

รายงานวิจัยฉบับสมบูรณ์

 โครงการ การลดต้นทุนการด าเนนิงานในมหาวิทยาลัยให้น้อยที่สุด
 ด้วยวิธีการหาค่าเหมาะสมที่สดุแบบได้รับแรงดลใจมาจากสัตว์

 โดย ดร.ธชัชัย เทพกรณ ์และคณะ

กันยายน 2562

สัญญาเลขที่ MRG6080066

 รายงานวิจัยฉบับสมบูรณ ์

 โครงการ การลดต้นทุนการด าเนินงานในมหาวิทยาลัยให้น้อยที่สุดด้วย

 วิธีการหาค่าเหมาะสมทีสุ่ดแบบได้รับแรงดลใจมาจากสัตว์

 คณะผู้วิจัย สงักัด
 1. ดร.ธัชชัย เทพกรณ์ คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม
 2. ผู้ช่วยศาสตราจารย์ ดร.ภูพงษ์ พงษ์เจริญ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร

 สนับสนนุโดยส านักงานคณะกรรมการการอุดมศึกษา และส านักงานกองทุนสนับสนนุการวิจัย

 (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จ าเป็นต้องเห็นด้วยเสมอไป)

2

บทคัดย่อ

รหัสโครงการ : MRG6080066
ชื่อโครงการ : การลดต้นทุนการด าเนินงานในมหาวิทยาลัยให้น้อยที่สุดด้วยวิธีการหาค่าเหมาะสมที่สุด
 แบบได้รับแรงดลใจมาจากสัตว์
ชื่อนักวิจัย : 1. ดร.ธัชชัย เทพกรณ์ คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม
 2. ผู้ช่วยศาสตราจารย์ ดร.ภูพงษ์ พงษ์เจริญ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร
E-mail Address: thatchai.t@psru.ac.th
ระยะเวลาโครงการ: 24 เดือน

โปรแกรมช่วยในการจัดตารางเรียนตารางสอนโดยประยุกต์ใช้วิธีการคุกคูเสิร์ช (CST) ได้ถูกพัฒนาขึ้นมา

เพ่ือแก้ปัญหาการจัดตารางสอนในระดับอุดมศึกษาโดยพิจารณาการจัดตารางเรียนตารางสอนแบบค านึงถึง
ต้นทุนการด าเนินการรวมของมหาวิทยาลัยที่น้อยที่สุด ซึ่งประกอบไปด้วย ต้นทุนการใช้ห้องเรียนแต่ละห้อง
ต้นทุนการจ้างอาจารย์ และต้นทุนการท าความสะอาดหรือจัดเตรียมห้อง โปรแกรม CST จะประกอบไปด้วย
กลยุทธ์การเดินสุ่ม 2 รูปแบบส าหรับวิธีการคุกคูเสิร์ช (CS) คือ แบบ Lévy Flights (CSLF) และแบบ
Gaussian Random Walks (CSGRW) นอกจากนี้ วิธีการค้นหาแบบเฉพาะพ้ืนที่ (Local Search: LS)
ประกอบด้ วย วิธีการ Insertion Operator (IO) และวิธีการ Exchange Operator (EO) ได้ ถูกน ามา
ผสมผสาน (Hybridisation) กับวิธีการ CS อีกด้วย ปัญหาการจัดตารางสอนจากข้อมูลจริงของมหาวิทยาลัย
นเรศวรได้ถูกน ามาออกแบบเป็น 11 โจทย์ปัญหาส าหรับใช้ในการทดสอบประสิทธิภาพของโปรแกรม CST
เครื่องมือทางสถิติขั้นสูงส าหรับการออกแบบการทดลองและการวิเคราะห์ผลถูกน ามาใช้ในการค้นหาและ
วิเคราะห์อิทธิพลค่าพารามิเตอร์ของวิธีการ CS ก่อนท าการสรุปค่าพารามิเตอร์ที่เหมาะสมในทุกโจทย์ปัญหา
ผลการทดลองพบว่า วิธีการ CSLF มีประสิทธิภาพดีกว่าวิธีการ CSGRW ในโจทย์ปัญหาส่วนใหญ่อย่างไม่มี
นัยส าคัญทางสถิติ ยิ่งไปกว่านั้น กลยุทธ์ LS ทั้งสองวิธีสามารถปรับปรุงประสิทธิภาพของวิธีการ CSLF ได้ทั้งใน
ด้านคุณภาพของค าตอบ ความเร็วในการลู่เข้าสู่ค าตอบที่ดี รวมถึงเวลาที่ใช้ในการประมวลผล

ค าหลัก: การจัดตารางสอน, เมต้าฮิวริสติกส์, วิธีการคุกคูเสิร์ช, การออกแบบการทดลอง

3

Abstract

Project Code: MRG6080066
Project Title: Minimising University Operating Costs Using Animal-inspired Optimisation
 Algorithms
Investigator: 1. Dr.Thatchai Thepphakorn,
 Faculty of Industrial Technology, Pibulsongkram Rajabhat University.
 2. Assistant Professor Dr.Pupong Pongcharoen,
 Faculty of Engineering, Naresuan University
E-mail Address: thatchai.t@psru.ac.th
Project Period: 24 months

A new cuckoo search based timetabling (CST) tool has been developed for university
courses scheduling based on minimising the total operation costs: (i) lecturing costs; (ii)
overhead costs; and (iii) setup and cleaning costs. The CST program was consisted of two
random walks strategies for the cuckoo search (CS) algorithm including the CS via Lévy
Flights (CSLF) and the CS via Gaussian Random Walks (CSGRW). Two local search (LS)
strategies including Insertion Operator (IO) and Exchange Operator (EO) were hybridised with
the CS algorithm. This work, real-world course timetabling data obtained from the Naresuan
University were designed for eleven instances and tested by the CST tool. Advance
statistical tools for experimental design and analysis were used to investigate and analyse
the factor influence of this system and conclude the appropriate parameter setting of the
proposed method for all problems. The CSLF insignificantly outperformed the CSGRW for
most cases. Moreover, both LS strategies dramatically improved the CSLF performances in
terms of solution quality, convergence speeds, and execution times.

Keywords: course timetabling, metaheuristics, cuckoo search, experimental design

4

Executive Summary

Course timetabling problem generally arises every academic semester in educational institutions and

it usually have a lot of data. For example, the current real-world timetabling data for Naresuan University
(NU) consisted of 16 faculties, 5 colleges, 37 departments, 22,200 students, and 1,400 lecturers,
approximately. This problem can be solved either by: (i) academic staff; (ii) semi-automatically timetabling
tool; and (iii) automatically timetabling tool. Solving large course timetabling problems in colleges or
universities using the first two methods is extremely difficult and may requires a group of people to work
for several weeks because of high numbers of courses, students, lecturers, classrooms, and constraints
involved.

A university consists of many sub course timetabling problems generated from the central/university
timetabling level, faculty timetabling level, and department timetabling level. Generally, the central
timetabling level is the most important and must be operated first. Because that level relates with many
mandatory courses (such as English subject, Thai subject, and etc.) enrolled by lots of students across
many faculties within a university. After that, the remaining timetabling levels are allowed to schedule the
remaining courses (most of major courses for curricula) enrolled by senior students within a faculty or
department responded. It can be seen that there are many timetabling steps and staff required for
constructing course timetables due to high number of faculties and departments within a university. All
timetabling levels cannot schedules concurrently that affect long waiting times from central timetabling
to faculty and department timetabling. Moreover, the current timetabling tool for the NU is semi-
automatic program, in which it cannot construct the optimal course timetable according to all user
preferences.

The general constraints in course timetabling can be classified into two types: hard constraints (HC)
and soft constraints (SC). HC are the most important and must be satisfied to have a feasible timetable.
During course scheduling, infeasible or impracticable timetables are often generated because of variety
and large number of HCs. Those timetables must be reschedule until receiving the feasible timetables.
Moreover, course structures and special requirements found in real-world course timetabling problems
can increase the difficulty and complexity to find a practicable or feasible timetables. For examples, a
course required multiple sections and taught by the same multiple teachers must be taught only one
section at the same time, all lecturers and students must be available for a lecture to be scheduled.
Unfortunately, these special constraints have been regularly found in almost colleges and universities in
Thailand. Therefore, investigating a feasible or practicable timetable, subject to all HC constraints, for
large course timetabling data (including high numbers of courses, students, lecturers, classrooms) without
using automatically course timetabling tools is very difficult or impossible works within the acceptable
times.

Research works considering the objective function that related with SC in term of minimal total
operating costs (such as lecturing costs, overhead or classroom leasing costs etc.) have been rarely

5

reported from literature. The overhead costs (classrooms leasing) at the Universidad de Chile was greatly
improved by using a course scheduling system, called eClasSkeduler program. In addition, the lecturing
costs at Universidad de La Sabana in Colombia was enhanced by using integer linear programming
method. However, there is no any research work considering both overhead and lecturing costs
simultaneously to solve course timetabling problems.

Nowadays, automatically course timetabling tools based on mathematical models and algorithms,
especially for animal-inspired optimisation methods, are becoming increasingly effective at constructing
timetables to the desired specification. There are commercially available timetabling program packages
but most of them are expensive, inconvenienced training, and maintenance (such as Mimosa scheduling
program prices for site license based on the number of students, 800 EUR - 8,000 EUR,
http://www.mimosasoftware.com/prices.html). Due to the difference of cultures and traditions among
countries, the foreign software packages may not be suitable to solve the university course timetabling
problems in Thailand. The examples of special characteristics that are always found in the real-life course
timetabling problem in Thailand such as multiple lecturers per a course, multiple sections per a course,
video conference teaching, location (or building) and classroom bookings, day and period bookings, split
and joint classes between lecture and laboratory within a course. Therefore, developing a tailor-made
course timetabling tool is an appropriate choice for the specific problems.

The proposed automatically course timetabling program not only deals with manpower, human
errors, scheduling times, outsourcing costs, impractical timetables, optimal course timetable, resource
operating costs, and specific timetabling problems but can also be adapted and applied to other
educational institutes in Thailand, 156 (public and private) institutes responded by the Office of the
Higher Education Commission (OHEC) (http://www.mua.go.th/) and 910 (public and private) institutes
responded by the Office of the Vocational Education Commission (OVEC) (http://www.vec.go.th/). The
following outcomes are to: reduce a lot of government fund of Thailand to provide or buy the
automatically course timetabling tools from other countries for all educational institutes; increase
educational resource utilisation for each institute; and reduce many operating costs in colleges and
universities. Besides saving lots of government fund allocated to all public colleges and universities in
Thailand every year, the autonomous, public, and private universities can survive sustainably by
themselves in the future. Educational standards, rankings, and competitive capability of colleges and
universities in Thailand would be eventually increased due to effective course timetabling affects
resource utilisation as well as staff and student satisfaction.

6

สารบัญ

บทคัดย่อ ... 2
Abstract .. 3
Executive Summary ... 4
บทที่ 1 .. 8

1.1 ที่มาและความส าคัญของปัญหา.. 8
1.2 วัตถุประสงค์ของโครงการ .. 12
1.3 ขอบเขตการวิจัย... 12
1.4 ประโยชน์ที่คาดว่าจะได้รับ ... 16
1.5 แผนการด าเนินงานของโครงการวิจัย ... 17

บทที่ 2 .. 18
2.1 ทบทวนวรรณกรรมที่เกี่ยวข้องกับปัญหาการจัดตารางเรียนตารางสอน .. 18
2.2 ปัญหาการจัดตารางเรียนตารางสอนในระดับอุดมศึกษาแบบซับซ้อน ... 18
2.3 ฟังก์ชันเป้าประสงค์ของการแก้ปัญหาการจัดตารางเรียนตารางสอน .. 20
2.4 ทบทวนวรรณกรรมที่เกี่ยวข้องกับวิธีการหาค่าท่ีเหมาะสมที่สุดในการแก้ปัญหา 29
2.5 วิธีการเมต้าฮิวริสติกส์ ... 29
2.6 การก าหนดพารามิเตอร์ที่เหมาะสมให้กับวิธีการเมต้าฮิวริสติกส์ ... 31
2.7 การปรับปรุงประสิทธิภาพวิธีการเมต้าฮิวริสติกส์โดยการปรับปรุงกระบวนการ 32
2.8 การปรับปรุงประสิทธิภาพวิธีการเมต้าฮิวริสติกส์โดยการผสมผสาน .. 32

บทที่ 3 .. 34
3.1 ท าการเก็บและวิเคราะห์ข้อมูลการจัดตารางเรียนตารางสอน ... 34
3.2 การก าหนดข้อบังคับของปัญหา (Hard and Soft constraints) .. 37
3.3 วิธีการคุกคูเสิร์ช (Cuckoo Search: CS) .. 38
3.4 วิธีการคุกคูเสิร์ช (CS) ในการแก้ปัญหาการจัดตารางเรียนตารางสอน ... 40
3.5 การปรับปรุงประสิทธิภาพวิธีการคุกคูเสิร์ช (CS) ในการแก้ปัญหาการจัดตารางสอน 42
3.6 ท าการออกแบบรูปแบบของข้อมูลน าเข้า ... 44
3.7 ท าการออกแบบโปรแกรมจัดตารางสอนแบบอัตโนมัติ ... 45
3.8 ท าการพัฒนาโปรแกรมจัดตารางสอนตามที่ได้ออกแบบไว้โดยใช้ภาษา TCL/TK และ C 46
3.9 การออกแบบการทดลองและการทดสอบโปรแกรม .. 49
3.10 การวิเคราะห์ผลจากการออกแบบการทดลอง .. 50

7

บทที่ 4 .. 51
4.1 ผลการทดลองที่ 1: การค้นหาค่าพารามิเตอร์ที่เหมาะสม .. 51
4.2 ผลการทดลองที่ 2: การปรับเปลี่ยนกระบวนการวิธีการ CS ... 57
4.3 ผลการทดลองที่ 3: การปรับปรุงประสิทธิภาพวิธีการ CS แบบผสมผสาน .. 58

บทที่ 5 .. 62
เอกสารอ้างอิง ... 64
ภาคผนวก ... 77

8

บทท่ี 1

บทน า

1.1 ที่มาและความส าคัญของปัญหา

การจัดตารางการศึกษาเป็นกิจกรรมที่เกิดขึ้นเป็นประจ าทุกภาคการศึกษาในทุกสถาบันการศึกษา โดยมี
ความเกี่ยวข้องกับการจัดสรรทรัพยากรทางการศึกษาที่มีอยู่อย่างจ ากัดภายใต้ข้อบังคับต่างๆ ลงในช่วงเวลาที่มี
ความเหมาะสมและเป็นไปตามวัตถุประสงค์มากที่สุด [1] การสร้างตารางการศึกษา (เช่น ตารางเรียน
ตารางสอน ตารางการใช้ห้องเรียน เป็นต้น) ที่มีคุณภาพดีย่อมท าให้การด าเนินการเรียนการสอนใน
สถาบันการศึกษาเกิดประสิทธิภาพที่ดีเช่นกันในแต่ละเทอม ดังนั้นตลอดระยะเวลา 50 กว่าปีที่ผ่านมาจนถึง
ปัจจุบัน การแก้ปัญหาการจัดตารางการศึกษาจึงได้รับความสนใจจากนักวิจัยจ านวนมากทั้งในกลุ่มของการวิจัย
การด าเนินงาน (Operations research: OR) และในกลุ่มของความฉลาดประดิษฐ์ (Artificial intelligent: AI)
และยังคงได้รับความสนใจเพิ่มมากขึ้นอย่างต่อเนื่องในช่วงหลายสิบปีหลัง [2]

การจัดตารางเรียนตารางสอนในสถาบันระดับอุดมศึกษา เช่น วิทยาลัย (College) มหาวิทยาลัย
(University) เป็นต้น ปกติแล้วจะมีขนาดของปัญหาที่ใหญ่มาก มีจ านวนข้อบังคับและข้อจ ากัดมากกว่าการจัด
ตารางการศึกษาในสถาบันการศึกษาขั้นพ้ืนฐาน เช่น โรงเรียนมัธยมศึกษา (Secondary school) เป็นต้น ซึ่ง
ความซับซ้อนของปัญหาและความยุ่งยากในการจัดตารางสอนในระดับอุดมศึกษาจะมีมากกว่า [3] นอกจากนี้
วิชาเรียนวิชาสอนในระดับอุดมศึกษาจะมีทั้งแบบวิชาบังคับ (Mandatory courses) และวิชาเลือก (Elective
courses) [4] โดยนิสิตในชั้นเดียวกันแต่ถ้ามีวิชาเลือกเรียนที่แตกต่างกันจะท าให้ตารางเรียนของนิสิตแต่ละคน
แตกต่างกันออกไปตามวิชาที่เลือกเรียน ส่งผลให้การจัดตารางเรียนในชั้นดังกล่าวมีความยุ่งยากและซับซ้อน
มากขึ้น

ข้อบังคับ (Constraints) ของปัญหาการจัดตารางเรียนตารางสอนโดยทั่วไปแล้วมี 2 ประเภทใหญ่คือ
ข้อบังคับหลัก (Hard constraints: HC) และข้อบังคับรอง (Soft constraints: SC) [5-8] โดยที่เป้าประสงค์
หลักของการแก้ปัญหาการจัดตารางเรียนตารางสอนคือ การค้นหาตารางเรียนตารางสอนที่ไม่มีการละเมิด
ข้อบังคับหลักและมีจ านวนการละเมิดข้อบังคับรองที่น้อยที่สุด [6, 9, 10] ในฟังก์ชันเป้าประสงค์ของการ
แก้ปัญหาการจัดตารางเรียนตารางสอนสามารถจ าแนกข้อบังคับรองที่พบได้หลายประเภท ประกอบด้วย 1)
แบบ Unary constraints เช่น การนับจ านวนครั้งในการจัดวิชาลงในคาบเวลาห้ ามจัดตารางสอน
(Unpermitted or booking periods) [11] เป็นต้น 2) แบบ Binary constraints เช่น การนับจ านวนครั้ง
การชนกันของตารางสอน (Event clash constraints) [12] เป็นต้น 3) แบบ Capacity constraints เช่น
การนับจ านวนเก้าอ้ีที่ ไม่ เพียงพอทั้ งหมดในการจัดตารางสอน [13] เป็นต้น 4) แบบ Event spread
constraints เช่น การนับจ านวนครั้งที่มีการเรียนการสอนต่อเนื่องเกินสองคาบติดกัน (Spreading-out or
clumping-together) [14] เป็นต้น 5) แบบ Agent constraints เช่น การนับจ านวนครั้งที่มีรูปแบบการสอน
(Lecturing format) ไม่เป็นไปตามที่อาจารย์ต้องการ (People preferences or requirements) [1] เป็น

9

ต้น และ 6) แบบ Stability or movement constraints เช่น การนับจ านวนครั้งที่วิชาเดียวกันแต่จัดตาราง
ให้ใช้ห้องเรียนต่างกันทุกครั้ง [15] เป็นต้น

อย่างไรก็ตามจากการทบทวนวรรณกรรมจะพบว่า ยังมีข้อบังคับรองอีกประเภทคือ แบบ Cost
constraints ซึ่งงานวิจัยที่พิจารณาฟังก์ชันเป้าประสงค์จากข้อบังคับรองที่เกี่ยวข้องกับการจัดตารางเรียน
ตารางสอนโดยเกิดค่าด าเนินการรวมจากการใช้ทรัพยากรทางการศึกษาที่น้อยที่สุ ด (Minimising total
operating costs) นั้นพบได้น้อยมากเพียง 2 บทความจากฐานข้อมูล ISI web of knowledge ดังนี้ Seo
และคณะ [16] ได้ท าการปรับปรุงระบบการจัดตารางสอนในองค์กรให้มีความรวดเร็วมากขึ้นโดยการพัฒนา
โปรแกรม eClasSkeduler ส าหรับใช้ในมหาวิทยาลัย Universidad de Chile โดยพิจารณาต้นทุนการเช่า
ห้องเรียน (Classrooms leasing/operating costs) ที่น้อยที่สุดในฟังก์ชันเป้าประสงค์ นอกจากนี้ Torres-
Ovalle และคณะ [17] ได้แก้ปัญหาการจัดตารางสอนจริงของมหาวิทยาลัย Universidad de La Sabana ที่
โคลัมเบียด้วยวิธีการเชิงเส้นแบบจ านวนเต็ม (Integer linear programming) โดยพิจารณาต้นทุนการจ้าง
อาจารย์ (Lecturing costs) ที่น้อยที่สุดในฟังก์ชันเป้าประสงค์ ดังนั้นในงานวิจัยนี้จึงได้เติมเต็มการพิจารณา
ฟังก์ชันเป้าประสงค์ในข้อบังคับรอง (SC) แบบ Cost constraints โดยจัดตารางเรียนตารางสอนเพ่ือให้เกิดค่า
ด าเนินการรวมจากการใช้ทรัพยากรทางการศึกษาที่น้อยที่สุด ประกอบด้วย ต้นทุนค่าโสหุ้ย (Overhead
costs) เช่น ค่าเช่าห้องเรียน ค่าน้ า ค่าไฟ เป็นต้น ต้นทุนการจ้างอาจารย์ (Lecturing costs) และต้นทุนการ
จัดเตรียมหรือท าความสะอาดห้อง (Setup/cleaning costs) ซึ่งยังไม่พบงานวิจัยใดพิจารณาฟังก์ชัน
เป้าประสงค์ย่อย 3 แบบนี้ร่วมกันมาก่อน

