฆ่าเชื้อแบคทีเรีย *S. aureus* ของเปปไทด์ KL12 และ (B) การฆ่าเชื้อแบคทีเรีย *E. coli* ของเปปไทด์ KL1

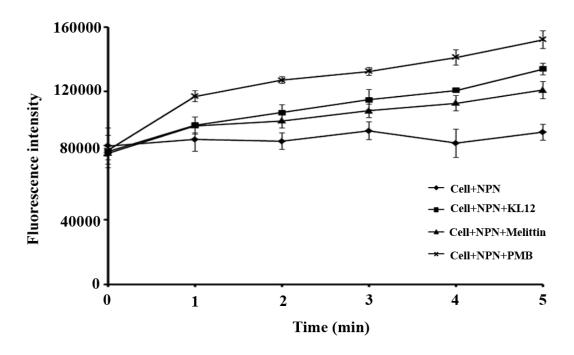
3.7 ทดสอบความสามารถในการจับกับสาร LPS และ LTA

นำเปปไทด์ KL12 มาทดสอบความสามารถในการจับกับสาร endotioxin 2 ชนิด คือ LPS และ LTA เนื่องจากสาร LPS นี้จะพบในผนังเซลล์ของแบคทีเรียแกรมลบ และ LTA จะพบที่ผนัง เซลล์ของแบคทีเรียแกรมบวก โดยการทดสอบนี้จะใช้ LAL Chromogenic Endotoxin Quantitation Kit โดยอาศัยหลักการที่ว่า proenzyme ใน Limulus Amebocyte Lysate (LAL)


จะถูก bacterial endotoxin กระตุ้นให้อยู่ในรูป active enzyme ซึ่งจะไปเร่งปฏิกิริยาการเปลี่ยน สารตั้งต้นที่ไม่มีสี (Ac-Ile-Glu-Ala-Arg-pNA) ให้กลายเป็นสาร p-Nitroaniline (pNA) ซึ่งเป็น สารที่มีสีเหลือง จากนั้นนำไปวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 405 nm (A405) โดยในการ ทดลองจะทำการเตรียมกราฟมาตรฐานของสาร LPS ที่ความเข้มข้น 0.125-1.0 EU/ml (รูปที่ 18A) กับกราฟมาตรฐานของ LTA ที่ความเข้มข้น 62.5-500 ng/ml (รูปที่ 18B) โดยความ เข้มข้นของ LTA ที่ 500 ng/ml จะเทียบเท่ากับความเข้มข้นของ LPS 1.0 EU/ml

รูปท**ี่ 18** (A) กราฟมาตรฐานของสาร LPS และ (B) กราฟมาตรฐานของสาร LTA

จากนั้นเตรียมเปปไทด์ KL12 ที่ความเข้มข้นต่างๆ (2, 4, 8, 16 และ 32 µg/mL) แล้วบ่ม ร่วมกับสาร LPS ความเข้มข้น 1.0 EU/ml หรือสาร LTA ความเข้มข้น 500 ng/ml แล้ววิเคราะห์ หาปริมาณ endotoxin ที่เหลืออยู่เทียบกับกราฟมาตรฐานและคำนวณความสามารถในการจับ กับสาร endotoxin ทั้งสองชนิดโดยใช้สูตร Bound endotoxin = 1-free endotoxin โดยผลการ ทดลองพบว่า ความสามารถในการจับกับสาร endotoxin ทั้งสองชนิดของเปปไทด์ KL12 ขึ้นกับ ความเข้มขัน กล่าวคือ เมื่อความเข้มขันของเปปไทด์เพิ่มขึ้นความสมารถในการจับกับสาร endotoxin ก็เพิ่มขึ้น อย่างไรก็ตามเมื่อเปรียบเทียบความสามารถในการจับกับสาร LPS และ LTA ของเปปไทด์ KL12 พบว่า เปปไทด์ KL12 มีความสามารถในการจับกับสาร LTA ได้ดีกว่า สาร LPS ผลแสดงดังรูปที่ 19

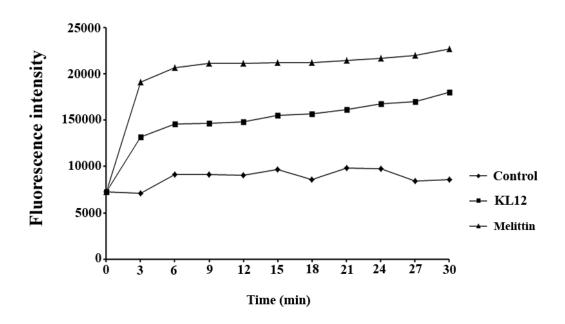

ร**ูปที่ 19** ความสามารถในการจับกับสาร endotoxin สองชนิด (LPS และ LTA) ของเปปไทด์ KL12

3.8 ศึกษากลไกการฆ่าเชื้อแบคทีเรียของเปปไทด์

3.8.1 การศึกษาการเกิด Permeabilization ที่เมมเบรนชั้นนอกของแบคทีเรีย (Outer Membrane Permeabilization Assay)

ในการทดลองนี้จะใช้สาร 1-N-phenylnaphtylamine (NPN) เป็นตัวตรวจสอบ ซึ่ง NPN เป็นสารฟลูออเรสเซนต์โดยจะเกิดการเรื่องแสงได้ดีเมื่ออยู่ในสภาวะแวดล้อมที่เป็น hydrophobic โดยหากเปปไทด์สามารถทำให้เมมเบรนชั้นนอกเกิด permeabilization สาร NPN จะเข้าไปจับกับบริเวณ hydrophobic ของ lipid bilayer ซึ่งจะทำให้ค่าการเรื่องแสงของ NPN เพิ่มขึ้น จากผลการทดลองพบว่า เปปไทด์ KL12 ที่ใช้ความเข้มข้นเท่ากับ 8 µg/ml (ค่า MIC ของเปปไทด์นี้ต่อเชื้อ E. coli) มีความสามารถในการทำให้เมมเบรนชั้นนอกของเชื้อ E. coli เกิด permeabilize เพิ่มขึ้นตามระยะเวลาที่ใช้ทดสอบ คือ 5 นาที ซึ่งจะเห็นได้จากเมื่อเวลาผ่านไปค่า ความเข้มของฟลูออเรสเซนต์ (Fluorescence intensity) ที่วัดได้มีค่าสูงขึ้นเรื่อยๆ หมายความว่า

เมื่อเปปไทด์ KL12 ทำให้เมมเบรนชั้นนอกของเชื้อ *E. coli* เกิด permeabilize ทำให้สาร NPN สามารถเคลื่อนที่เข้าไปยังส่วนที่เป็น hydrophobic และเกิดการเรื่องแสงขึ้น และเมื่อเปรียบเทียบ กับเปปไทด์ Melittin ที่ใช้ความเข้มข้น 10 µg/ml ก็พบว่า เปปไทด์ KL12 มีความสามารถในการ ทำให้เมมเบรนชั้นนอกของเชื้อ *E. coli* เกิด permeabilize ได้ดีกว่าเปปไทด์ Melittin แต่น้อยกว่า ยาปฏิชีวนะ PMB ที่ความเข้มข้น 10 µg/ml ซึ่งเป็นยาที่มีความสามารถทำให้เมมเบรนชั้นนอก ของเซลล์แบคทีเรียเกิด permeabilized ได้ดี ผลการทดลองแสดงดังรูปที่ 20

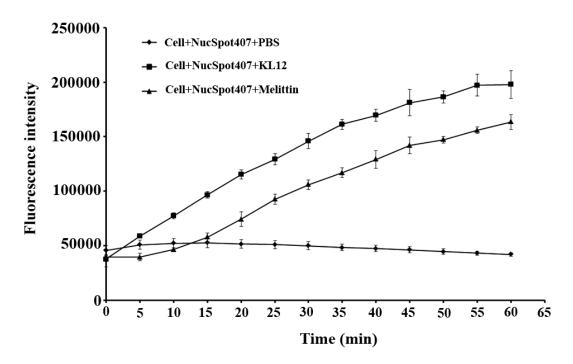

ร**ูปที่ 20** การเกิด permeabilization เมมเบรนชั้นนอกของเชื้อ *E. coli* ที่ทดสอบด้วยวิธี NPN uptake

3.8.2 การศึกษาการเกิด Permeabilization ที่เมมเบรหชั้นใหของแบคทีเรีย (Inner Membrane Permeabilization Assay)

3.8.2.1 Cytoplasmic membrane depolarization assay

ในการทดลองนี้จะใช้สาร 3,3'-Diethyloxacarbocyanine, iodide (DiOC $_5$ (3), Iodide) ซึ่งเป็นสารฟลูออเรสเซนต์ชนิด carbocyanine dye ที่ใช้ในการศึกษาการ เกิดภาวะขั้วกลับ (depolalization) ของเยื่อหุ้มเซลล์ ซึ่งการทดลองนี้ได้ทดสอบความสามารถใน การทำให้เยื่อหุ้มเซลล์ของแบคทีเรีย E.coli เกิด depolarization ของเปปไทด์ KL12 โดยศึกษา เทียบกับเปปไทด์ Melittin ที่ใช้เป็น positive control และใช้ 5 mM HEPES, 20 mM glucose และ 0.1 M KCI, pH 7.4 เป็นตัวควบคุม (control) โดยจะบ่มเซลล์ E.coli ร่วมกับสาร DiOC $_5$ (3), Iodide ให้ความเข้มขันสุดท้ายเท่ากับ 0.4 μ M เป็นเวลาประมาณ 30 นาที หรือ จนกว่าค่า Fluorescence intensity จะคงที่ แสดงว่าสาร DiOC $_5$ (3), Iodide ได้เข้าไปภายในเยื่อ หุ้มเซลล์แล้ว จากนั้นเติมเปปไทด์ KL12 โดยใช้ความเข้มขันเท่ากับค่า MIC แล้วเริ่มวัดค่า

