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Abstract

Project Code: MRG6080066
Project Title: Minimising University Operating Costs Using Animal-inspired Optimisation
Algorithms
Investigator: 1. Dr.Thatchai Thepphakorn,
Faculty of Industrial Technology, Pibulsongkram Rajabhat University.
2. Assistant Professor Dr.Pupong Pongcharoen,
Faculty of Engineering, Naresuan University
E-mail Address: thatchai.t@psru.ac.th

Project Period: 24 months

A new cuckoo search based timetabling (CST) tool has been developed for university
courses scheduling based on minimising the total operation costs: (i) lecturing costs; (ii)
overhead costs; and (iii) setup and cleaning costs. The CST program was consisted of two
random walks strategies for the cuckoo search (CS) algorithm including the CS via Lévy
Flights (CSLF) and the CS via Gaussian Random Walks (CSGRW). Two local search (LS)
strategies including Insertion Operator (I0) and Exchange Operator (EO) were hybridised with
the CS algorithm. This work, real-world course timetabling data obtained from the Naresuan
University were designed for eleven instances and tested by the CST tool. Advance
statistical tools for experimental design and analysis were used to investigate and analyse
the factor influence of this system and conclude the appropriate parameter setting of the
proposed method for all problems. The CSLF insignificantly outperformed the CSGRW for
most cases. Moreover, both LS strategies dramatically improved the CSLF performances in

terms of solution quality, convergence speeds, and execution times.

Keywords: course timetabling, metaheuristics, cuckoo search, experimental design



Executive Summary

Course timetabling problem generally arises every academic semester in educational institutions and
it usually have a lot of data. For example, the current real-world timetabling data for Naresuan University
(NU) consisted of 16 faculties, 5 colleges, 37 departments, 22,200 students, and 1,400 lecturers,
approximately. This problem can be solved either by: (i) academic staff; (i) semi-automatically timetabling
tool; and (iii) automatically timetabling tool. Solving large course timetabling problems in colleges or
universities using the first two methods is extremely difficult and may requires a group of people to work
for several weeks because of higsh numbers of courses, students, lecturers, classrooms, and constraints
involved.

A university consists of many sub course timetabling problems generated from the central/university
timetabling level, faculty timetabling level, and department timetabling level. Generally, the central
timetabling level is the most important and must be operated first. Because that level relates with many
mandatory courses (such as English subject, Thai subject, and etc.) enrolled by lots of students across
many faculties within a university. After that, the remaining timetabling levels are allowed to schedule the
remaining courses (most of major courses for curricula) enrolled by senior students within a faculty or
department responded. It can be seen that there are many timetabling steps and staff required for
constructing course timetables due to high number of faculties and departments within a university. All
timetabling levels cannot schedules concurrently that affect long waiting times from central timetabling
to faculty and department timetabling. Moreover, the current timetabling tool for the NU is semi-
automatic program, in which it cannot construct the optimal course timetable according to all user
preferences.

The general constraints in course timetabling can be classified into two types: hard constraints (HC)
and soft constraints (SC). HC are the most important and must be satisfied to have a feasible timetable.
During course scheduling, infeasible or impracticable timetables are often generated because of variety
and large number of HCs. Those timetables must be reschedule until receiving the feasible timetables.
Moreover, course structures and special requirements found in real-world course timetabling problems
can increase the difficulty and complexity to find a practicable or feasible timetables. For examples, a
course required multiple sections and taught by the same multiple teachers must be taught only one
section at the same time, all lecturers and students must be available for a lecture to be scheduled.
Unfortunately, these special constraints have been regularly found in almost colleges and universities in
Thailand. Therefore, investigating a feasible or practicable timetable, subject to all HC constraints, for
large course timetabling data (including high numbers of courses, students, lecturers, classrooms) without
using automatically course timetabling tools is very difficult or impossible works within the acceptable
times.

Research works considering the objective function that related with SC in term of minimal total

operating costs (such as lecturing costs, overhead or classroom leasing costs etc.) have been rarely



reported from literature. The overhead costs (classrooms leasing) at the Universidad de Chile was greatly
improved by using a course scheduling system, called eClasSkeduler program. In addition, the lecturing
costs at Universidad de La Sabana in Colombia was enhanced by using integer linear programming
method. However, there is no any research work considering both overhead and lecturing costs
simultaneously to solve course timetabling problems.

Nowadays, automatically course timetabling tools based on mathematical models and algorithms,
especially for animal-inspired optimisation methods, are becoming increasingly effective at constructing
timetables to the desired specification. There are commercially available timetabling program packages
but most of them are expensive, inconvenienced training, and maintenance (such as Mimosa scheduling
program prices for site license based on the number of students, 800 EUR - 8,000 EUR,
http://www.mimosasoftware.com/prices.html). Due to the difference of cultures and traditions among
countries, the foreign software packages may not be suitable to solve the university course timetabling
problems in Thailand. The examples of special characteristics that are always found in the real-life course
timetabling problem in Thailand such as multiple lecturers per a course, multiple sections per a course,
video conference teaching, location (or building) and classroom bookings, day and period bookings, split
and joint classes between lecture and laboratory within a course. Therefore, developing a tailor-made
course timetabling tool is an appropriate choice for the specific problems.

The proposed automatically course timetabling program not only deals with manpower, human
errors, scheduling times, outsourcing costs, impractical timetables, optimal course timetable, resource
operating costs, and specific timetabling problems but can also be adapted and applied to other
educational institutes in Thailand, 156 (public and private) institutes responded by the Office of the
Higher Education Commission (OHEC) (http://www.mua.go.th/) and 910 (public and private) institutes
responded by the Office of the Vocational Education Commission (OVEC) (http://www.vec.go.th/). The
following outcomes are to: reduce a lot of government fund of Thailand to provide or buy the
automatically course timetabling tools from other countries for all educational institutes; increase
educational resource utilisation for each institute; and reduce many operating costs in colleges and
universities. Besides saving lots of government fund allocated to all public colleges and universities in
Thailand every year, the autonomous, public, and private universities can survive sustainably by
themselves in the future. Educational standards, rankings, and competitive capability of colleges and
universities in Thailand would be eventually increased due to effective course timetabling affects

resource utilisation as well as staff and student satisfaction.
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[y

a@ﬂlﬂ‘ﬁuagjﬂui’mqﬂwaaﬁmaamsﬂ%’wgﬂuﬂizmuaﬁﬁuﬂ FanavesnsuiuUgeneivszay
nad S duagn9f 1w nsEUIUNIS Initial solution [46, 47], n32UIUNTT Solution evolution [48],
N3eUIUNIT Fitness calculation [19], NT¥UIUNTT Selection process [49], NT¥UIUNIT Solution
replacement [10], N3¥UIUNTT Accepted rules [19], N3EUIUNIT Memory update [50] Dudu
nsUsuUseUsEAVS MwTe s s msiudnEsaRndliRtuniiulnenisaNkay (Hybridisation)

Y

[ [ a adq 4" Ql' 7 d‘ ¥ 1 Q" Ql'

IadusnIsnisnilsinulaves WewinnmsuidymnismaimingaunaanaieUssinnlulagdu
1w n1slIsnswdnsafndiieisnisiherunfnarvslidmanegiunisinludssendlduiUaymng
AUINNING INSIENaansT A9 lAWINTIAT [22] 78015 P-meta wauna Uiy S-meta azidu

A vo a ~ Y~ aa PP a a v

LN lasuaudsuuinfigaveinisnaunaukazduduisnsniseansamaslunisaun
AMaU [22, 51, 521 w1231 azdunisliddedveanisaunidainauluiranine@aldain P-meta
(Exploration) saufunislddenuasnisaumaineululsaudalaain S-meta (Exploitation) i1l
WBNMINAUNAULUUTAAAINANAAAUIINNANNITAUNIAINBUNT 2 WUU (Diversification uag

(%
[ Y]

Intensification) [22, 51, 52] Astiu3snsuaunaulunguiiddlasuanudoutunlduntaminie was
Uszauarudndadued1ed Fennludadayninisdanisisnisdnuisie degraau 3515 Ant
Colony System (ACS) AU TS [53], 15115 GA+LS (Memetic Algorithm: MA) [54], 35015 GA+TS

[12], 35A15 PSO+LS [48, 55], 35n15 Best-worst ACS U LS [13] sumu

1.2 InQUszaeAvaslaIanNig

i (% v a (% UA Yaal
- epanuuukazialUsnsuIamassunsaeukuUdnlulRlaeUssandldisn1s Cuckoo
Search aundynin1sdnaisaeuluseiugaufnuinuuATasnuunIsAEUN15IN VDS

W Ingaeiideeian (Minimising total university operating costs)

A a ¢ = = a a ax Y o
- WRILAIIEARALLUTEUMEUUTEANTNINUB9INT CS IUﬂﬂiLLﬂﬂ@MWﬂ’]ﬁﬁ]@ﬁﬂi’]ﬂa@u laans
AUUANITINLAD SN T Y (Appropriate parameter settings) miﬂ%’uﬂ'gﬁgmﬂmmi

YFuasunszuaums (Modification) wag NM3USuUTIsn1siagnsnaunau (Hybridisations)

1.3 YaULIANITIVY

1. Turuiddelaginsanameluduidudymnsdiannasounsisaeuluszdvaaufnwm
(University course timetabling problem: UCTP) LLUUéjN@Qmﬂ,méJﬂqm (Curricula)

2. Tuauideil Tassadrivssulaeuvestym CUCT agdsenouniy nsaiivlseuisasu

a v a = . aa a a
wuuvdsAuuaziIvaen (Mandatory/Elective courses) NSAATIIEUITIADULUUNIAUTTEUULAL

A1AUUR (Lecture/Laboratory) NTi39158 UV @O URUUNTINGIToULAZLUUNAE LT oY
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(Single/Multiple sections) kagnIMIVUTEUIVIABUKUULDITIL@DUAULALILAL N ABUNAEAY
(Single/Multiple lecturers)

3. luiddeiasfinnsandeyanstamaaioumssaouraseugimnssumans unine1ds
W33 TaluduseivvesnETseauIv (Elective courses) wazsnedndnuiiily (Mandatory
courses) VoNTINEIFY TIudITeTvNTURnveulneAnydu walinuReateatuetatsinse
véngmsvesianvesanyimnssumans 1wy Junwdingy Juland Ivueagada Wus el
M35 EUMTIER YR EANNALLArD 1 SENNAUlUAME AN TTUAERSTTIWILIT T BTV IR
lumseseunsaauasUYN I luiazmaun1sAny

0. lurAdeiagfinnsandeyansiamaaioumsuaouresangimnssumans uning1d
wsms lumen 1 Unsinw 2555 Fuduteyaifmiuvainansvemdngasiidnaouduegiamin
Imaﬁmilﬂmﬁauﬁ”’ﬂuisﬁuﬂ%ﬁgaﬁﬁ% (maUnflaznIAfitee) seaudiagiln (nMalnfilazniadilee)
wagsTAUUIYYLeN

5. TunuidedagRnsuinisdanissasulffverasdnnaunisluamusiainssumans
uvAanendouisans 1Wundn uluiwnssaeuvesenansdainaugdug Mvinsaeuluuiemein
Tifuidnlundngnsnnaaedmnssuamans wu Ifand Wudu sgdlsfinunmsisdouvedonaisd
MnAMEdLY Irgnuansamnessiniiieadesiuanyimnssuman iy

6. TurmiddeiaginsannsianamanmslivesSeuvesansdmnssumans uwninedouises
Hundn wludefessouainandu ifesddaeuluvienedvlifuianlundngnsanaus

a o

AenssuAEns 1w wesufiRnsilanduaziesufiRnsindivesrazinerans 1udu
7. Tuau3ded Jvmn

Fyrsaudaividunuuineriinus (Thesis or Dissertation) n13Anw
AUATI1Ba5E (Independent study) n38laTeMUATY (Project) dmsulldnainnnndnansvesamy
AAINTIUANENT ansaivualainagiansuvse ldiasundnasiunsassunisiasulaludoya
Vglkil

8. TuaAdeil o19138udagviiuazgnimunin (Courses) Msosanuliludoyatindugaiou
mMsdamadounsuasuluudaziven Weliennsdudagvinulddonasuluivifinuiesiiniig
Fruey

9. lusmddetl edniiideatmunduiuenansdiasuninnit 1 v (Multiple lecturers) Hu

annsafmuaduuesdyaeulsegelidinliludeymihidiudineunsianaseunsaey

Y

(%
A aa

10. Tuwddell Jviugiuuidyfezdddaanisumdudiuauainazinisulanygiseu
(Sections) Livanevyiieu lngldnluusasndngnsnazdesaaseuluindng 1nazgnivuangiseu
Panunsoaassulalutuneuveanisueuning (Assignment) NSNEINTUAINBUNTLUIUNITIANTN

SgunTEau Wensyeduuldnlvaunaluwdasnyiseunleaou saudslesiulidnluusnue
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& o 1 = & 1 a & =l a o 1 gj =
Waumangesenalianunsaameidowiennssursesawindmnanialuduneunisameidou
AL RIUNNNNNTVUNUVDIANT 1S U

o dg’ a

11, Twewddell I wIunySeuvatengiSou §3nn1319eu15aiMua g Ainaiinig

Y
1 ! a < v = 1A ! a a wva g v v ¥ &
savgiFeu (Wu Iussey Wud) visuenviteu (9u InU iR Jui) Ia Tnedeyatiazgnizy

o ¥ ¥ 1

Tludiuvestoyat g 1LdInoun1SIANITINS BUAIS19E DU

Y

[
a a v a

12. Tunided Saandnanaifeatudelitoninfugunieutuusansoanieuluieiden
sefutiu Ganlundngnsdananazgnimunsiavemdngnsgoiiionansians 1adouiiunnsnaiy
oonlulundngnafendu lnensruaunistasgnasyliludusesdoyaiidiudaniounisiansmedou
MIEBY

13, TusnAdedl MsdmunwiulAsfidaiuvesdivnden (Elective courses) luusaginazey
TudrurasiunounisueumneninensieunszuIunsiamaisunadey

14. TueAdeiizlifinnsandansadouvesidaiinnununisSey Wy JdnUsyy1asy 58
Dusiu Lﬁaamﬂﬁﬁmﬂfjuﬁﬂﬂa%ﬁ inuaudesuararunsnameifouFouiufuldludiniunou
F1EIYIMRIINTAN AT UL

15. TuuAdeiarlideyaroadsudmivinnisadeunsisaouain 4 o1sdoundnuay 4
915U URNS (Shop) va9AzAMINTINAIENT UNIneaewseis Usznauluie a1nnsiseunms
FEINTIUAIENT a13mInssulest (CE) a1vienssuliin (EE) anvndennssugnainnis (E) uae

A aa

91ATL3HUTINANLIAINTTUAIEAS (EN) uaﬂmm‘f‘imﬁug’m (Mandatory courses) anAnue
ennssumanssedluSeusiuiuanydu wu Jnawilng Snnwdinge Jdudu middedesdng
finnsandeyaoimsiouneusnifiuduanizsednifetes (9u enmsEou QS o1mmiTeu SC
Judu)

16. lusuidedaziinstmuadasariudnnisiSeunisaeuveteransduraziiuld su
dounanenasduisiueafinnsiefiliannsasidunisasuldluvieiuriounsnaian egalsh
mufervusluiuiuiasnandiliaansaaeuldveseransdusasviuansausuasuldegndase
ludruvastayaindn

17. Turuitedasiinsdmuatisnaniouvesianlundiasndngasiiannsodansadeould
wansinsiueenly InslussAudsyaes Ysyaiinuasdsyaienniauniasmvualveglugieiu
Juns-Ansiian 8.00-17.00 . luseaudsgyyrnsniafiayazivualvegludisiuiuns-aAnsiaan

13.00-22.00 u. kaziulai-n19agdiian 8.00-22.00 u. uazluszauligygilnnianiawaziiualioy

Y

Turrsiuians-a1findian 8.00-22.00 u. agdlsAnudanirualusuiulasiiainaiunsadnnisisey
lovasusagnangasanunsauiuildsulnegdassludivesdayani

18. lwauifeilagfiansanduyuailay (Overhead costs) MAnaNnsldvieaieuLmiazyias

Faflpnuneadesiutetsdu SC Wuu Room suitability Ingagiluldarsuuuieie/dalue wu
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Al A1 A Wudy wavazduuusiumuvuinvesiasey (WU %oIUTIEE Hiee SLOP
@ v v a v v a wa = o Ao =

WoUTEYN LWUAW) UTSLANUDINDUIBY (MBIUTIBY 1BIU)URNT) TIUDNIULAZLIAINTIANITLIEY
nsaeu wendniuyuinanazlinsenuseamuninnsAnwiluigay

19. TuawidediazfiarsandunuiniinaInnIsyinauaseInie s s uLAazyios (Setup or
cleaning costs) #9aziaungitaaiutetedu SC wuu Consecutive lectures tngagiduaviaiy
A¥01ANIDIALATLURDINAINITITHUNITADULUUILRBY/ATY LazAzAULUTIUAILIUIAUDIRD LT B
Uszinnaewinassy sudeiunaiivauageianaeinseunisaeu uonanidunuainaiasly

nsEnusieAmAINN1SAnK LAy

(%
= a 1%

20. TunuideliasfiansandunuiinainAnouwnue1asdEaouwAazinu (Lecturing costs)

!
=

Favzfiauierdostudovedu SC wuu Timeslot preference Tagasdidmauunuidunuuduade/
Flia wazAImeULILYBIITEuAazYTuIRAnAsTUlUmY arueu/veuluiukasaunand
fosnsaeu luisUszaunsalvesenansd seiu/mdngasvesidndiaeu iesmineransdusasyinu
wgnueusTEInfazdonhnmsaouliludeyandudrneunisiansaioumssany ey

suvuludutazlinssnuronunimnsdinuluday

21. Tuan3deiiazUszendliignsuingisafindnvedn 35015 Cuckoo Search Taufulusunsy

(%
v =

IAMITINSUANTNEDULUUDA LU AT QNWAILIT UL

Y

22. Tuaudedaswaunlusunsuannisiassunssasunuudatuslnludnwuziduldsunsy
LuukendIu (Stand alone) dmsudumadenliiugdnnisns fldwamulmlusunsudinisinaui

Wousialaun T UTEUULANYDINNNINGSY \aeRIgnNanuAIUaaniukarANEeSUaeTE UL

[y

waluuninende

1%
[y (v

23, TunuAI8tag N lUSHNSUINANT IS UANSNEULUUDR LLLR Laglgn 1w Tcl/Tk @1usu

[y

W luduRnsariugldary (Graphical user interface: GUI) wagldnw C dmsuimungdiuvenis

YILUIBANATINUA
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1.4 Uselevidinndnazldsu

1. lAUSUUINTEUIUNITIANTINTOURITNADUIITIVIAULIAINTTUANANT UN1INISLULIAIST
Tiuszansnmunndadudiesruunisianseseunssaeunuudnluf® daanuldiuieundn
sruufnTaludunsdannadsunssaeuldnsaniunudeanisveslinisng sasanaam
Aematnainnisdansaieunsaeusuiudeiiduluamudeteduiilésmunly siudaheanian
Fununniezdosgaidsludofisuiunisiamsnaioumssaeunuuiia

2. 1lUTuNTUTARNIS 1T IUAIT 1@ ULUUER Ul Rd 1 mSudan1s1assunis1saauly
seivgauAnulasiiauaainueditnig Cs Jsaunsodamaaisunsuaeulinduluaudotdy
winuazdedifusesvesymil uenanlusunsudndnannsatldsunsusinanlusesense
Usggndldiuanitunisfnunduls

3. GrganA a8 TuaIUNISUSMTIANITNSNEINTNIINSANYILA 19U and1UIUNITI19019158
dislelisndu annsadrsermsSoudialaglid iy anelnannsldfesSouilimunean uax
Feulludmheandldanglunisteasanslusunsuviessuunmssansadsunsidouuuusalui
dnee Wudu

4. ldms1uiadaderesitnis Cs fenasiinansenusouseansnmlunisudtaminisdanisns
Seunssaevluusazlanddam fawansenundn (Main effects) waznansgnusay (nteractions)
Tngl933n1500nuuunIsNAaILaZNITIATIZINEER TaudaldnsuAmmfwesiimunzauves
7515 CS Tunsundamunazlangd

5. Ifan138n13 Cuckoo Search (CS) TiussAnsnmitgstulunisudtlymmsdnnmaden
AN59E0U M18n15UFUAMNIITN$TMagaN (Parameter tuning) NM13UYUUTINTEUIUNIT
(Modification process) wagn1suauna1uAU3sn159u (Hybridisation) Inefi3sn1susuusanand
anusailuyszgndlduddgmidsnisiniesaduduiuasu (Combinatorial optimisation

problems) Nfan1sAagaNgaUsunndula
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e (Months)

Aanssy

1. wummiimﬂsimﬁlﬁwﬁaaﬁuﬂﬁymmﬁmmiwaauuax
Bmsiild

2. @nw138n15 Cuckoo search (CS) WAYAUNIUUINIGNTT
UYFuusadssdnsam

3. fukagliangideyadgmnisdanisadeunssaeu
wazimunveunTiieTas

4. afrguuvuvedlymuagimuadetefundn dededuses
iertos

5. 2onwuUlUTLATUINMITIATBUATERULUUSALULR

6. TUIlUSLATUIANNT IS BUAS 1@ URUUD AL UTTRADE
2w TCL/TK way C

7. yadeu AsIadeuLardudunugnaesredlusunTL ¥in
AM59BNLUUNTNARBY

8. aufluniimaaswnuiildesnuuulivuneufinmesi
Inmse

9. ApTzinanIInnansieAesilen1aEin (ANOVA, t-
test, etc.)

10. agunanisnaassianuaiiiuluniutngUssasdiild
fvualy

11. Jouunauidoifiededfuiaduinsaslugiudeya
Scopus

12. L‘“‘uauwmmia’faLﬁaa’aaﬁmﬁaﬂumsmﬂugm%aﬂa ISI

13. Weunenuatuauysal




2

=D,

un

av a4 v
L@NAILASITUIIYNLNYIVDY

2.1 NMUNIWITIUNITIUNNYIVRTUTYINI5IANITIFTEUAT 1Y

) - 2 a da &£ ° = ) =~ ~
N153nn1519NsAnwdufanssuindudulszdmnaianisfineiunnanitunisfine laed
ATt UNTIRATINSNEINININTAnYTegag T innelatedadusineg adugisiannd
<3 [ I3 a" ¥ = ] =
aminzankazidulumuinguszasduinign [1] n15a$19015190158081 (19U A191958
Y v a [~ ¥ d‘d a ) v o a a
A1519@0U A1519N15LEeuTew Wusu) Allguanfgensinlvnisandunisiseunisasulu
A0NTUNSANEIAAUTEANS A NARUNWlULAaLIMEY AaluRasnsEaLIal 50 NINUARIUNNIAUD
T2ty mauitaminisdnnsiamsfnydslasuanuaulaaintdnideduwinannnslungueeniside
"3R4 (Operations research: OR) waglunguusininunainUsedvg (Artificial intelligent: Al)
wazdapalasuanuaulaiuunIusgsotlalutisateduUnas [2]
UnAndin1sdnnisnaseunissaeuluan1duseiuaau@ne (University course timetabling:
UCT) wiu 818y (College) unninends (University) iudu axvuinvesdymiilugunn dduau
ToUIAULaEtad1AANINNIIN139AN1519n15Anw luaa 1 dun1sAnwITuNug W WU lsuseu
Y = [~4 4 = o Y ] [
fiseufn® (Secondary school) Wusu Feaududoureslaymiwazainuegaeniunsianisisasy
lusgavgaudnwiazliuinnit (3] uenainiivisewiviaeulusedugaufnyiasiinuuivdefu
(Mandatory courses) Laz3sdon (Elective courses) [4] Inafi@nlutuifgaiulsaiivdsnsaun
LANAIN UL A5 1S suveIlanLmAazAuLAnA1TUan U LT A ADNS oY danalinisan

msaseulutuianandanugaeniasdugaunniu

2.2 Ugyminsdinnnsnaseunisneaaulussivaaufnenuududou

Jaynin1sdamsnaseunissaeuluseivaaudnwinuududan (Complex university course
timetabling: CUCT) 9sfidnwaisfivamsvastymiindurlulam UCT 3 dwitdday (56, 571 Ae: ()
{]ﬁy‘msiaamwuﬁﬁu%’jﬂuamﬁuqmuﬁﬂm (Sub problems of university-wide level); (i) Ta53a513
Y9939 158UV 1@ U (Course structures); wag (i) AINMAINNA18UDITOUIAY (Variety of
constraints)

duusn ﬂﬁgmsJastaJé"]ﬁu%gusluamﬁ’uqmuﬁﬂm (Sub problems of university-wide level)
Judnwugvesnisdanmaisumsisdouvesaartunsanwilaeinisiansandymnisdaniss
§08u191nN13hUTEFUNS o URBUNAIBTUREY WU SEFUAnITY (Central or university
timetabling) s¥AuAME (Faculty timetabling) s2AUN1A39" (Departmental timetabling) [56] Tu

seavannUuazilun1sdannsiaseunnsisaeulnenuisnudlunansvesannvuiug Unfuaiay
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Aufiun1sian1s1elusedvdiugu (Mandatory courses) Msnuavadaa iudauneidasiuiandu

] ¥ a 1

FIWILNINIINYNAULTILADIAUTEY LU 0181839 Y T wiive Wudu nsdanisdluseeu

fazgnaiiunisiludiduusn saeiilussiuanzuazszauniaimazaniunslandsaindiunansle

1%

guiun1sinnisaasadunal lnsluwrazauzazlindazninivianidunisannisislusiedend

De

SuRageudmsunnuangasNn1Avlaiinis.