โดยทั่วไปแล้วการจัดตารางเรียนตารางสอนสามารถท าได้โดยใช้มนุษย์ (Manually by academic staff)
หรือโดยใช้ โปรแกรมแบบกึ่ งอัตโนมัติ (Semi-automatically) หรือโดยใช้ โปรแกรมแบบอัตโนมัติ
(Automatically) ปัจจุบันระบบการจัดตารางเรียนตารางสอนในสถาบันระดับอุดมศึกษาของประเทศไทยส่วน
ใหญ่จะยังเป็นการจัดตารางเรียนตารางสอนแบบกึ่งอัตโนมัติ ซึ่งเป็นการใช้ซอฟต์แวร์คอมพิวเตอร์มาช่วยเหลือ
มนุษย์เฉพาะการตรวจสอบการชนกันของตารางเรียนตารางสอนขณะท าการจัดตารางเท่านั้น ในขณะที่การ
เลือกห้องเรียนและคาบเวลาให้กับแต่ละวิชานั้นยังคงให้มนุษย์เป็นผู้ตัดสินใจทั้งหมด ซึ่งต้องใช้บุคลากรจ านวน
มากและเวลาที่นานมากในการเลือกคาบเวลาที่ไม่ชนกันให้กับทุกวิชาของมหาวิทยาลัยในแต่ละเทอม ในขณะที่
การจัดตารางเรียนตารางสอนแบบอัตโนมัติจะเป็นการพัฒนาซอฟต์แวร์คอมพิวเตอร์ขึ้นมาช่วยจัดตารางเรียน
ตารางสอนแทนมนุษย์ทั้งในส่วนของการตัดสินใจเลือกห้องเรียน/เวลาที่เหมาะสมให้กับแต่ละวิชาและการ
ตรวจสอบข้อบังคับหลักต่างๆ ไปพร้อมๆ กัน ซึ่งมีข้อได้เปรียบกว่าวิธีการจัดตารางเรียนตารางสอน 2 แบบ
แรก คือ เหมาะกับการแก้ปัญหาขนาดใหญ่มากและมีข้อบังคับจ านวนมาก มีความสะดวกและสามารถการจัด
ตารางเรียนตารางสอนได้รวดเร็วกว่ามาก ใช้บุคลากรในการจัดตารางน้อยกว่ามาก ลดจ านวนขั้นตอนในการ
จัดตารางเรียนตารางสอนให้เหลือเพียงขั้นตอนเดียว สามารถจัดตารางเรียนตารางสอนตามที่นักเรียนและ
อาจารย์ต้องการได ้

แม้ว่าโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติของต่างประเทศมีอยู่หลายโปรแกรม แต่โปรแกรม
ดังกล่าวมีราคาขายที่แพง ไม่สะดวกในด้านการอบรมและการบ ารุงรักษา อีกทั้งยังมีความแตกต่างทางด้าน

10

วัฒนธรรมและประเพณีของการศึกษาในแต่ละประเทศซึ่งมีความเฉพาะ จึงท าให้การประยุกต์ใช้โปรแกรมแบบ
อัตโนมัติของต่างประเทศกับสถานศึกษาในประเทศไทยอาจจะท าได้ค่อนข้างยาก ดังนั้นการการพัฒนา
โปรแกรมในการจัดตารางเรียนตารางสอนระดับอุดมศึกษาแบบอัตโนมัติจึงเป็นอีกทางเลือกในงานวิจัยนี้

นอกจากนี้การปรับปรุงและพัฒนาโปรแกรมในการจัดตารางสอนให้มีประสิทธิภาพสูงขึ้นเป็นอีกประเด็นที่
ส าคัญ เนื่องจากปัญหาการจัดตารางเรียนตารางสอนในระดับอุดมศึกษามีลักษณะเป็นแบบ Combinatorial
Optimisation (CO) [4, 18] และยังถูกจัดเป็นปัญหาแบบ Non-deterministic Polynomial (NP) hard
problem [19, 20] หมายความว่า เมื่อขนาดของปัญหาเพ่ิมขึ้นเพียงเล็กน้อยแต่เวลาที่ต้องการในการ
แก้ปัญหาจะเพ่ิมขึ้นอย่างทวีคูณ [1] ดังนั้นหลายงานวิจัยในปัจจุบันจึงให้ความสนใจในเรื่องของการน าวิธีการ
แก้ปัญหาขนาดใหญ่และซับซ้อนที่มีประสิทธิภาพมาประยุกต์ใช้ร่วมกับโปรแกรมส าเร็จรูปมากข้ึน [21]

วิธีการในกลุ่มของเมต้าฮิวริสติกส์ (Metaheuristics) ถูกยอมรับอย่างแพร่หลายแล้วว่าเป็นอีกแนวทาง
ส าหรับแก้ปัญหาแบบ NP-hard problems โดยอาศัยหลักการประมาณค่าในการค้นหาค าตอบที่มีคุณภาพดี
ภายในเวลาที่ยอมรับได้ [5] สามารถแก้ปัญหาที่มีขนาดใหญ่และมีความซับซ้อนสูงได้อย่างมีประสิทธิภาพและ
ประสิทธิผล [22] วิธีการในกลุ่มนี้นิยมจ าแนกได้เป็น 2 กลุ่มใหญ่ คือ วิธีการแบบ Single-solution based
metaheuristics (S-meta) และแบบ Population based metaheuristics (P-meta) [18, 22] วิธีการใน
กลุ่ม P-meta จะได้ เปรียบกว่าวิธีการในกลุ่ม S-meta ในด้านการเริ่มต้นจากค าตอบหลายค าตอบ
(Population) ไว้ส าหรับพัฒนาค าตอบใหม่ๆ โดยค าตอบที่ได้จะมีลักษณะเด่นที่เป็นกลุ่มของค าตอบที่มีความ
หลากหลาย (Diversification) จึงท าให้วิธีการนี้มีลักษณะเด่นในการค้นหาค าตอบเชิงส ารวจ (Exploration
search) เป็นหลัก [22] วิธีการในกลุ่มของ P-meta ชนิดใหม่ๆ ถูกน าเสนอขึ้นมาใหม่อย่างต่อเนื่องในปัจจุบัน
เช่น วิธีการ Cuckoo Search [23], วิธีการ Bat Algorithm [24], วิธีการ Firefly Algorithm [25], วิธีการ
Krill Herd [26], วิ ธีการ Flower Pollination Algorithm [27], วิธีการ Invasive Weed Optimisation
[28], วิธีการ Gravitational search [29], วิธีการ Intelligent water drop [30], วิธีการ Backtracking
optimisation search [31], วิธีการ League championship algorithm [32] เป็นต้น

วิธีการคุกคูเสิร์ช (Cuckoo Search: CS) เป็นหนึ่งในวิธีการเมต้าฮิวริสติกส์แบบ P-meta แบบใหม่ที่ได้
แรงดลใจมาจากธรรมชาติ (Nature-inspired algorithms) ถูกพัฒนาขึ้นโดย Yang และ Deb ในปี 2009
[23] วิธีการ CS นี้ได้แนวคิดมาจากพฤติกรรมอันชาญฉลาดในการฝากฟักไข่ของนกกาเหว่าไว้กับรังของนกสาย
พันธ์อ่ืนเพ่ือความอยู่รอดของเผ่าพันธุ์ ถึงแม้จะเป็นวิธีการที่ค่อนข้างใหม่ แต่ในช่วง 4-5 ปีที่ผ่านมาวิธีการ CS
กลับได้รับความนิยมน ามาประยุกต์ใช้แก้ปัญหาการหาค่าที่เหมาะสมที่สุดอย่างแพร่หลายและประสบผลส าเร็จ
เป็นอย่างดี เช่น ปัญหาการหาค่าที่เหมาะสมที่สุดเชิงตัวเลข (Numerical optimisation problems) [33],
ปัญหาการหาค่าที่เหมาะสมที่สุดทางวิศวกรรม (Engineering optimisation problems) [23], ปัญหาการ
เดินทางของพนักงานขายแบบพื้นผิวทรงกลม (Spherical traveling salesman problems) [34], ปัญหาการ
จัดตารางการเข้าเวรของพยาบาล (Nurse scheduling problems) [35], ปัญหาการจัดตารางการผลิต
(Production scheduling problems) [36] เป็นต้น

11

นอกจากนี้หลายงานวิจัยยังได้ท าการเปรียบเทียบประสิทธิภาพในการแก้ปัญหาของวิธีการ CS กับวิธีการ
เมต้าฮิวริสติกส์แบบอ่ืนอีกด้วย เช่น ปัญหาการหาค่าที่ เหมาะสมที่สุดเชิงตัวเลขพบว่า วิธีการ CS มี
ประสิทธิภาพในการหาค าตอบที่ดีกว่า GA, PSO [37] และ ABC [33] ส าหรับปัญหากระบวนการบด (Milling
operation) พบว่า วิธีการ CS มีประสิทธิภาพในการหาค าตอบที่ดีกว่าทั้งวิธีการ GA, ACO, AIS และ PSO
[38] เป็นต้น ดังนั้นจะเห็นได้ว่าวิธีการ CS เป็นวิธีการหนึ่งที่น่าสนใจมาก เพราะว่านอกจากจะมีจ านวน
พารามิเตอร์ที่ต้องปรับค่าให้เหมาะสมน้อยกว่าวิธีการเมต้าฮิวริสติกส์แบบอ่ืนแล้ว เช่น GA และ PSO [37] เป็น
ต้น วิธีการ CS ยังมีประสิทธิภาพในการหาค าตอบที่ดีมากเมื่อเปรียบเทียบกับวิธีการเมต้าฮิวริสติกส์แบบอ่ืนๆ
จากการประยุกต์ใช้แก้ปัญหาหลายประเภท อย่างไรก็ตามการประยุกต์ใช้วิธีการ CS แก้ปัญหาการจัดตาราง
เรียนตารางสอนระดับมหาวิทยาลัย เมื่อได้ท าการสืบค้นในฐานข้อมู ลระดับนานาชาติ ISI web of
knowledge, Scopus, และ IEEE Xplore ทั้งในส่วนที่ เป็นชื่อเรื่อง (Title) บทคัดย่อ (Abstract) และค า
ส าคัญ (Keyword) จะพบเพียง 1 บทความเฉพาะในฐานข้อมูลของ Scopus เท่านั้น ในขณะที่ฐานข้อมูล ISI
web of knowledge และ IEEE Xplore ยังไม่พบงานวิจัยที่ประยุกต์ใช้วิธีการ CS แก้ปัญหาการจัดตาราง
เรียนตารางสอนระดับมหาวิทยาลัยมาก่อน

ถึงแม้ว่าวิธีการเมต้าฮิวริสติกส์จะมีข้อดีต่างๆ มากมายและได้รับความนิยมอย่างมากในปัจจุบัน แต่วิธีการ
ดังกล่าวก็มีปัญหาบางประการซึ่งส่งผลโดยตรงต่อประสิทธิภาพในการค้นหาค าตอบเช่นกัน เนื่องจาก
ประสิทธิภาพในการหาค าตอบของวิธีการเมต้าฮิวริสติกส์นั้นขึ้นอยู่กับค่าพารามิเตอร์ที่ใช้ [22, 39] การค้นหา
และการก าหนดค่าพารามิเตอร์ที่เหมาะสมให้กับวิธีการเมต้าฮิวริสติกส์จึงเป็นสิ่งที่ไม่อาจหลีกเลี่ยงไปได้ ดังนั้น
หลายงานวิจัยจึงได้ศึกษาและค้นหาค่าพารามิเตอร์ที่เหมาะสมที่สุดให้กับวิธีการเมต้าฮิวริสติกส์เพ่ือให้วิธีการ
ดังกล่าวมีประสิทธิภาพสูงขึ้นกว่าเดิมในการแก้ปัญหา [40-42]

การก าหนดพารามิเตอร์แบบ Parameter tuning นั้น ค่าพารามิเตอร์ต่างๆ ของวิธีการเมต้าฮิวริสติกส์จะ
ถูกก าหนดก่อนที่วิธีการดังกล่าวจะท าการประมวลผล [22] วิธีการก าหนดค่าพารามิเตอร์ในกลุ่มนี้ เช่น วิธีการ
Ad hoc selection [43], วิธีการ Adopted approach [13], วิธีการ Best guess approach [44], วิธีการ
One-factor-at-a-time [44], วิธีการ Factorial design [44] เป็นต้น อย่างไรก็ตามการค้นหาพารามิเตอร์ที่
เหมาะสมด้วย 3 วิธีการแรกนั้น ไม่สามารถรับประกันได้เลยว่าจะท าให้วิธีการเมต้าฮิวริสติกส์สามารถค้นหา
ค าตอบที่ดีที่สุดได้ [44, 45] ขณะที่วิธีการ One-factor-at-a-time มีข้อเสียเปรียบตรงที่ไม่สามารถศึกษา
ผลกระทบร่วม (Interaction) ระหว่างปัจจัยได้ สุดท้ายแล้ววิธีการ Factorial design จะเป็นวิธีการที่ถูกต้อง
และมีประสิทธิภาพมากสุดส าหรับค้นหาค่าพารามิเตอร์ที่เหมาะสมที่สุดให้กับวิธีการเมต้าฮิวริสติกส์ เนื่องจาก
สามารถจัดการกับพารามิเตอร์จ านวนหลายตัวพร้อมกันได้โดยใช้หลักการออกแบบการทดลองและการ
วิเคราะห์ทางสถิติ (Experimental design and analysis) เข้ามาช่วย อีกทั้งยังสามารถศึกษาผลกระทบร่วม
(Interaction) ระหว่างปัจจัยได้ด้วย [44]

การปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ให้ดีขึ้นกว่าเดิมโดยการปรับปรุงกระบวนการ
(Modification) ท างานจัดเป็นอีกวิธีการหนึ่งที่พบได้บ่อย ส าหรับปัญหาการจัดตารางเรียนตารางสอนพบว่า
หลายงานวิจัยได้ปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ในกระบวนการหรือในขั้นตอนที่แตกต่างกัน

12

ออกไปขึ้นอยู่กับวัตถุประสงค์ของการปรับปรุงในกระบวนการนั้นๆ ซึ่งผลของการปรับปรุงต่างก็ประสบ
ผลส าเร็จเป็นอย่างดี เช่น กระบวนการ Initial solution [46, 47], กระบวนการ Solution evolution [48],
กระบวนการ Fitness calculation [19], กระบวนการ Selection process [49], กระบวนการ Solution
replacement [10], กระบวนการ Accepted rules [19], กระบวนการ Memory update [50] เป็นต้น

การปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ให้ดีขึ้นกว่าเดิมโดยการผสมผสาน (Hybridisation)
จัดเป็นอีกวิธีการหนึ่งที่พบได้บ่อย เนื่องจากการแก้ปัญหาการหาค่าที่เหมาะสมที่สุดหลายประเภทในปัจจุบัน
นั้น การใช้วิธีการเมต้าฮิวริสติกส์เพียงวิธีการเดียวปกติแล้วจะไม่เหมาะกับการน าไปประยุกต์ใช้แก้ปัญหาที่มี
ความยากมากๆ เพราะผลลัพธ์ที่ได้อาจจะไม่ดีเท่าที่ควร [22] วิธีการ P-meta ผสมผสานกับ S-meta จะเป็น
แนวทางที่ได้รับความนิยมมากที่สุดของการผสมผสานและยังเป็นวิธีการที่มีประสิทธิภาพสูงในการค้นหา
ค าตอบ [22, 51, 52] เพราะว่า จะเป็นการใช้ข้อดีของการค้นหาค าตอบในวงกว้างซึ่ งได้จาก P-meta
(Exploration) ร่วมกับการใช้ข้อดีของการค้นหาค าตอบในวงแคบซึ่งได้จาก S-meta (Exploitation) ท าให้
วิธีการผสมผสานแบบนี้เกิดความสมดุลกันจากหลักการค้นหาค าตอบทั้ง 2 แบบ (Diversification และ
Intensification) [22, 51, 52] ดังนั้นวิธีการผสมผสานในกลุ่มนี้จึงได้รับความนิยมน ามาใช้แก้ปัญหาต่างๆ และ
ประสบความส าเร็จเป็นอย่างดี ซึ่งรวมไปถึงปัญหาการจัดตารางการศึกษาด้วย ตัวอย่างเช่น วิธีการ Ant
Colony System (ACS) กับ TS [53], วิธีการ GA+LS (Memetic Algorithm: MA) [54], วิธีการ GA+TS
[12], วิธีการ PSO+LS [48, 55], วิธีการ Best-worst ACS กับ LS [13] เป็นต้น

1.2 วัตถุประสงค์ของโครงการ

- เพ่ือออกแบบและพัฒนาโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติโดยประยุกต์ใช้วิธีการ Cuckoo
Search เพ่ือแก้ปัญหาการจัดตารางสอนในระดับอุดมศึกษาแบบค านึงถึงต้นทุนการด าเนินการรวมของ
มหาวิทยาลัยที่น้อยที่สุด (Minimising total university operating costs)

- เพ่ือวิเคราะห์และเปรียบเทียบประสิทธิภาพของวิธีการ CS ในการแก้ปัญหาการจัดตารางสอน โดยการ
ก าหนดพารามิเตอร์ที่ เหมาะสม (Appropriate parameter settings) การปรับปรุงวิธีการโดยการ
ปรับเปลี่ยนกระบวนการ (Modification) และ การปรับปรุงวิธีการโดยการผสมผสาน (Hybridisations)

1.3 ขอบเขตการวิจัย

1. ในงานวิจัยนี้จะพิจารณาเฉพาะในส่วนที่เป็นปัญหาการจัดตารางเรียนตารางสอนในระดับอุดมศึกษา
(University course timetabling problem: UCTP) แบบอ้างอิงตามหลักสูตร (Curricula)

2. ในงานวิจัยนี้ โครงสร้างวิชาเรียนวิชาสอนของปัญหา CUCT จะประกอบด้วย กรณีวิชาเรียนวิชาสอน
แบบวิชาบังคับและวิชาเลือก (Mandatory/Elective courses) กรณีวิชาเรียนวิชาสอนแบบภาคบรรยายและ
ภาคปฏิบัติ (Lecture/Laboratory) กรณีวิชาเรียนวิชาสอนแบบหนึ่ งหมู่ เรียนและแบบหลายหมู่ เรียน

13

(Single/Multiple sections) และกรณีวิชาเรียนวิชาสอนแบบมีอาจารย์ผู้สอนคนเดียวและผู้สอนหลายคน
(Single/Multiple lecturers)

3. ในงานวิจัยนี้จะพิจารณาข้อมูลการจัดตารางเรียนตารางสอนของคณะวิศวกรรมศาสตร์ มหาวิทยาลัย
นเรศวร ทั้งในส่วนรายวิชาของคณะหรือสาขาวิชา (Elective courses) และรายวิชาศึกษาทั่วไป (Mandatory
courses) ของมหาวิทยาลัย รวมถึงรายวิชาที่รับผิดชอบโดยคณะอ่ืนๆ แต่มีความเกี่ยวข้องกับอาจารย์หรือ
หลักสูตรของนิสิตของคณะวิศวกรรมศาสตร์ เช่น วิชาภาษาอังกฤษ วิชาฟิสิกส์ วิชาแคลคูลลัส เป็นต้น เพ่ือให้
ตารางเรียนตารางสอนของนิสิตทุกคนและอาจารย์ทุกคนในคณะวิศวกรรมศาสตร์มีจ านวนวิชาเรียนวิชาสอน
ในตารางเรียนตารางสอนครบทุกวิชาในแต่ละเทอมการศึกษา

4. ในงานวิจัยนี้จะพิจารณาข้อมูลการจัดตารางเรียนตารางสอนของคณะวิศวกรรมศาสตร์ มหาวิทยาลัย
นเรศวร ในเทอม 1 ปีการศึกษา 2555 ซึ่งเป็นข้อมูลที่มีความหลากหลายของหลักสูตรที่เปิดสอนเป็นอย่างมาก
โดยมีการเปิดสอนทั้งในระดับปริญญาตรี (ภาคปกติและภาคพิเศษ) ระดับปริญญาโท (ภาคปกติและภาคพิเศษ)
และระดับปริญญาเอก

5. ในงานวิจัยนี้จะพิจารณาการจัดตารางสอนให้กับอาจารย์ทุกคนภายในคณะวิศวกรรมศาสตร์
มหาวิทยาลัยนเรศวร เป็นหลัก รวมไปถึงตารางสอนของอาจารย์จากคณะอ่ืนๆ ที่ท าการสอนในบางรายวิชา
ให้กับนิสิตในหลักสูตรจากคณะวิศวกรรมศาสตร์ เช่น วิชาฟิสิกส์ เป็นต้น อย่างไรก็ตามตารางสอนของอาจารย์
จากคณะอ่ืนๆ จะถูกแสดงเฉพาะรายวิชาทีเก่ียวข้องกับคณะวิศวกรรมศาสตร์เท่านั้น

6. ในงานวิจัยนี้จะพิจารณาการจัดตารางการใช้ห้องเรียนของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร
เป็นหลัก รวมไปถึงห้องเรียนจากคณะอ่ืนๆ ที่ต้องใช้สอนในบางรายวิชาให้กับนิสิตในหลักสูตรจากคณะ
วิศวกรรมศาสตร์ เช่น ห้องปฏิบัติการฟิสิกส์และห้องปฏิบัติการเคมีของคณะวิทยาศาสตร์ เป็นต้น