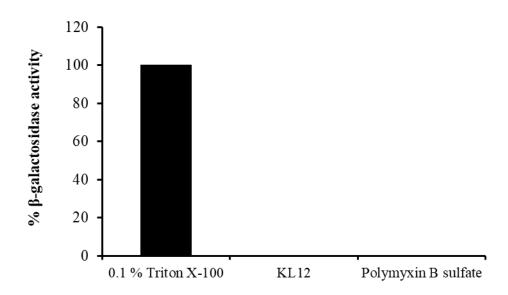
fluorescence intensity ตั้งแต่นาทีที่ 0-30 ผลการทดลองทดพบว่า เปปไทด์ KL12 สามารถทำ ให้เกิด depolalization ของเยื่อหุ้มเซลล์ $E.\ coli$ ได้ ซึ่งจะเห็นได้จากเมื่อเวลาผ่านไปสามารถวัด ค่า Fluorescence intensity ของสาร $DiOC_5(3)$, lodide เพิ่มขึ้น แต่น้อยกว่า Melittin ผลแสดง ดังรูปที่ 21



ร**ูปที่ 21** depolalization ของเยื่อหุ้มเซลล์ *E. coli* ที่เกิดจากเปปไทด์ KL12 เทียบกับเปปไทด์ Melittin ที่ทดสอบด้วยสารฟลูออเรสเซนต์ DiOC $_5(3)$, lodide

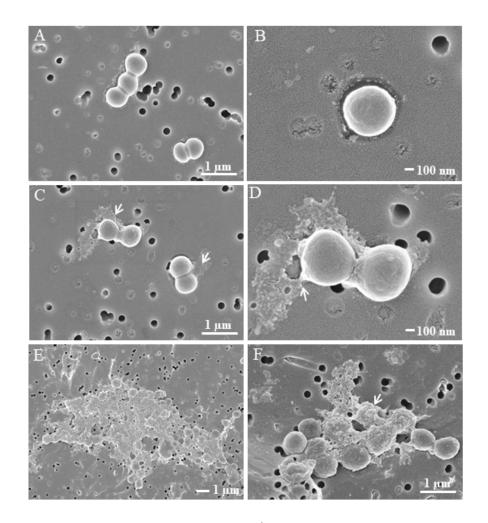
3.8.2.2 NucSpot® 470 green influx assay

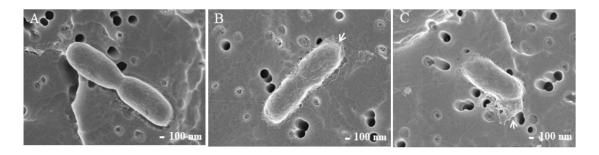
การทดลองนี้ใช้สาร NucSpot® 470 เป็น cell-membrane-impermeant green fluorescent DNA stain ในการศึกษาการเกิด Permeabilization ที่เมมเบรนชั้นในของ แบคทีเรีย (Inner Membrane Permeabilization) กล่าวคือ ในสภาวะที่เยื่อหุ้มเซลล์เป็นปกติสาร ฟลูออเรสเซนต์ชนิดนี้จะไม่สามารถผ่านชั้นเมมเบรนของเซลล์เข้าไปภายในเซลล์ได้ แต่ถ้าเยื่อ หุ้มเซลล์เกิด permeabilize สาร NucSpot® 470 จะสามารถผ่านเข้าไปภายในเซลล์และเข้าไป จับกับ DNA ของแบคทีเรียแล้วเกิดการเรื่องแสงสีเขียวขึ้น โดยในการทดสอบความสามารถใน การทำให้เมมเบรนชั้นในของแบคทีเรียเกิด permeabilize ของเปปไทด์ KL12 ศึกษาเทียบกับ เปปไทด์ Melittin ซึ่งเป็นเปปไทด์ที่มีความสามารถทำให้เซลล์แบคทีเรียแตกเสียหายได้เป็น อย่างดี จึงใช้เป็น positive control โดยใช้เชื้อ *E.coli* ซึ่งเป็นตัวแทนของเชื้อแบคทีเรียแกรมลบ เป็นเชื้อทดสอบ ผลการทดลองพบว่า เปปไทด์ KL12 ที่ใช้ความเข้มข้นเท่ากับ 8 µg/ml (ค่า MIC ของเปปไทด์นี้ต่อเชื้อ *E.coli*) มีความสามารถในการทำให้เมมเบรนชั้นในของเชื้อ *E.coli* เกิด permeabilize เพิ่มขึ้นตามระยะเวลาที่ใช้ทดสอบ คือ 60 นาที ซึ่งจะเห็นได้จากเมื่อเวลาผ่านไป ค่า Fluorescence intensity ที่วัดได้มีค่าสูงขึ้นเรื่อยๆ หมายความว่า เมื่อเปปไทด์ KL12 ทำให้ เมมเบรนชั้นในของเชื้อ *E.coli* เกิด permeabilize สาร NucSpot® 470 ซึ่งเป็นสารโมเลกุล


ขนาดเล็กสามารถผ่านเข้าไปภายในเซลล์และไปจับกับ DNA แล้วเกิดการเรื่องแสงขึ้น และเมื่อ เปรียบเทียบกับเปปไทด์ Melittin ที่ใช้ความเข้มข้น 10 µg/ml ก็พบว่า เปปไทด์ KL12 มี ความสามารถในการทำให้เมมเบรนชั้นในของเชื้อ *E. coli* เกิด permeabilize ได้ดีกว่าเปปไทด์ Melittin ผลการทดลองแสดงดังรูปที่ 22

ร**ูปที่ 22** การเกิด permeabilization เมมเบรนชั้นในของเชื้อ *E. coli* ที่ทดสอบด้วยสารฟลูออเรส เซนต์ NucSpot® 470

3.8.2.3 Cytoplasmic β -galactosidase activity assay


การศึกษานี้เพื่อต้องการระบุว่าเปปไทด์ KL12 นั้นทำให้เมมเบรนชั้นใน ของแบคทีเรียเกิด permeabilization ที่เป็นรูขนาดใหญ่ แล้วทำให้เอนไซม์ β -galactosidase ที่ อยู่ภายในเซลล์ E. coli รั่วออกมาได้หรือไม่ ซึ่งการทดลองนี้จะบุ่มเปปไทด์ร่วมกับเซลล์ E. coli ที่เลี้ยงในอาหารเหลวที่มีน้ำตาลแลคโตสเพื่อกระตุ้นให้แบคทีเรียสร้างเอนไซม์ β -galactosidase จากนั้นจะบุ่มเซลล์ E. coli ร่วมกับเปปไทด์ KL12 ที่ความเข้มข้นเท่ากับค่า MIC เปรียบเทียบกับยาปฏิชีวนะ PMB และสาร 0.1 % Triton X-100 เป็นเวลา 30 นาที จากนั้นปั่น เหวี่ยงเอาเฉพาะส่วนใส่มาทดสอบกิจกรรมของเอนไซม์ β -galactosidase ที่รั่วออกมาภายนอก แล้วทำปฏิกิริยากับ ONPG ซึ่งเป็นสารตั้งต้นของเอนไซม์ จะได้สารละลายสีเหลืองเข้มขึ้น สามารถวัดการดูดกลืนแสงที่ 415 nm โดยจะแสดงผลเป็น % β -galactosidase activity เทียบ กับสาร 0.1 % Triton X-100 ที่คิดเป็น 100 % β -galactosidase activity ซึ่งผลการทดลอง พบว่า ที่ความเข้มข้นของเปปไทด์เท่ากับค่า MIC ไม่เห็นกิจกรรมของเอนไซม์ β -galactosidase ซึ่งให้ผลเช่นเดียวกับยาปฏิชีวนะ PMB ดังแสดงในรูปที่ 23


รูปที่ 23 การเกิด permeabilization เมมเบรนชั้นในของเชื้อ *E. coli* โดยการตรวจวัดกิจกรรมของ เอนไซม์ β -galactosidase

3.9 การศึกษาผลของเปปไทด์ต่อเซลล์แบคทีเรียด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบส่งกราด ชนิดฟิลด์อิมิสชั่น (Field Emission Scanning Electron Microscopy, FESEM)

เมื่อนำเปปไทด์ KL12 ไปบุ่มกับเซลล์แบคทีเรีย S. aureus และ E. coli โดยใช้ความ เข้มขันเท่ากับค่า MIC และ 5xMIC เป็นเวลา 1 ชั่วโมง เทียบกับกลุ่มเซลล์แบคทีเรียควบคุมคือ เซลล์ที่ไม่ได้บุ่มร่วมกับเปปไทด์ หลังจากนั้นนำไปวิเคราะห์ดูลักษณะหรือการเปลี่ยนแปลงของ เซลล์แบคทีเรียโดยใช้กล้อง FESEM โดยผลพบว่า เซลล์แบคทีเรียบางส่วนมีลักษณะขรุขระ และแตกเสียหาย ทำให้เห็นสารที่อยู่ภายในเซลล์รั่วไหลออกมา โดยเฉพาะเมื่อใช้ความเข้มขัน ของเปปไทด์เป็น 5xMIC เซลล์แบคทีเรียจะแตกเสียหายมากยิ่งขึ้น (รูปที่ 24C-F และ 25B-C) เมื่อเทียบกับกลุ่มควบคุม (รูปที่ 24A-B และ รูปที่ 25A)