Y

a

Yaaou lnsdruninaziduivaniznsaiviaen

'
| adaaa o 4

(Elective courses) vasiianusiagndngnsaunguiifansuuiosas

1639 (Courses) fine vaslannsovaterarsdusasvinilulym CUCT asimuduiusiusta
Tudruvestlgminisdnnisisluszauanidu (Central timetabling) Tusedunmuey (Faculties) wazlu
szdun1AIvT (Departments) viasanndylundazseduaziisuuidafiasSeuwnnieiy ddnfias
Foue1annAnEsen1ndvfuandvsamiouduld saudadnisueinineansnisnisfinu
sewriefulunnsedu (Wu oadou 019138daou Wudu) uenainidywiluanidugaunuiauin
Tugiazusznaulumedgmnisianisnsaautos (Sub-timetabling problems) Tunfiazanziazuus
avn1Ain Sansuidymnisiamnadeunsaeulinsufiansnizaniisstlymessvddlym
[56] ﬁ’aﬁ?uamﬁuqmﬁﬂmﬁﬁﬂmmi‘]uﬁwmumnLLaﬂuLwiammsﬁﬂm’?mfﬁwmumnﬁaauﬁa n13
witgmiluaadusananasiianugeennuazdudoulunisuidayiluegiann

drufians Tnssadavedynioudviasu (Course structures) dmsudaynn UCT Unfudaay
AvuALiie eI vIIIMAN15al (Courses or events) AwdudamsaSounnsae Uity [13, 58,
59] wilassasevesiyiewivasurestym CUCT uanaindeAmunigivsewmnn1saldmiudn
ANI3EUAITEELLEY SnzdesnunTsazBunvewiaziv e Wy Sundedu/An
\dan (Mandatory/Elective courses) [4] 3¥14UUNIAUTTENE/LUUUTRANIT/BUUNUNIY
(Lecture/Laboratory/Tutorial courses) [60] 381713 13outAgruazuvuiivateony 3oy
(Single/Multiple sections) [57] Tuwsagivn \Dudu

o [ a

dm3un1sia1sauiv1UeRu (Mandatory courses) @sdrulngidudmiiugiuveswmniingias

1
v A

dmSufidadulusng [4 98 lin153nn1519liaugee1ndulasunaInI IVl NLT U

= a

amzidou vaugfinsiiansunivuden (Elective courses) Fedrulugiluivanznelunmuzuie

[ '
= U 4

mMevdmTulantulae) agvilinmsianisiaeulinnududounngsdu [4] Weswindyndenund
edntulidadeainivannsoasseuld dasviliddalundngasifeliuaiuisaiinisasey
WANAINUDBN UMV NAD NS ULALIZVIN L AANISYUNUYDINNTIUS U5 19aBULAIEUIN

dmiunsiiansaniviawuuniaussene/JJuRNs uenanaznesdisuinvesiasieu (Room

a

capacity) Tun1339na1319d0uLa §392AD9R1TNTIANNADINITHRNSEY (Room facility) laniz
Tuudazdvn Wy V199183810738 IN WeLTauUITEEwas B sUUUR vaENu193¥A0INI3
nziedussene Wudy dmfunsinnsaniviwuunaiendiseu (Multiple sections) 3ndndunis

inAududeudnguuuunilslulam CUCT [57] Tnglunsaindenansdgasunuinedagyilvinisdn
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msnaeulalilifinissuiuvesiatluudasnyiseuiinuendslunazenansdnaeiiniseauuin
Pueg

PaMneanlASIFS BNV NIIUIVIEOUNT 3 FNWULNIANA1INILED NUIFERLARNA15UN

= = o A a A

Tnssa¥revesivnBeuinasuiiindnnisdnvuzie Jviflonnsdiasunuunaisau/myEou
(Multiple lecturers: ML) [61] wagAniforaseifaounuunilsau/myi3ou (Single lecturer: SL) [62]
Fsnnmsnumuissanssufisusuenanagud1 msdnenadsumssaeuluszdugandnulag
#1518191585deUNINNI 1 audedviasnulddesuinuds Tuanidueaudnwiveslneasny
seAndnuazildvosnin Insanzegndainfiiionsdiaounuy ML uaze1a1ssnnaugaeiy
aoundouiiluusazau (Simultaneous teaching: ST) [61] Wlswnsiedvludnvars sndudodd
o1sdvasyudntismuaNganseuNsaeuYeiaanions fu 19y IvndaaufuRng
e uazdndudediviesufiinstafeadestugunsalianizna indesdle 1n3esdng viieansiadl
#199 flenaLfndunsnedetanliite malsifinsguasgreinfaainoransdvansq ausd1slnddn Hu
f ANLEINTBINTTIANIIAINIATIAT VOIS EWINAOULUU ML Ao Fesiaviin1sInnIs1eaeu
Tuseivfnanlifuennsgnnauiisuineuseiumiu adumunaifiontu veadoudeaty uas

sgdealiiinisvuiulunissaeuvetensdnauluivifing iy Fe51e3¥lanidIuInenansy

o a

HaUd 11NN LN INA15198aUl U189 199INAITANLEINUINBITUAINEIRU

v
LYY =3

Aaduazirulandeyminuu CUCT lassadiewesivssuisngounuududouazyinlinnisdn

54

msaSeunssaouiinugienunnidamuuy UCT sgredmau sgrdlsimumansanuideiiriy
wléfaisluinisudtlamn UCT Tnglddoyausehus (Arificial dataset) wiadoyafieguuiiugutigm
339 (Based on actual problem) s uiusnndanududeululasiadrswedvissnneneg il
nanauiadutiuldgnineenlumdefissudinvdomnnisal (Courses or events) winiu iiloly
Tangdgmfianwaziduninsgiu (Benchmark problems) Lm'ﬂaujméﬁ’qﬂa'nﬁﬂamdwsﬁuasmmm
Fatuisnsfargnitmuntunifieldudtymaidussdugaufnudeddoyarunlnauasdudou

(CUCT) 3s8mulatiosunn [56]

v 14 v

daufiany ArunaInnaleveItetedu (Variety of constraints) Inevialuudadedefu
(Constraints) 994U 1n159an191958un1s1doull 2 UssianlugAe vadsfundn (Hard
constraints: HC) wardatadusas (Soft constraints: SC) [5-8] InefiiluszasAndnvesnisufidaym
M3TansaSumsaeufe nsdummaeumsaeuiiliinisesdindedifundnuazisiuay

nsazlintavsRusesiidesiian (6, 9, 10]

2.3 Handulnuszasnuasnisuidgyninisannn e aunIseEeu

Tuandudnuszasaveen1snly nin1sdnnIs I unIsIeaauaINITa9 1L UNTaUsAUTes (SC)

Anvlanaglseinn Ysenounie: () WUy Unary constraints 19U n15HU914UASIIUAITIAIT89
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Tuprua1iIudnn1351989U (Unpermitted or booking periods) [11] 1 udu; (i) wuy Binary
constraints (U M5TUSIUILATINSTUAUYEIRNT ISR (Event clash constraints) [12] vudu; (i)
WUU Capacity constraints L2u nstusauisRliflometmuslunisiaansaou [13] Wudu;
(iv) WUU Event spread constraints 1y n1stfusuauadiiinisiseunisaeusoiienivasiniu
Anfu (Spreading-out or clumping-together) [14] Wufy; (v) WUU Agent constraints LU 151U
Sruundaiidsuuuumsaey (Lecturing format) Taldulunuitenansddeanis (People preferences

Y

or requirements) [1] {Jufu; way (vi) wuu Stability or movement constraints 1@ A15HUTIUIY
I £

Y da = o 5 X% a | w &
ﬂi\‘ﬂ/nslﬂLWUQﬂULLmﬂﬂﬁqﬁqﬁlm%W@QLﬁﬁumqﬂﬂu‘v‘!ﬂﬂiﬂ [15] WUy

281415AMIUAINNITNUNIUITTUNTTUAE UL 98T T79AUT09DnUSLLANAD Uy Cost

'
a a

constraints G41uiTefiRsauilsiduidissasdandotedusesiiteadesiunsdanisaeou
assaoulagiinArdiunisrnannslinineinsmianis@nuiidesdian (Minimising total
operating costs) ﬁuwulﬁﬁaammﬁm 2 U‘Vlmmmﬂgm‘ﬁayja ISI web of knowledge G‘fﬂ‘ﬁ Seo
wazanie [16] liinsfulssssuunmsinnssaeuluesdnsliiianumaiunntulpsniswamun
LUsunsu eClasSkeduler dwsuldlunmingde Universidad de Chile lngiia1saunauyuniged
o3 (Classrooms leasing/operating costs) ﬁﬁasﬁqﬂuﬁﬂﬁsﬁmﬁ’lﬂizmﬁ uaﬂf\]’mﬂj Torres-
Ovalle wagamy [17] uATanin159nnIsea@ouas1weImun1iIneg as Universidad de La Sabana i
Taduidefie3snsfadunuudnuiuiy (nteger linear programming) IngfiaNsauudunNuUNITINg
919158 (Lecturing costs) ﬁﬁaaﬁfjﬂuﬁqﬁﬁmﬂwizmﬁ
Feiulueddeiddddfudunisfinsanilididuiuszaludedafusesuuy Cost constraints
Tnednmsaieunsuasuiieliifndrdidunisrunnnislinineinsmanis@nuitos fige
(Minimising total operating costs) Usgnaunie Aunuailae (Overhead costs) kiU ALY1
soadpu At a1l WWusy Fuyun13d19919138 (Lecturing costs) wazfununisiawmisuvdor
mEYaInTes (Setup/cleaning costs) dedislinuatdselafinnsanileidudhlssasddes 3 wuull
Sawffumnou wansinss 1) uonanilunudded dunuanmarvielivesSounariununis
SPSELSeYANEzeIATEs axiansaNTMUnA L Ye T e (Campus preference: CP) lag
fsumuiaesssinnazanaeiuluaa vuinveseniay Yssnmveswonssu Juuazdienainis
Tvseranuazoraviesdou Tuvngiiduyulunisdeeasddaou azinisfiansannnuveuiuy
fangu (Flexible preference: FP) Inefidnouinuyesetaisduagituazuanaiuluniy 94
nsfine Yszaunisainisienu sefuresin@nuiiaeu Tuuagtisnanfideu Beluninduainnis

v L

MUMIUATTUNTIUTHUNIMUTN AdeiRetteaiulgminisdnasassunseaeusEaugauAny

o

PRNINTUINITAINUAVDVIAUTDIUU FP HUGINI1UIULDY
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Course Lecturer/  Teaching Operating
Timetabling types System Period Course types
section Section types costs
0] > on
Authors and years > ¢ [ £
x > 3 > o 5
v 5 = @ ge) Q
] o) _ . () o © c S g’ -~
> = v o © © ~ = 3 o (O N
~ S = = < + Y] o > 9 = < S [oN
- 8 $ £ ¢ 8 £ £ § ¥ S ¢ 5§ 3 E o¥goz
E oy & = 68 =22 8§ 8 2 & o &5 = & = £ v 68 &
Abbas and Tsang [63] v v v v v v v v v
Abdullah et al. [64] v v v v v v v v
Abdullah and Turabieh [59] v v v v v v v v
Abdullah et al. [65] v v v v v v v v
Abdullah et al. [66] v v v v v v v v v
Abuhamdah and Ayob [67] v v v v v v v v
Abuhamdah et al. [68] v v v v v v v v
Acha and Nieuwenhuis [69] v v v v v v v v
Agustin-Blas et al. [70] v v v v v v
Al-Betar and Khader [71] v v v v v v v v
Al-Betar et al. [71] v v v v v v v v
Al-Yakoob and Sherali [72] v v v v v v v v
Al-Yakoob and Sherali [73] v v v v v v v v v v v v v
Aladag and Hocaoglu [74] v v v v v v v v
Aladag et al. [75] v v v v v v v v
Alvarez-Valdes et al. [76] v v v v v v v v v v v v
Amintoosi and Haddadnia [77] v v v v
Avella and Vasil'Ev [78] v v v v v v



Authors and years

Timetabling types

System

Period

Course types

Course

section

Lecturer/

Section

Teaching
types

Operating

costs

cT

crT

SS

TA

MTS

Non- Weekly

Lecture

Laboratory

Tutorial

Seminar

Multiple

Many

Individually
Simultaneously

Overhead

Lecturing

Setup/cleaning

Badoni et al. [79]

Bai et al. [80]

Baker et al. [81]
Bakir and Aksop [82]
Banbara et al. [83]
Bellio et al. [84]
Bellio et al. [85]
Beyrouthy et al. [86]
Beyrouthy et al. [60]
Bolaji et al. [10]
Bolaji et al. [87]
Bonutti et al. [88]
Burke et al. [89]
Burke et al. [7]
Burke et al. [90]
Burke et al. [91]
Burke et al. [92]
Cacchiani et al. [93]
Cambazard et al. [6]
Cambazard et al. [94]

RSN

AN N NN Y U N N N N N U N N N NI

NN ca

AN N N N T N N N N N Y N N N N N

S N N N N N

AN NI N

<N XN X DbpS

NN | Weekly

AN NN Y N U U N N U U N N N N N

N N X Event/ Course

AR

AN NN N Y N U N N

N X Single

AN N N NN Y N N U N N W N N N

\

N X | One

ANERNERN

AN N N N Y U N N RN

ANERN

ANERNERN

SN N N N N N N N SR



Course Lecturer/  Teaching  Operating

Timetabling types System Period Course types
section Section types costs
)] > on
Authors and years > 2 4 %
~ > 3 > o ©
] & .U o z 2 T w U
> = g © ® © ~ = > s 3o £ U
=~ 5 = = c = ] o ~ 9 b c 5 ol
- v o ¥ 5 £ 8 g E § T £ ¢ 2 =2 2 % E§ o2
cE cygysEgs = 8 =22 8 =5 2 8 & & = & = £ & 6% &
Carrasco and Pato [95] v v v v v v v v
Chiarandini et al. [96] v v v v v v v v
Chiarandini et al. [97] v v v v v v
Ceschia et al. [98] v v v v v v v v
Chen and Shih [48] v v v v v v
Dammak et al. [99] v v v v v v v v v
Daskalaki et al. [4] v v v v v v v v v v v
Daskalaki and Birbas [100] v v v v v v v v v v v
Datta et al. [3] v v v v v v v v v v v
De Causmaecker et al. [61] v v v v v v v v v v
Di Gaspero and Schaerf [101] v v v v v v v v
Dimopoulou and Miliotis [102] v v v v v v v
Fong et al. [103] v v v v v v v v
Fong et al. [104] v v v v v v v v
Gaspero et al. [62] v v v v v v v v
Geiger [105] v v v v v v v v
Gunawan et al. [106] v v v v v v v v v
Hao and Benlic [15] v v v v v v v v
He et al. [107] v v v v v v v v v
Head and Shaban [108] v v v v v v v v v v v



Course Lecturer/  Teaching  Operating
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)] > on
Authors and years > 2 4 %
~ > 3 > o ©
Sj o) o ] v © g T » 9
> = g © ® © ~ = > s ¢ £ O
=~ i 5 = = c +— k9] Qo ~ ie) = < 5 ol
- - 2 8 ¢ 5 T & £ E g T 3 g § 3 e ¢ § 2
c oy 3sd = 6822 8% =8 2 8 2 5 = 6 = £ & 658 4
Jaradat et al. [109] v v v v v v v v
Jat and Yang [54] v v v v v v v v
Jat and Yang [110] v v v v v v v v
Jat and Yang [12] v v v v v v v v
Junaedi and Maulidevi [111] v v v v v v v v
Kalender et al. [112] v v v v v v v
Kardan et al. [113] v v v v v v
Khang and Nuong [114] v v v v v v v v
Kostuch [115] v v v v v v v v
Kostuch and Socha [116] v v v v v v v v
Lach and Lubbecke [117] v v v v v v v v
Lee et al. [118] v v v v v
Legierski [119] v v v v v v v v v v v
Lewis [11] v v v v v v v v
Lewis and Paechter [120] v v v v v v v v
Lewis and Paechter [121] v v v v v v v v
Lewis and Thompson [122] v v v v v v v v
Lewis et al. [123] v v v v v v v v
Liu et al. [124] v v v v v v v v
LU and Hao [9] v v v v v v v v
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Timetabling types System Period Course types
section Section types costs
)] > on
Authors and years > 2 4 %
4 > 3 > o ©
i s . UV o T 2 T ow o
> = g © © © ~ 3 3 I o £ ¥
X . > o) 5 £ -~ > S 5 £ 5 g
- E . 2 8 & 5 § £ £ £ & ®» 3 ¢ & s E g% 2
o0 g &3 = &8 = 2 8 8 = 3 o o = o = £ a o6 Y &
Lu et al. [125] v v v v v v v v
Malim et al. [126] v v v v v v v v
Marquez et al. [127] v v v v v v v v
McCollum et al. [128] v v v v v v v v
Miranda et al. [129] v v v v v v v v v v
MirHassani [130] v v v v v v v v v
Mueller and Rudova [131] v v v v v v v v
Muller [58] v v v v v v v v v
Muller et al. [132] v v v v v v v v v v
Murray et al. [56] v v v v v v v v v v
Nothegger et al. [133] v v v v v v v v
Ozer and Ozturan [134] v v v v v v v v v
Pereira and Costa [135] v v v v v v
Perzina [49] v v v v v v v
Phillips et al. [136] v v v v v v v v
Piechowiak and Kolski [137] v v v v v v v v v v
Piechowiak et al. [138] v v v v v v v v v v
Pongcharoen et al. [1] v v v v v v v v v
Qaurooni and Akbarzadeh-T [139] v v v v v v v v
Qu and Burke [140] v v v v v v v v
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)] > on
Authors and years > 2 4 %
3 > 3 = 9 5
7} e o ()] o © c _(% on g
> = ¢ & 3B B 3 g S 5§ £ 3
~ . 5 = = £ + J] 2 > 2 = £ 5 a
- - 2 8 ¢ 5 T & £ E g T 3 g § 3 e ¢ § 2
oy EgSsS = &8 =2 8 83 2 8 2 & = 6 = £ & &858 4%
Qualizza and Serafini [141] v v v v v v
Rossi-Doria et al. [142] v v v v v v v v
Rossi-Doria et al. [19] v v v v v v v v
Rudova and Murray [143] v v v v v v v v v v
Rudova et al. [57] v v v v v v v v v v
Sabar et al. [47] v v v v v v v v
Salman and Hamdan [144] v v v v v v v v v v
Santiago-Mozos et al. [145] v v v v v v v
Santos et al. [146] v v v v v v v
Santos et al. [147] v v v v v v v
Sarin et al. [148] v v v v v v v v
Schimmelpfeng and Helber [149] v v v v v v v v v v v v
Seo et al. [16] v v v v v v v
Shiau [55] v v v v v v v v v v
Shih et al. [150] v v v v v v v v v
Shimazaki et al. [151] v v v v v
Socha [152] v v v v v v v v
Socha et al. [20] v v v v v v v v
Soria-Alcaraz et al. [153] v v v v v v v v
Soria-Alcaraz et al. [154] v v v v v v v v v
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Authors and years > 2 4 £
< - 3 > 0 &
[0] - S = 9] ]
7} e o ()] o © c _(% on et
> = ¢ & 3B B 3 2 5 5 3 &Y
=~ . 5 = = £ - 0] o ~ 9 et < 5 a
- - 2 8 ¢ 5 T & £ E g T 3 g § 3 e ¢ § 2
c oy 3sd = 6822 8% =8 2 8 2 5 = 6 = £ & 658 4
Soza et al. [155] v v v v v v v v
Studenovsky [156] v v v v v v v v
Tam et al. [157] v v v v v v v v
Thepphakorn and Pongcharoen [46] v v v v v v v v
Thepphakorn et al. [13] v v v v v v v v
Thepphakorn et al. [158] v v v v v v v v
Thompson [159] v v v v v v v v
Torres-Ovalle et al. [17] v v v v v v v
van den Broek et al. [160] v v v v v v
van den Broek and Hurkens [161] v v v v v v v v
Wang [162] v v v v v v v v
Wehrer and Yellen [163] v v v v v v v v v v
Wu [164] v v v v v
Wu [165] v v v v v
Yang and Jat [166] v v v v v v v v
v v v v v v v v v v v v v v v v

Research objectives
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2.4 MuMIUITIUNSSUTNgITa iU MImAImInzauga lun1suitgm

TngvhluudinsdnmsaSeumsnaouannsailalagldinwe (Manually by academic staff)
wialaeldlusunsuwuufsdnlud@ (Semi-automatically) nielaeldlusunsuwuudnluda
(Automatically) Y930uszuun1sdnasassunsiasuluandunsnuissaugesussmelng
dnlngazdudunisdansadeunissaeunuuisnludf Jadunsidvenduisroufinmasun
szi'mmﬁawwémwwmimsnaaumsﬁuuﬁ’waﬂmiwSaumiwaammzﬁwmﬁ@mswwhﬁ?u

& @

lurugiinisideniesssunazaunainuwsagIvtudrslinyvdiduddndulariaun oy

Y

a

yaanssaunkaznaiuunnlunsdenaunaildvuiulsfunni mvesmvine1deluus
azwey Tuariinsdansadounssaeusuusiludfandunmsitmugensuasaenfiamnostumn
Pedansaisumsasuunuayudiludveamsinduladenvioniou/mafivazanlituu
aziviwarnisnsiadeudetidundnsneg lundeuq fu Faddelfiuiounitiinisdanisiadeou
MTNEDU 2 WUUKIN Ao uzAunIsuAdgmaualnguiniazivetanudnuiuuin Inuazain
LazaIu1san15inasassunsasulasniinimin Myaainslunisdanisedesniiuin an
Srnuturedlunisdannuisunssaeuliindediosdunewiion aunsadamsadsunisaou
aufiiniSeuLarenasfasnisld
wiTlusunsudannsnaseunsiasuluudnludfvesisseinatiognatglusunsy uslusunsy
Fendnflenldanegs ldagaanludruniseusunaznistigednw Sniadediauun nanemnedy
JuussiuuazussnduesmsinuluudazUssmadalanuany Juilinsussgndldlusunsuuuy
Salulffvesdnslsemasvanunelulszmdlngersagrilddoudsen fadunisnisiau
Tusunsulumsdamaadsumsaeusziugauinunuududdadudnmadeniuamided
uenninsUulsswasimuTsunsulunsdnnssaouliiussavs nmgedududnussifiud
ddny esnniymmsiansadoumssaeulussivgaudnunidnuuziiuiuy Combinatorial
Optimisation (CO) [4, 18] wazdagnimluleyniuuy Non-deterministic Polynomial (NP) hard
problem [19, 20] #118A21131 LﬁaﬁummaaﬂmmlﬂwﬁmﬂaaLﬁﬂﬁaaLwinmﬁéfaqmﬂumﬁ
witlgymazdintuegnamien (1] fdunarsnudfelutagtuidimuaulaludesmesniniiBng

witgmuuavguazdudouniuszdnsnmgundssandldsiudulvsunsudnsaguuniu [21]

2.5 ABn1suAngsannd

WBnslunguueusindisaing (Metaheuristics) gneausueg1aunsnateudrdnludnuuimnig
dusunnteyninuu NP hard problems ImEJmﬁ’wé’ﬂﬂﬁﬂizmmﬁiﬂumaﬁumﬁwmauﬁﬁ@mmwﬁ
melunaniieensuls (5] mmsaLLﬁi’Jzgmﬁﬁsummimjuazﬁmm%’u%’augﬂﬁasi'mﬁﬂiz?m%mwuaz

Ussandwa [22] 33nsTunquilfisudiuunlailu 2 ngu Ao Single-solution based metaheuristics
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(S-meta) ke e Population based metaheuristics (P-meta) [18, 22] 3§ﬂ151uﬂ6jm P-meta ¢
3euninisnislungy S-meta lusunisisuduaindineunaiediney (Population) 1dmsu
fiurAneulngq lnedinouilfeidnvaziduidunguussdineufiinaiunainvate
(Diversification) Sail#asn1stiianvarulunsdunimneuidedisns (Exploration search) iu
ndn [22] Fnslunguves P-meta vialnalq gniiauetualmiogwiaiodludlagsu 1wy F3ms
Cuckoo Search [23], 35115 Bat Algorithm [24], 35115 Firefly Algorithm [25], 35115 Krill Herd
[26], 75115 Flower Pollination Algorithm [27], 35115 Invasive Weed Optimisation [28], 35115
Gravitational search [29], 75117 Intelligent water drop [30], 35015 Backtracking optimisation
search [31], 75115 League championship algorithm [32] Dudu

FB3ANRLESH (Cuckoo Search: €5) WunildluiBnsiudndriainduuy P-meta wuulnaiiilel
L390alaU19INSITUYIF (Nature-inspired algorithms) Qﬂﬂ’mm?ﬁuima Yang way Deb Tul 2009
[23] 35113 CS 'ﬁuié’umﬁmmnﬂwqaﬂiiu5‘14661zp,ammiumimﬂﬁﬂlsdmmuﬂmmdﬂi’ﬁ’u?@%auﬂma
fusduiornuegsonvariug fudfaniduisnsfideutralmila ulugis 4-5 runisnnsg
¢s ndulsfumnuioutmudsegnaldufdamnismearimuzanfianegsunsvatsuazdszau
wadFaduogsd 1wy JgmnsmariivnzauianiBsiaiay (Numerical optimisation problems)
[33], {]zymms‘mfvhﬁmmzmﬁqﬂmﬁmmim (Engineering optimisation problems) [23], Ugy11
AsiueMnUIELUURURIMSIna (Spherical traveling salesman problems) [34], Ugynn
N139AAI519N19LTI5VOINEIUTE (Nurse scheduling problems) [35], Ugyn1n153nR1519N1IHER
(Production scheduling problems) [36] 1{usu

av o

dy 2 o =l a a Aa ¥ aa v aa
uenInduateuIdedlainsissuiisuussansamlunsundgmuesisnis CS AUIsn1s
Y a a a ¢ A a v | oA a a o I aa a
WwA1gFafnduuududneie wu Jyminismarmuigaunaadefiaunud 38015 CS 4
Uszandnnlunismanaunanan GA, PSO [37] uag ABC [33] d@wusuleyninszuiunisua (Milling
operation) WuU31 35115 CS JUszANTAINIUNITWIAINBUNANTNGITNT GA, ACO, AlS Lag PSO
138] Wudu seduaziiiuladnisnigs ¢s \uitnsuilanuraulannn wsigituenainaziisiuay
MAnesResUsUA lmNEauTpeNIN IS NSINASISARNAWUUIULAD Wi GA uay PSO [37] Wu

Y  aa U a a a ° Aa = = a o aa Y a a a ¢ A
Au 35013 CS deliuszansnmlunismmmesunauindloeuiisuiuisn1siuagsaRnduuuaus
nnsUssendlduilagvinaieysenn sgalsinunisussandldisnig s uidgminisdnmss
SEUANTNABUTEAVUNIINENFE Walaviinisduaulugiudeyaseduuiuind ISl web of
knowledge, Scopus, kag IEEE Xplore isludiuitdudiniios (Title) UnAnte (Abstract) wagan
d1fny (Keyword) agnuiiies 1 unadianizlugiuteyaves Scopus wintiu Tuvaengiudeya IS|
web of knowledge uag IEEE Xplore §liinunuidenuseynaldisnis CS undyninisdnnisns

LS YURITNADUS LA UL NGB BUNDU
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= Y1

fawidnIBnswedtadndesiivefsneg unnuneuaglasumulistegrsnnlutagiu wiisnis

[ ' I3

aananddyniunslsznisdsdinalasnssdelsz@nsamlunisAuniAino uiuiy 1egaan

[
= g

Uszaniamlunmsmameuresismsuindisaindiuiuediuamsilinesnld [22, 39] n1sAum

a a

° ' a ¢ al Yo aa Y a f & o av a A v v o
LLa%ﬂ']iﬂ']‘Viu@ﬂ']WjiqllW]@ﬁ/lL‘ViﬁquaﬂfL‘Viﬂ‘UﬂﬁﬂqiLllﬁ]']?nia@ﬂaf’NL‘Uuaﬂ‘mlﬂﬁn‘ﬂﬁfiaﬂLaﬁﬂlﬂl@ ANUU

a v = a

PANLIUITY IO ANYILALAUNIAINIT TN DS TNAUNLAUNFA AN UITNSIUAN TSR ndL e LA NS

9

Aananiiuseansamgauninanlunisuidem [40-42]

1

2.6 NM1sMUANISITWasRmuNzaulinulSnIswAnBSannd

a

dususuinislunisimuanisifwesimuizauliiuisniswaigsadndswunladu 2
WUINUEN [22, 167] AB WUU Parameter tuning agluu Parameter control
N1TAINUANITINLADTWUU Parameter tuning #38uWuUv Off-line parameter setting 1

s

Amsfimedingg vesisnmsidFaindesgnimuaneudiisnsfinanazyiinisusyanana [22]
%miﬁmumﬁhwwmﬁLmaﬂuﬂfjuﬁ WU 35013 Ad hoc selection [43], 35115 Adopted approach
[13], 75115 Best guess approach [44], 75115 One-factor-at-a-time [44], 35015 Factorial design
[44] \Judy sndlsfmunisfummsinesinzaudae 3 Jansusniu llansasuussiuldiae
dwzﬁﬂﬁ‘i%m5Lu¢’h§ﬁa§ﬂémmmﬁumﬁmauﬁﬁﬁq@lﬁ [44, 45] 9uzi3EN13 One-factor-at-a-
time ffeioiUTounseitlianansofnwinansgnusan (nteraction) seninsiladeld gaavheud3sns
Factorial design a1fuisn1siigndeuariiuszansamanngadmiuAumamsiinesiuanzay
fanlviuinsiwdngiiaind esanannsadanisfumsiiwessurunanesmionsuldlagld
NANNITOONLUUAITVIAADILATNITILATIENNISEDR (Experimental design and analysis) 19131178
SnedEnunsadnwmansENUsaY (nteraction) seuineladldane [44]
NIATMUANIIITMDSWUU Parameter control #38WUU On-line parameter setting ‘ﬁ?u
AwITAesa19g 10938nsuiETafind aggnatuquuaryIuAsuaegian eluruzd
Algorithms f&nsussanana [22] Msinuamsifiwesuuuiiaulduieuludunsnandes
NM35UNMAaeITILILNINIINIENISeENLULNITNAGEY tnelannzeg19BetudSnnswinE aRnde
Jpiilvnsimodsiuauann uenanidslidendnaazlideddninenssruaumnlunissuns

' ]
s aal

veaadiiomAIiwesnanantuusiazlandusiaz Ui dmsuismsivueamiiweslunguil

aa

dnuneenlalu 2 wuu [22] Ao A8n1sAmuarInIsIimeswuulilae? (Dynamic parameter

update) LagidnismuuaAINITImesLULUSULUABWSLA (Adaptive parameter update)

A

ag13lsfinun1siinuafIMIs i esNAnanwuu Dynamic parameter update uana1N9zl
ANBINLUNITOBNLUUNIZUIUNITUAD NsUTUARInITdmeslneldlafiasunfawanouauss
Y o

Y93A1maU (No feedback) MUdsuwlasnetuinludedesdndefidifyvesisnislunguil [167]

YU IIBNITANUAAILUY Adaptive parameter update aziimulaluieuni Ao A1veInITdmes
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£%
= 2

%QﬂLﬂéauLLﬂaaImﬂﬁwﬂmimﬁwamauauaﬂ (Feedback) wasfmay (Solution) TinTumdaain
USuarvagyimsAumAneusiY [22] U Self-adaptive parameter setting (SPS) tufu
Freg1933 s dsaRnduanedsnsiildnissmuna nnsfiwesuuy Adaptive parameter
update LLazﬂizaUwaﬁ%%aLﬁuasjﬂqmﬂuﬂﬁuﬁﬂigmmimﬂ'ﬂﬁmmzauﬁqm U 35019
Differential Evolution (DE) Algorithm [168, 169], 381015 Genetic Algorithm (GA) [49], 38015
Particle Swarm Optimisation (PSO) [170], 35115 Ant Colony Optimisation (ACO) [171] 1Jufu
widufiundeaioidlodudulugiudeyansarsmiaisanis (ISl uag Scopus) WUI191uIdB
MnsAneneuseandnineesionis CS lnaldisn1simuaAImisdiwesiuu Adaptive parameter
update fifosunn Taaanizegredatuigninisdanisaieuniseaeuddeainuauided