7. ในงานวิจัยนี้ วิชาทุกวิชารวมถึงวิชาที่เป็นแบบวิทยานิพนธ์ (Thesis or Dissertation) การศึกษา
ค้นคว้าอิสระ (Independent study) หรือโครงงานวิจัย (Project) ส าหรับนิสิตจากทุกหลักสูตรของคณะ
วิศวกรรมศาสตร์ สามารถก าหนดได้ว่าจะพิจารณาหรือไม่พิจารณาจัดลงในตารางเรียนตารางสอนได้ในข้อมูล
น าเข้า

8. ในงานวิจัยนี้ อาจารย์แต่ละท่านจะถูกก าหนดวิชา (Courses) ที่ต้องสอนไว้ในข้อมูลน าเข้าแล้วก่อน
การจัดตารางเรียนตารางสอนในแต่ละเทอม เพ่ือให้อาจารย์แต่ละท่านได้เลือกสอนในวิชาที่ตนเองมีความ
ช านาญ

9. ในงานวิจัยนี้ รายวิชาที่ต้องก าหนดจ านวนอาจารย์ผู้สอนมากกว่า 1 ท่าน (Multiple lecturers) นั้น
สามารถก าหนดจ านวนอาจารย์ผู้สอนได้อย่างไม่จ ากัดไว้ในข้อมูลน าเข้าแล้วก่อนการจัดตารางเรียนตารางสอน

10. ในงานวิจัยนี้ วิชาพ้ืนฐานบางวิชาที่จะมีนิสิตลงเรียนเป็นจ านวนมากจะมีการแบ่งหมู่ เรียน
(Sections) ไว้หลายหมู่เรียน โดยนิสิตในแต่ละหลักสูตรที่จะต้องลงเรียนในวิชาดังกล่าวจะถูกก าหนดหมู่เรียน
ที่สามารถลงเรียนได้ในขั้นตอนของการมอบหมาย (Assignment) ทรัพยากรแล้วก่อนกระบวนการจัดตาราง
เรียนตารางสอน เพ่ือกระจายจ านวนนิสิตให้สมดุลในแต่ละหมู่เรียนที่เปิดสอน รวมถึงป้องกันนิสิตในบางคณะ

14

หรือบางหลักสูตรอาจจะไม่สามารถลงทะเบียนเลือกหมู่เรียนหรือเรียนวิชาดังกล่าวได้ในขั้นตอนการลงทะเบียน
อันเนื่องมาจากการชนกันของตารางเรียน

11. ในงานวิจัยนี้ วิชาที่มีจ านวนหมู่เรียนหลายหมู่เรียน ผู้จัดตารางสามารถก าหนดให้วิชาดังกล่าวมีการ
รวมหมู่เรียน (เช่น วิชาบรรยาย เป็นต้น) หรือแยกหมู่เรียน (เช่น วิชาปฏิบัติ เป็นต้น) ได้ โดยข้อมูลนี้จะถูกระบุ
ไว้ในส่วนของข้อมูลน าเข้าแล้วก่อนการจัดตารางเรียนตารางสอน

12. ในงานวิจัยนี้ นิสิตหลักสูตรเดียวกันซึ่งมีเรียนวิชาพ้ืนฐานเหมือนกันแต่สามารถลงเรียนในวิชาเลือก
ต่างกันนั้น นิสิตในหลักสูตรดังกล่าวจะถูกก าหนดรหัสของหลักสูตรย่อยเพ่ือแสดงถึงตารางเรียนที่แตกต่างกัน
ออกไปในหลักสูตรเดียวกัน โดยกระบวนการนี้จะถูกระบุไว้ในส่วนของข้อมูลน าเข้าแล้วก่อนการจัดตารางเรียน
ตารางสอน

13. ในงานวิจัยนี้ การก าหนดจ านวนนิสิตที่เปิดรับของวิชาเลือก (Elective courses) ในแต่ละวิชาจะอยู่
ในส่วนของขั้นตอนการมอบหมายทรัพยากรก่อนกระบวนการจัดตารางเรียนตารางสอน

14. ในงานวิจัยนี้จะไม่พิจารณาจัดตารางเรียนของนิสิตที่ตกแผนการเรียน เช่น นิสิตปริญญาตรีปี 5-8
เป็นต้น เนื่องจากนิสิตกลุ่มนี้ปกติจะมีจ านวนน้อยและสามารถลงทะเบียนเรียนเพ่ิมเติมได้ในช่วงเพ่ิมถอน
รายวิชาหลังจากเปิดภาคเรียนแล้ว

15. ในงานวิจัยนี้จะใช้ข้อมูลห้องเรียนส าหรับจัดตารางเรียนตารางสอนจาก 4 อาคารเรียนหลักและ 4
อาคารปฏิบัติการ (Shop) ของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร ประกอบไปด้วย อาคารเรียนคณะ
วิศวกรรมศาสตร์ สาขาวิศวกรรมโยธา (CE) สาขาวิศวกรรมไฟฟ้า (EE) สาขาวิศวกรรมอุตสาหการ (IE) และ
อาคารเรียนรวมคณะวิศวกรรมศาสตร์ (EN) นอกจากนี้วิชาพ้ืนฐาน (Mandatory courses) ที่นิสิตคณะ
วิศวกรรมศาสตร์ต้องไปเรียนร่วมกับคณะอ่ืน เช่น วิชาภาษาไทย วิชาภาษาอังกฤษ เป็นต้น งานวิจัยนี้จะมีการ
พิจารณาข้อมูลอาคารเรียนภายนอกเพ่ิมเติมเฉพาะรายวิชาที่เกี่ยวข้อง (เช่น อาคารเรียน QS อาคารเรียน SC
เป็นต้น)

16. ในงานวิจัยนี้จะมีการก าหนดช่วงเวลาห้ามจัดการเรียนการสอนของอาจารย์แต่ละท่านได้ อัน
เนื่องมาจากอาจารย์บางท่านอาจมีภารกิจที่ไม่สามารถด าเนินการสอนได้ในบางวันหรือบางช่วงเวลา อย่างไรก็
ตามข้อก าหนดในด้านวันและเวลาที่ไม่สามารถสอนได้ของอาจารย์แต่ละท่านสามารถปรับเปลี่ยนได้อย่างอิสระ
ในส่วนของข้อมูลน าเข้า

17. ในงานวิจัยนี้จะมีการก าหนดช่วงเวลาเรียนของนิสิตในแต่ละหลักสูตรที่สามารถจัดตารางเรียนได้
แตกต่างกันออกไป โดยในระดับปริญญาตรี ปริญญาโทและปริญญาเอกภาคปกติจะก าหนดให้อยู่ในช่วงวัน
จันทร์-ศุกร์เวลา 8.00-17.00 น. ในระดับปริญญาตรีภาคพิเศษจะก าหนดให้อยู่ในช่วงวันจันทร์ -ศุกร์เวลา
13.00-22.00 น. และวันเสาร์-อาทิตย์เวลา 8.00-22.00 น. และในระดับปริญญาโทภาคพิเศษจะก าหนดให้อยู่
ในช่วงวันเสาร์-อาทิตย์เวลา 8.00-22.00 น. อย่างไรก็ตามข้อก าหนดในด้านวันและเวลาที่สามารถจัดการเรียน
ได้ของแต่ละหลักสูตรสามารถปรับเปลี่ยนได้อย่างอิสระในส่วนของข้อมูลน าเข้า

18. ในงานวิจัยนี้จะพิจารณาต้นทุนค่าโสหุ้ย (Overhead costs) ที่เกิดจากการใช้ห้องเรียนแต่ละห้อง
ซึ่งมีความเกี่ยวข้องกับข้อบังคับ SC แบบ Room suitability โดยจะเป็นค่าใช้จ่ายแบบถัวเฉลี่ย/ชั่วโมง เช่น

15

ค่าไฟ ค่าน้ า ค่าเช่าห้อง เป็นต้น และจะผันแปรไปตามขนาดของห้องเรียน (เช่น ห้องบรรยาย ห้อง SLOP
หอประชุม เป็นต้น) ประเภทของห้องเรียน (ห้องบรรยาย ห้องปฏิบัติการ) รวมถึงวันและเวลาที่จัดการเรียน
การสอน นอกจากนี้ต้นทุนดังกล่าวจะไม่กระทบต่อคุณภาพการศึกษาในเชิงลบ

19. ในงานวิจัยนี้จะพิจารณาต้นทุนที่เกิดจากการท าความสะอาดห้องเรียนแต่ละห้อง (Setup or
cleaning costs) ซ่ึงจะมีความเกี่ยวข้องกับข้อบังคับ SC แบบ Consecutive lectures โดยจะเป็นค่าท าความ
สะอาดหรือจัดเตรียมห้องหลังการเรียนการสอนแบบถัวเฉลี่ย/ครั้ง และจะผันแปรไปตามขนาดของห้องเรียน
ประเภทของห้องเรียน รวมถึงวันเวลาที่ท าความสะอาดหลังจากเรียนการสอน นอกจากนี้ต้นทุนดังกล่าวจะไม่
กระทบต่อคุณภาพการศึกษาในเชิงลบ

20. ในงานวิจัยนี้จะพิจารณาต้นทุนที่เกิดจากค่าตอบแทนอาจารย์ผู้สอนแต่ละท่าน (Lecturing costs)
ซึ่งจะมีความเกี่ยวข้องกับข้อบังคับ SC แบบ Timeslot preference โดยจะมีค่าตอบแทนเป็นแบบถัวเฉลี่ย/
ชั่วโมง และค่าตอบแทนของอาจารย์แต่ละท่านจะแตกต่างกันไปตาม ความชอบ/ไม่ชอบในวันและคาบเวลาที่
ต้องการสอน รวมไปถึงประสบการณ์ของอาจารย์ ระดับ/หลักสูตรของนิสิตที่สอน เนื่องจากอาจารย์แต่ละท่าน
จะถูกมอบหมายรายวิชาที่จะต้องท าการสอนไว้ในข้อมูลน าเข้าแล้วก่อนการจัดตารางเรียนตารางสอน ดังนั้น
ต้นทุนในส่วนนี้จะไม่กระทบต่อคุณภาพการศึกษาในเชิงลบ

21. ในงานวิจัยนี้จะประยุกต์ใช้วิธีการเมต้าฮิวริสติกส์ที่ชื่อว่า วิธีการ Cuckoo Search ร่วมกับโปรแกรม
จัดตารางเรียนตารางสอนแบบอัตโนมัติที่ถูกพัฒนาขึ้นมา

22. ในงานวิจัยนี้จะพัฒนาโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติในลักษณะเป็นโปรแกรม
แบบแยกส่วน (Stand alone) ส าหรับเป็นทางเลือกให้กับผู้จัดตาราง มิได้พัฒนาให้โปรแกรมมีการท างานที่
เชื่อมต่อโดยตรงกับระบบเดิมของมหาวิทยาลัย เนื่องด้วยเหตุผลด้านความปลอดภัยและความเสถียรของระบบ
เดิมในมหาวิทยาลัย

23. ในงานวิจัยนี้จะพัฒนาโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติโดยใช้ภาษา Tcl/Tk ส าหรับ
พัฒนาในส่วนติดต่อกับผู้ใช้งาน (Graphical user interface: GUI) และใช้ภาษา C ส าหรับพัฒนาส่วนของการ
ประมวลผลทั้งหมด

16

1.4 ประโยชน์ที่คาดว่าจะได้รับ

1. ได้ปรับปรุงกระบวนการจัดตารางเรียนตารางสอนจริงของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร
ให้มีประสิทธิภาพมากยิ่งขึ้นด้วยระบบการจัดตารางเรียนตารางสอนแบบอัตโนมัติ ซึ่งมีความได้เปรียบกว่า
ระบบเดิมทั้งในด้านการจัดตารางเรียนตารางสอนได้ตรงตามความต้องการของผู้ใช้ตาราง ช่วยลดความ
ผิดพลาดจากการจัดตารางเรียนตารางสอนชนกันหรือไม่เป็นไปตามข้อบังคับที่ได้ก าหนดไว้ รวมถึงช่วยลดเวลา
จ านวนมากที่จะต้องสูญเสียไปเม่ือเทียบกับการจัดตารางเรียนตารางสอนแบบเดิม

2. ได้ โปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติส าหรับจัดตารางเรียนตารางสอน ใน
ระดับอุดมศึกษาโดยมีความฉลาดของวิธีการ CS ซึ่งสามารถจัดตารางเรียนตารางสอนให้เป็นไปตามข้อบังคับ
หลักและข้อบังคับรองของปัญหานี้ นอกจากโปรแกรมดังกล่าวสามารถน าโปรแกรมดังกล่าวไปต่อยอดหรือ
ประยุกต์ใช้กับสถาบันการศึกษาอ่ืนได ้

3. ช่วยลดค่าใช้จ่ายในด้านการบริหารจัดการทรัพยากรทางการศึกษาได้ เช่น ลดจ านวนการจ้างอาจารย์
เพ่ิมโดยไม่จ าเป็น ลดการสร้างอาคารเรียนเพ่ิมโดยไม่จ าเป็น ลดค่าไฟจากการใช้ห้องเรียนที่ไม่เหมาะสม และ
ยังรวมไปถึงช่วยลดค่าใช้จ่ายในการซื้อลิขสิทธิ์โปรแกรมหรือระบบการจัดตารางเรียนตารางสอนแบบอัตโนมัติ
อีกด้วย เป็นต้น

4. ได้ทราบถึงปัจจัยของวิธีการ CS ที่อาจจะมีผลกระทบต่อประสิทธิภาพในการแก้ปัญหาการจัดตาราง
เรียนตารางสอนในแต่ละโจทย์ปัญหา ทั้งผลกระทบหลัก (Main effects) และผลกระทบร่วม (Interactions)
โดยใช้วิธีการออกแบบการทดลองและการวิเคราะห์ทางสถิติ รวมถึงได้ทราบค่าพารามิเตอร์ที่เหมาะสมของ
วิธีการ CS ในการแก้ปัญหาแต่ละโจทย์

5. ได้พัฒนาวิธีการ Cuckoo Search (CS) ให้มีประสิทธิภาพที่สูงขึ้นในการแก้ปัญหาการจัดตารางเรียน
ตารางสอน ด้วยการปรับค่าพารามิเตอร์ที่ เหมาะสม (Parameter tuning) การปรับปรุงกระบวนการ
(Modification process) และการผสมผสานกับวิธีการอ่ืน (Hybridisation) โดยที่วิธีการปรับปรุงเหล่านี้
สามารถน าไปประยุกต์ ใช้แก้ปัญหาเชิงการจัด เรียงสลับสับ เปลี่ ยน (Combinatorial optimisation
problems) ที่ต้องการค่าที่เหมาะสมที่สุดประเภทอ่ืนได้

17

1.5 แผนการด าเนินงานของโครงการวิจัย

กิจกรรม
เดือน (Months)

2 4 6 8 10 12 14 16 18 20 22 24

1. ทบทวนวรรณกรรมที่เกี่ยวข้องกับปญัหาการจัดตารางสอนและ
วิธีการที่ใช้

2. ศึกษาวิธีการ Cuckoo search (CS) และค้นหาแนวทางการ
ปรับปรุงประสิทธิภาพ

3. เก็บและวิเคราะห์ข้อมูลปัญหาการจัดตารางเรียนตารางสอน
และก าหนดขอบเขตที่เกี่ยวข้อง

4. สร้างรูปแบบของปัญหาและก าหนดข้อบังคับหลัก ข้อบังคับรอง
ที่เกี่ยวข้อง

5. ออกแบบโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติ

6. พัฒนาโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติด้วย
ภาษา TCL/TK และ C

7. ทดสอบ ตรวจสอบและยืนยันความถูกต้องของโปรแกรม ท า
การออกแบบการทดลอง

8. ด าเนินการทดลองตามที่ ได้ออกแบบไว้บนคอมพิวเตอร์ที่
จัดเตรียม

9. วิเคราะห์ผลการทดลองด้วยเครื่องมือทางสถิติ (ANOVA, t-
test, etc.)

10. สรุปผลการทดลองทั้งหมดที่ เป็นไปตามวัตถุประสงค์ที่ ได้
ก าหนดไว้

11. เขียนบทความวิจัยเพื่อส่งตีพิมพ์ลงในวารสารในฐานข้อมูล
Scopus

12. เขียนบทความวิจัยเพื่อส่งตีพิมพ์ลงในวารสารในฐานข้อมูล ISI

13. เขียนรายงานฉบับสมบูรณ ์

18

บทท่ี 2

เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 ทบทวนวรรณกรรมท่ีเกี่ยวข้องกับปัญหาการจัดตารางเรียนตารางสอน

การจัดตารางการศึกษาเป็นกิจกรรมที่เกิดขึ้นเป็นประจ าทุกภาคการศึกษาในทุกสถาบันการศึกษา โดยมี
ความเกี่ยวข้องกับการจัดสรรทรัพยากรทางการศึกษาที่มีอยู่อย่างจ ากัดภายใต้ข้อบังคับต่างๆ ลงในช่วงเวลาที่มี
ความเหมาะสมและเป็นไปตามวัตถุประสงค์มากที่สุด [1] การสร้างตารางการศึกษา (เช่น ตารางเรียน
ตารางสอน ตารางการใช้ห้องเรียน เป็นต้น) ที่มีคุณภาพดีย่อมท าให้การด าเนินการเรียนการสอนใน
สถาบันการศึกษาเกิดประสิทธิภาพที่ดีเช่นกันในแต่ละเทอม ดังนั้นตลอดระยะเวลา 50 กว่าปีที่ผ่านมาจนถึง
ปัจจุบัน การแก้ปัญหาการจัดตารางการศึกษาจึงได้รับความสนใจจากนักวิจัยจ านวนมากทั้งในกลุ่มของการวิจัย
การด าเนินงาน (Operations research: OR) และในกลุ่มของความฉลาดประดิษฐ์ (Artificial intelligent: AI)
และยังคงได้รับความสนใจเพิ่มมากขึ้นอย่างต่อเนื่องในช่วงหลายสิบปีหลัง [2]

ปกติแล้วการจัดตารางเรียนตารางสอนในสถาบันระดับอุดมศึกษา (University course timetabling:
UCT) เช่น วิทยาลัย (College) มหาวิทยาลัย (University) เป็นต้น จะมีขนาดของปัญหาที่ใหญ่มาก มีจ านวน
ข้อบังคับและข้อจ ากัดมากกว่าการจัดตารางการศึกษาในสถาบันการศึกษาขั้นพ้ืนฐาน เช่น โรงเรียน
มัธยมศึกษา (Secondary school) เป็นต้น ซึ่งความซับซ้อนของปัญหาและความยุ่งยากในการจัดตารางสอน
ในระดับอุดมศึกษาจะมีมากกว่า [3] นอกจากนี้วิชาเรียนวิชาสอนในระดับอุดมศึกษาจะมีทั้งแบบวิชาบังคับ
(Mandatory courses) และวิชาเลือก (Elective courses) [4] โดยนิสิตในชั้นเดียวกันแต่ถ้ามีวิชาเลือกเรียนที่
แตกต่างกันจะท าให้ตารางเรียนของนิสิตแต่ละคนแตกต่างกันออกไปตามวิชาที่เลือกเรียน ส่งผลให้การจัด
ตารางเรียนในชั้นดังกล่าวมีความยุ่งยากและซับซ้อนมากขึ้น

2.2 ปัญหาการจัดตารางเรียนตารางสอนในระดับอุดมศึกษาแบบซับซ้อน

ปัญหาการจัดตารางเรียนตารางสอนในระดับอุดมศึกษาแบบซับซ้อน (Complex university course
timetabling: CUCT) จะมีลักษณะพิเศษของปัญหาเพ่ิมเข้ามาในปัญหา UCT 3 ส่วนที่ส าคัญ [56, 57] คือ: (i)
ปัญหาย่อยตามล าดับชั้นในสถาบันอุดมศึกษา (Sub problems of university-wide level); (ii) โครงสร้าง
ของวิชาเรียนวิชาสอน (Course structures); และ (iii) ความหลากหลายของข้อบั งคับ (Variety of
constraints)

ส่วนแรก ปัญหาย่อยตามล าดับชั้นในสถาบันอุดมศึกษา (Sub problems of university-wide level)
เป็นลักษณะของการจัดตารางเรียนตารางสอนของสถาบันการศึกษาโดยมีการพิจารณาปัญหาการจัดตาราง
ย่อยมาจากการแบ่ งระดับหรือขั้นตอนหลายขั้นตอน เช่น ระดับสถาบัน (Central or university
timetabling) ระดับคณะ (Faculty timetabling) ระดับภาควิชา (Departmental timetabling) [56] ใน
ระดับสถาบันจะเป็นการจัดตารางเรียนตารางสอนโดยหน่วยงานส่วนกลางของสถาบันนั้นๆ ปกติแล้วจะ