รูปที่ 24 ลักษณะของเซลล์แบคทีเรีย S. aureus เมื่อส่งด้วยกล้อง FESEM โดยรูป A และ B คือ เซลล์ S. aureus ที่ไม่ได้บ่มร่วมกับเปปไทด์ KL12, C และ D คือ เซลล์ S. aureus ที่บ่ม ร่วมกับเปปไทด์ KL12 ความเข้มข้นเท่ากับค่า MIC, E และ F คือ เซลล์ S. aureus ที่บ่ม ร่วมกับเปปไทด์ KL12 ความเข้มข้นเท่ากับค่า 5xMIC โดยใช้เวลาการบ่ม 1 ชั่วโมง

ร**ูปที่ 25** ลักษณะของเซลล์แบคทีเรีย *E. coli* เมื่อส่งด้วยกล้อง FESEM โดยรูป A คือ เซลล์ *E. coli* ที่ไม่ได้บ่มร่วมกับเปปไทด์ KL12, B คือ เซลล์ *E. coli* ที่บ่มร่วมกับเปปไทด์ KL12 ความ เข้มขันเท่ากับค่า MIC, คือ เซลล์ *E. coli* ที่บ่มร่วมกับเปปไทด์ KL12 ความเข้มขันเท่ากับค่า 5xMIC โดยใช้เวลาการบ่ม 1 ชั่วโมง

4. สรุปและวิจารณ์ผลการทดลอง

ทำการออกแบบและสังเคราะห์เปปไทด์ต้านเชื้อแบคทีเรียทั้งหมด 6 เส้น (KL8 (KLLKKLLK), KL12 (KLLKKLLKKLLK), KLW9 (KKWLKKLLK), KW8 (KWKKWWKK), KL8-WWW (KLLKKLLKWWW-NH2) และ KL12-WWW (KLLKKLLKWWW-NH2)) จากนั้นศึกษาโครงสร้างระดับทุติยภูมิด้วยเครื่อง CD Spectrophotometry พบว่า มีเปปไทด์ 3 เส้น คือ KL12, KL8-WWW และ KL12-WWW ที่เมื่ออยู่ในสารละลาย 50% TFE ซึ่งเป็น แบบจำลองเยื่อหุ้มเซลล์แบคทีเรีย (mimic membrane) มีการเปลี่ยนแปลงโครงสร้างระดับทุติย ภูมิเป็นแบบ **α**-Helix เพิ่มสูงขึ้นจากในสารละลาย 10mM NaPB, pH 7.2 ซึ่งเป็นลักษณะ สำคัญของสารที่เป็นเปปไทด์ทำลายเชื้อแบคทีเรีย แล้วทดสอบฤทธิ์ต้านเชื้อแบคทีเรีย 7 สาย พันธุ์ ประกอบด้วยแกรมบวก 5 สายพันธุ์ คือ Staphylococcus aureus ATCC25923, Staphylococcus saprophyticus ATCC15305, Bacillus subtilis, Enterococcus faecalis และ Staphylococcus aureus MRSA DMST20654 และแกรมลบ 2 สายพันธุ์ คือ Salmonella typhi DMST22842 และ Escherichia coli ATCC25922 ผลพบว่า เปปไทด์ KL12 มีความสามารถใน การยับยั้งเชื้อแบคทีเรียได้ดีที่สุด โดยยับยั้งได้ทั้งหมด 5 สายพันธุ์ คือ S. aureus, S. S. typhi, E. coli และ S. aureus MRSA เปปไทด์ KL8-WWW และ KL12-WWW สามารถยับยั้งเชื้อแบคทีเรียทดสอบได้ 2 สายพันธุ์ คือ S. saprophyticus และ S. aureus MRSA เปปไทด์ KLW9 และ KW8 สามารถยับยั้งการเจริญของแบคทีเรียทดสอบได้ เพียง 1 สายพันธุ์ คือ S. saprophyticus ส่วนเปปไทด์ KL8 ไม่สามารถยับยั้งการเจริญของ แบคทีเรียทดสอบได้ซึ่งให้ผลสอดคล้องกับการวิเคราะห์โครงสร้างระดับทุติยภูมิของเปปไทด์ ด้วยเครื่อง CD spectroscopy กล่าวคือ เปปไทด์ KL12 เมื่ออยู่ในสารละลาย 10mM NaPB, pH 7.2 มีความเป็น **α**-Helix อยู่ 11.65 % แต่เมื่ออยู่ในสารละลาย 50% TFE ซึ่งเป็นแบบจำลอง เมมเบรนของแบคทีเรีย (mimic membrane) มีการเปลี่ยนแปลงโครงสร้างระดับทุติยภูมิเป็น แบบ **α**-Helix เพิ่มสูงขึ้นเป็น 85.49 % ซึ่งแสดงให้เห็นว่า เปปไทด์ KL12 สามารถเปลี่ยนโครง รูปเป็นแบบ α-Helix ได้เมื่อมีการจับกับเยื่อหุ้มเซลล์ของแบคทีเรียทำให้สามารถยับยั้งการ เจริญของแบคทีเรียทดสอบได้หลายสายพันธุ์

หาค่าความเข้มข้นต่ำสุดของเปปไทด์ที่สามารถยับยั้งการเจริญของเชื้อแบคทีเรีย (ค่า MIC) ผลพบว่า เปปไทด์ KL12 มีค่า MIC ต่อเชื้อ S. aureus, S. saprophyticus, S. aureus MRSA, S. typhi และ E. coli เท่ากับ 64, 4, 64, 2 และ 8 µg/ml ตามลำดับ เปปไทด์ KL8-WWW และ KL12-WWW มีค่า MIC ต่อเชื้อ S. saprophyticus เท่ากับ 2 และ 8 µg/ml ตามลำดับ และมีค่า MIC ต่อเชื้อ S. aureus MRSA เท่ากับ 4 และ 32 µg/ml ตามลำดับ เปป

ไทด์ KLW9 และ KW8 มีค่า MIC ต่อเชื้อ S. saprophyticus เท่ากับ 64 และ 32 µg/ml จากนั้น ทดสอบความเป็นพิษต่อเซลล์สัตว์เลี้ยงลูกด้วยน้ำนมของเปปไทด์พบว่า เปปไทด์ KL8-WWW และ KL12-WWW มีความเป็นพิษต่อเซลล์เม็ดเลือดแดงของมนุษย์ และ Vero cells สูง ส่วน เปปไทด์ KL12 มีความเป็นพิษต่ำ ดังนั้นจึงเลือกเปปไทด์ KL12 มาทดสอบความสามารถในการ ฆ่าเชื้อแบคทีเรีย S. aureus และ E. coli โดยใช้ความเข้มข้นของเปปไทด์เท่ากับ 2xMIC พบว่า เปปไทด์ KL12 สามารถฆ่าเชื้อแบคทีเรียทั้งสองชนิดได้อย่างรวดเร็ว และเมื่อทดสอบ ความสามารถในการจับกับ LPS และ LTA ของเปปไทด์ KL12 พบว่า เปปไทด์ KL12 มี ความสามารถในการจับกับ LTA ได้ดีกว่า LPS