Usegnaldianis CS ngldisnmsmiruna s fiimeswuy SPS uneu

2.7 m3UsulgelszAnsnmismadiaasanndlaenisusuueanszuiunis

n13USuY e sEanEanvedisnisuiditaindlinvunifulaenisusulseanseuiunis

(Modification) vaudadudnisnisndsinulaves dusudgminisdanisnaseunisndounuii

o

nane9uddelausuusaUsEavinmeesisnswddsafndlunssuiunisuse lutunauiiuansneiu

[y

sontuTuegiuingusrasdvesnisusuugslunszuiunistug Janavesnisuiulsaaiseau
nad S duagn9f WU nsEUIUA1T Initial solution [46, 47], n3zUIUNTT Solution evolution [48],
N3eUIUNIT Fitness calculation [19], NTEUIUNIT Selection process [49], NT¥UIUNIT Solution

replacement [10], N3¥UIUN1T Accepted rules [19], NT8UIUNTT Memory update [50] Dudu

a a

2.8 M3UFuUTeUsEansnmAsmsdalsanndlaenisnaunau

n15UsuUgIUsEanE A mueIs sl dsaRndluaTuniniulaens naunau (Hybridisation)
[ [ a aa = a Yo ~ k% i al N LY
IodusnIsnisnileinulives Wewinnisuidayminismeaiuangaunanvaleyssnntudagdu
] vaal Y aa a ¢a aa a a v ! Y} ° v v Aa
1w n1slEIsnsdgaindiieisnsihgruniudiaglimunzdunsiluussendlduideymng
ANLINIIN® INSIzHaaNSTlAe19z AR [22] 9INNTNUNMUITIAUATINAENUNLALIAUNTS
HENNEUYD IS NSRS SaRndInUTudymnsdnnsiaSsuanssdeu amisadwuneendu 3
WUUAB 30n15 S-meta WEUNATUNU S-meta, 35715 P-meta NEUKEUAU P-meta kagisn1s S-meta
NEUNETUNU P-meta

d115U38n15 S-meta waNNAIUAU S-meta 3z10un15U135n15Tungues Single solution
based metaheuristics 417111 SNANNAIUTILAY U 35015 Simulated Annealing (SA) FU5A13
Hill climbing algorithm [58], 33115 SA AU38n15 Large Neighborhood Search (VNS) [172], 75019

aa

Greedy heuristic fu Local search (LS) [125] 1u@u TuaagNisn1s P-meta waunanuiu P-meta
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3z1un135U138n15lunguuas Population based metaheuristics 191N SHANNATUTINAY 19U
Genetic Algorithm (GA) U Particle Swarm Optimisation (PSO) [173] tJu#u LLUUEjﬂﬁ’]EJLfJu
3Bn13 S-meta Haunauiy P-meta azifuuumeildFuaudeumniigaueanisnanna ez
Li‘]uf‘ﬁmiﬁﬁﬂis?m%quﬂumiﬁumﬁmau [22, 51, 52] w51231 98 dun1stedaRvaInIsAUmI
mnaulueniedsldann P-meta (Exploration) saufunisiddefvesnsdumemeuluisuaudaly
29 S-meta (Exploitation) ¥il#ismanasmauwvuiifinauaunatuanvdnmsdumeinauss
2 wuU (Diversification kag Intensification) [22, 51, 52] ﬁﬂﬁ?ﬂ%%ﬂ’]iNaNNﬁWNIUﬂdNﬁIﬁQlﬁ%JUﬂ’NiJ
Jomiuldudtamaieg waglszavanudnsaduegned Jeanluddamnisdaansanisdne
P8 A9 15115 Ant Colony System (ACS) iU TS [53], 75015 GA+LS (Memetic Algorithm:

MA) [54], 35n15 GA+TS [12], 35115 PSO+LS [48, 55], 35015 Best-worst ACS fYu LS [13] 1usu
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AT HUIUIY

3.1 v‘hmnﬁuuaﬁLﬂsqzﬁﬁz’iayjamsﬁmmiwL'%&Jums'maau

Yy in1s9nnI1s 195 0UAIT @0 UTRIAUEIAINTIUANERNT UNINeIaEULIARs dalufansTud
a 49{ [ o = L ad [ Aa a a ~ [y
AATULUUUTEIIMAMONNTANBILAZEIVIAIBNITIARITWNNNUTZANTNIN LUBIAINTEUUNITIARITI
SounsdeurILrIngdsulsAstudunuuidnludflasiinsyuiunsdansawuy 3 Junau
SusutunauwsnIININTIAUIUgIvTsM INedenvan (UnRagnuluiidntuln 1-2) aggnian
Jannsneneulagddnnnssaindiunasveumine1de Wedunsuusniasdunditunouiiaeazy
mMsdnensEeunsaeulueinimiedaduseiviiuguvedsdazanslneginniswesusas
Az wazdumaufiamazilunisdnaissluseiun1niz naninsedviiuguvedunasaazgnin
w@Sadunan Matuaziulainnisdanisiassuansaeulunrazmentuliduneudiuauuin 19
WY kagAzAadltYARAINTTILIUNINIUNTIARIT IS HUAN TN UTIINININE R

wBNIINUIINNITAVAUTDYAIINFIUTRYA IUTEUUTANNITINTHUVBIUNIINY IR ULTATS
(www.reg.nu.ac.th) WU31 YUIATBITOLAIUNITNIIINTHUAITNADUVBIAMLIAINTTUAAN T
uralngunuaziinulduintuegsdeiiles snfegiatu Tluwen 1 Insdnwn 2555 Auzide
dounianue 51 viangasvialuseauySanInntul Meniaunfvazaiaiivay) Usayalnnndut (e
AaUnALaznIAiLaY) kasUSyynennTulsiuyiavnun 70 4wy (Classes) H31147U819158
NNANINAIT 95 AU HTruiulidaluauzianizszaulTge1ns 1800 AW I ISEUATIFOUNINAIN
230 F¥rimenLazAesdlunNyisEuNINI 300 nau Aveaseunianunsaldle 111 vieaandiuiu
& 4 & £% v O [ a & P = o wa =
Nanun 134 vio9 1WuAU MUUNITIAA1TI8T8UATNEDUTILATDIA LT UL UUAIE R Ul Rz E
Augaeniasdudounntunsiaasemuabilifinssuiuiazdesduldauanudesnisves
A LT3 mLAdNnaIe AN TTANTI19T8UATNERUNIMNATDINMINaEAEa oIl IAIUIY
1N (Usznnad 2-4 dUam) Tuusasineunisfine) Aatun1siteyan1sdnnisnuseun1saaauas

a 4 a [ k% [ 4 av & <

VOIANLIFINTIUAIANS UNINEIFBULIAIT wrasaduland Uy nilunuidedunazidudnuuinig
nislunsimuIN Tz UIUNTIAR TN sUM T sae Ul iR UL INeduusm SR use Ly

n15AusIUTIudeya (Data collection) Tayan153nANTITEUAITIIADUITIVEIAMY
FAINTTUAANT UMINGIFHULIAIT QNNIUTIVTILNININTEUUNITIAAT AR UV IV 1§ g
a < [ = P = g.; = 1 LY 1
Weninudeyavasl 2555 laeinwkun1sAnyluvuztuiinuvainaleuinnintagduy 1wy
wangnsseaulIgnsasiiilaninauninasniaiiiay vangasseaulsyanlniiilaniniauniuay
aafliay Wudy Ineildnniaunfuazniafivivuedurasnangnsasitodninluisenesianfie

Ipnsiseunsasunuansaiueanty Jwilndgninisdnaisivasululdenanianugeiniag
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Fudouagrauin egralsinugluuulandlgymvesteyadinaiiaiuisasessuteyadaminisdn

asraseunsiaeulutagiulddndie dmsuesdusenevvesdeyaiidrfylunisiiusiusiud

samalul

1. YayaszAaunsAneuaza1v13v) (Degrees/Programs)

dmiudeyaarvivilundnansvesauziainssumians un1ing1deulsals azedluainy
Sullnvauves 4 A1ATYIMENAD A1ATYIIAINTTULYST AIATYIIAINTTUYAAINNIT AIATY
Imnssueiona madyimnssuliiuazaenfianes dduudaznaiainfeziinsaaouluvans
aATazuRunsAnsTikanAiuoenly fuivdngnsseduliygellaudmdngnsasdu
U3ymynen endegrdlumey 1 Dnnsfinw 2555 Hu auzimnssumansldilanisdsunsaouly

11 @197173%0

2. dayavamiangns (Curricula data)
Wasnuleuienisiauiseuunsfinyivesuningrdedvilbiudazaivdvndaasulunn
U = ¥ a U a [ Ya 1 ap =2 o
sERUMSANwIIEAslinIsUSuUTIueTgIn lundngasirdianumngauegiauslunn 2-4 Y e
Iluvanganvivnavdsiandnans (Curriculum codes) 11NN 1 59 AedunsAmuasiandngns

LY

Tuusiazanvindadudaiiddgyunnlunisimuawnunisdansvasuigndedifuuiasudnanslu

[y 1 Y] [ 1

wazauIvvestidnluwiastul msedlelildnanviviiediuwdilsiandngnsd 1aiukas g
Anwiag W TanT 1 ldvdngnsimnssugnamnist 55 vaenldad 2 89U 4 Selindnansienssy
= & v ° v ) A o a a a a 9 -
g9amn1sU 51 Wusdu agvilinisdaamssluviavennaliiuiuiviseuiviaaugniiiud1uvie
anawnNNINR viee1atdnwIunseuluunAngniiudivieanasnnniundla
AmMSUSTAVANENTTIMUAIINYNAIUIIVIVOIAULIANTIUANAAT UNINGIRLULIAIT LaNE
sEAUUIAINS WU 2 n1AnsAne (Und) Usedntnisnen 2555 d91uiuniniie 48 siananans

Ingdayaannmsedananiszlsenauluimesianangns Jeanuniviwazanusvamangnslutagdu

3. dayadviseudunaeu (Courses data)

dmfutoyavesiviFouivasuluwsiasiudou (Class) Tuudazmeumsfinuazfiansuniu
ndngnsitldimunliluusiarszdunsfin Tnsangimnssumansasine snfuguuayividen
vidodvamedinu ddluusiazinesiinisimunmieiefifesnisuazsurumunaidesinnisiiou
nsaou veTEdrasiiiawieniauseerNruTsindivaniaussetsuar AU OR Tuuie
e ugeuinaunnanisneviesniusesieaseufionaiinsuenidungurdony Seu
wnnin 1 nqu Ineluusazngueesaziinisimuaddn/suSeuiidesSeuivdandrindonsisssyi

uIwvesidnlunsarvyisoune uennilluudazngueainisivuneansdiaoununginunie
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HapuauasaunladuagiuniszauveteInsdunasriiu dlundtuuiessgivienatinisiimue

Y

919158 aouINNIT 1 viula

4. Yayuavasiidn (Student data)

Y

[
a YV a

luuideliveyaveslidnazinnsananiuiuddalunnseaunsfne ynndngnIvodusias

Y

Aaaa E24

41913 RN ANy Feaanunagluaiusulinveuvet 4 N1AIYIVBIANEIAINTIUAIANS
UNMINYNREULIAS amsuduuidaisuitnfnululsasUnisdAnwazdaruiunuanaisiuesntuly
WAazsEAUMSANYILATE11IT1 Inganigededsluseiuusganiasiisiuuiamdudiviuuin

a v [ ~

vaueluseauUTaginuazieniasidnuiuidntosas wenainlidaluaivfediuasiisvandngn sy

(%
Y

Aenuluutulseningdnis@inw 2552 89 2555 win danudnindwiuidaynaivninsuatul 1

=

f9 4 T9runuannis 1,796 audadliesanduidnuSyginsinnuey @ul 5 ull) wezldauSyang
aailay SudsidanaulusezaudigalnuasUSygynenmendd agvililidwiuiddnnegluszuy
NM13AN®ITIUIUNINNTT 2500 AU Lagazdnuilduiudunmninisilaasuluaiviiduiiniulu

BUAR

5. dayavesriaaisu (Classroom data)

dmiuteyavesisuiouazeglu 4 91A19138UYDIANLIAINTIUAIANT UMITNGIRYULTATT
Usgnauluaie e1ansisuuAneiAINgsuAIansa1v13aInssulesd (CE) 1assouame
FrnssuenansauIanssulniii (EE) eimsseusiunnedmnssumans (EN) waza1ansisounne
FEINTTUMEARNTAIIMNTTNERamnIs (E) lnevasidunvevipssulunsareinsiseulseney
Ushe sWavieaiou Jevieusou Usianvsenudnvuzianzvesiondou Amnugrendou uas

ADNULVDINDUI U

6. foyatuuazarutian (Days/timeslots data)

312U (Days: D) Lazd1uIUYILa1 (Periods: P) d1nsulandtgyuinisinnisiaiou
muaeulusydugaufnuiiu UnfudrdwutudmiunisSeunisaouseduani (Days/ Week) 2
suslivhiilussarduavisasldiviiousuisaant Wy fvun 5 SusedUant Hudu Tuvaed
Sruruaudsusietu (Periods/Day) tuasgnimualsiiisiuaudesyoaian (Timeslots) fiiiuluus
azTunarldniloutuiivandu wu fvualdll 6 Aunse 8 Ausietu Wudy fuiusuiudesan
Rmuaiiausadnnisaieunisisdeuldsoduasi (Total timeslots/week) dmsunilsiosdey
(Classroom) A HaguYBIT1UINTURDAUA (Days/ Week) Aaiiudruluatuiiafeiy
(Periods/Day)
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¥ L2

dmiudeyaiunazAiuiaivedneifInssuaIans uniInedoulsamsiu S1uanAUnad
ansdansseunsaeuldlusdasteaiouiuannsadnldunis 16 amusetu deudaan 7.00-
23.00 u. \fipsandesnssesuiuidnnafruiiiingSounsaeuluniadie Tuwiazduniviaed
nsldvieaseuynTulagfuduni-Ansdnnisiseunsasud miulidnnaung dwduans-eninddnns
Beunisaoudmiulansyylnaefirenseddausyansluuidin fuiudlefinnsansiui
AunaTIAINAYesSeuTiansnsesiunsSeumsasulduiniian 12,432 (111%7%16) ausie

dUanai

7. 49Yav09813138 (Lecturer data)

d1115U70yar9401315898NITUIRIN 4 NIATVINSNVBIAMEIAINTTUAIENT UMIINYTE
wsAds Usenaulume 8191358lun1advdainssulest (CE) 919158lun1aivdennssuliiiuay
AoufaLAes (EE & ComE) 219138lunAivimnssuiaiena (ME) wage1913¢luniaivnicmnssign
a111n13 (F) yenaniidafienansdunminuiideinlnenseiunnsimnssudans Eng dae el
N13AN¥1ITN13TANTIUSTBUAITIFRUVRIANEIAINTTUAanSannsaalulUlduazaiuise
weunsnansAnu3deld didudeyaifsaivievesenansdustasiulunuidetiarlignuansusiazgn

AMUUARIBNIS LY THAVDIDNTIRNUY

3.2 msimuadatsruvaslgym (Hard and Soft constraints)

o [y

dmsulayminisdamsaseunsaeuluseivgaudnuluanidetaglivedsdunan (HO) uay

J9U9AUTDY (SO) wWUUNINSIYaeg19knsnaty (Global constraints) IngvavaAu HC Tuauidedasdl

91U 6 T Usznaulunie

- HC1 (Lectures) $1uruUn1sisgun1saau (Lectures) vasuaaziyn (Course) 3gRpIgNinas
A13138UMNT AR ULTATUNNATY (MSoATUANTIWILMNIEAR) wazluusazass (Lecture) Aaarinnun

adlurIaAwANANaTY

[y

- HC2 (Conflicts) N13t58uUN1T@UNNASY (Lectures) ¥091n3Y1 (Courses) tulAaNangns

Y

(Curriculum/Student) uagluudazeansdiasu (Lecturer) Izfoigninasiugisiatiuandieiy

- HC3 (Room occupancy) lullsiazieadisei (Classroom) AINAIRUANISIEBUNITADUNINATY

1 v hur9IaReInuY

- HC4 (Lecturer/student availability) udaigiaeulas lidue1a15d/Ad@n Tuiu (Day) uaz

AULIAaN (Timeslots) M919158/88 llaunsadnnisiseunisaauls
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- HC5 (Room suitability) lulsiagiv1azdesgninasluainisiiey (Buildings) Useinnuas
Wioa38u (Lecture/laboratory) uaziodseunilaseuIsAUaEAINsoRMANYMY (Feature) AU

AMuuat

- HC6 (Double/Multiple lectures) Tusne3g19sainisinnisissunisaouluaiutiaii

mellloariu WU 2 Aunse 3 munelilas (Double/triple booking periods) Wudy Inetanizeened

(%
CY L4 o

Tusedgninheisludimveniaujiauy azdfewinisdnliiinisiseunisaeusgdaiiosunla

fuuald

[
o

dusudaverused (SO) Tunwivedaziianuiu 3 98 Usenaulusie

- SC1 (Overhead costs) AAULAEITDIAUTB UIAULUU Room suitability lneinissulsas
B a1 9y A v v v Y a b7 =
VosaeliAldinenuanasiusenlunuvuinvesios Useinnuedied dnynsiivvivuaaias sauluds
AldTeuandaiueeniuluudas fukazdisian duludvisawinasuyninaisientdvesdmsu

IANSSPUNTEBUTMINZAY eanAldangTlunN15115 AR ELIIWS U

- SC2 (Lecturing costs) AULABATDIAUTUIAULUU Timeslot preference lagAvndau
(Courses) ¥@40131589A139nInadluIY (Day) wazyiaian (Timeslots) N919158v0ULAEMANLALY
Yr9a19kiveu Tneaarindniikansfennuyeay @andey) wazarnuliveu @a1u1n) ¥a9

4 1 1 v o ¥ v 1 'y 1 1 1 o a I~4 1 L7
919158usavvulagnivualindilundasiunagluniasdiaian neuthluinsanduenldangly

A159149719158

- SC3 (Setup/cleaning costs) AA213tABITIA UL UIAULUY Consecutive lectures lag

a0

veadsuusazeanziialdaeiifndestuinmiougunsaimionsiauazemiuansetusenly
ANUTUINTOITY USTAVUBITied Anvasfirivrasies denudemlddiosinanasiianuuandieiu
sonlulunsazfunazdiane fefunisenisldfesSoundazios asinsldedsoiios (iean
Pranariesyning 2 Juluuday ulhnniige) tieanaildarelunsdnwssugunsainienisviang

BRI

Yo v

lnsaAdeiidmuneiedanisassunssasulaslvlifunusiy (2) Miinainuasiudeteduy

(%
v v v v v

sesvisandio (SC1-5C3) Wiloniian (Minimisation) Tuvaziidedsfumanyia 6 4o (HC1-HC6) azda

Lifinsazifinog19fnun

3.3 35n135anALa$Y (Cuckoo Search: CS)

T Y

FBn1sAnAdEsY (Cuckoo Search: CS) dnlunialudsnisiwdndisafnduuulmilunquaes p-

9 Y

meta NlalLsenalasnansssuan@ (Nature-inspired metaheuristic algorithms) iauAuisnsiu@n
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Fr3aRnduuudug Tnsgnitauntulae Yang uay Deb Tud 2009 [23] 38013 CS dlduaAnunain
woAnssumsiiniinlivesunnumiTlifuSmesunaneiusdu (Host birds) lnewenenuaenideunuy
lvesmilivilouiulivesunidvesiuiiomnuegsonvesiniugnuies :1nmgAnssudurigaain
AINaIiIlIA Yang waz Deb tAanuidalunisiinginssunisiiniinlivesunniminunimundu
Algorithm wuulvlaunseisléiduisns €S Fuan [37]

AszUILNsTNLlUTeIEAs CS anunsauansdisnn 1 [23] Tnsisuduainnszuiunisaing
fmaulEuAY (Initial population) Aus wAILYIEYINT (Host nests: n) fiftavualy 18 uauseunis
Fumdslifugafiagyinisduunnimiuniaundneudaeiinig Levy flights wdwhnisduamany
auysal (Fitness: £) n&sarnduiinisdufoundunudnienuanysaivesisiiauld ) u
Wisuileufuauanyseivesunnmindeuntnd (7) Srimeulmiindrfiviinsunuiidmeuiiy
LﬁammL‘mfmﬂéhléfﬁwmiﬁ@umﬁmaumunﬂﬁaLLé”Jﬁ%ﬁﬂmiﬁmmmaug'ﬁiﬂmmﬁwauﬁ’j@wm
n fneuanunlutos Tassnoufifiaunimugsiuau P, fargnasiisluuasrhmaduiusnlmiunmy

nszvINNsHagIudlUaunsensduantoulvvensussians

(/ Start |

Initial population,

s Stop : xi(i=1,2,...n)
Mo —

Show the best timetable Generation <
and statistical results Max_generation

A

.| Get cuckoo (/) randomly
| and produce Levy flights

Evaluate its fitness /7

v

Choose a nest among
n () randomly

Yes T T No
Fi>Fj

Replace j by the new
solution;

Yes _— H“'x._k
t:=n -+
No
Rank the solutions and Build new ones at new
find the current best locations randomly
Abandon a fraction (Pa) Keep the best solutions
of worse nests (or nests)

2 1 uansleuRenslrauesisnis CS wuuinld [23]
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fawdfazdudinsfideudndlng wilugramaredfikunnisnis ¢s nduldsuaiufiauiiun
Uszandlduileyminuy Optimisation grsunsvianeuwazUszaunadisadueged wu Joywinism
mﬁl,umzauﬁqml,%qéhl,asu (Numerical optimisation problems) [33], ﬂwuwaw3w1ﬁwﬁquﬂzamwﬁq
AAIn353 (Engineering optimisation problems) [23], g ®1N137AN1519N151HITUVDINGIUNA
(Nurse scheduling problems) [35], Jgy11n153990135190130E8 (Production scheduling problems)
[36], Jayn1n159mganseaey (Knapsack problems) [174], Uyn1n15us59a9naes (Bin packing
problems) [175] tudu wiluiiundenefdslinuindnngiiasng s ssegndlduityminig
FamsaFounisnasusziuaminedonneu WedvAulugiudeyainsarmisivnissesu
UIUIIA ISI web of knowledge, Scopus, hag IEEE Xplore eluduifudodos (Title) undnge

) [

(Abstract) hazardiAay (Keyword) Qaeldardiaglun1sduau Ao (“cuckoo”) AND (“course
timetabling” OR “course timetable” OR “course scheduling” OR “course schedule” OR
“course assignment” OR “course allocation”)
uenninanssuidedlavinnsidisuisuyseansanlunsundamivesisnis CS Auldns
Y a a a ¢ A a v | A N a o I aa =
WANEITaANduuududnaIY 1w Jeyminismidnfimungaufigadaiiaunudn 35015 CS &
UsgdnsanlunisniAinounania GA, PSO [37] waz ABC [33] Tullymdgminisdnnisnenisnas
WU 35015 CS AUszansammlunisAuniaimeunanan GA [36] usnainiludeunr Milling
operation §3WUBNIIENT CS HUTEANTANIUNIMAINBUNANIITINIDNTS GA, ACO, AIS wag PSO
[38] Wudu fetuaviulainisnis ¢S uisnsuilsiuraulangraunn msizdtuenainagiisiuau
WI51TRe5NADIUTUAT AN L aNTDENINITNITINA18I38RNALUUDULAD 19U GA Lag PSO [37]
& Y  aa a a a ° Aa A = a v aa Y a a a ¢ aal
Wudu 35015 CS duszansamlunismaneunalileldTeuiisuiuisnisiuagisanndualsisnis

nnmsUszendldivdymmateuseian

3.4 Fmsanaidsy (CS) Tumsuitymnisdnnisaiseuniseday

ATEUIUNISVNINUYRIITAT CS dMSUNUITIRAIUITOLAAITUADUNTITVINULARININ 2 hay
asunelanadl

LY

1. dudrdeyavesdymiildvinnisesnuuuliudwazimuailadduinguszasd (Objective
function) vastgym

2. MMUASIUIUNTAUNIAIRBY (P) wazAmsTnesauuiaziulunsasfiediney P,
dmsuiens CS

3. @519/ M uIsuAY (initial population) Aus1uIuUsEYIng (P) Aldfmunly Tnsfineu 1
ANMDUALUTENOUAIE %ﬂL%Em'ismaauﬁgwmﬁgﬂﬁmaﬂuﬁaaﬁsuﬁﬁmuml’?ué”s FeaUITOLANS

AITNABUVDIDNNTENNYIIU MITITEUTasnSEUNNAY kagmTeNIsidvioassunnviodls
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4. fimndmeulni (Solution evolution) lngnisduiiondiney x; lunguuseying P Juun 1 59
WA INTuYNsUTUUTIAReU X, gnguideninelenann1s Levy Flights faauns (1) [23]
X = xP + a ® Lewy(A) (1)

laedl x fis Ameuiu way x 7 Ao Armeulndflasunisusulsuds Tusuei o @ Lew(d)

Ao 929528 asTaLN AN TR ULU AL NUURIAInaU d sy a Wunisiliwesnd

[
=

AMUAEITBITUTLIALUNITUSUUTIAIRBU (step size) FeWuagiuruInvoadaymndoin1saun

ANMBULAZAZIANNINNT 0 (@ > 0) [23]

Begin Input course timetabling data and set objective function fx), x = (xy, ..., xg)'
Set amount of CS’s search including numbers of Population (P) and Maxliteration (/)
Create initial population of P solutions x; (i = 1, 2,3, ,P)

While t < Maxlteration do
For (i=1,i<=P, i++) do
Get a cuckoo (say, x;) randomly
Generate a solution x; by Lévy flights (CSLF) or Gaussian random walks (CSGRW)
If (x/ = an infeasible timetable) do
Repair the x;' to be a feasible timetable
End if
Evaluate its fitness fix;)
Choose a nest among n (say, x;) randomly
If fix)) > fix) do
Replace the x; by the new solution x;
End if
If Local Search do
Apply Exchange Operator (EO) or Insertion Operator (I0)
If (x/ = an infeasible timetable) do
Repair the x/ to be a feasible timetable
End if
End if
End for
Rank the solutions and find the current best solution
If (rand < P, of worse nests: X,,ors0) do
Build/generate new solutions X,e,,
Replace the x,ose by the new solution X,
End if
Keep the best so far timetable
End while
Postprocess results and visualisation

End

AN 2 TRAIBNY09I5N1T CS auATynmIn1sinn1T1sdou
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aglsinuanAdelausulsadisundainszuiunisAumaneuresisnis CS lngldnisiiu

LU Gaussian Random Walks (¥3838n31 35015 CSGRW) loissasnis (2)

(Y = 50 + oo @D randn() 2

'
! ]

ng o AeA1Asiszning 0.01-0.001 TuvagAfauyUs randn() azidusiduiliinain Gaussian
distribution #on1suaNUKAMULINATIIUVTE NO,1) Afnadeliu 0 wagAndonuumasgudu 1

5. wnnuN1SELALTeIIT 19l (Infeasible solution) Winisdenusummeuifinswuiuves
MT9SeU mINEeU wavasmsdesSeumue

° al'

6. Uszliumanumangay (Fitness: F) MsoRunInuaAInay 7lasun1susulauwaivse x 7
Tngldilaituinguszasd fx) WeMunamaiounsaounifuus oo iian

7. v1n1sduidendineulungudseeins P Jusn 1 Amounarfivualidu x; hagyinnIg
Wisuisuaun e x 0 madaeu x 0 daanumnzaniidnindineu x; (e £ > F)
Tvinsunuiidineu x fefmeu x©0 fazduliihnafuimeu x, uazasfismmey x 7

8. lunsdifiisns Cs awgnuszgndldndnnisdumianieiiu (Local Search) fanusaldndnis
Exchange Operator (EO) 38 Insertion Operator (I0) LﬁaU%’uU‘gﬁUizﬁw%mW%fﬁﬂ’ﬁ cs

9. Lﬁuﬂﬁasﬁaf-ﬁ’mau (Abandoned nests) ﬁﬁﬂmmwlﬁﬁﬁaammﬁmztﬂuﬁ P, lng P, €
[0,1] [23] w%auﬁy’aﬁwmsa%aﬁmauﬁlmquajmmmLmumﬂﬁmauﬁmdngﬂaxﬁa

10. Fni3aArdmeu (Solution ranking) 9893815 CS TnefiansanainAimumIzaLLNiign
utfesfian anduinstmuslimmeulug ol 1 Sedamnumngaunniiandusnouiiaian
FausEndun1sUszaana (Best so far solution: BSF)

1. lunsdiiidoulonsiuganisuszanana (gu S1uruseunsdumidiney Wusu) dalddu
93¢ Whusnduluiiduneud 4 Sstumeud 10 Snatuavasiudraunideulafnananduaisisy

wgan13vieu tnedfidineu BSF Mildndsainmsuszananaassiiunanasveslym

3.5 n1sUTuugeUsEanSamdsnisanadse (CS) Tunisuitdymnisdnaisisaeu

M3UsuUTsUsEanSamlun1sAumAneUesIsnTs CS awnsaduwundu 3 wwaniwmdn [176]
= o 1 a s . U ) .
AD N1TNINUAAINITIUMDT (Parameter setting) N15UTUUTINTEUIUNTT (Process modification)
WaEITNISWUUNALNENY (Hybridisation)

1. nMsUsulgeUszdnsam €S Tusnunisimuaamisfwesnvuizauiuuenainilunisan
[ aq 1 aa Y a a a 4 13 v & aa [ a a aa
TorpeUaIsN1siuNguYeeIsNIsaEsannd [22] wad Guluidnsuiuleusednsnineedisnis
CS MliRpsvinsusulasunsaiiunszuaunisla e Wi lulusunsudsonadiwansenuasiiatlunis
Uszanaraiiudula In1smuuea1InsilmeslinuisnisiuaglsafndivaiedTnns wu 35015

Ad hoc selection [43], 35115 Adopted approach [176], 75015 Best guess approach [44], 35015
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[

One-factor-at-a-time [44], 35n13 Factorial design [44] Judu Tae?i3gnis Factorial design azsUu

o

[y a

Bsfigndeauasiivszaviamannandmiufumamisime ivanzadliiuisnsuidi3aind
dewnanunsadanistunmfwessiviunatesimdeusulilaeldndnniseenuuunsvaastuas
13RS IENeEdR (Experimental design and analysis) %13935115 DOE Whandhe Sndsanunse
Anwmansznudan (Interaction) seuineiladléidng [44] Feluniddedlivszgndliisnisesnuuy
nsneaeaznTIeTsisadfdntlunsivunsm e simanzaluusdas Tangdaym

2. MsUSuUaUsEansamueisnsddsaAndlraTundnfulaen1susuUsanseuI ung

=

(Modification) ¥audadudnisnisnilsinulaves dusudgminisdanisnaseunisnsdounuii

Y v

aneu3dLlaUTuUTIUTEavEn MR IsMswe EsaRndlunsruiunsus e buunauLAnsn ey

[y

’eJ’eJﬂlﬂsﬁua§Jjﬂ‘U’qJJG]Q‘Ui%ﬁ\‘iﬁ‘su’eJ\‘IﬂﬁU%JUU?ﬁALUﬂi%U’JUﬂﬁ‘Su"”] Fanavesn1sUFuUgeisiUszay
nadiaduedned Wy nsruauns Initial solution [46, 471, nsUIUATS Solution evolution [48],
N38UIUNIT Fitness calculation [19], NTEUIUNTT Selection process [49], NT¥UIUNIT Solution
replacement [10], NTeUIUNTT Accepted rules [19], NT¥UIUNTT Memory update [50] Wudu Tu
sAteiiaginisuiudgsusgansamm Cs Tudauvesnszuauns Solution evolution dsdnagly
funounaadoudives Cs Iﬂ&JUizﬁmﬁﬂ“i’jjﬁﬁﬂﬂ’]img@uﬁLL‘U‘U Gaussian random walks (CSGRW)
WAZLUU Leévy flights (CSLF)