19

ด าเนินการจัดตารางในรายวิชาพ้ืนฐาน (Mandatory courses) ทั้งหมดของสถาบันซึ่งเกี่ยวข้องกับนิสิตเป็น
จ านวนมากจากทุกคณะที่จะต้องลงเรียน เช่น วิชาภาษาอังกฤษ วิชาภาษาไทย เป็นต้น การจัดตารางในระดับ
นี้จะถูกด าเนินการเป็นล าดับแรก ขณะที่ในระดับคณะและระดับภาควิชาจะด าเนินการได้หลังจากส่วนกลางได้
ด าเนินการจัดตารางเสร็จสิ้นแล้ว โดยในแต่ละคณะจะให้แต่ละภาควิชาด าเนินการจัดตารางในรายวิชาที่
รับผิดชอบส าหรับทุกหลักสูตรที่ภาควิชาได้ท าการเปิดสอน โดยส่วนมากจะเป็นวิชาเฉพาะหรือวิชาเลือก
(Elective courses) ของนิสิตแต่ละหลักสูตรซึ่งเป็นกลุ่มที่มีนิสิตจ านวนน้อยลง

รายวิชา (Courses) ต่างๆ ของนิสิตหรือของอาจารย์แต่ละท่านในปัญหา CUCT จะมีความสัมพันธ์กันทั้ง
ในส่วนของปัญหาการจัดตารางในระดับสถาบัน (Central timetabling) ในระดับคณะ (Faculties) และใน
ระดับภาควิชา (Departments) เนื่องจากวิชาในแต่ละระดับจะมีจ านวนนิสิตที่ลงเรียนแตกต่างกัน นิสิตที่ลง
เรียนอาจมาจากคณะหรือภาควิชาที่แตกต่างหรือเหมือนกันได้ รวมถึงมีการแชร์ทรัพยากรทางการศึกษา
ระหว่างกันในทุกระดับ (เช่น ห้องเรียน อาจารย์ผู้สอน เป็นต้น) นอกจากนี้ปัญหาในสถาบันอุดมศึกษาขนาด
ใหญ่จะประกอบไปด้วยปัญหาการจัดตารางสอนย่อย (Sub-timetabling problems) ในแต่ละคณะและในแต่
ละภาควิชา ซึ่งการแก้ปัญหาการจัดตารางเรียนตารางสอนไม่ควรแก้เฉพาะเจาะจงเพียงปัญหาย่อยหนึ่งปัญหา
[56] ดังนั้นสถาบันอุดมศึกษาที่มีคณะเป็นจ านวนมากและในแต่ละคณะมีภาควิชาจ านวนมากด้วยแล้ว การ
แก้ปัญหาในสถาบันดังกล่าวจะมีความยุ่งยากและซับซ้อนในการแก้ปัญหาเป็นอย่างมาก

ส่วนที่สอง โครงสร้างของวิชาเรียนวิชาสอน (Course structures) ส าหรับปัญหา UCT ปกติแล้วจะ
ก าหนดเพียงแค่วิชาหรือเหตุการณ์ (Courses or events) ส าหรับจัดตารางเรียนตารางสอนเท่านั้น [13, 58,
59] แต่โครงสร้างของวิชาเรียนวิชาสอนของปัญหา CUCT นอกจากจะก าหนดวิชาหรือเหตุการณ์ส าหรับจัด
ตารางเรียนตารางสอนแล้ว ยังจะต้องก าหนดรายละเอียดของแต่ละวิชาเพ่ิมเข้ามาด้วย เช่น วิชาบังคับ/วิชา
เลื อก (Mandatory/Elective courses) [4] วิช าแบบภาคบรรยาย/แบบปฏิ บั ติ ก าร/แบบทบทวน
(Lecture/Laboratory/Tutorial courses) [60] วิ ช าที่ มี ห มู่ เรี ย น เดี่ ย ว แ ล ะแ บ บ มี ห ล าย ห มู่ เรี ย น
(Single/Multiple sections) [57] ในแต่ละวิชา เป็นต้น

ส าหรับการพิจารณาวิชาบังคับ (Mandatory courses) ซึ่งส่วนใหญ่เป็นวิชาพ้ืนฐานของมหาวิทยาลัย
ส าหรับนิสิตชั้นปีแรกๆ [4] จะท าให้การจัดตารางมีความยุ่งยากอันเนื่องมาจากจ านวนของนักเรียนที่
ลงทะเบียน ขณะที่การพิจารณาวิชาเลือก (Elective courses) ซึ่งส่วนใหญ่เป็นวิชาเฉพาะภายในคณะหรือ
ภาควิชาส าหรับนิสิตชั้นปีสูงๆ จะท าให้การจัดตารางสอนมีความซับซ้อนมากยิ่งขึ้น [4] เนื่องจากวิชาเลือกบาง
รายวิชานั้นนิสิตต่างภาควิชาสามารถลงเรียนได้ ซึ่งจะท าให้นิสิตในหลักสูตรเดียวกันสามารถมีตารางเรียน
แตกต่างกันออกไปตามวิชาที่เลือกเรียนและจะท าให้ เกิดการชนกันของตารางเรียนตารางสอนได้ง่ายมาก
ส าหรับการพิจารณาวิชาทั้งแบบภาคบรรยาย/ปฏิบัติการ นอกจากจะต้องค านึงถึงขนาดของห้องเรียน (Room
capacity) ในการจัดตารางสอนแล้ว ยังจะต้องพิจารณาถึงความต้องการห้องเรียน (Room facility) ที่เฉพาะ
ในแต่ละวิชา เช่น บางรายวิชาอาจมีการใช้ทั้งห้องเรียนบรรยายและห้องเรียนปฏิบัติ ขณะที่บางวิชาต้องการ
เฉพาะห้องบรรยาย เป็นต้น ส าหรับการพิจารณาวิชาแบบหลายหมู่เรียน (Multiple sections) จัดว่าเป็นการ
เพ่ิมความซับซ้อนอีกรูปแบบหนึ่งในปัญหา CUCT [57] โดยในกรณีที่มีอาจารย์ผู้สอนคนเดียวจะท าให้การจัด

20

ตารางสอนโดยไม่ให้มีการชนกันของเวลาในแต่ละหมู่เรียนมีความยากยิ่งขึ้นและอาจารย์ก็จะมีภาระงานมาก
ขึ้นด้วย

นอกเหนือจากโครงสร้างของวิชาเรียนวิชาสอนทั้ง 3 ลักษณะที่ได้กล่าวมาแล้ว งานวิจัยนี้ได้พิจารณา
โครงสร้างของวิชาเรียนวิชาสอนเพ่ิมอีกหนึ่งลักษณะคือ วิชาที่มีอาจารย์ผู้สอนแบบหลายคน/หมู่เรียน
(Multiple lecturers: ML) [61] และวิชาที่มีอาจารย์ผู้สอนแบบหนึ่งคน/หมู่เรียน (Single lecturer: SL) [62]
ซ่ึงจากการทบทวนวรรณกรรมที่ผ่านมานอกจากจะพบว่า การจัดตารางเรียนตารางสอนในระดับอุดมศึกษาโดย
พิจารณาอาจารย์ผู้สอนมากกว่า 1 คนต่อวิชาจะพบได้น้อยมากแล้ว ในสถาบันอุดมศึกษาของไทยจะพบ
รายวิชาลักษณะนี้ได้บ่อยมาก โดยเฉพาะอย่างยิ่งวิชาที่มีอาจารย์ผู้สอนแบบ ML และอาจารย์ทุกคนช่วยกัน
สอนพร้อมกันในแต่ละคาบ (Simultaneous teaching: ST) [61] เนื่องจากรายวิชาในลักษณะนี้ จ าเป็นต้องใช้
อาจารย์หลายท่านเข้ามาช่วยควบคุมดูแลการเรียนการสอนของนิสิตพร้อมๆ กัน เช่น วิชาที่มีภาคปฏิบัติการ
ต่างๆ และจ าเป็นต้องใช้ห้องปฏิบัติการซึ่งเกี่ยวข้องกับอุปกรณ์เฉพาะทาง เครื่องมือ เครื่องจักร หรือสารเคมี
ต่างๆ ที่อาจเกิดอันตรายต่อนิสิตได้ง่าย หากไม่มีการดูแลอย่างทั่วถึงจากอาจารย์หลายๆ คนอย่างใกล้ชิด เป็น
ต้น ความยากของการจัดตารางจากโครงสร้างของวิชาเรียนวิชาสอนแบบ ML คือ จะต้องท าการจัดตารางสอน
ในรายวิชาดังกล่าวให้กับอาจารย์ทุกคนที่รับผิดชอบรายวิชานั้น ลงในคาบเวลาเดียวกัน ห้องเรียนเดียวกัน และ
จะต้องไม่มีการชนกันในตารางสอนของอาจารย์ทุกคนในวิชาดังกล่าวด้วย ซึ่งรายวิชาใดที่มีจ านวนอาจารย์
ผู้สอนยิ่งมากจะท าให้การจัดตารางสอนในรายวิชาดังกล่าวมีความยากมากยิ่งข้ึนตามล าดับ

ดังนั้นจะเห็นได้ว่าปัญหาแบบ CUCT มีโครงสร้างของวิชาเรียนวิชาสอนแบบซับซ้อนจะท าให้การจัด
ตารางเรียนตารางสอนมีความยุ่งยากมากกว่าปัญหาแบบ UCT อย่างชัดเจน อย่างไรก็ตามหลายงานวิจัยที่ผ่าน
มาได้มุ่งไปที่การแก้ปัญหา UCT โดยใช้ข้อมูลประดิษฐ์ (Artificial dataset) หรือข้อมูลที่อยู่บนพ้ืนฐานปัญหา
จริง (Based on actual problem) เป็นจ านวนมากซึ่งความซับซ้อนในโครงสร้างของวิชาประเภทต่างๆ ที่ได้
กล่าวมาข้างต้นนั้นได้ถูกตัดออกไปเหลือเพียงแค่วิชาหรือเหตุการณ์ (Courses or events) เท่านั้น เพ่ือให้
โจทย์ปัญหามีลักษณะเป็นมาตรฐาน (Benchmark problems) แต่ปัญหาดังกล่าวมีความง่ายขึ้นอย่างมาก
ดังนั้นวิธีการที่จะถูกพัฒนาขึ้นมาเพ่ือใช้แก้ปัญหาจริงในระดับอุดมศึกษาซึ่งมีข้อมูลขนาดใหญ่และซับซ้อน
(CUCT) จึงยังพบได้น้อยมาก [56]

ส่วนที่ สาม ความหลากหลายของข้อบั งคับ (Variety of constraints) โดยทั่ ว ไปแล้วข้อบั งคับ
(Constraints) ของปัญหาการจัดตารางเรียนตารางสอนมี 2 ประเภทใหญ่คือ ข้อบั งคับหลัก (Hard
constraints: HC) และข้อบังคับรอง (Soft constraints: SC) [5-8] โดยที่เป้าประสงค์หลักของการแก้ปัญหา
การจัดตารางเรียนตารางสอนคือ การค้นหาตารางเรียนตารางสอนที่ไม่มีการละเมิดข้อบังคับหลักและมีจ านวน
การละเมิดข้อบังคับรองที่น้อยที่สุด [6, 9, 10]

2.3 ฟังก์ชันเป้าประสงค์ของการแก้ปัญหาการจัดตารางเรียนตารางสอน

ในฟังก์ชันเป้าประสงค์ของการแก้ปัญหาการจัดตารางเรียนตารางสอนสามารถจ าแนกข้อบังคับรอง (SC)
ที่พบได้หลายประเภท ประกอบด้วย: (i) แบบ Unary constraints เช่น การนับจ านวนครั้งในการจัดวิชาลง

21

ในคาบเวลาห้ ามจัดตารางสอน (Unpermitted or booking periods) [11] เป็นต้น ; (ii) แบบ Binary
constraints เช่น การนับจ านวนครั้งการชนกันของตารางสอน (Event clash constraints) [12] เป็นต้น; (iii)
แบบ Capacity constraints เช่น การนับจ านวนเก้าอ้ีที่ไม่เพียงพอทั้งหมดในการจัดตารางสอน [13] เป็นต้น;
(iv) แบบ Event spread constraints เช่น การนับจ านวนครั้งที่มีการเรียนการสอนต่อเนื่องเกินสองคาบ
ติดกัน (Spreading-out or clumping-together) [14] เป็นต้น; (v) แบบ Agent constraints เช่น การนับ
จ านวนครั้งที่มีรูปแบบการสอน (Lecturing format) ไม่เป็นไปตามที่อาจารย์ต้องการ (People preferences
or requirements) [1] เป็นต้น; และ (vi) แบบ Stability or movement constraints เช่น การนับจ านวน
ครั้งที่วิชาเดียวกันแต่จัดตารางให้ใช้ห้องเรียนต่างกันทุกครั้ง [15] เป็นต้น

อย่างไรก็ตามจากการทบทวนวรรณกรรมจะพบว่า ยังมีข้อบังคับรองอีกประเภทคือ แบบ Cost
constraints ซึ่งงานวิจัยที่พิจารณาฟังก์ชันเป้าประสงค์จากข้อบังคับรองที่เกี่ยวข้องกับการจัดตารางเรียน
ตารางสอนโดยเกิดค่าด าเนินการรวมจากการใช้ทรัพยากรทางการศึกษาที่น้อยที่สุ ด (Minimising total
operating costs) นั้นพบได้น้อยมากเพียง 2 บทความจากฐานข้อมูล ISI web of knowledge ดังนี้ Seo
และคณะ [16] ได้ท าการปรับปรุงระบบการจัดตารางสอนในองค์กรให้มีความรวดเร็วมากขึ้นโดยการพัฒนา
โปรแกรม eClasSkeduler ส าหรับใช้ในมหาวิทยาลัย Universidad de Chile โดยพิจารณาต้นทุนการเช่า
ห้องเรียน (Classrooms leasing/operating costs) ที่น้อยที่สุดในฟังก์ชันเป้าประสงค์ นอกจากนี้ Torres-
Ovalle และคณะ [17] ได้แก้ปัญหาการจัดตารางสอนจริงของมหาวิทยาลัย Universidad de La Sabana ที่
โคลัมเบียด้วยวิธีการเชิงเส้นแบบจ านวนเต็ม (Integer linear programming) โดยพิจารณาต้นทุนการจ้าง
อาจารย์ (Lecturing costs) ที่น้อยที่สุดในฟังก์ชันเป้าประสงค์

ดังนั้นในงานวิจัยนี้จึงได้เติมเต็มการพิจารณาฟังก์ชันเป้าประสงค์ในข้อบังคับรองแบบ Cost constraints
โดยจัดตารางเรียนตารางสอนเพ่ือให้เกิดค่าด าเนินการรวมจากการใช้ทรัพยากรทางการศึกษาที่น้อยที่สุด
(Minimising total operating costs) ประกอบด้ วย ต้นทุนค่ าโสหุ้ ย (Overhead costs) เช่น ค่ าเช่ า
ห้องเรียน ค่าน้ า ค่าไฟ เป็นต้น ต้นทุนการจ้างอาจารย์ (Lecturing costs) และต้นทุนการจัดเตรียมหรือท า
ความสะอาดห้อง (Setup/cleaning costs) ซึ่งยังไม่พบงานวิจัยใดพิจารณาฟังก์ชันเป้าประสงค์ย่อย 3 แบบนี้
ร่วมกันมาก่อน (แสดงดังตาราง 1) นอกจากนี้ในงานวิจัยนี้ ต้นทุนจากการเช่าหรือใช้ห้องเรียนและต้นทุนการ
จัดเตรียมหรือท าความสะอาดห้อง จะพิจารณาก าหนดความชอบทั้งสถาบัน (Campus preference: CP) โดย
ที่ต้นทุนทั้งสองประเภทจะแตกต่างกันไปตาม ขนาดของห้องเรียน ประเภทของห้องเรียน วันและช่วงเวลาการ
ใช้หรือท าความสะอาดห้องเรียน ในขณะที่ต้นทุนในการจ้างอาจารย์ผู้สอน จะมีการพิจารณาความชอบแบบ
ยืดหยุ่น (Flexible preference: FP) โดยที่ค่าตอบแทนของอาจารย์แต่ละท่านจะแตกต่างกันไปตาม วุฒิ
การศึกษา ประสบการณ์การท างาน ระดับของนักศึกษาที่สอน วันและช่วงเวลาที่สอน ยิ่ง ไปกว่านั้นจากการ
ทบทวนวรรณกรรมที่ผ่านมาพบว่า งานวิจัยที่เกี่ยวข้องกับปัญหาการจัดตารางเรียนตารางสอนระดับอุดมศึกษา
ที่พิจารณาการก าหนดข้อบังคับรองแบบ FP นั้นยังมีจ านวนน้อย

ตาราง 1 แสดงคุณลักษณะของปัญหาการจัดตารางเรียนตารางสอนที่ได้จากการทบทวนวรรณกรรม

Authors and years

Timetabling types System Period Course types
Course
section

Lecturer/
Section

Teaching
types

Operating
costs

CT

CT
T

SS

TA

CA

MT
S

DD
S

W
ee

kly

No
n-

 W
ee

kly

Le
ct

ur
e

La
bo

ra
to

ry

Tu
to

ria
l

Se
m

ina
r

Ev
en

t /
 C

ou
rse

Sin
gle

Mu
lti

pl
e

On
e

Ma
ny

Ind
ivi

du
all

y

Sim
ul

ta
ne

ou
sly

Ov
er

he
ad

Le
ct

ur
ing

Se
tu

p/
cle

an
ing

Abbas and Tsang [63]         

Abdullah et al. [64]        

Abdullah and Turabieh [59]        

Abdullah et al. [65]        

Abdullah et al. [66]         

Abuhamdah and Ayob [67]        

Abuhamdah et al. [68]        

Acha and Nieuwenhuis [69]        

Agustin-Blas et al. [70]      

Al-Betar and Khader [71]        

Al-Betar et al. [71]        

Al-Yakoob and Sherali [72]        

Al-Yakoob and Sherali [73]             

Aladag and Hocaoglu [74]        

Aladag et al. [75]        

Alvarez-Valdes et al. [76]            

Amintoosi and Haddadnia [77]    

Avella and Vasil'Ev [78]      

23

Authors and years

Timetabling types System Period Course types
Course
section

Lecturer/
Section

Teaching
types

Operating
costs

CT

CT
T

SS

TA

CA

MT
S

DD
S

W
ee

kly

No
n-

 W
ee

kly

Le
ct

ur
e

La
bo

ra
to

ry

Tu
to

ria
l

Se
m

ina
r

Ev
en

t /
 C

ou
rse

Sin
gle

Mu
lti

pl
e

On
e

Ma
ny

Ind
ivi

du
all

y

Sim
ul

ta
ne

ou
sly

Ov
er

he
ad

Le
ct

ur
ing

Se
tu

p/
cle

an
ing

Badoni et al. [79]        

Bai et al. [80]        

Baker et al. [81]     

Bakir and Aksop [82]       

Banbara et al. [83]        

Bellio et al. [84]        

Bellio et al. [85]        

Beyrouthy et al. [86]        

Beyrouthy et al. [60]          

Bolaji et al. [10]        

Bolaji et al. [87]        

Bonutti et al. [88]        

Burke et al. [89]        

Burke et al. [7]        

Burke et al. [90]        

Burke et al. [91]        

Burke et al. [92]        

Cacchiani et al. [93]        

Cambazard et al. [6]        

Cambazard et al. [94]       

24

Authors and years

Timetabling types System Period Course types
Course
section

Lecturer/
Section

Teaching
types

Operating
costs

CT

CT
T

SS

TA

CA

MT
S

DD
S

W
ee

kly

No
n-

 W
ee

kly

Le
ct

ur
e

La
bo

ra
to

ry

Tu
to

ria
l

Se
m

ina
r

Ev
en

t /
 C

ou
rse

Sin
gle

Mu
lti

pl
e

On
e

Ma
ny

Ind
ivi

du
all

y

Sim
ul

ta
ne

ou
sly

Ov
er

he
ad

Le
ct

ur
ing

Se
tu

p/
cle

an
ing

Carrasco and Pato [95]        

Chiarandini et al. [96]        

Chiarandini et al. [97]      

Ceschia et al. [98]        

Chen and Shih [48]      

Dammak et al. [99]         

Daskalaki et al. [4]           

Daskalaki and Birbas [100]           

Datta et al. [3]           

De Causmaecker et al. [61]          

Di Gaspero and Schaerf [101]        

Dimopoulou and Miliotis [102]       

Fong et al. [103]        

Fong et al. [104]        

Gaspero et al. [62]        

Geiger [105]        

Gunawan et al. [106]         

Hao and Benlic [15]        

He et al. [107]         

Head and Shaban [108]           

25

Authors and years

Timetabling types System Period Course types
Course
section

Lecturer/
Section

Teaching
types

Operating
costs

CT

CT
T

SS

TA

CA

MT
S

DD
S

W
ee

kly

No
n-

 W
ee

kly

Le
ct

ur
e

La
bo

ra
to

ry

Tu
to

ria
l

Se
m

ina
r

Ev
en

t /
 C

ou
rse

Sin
gle

Mu
lti

pl
e

On
e

Ma
ny

Ind
ivi

du
all

y

Sim
ul

ta
ne

ou
sly

Ov
er

he
ad

Le
ct

ur
ing

Se
tu

p/
cle

an
ing

Jaradat et al. [109]        

Jat and Yang [54]        

Jat and Yang [110]        

Jat and Yang [12]        

Junaedi and Maulidevi [111]        

Kalender et al. [112]       

Kardan et al. [113]      

Khang and Nuong [114]        

Kostuch [115]        

Kostuch and Socha [116]        

Lach and Lubbecke [117]        

Lee et al. [118]     

Legierski [119]           

Lewis [11]        

Lewis and Paechter [120]        

Lewis and Paechter [121]        

Lewis and Thompson [122]        