ศึกษากลไกการเข้าทำลายเซลล์แบคทีเรียของเปปไทด์ KL12 โดยใช้เซลล์ E. coli เป็นเซลล์แบคทีเรียทดสอบ เริ่มจากการศึกษาความสามารถของเปปไทด์ KL12 ในการทำให้ เกิด Permeabilization ที่เมมเบรนชั้นนอกของแบคทีเรีย (Outer Membrane Permeabilization Assay) ซึ่งใช้สาร 1-N-phenylnaphtylamine (NPN) เป็นตัวตรวจสอบ ซึ่ง NPN เป็นสารฟลูออ-เรสเซนต์โดยจะเกิดการเรื่องแสงได้ดีเมื่ออยู่ในสภาวะแวดล้อมที่เป็น hydrophobic โดยหาก เปปไทด์สามารถทำให้เมมเบรนชั้นนอกเกิด permeabilization สาร NPN จะเข้าไปจับกับ บริเวณ hydrophobic ของ lipid bilayer ซึ่งจะทำให้ค่าการเรื่องแสงของ NPN เพิ่มขึ้น จากผล การทดลองพบว่า เปปไทด์ KL12 ที่ใช้ความเข้มข้นเท่ากับ 8 μg/ml (ค่า MIC ของเปปไทด์นี้ต่อ เชื้อ *E. coli*) มีความสามารถในการทำให้เมมเบรนชั้นนอกของเชื้อ *E. coli* เกิด permeabilize เพิ่มขึ้นตามระยะเวลาที่ใช้ทดสอบ คือ 5 นาที ซึ่งจะเห็นได้จากเมื่อเวลาผ่านไปค่า Fluorescence intensity ที่วัดได้มีค่าสูงขึ้นเรื่อย ๆ หมายความว่า เมื่อเปปไทด์ KL12 ทำให้เมม เบรนชั้นนอกของเชื้อ E. coli เกิด permeabilize ทำให้สาร NPN สามารถเคลื่อนที่เข้าไปยัง ส่วนที่เป็น hydrophobic และเกิดการเรื่องแสงขึ้น และเมื่อเปรียบเทียบกับเปปไทด์ Melittin ที่ใช้ ความเข้มข้น 10 µg/ml ก็พบว่า เปปไทด์ KL12 มีความสามารถในการทำให้เมมเบรนชั้นนอก ของเชื้อ *E. coli* เกิด permeabilize ได้ดีกว่าเปปไทด์ Melittin แต่น้อยกว่ายาปฏิชีวนะ Polymycin B sulfate (PMB) ที่ความเข้มข้น 10 μg/ml ซึ่งเป็นยาที่มีความสามารถทำให้เมม เบรนชั้นนอกของเซลล์แบคทีเรียเกิด permeabilized ได้ดี จากนั้นศึกษาความสามารถของเปป ไทด์ KL12 ในการทำให้เกิด Permeabilization ที่เมมเบรนชั้นในของแบคทีเรีย (Inner Membrane Permeabilization Assay) โดยได้ศึกษา 3 วิธี คือ Cytoplasmic membrane depolarization assay, NucSpot® 470 green influx assay แ ล ะ Cytoplasmic βgalactosidase activity assay ซึ่งจากผลการทดลองพบว่า เปปไทด์ KL12 มีความสามารถทำ ให้เยื่อหุ้มเมมเบรนชั้นในของแบคทีเรียเกิด Permeabilization ได้ โดยส่วนใหญ่คาดว่าจะเกิดใน ลักษณะที่เป็นรูขนาดเล็ก เนื่องจากทำให้สาร NucSpot® 470 green ซึ่งเป็นสารที่มีโมเลกุล ขนาดเล็กสามารถเคลื่อนที่เข้าไปภายในเซลล์และไปจับกับ DNA ที่อยู่ภายในเซลล์แล้วเรื่องแสง ฟลูออเรสเซนต์ขึ้น แต่เมื่อทดสอบ Cytoplasmic β-galactosidase activity พบว่า ไม่สามารถ ตรวจกิจกรรมของเอนไซม์ β-galactosidase ในส่วนใสของน้ำเลี้ยงเซลล์ที่บ่มร่วมกับเปปไทด์ KL12 เนื่องจากเอนไซม์ β-galactosidase เป็นสารที่มีโมเลกุลขนาดใหญ่ หากเปปไทด์ไม่ สามารถทำให้เซลล์แบคทีเรียเกิด Permeabilization ในลักษณะที่เป็นรูขนาดใหญ่ เอนไซม์ β-galactosidase ก็จะไม่สามารถรั่วออกมาได้ หรืออาจเป็นไปได้ว่า ในความเข้มขันของเปปไทด์ที่ เท่ากับค่า MIC นั้น ทำให้เซลล์แบคทีเรียเกิดความเสียหายได้บางส่วนแล้วอาจจะมีเอนไซม์ β-galactosidase รั่วออกมาในปริมาณที่น้อย จึงไม่สามารถตรวจพบกิจกรรมของเอนไซม์ β-galactosidase ผลการทดลองนี้สอดคล้องกับการศึกษาของ Chou et al., 2016 ที่ศึกษากลไก การเข้าทำลายเชื้อแบคทีเรียของเปปไทด์สังเคราะห์ W2 โดยได้ทำการศึกษาพบว่า เปปไทด์ สังเคราะห์ W2 มีความสามารถในการทำให้เซลล์แบคทีเรียเกิด Permeabilization ได้ทั้งเยื่อหุ้ม ชั้นนอกและชั้นใน

จากนั้นศึกษาผลของเปปไทด์ต่อเซลล์แบคทีเรียด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบ ส่งกราด ชนิดฟิลด์อิมิสชั่น (Field Emission Scanning Electron Microscopy, FESEM) ผล พบว่า เปปไทด์ KL12 ทำให้เซลล์แบคทีเรียบางส่วนมีลักษณะขรุขระ และแตกเสียหาย โดยเฉพาะเมื่อใช้ความเข้มข้นของเปปไทด์เป็น 5xMIC เซลล์แบคทีเรียจะแตกเสียหายมากยิ่งขึ้น เมื่อเทียบกับกลุ่มควบคุม ซึ่งจากผลการทดลองนี้คาดว่า เปปไทด์ KL12 จะมีตำแหน่งการเข้า ทำลายที่บริเวณเมมเบนของแบคทีเรีย ดังเช่นที่เคยมีผู้รายงานแล้วในเปปไทด์ทำลายเชื้อ แบคทีเรียชนิดอื่น ๆ

5. ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

ภาคผนวก

Manuscript

De novo design of potent antimicrobial peptides and their mode of action

Nualyai Yaraksa, 1,2,* Sakda Daduang 2,3

¹Program of Chemistry, Faculty of Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand

²Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand ³Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand

* Corresponding author. Tel.: +66-45-352000 fax: +66-45-352129.

E-mail address: nualyai.y@ubru.ac.th

As potential therapeutic, antimicrobial peptides (AMPs) with shorter length and simple amino acid composition can be better candidates for clinical and commercial development. KL12, a novel cationic α-helical antimicrobial peptide consisting of 12 amino acid residues, was designed by de novo design based on unique characteristics of naturally occurring AMPs and chemically synthesized. The peptide has a net charge of +6 with a total hydrophobic ratio of 50%. The antimicrobial experiments revealed that KL12 strongly inhibited the growth of human pathogenic bacteria. The analysis of minimum inhibitory concentrations (MICs) which inhibited the five pathogenic bacteria namely Staphylococcus aureus ATCC25923, Staphylococcus saprophyticus ATCC15035, Staphylococcus aureus MRSA DMST20654, Salmonella typhi DMST22842 and Escherichia coli ATCC25922 using broth microdilution assay showed that MICs of KL12 was ranging from 2 µg/mL to 64 µg/mL. Interaction with lipopolysaccaharide (LPS) and lipotheicoic acid (LTA) suggests that the peptide was able to bind and neutralize LPS and LTA. Fluorescence studies and electron microscopy analyses indicated that KL12 kills microbial by permeabilizing the cell membrane and damaging membrane integrity.

Keywords: antimicrobial peptides, designed peptides, peptides synthesis, mode of action

Pathogens resistances to antibiotics are becoming a global incidence for human health worldwide. Almost all antibiotics are baffled by the great ability to adaptation of pathogens and the emergence of new agents, discovered with up-dated technologies. The development of new antibiotic compounds like antimicrobial peptides (AMPs) is necessary [1]. AMPs are good candidates as new antibiotics since they are natural defenses of most living organisms against invading pathogens [2-4]. These peptides are small, cationic and amphipathic molecules. Cationic AMPs belong to the innate immune system and host defense mechanism of a wide range of living organisms [5, 6]. More than 1900 natural AMPs are registered in the Antimicrobial Peptide Database (APD: http://aps.unmc.edu/AP/ main.html), emphasizing the importance of expanding AMP research [7]. AMPs induce the direct destruction of a wide diversity of microorganisms. Owing to their ability to attack different microorganisms, including bacteria, viruses and fungi, together with the growing problem of resistance to conventional antibiotics, AMPs have been regarded as promising candidates for the development of novel antibiotics [2, 8-10]. The fact that microorganisms are less efficient in developing effective resistance mechanisms against AMPs than against classical antibiotics further supports the use of AMPs as novel therapeutics [2, 9, 11, 12]. In addition, AMPs can act synergistically with conventional antibiotics [12]. All of AMPs cause lysis by two-step mechanisms, which consists of (i) binding to a negatively charged membrane with a cationic nature and (ii) permeabilization of the microbial membrane [13]. Nevertheless, these peptides use many structures and mechanisms to destroy microorganisms, including binding to an intracellular target such as DNA, RNA and/or protein, and interacting with enzymes causing inhibition of metabolic processes [14]. These properties confer considerable potential for the development of these agents as novel therapeutic agents to overcome the resistance problem [15].

AMPs are currently used clinically in two topical and two systemically applied formulations for the treatment of several diseases, as well as prophylactically to prevent infections in neutropenic or cystic fibrosis patients [16]. While thousands of AMPs are identified, only few of them are developed in view of clinical applications [1]. The natural AMPs are far from perfect (poor pharmaceutical and pharmacokinetic properties) and some of them cause toxicity to the eukaryotes. For example, the strong antibacterial activity is often accompanied with hemolysis to the eukaryotes. Further,

the high manufacturing cost of peptides is arguably the principal problem preventing the widespread clinical use of this class of antibacterial therapeutic [17-19]. In this respect, an AMP with a short size and a simple amino acid composition would be a more favorable lead molecule to reduce production costs and to facilitate pharmaceutical optimization [19, 20]. Rational design and thereafter chemical synthesis are important approaches in the search for substitutes of conventional antibiotics because it can overcome the limitations in large-scale production and application of natural peptides [21].

Rational design methods aim to create novel peptides with improved antimicrobial activity, lower toxicity to human cells and reduced size. In other words, it is much more specific in creating a pharmaceutical with higher specificity to microorganisms, avoiding side effects. The rational design methods can be classified into three major classes: physicochemical, template-based and *de novo* methods. This study focuses on *de novo* methods because they are very interesting in terms of achieving a yield from multiple AMPs with little amino acid conservation. Instead of using one pivotal sequence to develop analogues, *de novo* methods can use amino acid patterns or amino acid frequencies and positioning preferences, generating several sequences with no clear relation.

Therefore, the aim of this project is to create novel potent antimicrobial peptides by de novo design based on unique characteristics of naturally occurring AMPs: short, preferably cationic, with α -L-amino acids, and with more than 30% of hydrophobic residues. The Antimicrobial Peptide Database (APD: http://aps.unmc.edu/AP/ main.html [22]) are anticipated to build short peptides with cationic properties. This web tool offers a research interface to select peptides with search criteria such as length, structure, hydrophobic percentage, net charge and the target organism as well as provides statistical information on peptide sequence, structure and function, average peptide length, average net charge per peptide and frequency of each amino acid.