3. nsufuusesUsedniaimaesiinisudiBisafndlditundnfulnenisnaunany
(Hybridisation) daLdudni8nsuilafinuldves esmnmsudtymnismarfimsnzanfigavay
Uszinnludagdudu nsldinswiiiaindifiesisninferundudrazliimngfunisily
Uszgnalduidymifiaameinuing mszaadnsilderaazlifuiniagg 221 :annismuniu
50N IsuTAH UL NABIf U SHANR AU 3TN sF BT aRndAnuTudguinisdanisas ey
AT AU @1u1n9uUneendu 3 WUUAD 15019 S-meta NAUNAIUNU S-meta, 35115 P-meta
NANNAIUAU P-meta WazI5n13 S-meta WANNEIUAU P-meta

B3 S-meta HauraLAY P-meta szt TulmaildiunudsisnnigaueansanauLaz
é’faL‘T;Ju'i%miﬁﬁilizﬁw%mwgﬂumiﬁumﬁmau [22, 51, 52] w5131 zedunslddenvasnisAumn
mneuluani1edsldarn P-meta (Exploration) Saufunislédefivesnisdumaneuluiauaudald

31N S-meta (Exploitation) i3IS SHANNAN ULUUTIAAANNANARTUIINNENNITAUNIAINBUTS

(%
0y

2 WU (Diversification wag Intensification) [22, 51, 52] faduAsnsuaunaulunguiialdsuanna
fouthulFuddagwdieg wartszauanudisaduesned Fenuluddaninisdanisianisine
PE 989U 15013 Ant Colony System (ACS) iU TS [53], 35113 GA+LS (Memetic Algorithm:
MA) [54], 38015 GA+TS [12], 38015 PSO+LS [48, 55], 35015 Best-worst ACS fiu LS [13] tludu

(%
=]

luanuddeiazyiinisusulssednsaan CS lusumsuuunaurau (Hybridisation) wuu S-

meta KANNATUAU P-meta lagn1sUseynaldisnisAunAmeauanieiui (Local Search: LS) Wuu



aa

Insertion Operator (I0) ka¥lUU Exchange Operator (EO) (13819135015 CSLF+10 wazisnng

CSLF+EQ) WNunyINNSHaNNE1Y

3.6 vitn1seanuuugUluuvastayatidi

n1seenuuujluuvvesteyalynidmividuda (nput data) IWiulusunsudanisnasey
M NEDULUUOR LR 9 TuBndunouUINISHOUNINENINGINTNIINSANE A1 INALAYIINS LAY
1% o a % o P o = = % °
FIUTWTayaNeITowma? Inetayan1sInnisaaouvesUnisfne 2555 lagninunesnuuuway
afrafulanddeyn (Datasets) Falunsazlandlgynirziiudeyaidunuudidnysuazdanay
(Alphabet and number) wuutiuussiawazazgniiuliluluduinana text (Text file) dmsu
Inssasrwestoyaluwsazlndazgnimunseniu 6 dndn Useneulddie s1eazidunvestym
31888V UIVUITIAOU TIUaLIDEATDIDITIU T8azBuntaUAUTeIlER uaziden

JoUIAUTBI919158 WALIIUALLIUAVDIANNDULNUVDIDIDNTILAAIAININ 3

DATASET_NAME : Toy
SET_OF_DEGREES: {13 23 33}
NUMBER_OF_COURSES: 7

NUMBER_OF_CLASSROOMS 2

NUMBER_OF _DAYS /WEEK : 5

NUMBER_OF _PERIODS /DAY : 5

NUMBER_OF_CURRICULA_UNAVAI_PERIOD_LINE: 15

NUMBER_OF _L ECTURER_UNAVAT_PERIOD_LINE: 2

NUMBER_OF_LECTURER_COSTS_LINE: 4

COURSES

13 302151 1 (lec) 2 0 8 IE 0 B 0 0 G03005 13_0701_1
13 302151 1.(lab)y 2 1 8 0 EN_312 0 0 0 G03005 13_0701_1
23 302502 1 4 0 10 IE 0 0 {2 4y {{1 2} {1 237 03021 23_0270_1
33 303622 1.(lec) 2 1 5 {IE EN} 0 0 0 0 {G02020 G04022} 33_60118_1
33 302622 1C(lab) 2 1 5 EN 0 N 0 0 {G02020 G04022} 23_60118_1
13 302155 1 2 1 50 {IE EN} 0 0 0 0 G03005 13_0701_1
23 302156 1 2 1 50 {IE EN} 0 0 0 0 G03021 23_0270_1
CLASSROOMS

EN EN_312 50 N 1.0 1.0 {11111.5} {11111.5} {11111.5% {11111.5} {11111.5}
IE IE_509 80 B 1.2 1.2 {11111.57 {11111.5} {11111.5} {11111.57 {11111.5}
CURRICULA_UNAVAILABLE_PERIODS

13 1 3r

13 2 S

13 3 S

13 4 S

13 5 S

23 1 S

23 2 S

23 3 3F

23 4 S

23 5 S

13 1 S

33 2 L

33 3 37

33 4 S

EE] 5 R

LECTURER_UNAVAILABELE_PERIODS

G03020 1

G03020 3 {3 4%

HIRED_LECTURER_COSTS

G03005 1.4 .7 2.5 {11111.5} {11111.5F {11111.5} {11111.5% {11111.5}
G03021 1.0 1.2 1.8 {71111.5} {11111.5F {11111.5} {11111.5% {11111.5
G03020 1.8 2.2 3.2 {11111.5r 4f11111.5¢ {11111.5¢} {11111.5% {11111.5F
G04022 2.4 2.9 4.3 {11111.5r {11111.5¢ {11111.5%} {11111.5% {11111.5%
END.

A 3 Mmegalassaslnateayadiindmiulusinsudanisaseunssasu
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3.7 #N150aNwUULUSHNTUINAITINEDULUUDA LULR

[ a o

TunmAfeduundedmiumetauusunsudamaadoumsasuwuudnludfanmsonandld
fanm 4 lngagdsznoulsae 4 daumdnfe drunsiiditoya (Input phase) d@aunistdnimdusy
Uszauiugld (GUI phase) d’;umﬁmmiwﬁmmzauﬁq@ (Optimisation phase) Waga1un15u"
pandaya (Output phase)

- dhumsiidndeya (nput phase) Hunisindeyaiieatunisdnniseianun 1wy Fioudeu
919156 130 FnFerinasy Tetdusineg Wusu andildAulilulig text Whglusunsulnoriy
GUI

- daumsl¥nmdususzaufuild (GUI phase) iunsinsedeaslunissu/dsadanys
seringldlusunsuuasiluskngy Wy nsivuaaInsilnes nsimuadedidunaniayvededy
599 MIRMUANIIREIRUTIEIN LUy dauﬁ%ﬁﬁazﬂalﬂé’asﬁzumaumi%’mmswﬁmmzauﬁqm

- daumséﬁ’mmswﬁmwamﬁqm (Optimisation phase) Lﬁumiﬁﬁaaﬂaﬁlé’%’umﬁwmﬁm
maFeunaeuiaiga lnesuanmadhsiadeyaneufiaz]iisnng Cuckoo search (CS) 383
Firefly algorithm (FA) 33015 Hybrid wuus1eq ¥n158annsadeunissasy Weldrmnoundifiae
yhnsneasiareuiiazdamalud GUI Bnads

- drunsieendeya (Output phase) lunstnadwslfusinsuanudunadou

X% = = a a av v ax ~l ) v
AN IADULATANT NS DS HU 5UDANIUSLANS AN LAUBIIT NS IBLUNITINNITI1IA I

Tel/Tk language

Input phase Graphical user interface (GUI) phase Output phase

Classrooms | == | parameter setting —» Hard constraints pr— Lecturer
v timetables

Heuristic ordering — Soft constraints :
Curriculum
timetables
Curricula

Optimisation phase i:::;‘;}?;:
Course
| Encoding ‘ | Decoding ‘
: : ¥ [ Algorithm’s
Constraints . .
Metaheuristics [  Timetabling performances
C language

AN 4 LAAILUIAAFINTUNITNAIL I USHATUIANIS IS I UAISNEDULUUDRLULIR [177]

1NNUIUAIUTDINITHA U TUTHNTUALTT N1 T/ Tk hag C S2UNULUU Extension [178]

Tngldnwn TcU/Tk vimsimunludiuresnisdndiveya (input phase) msldnmdudiuszauiv
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Al% (GUI phase) wagdrunisiteandeya (Output phase) 5123101514 Tel Script Wurdsndu
$e v ldeansanaulusunsulaise InsanzegeBenisasne GUI e Tuvaeiludiuvesdiunis
Jannseiiinnzaniign (Optimisation phase) a¢ldn1w1 C Tunisimuilusunsuillesanidudiud

v I3 A
G]’ENﬂ’]iﬂ’)’]&lLS’ﬂ‘Nﬂ’]iUﬁ%N’JaNﬁ‘V@QNWﬂ

3.8 yIN1sNaIL lUsHNSUIRAs19daununlasantuulilagldn1el TCL/TK wag C

TUsunsunI1sInnsIessunssaeuigniimudu tneagusenaulume 3 diuvande diuves
Poyanidrvedlusingy duveinsuseatanavedusuny wazdiuvesdeyatioanvedusuny

1. dauvestayatntivedusunsy Tudruidandunisindwesteyadyninisdanisaieu

mssaouiildgnasisliud Tnsusazlandazgnimunluguuuuresinld text Feflélusunsuanunsa
Wonlanaglilusunsuldlandlavinnisussuanalasiiudiufnsenuyly (Graphical user
interface: GUI) fignitanntusaeats TCL/TK fanw 5 ndsanidndeyatiymiSeuiosuda fle
Tusunsuanunsaidenidnnsieslflumsdamsasounssasuliiulusunsulédsusznouse

a 1% 1 ]

38115 CS 1agIdNITNANNAIULUUA9Y) Feluliazdsn1s7denazdnin1ed1usurinn1snInug

Amnsdweinsludiuveslymuazisnis gldauaunsoimunliegadassuaglusunsuagyinnis

mvuaAsuaubInedmugauialudanin 6

g Metaheuristic Algorithms for Complex University Course Timtabling (CUCT) =8 £
File Edit Methods Wiew Help
§ Load DataFile ... [
@uv| . v Dataset - |47| | Search Dataset el |
Organize « MNew folder =~ O3 '@'
A =
- Favorites fame
Bl Desktop | Large (ME+CE+EE+IE)
& Downloads _ Medium_1 (ME+CE)
2| Recent Places  Medium_2 {ME+EE)
. Medium_3 (ME+IE)
il Libraries L | Medium_4 (CE+EE)
3 Documents | Medium_5 (CE+IE)
(Ji Music  Medium_6 (EE+IE) Select a file to preview.
=] Pictures = Small_1 (ME)
B videos | Small2 (CE)
| Small_3 (EE)
8 Computer | Small_4 (IE)
E, Local Disk (C3)
a Local Disk (D)
a Local Disk (E:) I :
Eilcinarme v [Tt Files () -
[ Open ] l Cancel ]

A 5 fegan1sininteyavedlusinsuiannsuseumTaeung NIy
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g Metaheuristic Algorithms for Complex University Course Timtabling (CUCT) = |3 =
File  Edit Methods Wiew Help
Info[problem_name]: IE_1/55 -
Info[num_degrees): g (13142326 33)
Info[num_courses): 129 [124 scheduling courses]
Info[num_lecturers) 92 [56 unduplicated modules)
Irfa[num_curicula] 39 [25 unduplicated modules)
Irfa[num_students] 436 [164 unduplicated modulss)
Infafrum_rooms): 74
Info[day_per_week]:
Infalperiod_per_day): @ Cuckoo Search =8 =
Infaftotal_events):
i ilable lecturer imesiots: . .
U::::\:b\: :&ﬁgi{;mﬁ:ﬁ; C& Parameter Setting CUCT Parameter Setting
Number of population/nests [n) Heuristic Ordering
26 CE0C 100 C 20 C sl 3 Static Ordering

- RO ¢ LE ¢ LD @ LUPD ¢ LURD
Nurnber of generation (g)

25 ¢ 50 100 ¢ 250 ¢ 500 [100 E] Dynarnic: Drdering

8D O CD
Dizcovery rate of alien eggs/solutions [Pa)

01 & 02 08 C07s O 09 |02s = Hard Constraints [HC)

" I HC1 B HC2 W HC2 W HC: W OHCS
‘wialking strategies

" Uniform ¢ RandamWalks @ Lewy Flights Soft Constraints (SC)

Sell-adaptive setting of Pa I sC1 W sC2 W sc3 [ scd

* Mo (T Yes Weight of Soft Constraints

soift S sc2fi Hscalr st F
Penalty Costs (PC]

ot [s00 =] pez [25 2] Pes 30003

Seed number
o 222 333 O 444 O 555 (333 B

Local search strategies

* No % “Yes [Insertion operator) © es (Exchange operatar] Resat ‘ Run | Exit ‘

[
v

AN 6 FRE1INSAIMUAAINN SRS ULUS WA TN N WY

' (%

2. 7199915V sENANavRlUTUN TN YRIINTE YIS TeyanazideanIsnisnToun

MuuaAsiiwesiseuiesna fldaunsainisnasulisunsulalaenilsunsuasianidayasening

Ly (3

= Y Aaa ] i a °
N5UTEURNEA BIUTENBUMIY 5@Uﬂ’]§ﬂigﬂﬁama{]§]§]‘Uu V"I’W]@UW@VI@@IULL@@B?@U ALLRAYVBIAFDU

(% ' '
Y a

luusiazseu dudesvunnsgriulunsagseu Anaunnfigaauaisun1sUTzanana wazaunuilin

INVOTIAUTDILARLVOAININ 7

g Metaheuristic Algorithms for Complex University Course Timtabling (CUCT) = & E3
File Edit Methods Miew Help
‘wheight of soft constraints SC1 o1 E
Weight of soft constraints SC2 o1
Weight of soft constraints SC3 o1
Yariable of Cuckoo Search Parameter Setting
Mumber of population 129
Number of iteration 100
Dizcover rate of alien eggsdsolutions 1025
Local search strategies : Yes (Insertion or adjust operator]
Walking strategies : Lewy Flights
Seed number 1333 m
| lteration |  lteration best value | Mean value | Standard Deviaion | Bestsofar [BSF) value | BSF of 51, 52, 53, 54
In TollnputD ata:
1 203370.50 203540.40 90.67 203370.50 13210.0 590.5 189570.0 0.0
2 203202.50 20345078 10326 20320250 13070.0 B62.5 183570.0 0.0
3 203134.00 203399.34 10813 203134.00 13000.0 564.0189570.0 0.0 =
4 203134.00 203335.22 116.81 203134.00 13000.0 564.0189570.0 0.0
5 203134.00 203286.76 86.92 203134.00 13000.0 564.0189570.0 0.0
E 203134.00 203256.42 74.88 203134.00 13000.0 564.0 189570.0 0.0
7 203134.00 203246.58 £8.49 203134.00 13000.0 564.0 189570.0 0.0
g 203134.00 20322814 70.E5 209134.00 13000.0 564.0 189570.0 0.0
] 203078.00 203182.08 5642 203078.00 12980.0 528.0 189570.0 0.0
jul 203078.00 203178.04 53.88 203078.00 12980.0 528.0 189570.0 0.0
1 203078.00 203164.62 56.08 203078.00 12980.0 528.0183570.0 0.0 L
12 203018.00 20314834 56.08 203019.00 12910.0 533.0 189570.0 0.0
13 203015.00 203117.14 5046 203019.00 12910.0 533.0 189570.0 0.0
14 203015.00 203106.30 4238 203019.00 12910.0 539.0 189570.0 0.0
15 202972 50 203084.46 4493 20297250 12850.0 5525 189570.0 0.0
16 202968.00 203066.50 47.83 202968.00 12840.0 558.0 189570.0 0.0
17 202926.00 203060.16 54.99 202926.00 12840.0 516.0 189570.0 0.0
it} 202926.00 203050.44 E0.29 202926.00 12840.0 16.0189570.0 0.0 b
‘<SEEIj = 333> | <lteration = 29> | <BSF = 202844 5 > | 29%

' [
a

AN 7 $39819N15U52aNaYR U TUNTUAA ST EUANT AR UTIONTAIUNTY
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'
a

MAI91NLET9EUNITUTZUIANALAIIUTUNTUIZUANIAIAOUKATAIVDIAINDUTIATIAARIUALTUA

=

n1sUszanana (Best so far solution and value) 89NUIFININ 8 FILiulaINanEULYaIAINDUNA

Ngauansoaniiuaveglusurasiaui

[

W159a (Encoded) ag

F Metaheuristic Algorithms for Complex University Course Timtabling (CUCT) = | 5 ||
Fle Edi Methods View Hep
55 067800 025376 054 202629.00 126700 489.0 1896700 0.0 -
94 202629.00 20265222 121 202629.00 12570.0 489.0189570.0 0.0
5 06200 20268140 165,26 202629.00 12570.0429.0 189570.0 0.0
96 202629.00 202652.08 1B 202629.00 12570.0 489.0189570.0 0.0
5 05700 20268652 19121 202629.00 125700 429.0 189570.0 0.0
5 026200 20264876 2.5 20262900 125700 429.0 1836700 0.0
93 20261650 202644 B2 1am 20261650 12560.0 486 5 189570.0 0.0
W0 20251650 20264452 L] 20261650 12560.0 486.5 189570.0 0.0

Best 30 far value 026165
Best s far detail 12560.0 486.5183570.0 0.0
Best 30 far solution ]

2! 1 2120
11-111-111-1-111-124141
331-111-1-114-111-11 41
41111111414
11111417

RRER
1111111111 A A11111111111-1114 11112711127 1-
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1--1-11 1-1
-1

-1

T---T---T-1-1-1-1-1-1-1-1 1

1111381111141 11111+
1.

44444444 EERT-EREEER
EEEE —14—171—1—1—1—14'171—1'1—14
RRRLS

i
al

AN 8 FIDENNITUARIKNATNEVDILUTUNTUIANNTIUTHUAT AR UMY TY

' '
aaa

3. dauvestoyatheenvedisunsy lududwfunmshinouiifiagnfianseenumdsninnis

Usgaianauiinisnensia (Decoded) Wiaglusuiuuveanis1en1sldiodsgudanInan 9
M1T9EBUVDIB1TEMININ 10 WagasIuTeuvastniseufnn 11 Feihligldlusunsuaunse

whlalpdrewazarusatnanananluldaule

Room 2 : EN_207

302151 2_(lab) 13, 603022 302151 2_(lab) 13,G03022 302151 2_(lab) 13, G03022 302151 1_(lab) 13, G
13_0705_1 13_0705_1 13_0705_1 13_0701_1

302151 4_(lab) 13, G03022 302151 4_(lab) 13, Gt
13_0708_1 13_0708_1

a

A 9 FpgauanInsenslivieassuadlUsunsUgNWRILITY
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Teacher 6 : G03022

302151 2_(lab) 13, EN_207 302151 2_(lab) 13, EN_207 302151 2_(lab) 13, EN_207 302151 4_(lec) 13, IE_606
13_0705_1 13_0705_1 13_0705_1 13_0708 1

302423 1 13,EN_616 302151 2_(lec) 13, IE_509 302423 1 13,EN_609
13_070: 13_0703_4

302151 3_(lec) 13,1E_504 302151 3_(lec) 13, IE_504 302151 4_(lab) 13 ,EN_207 302151 4_(lab) 11
13_0706_1 13_0706_1 13_0708 1 13_0708_
302399 1 13, EN_312 302151 2_(lec) 13, IE_509
13_0703_4 13_0705_1

302151 3_(lab) 13, EN_212 302151 3_(lab) 13 ,EN_212 302151 3_(lab) 13, EN_212
13_0706_1 13_0706_1 13_0706_1

AN 10 FI8E1UAAINIT AR URNANTEVRILUTLATUTNIGNIRIUITY

Curricula 7 : 13_0705_1

302151 2_(lab) 13,G03022 302151 2_(lab) 13, G03022 302151 2 (lab) 13, G03022
EN_207 EN_207 EN_207

302151 2_(lec) 13, G03022
IE_509

302151 2_(lec) 13, G03022
IE_509

AN 11 g 9anIn1 U lUTUATUTIgNWRILNTY

3.9 N1599NUUUNITNAABILAZNISNAdULUSILATY

NFINA AT TU TN TUT ARSI sUR1S 1@ uasaauLa lAviNN1sRsI9daUAIY

¥ £4 o [y < [y say ¥ o v A (J
gnFedLad tuneudnliazilummeaeulusinsumuingUsvasanlanivuald 1esainnisiivue

[

AN TNz aNd S UIS NSRS aRnduuiiauddalusg1aunng aUusEAns nnuag

o

aa (% | Q’{II a ¢l 1 aa o (% (%
FBnsanan wennilAmnsdwesiuinzauveddasisnsezgninluldlunare inquszasddnaly
a v v & % & a Ao & 1 a A { a ¢l
dnAae AtuN1TeRNLUUN1TAaesRludsndnlusgdslunisdunsiuaminisiimesivuizay
dusUITNT CS ApwvimsAnwlssuiisulunisvaassdus dely
o a 4 aa 1% 1 A o 1% o = a
IMUIUNITLADIVDIIDNIT CS 9xUT2NBUME 2 A1 [23] AD IUIUNITAUNIAINDY FILARYIN
31u7UUsE¥INT (Population) AafuIuiuseuianue (tteration) Allun1sAumImIe P) ULagen

auazilulunsazisdmeu (P,) Wasanyavesmsfiwesivuzaulunnazdynuazsunay

1%
a v

Fnsdeusnstusenly [22] feiulumAdeidesinemaminiveifvmnzaniianuedisnig
Cs viamun 11 Tandlaymitldiauetiuan

dusuisns €S Wissndidwumsdwesives Salddenldnisesnuuunisaasadunnne
Seauuuanysal 3% (Full factorial experimental design) [44] WoAumAImMITnesfmunzay

s

s 11 Tand Fausaglandagiidniundiveanismaaes 9 adwio 1 A1mesn1sdu (Random seed)
warluwsiaglandazgnuaassan 30 ads Ingldmnsiavvesnisduilunndnafueentu dafuluns
naapstlazdidrauuimunniidy 2970 (11%9%30) $u Tnsgnnadeuuuadosnenfinmes Intel
Core i7 fin11ufl 3.4 GHz uazdiuinenus1 4 GB (DDR3) Fswansnaaesiilévimuniildazgniinan

a L4 1
AATIEINaN1INAanall
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3.10 N15IATITHNAINATITDDNUUUNITNAADY

dnfumsnaasafiedumamafime iitvanzand miuitnig €S Hu wanismeassiildanns
Supuununiamaasiaueluusazlandywm 2QNUINITATIBNAINLUTUTIU (ANOVA) Tu
gULLUULGTNLﬁuLLUU%’ﬂU (General linear model) Fsusznaulusne nasanridsans (Sum of square:
SS) sefuarudasy (Degree of freedom: DF) Atadsrin&saad (Mean square: MS) A1 F (F value)
uay M P (P value) felusunsaszndnissnuada Minitab Leddu 14 tieeSursdmansznues
adendn (Main effect) wagnansznusau (nteraction) Feazthlugieazulsin dadeniomaiines
Tatheflaziinansznusionismnasdlastoddey (Significance) n1sadii wdsntuagynisagueag
vidomwaansinesiunzandmiuisns s lnglduaanammsiinseinanszyuvesiladondn
(Main effect plot) muglufunaannisiuieuisunasseiudueiosiodya

dmiunisiSeuiisunangseau (Multiple comparison) aggninanlglunisAuminseiuues
Hasuglafiunnsndluainsesivduedsiifoddymaiaselusunsuussgndniaduadia Minitab
nesiu 14 Falafefazthunvhnisisuifsunaresssulitumsendutadeiilaviinisiesey
ANOVA udmuiniunnsnsfisgduanndoiud 95 wedidud iewuddlinsuindussiurestade

AlafuANA199INTEAUAY FAISNSUSsUBunatgseauAldluuidedae 35013 Tukey [44]

'
=]

\He31n3msiliiundenlduasduisnisiaunsadeduldine a vemngilseuiisurzdmaiy
0.05 Wid
e | a ¢ A A a Y o = = a a
wanndludinveininsginanismaaesduiiieidesiun1siussuiisulseansninves
8N156199 Aziin1slondnnisnieadia 1wy evdeefiga (Minimum) A111naR (Maximum) A5
' A oA a ¢ YR . . . &
ALaaY (Average) NINIANUBAIUULINTFIU (SD) NTIATIENLUUIUA (Pairwise comparisons) tUuU

AU 1anYaglunsasunanisaaedlrdiaudieionnguy



unil 4

NAN1598

P9 N AN ITHAUIIUTRATUIRAIT IS URIS 1A ULES A ULa L LAYININ19MTI@0UAINY

Y o

gndesudl TumsudnluaziiuntsveaeulusunsumuingUszasailanivuall Wesainnisivue
[ [

ANITITR e SN ZALE NS UATATIuA S TaRnduud A ud Al usgsunnsoUsyansnmues

aa Y] i - a ¢ al I ad ° Y 'z
8N1IPNNATTD u@ﬂ?ﬂ']ﬂUﬂ']W'ﬁ'nJL(ﬂaiwL‘Wll']%ﬁlm@ﬂLL@agﬂﬁﬂqiﬂgﬂﬂuqlﬂﬁLsﬂuﬂaqﬂqmﬂﬂizaﬂﬂﬂﬂiﬂ

Y 9

v '
LYY ] = o

3nA2Y 9TUlUNISNAABIN 1 3998111N1599NLUULASIATIZINANITNAABILUNISAUNSIU
' a & o v ad | & P ° = = a

ANNITITLABSTMUNEAUAINSUATNS CS nou 91nUUluNISNAaRIN 2 9gvitn1sanwlSeuLieu
UseaNSA1NUe935n1s CS NInsUSUWABUNTEUIUNS (Modification) waglun1snaasan 3 Ay

MN5ANNUSIUNEUUTEENTAINYDIIDNT CS WUUNTNISHaUNaTY (Hybridisation) AU3EN1S

'
a

AU UULRNIZNY

4.1 wan1snAasil 1: NSAUKNIANITANDINRUNEY

¥ I a el o v aa a [ a 1 aa
NIAUNIANMNITIALADTNANZANEINTUITNIT CS L1UBIINANUIUNITILMD5UDNITNT CS 9
UsEnaumie 2 A1 A I1UIUNITAUMIAIABY FAUARINTIWIUYTEYINT (Population) AuiudIuIu
gj . i 1% =l 1 1 I qy o [ gj
SOUTIINLUA (Iteration) AlElun1sAUM (M58 PI) wagAauuazilulunisasRsmneu (P,) Aeluns
naasilaviinisesnuuunIsnaaeudunnneiseaLuuanysal 3% (Full factorial experimental
design) [44] WoAURIAINITITRITIMUIzANE1SUITN1T CS Tun1suAdaynin1sdnnisiaseu

ANSNEDUNLA A1 NIWAIILA 11 TANGLARIAIAITIT 2

11579 2 wansdayaland Uymin13dnmsneseunseaeuigniaueTuYeIu M INeNauuLseds

Characteristics of the NU course timetabling problems

Problems
No. Courses  No. Events No. Classrooms No. Days/ week No. Periods/ day No. Lecturers No. Curricula
1 56 173 53 5 10 30 19
2 103 323 7 7 10 62 36
3 123 353 86 7 10 49 27
4 124 380 74 7 11 56 35
5 144 452 91 7 10 78 43
6 162 486 99 7 10 71 34
7 163 499 88 7 11 72 38
8 204 639 114 7 10 96 52
9 208 647 99 7 11 102 56
10 221 687 108 7 12 94 a4
11 323 1,009 142 7 13 143 66
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[y

Tuumaglanddgymiitu lomuuassauamnniwesiuunazladevesisnig CS oonlu 3 szdu

AD 5¥AUAN (-1) SEAUNANT (0) WaESEAUAT (1) MINTS19 3 e 1WINUTEEINS (P) Muunsadud1nsu

Y

Jyynsmafimangauigalagnvaaseazgnuuzitlin 15 83 40 Useans [23] uasillodnin

TUswnsuldnantunisussunanailuuiuuin udsedladanivunsiuiunisauninaiun (P) 139

a o

24,000 Arneou Turmziainuiiavilulunisazfsdneu (P,) Munzandmsudayminismeand

wngaugalagnnaaewaziuzdnlin 0.25 [23] Aueddetdslamuaaidinanliiseaunans

[y

A ° ° Iy va
mm%WﬂqigﬂUmqLLazEﬂﬁﬂzﬂqﬁu@]ﬂq‘I'ﬂw +0.15

A1519 3 WAAINISAINUAAINISINNDSYR935N1S CS Tunmazitlade

Values
Factors Levels
Low (-1) Medium (0) High (1)
Number of population * Number of iterations (P/) 3 15*1600 25%960 40*600
Probability of abandon (P,) 3 0.1 0.25 0.4