Lewis et al. [123]        

Liu et al. [124]        

Lü and Hao [9]        

26

Authors and years

Timetabling types System Period Course types
Course
section

Lecturer/
Section

Teaching
types

Operating
costs

CT

CT
T

SS

TA

CA

MT
S

DD
S

W
ee

kly

No
n-

 W
ee

kly

Le
ct

ur
e

La
bo

ra
to

ry

Tu
to

ria
l

Se
m

ina
r

Ev
en

t /
 C

ou
rse

Sin
gle

Mu
lti

pl
e

On
e

Ma
ny

Ind
ivi

du
all

y

Sim
ul

ta
ne

ou
sly

Ov
er

he
ad

Le
ct

ur
ing

Se
tu

p/
cle

an
ing

Lu et al. [125]        

Malim et al. [126]        

Marquez et al. [127]        

McCollum et al. [128]        

Miranda et al. [129]          

MirHassani [130]         

Mueller and Rudova [131]        

Muller [58]         

Muller et al. [132]          

Murray et al. [56]          

Nothegger et al. [133]        

Ozer and Ozturan [134]         

Pereira and Costa [135]      

Perzina [49]       

Phillips et al. [136]        

Piechowiak and Kolski [137]          

Piechowiak et al. [138]          

Pongcharoen et al. [1]         

Qaurooni and Akbarzadeh-T [139]        

Qu and Burke [140]        

27

Authors and years

Timetabling types System Period Course types
Course
section

Lecturer/
Section

Teaching
types

Operating
costs

CT

CT
T

SS

TA

CA

MT
S

DD
S

W
ee

kly

No
n-

 W
ee

kly

Le
ct

ur
e

La
bo

ra
to

ry

Tu
to

ria
l

Se
m

ina
r

Ev
en

t /
 C

ou
rse

Sin
gle

Mu
lti

pl
e

On
e

Ma
ny

Ind
ivi

du
all

y

Sim
ul

ta
ne

ou
sly

Ov
er

he
ad

Le
ct

ur
ing

Se
tu

p/
cle

an
ing

Qualizza and Serafini [141]      

Rossi-Doria et al. [142]        

Rossi-Doria et al. [19]        

Rudova and Murray [143]          

Rudova et al. [57]          

Sabar et al. [47]        

Salman and Hamdan [144]          

Santiago-Mozos et al. [145]       

Santos et al. [146]       

Santos et al. [147]       

Sarin et al. [148]        

Schimmelpfeng and Helber [149]            

Seo et al. [16]       

Shiau [55]          

Shih et al. [150]         

Shimazaki et al. [151]     

Socha [152]        

Socha et al. [20]        

Soria-Alcaraz et al. [153]        

Soria-Alcaraz et al. [154]         

28

Authors and years

Timetabling types System Period Course types
Course
section

Lecturer/
Section

Teaching
types

Operating
costs

CT

CT
T

SS

TA

CA

MT
S

DD
S

W
ee

kly

No
n-

 W
ee

kly

Le
ct

ur
e

La
bo

ra
to

ry

Tu
to

ria
l

Se
m

ina
r

Ev
en

t /
 C

ou
rse

Sin
gle

Mu
lti

pl
e

On
e

Ma
ny

Ind
ivi

du
all

y

Sim
ul

ta
ne

ou
sly

Ov
er

he
ad

Le
ct

ur
ing

Se
tu

p/
cle

an
ing

Soza et al. [155]        

Studenovsky [156]        

Tam et al. [157]        

Thepphakorn and Pongcharoen [46]        

Thepphakorn et al. [13]        

Thepphakorn et al. [158]        

Thompson [159]        

Torres-Ovalle et al. [17]       

van den Broek et al. [160]      

van den Broek and Hurkens [161]        

Wang [162]        

Wehrer and Yellen [163]          

Wu [164]     

Wu [165]     

Yang and Jat [166]        

Research objectives                

29

2.4 ทบทวนวรรณกรรมท่ีเกี่ยวข้องกับวิธีการหาค่าที่เหมาะสมที่สุดในการแก้ปัญหา

โดยทั่วไปแล้วการจัดตารางเรียนตารางสอนสามารถท าได้โดยใช้มนุษย์ (Manually by academic staff)
หรือโดยใช้ โปรแกรมแบบกึ่ งอัตโนมัติ (Semi-automatically) หรือโดยใช้ โปรแกรมแบบอัตโนมัติ
(Automatically) ปัจจุบันระบบการจัดตารางเรียนตารางสอนในสถาบันการศึกษาระดับสูงของประเทศไทย
ส่วนใหญ่จะยังเป็นการจัดตารางเรียนตารางสอนแบบกึ่งอัตโนมัติ ซึ่งเป็นการใช้ซอฟต์แวร์คอมพิวเตอร์มา
ช่วยเหลือมนุษย์เฉพาะการตรวจสอบการชนกันของตารางเรียนตารางสอนขณะท าการจัดตารางเท่านั้น
ในขณะที่การเลือกห้องเรียนและคาบเวลาให้กับแต่ละวิชานั้นยังคงให้มนุษย์เป็นผู้ตัดสินใจทั้งหมด ซึ่งต้องใช้
บุคลากรจ านวนมากและเวลาที่นานมากในการเลือกคาบเวลาที่ไม่ชนกันให้กับทุกวิชาของมหาวิทยาลัยในแต่
ละเทอม ในขณะที่การจัดตารางเรียนตารางสอนแบบอัตโนมัติจะเป็นการพัฒนาซอฟต์แวร์คอมพิวเตอร์ขึ้นมา
ช่วยจัดตารางเรียนตารางสอนแทนมนุษย์ทั้งในส่วนของการตัดสินใจเลือกห้องเรียน/เวลาที่เหมาะสมให้กับแต่
ละวิชาและการตรวจสอบข้อบังคับหลักต่างๆ ไปพร้อมๆ กัน ซึ่งมีข้อได้เปรียบกว่าวิธีการจัดตารางเรียน
ตารางสอน 2 แบบแรก คือ เหมาะกับการแก้ปัญหาขนาดใหญ่มากและมีข้อบังคับจ านวนมาก มีความสะดวก
และสามารถการจัดตารางเรียนตารางสอนได้รวดเร็วกว่ามาก ใช้บุคลากรในการจัดตารางน้อยกว่ามาก ลด
จ านวนขั้นตอนในการจัดตารางเรียนตารางสอนให้เหลือเพียงขั้นตอนเดียว สามารถจัดตารางเรียนตารางสอน
ตามท่ีนักเรียนและอาจารย์ต้องการได้

แม้ว่าโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติของต่างประเทศมีอยู่หลายโปรแกรม แต่โปรแกรม
ดังกล่าวมีค่าใช้จ่ายสูง ไม่สะดวกในด้านการอบรมและการบ ารุงรักษา อีกทั้งยังมีความแตกต่างทางด้าน
วัฒนธรรมและประเพณีของการศึกษาในแต่ละประเทศซึ่งมีความเฉพาะ จึงท าให้การประยุกต์ใช้โปรแกรมแบบ
อัตโนมัติของต่างประเทศกับสถานศึกษาในประเทศไทยอาจจะท าได้ค่อนข้างยาก ดังนั้นการการพัฒนา
โปรแกรมในการจัดตารางเรียนตารางสอนระดับอุดมศึกษาแบบอัตโนมัติจึงเป็นอีกทางเลือกในงานวิจัยนี้

นอกจากนี้การปรับปรุงและพัฒนาโปรแกรมในการจัดตารางสอนให้มีประสิทธิภาพสูงขึ้นเป็นอีกประเด็นที่
ส าคัญ เนื่องจากปัญหาการจัดตารางเรียนตารางสอนในระดับอุดมศึกษามีลักษณะเป็นแบบ Combinatorial
Optimisation (CO) [4, 18] และยังถูกจัดเป็นปัญหาแบบ Non-deterministic Polynomial (NP) hard
problem [19, 20] หมายความว่า เมื่อขนาดของปัญหาเพ่ิมขึ้นเพียงเล็กน้อยแต่เวลาที่ต้องการในการ
แก้ปัญหาจะเพ่ิมขึ้นอย่างทวีคูณ [1] ดังนั้นหลายงานวิจัยในปัจจุบันจึงให้ความสนใจในเรื่องของการน าวิธีการ
แก้ปัญหาขนาดใหญ่และซับซ้อนที่มีประสิทธิภาพสูงมาประยุกต์ใช้ร่วมกับโปรแกรมส าเร็จรูปมากข้ึน [21]

2.5 วิธีการเมต้าฮิวริสติกส์

วิธีการในกลุ่มของเมต้าฮิวริสติกส์ (Metaheuristics) ถูกยอมรับอย่างแพร่หลายแล้วว่าเป็นอีกแนวทาง
ส าหรับแก้ปัญหาแบบ NP hard problems โดยอาศัยหลักการประมาณค่าในการค้นหาค าตอบที่มีคุณภาพดี
ภายในเวลาที่ยอมรับได้ [5] สามารถแก้ปัญหาที่มีขนาดใหญ่และมีความซับซ้อนสูงได้อย่างมีประสิทธิภาพและ
ประสิทธิผล [22] วิธีการในกลุ่มนี้นิยมจ าแนกได้เป็น 2 กลุ่ม คือ Single-solution based metaheuristics

30

(S-meta) แล ะ Population based metaheuristics (P-meta) [18, 22] วิ ธี ก าร ใน ก ลุ่ ม P-meta จ ะ
ได้เปรียบกว่าวิธีการในกลุ่ม S-meta ในด้านการเริ่มต้นจากค าตอบหลายค าตอบ (Population) ไว้ส าหรับ
พัฒนาค าตอบใหม่ๆ โดยค าตอบที่ ได้จะมีลักษณะเด่นที่ เป็นกลุ่มของค าตอบที่มีความหลากหลาย
(Diversification) จึงท าให้วิธีการนี้มีลักษณะเด่นในการค้นหาค าตอบเชิงส ารวจ (Exploration search) เป็น
หลัก [22] วิธีการในกลุ่มของ P-meta ชนิดใหม่ๆ ถูกน าเสนอขึ้นมาใหม่อย่างต่อเนื่องในปัจจุบัน เช่น วิธีการ
Cuckoo Search [23], วิธีการ Bat Algorithm [24], วิธีการ Firefly Algorithm [25], วิธีการ Krill Herd
[26], วิธีการ Flower Pollination Algorithm [27], วิธีการ Invasive Weed Optimisation [28], วิธีการ
Gravitational search [29], วิธีการ Intelligent water drop [30], วิธีการ Backtracking optimisation
search [31], วิธีการ League championship algorithm [32] เป็นต้น

วิธีการคุกคูเสิร์ช (Cuckoo Search: CS) เป็นหนึ่งในวิธีการเมต้าฮิวริสติกส์แบบ P-meta แบบใหม่ที่ได้
แรงดลใจมาจากธรรมชาติ (Nature-inspired algorithms) ถูกพัฒนาขึ้นโดย Yang และ Deb ในปี 2009
[23] วิธีการ CS นี้ได้แนวคิดมาจากพฤติกรรมอันชาญฉลาดในการฝากฟักไข่ของนกกาเหว่าไว้กับรังของนกสาย
พันธ์อ่ืนเพ่ือความอยู่รอดของเผ่าพันธุ์ ถึงแม้จะเป็นวิธีการที่ค่อนข้างใหม่ใหม่ แต่ในช่วง 4-5 ปีที่ผ่านมาวิธีการ
CS กลับได้รับความนิยมน ามาประยุกต์ใช้แก้ปัญหาการหาค่าที่เหมาะสมที่สุดอย่างแพร่หลายและประสบ
ผลส าเร็จเป็นอย่างดี เช่น ปัญหาการหาค่าที่เหมาะสมที่สุดเชิงตัวเลข (Numerical optimisation problems)
[33], ปัญหาการหาค่าที่เหมาะสมที่สุดทางวิศวกรรม (Engineering optimisation problems) [23], ปัญหา
การเดินทางของพนักงานขายแบบพ้ืนผิวทรงกลม (Spherical traveling salesman problems) [34], ปัญหา
การจัดตารางการเข้าเวรของพยาบาล (Nurse scheduling problems) [35], ปัญหาการจัดตารางการผลิต
(Production scheduling problems) [36] เป็นต้น

นอกจากนี้หลายงานวิจัยยังได้ท าการเปรียบเทียบประสิทธิภาพในการแก้ปัญหาของวิธีการ CS กับวิธีการ
เมต้าฮิวริสติกส์แบบอ่ืนอีกด้วย เช่น ปัญหาการหาค่าที่ เหมาะสมที่สุดเชิงตัวเลขพบว่า วิธีการ CS มี
ประสิทธิภาพในการหาค าตอบที่ดีกว่า GA, PSO [37] และ ABC [33] ส าหรับปัญหากระบวนการบด (Milling
operation) พบว่า วิธีการ CS มีประสิทธิภาพในการหาค าตอบที่ดีกว่าทั้งวิธีการ GA, ACO, AIS และ PSO
[38] เป็นต้น ดังนั้นจะเห็นได้ว่าวิธีการ CS เป็นวิธีการหนึ่งที่น่าสนใจมาก เพราะว่านอกจากจะมีจ านวน
พารามิเตอร์ที่ต้องปรับค่าให้เหมาะสมน้อยกว่าวิธีการเมต้าฮิวริสติกส์แบบอ่ืนแล้ว เช่น GA และ PSO [37] เป็น
ต้น วิธีการ CS ยังมีประสิทธิภาพในการหาค าตอบที่ดีมากเมื่อเปรียบเทียบกับวิธีการเมต้าฮิวริสติกส์แบบอ่ืนๆ
จากการประยุกต์ใช้แก้ปัญหาหลายประเภท อย่างไรก็ตามการประยุกต์ใช้วิธีการ CS แก้ปัญหาการจัดตาราง
เรียนตารางสอนระดับมหาวิทยาลัย เมื่อได้ท าการสืบค้นในฐานข้อมู ลระดับนานาชาติ ISI web of
knowledge, Scopus, และ IEEE Xplore ทั้งในส่วนที่ เป็นชื่อเรื่อง (Title) บทคัดย่อ (Abstract) และค า
ส าคัญ (Keyword) จะพบเพียง 1 บทความเฉพาะในฐานข้อมูลของ Scopus เท่านั้น ในขณะที่ฐานข้อมูล ISI
web of knowledge และ IEEE Xplore ยังไม่พบงานวิจัยที่ประยุกต์ใช้วิธีการ CS แก้ปัญหาการจัดตาราง
เรียนตารางสอนระดับมหาวิทยาลัยมาก่อน

31

ถึงแม้ว่าวิธีการเมต้าฮิวริสติกส์จะมีข้อดีต่างๆ มากมายและได้รับความนิยมอย่างมากในปัจจุบัน แต่วิธีการ
ดังกล่าวก็มีปัญหาบางประการซึ่งส่งผลโดยตรงต่อประสิทธิภาพในการค้นหาค าตอบเช่นกัน เนื่องจาก
ประสิทธิภาพในการหาค าตอบของวิธีการเมต้าฮิวริสติกส์นั้นขึ้นอยู่กับค่าพารามิเตอร์ที่ใช้ [22, 39] การค้นหา
และการก าหนดค่าพารามิเตอร์ที่เหมาะสมให้กับวิธีการเมต้าฮิวริสติกส์จึงเป็นสิ่งที่ไม่อาจหลีกเลี่ยงไปได้ ดังนั้น
หลายงานวิจัยจึงได้ศึกษาและค้นหาค่าพารามิเตอร์ที่เหมาะสมที่สุดให้กับวิธีการเมต้าฮิวริสติกส์เพ่ือให้วิธีการ
ดังกล่าวมีประสิทธิภาพสูงขึ้นกว่าเดิมในการแก้ปัญหา [40-42]

2.6 การก าหนดพารามิเตอร์ที่เหมาะสมให้กับวิธีการเมต้าฮิวริสติกส์

ส าหรับแนวทางในการก าหนดพารามิเตอร์ที่เหมาะสมให้กับวิธีการเมต้าฮิวริสติกส์จ าแนกได้เป็น 2
แนวทางหลัก [22, 167] คือ แบบ Parameter tuning และแบบ Parameter control

การก าหนดพารามิ เตอร์แบบ Parameter tuning หรือแบบ Off-line parameter setting นั้ น
ค่าพารามิเตอร์ต่างๆ ของวิธีการเมต้าฮิวริสติกส์จะถูกก าหนดก่อนที่วิธีการดังกล่าวจะท าการประมวลผล [22]
วิธีการก าหนดค่าพารามิเตอร์ในกลุ่มนี้ เช่น วิธีการ Ad hoc selection [43], วิธีการ Adopted approach
[13], วิธีการ Best guess approach [44], วิธีการ One-factor-at-a-time [44], วิธีการ Factorial design
[44] เป็นต้น อย่างไรก็ตามการค้นหาพารามิเตอร์ที่เหมาะสมด้วย 3 วิธีการแรกนั้น ไม่สามารถรับประกันได้เลย
ว่าจะท าให้วิธีการเมต้าฮิวริสติกส์สามารถค้นหาค าตอบที่ดีที่สุดได้ [44, 45] ขณะที่วิธีการ One-factor-at-a-
time มีข้อเสียเปรียบตรงที่ไม่สามารถศึกษาผลกระทบร่วม (Interaction) ระหว่างปัจจัยได้ สุดท้ายแล้ววิธีการ
Factorial design จะเป็นวิธีการที่ถูกต้องและมีประสิทธิภาพมากสุดส าหรับค้นหาค่าพารามิเตอร์ที่เหมาะสม
ที่สุดให้กับวิธีการเมต้าฮิวริสติกส์ เนื่องจากสามารถจัดการกับพารามิ เตอร์จ านวนหลายตัวพร้อมกันได้โดยใช้
หลักการออกแบบการทดลองและการวิเคราะห์ทางสถิติ (Experimental design and analysis) เข้ามาช่วย
อีกท้ังยังสามารถศึกษาผลกระทบร่วม (Interaction) ระหว่างปัจจัยได้ด้วย [44]

การก าหนดพารามิ เตอร์แบบ Parameter control หรือแบบ On-line parameter setting นั้ น
ค่าพารามิเตอร์ต่างๆ ของวิธีการเมต้าฮิวริสติกส์ จะถูกควบคุมและปรับเปลี่ยนค่าอยู่ เสม อในขณะที่
Algorithms ก าลังการประมวลผล [22] การก าหนดพารามิเตอร์แบบนี้มีความได้เปรียบในด้านการหลีกเลี่ยง
การรันการทดลองจ านวนมากจากวิธีการออกแบบการทดลอง โดยเฉพาะอย่างยิ่งกับวิธีการเมต้าฮิวริสติกส์ช
นิดที่มีพารามิเตอร์จ านวนมาก นอกจากนี้ยังไม่ต้องเสียเวลาและไม่ต้องใช้ทรัพยากรจ านวนมากในการรันการ
ทดลองเพ่ือหาค่าพารามิเตอร์ที่ดีที่สุดในแต่ละโจทย์แต่ละปัญหา ส าหรับวิธีการก าหนดค่าพารามิเตอร์ในกลุ่มนี้
จ าแนกออกได้เป็น 2 แบบ [22] คือ วิธีการก าหนดค่าพารามิเตอร์แบบไม่คงที่ (Dynamic parameter
update) และวิธีการก าหนดค่าพารามิเตอร์แบบปรับเปลี่ยนเองได้ (Adaptive parameter update)

อย่างไรก็ตามการก าหนดค่าพารามิเตอร์ที่ดีที่สุดแบบ Dynamic parameter update นอกจากจะมี
ความยากในการออกแบบกระบวนการแล้ว การปรับค่าของพารามิเตอร์โดยที่ไม่ได้พิจารณาถึงผลตอบสนอง
ของค าตอบ (No feedback) ที่เปลี่ยนแปลงด้วยนั้นจัดเป็นข้อด้อยอีกข้อที่ส าคัญของวิธีการในกลุ่มนี้ [167]
ขณะที่วิธีการก าหนดค่าแบบ Adaptive parameter update จะมีความได้เปรียบกว่า คือ ค่าของพารามิเตอร์

32

จะถูกเปลี่ยนแปลงโดยที่จะพิจารณาถึงผลตอบสนอง (Feedback) ของค าตอบ (Solution) ที่เกิดขึ้นหลังจาก
ปรับค่าขณะท าการค้นหาค าตอบด้วย [22] เช่น Self-adaptive parameter setting (SPS) เป็นต้น

ตัวอย่างวิธีการเมต้าฮิวริสติกส์หลายวิธีการที่ใช้การก าหนดค่าพารามิเตอร์แบบ Adaptive parameter
update และประสบผลส าเร็จเป็นอย่างมากในการแก้ปัญหาการหาค่าที่ เหมาะสมที่สุด เช่น วิธีการ
Differential Evolution (DE) Algorithm [168, 169], วิ ธี ก า ร Genetic Algorithm (GA) [49], วิ ธี ก า ร
Particle Swarm Optimisation (PSO) [170], วิธีการ Ant Colony Optimisation (ACO) [171] เป็นต้น
แต่ เป็นที่น่าเสียดายเมื่อสืบค้นในฐานข้อมูลวารสารทางวิชาการ (ISI และ Scopus) พบว่างานวิจัยที่
ท าการศึกษาถึงประสิทธิภาพของวิธีการ CS โดยใช้วิธีการก าหนดค่าพารามิเตอร์แบบ Adaptive parameter
update มีน้อยมาก โดยเฉพาะอย่างยิ่งกับปัญหาการจัดตารางเรียนตารางสอนซึ่งยังไม่พบงานวิจัยที่
ประยุกต์ใช้วิธีการ CS โดยใช้วิธีการก าหนดค่าพารามิเตอร์แบบ SPS มาก่อน