In addition, APD has a prediction interface, which allows input of peptide sequences, and prediction of whether the new peptide has the potential to be antimicrobial based on known factors. The program carries out a residue analysis on the peptide and in terms of structure, simple predictions can be made. When hydrophobic residues appear every two or three residues in the peptide sequence, an amphipathic helix will be predicted. Two types of amino acid side chains play

important roles in antimicrobial activity of peptides, which are (i) the bulky nonpolar side chains, for instance proline (P), phenylalanine (F) and tryptophan (W) providing a distinct preference for the interfacial region of lipid bilayers as well as (ii) the cationic side chains arginine (R), lysine (K) and histidine (H) mediating peptide interactions with negatively charged membranes or cell walls of bacteria [23]. However, a previous result have shown that arginine (R)-containing peptides cause relatively strong calcein leakage from zwitterionic 1-palmitoyl-2oleoylphosphatidylcholine, eukaryotic mimic membrane, whereas lysine (K)substituted analogues showed less membrane lytic activity [24]. Therefore, in this study we choose lysine (K) as a positively charged provider in the peptide structure instead of arginine (R) and some of designed peptides will be end-tagging by hydrophobic amino acid (W) stretches to enhance bactericidal potency.

Six cationic peptides (8 to 15 residues long) were designed to form idealized amphipathic helices with the hydrophilic (lysine (K)) and hydrophobic (leucine (L) and tryptophan (W)) domains. The designed peptides will be chemically synthesized using solid-phase methodology with Fmoc-protected amino acids. Then, elucidation of their antimicrobial activity is planned to be achieved by microbiological techniques, Gram-negative as well as Gram-positive bacteria: non-resistant and resistant strains are selected for the screening. One of them KL12 showed potent inhibitory activity against bacteria with display little cytotoxicity towards mammalian cells at all the concentrations tested. Fluorescence studies and electron microscopy analyses indicated that KL12 kills microbial by permeabilizing the cell membrane and damaging membrane integrity. This peptide could be a potential candidate for the treatment of infectious diseases.

Materials and Methods

Peptide design and Synthesis

The short cationic antimicrobial peptides were designed using the Antimicrobial Peptide Database (APD: http://aps.unmc.edu/AP/main.html). The peptides sequences were chosen base on following rules: (i) containing positive charged amino acids, (ii) containing α-helix, and (iii) containing hydrophobic amino acids. Six cationic peptides were designed to form idealized amphipathic helices with the hydrophilic (lysine (K)) and hydrophobic (leucine (L) and tryptophan (W)) domains. Peptides were synthesized using solid-phase methodology with Fmocprotected amino acids (GL Biochem (Shanghai) Ltd.). Purification by preparative reversed phase (RP)-HPLC gave final products that were >95% pure. Peptide structures were characterized by Electrospray Ionization mass spectrometry (ESI-MS). The sequences and physicochemical properties of six designed peptides are shown in Table 1. The helical wheel diagrams of these peptides are show in figure 1.

The Strains of Bacteria

Three Gram-positive bacteria namely *Staphylococcus aureus* ATCC25923, *Staphylococcus saprophyticus* ATCC15305 and *Staphylococcus aureus* MRSA DMST20654 and 2 Gram-negative bacteria namely *Salmonella typhi* DMST22842 and *Escherichia coli* ATCC25922 were selected to measure antibacterial activity of peptides. The strains were provided by Program of Microbiology in Ubon Ratchatani Rajabhat University and were stored at 4 °C until use.

Circular dichroism (CD) spectroscopy

The secondary structures of peptides were examined by CD spectroscopy. Each peptide was dissolved in 10mM sodium phosphate buffer (NaPB) pH 7.2 or mimicking the hydrophobic environment of the microbial membrane in the presence of 50% 2,2,2-Trifluoroethanol (TFE) to a final concentration of 0.1 mg/ml. The molar ellipticities of peptides were determined using a CD spectroscopy. Each spectrum was the average of five scans over the range 190–240 nm using a quartz cell of 1mm optical path length at room temperature. The scanning speed was 20 nm/min at an interval of 0.1 nm, 1-s response time and 1.0 nm bandwidth. Before calculation of the final ellipticity, all spectra were smoothed and corrected for buffer blanks.

Antimicrobial susceptibility assay

The antibacterial activity of peptides against several Gram-negative and Gram-positive bacteria, including non-resistant and resistant strains was measured using liquid growth inhibition assays [1] with slightly modify, using a broad spectrum AMP Magainin2 as the positive control. Briefly, 50 µl of peptide solution were incubated in microtiter plates with 50 µl of a suspension of bacteria at a starting OD of OD600=0.002 in Nutrient broth (NB). Bacterial growth was assayed by measurement of OD600 after 16 to 20 h incubation at 37 °C. The minimum inhibitory concentration (MIC) of each peptide was defined as the lowest peptide concentration that completely inhibited growth [25]. To confirm if the peptides were killing the bacteria, the minimal bactericidal concentration (MBC) was determined by adding 30 µl of resazurin dyes (0.01% (w/v)) to each well. The plates were incubated at 37 °C for further 18 h. Wells with blue colouration indicate dead microorganism, whereas wells with pink colouration indicate live microorganism. The MBC value is the lowest concentration of the wells with blue colouration [26].

Mammalian cytotoxicity assays

Both hemolytic assays and MTT assays were determined. (i) The hemolytic activity of peptides was determined based on hemolysis of human red blood cells (HRBCs). The human red blood cells were centrifuged, washed three times with saline (0.85% NaCl) and re-suspended to 4% (v/v) in phosphate-buffered saline (35 mM phosphate, pH 7.0, 150 mM NaCl, PBS). One hundred microliters of human red blood cells solution were incubated with 100 µl of different peptide concentrations for 1 h at 37 °C. The samples were centrifuged for 5 min and hemolysis was determined by measuring the OD of the supernatant at 415 nm. The percentage of hemolysis was calculated by using the following formula:

% hemolysis = [(Abs415nm in peptide solution - Abs415nm in PBS)

/(Abs415nm in 0.1% TritonX-100 - Abs415nm in PBS)] x100

Zero hemolysis (blank) and 100% hemolysis were determined in PBS and 0.1% Triton X-100, respectively. (ii) The colorimetric 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assay was used to determine the cytotoxicity of peptides on Vero cell. Briefly, 1x10⁵ cells per well in Dulbecco's modified Eagle's medium-

F12 (DEMEM-F12) medium supplemented with 10% fetal bovine serum were placed into 96-well plates. After incubation for 24 h under a fully humidified atmosphere of 95% room air and 5% CO₂ at 37 °C, peptides were added to cell cultures at a final concentration of MIC values. Toxicity was evaluated after 24 h of incubation by measuring the OD of the culture at 570 nm using 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide dye reduction assay based on conversion of the yellow tetrazolium salt 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide into purple formazan crystals by metabolically active cells.

Time-kill assay

The bacterial strains including *S. aureus* and *E. coli* were grown overnight at 37 °C in NB and harvested at the logarithmic phase of growth by centrifugation at 3000 xg for 5 min, washed three times with 10 mM sodium phosphate (NaPB) pH 7.2. The bacterial cells re-suspended in same buffer at an approximate density of 10⁷ CFU/ml. Then, separately exposed to the peptide at a final concentration of 2xMIC for 0, 3, 5, 10, 20, 40 and 60 min at 37 °C. After each observation, samples were serially diluted and plated onto Nutrient agar (NA) plates to obtain viable colonies.

Binding affinity for lipopolysaccharide (LPS) and lipotheicoic acid (LTA)

The outer membranes of Gram-positive and Gram-negative bacteria differ significantly in their composition. Gram-positive bacteria have a thicker peptidoglycan layer and they have LTA exposed in the outer membrane, whereas Gram-negative bacteria have a thin peptidoglycan layer and an outer lipid bilayer covered with LPS [27]. These negatively-charged molecules activate multiple signal transduction pathways and constitute the first physical barrier which needs to be transversed by AMPs [28]. Therefore, the ability of the peptides to bind to LPS and LTA was examined and compared using a LAL assay as describe in Torcato et al. [26]. The endpoint chromogenic Limulus Amebocyte Lysate (LAL) test kit was employed to examine the ability of the peptides to neutralize LPS and LTA. This test is a sensitive indicator of the presence of free, non-neutralized endotoxin (either LPS or LTA) [29]. LPS from *E. coli* O111:B4 (standard provided with the LAL assay kit) or LTA from *S. aureus* (Sigma-Aldrich, Germany) were incubated with various

concentrations of peptides. Briefly, peptide and LPS (1 EU/mL), or LTA (500 ng/mL, response equivalent to LPS 1 EU/mL), were incubated for 30 min to allow binding. LAL reagent was added and incubated for 10 min at 37 °C, followed by addition of the colourless substrate and incubation for further 6 min. The reaction was stopped with 25% (v/v) glacial acetic acid and the release of *p*-nitroaniline followed by absorbance at 405 nm. Controls with water or peptide only were included to confirm that all the samples were endotoxin-free. After blank subtraction, the concentration of free endotoxin was calculated by using calibration curves obtained with LPS (0.125–1 EU/mL) or LTA (62.5–1000 ng/mL). The values were normalized and converted into bound endotoxin (bound endotoxin=1–free endotoxin) and plotted as a function of peptide concentration.