Tuwsazlandagilduuisuiilunisveass 9 (32) U URMe 1 A1v83IN15du (Random seed)
uazusarlandazgnnaaosdn 30 asslaeldnunsiavresnisduiiuanietu iesandiswaulang
{]zgmﬁgmm 11 Tang Fedunsvaaesiasisuausuiemunwiiiu 2,970 (11%9%30) $u wenaniiiu
nnaaesiidfnuaisnisdadiduseiruuy LUPD wagnisuszananansnnaosiamunldgn
NaABUUULATsABNTILADS Intel Core i7 AinTWIA 3.4 GHz wawivigawdn 4 GB (DDR3)

mamimamﬁlé{mﬂmiﬂizmamaﬁawm%gmﬁmﬁmezﬁmmwiﬂi’;u (ANOVA) Tuguuuy
Badunuuiinly (General linear model) #susznaulude nasiufdeaes (SS) sziumnudasy
(DF) fiadeidsans (MS) A1 F (F value) wag @1 P (P value) felusunsudszgndnieiiuaia
Minitab 12844y 14 1iloe3ursfanansznuvesdadeondn (Main effect) uagnansznuiam

o w

(Interaction) 1tadeusenisfwesiainanaginansznunenisunasslaeisdfny (Significance)

NNEDAAINITN 4

HANTTILATIERAIINLUTUTIUYR NS CS dmsulandlenn 3, 4, 5, 7, uag 10 91nA1519 4
NUIMNANTENUVDIUAT8NaN (Main effect) waznansznuvesladesiu (Interaction) 31n 2 Jady
Usznausie srunumsiumdneunanun (P) wazirauuiazdulunisasisdneu () Lid

(
di/QJ 1
RN

aad [y =~

HodAgynananszauagadu 95% lagiarsanlaainal P lauinnin 0.05 wenain

' '
a = % =)

NULAUIRINITAY (Seeds) HulaifitlydAymeatifnseAumueiy 95% Bnaae

Turuzinan15IAT1z9A LU TUTIUY0935n13 CS dmsulandlem 1, 2, 6, 8, 9 uaz 11 970

o w a

M1519 4 WU WANTENUVBITATNANVDITIUIUNITAUNIAINBUNINUA (P) TUed AN 19adfni

o

SEAUAMULTBNU 95% LagRa1saulaa1nal P Aleaztasninniavinnu 0.05 YULANANTENUVD4



[

Javesrudulinuinddedduniannng

nglulanddgm 6 iy

o

o w

ANPUNIADRNTLAUANULTDIU 95%

o

v

AU

Y] I

AR 95% UBNAINUTINUT

AN 4 WARIHANITILATIZINANNLUSUTIUVBIITNNS CS dmsu 11 1ang
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WVNWEJLaﬂJ‘ZJ’eNﬂ'ﬁ?jiJ

Problems Source DF SS MS F P
Pl 2 576,316 288,158 43.89 0.000
Pa 30,338 15,169 2.31 0.102
1 PI*Pa 32,133 8,033 1.22 0.302
Seeds 29 247,749 8,543 1.30 0.148
Error 232 1,523,225 6,566
Total 269 2,409,761
PI 2 9,728,333 4,864,167 23.34 0.000
Pa 2 1,170,584 585,292 2.81 0.062
2 PI*Pa 320,577 80,144 0.38 0.820
Seeds 29 6,977,415 240,601 1.15 0.276
Error 232 48,353,774 208,421
Total 269 66,550,684
PI 2 1,417,618 708,809 0.79 0.456
Pa 2 1,749,929 874,964 0.97 0.380
3 PI*Pa 4 3,050,857 762,714 0.85 0.497
Seeds 29 33,060,258 1,140,009 1.27 0.173
Error 232 208,932,710 900,572
Total 269 248,211,371
PI 2 9,208,263 4,604,132 0.95 0.388
Pa 2 10,839,612 5,419,806 1.12 0.328
a PI*Pa 4 8,930,587 2,232,647 0.46 0.764
Seeds 29 171,994,153 5,930,833 1.23 0.206
Error 232 1,122,530,543 4,838,494
Total 269 1,323,503,159
Pl 2 1,101,544 550,772 1.38 0.253
Pa 2 1,424,859 712,429 1.79 0.169
5 PI*Pa 305,787 76,447 0.19 0.942
Seeds 29 11,690,452 403,119 1.01 0.452
Error 232 92,302,925 397,857
Total 269 106,825,567
Pl 2 5,689,355 2,844,678 3.35 0.037
Pa 2 1,853,119 926,560 1.09 0.337
5 PI*Pa 4 3,341,783 835,446 0.98 0.416
Seeds 29 37,621,130 1,297,280 1.53 0.047
Error 232 196,798,215 848,268
Total 269 245,303,602
PI 2 23,156,156 11,578,078 2.75 0.066
Pa 2 11,461,652 5,730,826 1.36 0.258
7 PI*Pa 4 21,070,907 5,267,727 1.25 0.290
Seeds 29 103,618,664 3,573,057 0.85 0.692
Error 232 976,837,736 4,210,507
Total 269 1,136,145,115




54

Problems Source DF SS MS F P
Pl 2 24,363,035 12,181,517 7.82 0.001
Pa 2 3,130,959 1,565,479 1.00 0.368
8 PI*Pa 4 13,162,120 3,290,530 2.11 0.080
Seeds 29 32,649,099 1,125,831 0.72 0.852
Error 232 361,618,994 1,558,703
Total 269 434,924,207
Pl 2 71,907,246 35,953,623 4.89 0.008
Pa 2 7,519,674 3,759,837 0.51 0.600
9 PI*Pa 4 22,509,946 5,627,486 0.77 0.549
Seeds 29 291,826,850 10,062,995 1.37 0.107
Error 232 1,706,503,430 7,355,618
Total 269 2,100,267,145
Pl 2 27,130,907 13,565,453 0.92 0.400
Pa 2 36,203,923 18,101,961 1.23 0.295
10 Pl*Pa 4 88,284,774 22,071,193 1.50 0.204
Seeds 29 531,114,905 18,314,307 1.24 0.192
Error 232 3,420,245,184 14,742,436
Total 269 4,102,979,692
Pl 2 148002875 74001438 4.68 0.010
Pa 2 47204008 23602004 1.49 0.227
11 Pl*Pa 4 119012484 29753121 1.88 0.115
Seeds 29 531110852 18314167 1.16 0.272
Error 232 3669965471 15818817
Total 269 4515295691

HAN1TATUAINITIHMBsNIWMNITaNY09ITN1T CS d1MSULUINIINITAINUAAINITIENDST

winganluudazladeraidnis €S dmsu 11 gy aziinnsantaangadfign (Anadeduyusiui

Weeiian) nnsminansenuladendn (Main effect plot) B99suanIReTEAUVBILAAE NI TITABIY

(%

3 561U (WNY X) AUAWNUTITIIMLAREY (WY y) dvSunsiuansansenurand msuisnis CS fu

11 TangUeymuanananin 12 fanw 17

Mean of total costs

202120

202100+

PI

Pa

202160

2021404

379200

Mean of total costs

15*%1600 25%960 40%600 0.10

0.25

0.40

PI

Pa

379500 4

379400+

3793004

N

3791004

379000+

e

i

15*%1600 25*960 40*600

0.10 025

0.40

A 12 wamansiinansznunanaestlady P uaz P, dwsulym 1 (nwdgne) wazdgm 2 (nwenn)



Mean of total costs

A 13 LAAINIINNANTENUNANTBIUITY Pl Way

Mean of total costs

A 14 wanansvinansenunanyestady Pl uay

Mean of total costs

PI Pa
303450
303400+
3033504
303300+
303250+
15%1600 25%960 40*600  0.10 0.25 0.40

PI Pa
489600 1
489550 1
489500 1 \\
480450
489400
15%1600 25%960 40%600 0.10 025  0.40

PI

Pa

416400
416300
416200
416100
416000

L

415900
4158004
415700+

415600

15*%1600 25%960 40%600

0.10

0.25

0.40

Mean of total costs

55

PI

Pa

303900 A

303800+

3037004

[}
[=}
s}
(=)
=
[=}

303500 A

3034001

3033004

—

15*1600 25%960 40*600

010 025

0.40

P, dmsullynn 3 (nnde) wazdaw 4 (nwean)

Mean of total costs

PI

Pa

408300

408200

408100

/

408000

407900 4

—

15%1600 25%960 40*600

0.10 0.25

0.40

P, dwsutlynn 5 (nnde) wazlam 6 (nwaan)

Mean of total costs

PI

Pa

585400 4
5853004
5852004
5851004
585000

T

584900
584800
584700
584600 1

AN

15*%1600 25*960 40*600

0.10 0.25

0.40

A 15 wanansunansznunanestlady P uag P, dwsulym 7 (nwdne) wezdym 8 (nwwnn)

Mean of total costs

PI

Pa

6107504

61035004

610250

610000+

609750

609500

15%1600 25%960 40*600

0.10

0.25

Mean of total cost

PI

Pa

559000
558900+
5588004
558700+

y

558600+
558500+
558400+
5583004
558200+
558100+

15*%1600 25*960 40%600

0.10 0.25

0.40

A 16 wanansiansznuranuelade Pl uaz P, dmsutym 9 (hnee) wazdann 10 (A nwwln)
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PI Pa

0482504
948000+
0477504

9475004
947250+
947000+
9467504 \

946500

Mean of total costs

15*%1600 25*960 40*600  0.10 0.25 0.40

A 17 wansnsvliansenunanyelady Pl wag P, dmsulyn 11

wansasUAmImeiivngauanam 12 fanm 17 asdiildissiuvestadefimngauds
wilfiAadunusniaundadesiignd miuiznig s fudguiia 11 landdu Jads P, ms
Aualugag 0.1 83 0.4 sz man15ATeiANNLUTUTIN wandliiiuinmnaseivresade P,
wansinawuubiitdedAgmnisadatuynlanddeym Tuvfitase P dwsuland 1, 2,6, 8, 9, uay 11
funansieneinuulsus uandidfuidugssduresiiade A uanduuuiidfoddynis
Ghlg

Fedurmnafmesimunzauiiandniuitng Cs fusznousedade Al uaz P 11 Tandds
QNANMIAILITNITRNUUUNITNARBILAENITIATILVINNATA (Experimental design and analysis:
EDA) Ifgnagusisnsne 5 (aedunide) eeslsAmuamsifinesianzauvesuisiadenagnasy
vareen udlunafidusazdateasdondonamuanianfiomisddmivinldldlunis
naaowseulUldselU (Selected appropriate parameter settings for CS) %ﬂmﬁgﬂagﬂﬁx‘imiw 5

(PoduIY)

1579 5 kansasuANn e simgandmiuisnis €S dmsu 11 lang

Problems Concluded appropriate parameter settings for Selected appropriate parameter

pI Pa Pl Pa
1 15%1600 0.1,0.25,0.4 15*1600 0.25
2 15%1600 0.1,0.25,0.4 15*1600 0.10
3 15%1600, 25*960, 40*600 0.1,0.25,04 25%960 0.40
4 15%1600, 25*960, 40*600 0.1,0.25,04 15%1600 0.25
5 15%1600, 25*960, 40*600 0.1,0.25,04 25%960 0.10
6 25*960, 40*600 0.1,0.25,0.4 25*960 0.25
7 15%1600, 25%960, 40%600 0.1,0.25,0.4 40*600 0.10
8 40*600 0.1,0.25,0.4 40*600 0.40
9 25%960, 40*600 0.1,0.25,04 40*600 0.25
10 15%1600, 25*960, 40*600 0.1,0.25,04 25%960 0.40
11 25%960, 40*600 0.1,0.25,0.4 25%960 0.40
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4.2 NanN1SNNaBIN 2: N15USUABUNSZUIUN1599n15 CS

nmsnaaesilagneanuuuiienageunazilseuliieulseansnmuesisnis CS nilnmsusuaeu
nN3¥UIUN1S (Process modification) IneUseyndldnisiiuduwuy Lévy flights (CSLF) wagdsn1s CS

lngUszenaldnisiAuguuiuy Gaussian random walks (CSGRW) lnevisaesisnisagldamisiives

aa

MNRU@UNLAINNITODALUUNITNABDILALNITILATIZNLTIADA (Experimental design and
analysis) 9nnsnaaeaksniunnlandtdaym dwmsunisiSeuiieudssdnsninvedisniseaneg Tums
A1 EUANTER UL LT ARAUUTINAINNTIENSNEINTNNSANYIvRIMINeNdetaeian

Aulanddgyminlaaiislidouau 11 landdy Wanadinis1e 2) aggninsieilag Afdesian

1
I oA

(Minimum) A19aniga (Maximum) ALade (Average) A9 UNNIAT31Y (Standard deviation:
SD) wazlianedeltlunisuseaaa (Average execution time: Time) Feiinuaeiduundl (Minutes)

& av v a ¢ ! v ° a ¢ a a an Ql'
wanNieY T NHAINNTIATIEN ttest wazan P value lagninaniiasigiiussdnsninuesisnisi
ladnausdnmenin1sg 6 laglunisneassiilanvuadiuiunsaumaneulunsazlanddgymay
gniuruali 24,000 ARBU F9919 2 I5NTLIIININAARITITINIY 30 ATIMEAIIEaYluNTEY
Auanasnulunnazlanddgui desduduaunssunamualunismaassiniun 11 landagwindu
660 (2*11*30) Su

HANIINARBIAIAITI 6 WU T8N CSLF anunsadanissasulaeiidunusiuady (Average)

a

Weun3138n15 CSGRW hauyntanddaym Tuvaeiin1s CSGRW azanunsndnnisisaeulanadnsy
ANd138n13 CSLF anedeymil 9 dmsudidesdian (Minimum) NlAa1n38n1s CSLF aghndien
AINa1INAINIBNS CSGRW Tuurslandlgm uenaintimandeauuninsgiu (SD) wasalglu

A av v 1 aa )~ i o | Y] | a
ﬂ'ﬁﬂﬁglnaﬂ\lalaﬂaEJV]VLWQ']ﬂWQﬁ@ﬂ?ﬁﬂqﬁ"\]gllﬁnr]ﬂJLLG]ﬂG]'Nﬂulelll']ﬂUﬂ (11U8: UIN)

I a

NANISNARDILUAIUNITIASIZUNNEDANUI USEANTNINU9935n1S CSLF wagisnis CSGRW

' '
aa LY S

zuanasiuegslidedAneifnseaunu@etui 95 WosuURINAITNAGOULU U t-test (P
value < 0.05) Tuland¥aymd 1 Yoy 4 wazlymiit 7 Feazmuldindutgmneglurwadnuay

YUIANAIIUL AstuFeaunsaaguladn Useansaineesidnis CSLF uayitn1s CSGRW uaneis

o w a

fuegraliifeddgynsadaneunnlandamilaenylutymuuaivg

& a a a a v & LY 1o Aaa & la v
UDNAITINUY Naﬂ’]iL‘UiU‘ULV]UUﬂigﬁmﬁﬂq‘WIu@"IUﬂQ’]Mlﬁ'ﬂlﬁniaL?J']ﬁﬂ']m@UW@V]q@@ﬂLLWLiN@U

Y

Y 1

n1sUszUnana (Best so far solution: BSF) 48935015 CSLF karisni1s CSGRW andiag1stulang

[
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AN 6 WARIHNANISHUSEUNEUSENINGISNTS CSLF hay CSGRW

Best so far solutions t-test
Prob. Methods Time T
Minimum Maximum Average SD P values
(minutes)  values
CSGRW 202,054.50 202,272.50 202,147.83 54.10 2.44
1 3.11 0.003
CSLF 201,998.00 202,225.00 202,103.62 56.02 2.53
CSGRW 378,485.50 379,806.00 379,039.18 341.62 10.05
2 1.26 0.211
CSLF 377,927.25 379,754.50 378,919.28 390.96 9.86
CSGRW 301,028.25 305,228.75 303,160.19 1,052.36 21.79
3 0.06 0.956
CSLF 301,125.25 305,010.75 303,146.30 866.33 24.49
CSGRW 299,674.50 308,693.75 304,171.83  2,322.36 12.16
q 2.05 0.045
CSLF 300,210.00 307,450.25 302,937.73  2,337.29 13.25
CSGRW 488,054.75 490,183.00 489,362.45 534.46 25.99
5 0.62 0.540
CSLF 488,141.50 490,141.00 489,286.09 416.09 28.24
CSGRW 406,083.25 410,164.75 407,872.34 910.48 30.06
6 0.46 0.645
CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00
CSGRW 412,589.00 418,821.25 416,126.10 1,488.51 21.85
7 2.96 0.005
CSLF 412,089.00 418,062.50 414,820.20 1,901.27 23.14
CSGRW 581,132.00 587,924.25 584,719.17 1,569.00 58.34
8 0.66 0.514
CSLF 582,654.75 587,650.00 584,485.26 1,155.05 57.98
CSGRW 604,809.25 612,667.00 609,530.52 2,146.03 32.66
9 -0.12 0.902
CSLF 602,771.25 615,903.25 609,619.51 3,317.79 40.79
CSGRW 551,052.50 565,639.25 558,339.95 3,861.85 37.06
10 1.49 0.143
CSLF 546,314.50 563,997.25 556,667.98 4,798.57 37.73
CSGRW 932,438.50 955,456.00 947,073.63  4,194.05 141.78
11 1.15 0.256
CSLF 939,531.25 955,056.25 945,859.18 4,000.94 145.29

4.3 uan1mMAaaei 3: N15UFUUTIUEANTNINITNT CS LUURENNEY

& v A o a a a a aa av Yo
nsnaassillagnesnuuuiiveyinimaaeuiazilseuiisuUssansameedisnig CSLF Nlasy
n15USuUIUTEANS A ML UURaNKEY (Hybridisation) iu38n13 Local search (LS) #3505 LS Tu
n1snnansdazusznauluaiy 2 35n15A8 Insertion operator (I0) Wag Exchange operator (EQ)
U gj dy aaa gj aa o U -] a = U 6
aeulunisnaassliaziitsnisnanun 3 I8n1sdmsuiinisisuiisvluwnazlanddgynn

Usznaumie 35015 CSLF 35015 CSLF+IO kagdsn1s CSLF+EO
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965000
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960000
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' '
A T

11 Tand Uanafansnd 2) wagdzgniiasieilay Andesiian (Minimum) Afiunnitgn (Maximum)

=

ALRAY (Average) ANTBIUUNIATEIY (SD) waziianadedldlunisuszuaa (Time) Jaiinheoduund

EN

(Minutes) @9ud1 T #Al§291nn1531A518%#28738015 Tukey uazAn P value 9xgniiun3inse
UszAvismmsEninddsnsuuuiuiuasnsilgsunsnauraudnde venaniluudaslandaymay
AUuASIUIUNITAUNIAIReUlIT 24,000 Ameunazldisn1sdadisusiedvinuy LUPD 1ng
Ansfinedeneg Afmueliiuisnis CSLF thanainansia 5 audisu Sdlundnduita 3 35mses
gavinsmeaestnsuau 30 adsdeamanaarlunsdufiuandnsiilusteslangtym dafusiuoy

Y

ASSUNIMUALUNITNAADIUNIAUA 11 TANGALIAU 990 (3*11*30) U WAAIKNARIANNATTIE 7

A9 7 ERINANTSIUTBUMEUITNS CSLF NauNaunuiIsnis LS

Best so far solutions Tukey’s method
Prob. Methods Time T P
Minimum Maximum Average SD
(minutes) values  values
CSLF 201,998.00 202,225.00 202,103.62 56.02 2.38
1 CSLF+IO 202,032.50 202,202.00 202,111.42 41.21 1.86 -0.70 0.767
CSLF+EO 201,878.50 201,999.50 201,933.75 28.73 1.33 15.14 0.000
CSLF 377,927.25 379,754.50 378,919.28 390.96 13.34
2 CSLF+IO 374,599.50 379,625.25 378,993.15 869.67 7.93 -0.52 0.864

CSLF+EO 378,097.25 378,759.75 378,578.39 128.49 4.70 2.38 0.051

CSLF 301,125.25 305,010.75 303,146.30 866.33 20.62

3 CSLF+IO 301,457.25 305,675.75 303,555.73 875.72 16.05 -2.01 0.116

CSLF+EO 301,621.50 304,104.00 302,957.78 594.69 9.64 0.93 0.626
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Best so far solutions

Tukey’s method

Prob. Methods Time T P
Minimum Maximum Average SD

(minutes) values  values

CSLF 300,210.00 307,450.25 302,937.73  2,337.29  14.07
a4 CSLF+IO 300,121.50 303,155.00 301,810.26 602.98 8.90 3.11 0.007
CSLF+EO 299,378.25  300,493.00 299,818.81  283.40 5.71 8.60 0.000

CSLF 488,141.50 490,141.00 489,286.09 416.09 19.76
5 CSLF+IO 488,741.00 490,562.50 489,143.93 402.93 16.28 1.30 0.399
CSLF+EO 487,315.00 489,495.25 488,342.48 450.17 9.23 8.63 0.000

CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00
6 CSLF+IO 406,073.00 409,059.75 407,526.06 692.80 25.65 1.13 0.497
CSLF+EO 405,637.75  408,083.75  407,048.07  657.90 15.39 3.46 0.002

CSLF 412,089.00 418,062.50 414,820.20 1,901.27 23.14
7 CSLF+IO 410,564.75 413,794.75 412,277.72 799.64 15.75 8.11 0.000
CSLF+EO 408,279.50 410,263.25 409,320.88 409.69 9.07 17.54 0.000

CSLF 582,654.75 587,650.00 584,485.26  1,155.05  57.98
8 CSLF+IO 581,817.00 585,534.50 583,827.22 765.29 31.10 2.93 0.012
CSLF+EO 581,335.25  583,897.00 582,670.56  597.82 18.75 8.07 0.000

CSLF 602,771.25 615,903.25 609,619.51 3,317.79 40.79
9 CSLF+IO 602,841.25 607,679.50 605,291.43  1,161.05  24.98 7.95 0.000
CSLF+EO 598,125.75 602,827.50 600,343.48 988.88 16.07 17.04 0.000

CSLF 546,314.50 563,997.25 556,667.98  4,798.57  37.73
10 CSLF+IO 547,759.50 553,854.50 550,632.50 1,495.93 33.62 7.93 0.000
CSLF+EO 540,221.00  543,150.50  541,621.70  913.53 24.64 19.76 0.000

CSLF 939,531.25 955,056.25 945,859.18  4,000.94  145.29
11 CSLF+IO 926,254.75 933,329.00 930,400.41  1,874.13  61.96 21.46 0.000
CSLF+EO 909,172.75 917,453.00 914,026.72  1,954.70 36.86 44.20 0.000

HAN1TNAARIAEETUIINATIT 7 WU 38N15 CSLF+EO wilusednsnnlunisdnaisiaseu

m3eaeUlagdlAuYUTINREETYNINTENS CSLF+O uagdsn1s CSLF Tunnlanddgmuagldinanly
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MIsE U NaRulaedduuTIneisdosNananinisn1s CSLF wuumilulunnlanddymn wiiin

75713 CSLF+10 agiiusz@nsnmiinesninisnis CSLF Tulanddgmn 1 Jayunn 2 wazdaynn 3 weilu

Yaymn 4 Selgm 11 Fadulymauianarsllaufswuialngtuisnis CSLF+I0 azduszansang

ANI18N15 CSLF wenanda1 Minimum @1 Maximum wazeAlesuuansgiu (SD) Nlaanisnis
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Abstract: University course timetabling problem (UCTP) arises every academic year and is solved by
academic staff with/without course timetabling tool. A feasible timetable must satisfy hard constraints.
A Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) tool has been developed for
minimising the total university operating costs. The HSCST tool was applied to solve eleven-size course
timetabling problems of Naresuan University. The performance improvements of Cuckoo Search (CS)
algorithm embedded within the proposed tool were demonstrated using three strategies: parameter
setting approaches (static and adaptive); movement strategies (Lévy Flights and Gaussian Random
Walks); and local search hybridisation techniques. Sequential computational experiments were designed
and conducted to investigate the efficiency of three proposed strategies. The statistical analysis on the
computational results suggested that the proposed algorithms significantly outperformed the
conventional algorithms by nine out of eleven (or 81.8%) datasets. The proposed methods also
outperformed Particle Swarm Optimisation in term of solution quality and their convergence speeds.

Keywords: course timetabling; cuckoo search; Levy flight; experimental design; self adaptive;
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1. Introduction

Educational timetabling problem faced by schools, colleges, or universities is involved a set of
events (e.g. courses or examinations) that must be appropriately assigned into a certain number of
classrooms and timeslots subject to set of constraints (Burke et al., 2007). That problem arises every
academic year and is solved by academic staff either with or without timetabling program (Thepphakorn
et al., 2015). University course timetabling problem (UCTP) is one of the most challenging scheduling
problems due to its complexity and constraints (Jat and Yang, 2011a). The UCTP is well known to be a
non-deterministic polynomial (NP) hard problem, which means that the computational time required to
find the solution increases exponentially with problem size (Pongcharoen et al., 2008). Automated
timetabling tools are more desirable approach especially for solving very large problem size.

There has been a series of comprehensive literature surveys/review on Cuckoo Search (CS)
(Abdel-Basset et al., 2018; Fister Jr et al., 2013; Mohamad et al., 2014; Shehab et al., 2017; Yang and
Deb, 2014) and its modifications (Chiroma et al., 2017). Fister Jr et al. (2013) have surveyed 147 CS-
related articles indexed in international academic databases (e.g. Google Scholar, Scopus and Web of
Science). Mohamad et al. (2014) have reported a literature review of 35 articles related to the CS
algorithm in terms of its applications and its performance comparison with other methods. Yang and Deb
(2014) have reviewed 46 articles related to the fundamental idea of CS, its applications and search
mechanisms. Shehab et al. (2017) have studied 194 articles and described comprehensive and exhaustive
overview of the CS algorithm, its variants, application area and hybridisation. Chiroma et al. (2017) have



conducted a comprehensive literature survey on CS’s relevant papers across eleven international
academic databases (e.g. Scopus, IEEE Xplore, SpringerLink, etc.) and found on 76 articles. Abdel-
Basset et al. (2018) have researched 115 articles and presented the Cuckoo Optimisation Algorithm main
structure, variants, and their applications. Salgotra et al. (2018) have conducted a comprehensive
literature survey and concluded that CS has focused only on its application in different domains and very
limited work has been done to improve its performance. In this work, an update on the comprehensive
literature review focused on the application of metaheuristics for solving course timetabling problems has
been newly conducted and reported in the next section. According to the series of comprehensive reviews
above, there is no report on the applications of CS considering movement strategies, parameter setting
approaches, and its hybridisations for solving real-world university course timetabling problems.

Strategies for improving the metaheuristics performance can be classified as follows: (i) optimal
parameter settings, e.g., static parameter approach for GA (Phuc et al., 2011), adaptive parameter
approach in local search (Lindahl et al., 2018; Soria-Alcaraz et al., 2017a; Tarawneh and Ayob, 2013);
(it) movement strategies, e.g., random walk in CS (Teoh et al., 2014), low-level heuristic in neighbour
search (Pillay and Ozcan, 2017), neighbourhood in local search (Kiefer et al., 2017); and (iii)
hybridisation, e.g., GA (Pillay and Ozcan, 2017), Local Search (Nothegger et al., 2012). Elaborations of
these strategies are sequentially presented in the following paragraphs.

According to the difference of problem domains, parameters play a significant role for the
algorithm’s performance (Chiroma et al., 2017). There are at least two approaches dealing with parameter
setting: tuning or control (Talbi, 2009). For tuning approach (static parameter), the parameter values of
the algorithms are fixed from the beginning of the computational run to the end (Eiben and Smit, 2011).
For seeking the optimal parameter setting, the tuning approach is usually done by experimenting with
different values and selecting the ones that give the best results on the test problems. Considering the
number of parameters and its possible value settings, this approach is very time-consuming (Eiben et al.,
2007). To overcome these difficulties, control approach allows the parameter values to change using
adaptive control mechanism during the computational run (Eiben et al., 2007). However, a single work
has been done on a particular problem domain to test which set of parameters gives the best performance
of CS algorithm (Salgotra et al., 2018). However, there has been no report on the investigation of control
approach for the CS parameters using the real-world university course timetabling problem.

Movement strategy has a direct impact on the balance of exploration and exploitation mechanisms
(Yang, 2014). Large step-size movement strategy enhances the exploration mechanism whilst the
exploitation mechanism would relatively prefer small step-size movement strategy. Step size is
commonly achieved via random numbers drawn from distributions e.g. Uniform distribution, Gaussian or
Normal distribution, Lévy distribution (Yang, 2014). For example, Lévy flight has been embedded within
the CS algorithms to generate step size and to search the large-scale solution space effectively for
standard benchmark problems (Salgotra et al. (2018). Zheng and Zhou (2012) have proposed that Gauss
distribution in CS algorithm outperforms the conventional CS for solving standard test functions and
engineering design optimisation problems. However, there has been no report on the comparative study
of step-size movement strategies for solving university course timetabling problems.

Hybridisation strategy between two or more algorithms has been widely accepted in that it
eliminates their limitations and increase their strengths for obtaining a better solution (Fong et al., 2015).
CS has a simple structure (Salgotra et al., 2018) and a few number of parameters to be tuned (Chiroma et
al., 2017; Khoja et al., 2018), but it is slow convergence (Rakhshani et al., 2016; Zhu and Wang, 2017),
and poor balance between exploration and exploitation (Rakhshani and Rahati, 2017), and lacks of
problem-specific knowledge (Mlakar et al., 2016). To overcome these weaknesses, the CS can be
hybridised in order to: (i) improve its performances, i.e., faster convergence to the optimal solution over a
shorter period of time (Chiroma et al., 2017); (ii) balance between exploration and exploitation of CS
using local exploitation ability because CS is very efficient in global exploration ability (Salgotra et al.,



2018); and (i) increase problem-specific knowledge to CS incorporating with local search approaches
(Mlakar et al., 2016).