2.7 การปรับปรุงประสิทธิภาพวิธีการเมต้าฮิวริสติกส์โดยการปรับปรุงกระบวนการ

การปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ให้ดีขึ้นกว่าเดิมโดยการปรับปรุงกระบวนการ
(Modification) ท างานจัดเป็นอีกวิธีการหนึ่งที่พบได้บ่อย ส าหรับปัญหาการจัดตารางเรียนตารางสอนพบว่า
หลายงานวิจัยได้ปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ในกระบวนการหรือในขั้นตอนที่แตกต่างกัน
ออกไปขึ้นอยู่กับวัตถุประสงค์ของการปรับปรุงในกระบวนการนั้นๆ ซึ่งผลของการปรับปรุงต่างก็ประสบ
ผลส าเร็จเป็นอย่างดี เช่น กระบวนการ Initial solution [46, 47], กระบวนการ Solution evolution [48],
กระบวนการ Fitness calculation [19], กระบวนการ Selection process [49], กระบวนการ Solution
replacement [10], กระบวนการ Accepted rules [19], กระบวนการ Memory update [50] เป็นต้น

2.8 การปรับปรุงประสิทธิภาพวิธีการเมต้าฮิวริสติกส์โดยการผสมผสาน

การปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ให้ดีขึ้นกว่าเดิมโดยการผสมผสาน (Hybridisation)
จัดเป็นอีกวิธีการหนึ่งที่พบได้บ่อย เนื่องจากการแก้ปัญหาการหาค่าที่เหมาะสมที่สุดหลายประเภทในปัจจุบัน
นั้น การใช้วิธีการเมต้าฮิวริสติกส์เพียงวิธีการเดียวปกติแล้วจะไม่เหมาะกับการน าไปประยุกต์ใช้แก้ปัญหาที่มี
ความยากมากๆ เพราะผลลัพธ์ที่ได้อาจจะไม่ดีเท่าที่ควร [22] จากการทบทวนวรรณกรรมที่ผ่านมาเกี่ยวกับการ
ผสมผสานของวิธีการเมต้าฮิวริสติกส์ที่พบในปัญหาการจัดตารางเรียนตารางสอน สามารถจ าแนกออกเป็น 3
แบบคือ วิธีการ S-meta ผสมผสานกับ S-meta, วิธีการ P-meta ผสมผสานกับ P-meta และวิธีการ S-meta
ผสมผสานกับ P-meta

ส าหรับวิธีการ S-meta ผสมผสานกับ S-meta จะเป็นการน าวิธีการในกลุ่มของ Single solution
based metaheuristics มาท าการผสมผสานร่วมกัน เช่น วิธีการ Simulated Annealing (SA) กับวิธีการ
Hill climbing algorithm [58], วิธีการ SA กับวิธีการ Large Neighborhood Search (VNS) [172], วิธีการ
Greedy heuristic กับ Local search (LS) [125] เป็นต้น ในขณะที่วิธีการ P-meta ผสมผสานกับ P-meta

33

จะเป็นการน าวิธีการในกลุ่มของ Population based metaheuristics มาท าการผสมผสานร่วมกัน เช่น
Genetic Algorithm (GA) กับ Particle Swarm Optimisation (PSO) [173] เป็นต้น แบบสุดท้ ายเป็ น
วิธีการ S-meta ผสมผสานกับ P-meta จะเป็นแนวทางที่ได้รับความนิยมมากที่สุดของการผสมผสานและยัง
เป็นวิธีการที่มีประสิทธิภาพสูงในการค้นหาค าตอบ [22, 51, 52] เพราะว่า จะเป็นการใช้ข้อดีของการค้นหา
ค าตอบในวงกว้างซึ่งได้จาก P-meta (Exploration) ร่วมกับการใช้ข้อดีของการค้นหาค าตอบในวงแคบซึ่งได้
จาก S-meta (Exploitation) ท าให้วิธีการผสมผสานแบบนี้เกิดความสมดุลกันจากหลักการค้นหาค าตอบทั้ง
2 แบบ (Diversification และ Intensification) [22, 51, 52] ดังนั้นวิธีการผสมผสานในกลุ่มนี้จึงได้รับความ
นิยมน ามาใช้แก้ปัญหาต่างๆ และประสบความส าเร็จเป็นอย่างดี ซึ่งรวมไปถึงปัญหาการจัดตารางการศึกษา
ด้วย ตัวอย่างเช่น วิธีการ Ant Colony System (ACS) กับ TS [53], วิธีการ GA+LS (Memetic Algorithm:
MA) [54], วิธีการ GA+TS [12], วิธีการ PSO+LS [48, 55], วิธีการ Best-worst ACS กับ LS [13] เป็นต้น

34

บทท่ี 3

วิธีด าเนินงานวิจัย

3.1 ท าการเก็บและวิเคราะห์ข้อมูลการจัดตารางเรียนตารางสอน

ปัญหาการจัดตารางเรียนตารางสอนของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร จัดเป็นกิจกรรมที่
เกิดข้ึนเป็นประจ าทุกเทอมการศึกษาและยังขาดวิธีการจัดตารางที่มีประสิทธิภาพ เนื่องจากระบบการจัดตาราง
เรียนตารางสอนของมหาวิทยาลัยนเรศวรยังเป็นแบบกึ่งอัตโนมัติและมีกระบวนการจัดตารางแบบ 3 ขั้นตอน
เริ่มต้นขั้นตอนแรกจากวิชาบังคับพื้นฐานของมหาวิทยาลัยทั้งหมด (ปกติจะพบในนิสิตชั้นปีที่ 1-2) จะถูกน ามา
จัดตารางก่อนโดยผู้จัดตารางจากส่วนกลางของมหาวิทยาลัย เมื่อขั้นตอนแรกเสร็จสิ้นแล้วขั้นตอนที่สองจะเป็น
การจัดตารางเรียนตารางสอนในรายวิชาที่เหลือซึ่งเป็นรายวิชาพ้ืนฐานของแต่ละคณะโดยผู้จัดตารางของแต่ละ
คณะ และขั้นตอนที่สามจะเป็นการจัดตารางในระดับภาควิชาหลังจากรายวิชาพ้ืนฐานของแต่ละคณะถูกจัด
เสร็จสิ้นแล้ว ดังนั้นจะเห็นได้ว่าการจัดตารางเรียนตารางสอนในแต่ละเทอมนั้นมีขั้นตอนจ านวนมาก ใช้
เวลานาน และจะต้องใช้บุคคลากรจ านวนมากในการจัดตารางเรียนตารางสอนทั้งมหาวิทยาลัย

นอกจากนี้จากการสืบค้นข้อมูลจากฐานข้อมูล ในระบบจัดตารางเรียนของมหาวิทยาลัยนเรศวร
(www.reg.nu.ac.th) พบว่า ขนาดของข้อมูลในการตารางเรียนตารางสอนของคณะวิศวกรรมศาสตร์จะมี
ขนาดใหญ่มากและมีแนวโน้มเพ่ิมขึ้นอย่างต่อเนื่อง ยกตัวอย่างเช่น ในเทอม 1 ปีการศึกษา 2555 คณะเปิด
สอนทั้งหมด 51 หลักสูตรทั้งในระดับปริญญาตรีทุกชั้นปี (ทั้งภาคปกติและภาคพิเศษ) ปริญญาโททุกชั้นปี (ทั้ง
ภาคปกติและภาคพิเศษ) และปริญญาเอกทุกชั้นปีรวมทั้งหมด 70 ชั้นเรียน (Classes) มีจ านวนอาจารย์
ทั้งหมดมากกว่า 95 คน มีจ านวนนิสิตในคณะเฉพาะระดับปริญญาตรี 1800 คน มีวิชาเรียนวิชาสอนมากกว่า
230 วิชาต่อเทอมและต้องจ าแนกหมู่เรียนมากกว่า 300 กลุ่ม มีห้องเรียนที่สามารถใช้ได้ 111 ห้องจากจ านวน
ทั้งหมด 134 ห้อง เป็นต้น ดังนั้นการจัดตารางเรียนตารางสอนทั้งหมดของคณะซึ่งเป็นแบบกึ่งอัตโนมัติจะมี
ความยุ่งยากและซับซ้อนมากในการจัดตารางทั้งหมดให้ไม่มีการชนกันและต้องเป็นไปตามความต้องการของ
ผู้ใช้ตารางทั้งหมดอีกด้วย จึงท าให้การจัดตารางเรียนตารางสอนทั้งหมดของมหาวิทยาลัยจะต้องใช้เวลาที่นาน
มาก (ประมาณ 2-4 สัปดาห์) ในแต่ละเทอมการศึกษา ดังนั้นการน าข้อมูลการจัดตารางเรียนตารางสอนจริง
ของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร มาสร้างเป็นโจทย์ปัญหาในงานวิจัยนี้น่าจะเป็นอีกแนวทาง
หนึ่งในการพัฒนากระบวนการจัดตารางเรียนตารางสอนให้กับมหาวิทยาลัยนเรศวรให้ดียิ่งขึ้นต่อไป

การเก็บรวบรวมข้อมูล (Data collection) ข้อมูลการจัดตารางเรียนตารางสอนจริงของคณะ
วิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร ถูกเก็บรวบรวมมาจากระบบการจัดตารางสอนของมหาวิทยาลัยโดย
เลือกเก็บข้อมูลของปี 2555 เนื่องจากแผนการศึกษาในขณะนั้นมีความหลากหลายมากกว่าปัจจุบัน เช่น
หลักสูตรระดับปริญญาตรีจะมีเปิดทั้งภาคปกติและภาคพิเศษ หลักสูตรระดับปริญญาโทมีเปิดทั้งภาคปกติและ
ภาคพิเศษ เป็นต้น โดยที่นิสิตภาคปกติและภาคพิเศษของแต่ละหลักสูตรจะมีข้อจ ากัดในเรื่องของเวลาที่ต้อ ง
จัดการเรียนการสอนที่แตกต่างกันออกไป จึงท าให้ปัญหาการจัดตารางสอนในปีดังกล่าวมีความยุ่งยากและ

35

ซับซ้อนอย่างมาก อย่างไรก็ตามรูปแบบโจทย์ปัญหาของข้อมูลดังกล่าวสามารถรองรับข้อมูลปัญหาการจัด
ตารางเรียนตารางสอนในปัจจุบันได้อีกด้วย ส าหรับองค์ประกอบของข้อมูลที่ส าคัญในการเก็บรวบรวมมี
ดังต่อไปนี้

1. ข้อมูลระดับการศึกษาและสาขาวิชา (Degrees/Programs)
ส าหรับข้อมูลสาขาวิชาในหลักสูตรของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร จะอยู่ในความ

รับผิดชอบของ 4 ภาควิชาหลักคือ ภาควิชาวิศวกรรมโยธา ภาควิชาวิศวกรรมอุตสาหการ ภาควิชา
วิศวกรรมเครื่องกล ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ ซึ่งในแต่ละภาควิชาก็จะมีการเปิดสอนในหลาย
สาขาวิชาและแผนการศึกษาที่แตกต่างกันออกไป ตั้งแต่หลักสูตรระดับปริญญาตรีไปจนถึงหลักสูตรระดับ
ปริญญาเอก ยกตัวอย่างในเทอม 1 ปีการศึกษา 2555 นั้น คณะวิศวกรรมศาสตร์ได้เปิดการเรียนการสอนใน
11 สาขาวิชา

2. ข้อมูลของหลักสูตร (Curricula data)
เนื่องจากนโยบายการพัฒนาระบบการศึกษาของมหาวิทยาลัยจึงท าให้แต่ละสาขาวิชาที่เปิดสอนในทุก

ระดับการศึกษาจะต้องมีการปรับปรุงบางรายวิชาในหลักสูตรให้มีความเหมาะสมอยู่เสมอในทุก 2-4 ปี จึงท า
ให้ในหลายสาขาวิชาจะมีรหัสหลักสูตร (Curriculum codes) มากกว่า 1 รหัส ดังนั้นการก าหนดรหัสหลักสูตร
ในแต่ละสาขาวิชาจึงเป็นสิ่งที่ส าคัญมากในการก าหนดแผนการจัดตารางสอนที่ถูกต้องให้กับแต่ละหลักสูตรใน
แต่ละสาขาวิชาของนิสิตในแต่ละชั้นปี เพราะเมื่อมีนิสิตสาขาวิชาเดียวกันแต่มีรหัสหลักสูตรต่ างกันและก าลัง
ศึกษาอยู่ เช่น นิสิตปี 1 ใช้หลักสูตรวิศวกรรมอุตสาหการปี 55 ขณะที่นิสิตปี 2 ถึงปี 4 ยังใช้หลักสูตรวิศวกรรม
อุตสาหการปี 51 เป็นต้น จะท าให้การจัดตารางในบางเทอมอาจมีจ านวนวิชาเรียนวิชาสอนถูกเพ่ิมเข้ามาหรือ
ลดลงมากกว่าปกติ หรืออาจมีจ านวนหมู่เรียนในบางวิชาถูกเพ่ิมเข้ามาหรือลดลงมากกว่าปกติได้

ส าหรับรหัสหลักสูตรทั้งหมดจากทุกสาขาวิชาของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร เฉพาะ
ระดับปริญญาตรี แบบ 2 ภาคการศึกษา (ปกติ) ประจ าปีการศึกษา 2555 มีจ านวนมากถึง 48 รหัสหลักสูตร
โดยข้อมูลจากตารางดังกล่าวจะประกอบไปด้วยรหัสหลักสูตร ชื่อสาขาวิชาและสถานะของหลักสูตรในปัจจุบัน

3. ข้อมูลวิชาเรียนวิชาสอน (Courses data)
ส าหรับข้อมูลของวิชาเรียนวิชาสอนในแต่ละชั้นเรียน (Class) ในแต่ละเทอมการศึกษาจะพิจารณาตาม

หลักสูตรที่ได้ก าหนดไว้ในแต่ละระดับการศึกษา โดยคณะวิศวกรรมศาสตร์จะมีทั้งวิ ชาพ้ืนฐานและวิชาเลือก
หรือวิชาเฉพาะด้าน ซึ่งในแต่ละวิชาจะมีการก าหนดหน่วยกิจที่ต้องการและจ านวนคาบเวลาที่ต้องจัดการเรียน
การสอน บางรายวิชาจะมีเฉพาะภาคบรรยายขณะบางรายวิชามีทั้งภาคบรรยายและภาคปฏิบัติ ในบาง
รายวิชาที่มีจ านวนผู้เรียนจ านวนมากกว่าขนาดหรือจ านวนของห้องเรียนก็อาจมีการแยกเป็นกลุ่มหรือหมู่เรียน
มากกว่า 1 กลุ่ม โดยในแต่ละกลุ่มย่อยจะมีการก าหนดนิสิต/ชั้นเรียนที่ต้องเรียนวิชาดังกล่าวพร้อมทั้งระบุถึง
จ านวนของนิสิตในแต่ละหมู่เรียนด้วย นอกจากนี้ในแต่ละกลุ่มอาจมีการก าหนดอาจารย์ผู้สอนคนเดียวกันหรือ

36

ผู้สอนคนละคนก็ได้ขึ้นอยู่กับภาระงานของอาจารย์แต่ละท่าน ยิ่งไปกว่านั้นบางรายวิชาอาจมีการก าหนด
อาจารย์ผู้สอนมากกว่า 1 ท่านได้

4. ข้อมูลของนิสิต (Student data)
ในงานวิจัยนี้ข้อมูลของนิสิตจะพิจารณาจากจ านวนนิสิตในทุกระดับการศึกษา ทุกหลักสูตรของแต่ละ

สาขาวิชาที่มีนิสิตเข้าศึกษา ซึ่ งทั้งหมดอยู่ในความรับผิดชอบของ 4 ภาควิชาของคณะวิศวกรรมศาสตร์
มหาวิทยาลัยนเรศวร ส าหรับจ านวนนิสิตที่รับเข้าศึกษาในแต่ละปีการศึกษาจะมีจ านวนที่แตกต่างกันออกไปใน
แต่ละระดับการศึกษาและสาขาวิชา โดยเฉพาะอย่างยิ่งในระดับปริญญาตรีจะมีจ านวนนิสิตเป็นจ านวนมาก
ขณะที่ในระดับปริญญาโทและเอกจะมีจ านวนนิสิตน้อยลง นอกจากนิสิตในสาขาเดียวกันจะมีรหัสหลักสูตรที่
ต่างกันในบางชั้นปีระหว่างปีการศึกษา 2552 ถึง 2555 แล้ว ยังพบอีกว่าจ านวนนิสิตทุกสาขาวิชาตั้งแต่ชั้นปี 1
ถึงป ี4 มีจ านวนมากถึง 1,796 คนซึ่งเมื่อรวมกับนิสิตปริญญาตรีที่ตกแผน (ชั้นปี 5 ขึ้นไป) และนิสิตปริญญาตรี
ภาคพิเศษ รวมถึงนิสิตทุกคนในระดับปริญญาโทและปริญญาเอกด้วยแล้ว จะท าให้มีจ านวนนิสิตที่อยู่ในระบบ
การศึกษาจ านวนมากกว่า 2500 คน และจะมีแนวโน้มเพ่ิมขึ้นหากมีการเปิดสอนในสาขาวิชาอ่ืนเพ่ิมเติมใน
อนาคต

5. ข้อมูลของห้องเรียน (Classroom data)
ส าหรับข้อมูลของห้องเรียนจะอยู่ใน 4 อาคารเรียนของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร

ประกอบไปด้วย อาคารเรียนคณะวิศวกรรมศาสตร์สาขาวิศวกรรมโยธา (CE) อาคารเรียนคณะ
วิศวกรรมศาสตร์สาขาวิศวกรรมไฟฟ้า (EE) อาคารเรียนรวมคณะวิศวกรรมศาสตร์ (EN) และอาคารเรียนคณะ
วิศวกรรมศาสตร์สาขาวิศวกรรมอุตสาหการ (IE) โดยรายละเอียดของห้องเรียนในแต่ละอาคารเรียนประกอบ
ไปด้วย รหัสห้องเรียน ชื่อห้องเรียน ประเภทหรือคุณลักษณะเฉพาะของห้องเรียน ความจุห้องเรียน และ
สถานะของห้องเรียน

6. ข้อมูลวันและคาบเวลา (Days/timeslots data)
จ านวนวัน (Days: D) และจ านวนช่วงเวลา (Periods: P) ส าหรับโจทย์ปัญหาการจัดตารางเรียน

ตารางสอนในระดับอุดมศึกษานั้น ปกติแล้วจ านวนวันส าหรับการเรียนการสอนต่อสัปดาห์ (Days/ Week) จะ
ก าหนดให้เท่ากันในแต่ละสัปดาห์และใช้เหมือนกันทั้งสถาบัน เช่น ก าหนด 5 วันต่อสัปดาห์ เป็นต้น ในขณะที่
จ านวนคาบเรียนต่อวัน (Periods/Day) นั้นจะถูกก าหนดให้มีจ านวนช่องของเวลา (Timeslots) ที่เท่ากันในแต่
ละวันและใช้เหมือนกันทั้งสถาบัน เช่น ก าหนดให้มี 6 คาบหรือ 8 คาบต่อวัน เป็นต้น ดังนั้นจ านวนช่องเวลา
ทั้งหมดที่สามารถจัดตารางเรียนตารางสอนได้ต่อสัปดาห์ (Total timeslots/week) ส าหรับหนึ่งห้องเรียน
(Classroom) คือ ผลคูณ ของจ านวนวันต่อสัปดาห์ (Days/ Week) คูณ กับจ านวนคาบเวลาต่อวัน
(Periods/Day)

37

ส าหรับข้อมูลวันและคาบเวลาของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวรนั้น จ านวนคาบเวลาที่
สามารถจัดการเรียนการสอนได้ในแต่ละห้องเรียนนั้นสามารถจัดได้มากถึง 16 คาบต่อวัน ตั้งแต่เวลา 7.00-
23.00 น. เนื่องจากต้องการรองรับกับนิสิตภาคพิเศษท่ีมีการเรียนการสอนในภาคค่ าด้วย ในแต่ละสัปดาห์จะมี
การใช้ห้องเรียนทุกวันโดยวันจันทร์-ศุกร์จัดการเรียนการสอนส าหรับนิสิตภาคปกติ ส่วนวันเสาร์-อาทิตย์จัดการ
เรียนการสอนส าหรับนิสิตปริญญาโทภาคพิเศษหรือนิสิตปริญญาตรีในบางวิชา ดังนั้นเมื่อพิจารณาจ านวน
คาบเวลาทั้งหมดจากทุกห้องเรียนที่สามารถรองรับการเรียนการสอนได้มากที่สุด 12,432 (111*7*16) คาบต่อ
สัปดาห์

7. ข้อมูลของอาจารย ์(Lecturer data)
ส าหรับข้อมูลของอาจารย์จะพิจารณาจาก 4 ภาควิชาหลักของคณะวิศวกรรมศาสตร์ มหาวิทยาลัย