Outer Membrane (OM) Permeabilization assay

The outer membrane permeability of the peptides was determined by using the fluorescent dye N-phenyl-1-napthylamine (NPN) uptake assay, as previously described [30]. Briefly, *E. coli* were washed and resuspended in buffer (5 mM HEPES, 5 mM glucose, pH 7.4). NPN (Sigma-aldrich, Germany) was added to the cell suspension in 96 black well plates to give a final concentration of 10 μ M. Peptide samples were added to 96 black well plates and fluorescence was recorded (excitation λ =350 nm, emission λ =420 nm) for 5 min. Changes in fluorescence were recorded using an the CLARIOstar multi-mode microplate reader (BMG LABTECH, Germany). As the outer membrane permeability increased due to the addition of peptide, NPN incorporated into the membrane resulted in an increase in fluorescence. Polymyxin B (PMB) is used as a positive control because of its strong outer membrane permeabilizing properties.

Inner Membrane (IM) Permeabilization assay

Inner membrane permeability was determined by measuring NucSpot® 470 influx assay. *E. coli* cells were grown to mid logarithmic phase at 37 °C, washed two times and suspended in PBS buffer (1×10⁸ cells/ml). Aliquots of 90 µl of this cell suspension were deposited in each well of a standard 96 well plate. Ten µl of the peptide solution (final concentration at MIC value) containing 1x NucSpot® 470 (Biotium, USA) was added to the wells. The time-dependent increase in fluorescence

excited by binding of the cationic dye to intracellular DNA was monitored using the CLARIOstar multi-mode microplate reader (BMG LABTECH, Germany). The excitation and emission wavelengths were 460 nm and 546 nm, respectively. Melittin, which kills bacteria by targeting membranes and forming a pore, was used as a positive control.

Cytoplasmic membrane depolarization assay

The effect of peptides on the membrane potential of bacterial cell was probed by membrane sensitive DiOC₅(3) (Biotium, USA) fluorescent assay. Briefly, Bacterial cell was harvested at an early exponential growth phase in NB at 37 °C, harvested by centrifugation at 3000xg for 5 min, washed thrice, and diluted to an OD₆₀₀ of 0.1 with 5 mM HEPES buffer (pH 7.4, containing 20 mM glucose) containing 0.1 M KCl to equilibrate the cytoplasmic and external K⁺. Subsequently, the cell suspensions were incubate with 0.4 μM DiOC₅(3) until DiOC₅(3) uptake was maximal (when the reduction of fluorescence intensity was stable due to self-quenching of DiOC₅(3) in the untreated bacteria). The desired concentration of peptides added into a standard 96 well plate. The fluorescence reading was monitored for 30 min with the CLARIOstar multi-mode microplate reader (BMG LABTECH, Germany), at an excitation wavelength of 482 nm and an emission wavelength of 497 nm. The fluorescence of 0.1 % Triton X-100-treated cells served as a positive control for maximum depolarization [31].

Scanning Electron Microscopy

Scanning Electron Microscopy was performed according to [32] with slight modifications. *S. aureus* and *E. coli* was grown in NB and harvested at the logarithmic phase of growth by centrifugation at 3000 xg for 5 min. The bacterial cells were then washed twice with 10 mM NaPB pH 7.2 and re-suspended with the same buffer to a final concentration of 1x10⁸ CFU/ml (OD₆₀₀=0.2). Aliquots of suspensions of bacterial cells were individually incubated with MIC and 5xMIC of peptides at 37 °C for 1 h. The 100 µl solutions of the bacterial cells were carefully

pipetted and applied to a 0.2 μm polycarbonate membrane filter (Whatman®, USA) for 30 min whereupon cells were fixed with 300 μl of 2.5% (v/v) glutaraldehyde (Sigma, USA) for 1 h. The fixed material was dehydrated by rinsing (for 15 min) repeatedly with a series of ethanol solutions containing 30%, 50%, 70%, 90% and finally 100% ethanol. Dry materials were coated with a sputter coater (JEOL, JEC-3000FC, USA) with gold palladium and examined by Field Emission Scanning Electron Microscopy (FESEM) (JEOL, JSM-7610F Plus, USA) operating at 3.0 kV.

Results and Discussion

CD spectroscopy

To analyse the structure of the peptides in aqueous solution (phosphate buffer) and membrane mimic conditions in the presence of 50% TFE solution we performed CD measurements. Four peptides including KL8, KL12, KLW9 and KW8 formed random coil structures in aqueous solution, whereas KL8-WWW and KL12-WWW formed α-helix and β-Sheet, respectively (Fig. 2). The conformation of KL8 in the presence of 50% TFE was the same as that buffer, with a random coil structure. Whereas the conformation of KL12, KLW9, KW8 and KL12-WWW in the presence of 50% TFE showed an α-helix structure. In TFE, KL8-WWW showed more an α-helix structure. The deconvolution of spectrum was determined by using K2D3 program. The results showed that the α-helical content in KL8, KL12, KLW9, KW8, KL8-WWW and KL12-WWW peptides (in 50% TFE) were 17.13%, 85.49%, 49.55%, 40.02%, 69.09% and 66.75%, respectively (Table 3). These results implied that KL12, KLW9, KW8, KL8-WWW and KL12-WWW adopts amphipathic α-helical structure on the membrane. After the initial electrostatic adsorption, AMPs aggregate on the surface of bacterial cell and correct orientation according to the plane of binding, following with the partitioning of the peptide to the membrane and the α-helical amphipathic structure transition [33]. This conformational transformation is the key feature for AMPs to partition in bacterial cell membranes, which ultimately leads to bacterial cell death [34].

Antimicrobial susceptibility assay

Antimicrobial activities of six peptides (KL8, KL12, KLW9, KW8, KL8-WWW and KL12-WWW) were investigated against five bacterial strains. The MICs were determined and summarized in Table 2. KL8, KLW9, KW8, KL8-WWW and KL12-WWW showed activities against tested bacteria. Interestingly, KL-12 showed potent activity against bacteria. The MICs of KL12 for *Staphylococcus aureus* ATCC25923, *Staphylococcus saprophyticus* ATCC15305, *Staphylococcus aureus* MRSA DMST20654, *Salmonella typhi* DMST22842 and *Escherichia coli* ATCC25922 were comparable to Magainin2. The results also showed that KL-12 strongly inhibited the growth of *Salmonella typhi* DMST22842, *Staphylococcus saprophyticus* ATCC15305 and *Escherichia coli* ATCC25922 with the MICs value at 2 μg/ml, 4 μg/ml and 8 μg/ml, respectively.

Mammalian cytotoxicity assays

The five peptides including KL12, KLW9, KW8, KL8-WWW and KL12-WWW were selected for hemolytic activity and cytotoxicity assays. The hemolytic activities of these peptides against HRBCs were determined at final peptide concentrations ranging from 1 to 265 µg/mL. The results showed that KLW9 and KW8 are no hemolytic activity, KL12 is low hemolytic activity in the concentration rang tested whereas KL8-WWW and KL12-WWW are more hemolytic peptides (Fig. 3A). The cytotoxicity of the peptides was assessed in Vero cells. Vero cells are a kidney epithelial cell line extracted from an African green monkey, representing normal mammalian cells. The results were similar with hemolytic tested (Fig. 3B).

Time-kill assay

As in many other AMPs, the bacterial killing by KL12 is very rapid process. Its kinetic activity against the *S. aureus* ATCC25923 and *E. coli* ATCC25922 was complete after a more 5 min exposure, at a concentration two times the MIC (Fig. 4). This property demonstrated that there are less chances of microbes developing resistance to it. Such resistance against a particular antibiotic is often encountered in the case of bacteria exhibiting a long annihilation time, thus giving strains enough time to revert themselves [35].

Binding affinity for lipopolysaccharide (LPS) and lipotheicoic acid (LTA)

Gram-positive bacteria have a thicker peptidoglycan layer and they have LTA exposed in the outer membrane, whereas Gram-negative bacteria have a thin peptidoglycan layer and an outer lipid bilayer covered with LPS [27]. The ability of KL12 to bind to LPS and LTA was examined and compared using a LAL test kit. Figure 5 shows that the KL12 peptide was able to bind to LPS and LTA, and the binding was dose-dependent manner. However, KL12 has the weakest activity to bine to LPS than LTA. Our studies revealed that the peptide in this study have activity to neutralize both molecules.

OM and IM Permeabilization assay

The outer membrane plays an important role as a protective barrier in Gramnegative bacteria. Normally, NPN fluoresces weakly in an aqueous environment and strongly when it enters a hydrophobic environment such as the interior of a membrane [36]. To explore the abilities of the peptide to penetrate the outer membranes of gramnegative bacteria was tested. As shown in Fig. 6A, KL12 was able to permeabilize the outer membranes of *E. coli* at MIC value (8 µg/mL) and permeabilization was time-dependent when compared with cells in buffer only and cells with NPN only that acted as the negative control. KL12 showed greater outer membrane permeabilization activity than Melittin at same concentration. However, KL12 was lower than the fluorescence of *E. coli* treated with the positive control, polymyxin B sulfate. Therefore, our results indicated that KL12 peptide have permeabilized the outer membrane of the intact cells similarly to polymyxin B sulfate and other cationic AMPs including SMAP-29 [37], Indolicidin [38] and Temporin-L [39].