The objectives of this paper were to: (i) describe the development of Hybrid Self-adaptive Cuckoo
Search based Timetabling (HSCST) tool for minimising total operating costs using eleven datasets
obtained from the Faculty of Engineering, Naresuan University; (ii) conduct a comprehensive literature
survey on the application of metaheuristics for solving course timetabling problems; (iii) demonstrate the
use of experimental design and analysis (EDA) for identifying the appropriate settings of CS parameters;
(iv) improve CS performance by implementing three strategies: parameter tuning and control; movement
strategies (Lévy flight and Gaussian random walk); and hybridisation with Local Search; and (v) compare
the performance of the proposed methods with other methods.

The next section of this paper briefly explains the CS’s procedures, CS’s terminology, CS’s
advantages and disadvantages, and a brief literature survey. Section Il describes the university course
timetabling based on the total operating costs followed by the architectural design of the HSCST tool.
Section V presents the experimental design and analysis, comparative results before conclusions. The
graphical outline of the article is given in Figure 1.
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Figure 1 Graphical outline of this article

2. Cuckoo Search algorithm and literature survey

Metaheuristics are a class of approximation methods. They have been widely used to solve large-
scale combinatorial optimisation problems within acceptable computational time, but they do not
guarantee optimum solutions (Lewis, 2008). Metaheuristics have been investigated and found to be very
successful in solving a variety of timetabling problems (Burke et al., 2007) such as Genetic Algorithm
(GA) (Pongcharoen et al., 2008), Simulated Annealing (SA) (Kostuch, 2005), Tabu Search (TS) (LU and
Hao, 2010), Variable Neighbourhood Search (VNS) (Abdullah et al., 2005), Particle Swarm Optimisation
(PSO) (Chen and Shih, 2013), Artificial Immune System (AIS) (He et al., 2005), Ant Colony
Optimisation (ACO) (Thepphakorn et al., 2014), Harmony Search (HS) (Al-Betar and Khader, 2012),
Acrtificial Bee Colony (ABC) algorithm (Junaedi and Maulidevi, 2011), and etc.



Cuckoo Search (CS) is one of the nature-inspired metaheuristic algorithms (Yang, 2010), inspired
by the obligate brood parasitism of some cuckoo species that lay their eggs in the nests of other host birds
(Li and Yin, 2015). Each egg in a host nest represents a solution, and a cuckoo egg represents a new
solution (Yang, 2010). The aim is to create the new and potentially better solutions (cuckoo egg) to
replace the worse solutions (host egg) in the host nests (Valian et al., 2013). There are mainly three
principle rules for simple CS algorithm: (i) each cuckoo lays one egg at a time, and dumps its egg in a
randomly chosen nest (Yang and Deb, 2013); (ii) the best nests with high quality eggs will be maintained
to the next generation (Yang and Deb, 2013); and (iii) the number of available host nests is fixed, and the
egg laid by a cuckoo is discovered by the host bird with a probability of alien egg discovery (P,), in this
case, the host bird can either get rid of the laid egg or abandon the nest and build a new nest (Yang and
Deb, 2013). The pseudo code of conventional CS procedure based on these principle rules is shown in
Figure 2.

Begin Objective function F(x), X = (X3, X2, . . ., Xq)

Generate initial populationx; (i=1, 2, ..., P)

While (t < Maximum Iteration: 1) or (stop criterion)
Get a cuckoo (say, x;) randomly
Generate a solution x; by Lévy flights
Evaluate quality/fitness of new solution x; or F(x;)
Randomly select a nest within the population (say, X;) and evaluate its fitness F(x;)
If F(xi) > F(X;), then replace x; by the new solution x;
If rand < P, then a current solution (x;) is abandoned and replaced by a new solution
Keep best solutions (or nest with quality solutions)
Rank the solutions and find the current best solution

End while

Post-process results and visualisation

End

Figure 2 Pseudo code of the CS via Lévy flights (Yang and Deb, 2010)

In initial procedures, objective function F(x) is specified. Then, each solution x; (i = ,P)is
generated randomly and evaluated for its quality or fitness before identifying the current best solutlon
When generating new solutions x{®*? for a cuckoo i, the CS via Lévy flight (CSLF) is performed by using
equation (1) (Yang and Deb, 2013).

X = xO 4 g ®Lévy () (1)

Where x¥is the current solution at iteration t. The product @ means entry wise multiplication that
is similar to those used in PSO (Yang, 2010). Where « > 0 is the step size which is related to the scales of
the problem of interest (Yang and Deb, 2013). In order to accommodate the difference between solution
quality, the o can be defined as equation (2) (Yang and Deb, 2013).

o = oty (X — x) )

Where aq is a constant value between 0.01-0.001 recommended by Yang (2010), whereas the term
in the bracket corresponds to the randomly solution difference between x; and x; (Yang and Deb, 2013).
The Lévy (p) is random walks, in which random step lengths are drawn from a Lévy distribution in
equation (3) (Yang and Deb, 2013).

Lévy ~u =t/ (0<B<2) (3)

The equation has an infinite variance with an infinite mean, in which the consecutive steps of a
cuckoo essentially form a random walk process with obeys a power-law step-length distribution with a



heavy tail (Yang and Deb, 2013). Therefore, the generation of step size s samples can be summarised by
equation (4) (Yang and Deb, 2013).

s=a,(xV —x{") @ Lévy (§) ~0.01 ‘ ?/ﬂ (x —x) (4)
v

Where u and v are drawn from Normal distributions following in equations (5) and (6) (YYang and
Deb, 2013).

u~ N(0,62),v~ N(0,02) ®)
_ [ raspsingzpr) | o, -1 ©)
Yor[a+ p)y12]p2tr

Where T is the standard Gamma function (Yang and Deb, 2013). In case of CS via Gaussian
random walks (CSGRW), a new solution x"*? generated from a cuckoo i is performed by using equation
(7) (Yang and Deb, 2010).

M =xU rade, (7

Where ¢ obeys a Gaussian distribution, this becomes a standard random walk (Yang and Deb,
2010). The a is defined as equation (2) (Yang and Deb, 2013). After preforming the Lévy flight or
Gaussian random walks, the fitness value of new solution x; or F(x;) is evaluated. A nest or solution
among current population is randomly selected (called solution X;) in order to compare the solution
quality with a new solution X;. The new solution x; will be accepted and replaced to solution x; if the F(x;)
is better than the F(x;).

Next step, the worse nests (alien egg) will be detected and abandoned according to a probability
Pa €[0, 1] (Yang and Deb, 2013). New nests will be built at new locations by using random permutation
or random walks according to the similarity/difference to the host eggs (Yang and Deb, 2013). High
probability of P, increases the diversification mechanism whilst the low probability endorses the
intensification mechanism (Li and Yin, 2015). After that, the population will be sorted according to the
solution quality before identifying the best so far solution. These processes are repeated until getting to
the maximum iteration (I) or stop criterion.

Terminology always plays an important role for scientists or professionals to express,
communicate or transfer their knowledge and specialised texts for avoiding simple misunderstandings or
errors. Terminology of CS compared with one of the most classical metaheuristic terminology, called
Genetic Algorithm (GA), is shown in Table 1.

Table 1 Terminology comparison between GA and CS

General Terminology Genetic Algorithm (GA) Cuckoo Search (CS)
Decision variable Gens in a Chromosome Cuckoo eggs in a host nest
Solution Chromosome An egg in a host nest
Old solution Parent Chromosome An egg in a host nest
New solution Child Chromosome Cuckoo’s egg laid in a host nest
Best solution Chromosome having highest fitness value |The nest having highest quality egg
Fitness function Survival fitness of a chromosome Survival of cuckoo eggs in the host nest
Initial solution Initial random chromosome Initial random host nest
Selection Roulette Wheel Selection Ranking from the best to worst nests
Solution improving process  |Crossover and Mutation Processes Random Walks and generating a new nest
Intensification Crossover Operation Movement strategies or Random Walks
Diversification Mutation Operation Abandon the nest and build a new nest
Proportional selection Probability of Crossover and Mutation Probability of alien egg discovery




It can be seen that both GA and CS have something in common but different in terminology. For
examples, a candidate solution in GA is called a chromosome whilst a cuckoo’s egg is called in CS. GA
has four parameters including population size, number of generations, probability of crossover, and
probability of mutation (Vitayasak and Pongcharoen, 2018; Vitayasak et al., 2017). CS has three
parameters including population size or host nests (P), maximum iteration (1), and probability of alien
egg discovery (P,) (Yang and Deb, 2010). According to Yang (2014), the population size and the
probability of alien egg discovery were suggested at 15-40 and 0.25, respectively. The maximum iteration
can be reasonably assigned according to the size of the problem considered as well as the availability of
computational time and resources.

A review on advantages and disadvantages of both CS and GA is concisely summarised in Table
2. Both methods employ the population-based mechanism for performing multiple directional search
(Thepphakorn et al., 2015; Yang, 2010).

Table 2 Advantages and disadvantages of GA and CS

Algorithms Advantages Disadvantages
Genetic - The performance and final result on time constraints and | - Tuning the specific parameters (Vitayasak
Algorithm | limited computer power (Karakati¢ and Podgorelec, 2015) | and Pongcharoen, 2018)
(GA) - Population based and perform multiple directional - Premature convergence (Pandey et al., 2014)
search (Thepphakorn et al., 2015) - Slow convergence rate and high
- Enhance convergence because of crossover operation computational cost (Patel et al., 2017)
and elitism (Yang, 2014)
Cuckoo - It can solve both continuous and combinatorial problem | - Slow convergence (Rakhshani et al., 2016;
Search domains (Yang et al., 2014). Zhu and Wang, 2017)
(CS) - It is a population-based algorithm (Yang, 2010). - Low precision (Zhao and Niu, 2017; Zhu and
- It uses some sort of elitism and/or selection similar to Wang, 2017)
that used in Harmony Search (Yang and Deb, 2010). - Premature convergence (Rakhshani and
- The randomisation in CS is more efficient as the step Rahati, 2017)
length is heavy-tailed, any large step is possible (Yang, - Poor balance between exploration and
2010). exploitation (Rakhshani and Rahati, 2017;
- Few number of parameters to be tuned (Chiroma et al., Salgotra et al., 2018)
2017; Khoja et al., 2018) - The performance of algorithm are based on
- It is potentially more generic to apply to more categories | difference parameter setting (Mlakar et al.,
of optimisation problems (Yang, 2010). 2016; Salgotra et al., 2018)
- Balance between local and global searching (Chiroma et | - Lack of problem-specific knowledge
al., 2017) (Mlakar et al., 2016)
- It has a simple structure (Salgotra et al., 2018)

A comprehensive literature survey on the applications of metaheuristics to solve the university
course timetabling problem (UCTP) was conducted on the ISI Web of Science and Scopus databases
covering the period from the past to September 2019. Using “course timetabl*” and “metaheuristic*” as
keywords. The survey found 81 papers on the Scopus database and 34 papers on the ISI Web of Science
database. However, some articles were duplicated; some were not research articles e.g. editorial
messages; and some papers were not related with university timetabling. After screening and filtering,
there were 75 papers that applied metaheuristics to solve UCTP as shown in Table 3. Various
conventional metaheuristics have been adopted, e.g., Genetic Algorithm (GA), Memetic Algorithm
(MA), Graph Heuristics, Ant Colony Optimisation (ACO), Artificial Bee Colony (ABC), Variable
Neighbourhood Search (VNS), Simulated Annealing (SA), Harmony Search (HS), Tabu Search (TS),
Scatter Search (SS), and etc.



Table 3 Comprehensive literature review on the applications of metaheuristics for solving university course timetabling problems

Performance Improvement Strategies

Course
timetabling | Parameter Movement Strategies
setting
g 2 3
Authors Methods A % = = 3|3 In case of hybridisation
THEEEREEE Z|2 £ ol o5 (hybridised with)
— 2 [ > = .2
HHEEEEHEHEEEHEHEREHE
e REIHE RS
Ola|loa||dh||O|a|a|lo|a|S|o|Z2|w|a|o
Mazlan et al. (2019) Ant Colony Optimisation (ACO) v v
\Wahid et al. (2019) Graph Heuristics v
Pillay and Ozcan (2019) Genetic Programming (GP), Hyper-heuristics, GA | v/
Jafarinejad et al. (2019) Artificial Neural Networks (ANN) v
Mauritsius et al. (2018) Local Search (LS) VIV v
Matias et al. (2018) Genetic Algorithms (GA) v Vv Guided Search
dunn et al. (2018) Genetic Algorithms (GA) v vi|v
Lindahl et al. (2018) Neighbourhood Search v v v v Integer Programming
Zhang et al. (2017) Eco-geography Based Optimisation (EBO) v v
Soria-Alcaraz et al. (2017b) Hyper-heuristics, Neighbourhood Search viv v v
Soria-Alcaraz et al. (2017a) Hyper-heuristics, Iterated Local Search (ILS) V|V Vv v v
Junn et al. (2017) Great Deluge (GD) algorithm, SA v v
Ortiz-Aguilar et al. (2017) Iterated Local Search (ILS), GA v VI ivi|v
Obit et al. (2017b) GD, Constraint Programming (CP) Algorithm v v GD, Constraint Programming (CP)
Obit et al. (2017a) Hyper-heuristics v v v Particle Swarm Optimisation (PSO)
Pillay and Ozcan (2017) Hyper-heuristics v v v Viv]v GA, Genetic Programming (GP)
Kiefer et al. (2017) Adaptive Large Neighbourhood Search v v v v
\Wahid and Hussin (2016b) Graph Heuristics v v v
\Wahid and Hussin (2016a) Graph Heuristics v v v
Bellio et al. (2016) Simulated Annealing (SA) v v v v
Badoni and Gupta (2016) Ant Colony Optimisation (ACO) viv v v
Crawford et al. (2015) Ant Colony Optimisation (ACO) v v
Lewis and Thompson (2015) Neighbourhood Search v v v v
Fong et al. (2015) Atrtificial Bee Colony (ABC) ViV v v Great Deluge (GD) Algorithm
Dun et al. (2014) Simulated Annealing (SA) v Vivi|v Genetic Algorithms (GA)
[Teoh et al. (2014) GA, CS, Cuckoo Optimisation Algorithm (COA) ViV V|V ViV v
Soria-Alcaraz et al. (2014) Hyper-heuristics, 1LS viv v v v
Jaradat et al. (2014) Scatter Search (SS) vV v |V
Bolaji et al. (2014) Artificial Bee Colony (ABC) V|V v v Hill Climbing
IAbuhamdah et al. (2014) Gravitational Emulation Local Search (GELS) V|V v v LS, Collision and Descent Algorithm
\Yassin et al. (2013) Tabu Search (TS) v |V v v Great Deluge (GD) Algorithm
[Tarawneh and Ayob (2013) Simulated Annealing (SA) v v V|V v
Soria-Alcaraz Jorge et al. (2013) Two-phase Algorithm v
Soria-Alcaraz et al. (2013) Two-phase Algorithm v
Mansour and El-Jazzar (2013) SA, Scatter Search (SS), Tuning Heuristic v v v Local Search (LS)
Jaradat and Ayob (2013) Big Bang-Big Crunch v |V v v
Bolaji et al. (2013) Artificial Bee Colony (ABC) viv v
[Turabieh and El-Daoud (2012) Enhanced Great Deluge Algorithm v v
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Ozcan et al. (2012) Interleaved Constructive Memetic Algorithm V|V vV
Nothegger et al. (2012) Ant Colony Optimisation (ACO) ViV v v LS, Simulated Annealing (SA)
Karami and Hasanzadeh (2012) Genetic Algorithms (GA) v IV ViV Hill Climbing
IAlirezaei et al. (2012) Particle Swarm Optimisation (PSO) v v Local Search (LS)
Lewis (2012) Neighbourhood Search VIV v
Geiger (2012) Threshold Accepting Algorithm v v v v
Ceschia et al. (2012) Simulated Annealing (SA) viv v v
|Al-Betar et al. (2012) Harmony Search (HS) viv v Hill Climbing, PSO
\Al-Betar and Khader (2012) Harmony Search (HS) viv v v
\Abdullah et al. (2012) Electromagnetic-like Mechanism Vi ivi]v v Great Deluge Algorithm, TS
Lu et al. (2011) LS, ILS,TS, Adaptive Tabu Search v v v
La'aro Bolaji et al. (2011) Atrtificial Bee Colony (ABC) v v v Neighbourhood Search
Jula and Naseri (2011) Memetic Algorithm (MA) v viv
Joudaki et al. (2011) Memetic Algorithm (MA) viv ViV Simulated Annealing (SA)
Jat and Yang (2011b) Genetic Algorithms (GA) VIV v VIV Guided-search GA, TS
Jaradat and Ayob (2011) Scatter Search V|V v Vv Iterated Local Search (ILS)
Phuc et al. (2011) Genetic Algorithms (GA) V|V Viv|v Bee Algorithm
Nguyen et al. (2011) Variable Neighbourhood Search v v|v v
Khang et al. (2011) Bee Algorithm ViV v
Budiono and Wong (2011) Memetic Algorithm (MA) ViV v |v
Jaradat and Ayob (2010) Elitist Ant System (EAS) Vv v v Iterated Local Search (ILS)
Nguyen et al. (2010) Tabu Search (TS) v v
IDino Matijas et al. (2010) Ant Colony Optimisation (ACO) v v
Burke et al. (2010) Neighbourhood Search v v v v Integer Programming
De Causmaecker et al. (2009) Local Search (LS) v |V v
|Al-Betar et al. (2008) Harmony Search (HS) viv
Geiger (2008) Local Search (LS) v v v
Gunawan et al. (2008) Simulated Annealing (SA), TS v v Simulated Annealing (SA), TS
Mayer et al. (2008) Ant Colony Optimisation (ACO) ViV v
(Qarouni-Fard et al. (2008) Particle Swarm Optimisation (PSO) v|v v
Lewis et al. (2007) Grouping GA, SA, Heuristic Search v |V v Vivi]v
|Aladag and Hocaoglu (2007) Tabu Search (TS) v v
Chiarandini et al. (2006) Local Search (LS) vV v v SA, TS, Neighbourhood Search
Kostuch (2005) Simulated Annealing (SA) V|V v
He et al. (2005) CLONALG, Genetic Algorithms (GA) VI iviv|Vv vV
Burke et al. (2003) Great Deluge (GD) Algorithm v |V v
Rossi-Doria et al. (2003) Ant Colony Optimisation, GA, ILS, SA, TS v IV v Vi vi|v v
Socha et al. (2003) Ant Colony System, Max-Min Ant System V|V v Local Search (LS)
This Work CSLF, CSGRW, Adaptive Cuckoo Search VIvIvVIVIYVI|V|V v | LS, Insert and Exchange Operators
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From Table 3, there was only single published article from Teoh et al., (2014) that applied
conventional Cuckoo Search (CS) with static parameter setting to solve UCTP. No comparative study on
CS algorithm using either static or adaptive parameter setting approaches has been reported. There has
been no report on the movement strategies and hybridisation of CS for solving UCTP. Moreover, many
applications of metaheuristics to solve UCTP were considered and tested using the standard
benchmarking datasets, e.g. Curriculum-based course timetabling problems (CB-CTP) (Geiger, 2012; Lu
et al., 2011) and Post enrolment-based course timetabling problems (PE-CTP) (Lewis, 2012; Nothegger
et al., 2012; Rossi-Doria et al., 2003). However, the considerations on the real-world course timetabling
problems were marginal.

3. Real-world university course timetabling problem

In educational institutions, courses and examinations timetabling is a crucial activity, which
assigns the appropriate timeslots for students, lecturers, and classrooms according to all constraints
(Thepphakorn et al., 2014). Course timetabling constraints can generally be classified into two groups
including hard constraints (HCs) and soft constraints (SCs) (Lewis, 2008). Hard constraints are the most
important and must be satisfied to have a feasible timetable whereas soft constraints are more relaxed as
some violations are acceptable, although the number of violations should be minimised (Thepphakorn et
al., 2014).

There are two types of course timetabling datasets including benchmarking datasets and real-
world datasets. The International Timetabling Competition in 2002 (ITC2002) and the International
Timetabling Competition in 2007 (ITC2007) are popular benchmarking timetabling datasets, both of
which have been regularly solved and reported (Geiger, 2012; Lewis, 2012; Lu et al., 2011; Nothegger et
al., 2012). On another hand, many research works have also focused on the timetabling datasets obtained
from the real-life course timetabling problems (Junn et al., 2017; Matias et al., 2018; Mazlan et al., 2019;
Zhang et al., 2017). The major differences between the benchmarking and the real-world course
timetabling problems are the additional complexity imposed by course structures, the variety of
constraints, and the distributed responsibility for information needed to solve such problems at a
university-wide level (Rudova et al., 2011).

Most universities in the real-world usually have their special set of constraints to practise (Lewis
and Paechter, 2007). The complexity and difficulty to find a practical timetable become more relevance
when dealing with a large number and variety of constraints related to the large numbers of students,
lecturers, classrooms, and course structures as well as the special limitations arisen from university
regulations and/or lecturers’ requirements. For an example, the problem becomes more complex when
students attend courses from multiple academic units and the solutions depend on the availability of
students for the classes across multiple problems (Murray et al., 2006). Therefore, the complexity of the
course timetabling problems appearing on the benchmarking or artificial datasets was usually decreased
(Rudova et al., 2011). Some specific or local constraints will be cut off for more standard and easier
comparison, in which the constraints applicable to the complex real-world timetabling problems can be
reduced. Therefore, solving simplified problems or artificial datasets has rarely been extended to the
solution of actual university problems of any large scale (Rudova et al., 2011).

In this work, the real-world course timetabling data obtained from Naresuan University (NU) was
considered. The number of sub-course timetabling problems at NU generally depends on the number of
schools/faculties and departments. NU course timetabling becomes more complex when students attend
their courses arranged by different faculties or departments. NU course scheduling activities can be
considered into three levels including the central or university level, faculty level, and department level.
The central level is the most important level because it is related to many mandatory courses (such as
General Education subjects, etc.), enrolled by a large number of the first or second year students across
faculties or departments. All remaining courses are scheduled by faculties/departments staff.
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NU’s course structures are not only considered for individual events or courses, but they are also
determined for the parts or details for each course. For examples: (i) a course may require either a lecture
or laboratory or both, in which there may be similar or difference requirements such as available days and
periods, classroom facilities, building locations, and etc.; (ii) mandatory courses for most of student
programs in the first or second years across faculties or departments are very hard and complex to share a
limited resources; (iii) a course having a number of students attending more than the size of available
rooms (e.g. laboratory rooms) will be split into many sections, whereas the conflict constraints for
lecturers responsible for multiple sections are increased.

There has been a number of constraints found in the NU course scheduling activities such as: (i) a
course having multiple sections and teaching by the same lecturers must be assigned to be only one
section at the same time; (ii) some courses having multiple lecturers must be considered, because many
practical courses have high dangerous risks to students (e.g. industrial tools, chemical laboratory), the
problem complexity in case of multiple lectures is based upon the number of the lecturers in charge; (iii)
the specific requirements on a course taught by external or high-administrative-position lecturers must be
obeyed; and (iv) all lectures of a course requiring special classrooms (such as drawing room, chemical
laboratory, etc.) should be scheduled in double or triple consecutive periods. Therefore, all course
timetabling constraints considered in this research can be described into the HCs and SCs as follows:

Hard constraints (HCs) considered were:
HC; - all lectures/laboratories (elements) required for each course must be scheduled and assigned
to distinct periods;
HC, - students and lecturers can only attend one lecture at a time;
HC; - only one lecture can take place in a room at a given time;
HC, - lecturers and students must be available for a lecture to be scheduled,;
HC;s - all courses must be assigned into the classrooms according to their given requirements
including building location, room facilities, and room types; and
HC;s - all lectures within a course required consecutive periods must be obeyed.
In additions, soft constraints (SCs) considered were:
SC; - all courses should be scheduled in the appropriate classroom in order to avoid unnecessary
operating or renting costs (per hour);
SC, - the courses taught by the given lecturer(s) should be assigned into their available or
preferred day and periods in order to save the lecturing or hiring costs (per hour); and
SCj3 - the classrooms should be scheduled in consecutive working periods of a day in order to
reduce the number of times to clean or setup after using the rooms (per time).

HC,—HCs determine whether potential solutions are feasible. HC,—HC; are the fundamental
timetabling constraints (called “event-clash” or binary constraint) that can be found in almost all
university timetabling problems (Lewis, 2008). HC,—HCg are individual requirements and timetabling
policy found in the NU. SC,—SC3 are represented by an objective function in order to minimise the total
university operating costs (Z) determined from the constructed course timetables. Moreover, HCs and
SCs considered in this work can be formulated as a simple mathematical model shown in Eqg. (8) - Eq.
(10).

UEEDIIPIPRILIEDIIPIPN LTSS IPIPIP I I ®)

reR leL deD pePe teT seS deD pePe reR leL deD pePe

Subject to: HC, =0, vk, 9)
Xrldp’ ytsdp E{O,l}, Vr,VI,Vd,Vp,Vt,VS (10)
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Eq. (8) is the objective function that evaluated the total university operating costs (currency unit:
Thai Baht) consisting of three components. The first one determines the operating costs generated from
classrooms used (SC;). The next one considers the hiring cost calculated from lecturers (SC,). The last
one is to calculate the setup or cleaning costs after classrooms used (SC3). Where r, 1, d, p, t, and s are the
index of classrooms, room types (such as lecture room, laboratory), days per week, periods per day,
teachers, and curricula whereas R, L, D, Pe, T and S are the number of classrooms, room types, days per
week, periods per day, teachers, and curricula, respectively. Rpgp is operating cost parameter for
classroom r with | type on period p of day d (per hour). Liqgp is hiring cost parameter for lecturer t taught
student s on period p of day d (per hour). Cyqp is setup-cleaning cost parameter for classroom r having |
types on period p of day d (per time). Eq. (9) checks a timetable to be a feasible timetable, in which all
hard constraints must be satisfied. Where k is an index relating to the k™ hard constraint (k = 1, 2, 3,.
H), where H is the number of hard constraints. The binary decision variables are shown in Eq (10)
Where Xnqp IS to be 1 if classroom r having | types is used on period p of day d; otherwise 0. Yisqp IS to be 1
if lecturer t taught student s on period p of day d; otherwise 0.

4. Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) Program

The Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) tool has been coded in
modular style with graphic user interface using a general purpose programming language called
TCL/TK for front end with C extension for calculation in the back end. The program has been developed
for solving course timetabling problems by using Cuckoo Search (CS) algorithm. Three alternatives
strategies for improving CS performance, including self-adaptive parameter setting (SPS); movement
strategy based on random walk variants; and hybridisation strategy, have been embedded. The proposed
program can be implemented and graphically displayed the computational outputs on various platforms
of computer operating system.

The procedures of the proposed program shown in Figure 3 can be divided into six main steps:
(1) initialisation phase including data uploading, population initialisation and default parameter settings;
(ii) strategic movement procedures for Cuckoo Search algorithm either based on Lévy flight or Gaussian
random walks; (iii) repair process for rectifying infeasible timetables violated hard constraints; (iv)
fitness evaluation and best solution updating procedure; (v) hybridisation strategy with neighbourhood
search approaches (Insertion or Exchange Operators); and (vi) updating another CS parameter, which is
the probability of alien egg discovery. This probability is used to replace the worse solutions by the new
random-generated solutions. The following sub-sections describe these processes in more details.

4.1 Initialisation phase

Data encoding always plays an important role in computer programming. Each cuckoo egg in the
nest represents a candidate solution (timetable) that comprises a set of elements. An element can be
encoded using either numeric (binary, integer, or real) and/or alphanumeric characters (Pongcharoen et
al., 2008). In this work, numeric element was applied and consisted positive and negative integer values.
Positive integer values represent the elements/events of coded courses, each of which required a
classroom, a day, and a timeslot. Negative value such as -1 was used to indicate empty events/timeslots to
be assigned into a timetable. For an example shown in Figure 4, if there are three courses including
Drawing, Physics and Calculus; each of which requires 4, 5, and 3 teaching timeslots per week,
respectively. It can be seen that the Drawing course comprised four zero-coded elements according to the
given coding indices of all courses. Likewise, Physics and Calculus subjects have four one-coded and
three two-coded elements, respectively. Therefore, the number of coded elements/events is generated
from the summation of lecturing time-periods required for all courses.
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Begin Input university course timetabling data
Generate a priority list of courses using heuristic orderings
Set amount of search including numbers of Population (P) and Maximum Iteration (1)
Create initial population of P solutions, x; (i=1, 2,3, ,P)
Generate random keys for each x;
If (P, is adaptive) do Initial values of P, for each x;
While t < I, do
For (i =1, i <=P, i++) do get a cuckoo (say, x;) randomly
If (CSLF was selected) do generate a new solution x;" by using Lévy flights Step 2
Else if (CSGRW was chosen) do generate a new solution using Gaussian random walks
End if
If (x;' = infeasible timetable) do
Repair the x;’ to be a feasible timetable Step 3
End if
Evaluate its fitness f(x;")
Choose a nest among n (say, x;) randomly Step 4
If f(x") > f(x;) do replace the x; by the new solution x;’
End for
For (i=1,i<=P, i++) do get a cuckoo x;
If (Insertion operator: 10) do produce a new solution x;" using the 10
Else If (Exchange operator: EO) do produce a new solution x;" using the EO
End if
If f(x;") > f(x;) do replace x; by a new solution x;’
End for
If (P, setting = SPS) do update values of P, for each individual x;
Rank all solutions (timetables) in current population
If (rand < P, of worse nests: Xyorse) dO
Build/generate new solutions Xpey
Replace the Xyorse DY the new solution Xpey
End if Step 6
Find the current best solution and keep the best so far solution
End while
Post-process on the results and its visualisation
End

Step 1

Step 5

Figure 3 Pseudo code of the HSCST program

Course (¢)  Teaching periods Coded elements
Drawing 4 " [o][o][o][0
Physics 5 encoding 1|11 1 1
Calculus 3] [2][2][2

Figure 4 Element encoding for a solution

4.1.1 Population initialisation

Courses may have different priorities, the generation of infeasible solutions can be avoided by
scheduling the highest priority activities first (Burke and Newall, 2004). This research, sorting the list of
course priority called the Largest Unpermitted Period Degree first (LUPD) (Thepphakorn and
Pongcharoen, 2013) is therefore adopted in order to ensure that all candidate solutions are feasible. Next
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step is to create an empty solution (timetable) for assigning all coded elements. The length of that
solution are calculated by taking into account the multiplications among the number of classrooms (R),
days per week (D), and periods per day (Pe) shown in Figure 5.