นเรศวร ประกอบไปด้วย อาจารย์ในภาควิชาวิศวกรรมโยธา (CE) อาจารย์ในภาควิชาวิศวกรรมไฟฟ้าและ
คอมพิวเตอร์ (EE & ComE) อาจารย์ในภาควิชาวิศวกรรมเครื่องกล (ME) และอาจารย์ในภาควิชาวิศวกรรมอุต
สาหการ (IE) นอกจากนี้ยังมีอาจารย์บางท่านที่สังกัดโดยตรงกับคณะวิศวกรรมศาสตร์ (Eng) ด้วย เพ่ือให้
การศึกษาวิจัยการจัดตารางเรียนตารางสอนของคณะวิศวกรรมศาสตร์สามารถด าเนินไปได้และสามารถ
เผยแพร่ผลการศึกษาวิจัยได้ ดังนั้นข้อมูลเกี่ยวกับชื่อของอาจารย์แต่ละท่านในงานวิจัยนี้จะไม่ถูกแสดงแต่จะถูก
ก าหนดด้วยการใช้รหัสของอาจารย์แทน

3.2 การก าหนดข้อบังคับของปัญหา (Hard and Soft constraints)

ส าหรับปัญหาการจัดตารางเรียนตารางสอนในระดับอุดมศึกษาในงานวิจัยนี้จะใช้ข้อบังคับหลัก (HC) และ
ข้อบังคับรอง (SC) แบบที่มีการใช้อย่างแพร่หลาย (Global constraints) โดยข้อบังคับ HC ในงานวิจัยนี้จะมี
จ านวน 6 ข้อ ประกอบไปด้วย

- HC1 (Lectures) จ านวนการเรียนการสอน (Lectures) ของแต่ละวิชา (Course) จะต้องถูกจัดลง
ตารางเรียนตารางสอนให้ครบทุกครั้ง (หรือครบตามจ านวนหน่วยกิจ) และในแต่ละครั้ง (Lecture) ต้องก าหนด
ลงในช่วงเวลาที่แตกต่างกัน

- HC2 (Conflicts) การเรียนการสอนทุกครั้ง (Lectures) ของทุกวิชา (Courses) ในแต่ละหลักสูตร
(Curriculum/Student) และในแต่ละอาจารย์ผู้สอน (Lecturer) จะต้องถูกจัดลงในช่วงเวลาที่แตกต่างกัน

- HC3 (Room occupancy) ในแต่ละห้องเรียน (Classroom) ห้ามก าหนดการเรียนการสอนมากกว่า
1 วิชาในช่วงเวลาเดียวกัน

- HC4 (Lecturer/student availability) ห้ามจัดวิชาสอนใดๆ ให้กับอาจารย์/นิสิต ในวัน (Day) และ
คาบเวลา (Timeslots) ที่อาจารย์/นิสิต ไม่สามารถจัดการเรียนการสอนได้

38

- HC5 (Room suitability) ในแต่ละวิชาจะต้องถูกจัดลงในอาคารเรียน (Buildings) ประเภทของ
ห้องเรียน (Lecture/laboratory) และห้องเรียนที่มีสิ่งอ านวยความสะดวกหรือคุณลักษณะ (Feature) ตามที่
ก าหนดไว้

- HC6 (Double/Multiple lectures) ในรายวิชาที่ ต้องการจัดการเรียนการสอนในคาบเวลาที่
ต่อเนื่องกัน เช่น 2 คาบหรือ 3 คาบต่อเนื่อง (Double/triple booking periods) เป็นต้น โดยเฉพาะอย่างยิ่ง
ในรายวิชาที่มีหน่วยกิจในส่วนของภาคปฏิบัตินั้น จะต้องท าการจัดให้มีการเรียนการสอนอย่างต่อเนื่องตามท่ีได้
ก าหนดไว้

ส าหรับข้อบังคับรอง (SC) ในงานวิจัยนี้จะมีจ านวน 3 ข้อ ประกอบไปด้วย

- SC1 (Overhead costs) มีความเกี่ยวข้องกับข้อบังคับแบบ Room suitability โดยห้องเรียนแต่ละ
ห้องจะมีค่าใช้จ่ายที่แตกต่างกันออกไปตามขนาดของห้อง ประเภทของห้อง ลักษณะพิเศษของห้อง รวมไปถึง
ค่าใช้จ่ายที่แตกต่างกันออกไปในแต่ละวันและช่วงเวลา ดังนั้นวิชาเรียนวิชาสอนทุกวิชาควรเลือกใช้ห้องส าหรับ
จัดการเรียนการสอนทีเ่หมาะสม เพ่ือลดค่าใช้จ่ายในการเช่าหรือค่าด าเนินงานรวม

- SC2 (Lecturing costs) มีความเกี่ยวข้องกับข้อบังคับแบบ Timeslot preference โดยวิชาสอน
(Courses) ของอาจารย์ควรถูกจัดลงในวัน (Day) และช่วงเวลา (Timeslots) ที่อาจารย์ชอบและหลีกเลี่ยง
ช่วงเวลาที่ไม่ชอบ โดยค่าถ่วงน้ าหนักที่แสดงถึงความชอบ (มีค่าน้อย) และความไม่ชอบ (มีค่ามาก) ของ
อาจารย์แต่ละท่านได้ถูกก าหนดไว้แล้วในแต่ละวันและในแต่ละช่วงเวลา ก่อนน าไปพิจารณาเป็นค่าใช้จ่ายใน
การจ้างอาจารย์

- SC3 (Setup/cleaning costs) มีความเกี่ยวข้องกับข้อบังคับแบบ Consecutive lectures โดย
ห้องเรียนแต่ละห้องจะมีค่าใช้จ่ายที่เก่ียวข้องกับจัดเตรียมอุปกรณ์หรือการท าความสะอาดที่แตกต่างกันออกไป
ตามขนาดของห้อง ประเภทของห้อง ลักษณะพิเศษของห้อง ซึ่งรวมถึงค่าใช้จ่ายดังกล่าวจะมีความแตกต่างกัน
ออกไปในแต่ละวันและช่วงเวลา ดังนั้นตารางการใช้ห้องเรียนแต่ละห้อง ควรมีการใช้อย่างต่อเนื่อง (หรือลด
ช่วงเวลาว่างระหว่าง 2 วิชาในแต่ละวันให้มากท่ีสุด) เพ่ือลดค่าใช้จ่ายในการจัดเตรียมอุปกรณ์หรือการท าความ
สะอาดรวม

โดยงานวิจัยมีเป้าหมายเพ่ือจัดตารางเรียนตารางสอนโดยให้มีต้นทุนรวม (Z) ที่เกิดจากผลรวมข้อบังคับ
รองทั้งสามข้อ (SC1-SC3) ให้น้อยที่สุด (Minimisation) ในขณะที่ข้อบังคับหลักทั้ง 6 ข้อ (HC1-HC6) จะต้อง
ไม่มีการละเมิดอย่างเด็ดขาด

3.3 วิธีการคุกคูเสิร์ช (Cuckoo Search: CS)

วิธีการคุกคูเสิร์ช (Cuckoo Search: CS) จัดเป็นหนึ่งในวิธีการเมต้าฮิวริสติกส์แบบใหม่ในกลุ่มของ P-
meta ที่ได้แรงดลใจมาจากธรรมชาติ (Nature-inspired metaheuristic algorithms) เหมือนกับวิธีการเมต้า

39

ฮิวริสติกส์แบบอ่ืนๆ โดยถูกพัฒนาขึ้นโดย Yang และ Deb ในปี 2009 [23] วิธีการ CS นี้ได้แนวคิดมาจาก
พฤติกรรมการฝากฟักไข่ของนกกาเหว่าไว้กับรังของนกสายพันธ์อ่ืน (Host birds) โดยพยายามลอกเลียนแบบ
ไข่ของตนให้เหมือนกับไข่ของนกเจ้าของรังเพ่ือความอยู่รอดของเผ่าพันธุ์ตนเอง จากพฤติกรรมอันชาญฉลาด
ดังกล่าวท าให้ Yang และ Deb เกิดแนวคิดในการน าพฤติกรรมการฝากฟักไข่ของนกกาเหว่ามาพัฒนาเป็น
Algorithm แบบใหม่จนกระทั่งได้เป็นวิธีการ CS ขึ้นมา [37]

กระบวนการท างานทั่วไปของวิธีการ CS สามารถแสดงดังภาพ 1 [23] โดยเริ่มต้นจากกระบวนการสร้าง
ค าตอบเริ่มต้น (Initial population) ตามจ านวนประชากร (Host nests: n) ที่ก าหนดไว้ ถ้าจ านวนรอบการ
ค้นหายังไม่สิ้นสุดก็จะท าการสุ่มนกกาเหว่ามาพัฒนาค าตอบด้วยวิธีการ Levy flights แล้วท าการค านวณความ
สมบูรณ์ (Fitness: Fi) หลังจากนั้นท าการสุ่มรังนกขึ้นมาแล้วน าความสมบูรณ์ของรังที่สุ่มได้ (Fj) มา
เปรียบเทียบกับความสมบูรณ์ของนกกาเหว่าก่อนหน้านี้ (Fi) ถ้าค าตอบใหม่ดีกว่าก็ท าการแทนที่ค าตอบเดิม
เมื่อนกกาเหว่าทุกตัวได้ท าการพัฒนาค าตอบครบทุกตัวแล้วก็จะท าการเรียงความสมบูรณ์ของค าตอบทั้งหมด
n ค าตอบจากมากไปน้อย โดยต าตอบที่มีคุณภาพแย่จ านวน Pa ตัวจะถูกละทิ้งไปและท าการสุ่มข้ึนมาใหม่แทน
กระบวนการนี้จะวนซ้ าไปจนกระทั่งสิ้นสุดเงื่อนไขของการประมวลผล

ภาพ 1 แสดงแผนผังการไหลของวิธีการ CS แบบทั่วไป [23]

40

ถึงแม้จะเป็นวิธีการที่ค่อนข้างใหม่ แต่ในช่วงหลายปีที่ผ่านมาวิธีการ CS กลับได้รับความนิยมน ามา
ประยุกต์ใช้แก้ปัญหาแบบ Optimisation อย่างแพร่หลายและประสบผลส าเร็จเป็นอย่างดี เช่น ปัญหาการหา
ค่าที่เหมาะสมที่สุดเชิงตัวเลข (Numerical optimisation problems) [33], ปัญหาการหาค่าที่เหมาะสมทาง
วิศวกรรม (Engineering optimisation problems) [23], ปัญหาการจัดตารางการเข้าเวรของพยาบาล
(Nurse scheduling problems) [35], ปัญหาการจัดตารางการผลิต (Production scheduling problems)
[36], ปัญหาการจัดถุงกระสอบ (Knapsack problems) [174], ปัญหาการบรรจุลงกล่อง (Bin packing
problems) [175] เป็นต้น แต่เป็นที่น่าเสียดายที่ยังไม่พบว่ามีการน าวิธีการ CS มาประยุกต์ใช้แก้ปัญหาการ
จัดตารางเรียนตารางสอนระดับมหาวิทยาลัยมาก่อน เมื่อสืบค้นในฐานข้อมูลวารสารทางวิชาการระดับ
นานาชาติ ISI web of knowledge, Scopus, และ IEEE Xplore ทั้งในส่วนที่เป็นชื่อเรื่อง (Title) บทคัดย่อ
(Abstract) และค าส าคัญ (Keyword) (โดยใช้ค าส าคัญ ในการสืบค้น คือ (“cuckoo”) AND (“course
timetabling” OR “course timetable” OR “course scheduling” OR “course schedule” OR
“course assignment” OR “course allocation”)

นอกจากนี้หลายงานวิจัยยังได้ท าการเปรียบเทียบประสิทธิภาพในการแก้ปัญหาของวิธีการ CS กับวิธีการ
เมต้าฮิวริสติกส์แบบอ่ืนอีกด้วย เช่น ปัญหาการหาค่าที่ เหมาะสมที่สุดเชิงตัวเลขพบว่า วิธีการ CS มี
ประสิทธิภาพในการหาค าตอบที่ดีกว่า GA, PSO [37] และ ABC [33] ในปัญหาปัญหาการจัดตารางการผลิต
พบว่า วิธีการ CS มีประสิทธิภาพในการค้นหาค าตอบที่ดีกว่า GA [36] นอกจากนี้ ในปัญหา Milling
operation ยังพบอีกว่าวิธีการ CS มีประสิทธิภาพในการหาค าตอบที่ดีกว่าทั้งวิธีการ GA, ACO, AIS และ PSO
[38] เป็นต้น ดังนั้นจะเห็นได้ว่าวิธีการ CS เป็นวิธีการหนึ่งที่น่าสนใจอย่างมาก เพราะว่านอกจากจะมีจ านวน
พารามิเตอร์ที่ต้องปรับค่าให้เหมาะสมน้อยกว่าวิธีการเมต้าฮิวริสติกส์แบบอ่ืนแล้ว เช่น GA และ PSO [37]
เป็นต้น วิธีการ CS มีประสิทธิภาพในการหาค าตอบที่ดีเมื่อเปรียบเทียบกับวิธีการเมต้าฮิวริสติกส์หลายวิธีการ
จากการประยุกต์ใช้กับปัญหาหลายประเภท

3.4 วิธีการคุกคูเสิร์ช (CS) ในการแก้ปัญหาการจัดตารางเรียนตารางสอน

กระบวนการท างานของวิธีการ CS ส าหรับงานวิจัยนี้สามารถแสดงขั้นตอนการท างานได้ดังภาพ 2 และ
อธิบายได้ดังนี ้

1. น าเข้าข้อมูลของปัญหาที่ได้ท าการออกแบบไว้แล้วและก าหนดฟังก์ชันวัตถุประสงค์ (Objective
function) ของปัญหา

2. ก าหนดจ านวนการค้นหาค าตอบ (PI) และค่าพารามิเตอร์ความน่าจะเป็นในการละทิ้งค าตอบ (Pa)
ส าหรับวิธีการ CS

3. สร้างค าตอบเริ่มต้น (initial population) ตามจ านวนประชากร (P) ที่ได้ก าหนดไว้ โดยค าตอบ 1
ค าตอบจะประกอบด้วย วิชาเรียนวิชาสอนทั้งหมดที่ถูกจัดลงในห้องเรียนที่ก าหนดไว้แล้ว ซึ่งสามารถแสดง
ตารางสอนของอาจารย์ทุกท่าน ตารางเรียนของนักเรียนทุกคน และตารางการใช้ห้องเรียนทุกห้องได้

41

4. พัฒนาค าตอบใหม่ (Solution evolution) โดยการสุ่มเลือกค าตอบ xi ในกลุ่มประชากร P ขึ้นมา 1 รัง
หลังจากนั้นท าการปรับปรุงค าตอบ xi ที่ถูกสุ่มเลือกมาด้วยหลักการ Levy Flights ดังสมการ (1) [23]

xi
(t+1) = xi

(t) +   Levy() (1)
โดยที่ xi

(t) คือ ค าตอบเดิม และ xi
(t+1) คือ ค าตอบใหม่ทีได้รับการปรับปรุงแล้ว ในขณะที่   Levy()

คือ ช่วงระยะห่างหรือระยะทางที่เกิดการเปลี่ยนแปลงต าแหน่งของค าตอบ ส าหรับ  เป็นพารามิเตอร์ที่มี
ความเกี่ยวข้องกับขนาดในการปรับปรุงค าตอบ (step size) ซึ่งขึ้นอยู่กับขนาดของปัญหาที่ต้องการค้นหา
ค าตอบและจะมีค่ามากกว่า 0 ( > 0) [23]

 Begin Input course timetabling data and set objective function f(x), x = (x1, ..., xd)T
 Set amount of CS’s search including numbers of Population (P) and MaxIteration (I)
 Create initial population of P solutions xi (i = 1, 2, 3, …, P)
 While t < MaxIteration do
 For (i = 1, i <= P, i++) do
 Get a cuckoo (say, xi) randomly
 Generate a solution xi′ by Lévy flights (CSLF) or Gaussian random walks (CSGRW)
 If (xi′ = an infeasible timetable) do
 Repair the xi′ to be a feasible timetable
 End if
 Evaluate its fitness f(xi′)
 Choose a nest among n (say, xj) randomly
 If f(xi′) > f(xj) do
 Replace the xj by the new solution xi′
 End if
 If Local Search do
 Apply Exchange Operator (EO) or Insertion Operator (IO)
 If (xi′ = an infeasible timetable) do
 Repair the xi′ to be a feasible timetable
 End if
 End if
 End for
 Rank the solutions and find the current best solution
 If (rand < Pa of worse nests: xworse) do
 Build/generate new solutions xnew
 Replace the xworse by the new solution xnew
 End if
 Keep the best so far timetable
 End while
 Postprocess results and visualisation
 End

ภาพ 2 รหัสเทียมของวิธีการ CS เพ่ือแก้ปัญหาการจัดตารางสอน

42

อย่างไรก็ตามงานวิจัยนี้ได้ปรับปรุงเปลี่ยนแปลงกระบวนการค้นหาค าตอบของวิธีการ CS โดยใช้การเดิน
สุ่มแบบ Gaussian Random Walks (หรือเรียกว่า วิธีการ CSGRW) ไดด้ังสมการ (2)

xi
(t+1) = xi

(t) + α0  randn() (2)

โดย α0 คือค่าคงที่ ระหว่าง 0.01-0.001 ในขณะที่ตัวแปร randn() จะเป็นค่าสุ่มที่ เกิดจาก Gaussian
distribution หรือการแจกแจงแบบมาตรฐานหรือ N(0,1) ที่มีค่าเฉลี่ยเป็น 0 และค่าเบี่ยงเบนมาตรฐานเป็น 1

5. หากพบการชนกันของตารางใดๆ (Infeasible solution) ให้ท าการซ่อมแซมค าตอบที่มีการชนกันของ
ตารางเรียน ตารางสอน และตารางการใช้ห้องเรียนทั้งหมด
 6. ประเมินค่าความเหมาะสม (Fitness: Fi) หรือคุณภาพของค าตอบ ที่ได้รับการปรับปรุงแล้วหรือ xi

(t+1)
โดยใช้ฟังก์ชันวัตถุประสงค์ f(x) เพ่ือค้นหาตารางเรียนตารางสอนที่มีต้นทุนรวมน้อยที่สุด

7. ท าการสุ่มเลือกค าตอบในกลุ่มประชากร P ขึ้นมา 1 ค าตอบและก าหนดให้เป็น xj และท าการ
เปรียบเทียบคุณภาพค าตอบกับ xi

(t+1) หากค าตอบ xi
(t+1) มีค่าความเหมาะสมที่ดีกว่าค าตอบ xj (หรือ Fi > Fj)

ให้ท าการแทนที่ค าตอบ xj ด้วยค าตอบ xi
(t+1) มิฉะนั้นให้ท าการเก็บค าตอบ xj ไว้และละทิ้งค าตอบ xi

(t+1)
8. ในกรณีที่วิธีการ CS จะถูกประยุกต์ใช้กลักการค้นหาเฉพาะพ้ืน (Local Search) ที่สามารถใช้หลัการ

Exchange Operator (EO) หรือ Insertion Operator (IO) เพ่ือปรับปรุงประสิทธิภาพของวิธีการ CS
9. เป็นการละทิ้งค าตอบ (Abandoned nests) ที่มีคุณภาพไม่ดีด้วยความน่าจะเป็นที่ Pa โดย Pa 

[0,1] [23] พร้อมทั้งท าการสร้างค าตอบใหม่แบบสุ่มมาทดแทนหากค าตอบดังกล่าวถูกละทิ้ง
10. จัดเรียงค่าค าตอบ (Solution ranking) ของวิธีการ CS โดยพิจารณาจากค่าความเหมาะสมมากที่สุด

ไปน้อยที่สุด จากนั้นท าการก าหนดให้ค าตอบในล าดับที่ 1 ซึ่งมีค่าความเหมาะสมมากที่สุดเป็นค าตอบที่ดีที่สุด
ตั้งแต่เริ่มต้นการประมวลผล (Best so far solution: BSF)

11. ในกรณีที่เงื่อนไขการสิ้นสุดการประมวลผล (เช่น จ านวนรอบการค้นหาค าตอบ เป็นต้น) ยังไม่เป็น
จริง ให้วนซ้ ากลับไปที่ขั้นตอนที่ 4 ถึงข้ันตอนที่ 10 อีกครั้งและจะวนซ้ าจนกว่าเงื่อนไขดังกล่าวจะเป็นจริงจึงจะ
หยุดการท างาน โดยที่ค าตอบ BSF ทีไ่ด้หลังจากการประมวลผลจะเป็นผลเฉลยของปัญหา

3.5 การปรับปรุงประสิทธิภาพวิธีการคุกคูเสิร์ช (CS) ในการแก้ปัญหาการจัดตารางสอน

การปรับปรุงประสิทธิภาพในการค้นหาค าตอบของวิธีการ CS สามารถจ าแนกเป็น 3 แนวทางหลัก [176]
คือ การก าหนดค่าพารามิเตอร์ (Parameter setting) การปรับปรุงกระบวนการ (Process modification)
และวิธีการแบบผสมผสาน (Hybridisation)