In addition to the outer membrane tested, we determined the ability of peptide to permeabilize the inner membrane of Gram-negative bacteria by measuring NucSpot® 470 influx assay. NucSpot® 470 is a cell membrane-impermeant green fluorescent DNA stain. It can penetrate cells with a compromised plasma membrane but will not cross the membranes of live cells. Fluorescence of NucSpot® 470 is enhanced when bound to intracellular nucleic acids. NucSpot® 470 was used to analyze the effect of KL12 on membranes of living *E. coli* cells. As shown in Fig. 6B, the addition of KL12 to *E. coli* suspensions in the presence of NucSpot® 470 caused increased fluorescence after 5 min when compared with cells with PBS that acted as

the negative control. This suggested that the influx of NucSpot® 470 into *E. coli* cells increased over time with the increase in plasma membrane permeability induced by KL12. Like its outer membrane permeability, KL12 showed greater inner membrane permeability than that by Melittin. The NucSpot® 470 influx analysis demonstrated that KL12 (final concentration at MIC value) could increase living *E. coli* cell plasma membrane permeability.

Cytoplasmic membrane depolarization assay

Upon permeabilization and disruption of the cytoplasmic membrane, the membrane potential is dissipated, and $DiOC_5(3)$ is released into medium, causing an increase in fluorescence. Hence, depolarization of the KL12 on the E. coli cytoplasmic membrane was investigated by using the membrane potential sensitive dye $DiOC_5(3)$. The results showed that the peptide KL12 induced time-dependent in $DiOC_5(3)$ fluorescence at 1 x MIC, reflecting cytoplasmic membrane depolarization. These effects were weaker than those caused by Melittin (Fig.7)

FESEM assay

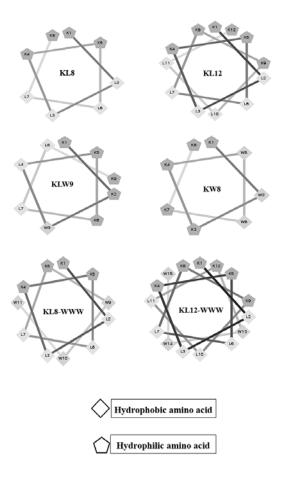
To further characterize the bactericidal effect of the peptide, we used FESEM to examine. *S. aureus* and *E. coli* were used as models of Gram-positive and Gramnegative bacteria, respectively. The results show that untreated bacteria displayed a bright surface with no apparent cellular debris (Fig. 8A and D). In contrast, the surface exposed to the KL12 peptide gave a wide range of significant abnormalities (Fig. 8B, C, E and F). The peptide-exposed cells at MIC value showed altered cell membrane morphology and have the intracellular contents leak extensively (Fig. 8B and E) and at 5 x MIC clearly demonstrate that the bacterial cells are drastically physical damaged (Fig. 8C and F). These results revealed that KL12 the membrane as the target of action. However, the exact mode of action of AMPs can be multiple, but here, the fast killing kinetics as well as the electron microscopy studies suggested that the major cause of peptide antimicrobial action is its membrane interactive nature [35]. Torcato et al. [26] have shown similar concentration-dependent behavior with analogues of BP100, a synthetic AMP that obtained from a combinatorial chemistry approach based on a cecropin A-melittin hybrid. At low concentration (1 μM and 10

 μ M), these peptides had little capacity to damage the cell membranes of *E. coli* and *S. aureus*. When treated with 100 μ M of BP100 analogues, the bacterial membrane is disrupted and showed leakages of cytoplasmic contents.

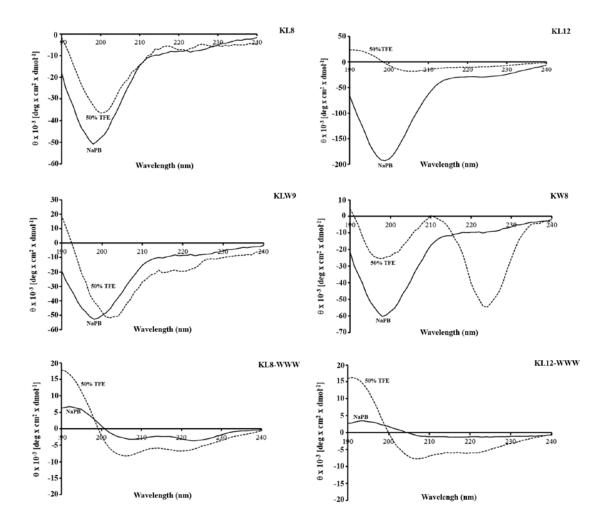
In summary, we report the design, synthesis and antibacterial activity of novel antibacterial peptides KL12. The antimicrobial experiments revealed that KL12 strongly inhibited the growth of human pathogenic bacteria. Fluorescence studies and electron microscopy analyze indicated that KL12 kills microbial by permeabilizing the cell membrane and damaging membrane integrity.

Acknowledgements

This study was supported by grant from Thailand Research Fund and Office of the Higher Education Commission (MRG6080030).


References

- Duval E, Zatylny C, Laurencin M, Baudy-Floc'h M, Henry J. KKKKPLFGLFFGLF: A cationic peptide designed to exert antibacterial activity. *Peptides* 2009; 30: 1608-1612.
- Zasloff M. Antimicrobial peptides of multicellular organisms. *Nature* (Review Article) 2002; 415: 389.
- 3 Thomson JM, Bonomo RA. The threat of antibiotic resistance in Gramnegative pathogenic bacteria: β-lactams in peril! *Current Opinion in Microbiology* 2005; 8: 518-524.
- 4 Hancock RE, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. *Current drug targets Infectious disorders* 2002; 2: 79-83.
- 5 Scott MG, Hancock REW. Cationic Antimicrobial Peptides and Their Multifunctional Role in the Immune System. *Critical Reviews*TM *in Immunology* 2000; 20: 24.
- Hancock REW. Cationic peptides: effectors in innate immunity and novel antimicrobials. *The Lancet Infectious Diseases* 2001; 1: 156-164.
- Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. *Nucleic acids research* 2009; 37: D933-D937.
- 8 Mangoni ML, Shai Y. Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action. *Cellular and Molecular Life Sciences* 2011; 68: 2267.
- Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: Key components of the innate immune system2012; 32: 143-171.
- Mangoni ML, Shai Y. Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. *Biochimica et Biophysica Acta (BBA) Biomembranes* 2009; 1788: 1610-1619.


- Wimley WC. Describing the Mechanism of Antimicrobial Peptide Action with the Interfacial Activity Model. *ACS Chemical Biology* 2010; 5: 905-917.
- Yeaman MR, Yount N. Mechanisms of Antimicrobial Peptide Action and Resistance 2003; 55: 27-55.
- Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. *Biochimica et Biophysica Acta (BBA) Biomembranes* 1999; 1462: 71-87.
- Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? *Nature Reviews Microbiology* (Review Article) 2005; 3: 238.
- Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. *Biopolymers* 2000; 55: 4-30.
- Marr AK, Gooderham WJ, Hancock REW. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. *Current Opinion in Pharmacology* 2006; 6: 468-472.
- Giuliani A, Pirri G, Fabiole Nicoletto S. Antimicrobial peptides: An overview of a promising class of therapeutics 2007; 2: 1-33.
- Zaiou M. Multifunctional antimicrobial peptides: Therapeutic targets in several human diseases 2007; 85: 317-329.
- Oyston PCF, Fox MA, J Richards S, Clark GC. Novel peptide therapeutics for treatment of infections 2009; 58: 977-987.
- Won H-S, Jung S-J, Eun Kim H, Seo M-D, Lee B-J. Systematic Peptide Engineering and Structural Characterization to Search for the Shortest Antimicrobial Peptide Analogue of Gaegurin 52004; 279: 14784-14791.
- Liu W-P, Chen Y-H, Ming X, Kong Y. Design and Synthesis of a Novel Cationic Peptide with Potent and Broad-Spectrum Antimicrobial Activity. *BioMed Research International* 2015; 2015: 1-6.
- Wang Z, Wang G. APD: the Antimicrobial Peptide Database. *Nucleic acids research* 2004; 32: D590-D592.
- Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. *Biochimica et Biophysica Acta* (*BBA*) *Biomembranes* 2006; 1758: 1184-1202.
- Yang S-T, Shin SY, Lee CW, Kim Y-C, Hahm K-S, Kim JI. Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. *FEBS Letters* 2003; 540: 229-233.
- Yang S-T, Shin SY, Hahm K-S, Kim JI. Design of perfectly symmetric Trprich peptides with potent and broad-spectrum antimicrobial activities. *International Journal of Antimicrobial Agents* 2006; 27: 325-330.
- Torcato IM, Huang Y-H, Franquelim HG, Gaspar D, Craik DJ, Castanho MARB *et al.* Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Grampositive bacteria. *Biochimica et Biophysica Acta (BBA) Biomembranes* 2013; 1828: 944-955.
- 27 Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. *Cold Spring Harbor perspectives in biology* 2010; 2: a000414-a000414.
- Rosenfeld Y, Shai Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis. *Biochimica et Biophysica Acta (BBA) Biomembranes* 2006; 1758: 1513-1522.