_____________________________________________________________________

an empty solution (the length = R*D*Pe)
[T TTITTTITTITTITITT]
PP Py opy _ B

c]as;oom 1 class;(’mm 2

Figure 5 Solution representation on empty-slot timetable

After that, all encoded elements of courses are scheduled into an empty solution according to the
list of course priority generated. The encoded elements of a course having the highest priority will be
scheduled first. Before assigning each element/event into a timeslot, hard constraint checking is produced
to ensure that the considering timeslots are feasible. Otherwise, the algorithm sequentially looks for the
next empty timeslots of a solution that do not have any hard constraint violation. These processes are
repeated until all courses were scheduled. For example, a completed timetable obtained from initialisation
can be shown in Figure 6. It can be seen that all encoded elements/events belonging to Physics, Drawing,
and Calculus subjects were completely scheduled, whereas the remaining empty timeslots of that solution
were set to be the -1 value.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Phys:cs memg Calcu[us

lllll @@@@ lll

’,’ ‘ .
K lll 1| 1IIIIIIIOIOI 1 ]-1] lIOIOI 1] l|2I21
Figure 6 Initialisation of a candidate solution/timetable

4.1.2 Random keys initialisation

Random keys is a technique for adapting the movement strategy used in the continuous
optimisation domains to discrete optimisation domains (Khadwilard et al., 2012). For course timetabling,
there are four steps to generate random keys for each solution as shown in Figure 7: (i) create an empty-
slot associated with all coded elements; (ii) randomly generate the values between 0 and 1 using Uniform
distribution for each element; (iii) sort the random keys ascending; and (iv) sequentially assign the sorted
random keys to the coded elements.
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1. create an empty
list for random keys

|
,,,,,,,,,

2. random with U(0,1) |0 46/0.91[0.41]0.15/0.17[0.52{0.71/0.19[0.95[0.01]0.68(0.08[0.86(0.51/0.26(0.70[0.690.53[0.20/0.94

3. sort random keys
increasingly 0.01{0.08|0.15]0.170.19{0.20/0.26(0.41]0.46(0.51{0.52(0.53]0.68(0.69(0.70|0.71{0.86|0.91{0.94/0.95

4. pair random L1 (-1|-t} 1L {1[O]O(-1]-1]-170]0(-1]-1{2]2]2]-1
keys with a solution

0.01]0.08(0.15]0.17(0.19{0.20(0.26|0.41|0.46|0.51]0.52|0.53]0.68|0.69|0.70{0.71|0.86(0.91|0.94/0.95

Figure 7 Random-keys generating steps

4.1.3 Adaptive parameter

Parameter setting always plays an important role on the balance between exploration and
exploitation mechanisms conducted in metaheuristics. For Cuckoo Search, despite the suggestion on the
setting of the probability of alien egg discovery (P,) with a constant value of 0.25 (Yang, 2014), static
parameter setting of 0.10 has been used by Teoh et al. (2014) for solving university timetabling problems.
Adopting a constant value of P, means that the static balance between exploration and exploitation
mechanisms is indifferently used during iterative search process conducted within the method. Adaptive
parameter setting has therefore been an alternative to employ dynamic balance as well as to avoid the
premature convergence resulting in local optimal solutions. The parameter setting of P, considered in this
work is based on the iterative self-adaptive concept using the equation (11) or (12).

P, (i) = 0.05+0.15 x rand (11)
P.(i) = 0.85+0.05 x rand (12)

Where Pq(i) is the P, value for solution i whilst rand is random values between 0 and 1 based on
Uniform distribution. The possibility intensity and slow down the search process will be increased by
using equation (11) whilst the diversity and the convergence speed will be increased by using equation
(12) (Li and Yin, 2015).

In the first step, an initial P4(i) value for each solution is generated by using the equation (11).
Next step is to create two new integer variables for each solution i, called success_ratio(i) and
equation_selection(i) in order to: (i) store the binary values of the success ratio (0 is unsuccessful, 1 is
successful) from selected equations (11) or (12) in the previous periods; and (ii) keep the values of
equation used, 1 is to use an equation (11) or 2 is to use an equation (12), respectively. However, the
value of the variables is initially set to be 0 for all solutions. Both are crucial variables for self-adaptive
parameter updating process, which is described in the next section 4.6.
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4.2 Strategic movement procedures

In this research, two movement strategies so called Lévy flights (CSLF) and Gaussian random
walks (CSGRW) were embedded within the CS. Both movement strategies can be described using
equations (13) and (14);

X = xO 4 g (x, — xV) stepsize @ randn () (13)
- 14)
stepsize = —— |
Ml/ﬂ

Where oy is a constant value whilst the term in the bracket corresponds to the randomly solution
difference between Xyt and x¥. The stepsize is the step length in a random walks that can be fixed or
varying (Yang, 2010). In case of CSLF, the stepsize is a varying random walk that obeyed the Lévy
distribution via the Mantegna’s algorithm shown in equation (14) (Yang, 2010) whilst the stepsize for
CSGRW in this work is a fixed random walk and set to be 1. The randn() is random values generated
from standard normal or Gaussian distribution with 0 mean and 1 standard deviation or N(0,1).

The movement procedure of each element in a solution x for CSLF and CSGRW are shown in
Figure 8. For example, if the first event of subject number 1 (the third element position) in the x;¥
solution is firstly selected to move. The first step is to find the position of the first event of subject
number 1 (the first element position? in the Xpes” solution. Next step, random key values for that event of
subject number 1 belonging to Xpest” and x;¥ solutions are collected. The third step, a new random key
value is calculated by using equation (13) before replacing it into the same position of subject number 1
in the ;¥ solution. The fourth step is to select the next sequential event in the x¥ solution for movement.
These four steps are repeated until new random key values for all events in the x;¥ solution have been
updated. The fifth step is to sort the new random keys in ascending order and move all elements of x;"
solution to new position according to the ascending order of new random keys. It can be seen that the first
event of subject number 1 is moved from the third position of the x¥) solution to the second position of
the x;**Y solution instead (see in Figure 8).

(1) I {1 (|-1)-1f1 |1 | L1{O]O|-1|-1]-1]0]|0/|-1]-1]121{[2]2]-I
X
best

0.01{0.08]0.15|0.17(0.19]0.20/0.26{0.41|0.46]0.51{0.52{0.53|0.68(0.69{0.70|0.71|0.86(0.91{0.94|0.95

-1 fr 110 f0o-140 (0 -1-102122]-1

x

0.02]0.09]0.13|0.18]0.20]0.22]0.27{0.33]0.39]0.45{0.51{0.58]0.62(0.64(0.68|0.75|0.82|0.88|0.95|0.97

T Example: the first event (subject 1),
A0 a, (x(f) if ety and randn()= 0.7, stepsize=1 i

L)
X =X best
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Figure 8 Example of movement procedures for CSLF and CSGRW
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4.3 Repair process

After performing the movement procedure, new solutions obtained may be either feasible or
infeasible solutions (due to hard constraint violations). In this work, the repair process is introduced for
rectifying infeasible solutions. For an example of repair processes shown in Figure 9, Drawing subject
(element number 0) is required to schedule in double consecutive periods at the drawing room. The first
step is to find the possible empty timeslots having no hard constraint (HC) violation in drawing room. If
double empty timeslots without any violation of HCs are found, two elements of number O are firstly
move to that timeslots. Otherwise, a possible empty timeslot (-1 value) in drawing room is randomly
selected for swapping with element of number 0. If those elements are not assigned in consecutive
periods (see position numbers 3 and 5 in Figure 9), the second step is to the possible empty timeslots near
position numbers 3 and 5 (including position numbers 2, 4, and 6). If element number O at position 3 can
be swapped with the element number 2 at position 4 without any violation of HCs, both positions are then
accepted to swap together. These processes are repeated until all coded courses have been satisfied for all
hard constraints (HCs).

If Drawing subject, elements number 0, requires
drawing room with double consecutive periods.
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Figure 9 Example of repair process embedded within the HSCST tool

4.4 Fitness evaluation and best solution updating

Once the timetables are complied with hard constraints, the timetables are evaluated for its quality
by using the objective function shown in Eqg. (8) for calculating the total university operating costs (Z).
Due to minimisation problem, a solution or timetable having the lower Z value is more preferable than
that having the higher Z value.

4.5 Hybridisation strategy

There are many advantages on conducting hybridisation strategy: (i) improve the solution quality,
through increased exploitation search; and (ii) increase the opportunity to quickly discover the global best
solution. However, increasing more search usually requires more computational time and resources. In
this work, two local search strategies, so called Insertion Operator (I0) and Exchange Operator (EO),
were embedded for hybridisation with the Cuckoo Search. Both operators had been demonstrated on its
ability to improve the solution quality (Talbi, 2009). The main steps of the 10 and EO procedures are
illustrated in Figure 10 and Figure 11, respectively. First step starts from specifying two positions within
a solution randomly (if the random number of position A is greater than position B). In the case of 10, an
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element at position A will be moved to position B whilst the remaining elements between position A-1
and position B will be moved one position to the right hand (see Figure 10). For EO, the element values
located at position A and B are swopped (see Figure 11).

position B position A
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Figure 10 Steps of insertion operator (10) (Talbi, 2009)
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Figure 11 Steps of exchange operator (EO) (Talbi, 2009)
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After conducting LS procedures, the repair process is applied if infeasible solution has been found
and followed by measuring its fitness value. If fitness value associated with the improved solution is
better than the fitness value associated with the old solution, the improved solution is accepted and
therefore replaced the old solution. These steps are similarly repeated for the remaining solutions.

4.6 Updating CS’s parameter

For updating the CS’s parameter in this work, two sequential procedures (which were self-
adaptive parameter update and population abandon) are proposed and described in the following sub-
sections.

4.6.1 Self-adaptive parameter update

The procedures of self-adaptive P, setting are described in a pseudo code shown in Figure 12.
After fitness measurement, if the solution i using equation (11) (equation_selection(i) = 1) for P, setting
has the solution quality better than that in the previous iteration, the success_ratio(i) will set to be 1,
otherwise it will set be 0. In the same way, the success_ratio(i) for solution i using equation (12)
(equation_selection(i) = 2) will be also updated. In the end of the every iteration, the summations of
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success_ratio(i) for each selected equations will be calculated and kept at the successl and success2
variables, respectively.

If the successl is larger than the success2, it denotes that the parameter P, obtained from adopting
equation (11) perform better than that generated by equation (12). Therefore, the probability (prob) of
selected equation (11) for P, setting must be increased. Otherwise, it means that the P, value obtained
from adopting equation (12) is very efficient, in which the prob value of selected equation (11) must be
reduced. These steps are repeated until all P, values associated with all solutions are updated.

Update success_ratio(i) variable
Calculate successl and success2 according to success_ratio(i) variable
For (i=1,i <=P, i++) do
If (iteration = 1) do
If (rand < 0.5) do
If (rand <= 0.05) do update P,(i) using equation (11) and set equation_selection(i) = 1;
Else
If (rand <= 0.05) do update P,(i) using equation (12) and set equation_selection(i) = 2;
End if
Else
If (successl > success2) do prob = 0.7 + 0.3*rand; else prob = 0.4 - 0.3*rand;
If (rand < prob) do
If (rand <= 0.5) do update P4(i) using equation (11) and set equation_selection(i) = 1;
Else
If (rand <= 0.5) do update P4(i) using equation (12) and set equation_selection(i) = 2;
End if
End if
End for

Figure 12 Pseudo code of the self-adaptive P, setting for CS (Li and Yin, 2015).

4.6.2 Population abandon

All solutions (timetables) in the population are decreasingly sorted by determining their fitness
values. The solution with the highest fitness is assigned to be the highest rankingori=1, (i=1, 2, 3,...,
P), whereas the solution with the lowest fitness is ranked last (i = P). The last-rank solution (Xworse) IS
determined to be abandoned or kept according to its probability P,(P)<[0, 1]. If a random value based on
the Uniform distribution (rand) is more than or equal to P,(P), the xworse SOlUtiON is kept. Otherwise, the
Xworse Solution will be improved by using the standard random walks in equation (7) (Yang and Deb,
2010). After that, the repair process is applied if the new solution (Xnew) IS infeasible timetable. This
follows by measuring the total operating costs (Z) and its fitness value. At this point of the CS method,
the iteration is completed and the best-so-far solution is identified and kept. The CS process from step 2
to step 6 shown in Figure 3 are repeated until the maximum iteration (l) is satisfied. Finally, the best-so-
far solution and its fitness value are reported.

5. Experimental design and analysis

The computational experiments were aimed to: (i) identify the main factors and their interactions
that were statistically significant before concluding the appropriate parameter settings for the CS method;
(ii) explore the performance of the CS via Gaussian random walks and the CS via Lévy flights; (iii)
investigate the performances of CS using the optimal parameter settings via parameter tuning and
parameter control techniques; and (iv) compare the performance of the proposed CS hybridising with the
Local Search including Insertion Operator (I0) and Exchange Operator (EO) as well as Particle Swarm
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Optimisation (PSO). The characteristics of the eleven real-world course timetabling datasets obtained
from the Faculty of Engineering, Naresuan University (NU) are shown in Table 4 (Thepphakorn et al.,
2016). The timetables generated by the HSCST program were measured by summation the total
university operating costs on the soft constraints mentioned in section 3. Personal computers with Core i7
3.4 GHz CPU and 4 GB RAM was used to determine the simulation time required to execute a
computational run.

Table 4 Characteristics of the proposed NU course timetabling problems

Characteristics of the NU course timetabling problems
Problems No. Courses | No. Events | No. Classrooms No. Days/ | No. Periods/ No. Lecturers|No. Curricula
week day
1 56 173 53 5 10 30 19
2 103 323 77 7 10 62 36
3 123 353 86 7 10 49 27
4 124 380 74 7 11 56 35
5 144 452 91 7 10 78 43
6 162 486 99 7 10 71 34
7 163 499 88 7 11 72 38
8 204 639 114 7 10 96 52
9 208 647 99 7 11 102 56
10 221 687 108 7 12 94 44
11 323 1,009 142 7 13 143 66

A. CS’s optimal parameter investigations

The first experiment was aimed to demonstrate the use of advance statistical tools called
experimental design and analysis (EDA) for investigating the appropriate setting of CS’s parameters. The
factors included (i) the combination of population sizes (host nests) and the maximum iteration (PI),
which determines the total number of solutions generated, the amount of search and the execution time
required. In this computational experiment, the value was fixed at 24,000 to limit the amounts of search
and time taken for the computational search; and (ii) the probability of alien egg discovery (P,). Yang
(2010) also suggested the sufficient values of the population sizes and the P, parameters for most
optimisation problems should be set between 15 and 40, and 0.25, respectively. Table 5 summarises the
factors and its level considered.

Table 5 Experimental factors and its levels

Factors Levels \_/alues -
Low (-1) Medium (0) High (+1)
Pl 3 15*1600 25*%960 40*600
P, 3 0.1 0.25 0.4

Due to few parameter numbers, full factorial experiment based on the 32 design (Montgomery,
2012) was adopted in this experiment for considering all the combinations of the factors in each
replication. The computational experiment was based on eleven problems (shown in Table 4), each of
which was repeated thirty times using different random seed numbers. The computational results
obtained from 270 (3°*30) runs per problem were analysed using a general linear model form of analysis
of variance (ANOVA). After conducting ANOVA tables for all proposed problems, the 1%, 5%, and 11"
problems related to the small, medium, and large sizes were selected for examples to show the results of
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ANOVA (shown in Table 6). The ANOVA table consisted of Source of Variation (Source), Degrees of
Freedom (DF), Sum of Square (SS), Mean Square (MS), F value, and P value. A factor with value of
P<0.05 was considered statistically significant with 95% confidence interval. From Table 6, Pl factor was
statistically significant in term of main effect in the 1% and 11" problems.

Table 6 ANOVA on the CS’s parameters for selected problems

Problems | Source DF SS MS F P
Pl 2 576,316 288,158 43.89 0.000
P. 2 30,338 15,169 2.31 0.102
1 PI*P, 4 32,133 8,033 1.22 0.302
Seeds 29 247,749 8,543 1.30 0.148
Error 232 1,523,225 6,566
Total 269 2,409,761
Pl 2 1,101,544 550,772 1.38 0.253
P, 2 1,424,859 712,429 1.79 0.169
5 PI*P, 4 305,787 76,447 0.19 0.942
Seeds 29 11,690,452 403,119 1.01 0.452
Error 232 92,302,925 397,857
Total 269 106,825,567
Pl 2 148,002,875 74,001,438 4.68 0.010
P. 2 47,204,008 23,602,004 1.49 0.227
11 PI*P, 4 119,012,484 29,753,121 1.88 0.115
Seeds 29 531,110,852 18,314,167 1.16 0.272
Error 232 3,669,965,471 15,818,817
Total 269 4,515,295,691

In this work, the appropriate parameter settings of the CS’s factors can be determined from the
lowest points in the main effect plots. For example, Figure 13 to Figure 15 suggested that the CS’s factors
including Pl and P, for the 1%, 5™ and 11" problems should be defined at 15*1,600 and 0.25, 25*960 and
0.1, and 25*960 and 0.4, respectively. Moreover, the best parameter settings of the CS for remaining
problems are also concluded and shown inTable 7. There is no generic optimal parameter set that can be
efficiently applied to every problem sizes and domains due to the problem specific and the nature of the
algorithms (Figlali et al., 2009).
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Figure 13 Main effect plots of Pl and P, for the 1*' problem



Pr

489600

489550 1

489500

Mean of total costs

489450 4

489400

15*1600 25%960 40*600

Figure 14 Main effect plots of P1 and P, for the 5 problem

0.10 0.25 0.40

Pr

Pa

048250 1
948000
947750 1
047500 4
047250 1

N

947000 4

Mean of total costs

946750 1
0465001

.
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Table 7 Appropriate parameter settings of the CS for eleven problems
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Problems

Appropriate parameter settings of the CS

Population size x Maximum Iteration (PI)

Probability of alien egg discovery (P,)

1 15*1,600 0.25
2 15*1,600 0.10
3 25*960 0.40
4 15*1,600 0.25
5 25*960 0.10
6 25*960 0.25
7 40*600 0.10
8 40*600 0.40
9 40*600 0.25
10 25*%960 0.40
11 25*%960 0.40
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B. Perfomances of CS’s random walks

This experiment was designed to compare the performance between CS using Gaussian random
walks (CSGRW) and CS using Lévy flights (CSLF) to find the best so far timetables. The appropriate
parameter setting of the CS was adopted from the first experiment based on the experimental design and
analysis. The performance comparisons for both methods to solve the proposed datasets (detailed in
Table 4) were analysed in terms of the minimum, maximum, average, standard deviation (SD), and
execution time (Time: minutes unit) required to find the best so far solutions obtained. The T value
obtained from the t-test method and the P value are also shown in Table 8. The amount of search for each
method was equally fixed at 24,000 solutions to solve the proposed problems, each of which was also
repeated thirty times using different random seed numbers.

Table 8 Computational results obtained from the CSGRW and the CSLF

Best so far solutions (total operating costs) t-test
Prob.| - Methods Minimum Maximum Average SD 'I_'|me T P

(minutes) | values | values

1 CSGRW 202,054.50 202,272.50 202,147.83 54.10 2.44 111 0.003
CSLF 201,998.00 202,225.00 202,103.62 56.02 2.53 ' '

9 CSGRW 378,485.50 379,806.00 379,039.18 341.62 10.05 126 0211
CSLF 377,927.25 379,754.50 378,919.28 390.96 9.86 ' '

3 CSGRW 301,028.25 305,228.75 303,160.19 | 1,052.36 | 21.79 0.06 0.956
CSLF 301,125.25 305,010.75 303,146.30 866.33 24.49 ' '

4 CSGRW 299,674.50 308,693.75 304,171.83 | 2,322.36 | 12.16 505 0.045
CSLF 300,210.00 307,450.25 302,937.73 | 2,337.29 | 13.25 ' '

5 CSGRW 488,054.75 490,183.00 489,362.45 534.46 25.99 0.62 0,540
CSLF 488,141.50 490,141.00 489,286.09 416.09 28.24 ' '

5 CSGRW 406,083.25 410,164.75 407,872.34 910.48 30.06 0.46 0.645
CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00 ' '

7 CSGRW 412,589.00 418,821.25 416,126.10 | 1,488.51 | 21.85 596 0.005
CSLF 412,089.00 418,062.50 414,820.20 | 1,901.27 | 23.14 ' '

3 CSGRW 581,132.00 587,924.25 584,719.17 | 1,569.00 | 58.34 0.66 0514
CSLF 582,654.75 587,650.00 584,485.26 | 1,155.05 | 57.98 ' '

9 CSGRW 604,809.25 612,667.00 609,530.52 | 2,146.03 | 32.66 012 0.902
CSLF 602,771.25 615,903.25 609,619.51 | 3,317.79 | 40.79 ' '

10 CSGRW 551,052.50 565,639.25 558,339.95 | 3,861.85 | 37.06 1.49 0.143
CSLF 546,314.50 563,997.25 556,667.98 | 4,798.57 | 37.73 ' '

11 CSGRW 932,438.50 955,456.00 947,073.63 | 4,194.05 | 141.78 115 0.956
CSLF 939,531.25 955,056.25 945,859.18 | 4,000.94 | 145.29 ' '

From Table 8, the CSLF outperformed the CSGRW for finding the best so far solutions
(timetables) for most problems because of the lower maximum and average values of total operating
costs, whereas the CSGRW outperformed the CSLF for problem number 9. The minimum values of the
best so far solutions generated by CSLF were better that the values generated by CSGRW for some
problems and vice versa. Moreover, the SD values and the average computational times obtained from
both methods were slightly different for all problems.

In term of statistical analysis, the performance difference between the CSLF and the CSGRW was
statistically significant with a 95% confidence interval using t-test analysis (P value < 0.05) for problem
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numbers 1, 4 and 7, for small-size and medium-size problems. It can be concluded that the performance
of CSGRW was statistically indifference to the CSLF for most problems.

A comparison of convergence speeds between CSLF and CSGRW to find the best so far solution
is shown in Figure 16. The 11™ problem related with large problem size was selected for this experiment.
It can be seen that convergence speed belonging to the CSGRW was slightly better than that belonging to
the CSLF in early generations. However, the CSLF was able to find the best so far solutions quicker than
the CSGRW from the middle to the last generation.

C. Perfomances of CS’s parameter investigations

This experiment was designed to compare the performances of CS via Lévy flights (CSLF) using
two different ways to get the appropriate parameter settings: (i) parameter tuning via experimental design
and analysis (CSLF+EDA) demonstrated in the first experiment; and (ii) parameter control via self-
adaptive parameter setting (CSLF+SPS). The comparisons among the proposed methods for solving
eleven problems (detailed in Table 4) were analysed in terms of the minimum, maximum, average,
standard deviation (SD), and the execution time (Time: minute unit) required to find a timetable having
the minimum total university operating costs. The T value obtained by using the t-test method and the P
value are also shown in Table 9. The amount of search for each method was equally fixed at 24,000
solutions to solve the proposed problems (Table 4), each of which was also repeated thirty times using
different random seed numbers.
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Figure 16 Convergence plots of CSLF and CSGRW for the 11" problem

From Table 9, the CSLF+EDA produced the timetables with the average total operating costs
lower than the timetables obtained from the CSLF+SPS for all problems. The minimum and/or maximum
values generated from the CSLF+EDA were better than the CSLF+SPS for the first five problems. The
SD values and the average computational times obtained from both methods were slightly different for all
problems, excepted in problem numbers 2 and 4. However, the performance differences achieved by the
CSLF+EDA and the CSLF+SPS were not statistically significant with a 95% confidence interval using t-
test analysis (P value > 0.05) except for the problem number 5. It means that the performance of the
CSLF+SPS was statistically equal to the CSLF+EDA for most problems.
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Best so far solutions t-test
Prob.|  Methods Minimum Maximum Average SD 'I_'|me T P

(minutes) | values | values

1 CSLF+SPS | 202,016.50 202,229.00 202,105.23 45.34 2.63 0.12 0.903
CSLF+EDA | 201,998.00 202,225.00 202,103.62 56.02 2.53 ' '

5 CSLF+SPS | 377,968.75 380,569.00 379,049.68 655.24 12.76 0.94 0.354
CSLF+EDA | 377,927.25 379,754.50 378,919.28 390.96 9.86 ' '

3 CSLF+SPS | 301,363.75 306,308.75 303,290.11 983.80 23.99 0.60 0.550
CSLF+EDA | 301,125.25 305,010.75 303,146.30 866.33 24.49 ' '

4 CSLF+SPS | 300,139.25 307,582.00 303,467.07 | 2,148.92 | 19.68 0.91 0.365
CSLF+EDA | 300,210.00 307,450.25 302,937.73 | 2,337.29 | 13.25 ' '

5 CSLF+SPS | 488,776.50 491,697.50 489,637.74 599.35 23.91 5 64 0.011
CSLF+EDA | 488,141.50 490,141.00 489,286.09 416.09 28.24 ' '

6 CSLF+SPS | 406,088.00 409,490.25 407,992.06 824.44 32.51 0.99 0.326
CSLF+EDA | 406,149.75 409,963.50 407,758.56 991.47 35.00 ' '

7 CSLF+SPS | 410,707.75 419,402.00 415,273.88 | 2,229.76 | 20.57 0.85 0.400
CSLF+EDA | 412,089.00 418,062.50 414,820.20 | 1,901.27 | 23.14 ' '

8 CSLF+SPS | 582,162.00 588,149.50 584,567.33 | 1,444.74 | 55.27 0.24 0.809
CSLF+EDA | 582,654.75 587,650.00 584,485.26 | 1,155.05 | 57.98 ' '

9 CSLF+SPS | 604,808.25 615,242.50 609,723.28 | 2,902.33 | 36.02 0.13 0.898
CSLF+EDA | 602,771.25 615,903.25 609,619.51 | 3,317.79 | 40.79 ' '

10 CSLF+SPS | 548,167.00 563,620.50 557,430.03 | 4,099.66 | 39.01 0.66 0511
CSLF+EDA | 546,314.50 563,997.25 556,667.98 | 4,798.57 | 37.73 ' '

1 CSLF+SPS | 937,061.25 954,819.00 945,879.99 | 4,234.51 | 124.22 0.02 0.984
CSLF+EDA | 939,531.25 955,056.25 945,859.18 | 4,000.94 | 145.29 ' '

A comparison of the convergence speed for the proposed methods to investigate the best so far

solution is shown in Figure 17. The problems number 11 that represented a large problem size was
selected for example. Although the CSLF+SPS had the performance lower than the CSLF+EDA in
middle generations, the averages of best so far solutions obtained from both methods were equal in the
last generation. Therefore, it can be concluded that the CSLF’s optimal parameter setting investigated by
the EDA was able to improve the performance of CSLF better than that investigated by the SPS in terms
of solution quality and convergence speed.

Parameter tuning via experimental design and analysis (EDA) is efficient statistical tool to
investigate the appropriate parameter setting of the CSLF but it requires a large number of experimental
runs and computational resources. For this research, a total run number using experimental design and
analysis, full factorial design, obtained from the first experiment is 2,970 (3°*30*11) runs. Fractional
factorial experimental design or reducing number of replications may be suitable if there are enough
computational times and resources for all experiments, low number of problems to solve, and no large or
very large problems sizes. Otherwise, self-adaptive parameter setting (SPS) is a choice to deal with
CSLF’s parameter settings S0 that the amount of computational runs associated with the experimental
design for each problem can be dismissed. Moreover, the experimental results indicated that the
performances of the CSLF+EDA and the CSLF+SPS were statistically insignificant with a 95%
confidence interval.
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Figure 17 Convergence plots of CSLF+EDA and CSLF+SPS for the 11" problem

D. Perfomances of CSLF with/without LS

This experiment was designed to compare the performance of the CSLF with/without the LS
strategies. Two types of the LS including Insertion Operator (IO) and Exchange Operator (EO) were
hybridised with the CSLF, called the CSLF+10 and the CSLF+EO, respectively. The performance of the
CSLF with/without the LSs was also compared with the well-known metaheuristic method, called
Maurice Clerc Particle Swarm Optimisation (MCPSO), which was the best performance of the PSO
variants to solve the university course timetabling problems (Thepphakorn and Pongcharoen, 2019). The
appropriate parameter setting of the proposed methods was adopted from the first experiment based on
the reliable statistical investigations. Because the amount of search for each method was equally fixed at
24,000 solutions, the maximum iteration (1) for the CSLF+IO and CSLF+EO were reduced to half
compared with the CSLF. Since the total number of improvements within population was double after
hybridising with the 10 or EO. Solving each dataset shown in Table 4 via CSLF, CSLF+IO, and
CSLF+EO was repeated thirty times using different random seed numbers. The comparisons among the
proposed hybrid methods for solving eleven datasets were analysed in terms of the minimum, maximum,
average, standard deviation (SD), and the computational time (Time) required to find the best so far
timetables. Moreover, the T value obtained by using the Tukey’s method and the P value are also shown
in Table 10.