- Zídek Z, Kmoníčková E, Kostecká P, Jansa P. Microfiltration method of removal of bacterial contaminants and their monitoring by nitric oxide and Limulus assays. *Nitric Oxide* 2013; 28: 1-7.
- 30 Lee DL, Powers JPS, Pflegerl K, Vasil ML, Hancock R, Hodges RS. Effects of single D-amino acid substitutions on disruption of β-sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide analogs related to gramicidin S. *The Journal of Peptide Research* 2004; 63: 69-84.
- Gopal R, Seo CH, Song PI, Park Y. Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides. *Amino acids* 2013; 44: 645-660.
- Lau SKP, Woo PCY, Woo GKS, Fung AMY, Wong MKM, Chan K-m *et al.* Eggerthella hongkongensis sp. nov. and eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. *Diagnostic Microbiology and Infectious Disease* 2004; 49: 255-263.
- 33 Lv Y, Wang J, Gao H, Wang Z, Dong N, Ma Q *et al*. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. *PloS one* 2014; 9: e86364-e86364.
- Dong N, Ma Q, Shan A, Lv Y, Hu W, Gu Y *et al.* Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich β-hairpin-like antimicrobial peptides. *Antimicrobial agents and chemotherapy* 2012; 56: 2994-3003.
- Mishra B, Leishangthem GD, Gill K, Singh AK, Das S, Singh K *et al.* A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: Design, synthesis, activity against multidrug-resistant bacteria and Candida. *Biochimica et Biophysica Acta (BBA) Biomembranes* 2013; 1828: 677–686.
- Loh B, Grant C, Hancock RE. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. *Antimicrobial agents and chemotherapy* 1984; 26: 546-551.
- Kalfa VC, Jia HP, Kunkle RA, McCray PB, Jr., Tack BF, Brogden KA. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. *Antimicrobial agents and chemotherapy* 2001; 45: 3256-3261.
- Falla TJ, Karunaratne DN, Hancock REW. Mode of action of the antimicrobial peptide indolicidin. *Journal of biological chemistry* 1996; 271.
- Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A *et al.* Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. *The Biochemical journal* 2004; 380: 859-865.

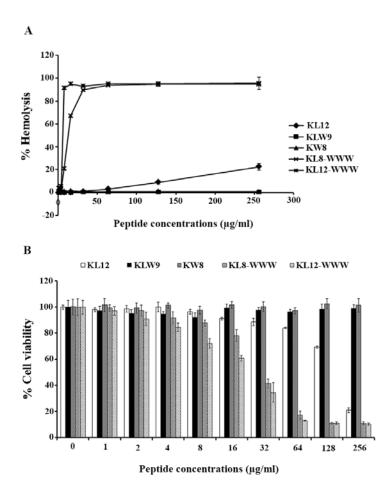
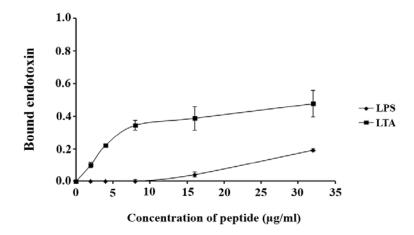
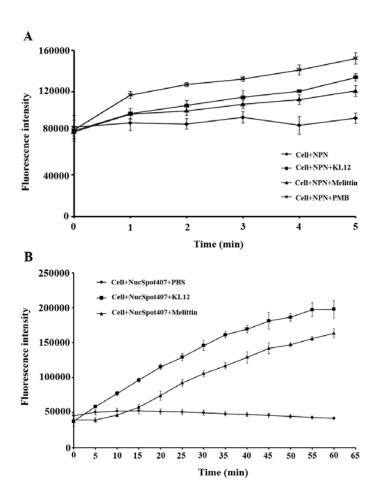
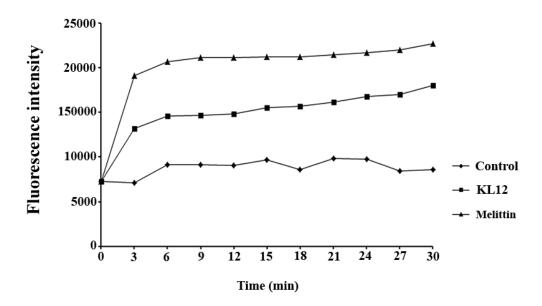

Figure legends

Figure 1. Helical wheel diagrams of six designed peptides obtain from http://rzlab.ucr.edu/ scripts/wheel/wheel.cgi. Cationic peptides were designed to form idealized amphipathic helices with the hydrophilic (lysine (K)) and hydrophobic (leucine (L) and tryptophan (W)) domains.


Figure 2. The CD spectra of the peptides. The peptides were dissolved in 10mM NaPB, pH 7.2 or 50% TFE.


Figure 3. (A) Hemolytic activity of peptides on HRBCs. (B) Cytotoxicity of peptides on Vero cell (kidney epithelial cell line extracted from an African green monkey).


Figure 4. Killing kinetics by the peptide KL12. (A) *S. aureus* ATCC2592, (B) *E. coli* ATCC25923. Each value shown is the mean \pm standard error of the mean from three experiments.

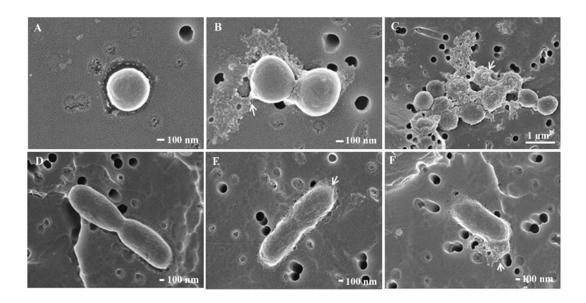

Figure 5. Neutralization of LPS and LTA in the presence of KL12. Peptide was incubated with endotoxin for 30 min and the amount of free endotoxin quantified by LAL assay. The fraction of bound endotoxin as a function of peptide is shown.

Figure 6. Outer and inner membrane permeabilization assay; (A) 1-N-phenylnapthylamine (NPN) uptake assay of peptides using *E. coli* ATCC25922 and (B) Inner membrane permeabilization of *E. coli* ATCC25922 monitored by entry of the DNA fluorescent probe NucSpot®470.

Figure 7. The cytoplasmic membrane potential variation of E. coli treated by 1 x MIC peptides, as assessed by release of the membrane potential-sensitive dye DiOC₅(3).

Figure 8. Scanning electron micrographs of *S. aureus* ATCC25923 (A-C) and *E. coli* ATCC25922 (D-F) untreated and treated with peptides. (A and D) Control bacteria after treatment with 10 mM NaPB, pH 7.2 for 1 h. (B, E) Bacteria after treatment with KL12 at MIC for 1 h. (C, F) Bacteria after treatment with KL12 at 5xMIC for 1 h.

 Table 1 The sequences and physicochemical properties of six designed peptides.

Name	Sequence	Design	The APD defined total	The total net	molecular weight (Da)		
			hydrophobic ratio (%)	J	Calculated ^a	Measured ^b	
KL8	KLLKKLLK	The sequence of peptide contains a standard α -	50	+4	983.335	983.36	
		helix (KLLK).					
KL12	KLLKKLLKKLLK	The sequence of peptide contains a standard α	50	+6	1465.995	1466.03	
		helix (KLLK).					
KLW9	KKWLKKLLK	N-terminal domain contains two cationic lysine	55	+4	1169.548	1184.59	
		(K) residues and one tryptophan (W), a well-					
		known membrane anchor. C-terminal is a					
		standard α-helix (KLLK).					
KW8	KWKKWWKK	The sequence of peptide consisting exclusively	37	+5	1217.504	1217.54	
		lysine (L) and tryptophan (W).					
KL8-	KLLKKLLKWWW	KL8 end-tagging by hydrophobic amino acid	63	+4	1541.974	1541.02	
WWW	$-NH_2$	(W) stretches to enhance bactericidal potency.					
		C-terminal amidation stabilizes the peptide.					
KL12-	KLLKKLLKKLLK	KL12 end-tagging by hydrophobic amino acid	60	+6	2024.634	2024.69	
WWW	WWW-NH ₂	(W) stretches to enhance bactericidal potency.					
		C-terminal amidation stabilizes the peptide.					

 Table 2 Antibacterial activities of peptides against Gram-positive and Gram-negative bacteria

The Strains of	Minimum inhibitory concentration, MIC (μg/ml)							Minimal bactericidal concentration, MBC (µg/ml)					
Bacteria	KL8	KL12	KLW9	KW8	KL8- WWW	KL12- WWW	Magainin2	KL12	KLW9	KW8	KL8- WWW	KL12- WWW	Magainin2
Staphylococcus aureus ATCC25923	>512	64	>512	>512	>512	>512	32	128	>512	>512	>512	>512	128
Staphylococcus saprophyticus ATCC15305	>512	4	64	2	2	8	2	64	256	64	4	256	128
Staphylococcus aureus MRSA DMST20654	>512	64	>512	>512	4	32	32	128	>512	>512	8	256	128
Salmonella typhi DMST22842	>512	2	>512	>512	>512	>512	64	4	>512	>512	>512	>512	256
Escherichia coli ATCC25922	>512	8	>512	>512	>512	>512	32	16	>512	>512	>512	>512	64

Table 3 The percentage content in α -helix and β -sheet of a peptide.

Peptides	% Of content i	n 10mM NaPB ^a	% Of content in 50% TFE ^a			
	α-Helix	β-Sheet	α -Helix	β-Sheet		
KL8	8.88	7.49	17.13	5.15		
KL12	11.65	5.60	85.49	0.03		
KLW9	8.88	7.48	49.55	0.23		
KW8	8.90	7.19	40.02	1.18		
KL8-WWW	26.04	22.82	69.09	0.28		
KL12-WWW	1.88	40.98	66.75	0.85		

Abbreviation: NaPB, sodium phosphate buffer.

^aThe percentage content in alpha helix and beta sheet of a peptide in 10 mM NaPB or 50% TFE was estimated by the K2D3 method from website: http://cbdm-01.zdv.uni-mainz.de/~andrade/k2d3/, the estimated maximum error was >0.32.