From Table 10, the CSLF with/without the hybrid LSs outperformed the MCPSO in terms of the
lower average total operating costs and computational times for all problem datasets. The CSLF
hybridised with the LSs can produce the timetables with lower average total university operating costs
than the CSLF without the LSs for all problems. The results obtained from CSLF+EO outperformed
those obtained from CSLF+IO and CSLF for all datasets. CSLF+IO outperformed CSLF for most
datasets, except in problem numbers 1, 2, and 3 related with small problem sizes. Moreover, the best so
far solutions constructed by the CSLF+EO were lower than those obtained from other methods in terms
of minimum and maximum total operating costs, excepted in problem numbers 2 and 3. The SD values
obtained from the CSLF hybridised with the LSs were lower than those values obtained from the
individual CSLF for many datasets, most of them are related with medium and large problem sizes.
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Best so far solutions (total operating costs) Tukey’s method

Prob.| Methods . . Time T P
Minimum Maximum Average SD (minutes) | values | values

CSLF 201,998.00 202,225.00 202,103.62 56.02 2.38 - -
1 CSLF+I0 202,032.50 202,202.00 202,111.42 41.21 1.86 -0.520 0.955
CSLF+EO 201,878.50 201,999.50 201,933.75 28.73 1.33 11.280 0.000
MCPSO 202,668.50 203,135.50 203,030.80 134.34 6.44 -43.530 | 0.000

CSLF 377,927.25 379,754.50 378,919.28 390.96 13.34 - -
) CSLF+10 374,599.50 379,625.25 378,993.15 869.67 7.93 -0.528 0.952
CSLF+EO 378,097.25 378,759.75 378,578.39 128.49 4.70 2.435 0.077
MCPSO 382,239.00 383,409.50 382,744.20 391.59 22.82 -19.318 0.000

CSLF 301,125.25 305,010.75 303,146.30 866.33 20.62 - -
3 CSLF+IO 301,457.25 305,675.75 303,555.73 875.72 16.05 -2.050 0.177
CSLF+EO 301,621.50 304,104.00 302,957.78 594.69 9.64 0.944 0.781
MCPSO 304,349.25 306,025.75 305,400.33 596.58 36.55 -7.979 0.000

CSLF 300,210.00 307,450.25 302,937.73 2,337.29 14.07 - -
4 CSLF+10 300,121.50 303,155.00 301,810.26 602.98 8.90 3.239 0.009
CSLF+EO 299,378.25 300,493.00 299,818.81 283.40 5.71 8.959 0.000
MCPSO 307,855.75 309,819.75 308,821.35 597.81 26.75 -11.951 0.000

CSLF 488,141.50 490,141.00 489,286.09 416.09 19.76 - -
5 CSLF+IO 488,741.00 490,562.50 489,143.93 402.93 16.28 1.277 0.580
CSLF+EO 487,315.00 489,495.25 488,342.48 450.17 9.23 8.473 0.000
MCPSO 492,248.50 493,737.00 493,002.15 500.36 47.81 -23.595 0.000

CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00 - -
5 CSLF+10 406,073.00 409,059.75 407,526.06 692.80 25.65 1.174 0.645
CSLF+EO 405,637.75 408,083.75 407,048.07 657.90 15.39 3.587 0.003
MCPSO 409,361.50 410,730.00 410,328.68 409.93 59.83 -9.175 0.000

CSLF 412,089.00 418,062.50 414,820.20 1,901.27 23.14 - -
7 CSLF+IO 410,564.75 413,794.75 412,277.72 799.64 15.75 8.380 0.000
CSLF+EO 408,279.50 410,263.25 409,320.88 409.69 9.07 18.130 0.000
MCPSO 418,731.50 420,752.00 419,722.18 688.56 31.97 -11.430 0.000

CSLF 582,654.75 587,650.00 584,485.26 1,155.05 57.98 - -
8 CSLF+IO 581,817.00 585,534.50 583,827.22 765.29 31.10 2.994 0.018
CSLF+EO 581,335.25 583,897.00 582,670.56 597.82 18.75 8.258 0.000
MCPSO 587,955.00 589,903.75 589,177.85 623.70 92.22 -15.099 0.000

CSLF 602,771.25 615,903.25 609,619.51 3,317.79 40.79 - -
9 CSLF+IO 602,841.25 607,679.50 605,291.43 1,161.05 24.98 8.320 0.000
CSLF+EO 598,125.75 602,827.50 600,343.48 088.88 16.07 17.820 0.000
MCPSO 616,349.00 618,259.00 617,236.60 612.54 54.29 -10.350 0.000

CSLF 546,314.50 563,997.25 556,667.98 4,798.57 37.73 - -
10 CSLF+IO 547,759.50 553,854.50 550,632.50 1,495.93 33.62 8.270 0.000
CSLF+EO 540,221.00 543,150.50 541,621.70 913.53 24.64 20.620 0.000
MCPSO 566,033.25 568,658.00 567,615.93 1,051.13 | 105.42 -10.610 0.000

CSLF 939,531.25 955,056.25 945,859.18 4,000.94 | 145.29 - -
11 CSLF+IO 926,254.75 933,329.00 930,400.41 1,874.13 61.96 22.110 0.000
CSLF+EO 909,172.75 917,453.00 914,026.72 1,954.70 36.86 45.530 0.000
MCPSO 956,528.50 961,157.00 958,843.10 1,734.03 | 21291 -13.130 0.000
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In term of statistical analysis, the performance differences achieved by the CSLF with/without the
LSs and MCPSO were statistically significant with a 95% confidence interval using Tukey’s method (P
value < 0.05) for all problems. The results obtained from CSLF were significantly better than those
obtained from MCPSO for all problems. The CSLF+EO method was the best configuration of hybrid LSs
for most problems because of the highest T value. Therefore, it can be concluded that the performances of
the CSLF based upon the concept of individual diversification can dramatically be improved by
hybridising with the LSs related with intensification concept.

The average execution times required for the CSLF+IO and CSLF+EO were obviously lower than
the CSLF whereas the MCPSO required the Iongest execution times to solve the problems. For example,
the 11™ problem related with large problem sizes, CSLF+EO and CSLF+IO were able to reduce the
computational times (comparing with the CSLF) up to 75% and 57%, respectively. Since the number of
improved solutions within population were double after producing the LS improvements (both 10 and
EO). Therefore, the number of iterations (1) for the proposed hybrid methods was reduced to half in order
to control the amount of search at the 24,000 solutions. Moreover, the 10 and EO are also simpler
compared Wlth the other improvement processes.

The 11" problem related with large problem sizes was selected as an example to: (i) demonstrate
a comparison of the convergence speeds for the MCPSO and CSLF with/without the LSs; and (ii)
investigate the best so far solution shown in Figure 18. It can be seen that the convergence line belonging
to the CSLF+EO can converge to the minimum total operating costs quicker than that lines generated
from MCPSO, CSLF, and CSLF+10O methods. The CSLF+10 was the second ranking to find the average
of best so far solution. Therefore, the LS strategies were able to improve the performances of the CSLF
both in terms of the solution quality and its convergence speed.
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Figure 18 Convergence plots of CSLF with/without LS strategies and MCPSO for the 11" problem

6. Conclusions

A novel Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) tool has been
developed in order to solve the real world university course timetabling problems (UCTP). The solutions
or timetables generated by the HSCST program were measured by minimising the total university
operation costs: (i) lecturing cost; (ii) classroom operating cost; and (iii) classroom setup/cleaning cost.
Two random walks strategies for the Cuckoo Search (CS) algorithm, called CS via Lévy flights (CSLF)
and CS via Gaussian random walks (CSGRW), were embedded in the HSCST program. Two local search
(LS) heuristics including Insertion Operator (10) and Exchange Operator (EO) were hybridised with the
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proposed algorithm (CSLF+1O and CSLF+EO). Moreover, the CSLF integrated with self-adaptive
parameter setting (CSLF+SPS) technique was developed and also embedded in the HSCST program
before comparing its performance with the CSLF using optimal parameters obtained from the
experimental design and analysis (CSLF+EDA). Eleven datasets obtained from Naresuan University in
Thailand were computationally conducted using the proposed program. This paper also demonstrated the
use of the experimental design and analysis for investigating the appropriate parameters setting of the
proposed method before sequentially conducting a comparative study on its performance.

The experimental results indicated that the optimised parameter settings of the CS algorithm
investigated via experimental design and analysis were different in various problem sizes. In addition, the
P, factor was a robust parameter with no statistical significance with 95% confidence interval for all
problems. The performance of CSGRW was statistically equal in the performances of CSLF for most
problems, whereas the average computational times required by both algorithms were slightly different.
Finding the timetable with the lowest total operating costs using the CSLF+SPS was statistically equal to
that using the CSLF+EDA for most problems. Moreover, the CSLF+SPS will be suitable for the cases of
limited computational resources and times to solve a lot of UCTPs, each of which has very large problem
sizes. The performances of CSLF can be dramatically improved by using the LS strategies in terms of
solution quality, convergence speeds, and execution times for all problems. The CSLF+EO was the best
performances followed by the CSLF+1O. The average execution times required for both hybridised
algorithms were obviously lower than the CSLF because of controlled amount of search and the simple
processes of the LSs. For example, the 11™ dataset related with large problem sizes, CSLF+EO and
CSLF+10 were able to reduce the computational times up to 75% and 57%, respectively. Moreover, the
CSLF with/without LS hybridisations outperformed the MCPSO in terms of the lower average total
operating costs, convergence speeds, and computational times.

Further work could be focused on the dissemination of these improvement strategies on other
optimisation methods or the applications of these strategies on the different problem domains.
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Abstract. University course timetabling problem (UCTP) is well known to be
Non-deterministic Polynomial (NP)-hard problem, in which the amount of
computational time required to find the optimal solutions increases exponen-
tially with problem size. Solving the UCTP manually with/without course
timetabling tool is extremely difficult and time consuming. A particle swarm
optimisation based timetabling (PSOT) tool has been developed in order to solve
the real-world datasets of the UCTP. The conventional particle swarm optimi-
sation (PSO), the standard particle swarm optimisation (SPSO), and the Maurice
Clerc particle swarm optimisation (MCPSO) were embedded in the PSOT
program for optimising the desirable objective function. The analysis of vari-
ance on the computational results indicated that both main effect and interactions
were statistically significant with a 95% confidence interval. The MCPSO
outperformed the other variants of PSO for most datasets whilst the computa-
tional times required by all variants were moderately difference.

Keywords: Course timetabling - Particle swarm + Metaheuristic *
Parameter setting

1 Introduction

University course timetabling problem (UCTP) is one of the most challenging
scheduling problems and also classified into combinatorial optimisation problems due
to its complexity and constraints [1]. This problem arises every semester and is solved
either manually by academic staff or using automatic course timetabling tool [2, 3].
Solving large course timetabling problems without efficient timetabling program is
extremely difficult and may require a group of experts to work for several days [4].
Swarm intelligence (SI) has received great attention in the communities of opti-
misation, computer science, computational intelligence, bio-inspired algorithms, and
SI-based algorithms [5]. SI-based algorithms such as ant colony optimisation (ACO),
artificial bee colony (ABC) algorithm, firefly algorithm (FA), cuckoo search (CS), and
particle swarm optimisation (PSO) have become very popular to solve large-scale
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combinatorial optimisation problems [5]. These algorithms have been widely adopted
to solve NP hard problems within acceptable computational time, but they do not
guarantee optimum solutions [6]. Among the intelligent algorithms, PSO has been
successfully applied to solve problems in several domains such as clustering problem,
image processing, function optimisation, etc. This is because of PSO algorithm has a
few parameters to adjust and requires little memory for computation, easy to under-
stand and implement [7].

We have conducted a comprehensive literature survey on articles indexed in Scopus
databases covering the period from the past to February 2019 using “course timetabl*”
and “particle swarm*” as keywords, several variants of PSO were found to be applied
to solve the UCTP. For examples, the conventional PSO (called PSO) has been applied
to generate the optimal course timetables for 16 lecturers, 10 classrooms, and 10 classes
[8]. The standard PSO using inertia weight factor (called SPSO) has been also
developed to solve the UCTP both real world datasets [9] and benchmarking datasets
[10]. Another variant of PSO introduced by Maurice Clerc (called MCPSO) has been
wildly applied to deal with the UCTP [11-14]. However, there is no report related with
the performance comparison among three variants of PSO to solve the UCTP. More-
over, parameter values of PSOs found on all articles have been set by using ad hoc
fashion approach [10-14] or one factor at a time experimental strategy [8, 9]. The
factorial experiment is one of the best statistical approaches for identifying optimal
parameter setting especially when considering several factors [15].

The objectives of this paper were to: (i) develop a particle swarm optimisation
based timetabling (PSOT) tool for solving real-world UCTP in Thailand; (ii) investi-
gate the appropriate parameter settings of PSOs using statistical experimental design
and analysis; and (iii) compare the performances of the conventional particle swarm
optimisation (CPSO), the standard particle swarm optimisation (SPSO), and the
Maurice Clerc particle swarm optimisation (MCPSO) in terms of the solution quality
and computational time. The next section of this paper briefly explains the PSO
algorithm. Section 3 describes the UCTP followed by the procedures of the PSOT tool
in Sect. 4. Section 5 presents the experimental results and analysis followed by
conclusions.

2 Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) was inspired by swarm behaviour in nature, such
as bird flocking, fish schooling, and proposed by Kennedy and Eberhart in 1995 [16].
PSO has become one of the most widely used swarm-intelligence-based algorithms to
solve every area in optimisation, computational intelligence, and design applications
due to its simplicity and flexibility [17].

According to the conventional PSO procedures, the objective function F(x) at an
initial process is specified. Each particle x; (i = 1, 2,..., P) is generated randomly and
evaluated its fitness. The iteration best solution (P,.,) and the global best solution
(Gpesr) are identified by following Eq. (1) [18].
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P (i, 1) = arg min[F(XY)],i € (1,2,3,...,P),
k

i
i

1 )
Ghew (1) = arg min[F(X¥)], : (1)
i=12,...P
k=12,

Where i is index of particles, P is population (particle) size, ¢ is current iteration,
and F(x) is objective function. For each generation of conventional PSO, generating
new solutions xﬁ“ for each particle i is updated by using velocity and position vectors
according to Eqgs. (2) and (3), respectively [19].

V,'IJFI = V;"‘Q r (Pbest(ivt) _Xlk) +c rZ(Gbest(ia t) _Xlk) (2)
Xth=Xx Vit (3)

Where V; denotes the velocity, ¢; and ¢, are positive constant parameters called
acceleration coefficients, and »; and r, are uniformly distributed random variables
within range from 0 to 1 [18]. For standard PSO (called SPSO), generating new
solutions xﬁ“ is produced by using velocity and position vectors according to Eqgs. (4)
and (3) [18, 19]. Another variant of PSO introduced by Maurice Clerc is called

MCPSO, in which applies Egs. (5)—(6), and (3) for velocity and position updates [19].
VIt = o Vi + ey 11 (Ppest(i,1) — XF) + €2 712Gt (i, 1) — X[). (4)

Vit = K(V + i1 (Poes(i,1) = X7) + c2r2(Gpew (i, 1) — X[)). (5)

) ¢:Cl+C2, ¢>4 (6)

2
K =
2o VF 4

Where o is the inertia weight used to balance the global exploration and local
exploitation [18], K is constriction factor to control the velocity of particles [19], and ¢
is a positive parameter depending on the acceleration coefficients. After preforming the
movement strategies of PSO, the fitness value of new solution x; or F(x,) is evaluated.
The new x; will be replaced to the P, if the F(x;) is better than the F(P,,,). Moreover, if
the F(x;) is also better than the F(G,s), The new x; will be replaced to the Gy,,. These
processes are repeated until getting to the maximum iteration (G) or stop criterion.

Parameters required for any metaheuristic algorithm play a significant role for the
algorithm’s performance [20]. Parameters have to be tuned due to the optimal values
for the parameters depend on the problem domain, the instance, and the computational
time to solve [21]. A comprehensive literature survey on Scopus database covering the
period from the past to February 2019 focused on the application of PSO on UCTP has
been conducted and summarised in Table 1. There are many parameters to be assigned
before computational executions including: (i) the number of population (particle) sizes
(P); (ii) the acceleration coefficients (c; and c,); and (iii) the inertia weight (). Due to
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an ad hoc fashion, most of research articles have not reported on the investigation of the
best parameter setting of PSO via the appropriate statistical design and analysis.

Table 1. Comprehensive literature review of PSO’s parameter settings to solve the UCTP

Authors PSO PSO’s parameter settings to solve the UCTP

variants No. of cl c2 )

Particles

Oswald and Anand Deva MCPSO 10 2.5 1.5 1/(2 * log(2))
Durai [11]
Ahandani and Vakil SPSO 60 0.8 0.8 0.3
Baghmisheh [10]
Chen and Shih [8] SPSO, PSO |30 2 2 0.8
Kanoh and Chen [9] SPSO 200 5 2 0.05
Irene, Safaai, Mohd and MCPSO 10 2.8 1.3 1/(2 * log(2))
Zaiton [12]
Irene, Deris and Mohd MCPSO 10 2.8 1.3 1/(2 * log(2))
Hashim [13]
Sheau Fen Ho, Safaai and | MCPSO 10 2.8 1.3 1/(2 * log(2))
Siti Zaiton [14]
Range 10-200 0.8-5 0.8-2 0.05-1.66

3 University Course Timetabling Problem (UCTP)

Timetabling courses and examinations in educational institutions is a crucial activity,
which assigns appropriate timeslots for students, lecturers, and classrooms [22]. In this
research, the real-world university course timetabling data obtained from previous
research was considered [23]. Generally, the constraints found in course timetabling
can be classified into two types: hard constraints (HC) and soft constraints (SC) [6].
Hard constraints are the most important and must be satisfied to have a feasible
timetable whereas soft constraints are more relaxed as some violations are acceptable.
However, the number of SC violations should be minimised [22]. Both HC and SC
constraints considered in this research can be described as following [23].

The considered HC were: (i) all lectures within a course must be scheduled and
assigned to distinct periods (HC;); (ii) students and lecturers can only attend one
lecture at a time (HC5); (iii) only one lecture can take place in a room at a given time
(HC5); (iv) lecturers and students must be available for a lecture to be scheduled (HCj);
(v) all courses must be assigned into the classrooms according to their given
requirements including building location, room facilities, and room types (HCs); and
(vi) all lectures within a course required consecutive periods must be obeyed (HCg).

In additions, The considered SC were: (i) all courses should be scheduled in the
appropriate classroom in order to avoid unnecessary operating or renting costs (hour)
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(SCy); (i1) the courses taught by the given lecturer(s) should be assigned into their
available or preferred day and periods in order to save the hiring costs (hour) (SC5); and
(iii) the classrooms should be scheduled in consecutive working periods of a day in
order to reduce the number of times to clean or setup after using the rooms (times)
(8C3).

HC—HCg determine whether potential solutions are feasible. HC,—HC5 are the
fundamental timetabling constraints (called “event-clash”) that can be found in almost
all university timetabling problems [6] whilst HC4—HC¢ are individual requirements
and timetabling policy found in many universities in Thailand. This research, SC—SC3
are considered as the objective function, which aim to minimise the total university
operating costs considered from the candidate timetables following (7);

Minimise  F(XX) = W1SCy + WaSCy + W3SC;. (7)
Subject to : HC, =0, Vh, (8)

Equation (7) is the objective functions that evaluate the total university operating
costs of the SC—SC3, called F (Xlk) The weightings (W;—W;) for each SC are not
restricted and depend upon the user preferences for each institution. In this work, W;—
W3 were specified at 50 (currency units per hour), 300 (currency units per hour), and
2.5 (currency units per times), respectively. Equation (8) checks a timetable to be a
feasible timetable, in which all HCs must be satisfied. Where % is an index relating to
the A™ hard constraint (h=1,2,3,..., H), where H is the number of hard constraints.

4 Particle Swarm Optimisation Based Timetabling (PSOT)
Tool

The PSOT program has been coded in modular style using a general purpose pro-
gramming language called TCL/TK with C extension [24]. It was developed in order to
solve the real world UCTP by using three variants of particle swarm optimisation
(PSO) including: (i) conventional PSO (PSO); (ii) standard PSO (SPSO), and
(iii) Maurice Clerc PSO (MCPSO). The main procedures within the PSOT program are
included in five steps and shown in Fig. 1.

Step 1: after uploading course timetable data and assigning PSO’s parameters, the
total number of events (n) is determined from the number of teaching periods required
for all modules (courses). Then, an event list containing a set of n events was ini-
tialised. The event sequence in the list was sorted by using the Largest unpermitted
period degree (LUPD) first heuristic [25]. This rule reduces the probability of getting
infeasible timetables that generally occur in the process of solution initialisation. Next
process is to create an empty timetable or solution. The length of that is calculated
taking into account the number of timeslots per day, working day per week, and given
classrooms. Then, all events according to the sorted list were inserted into an empty
timetable in order to produce an initial population x; (i = 1, 2, 3, ..., P) that represents
a set of possible timetables. Next step is to create a new list having the same length of
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Begin /*Step 1*/
Input data and Set PSO’s parameters
Sort a list of courses using heuristic orderings

Create initial population, x; (i = 1,2,..,P)
Generate random keys for each x;
While t < Max Iteration(I) do /*Step 2%/
For (i=1, i<= Max Pop(P), i++) do
Pick random numbers: rl, r2 ~ U(0,1)

If PSO do Update particle’s velocity x;' using Eqg. (2)
If SPSO do Update particle’s velocity x;' using Eqg. (4)
If MCPSO do Update particle’s velocity x;' using Eqg. (5)
Update particle’s position x;' using Eg. (3)

If (x;' = an infeasible timetable) do
Repair x;' to be a feasible timetable /*Step 3*/
Evaluate objective functions F(x;') /*Step 4*/

If F(x;') > F(Ppes:) ,do Replace P,.s: by the new solution x;
If F(x;') > F(Gpest) ,do Replace Gpest by the new solution x;
Output results and visualisation of Gpese /*Step 5%/
End

Fig. 1. Pseudo code of the PSOT tool

solution, in which each timeslot of a new list is assigned random numbers uniformly
distributed between 0 and 1. This process is called a random key technique [26].

Step 2: this is the evolution process of the PSO algorithm. Each particle x; is
selected to update particle’s velocity based on the variants of PSO. Particle’s velocity
of the CPSO, SPSO, and MCPSO are produced by using Egs. (2), (3), and (4),
respectively. Next process, particle’s position of x} for all variants of PSO are updated
by using Eq. (6). Step 3: after evolution process, a new solution (x}) may be either
feasible or infeasible timetable. The repair process was therefore design and embedded
in the PSOT program in order to rectify infeasible solutions. Step 4: the solution quality
of the x; can be measured by using Eq. (7). If F(x}) is better than F(Pp,,), a particle
Ppes: is replaced by the x} whereas a particle Py is replaced by the x} if its solution
quality is better. This processes will be repeated until all particles in the population are
improved. Step 5: These processes (Step 2 to Step 4) will be repeated until reach the
maximum iterations before showing the best so far results.

5 Experimental Results and Analysis

The objective of the PSOT program is to construct course timetables with the lowest
total operating costs (Z). The aims of the computational experiments were to:
(1) identify which main factors and their interactions were statistically significant for
three variants of PSO; and (ii) explore and compare the performance of the PSO with
difference movement strategies including the conventional PSO, the standard PSO
(called SPSO), and the Maurice Clerc PSO (called MCPSO). Personal computer with
Core 2 Quad 3.00 GHz CPU and 4 GB RAM was used to determine the computational
time required to execute experimental runs. Five real-world university course time-
tabling datasets obtained from the previous research [23] were used in the computa-
tional experiment.
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5.1 PSO Parameters Investigation

The experiment was aimed to investigate which factors and first level interactions were
statistically significant; and to identify the best settings for these factors. The main
factors of the PSO, SPSO, and MCPSO included (i) the combination of population
(particle) sizes and the number of generation (PG), which determines the total number
of solutions generated (or amount of search) and the execution time, this computational
experiments the value was fixed at 24,000 to limit the time taken for computational
search; (ii) the acceleration coefficients (¢, and c;); and (iii) the inertia weight (w) for
the SPSO and the MCPSO, excepted the conventional PSO. The experimental design
for all PSO’s variants, shown in Table 2 was used together with data from dataset
number 1. The range of available values for each parameter of PSO were considered
from comprehensive literature reviews (shown in Table 1).

Table 2. Experimental factors and levels for the PSO variants

Factors | Levels | SPSO Factor values PSO Factor values MCPSO Factor values
-1 0 +1 -1 0 +1 -1 0 +1
PG 3 10 * 2400 | 60 * 400 | 200 *120 | 10 * 2400 | 60 * 400 | 200 * 120 | 10 * 2400 | 60 * 400 | 200 * 120
cl 3 0.8 2.8 5 0.8 2.8 5 2.8 4 5
2 3 0.8 1.3 2 0.8 1.3 2 1.3 1.5 2
w 3 0.05 0.8 1.66 - - - - - -

A full factorial experiment based on the design in Table 2 was considered for this
experiment. Thus, the total number of runs required for the PSO and MCPSO would be
3% = 27 runs per replication whereas the total runs for the SPSO would be 3* = 81 runs
per replication. The first instant problem was selected and replicated ten times using
different random seeds for all PSO’s variants. The computational results obtained from
the SPSO (3* * 10 = 810 runs), the PSO (3* * 10 =270 runs), and MCPSO
(3 * 10 = 270 runs) were analysed by using a general linear model form of analysis of
variance (ANOVA). Table 3 shows the ANOVA table, which shows the source of
variation (Source), degrees of freedom (DF), F-value, and P-value.

Table 3 shows the PSO parameters in terms of the main effect and first level
interactions. PG, PG * ¢2, and PG * o were statistically significant with a 95%
confidence interval. The random seed number (Seeds) did not statistically affect the
PSO performance. Moreover, the most influential factor in this experiment was PG
because it had the highest F-value. After ANOVA analysis, the appropriate parameter
settings for each variant of PSO were determined by using the lowest mean obtained
from main effect and interaction plots. For example shown in Fig. 2, the best parameter
settings for SPSO are: PG = 200 * 120, ¢l = 0.8-5.0, ¢2 = 0.8, and @ = 0.8. More-
over, the best settings for PSO parameters are: PG = 200 * 120, ¢/ = 0.8, and
c2 = 0.8. However, the best settings for MCPSO are: PG = 10 * 2,400, cI = 2.8, and
c2=125.
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Table 3. ANOVA analysis of PSOs parameters

Source |DF | SPSO PSO MCPSO
F-value | P-value | F-value | P-value | F-value | P-value
PG 2 19215 [0.000 [19.36 |0.000 |1.490 |0.228
cl 2 0.00 | 1.000 1.17 0311 [0.600 |0.548
c2 2 2.50 |0.083 0.80 |0.449 |0.580 |0.563
[0} 2 0.90 |0.407 — - — —
Seeds 9 1.65 | 0.097 1.02 0426 |[1.150 |0.326
PG *cl |4 0.00 | 1.000 0.27 10.899 |0.730 |0.574
PG *c2 |4 8.04 |0.000 024 10917 1.410 10.230
cl *c2 |4 0.00 | 1.000 0.53 |0.714 ]0.490 |0.740
PG *w |4 5.23  0.000 - - - -
cl *w |4 0.00 | 1.000 - - - -
c2*w |4 1.47 10.210 - - - -
Error 768
Total 809
PG ¢l
203200 -
203150 - \
203100 \
N
S 203050 : : : ‘ ‘ ‘
g 10%2,400  60*400  200%120 0.8 2.8 5.0
= 203200 <2 L
203150
. [ S— —
2031004
203050 - : : : ‘ ‘ ‘
0.8 13 2.0 0.05 0.80 1.66

Fig. 2. Example of SPSO’s main effect plots of PG, cl, c2, and o factors

5.2 Performance of PSO’s Variants

The objective of this experiment was to explore and compare the performance of the
PSO with difference movement strategies including PSO, SPSO, and MCPSO in term
of the quality of the solutions. The appropriate parameter settings for three variants of
PSO were adopted from previous experiment. Five course timetabling datasets were
used to test and compare the performance of these algorithms to find the course
timetable with the lowest penalty Z. The computational run for each instance was
repeated ten times by using different random seeds. The computational results were
analysed in terms of Avg (currency unit), SD, and Time (minute unit) as shown in
Table 4.
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Table 4. Performance comparisons between three variants of PSO

Dataset No. | SPSO PSO MCPSO

Avg SD T Avg SD T Avg SD T
203,098.75 | 41.28 | 7.37|202,944.90 | 410.98 | 6.60 | 203,030.80 | 134.34 | 6.44
382,899.98 | 364.81 | 24.23 | 382,918.73 | 218.27 | 21.61 | 382,744.20 | 391.59 | 22.82
306,721.83 | 213.26 | 41.03 | 306,854.75 | 163.04 | 35.26 | 305,400.33 | 596.58 | 36.55
310,214.98 | 382.26 | 31.10 | 310,000.63 | 464.64 | 30.05 | 308,821.35 | 597.81 | 26.75
492,891.90 | 409.66 | 50.04 | 492,910.05 | 197.49 | 41.72 | 493,002.15 | 500.36 | 47.81

(S RN RS (S R

From Table 4, it can be seen that the average values of the best so far solutions
(timetables) generated by MCPSO were better than those values generated by both PSO
and SPSO for most problems. The PSO outperformed the other methods for problem
number 1 whereas the SPSO outperformed both PSO and MCPSO for problem number
5. Moreover, the SD values and the averages of the computational times obtained from
both methods were moderately different for all problems.

6 Conclusions

A particle swarm optimisation based timetabling (PSOT) tool has been developed in
order to solve the real-world university course timetabling problems. The conventional
PSO, the SPSO, and the MCPSO were embedded in the PSOT program for con-
structing the desirable timetables with minimal objective function. Full factorial
experimental designs and ANOVA were adopted to investigate the statistically
influential factors for each variant of PSO before identifying its best parameter settings.
It was found that the PSOs’ parameters in terms of the main effect and interactions
including PG, PG * c2, and PG * o were statistically significant with a 95% confi-
dence interval. The most influential factor in this experiment was PG because it had the
highest F-value. Moreover, the MCPSO outperformed the other variants of PSO for
most datasets whereas the SPSO and PSO outperformed the other variants only one
dataset. However, the computational times required by the proposed PSO variants were
moderately difference.
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