1. การปรับปรุงประสิทธิภาพ CS ในด้านการก าหนดค่าพารามิเตอร์ที่เหมาะสมนั้นนอกจากเป็นการลด
ข้อด้อยของวิธีการในกลุ่มของวิธีการเมต้าฮิวริสติกส์ [22] แล้ว ยังเป็นวิธีการปรับปรุงประสิทธิภาพของวิธีการ
CS ที่ไม่ต้องท าการปรับเปลี่ยนหรือเพ่ิมกระบวนการใดๆ เข้ามาในโปรแกรมซึ่งอาจส่งผลกระทบต่อเวลาในการ
ประมวณผลที่เพ่ิมขึ้นได้ วิธีการก าหนดค่าพารามิเตอร์ให้กับวิธีการเมต้าฮิวริสติกส์มีหลายวิธีการ เช่น วิธีการ
Ad hoc selection [43], วิธีการ Adopted approach [176], วิธีการ Best guess approach [44], วิธีการ

43

One-factor-at-a-time [44], วิธีการ Factorial design [44] เป็นต้น โดยที่วิธีการ Factorial design จะเป็น
วิธีการที่ถูกต้องและมีประสิทธิภาพมากสุดส าหรับค้นหาค่าพารามิเตอร์ที่เหมาะสมให้กับวิธีการเมต้าฮิวริสติกส์
เนื่องจากสามารถจัดการกับพารามิเตอร์จ านวนหลายตัวพร้อมกันได้โดยใช้หลักการออกแบบการทดลองและ
การวิเคราะห์ทางสถิติ (Experimental design and analysis) หรือวิธีการ DOE เข้ามาช่วย อีกท้ังยังสามารถ
ศึกษาผลกระทบร่วม (Interaction) ระหว่างปัจจัยได้ด้วย [44] ซึ่งในงานวิจัยนี้ได้ประยุกต์ใช้วิธีการออกแบบ
การทดลองและการวิเคราะห์ทางสถิติเข้ามาช่วยในการก าหนดค่าพารามิเตอร์ที่เหมาะสมในแต่ละโจทย์ปัญหา

2. การปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ให้ดีขึ้นกว่าเดิมโดยการปรับปรุงกระบวนการ
(Modification) ท างานจัดเป็นอีกวิธีการหนึ่งที่พบได้บ่อย ส าหรับปัญหาการจัดตารางเรียนตารางสอนพบว่า
หลายงานวิจัยได้ปรับปรุงประสิทธิภาพของวิธีการเมต้าฮิวริสติกส์ในกระบวนการหรือในขั้นตอนที่แตกต่างกัน
ออกไปขึ้นอยู่กับวัตถุประสงค์ของการปรับปรุงในกระบวนการนั้นๆ ซึ่งผลของการปรับปรุงต่างก็ประสบ
ผลส าเร็จเป็นอย่างดี เช่น กระบวนการ Initial solution [46, 47], กระบวนการ Solution evolution [48],
กระบวนการ Fitness calculation [19], กระบวนการ Selection process [49], กระบวนการ Solution
replacement [10], กระบวนการ Accepted rules [19], กระบวนการ Memory update [50] เป็นต้น ใน
งานวิจัยนี้จะท าการปรับปรุงประสิทธิภาพ CS ในส่วนของกระบวนการ Solution evolution ซึ่งจัดอยู่ใน
ขั้นตอนการเคลื่อนที่ของ CS โดยประยุกต์ใช้หลักการเคลื่อนที่แบบ Gaussian random walks (CSGRW)
และแบบ Lévy flights (CSLF)

3. การปรับปรุงประสิทธิภาพของวิธีการ เมต้าฮิวริสติกส์ ให้ ดีขึ้นกว่าเดิมโดยการผสมผสาน
(Hybridisation) จัดเป็นอีกวิธีการหนึ่งที่พบได้บ่อย เนื่องจากการแก้ปัญหาการหาค่าที่เหมาะสมที่สุดหลาย
ประเภทในปัจจุบันนั้น การใช้วิธีการเมต้าฮิวริสติกส์เพียงวิธีการเดียวปกติแล้วจะไม่เหมาะกับการน าไป
ประยุกต์ใช้แก้ปัญหาที่มีความยากมากๆ เพราะผลลัพธ์ที่ได้อาจจะไม่ดีเท่าที่ควร [22] จากการทบทวน
วรรณกรรมที่ผ่านมาเกี่ยวกับการผสมผสานของวิธีการเมต้าฮิวริสติกส์ที่พบในปัญหาการจัดตารางเรียน
ตารางสอน สามารถจ าแนกออกเป็น 3 แบบคือ วิธีการ S-meta ผสมผสานกับ S-meta, วิธีการ P-meta
ผสมผสานกับ P-meta และวิธีการ S-meta ผสมผสานกับ P-meta

วิธีการ S-meta ผสมผสานกับ P-meta จะเป็นแนวทางท่ีได้รับความนิยมมากที่สุดของการผสมผสานและ
ยังเป็นวิธีการที่มีประสิทธิภาพสูงในการค้นหาค าตอบ [22, 51, 52] เพราะว่า จะเป็นการใช้ข้อดีของการค้นหา
ค าตอบในวงกว้างซึ่งได้จาก P-meta (Exploration) ร่วมกับการใช้ข้อดีของการค้นหาค าตอบในวงแคบซึ่งได้
จาก S-meta (Exploitation) ท าให้วิธีการผสมผสานแบบนี้เกิดความสมดุลกันจากหลักการค้นหาค าตอบทั้ง
2 แบบ (Diversification และ Intensification) [22, 51, 52] ดังนั้นวิธีการผสมผสานในกลุ่มนี้จึงได้รับความ
นิยมน ามาใช้แก้ปัญหาต่างๆ และประสบความส าเร็จเป็นอย่างดี ซึ่งรวมไปถึงปัญหาการจัดตารางการศึกษา
ด้วย ตัวอย่างเช่น วิธีการ Ant Colony System (ACS) กับ TS [53], วิธีการ GA+LS (Memetic Algorithm:
MA) [54], วิธีการ GA+TS [12], วิธีการ PSO+LS [48, 55], วิธีการ Best-worst ACS กับ LS [13] เป็นต้น

ในงานวิจัยนี้จะท าการปรับปรุงประสิทธิภาพ CS ในด้านการแบบผสมผสาน (Hybridisation) แบบ S-
meta ผสมผสานกับ P-meta โดยการประยุกต์ใช้วิธีการค้นหาค าตอบเฉพาะพ้ืนที่ (Local Search: LS) แบบ

44

Insertion Operator (IO) และแบบ Exchange Operator (EO) (เรียกว่าวิธีการ CSLF+IO และวิธีการ
CSLF+EO) เข้ามาท าการผสมผสาน

3.6 ท าการออกแบบรูปแบบของข้อมูลน าเข้า

การออกแบบรูปแบบของข้อมูลปัญหาส าหรับน าเข้า (Input data) ให้กับโปรแกรมจัดตารางเรียน
ตารางสอนแบบอัตโนมัติ ซึ่งเป็นอีกขั้นตอนของการมอบหมายทรัพยากรทางการศึกษาหลังจากที่ได้ท าการเก็บ
รวบรวมข้อมูลที่เกี่ยวข้องแล้ว โดยข้อมูลการจัดตารางสอนของปีการศึกษา 2555 ได้ถูกน ามาออกแบบและ
สร้างเป็นโจทย์ปัญหา (Datasets) ซึ่งในแต่ละโจทย์ปัญหาจะเก็บข้อมูลเป็นแบบตัวอักษรและตัวเลข
(Alphabet and number) แบบเว้นบรรทัดและจะถูกเก็บไว้ในไฟล์นามสกุล .text (Text file) ส าหรับ
โครงสร้างของข้อมูลในแต่ละไฟล์จะถูกก าหนดออกเป็น 6 ส่วนหลัก ประกอบไปด้วย รายละเอียดของปัญหา
รายละเอียดของวิชาเรียนวิชาสอน รายละเอียดของห้องเรียน รายละเอียดข้อบังคับของนิสิต รายละเอียด
ข้อบังคับของอาจารย์ และรายละเอียดของค่าตอบแทนของอาจารย์แสดงดังภาพ 3

ภาพ 3 ตัวอย่างโครงสร้างไฟล์ข้อมูลน าเข้าส าหรับโปรแกรมจัดตารางเรียนตารางสอน

45

3.7 ท าการออกแบบโปรแกรมจัดตารางสอนแบบอัตโนมัติ

ในงานวิจัยนี้แนวคิดส าหรับการพัฒนาโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติสามารถแสดงได้
ดังภาพ 4 โดยจะประกอบไปด้วย 4 ส่วนหลักคือ ส่วนการน าเข้าข้อมูล (Input phase) ส่วนการใช้ภาพเป็นตัว
ประสานกับผู้ใช้ (GUI phase) ส่วนการจัดตารางที่เหมาะสมที่สุด (Optimisation phase) และส่วนการน า
ออกข้อมูล (Output phase)

- ส่วนการน าเข้าข้อมูล (Input phase) เป็นการน าข้อมูลเกี่ยวกับการจัดตารางทั้งหมด เช่น ห้องเรียน
อาจารย์ นิสิต วิชาเรียนวิชาสอน ข้อบังคับต่างๆ เป็นต้น จากที่ได้เก็บไว้ในไฟล์ .text เข้าสู่โปรแกรมโดยผ่าน
GUI

- ส่วนการใช้ภาพเป็นตัวประสานกับผู้ใช้ (GUI phase) เป็นการติดต่อสื่อสารในการรับ/ส่งค่าตัวแปร
ระหว่างผู้ใช้โปรแกรมและตัวโปรแกรม เช่น การก าหนดค่าพารามิเตอร์ การก าหนดข้อบังคับหลักและข้อบังคับ
รอง การก าหนดการจัดล าดับรายวิชา เป็นต้น ก่อนที่จะส่งข้อมูลไปยังข้ันตอนการจัดตารางที่เหมาะสมที่สุด

- ส่วนการจัดตารางที่เหมาะสมที่สุด (Optimisation phase) เป็นการน าข้อมูลที่ได้รับมาท าการจัด
ตารางเรียนตารางสอนที่ดีที่สุด โดยเริ่มจากการเข้ารหัสข้อมูลก่อนที่จะใช้วิธีการ Cuckoo search (CS) วิธีการ
Firefly algorithm (FA) วิธีการ Hybrid แบบต่างๆ ท าการจัดตารางเรียนตารางสอน เมื่อได้ค าตอบแล้วก็จะ
ท าการถอดรหัสก่อนที่จะส่งผลไปยัง GUI อีกครั้ง

- ส่วนการน าออกข้อมูล (Output phase) เป็นการน าผลลัพธ์ที่ได้มาท าการแสดงเป็นตารางเรียน
ตารางสอนและตารางการใช้ห้องเรียน รวมถึงแสดงประสิทธิภาพที่ได้ของวิธีการที่ใช้ในการจัดตารางด้วย

ภาพ 4 แสดงแนวคิดส าหรับการพัฒนาโปรแกรมจัดตารางเรียนตารางสอนแบบอัตโนมัติ [177]

นอกจากนี้ในส่วนของการพัฒนาโปรแกรมจะใช้ภาษา Tcl/Tk และ C ร่วมกันแบบ Extension [178]

โดยใช้ภาษา Tcl/Tk ท าการพัฒนาในส่วนของการน าเข้าข้อมูล (Input phase) การใช้ภาพเป็นตัวประสานกับ

46

ผู้ใช้ (GUI phase) และส่วนการน าออกข้อมูล (Output phase) เพราะว่าการใช้ Tcl Script เป็นค าสั่งที่สั้น
ง่าย ท าให้สามารถพัฒนาโปรแกรมได้เร็ว โดยเฉพาะอย่างยิ่งการสร้าง GUI ต่างๆ ในขณะที่ในส่วนของส่วนการ
จัดตารางที่เหมาะสมที่สุด (Optimisation phase) จะใช้ภาษา C ในการพัฒนาโปรแกรมเนื่องจากเป็นส่วนที่
ต้องการความเร็วในการประมวลผลที่สูงมาก

3.8 ท าการพัฒนาโปรแกรมจัดตารางสอนตามที่ได้ออกแบบไว้โดยใช้ภาษา TCL/TK และ C

โปรแกรมการจัดตารางเรียนตารางสอนที่ถูกพัฒนาขึ้น โดยจะประกอบไปด้วย 3 ส่วนหลักคือ ส่วนของ
ข้อมูลน าเข้าของโปรแกรม ส่วนของการประมวลผลของโปรแกรม และส่วนของข้อมูลน าออกของโปรแกรม

1. ส่วนของข้อมูลน าเข้าของโปรแกรม ในส่วนนี้จะเป็นการน าเข้าของข้อมูลปัญหาการจัดตารางเรียน
ตารางสอนที่ได้ถูกสร้างไว้แล้ว โดยแต่ละโจทย์จะถูกก าหนดในรูปแบบของไฟล์ .text ซึ่งผู้ใช้โปรแกรมสามารถ
เลือกได้ว่าจะให้โปรแกรมใช้โจทย์ใดท าการประมวลผลโดยผ่านส่วนติดต่อกับผู้ ใช้ (Graphical user
interface: GUI) ที่ถูกพัฒนาขึ้นด้วยภาษา TCL/TK ดังภาพ 5 หลังจากน าเข้าข้อมูลปัญหาเรียบร้อยแล้ว ผู้ใช้
โปรแกรมสามารถเลือกวิธีการที่จะใช้ในการจัดตารางเรียนตารางสอนให้กับโปรแกรมได้ซึ่งประกอบด้วย
วิธีการ CS และวิธีการผสมผสานแบบต่างๆ ซึ่งในแต่ละวิธีการที่เลือกจะมีหน้าต่างส าหรับท าการก าหนด
ค่าพารามิเตอร์ทั้งในส่วนของปัญหาและวิธีการ ผู้ใช้งานสามารถก าหนดได้อย่างอิสระและโปรแกรมจะท าการ
ก าหนดค่าเริ่มต้นไว้ด้วยส าหรับผู้งานทั่วไปดังภาพ 6

ภาพ 5 ตัวอย่างการน าเข้าข้อมูลของโปรแกรมจัดตารางเรียนตารางสอนที่ถูกพัฒนาขึ้น

47

ภาพ 6 ตัวอย่างการก าหนดค่าพารามิเตอร์ให้กับโปรแกรมที่ถูกพัฒนาขึ้น

2. ส่วนของการประมวลผลของโปรแกรม หลังจากที่ผู้ใช้ท าการน าเข้าข้อมูลและเลือกวิธีการพร้อมทั้ง

ก าหนดค่าพารามิเตอร์เรียบร้อยแล้ว ผู้ใช้สามารถท าการกดรันโปรแกรมได้โดยที่โปรแกรมจะแสดงข้อมูลระหว่าง
การประมวลผล ซึ่งประกอบด้วย รอบการประมวลผลปัจจุบัน ค าตอบที่ดีที่สุดในแต่ละรอบ ค่าเฉลี่ยของค าตอบ
ในแต่ละรอบ ส่วนเบี่ยงเบนมาตรฐานในแต่ละรอบ ค าตอบที่ดีที่สุดตั้งแต่เริ่มการประมวลผล และต้นทุนที่เกิด
จากข้อบังคับรองแต่ละข้อดังภาพ 7

ภาพ 7 ตัวอย่างการประมวลผลของโปรแกรมจัดตารางเรียนตารางสอนที่ถูกพัฒนาขึ้น

48

หลังจากเสร็จสิ้นการประมวลผลแล้วโปรแกรมจะแสดงค าตอบและค่าของค าตอบที่ดีที่สุดตั้งแต่เริ่มต้น
การประมวลผล (Best so far solution and value) ออกมาดังภาพ 8 ซึ่งจะเห็นได้ว่าลักษณะของค าตอบที่ดี
ที่สุดที่แสดงออกมานั้นจะอยู่ในรูปของตัวเลขท่ียังเข้ารหัส (Encoded) อยู่

ภาพ 8 ตัวอย่างการแสดงผลลัพธ์ของโปรแกรมจัดตารางเรียนตารางสอนที่ถูกพัฒนาขึ้น

3. ส่วนของข้อมูลน าออกของโปรแกรม ในส่วนนี้จะเป็นการน าค าตอบที่ดีที่สุดที่แสดงออกมาหลังจากการ

ประมวลผลมาท าการถอดรหัส (Decoded) ให้อยู่ในรูปแบบของตารางการใช้ห้องเรียนดังภาพภาพ 9
ตารางสอนของอาจารย์ดังภาพ 10 และตารางเรียนของนักเรียนดังภาพ 11 ซึ่งท าให้ผู้ใช้โปรแกรมสามารถ
เข้าใจได้ง่ายและสามารถน าผลดังกล่าวไปใช้งานได้

ภาพ 9 ตัวอย่างแสดงตารางการใช้ห้องเรียนของโปรแกรมที่ถูกพัฒนาขึ้น

49

ภาพ 10 ตัวอย่างแสดงตารางสอนอาจารย์ของโปรแกรมท่ีถูกพัฒนาขึ้น

ภาพ 11 ตัวอย่างแสดงตารางเรียนนักเรียนของโปรแกรมที่ถูกพัฒนาขึ้น

3.9 การออกแบบการทดลองและการทดสอบโปรแกรม

หลังจากที่ได้ท าการพัฒนาโปรแกรมจัดตารางเรียนตารางสอนเสร็จสิ้นและได้ท าการตรวจสอบความ
ถูกต้องแล้ว ขั้นตอนถัดไปจะเป็นการทดสอบโปรแกรมตามวัตถุประสงค์ที่ได้ก าหนดไว้ เนื่องจากการก าหนด
ค่าพารามิเตอร์ที่เหมาะสมส าหรับวิธีการเมต้าฮิวริสติกส์นั้นมีความส าคัญเป็นอย่างมากต่อประสิทธิภาพของ
วิธีการดังกล่าว นอกจากนี้ค่าพารามิเตอร์ที่เหมาะสมของแต่ละวิธีการจะถูกน าไปใช้ในหลายวัตถุประสงค์ถัดไป
อีกด้วย ดังนั้นการออกแบบการทดลองจึงเป็นสิ่งที่จ าเป็นอย่างยิ่งในการสืบทราบค่าพารามิเตอร์ที่เหมาะสม
ส าหรับวิธีการ CS ก่อนท าการศึกษาเปรียบเทียบในการทดลองอ่ืนๆ ต่อไป

จ านวนพารามิเตอร์ของวิธีการ CS จะประกอบด้วย 2 ค่า [23] คือ จ านวนการค้นหาค าตอบ ซึ่งเกิดจาก
จ านวนประชากร (Population) คูณกับจ านวนรอบทั้งหมด (Iteration) ที่ใช้ในการค้นหา(หรือ PI) และค่า
ความน่าจะเป็นในการละทิ้งค าตอบ (Pa) เนื่องจากชุดของพารามิเตอร์ที่เหมาะสมในแต่ละปัญหาและแต่ละ
วิธีการย่อมต่างกันออกไป [22] ดังนั้นในงานวิจัยนี้จึงต้องท าการหาค่าพารามิเตอร์ที่เหมาะสมที่สุดของวิธีการ
CS ทั้งหมด 11 โจทย์ปัญหาที่ได้เสนอขึ้นมา

ส าหรับวิธีการ CS เนื่องจากมีจ านวนพารามิเตอร์ที่น้อย จึงได้เลือกใช้การออกแบบการทดลองเชิงแฟกทอ
เรียลแบบสมบูรณ์ 32 (Full factorial experimental design) [44] เพ่ือค้นหาค่าพารามิเตอร์ที่เหมาะสม
ทั้งหมด 11 โจทย์ ซึ่งแต่ละโจทย์จะมีจ านวนครั้งของการทดลอง 9 ครั้งต่อ 1 ค่าของการสุ่ม (Random seed)
และในแต่ละโจทย์จะถูกทดลองซ้ า 30 ครั้ง โดยใช้หมายเลขของการสุ่มที่แตกต่างกันออกไป ดังนั้นในการ
ทดลองนี้จะมีจ านวนรันทั้งหมดเท่ากับ 2,970 (11*9*30) รัน โดยถูกทดสอบบนเครื่องคอมพิวเตอร์ Intel
Core i7 ที่ความถี่ 3.4 GHz และมีหน่วยความจ า 4 GB (DDR3) ซึ่งผลการทดลองที่ได้ทั้งหมดที่ได้จะถูกน ามา
วิเคราะห์ผลการทดลองต่อไป

50

3.10 การวิเคราะห์ผลจากการออกแบบการทดลอง

ส าหรับการทดลองเพ่ือค้นหาค่าพารามิเตอร์ที่เหมาะสมส าหรับวิธีการ CS นั้น ผลการทดลองที่ได้จากการ
รันตามแผนการทดลองทั้งหมดในแต่ละโจทย์ปัญหา จะถูกน ามาวิเคราะห์ความแปรปรวน (ANOVA) ใน
รูปแบบเชิงเส้นแบบทั่วไป (General linear model) ซึ่งประกอบไปด้วย ผลรวมก าลังสอง (Sum of square:
SS) ระดับความอิสระ (Degree of freedom: DF) ค่าเฉลี่ยก าลังสอง (Mean square: MS) ค่า F (F value)
และ ค่า P (P value) ด้วยโปรแกรมประยุกต์ทางด้านสถิติ Minitab เวอร์ชัน 14 เพ่ืออธิบายถึงผลกระทบของ
ปัจจัยหลัก (Main effect) และผลกระทบร่วม (Interaction) ซึ่งจะน าไปสู่ข้อสรุปได้ว่า ปัจจัยหรือพารามิเตอร์
ใดบ้างที่จะมีผลกระทบต่อการทดลองโดยนัยส าคัญ (Significance) ทางสถิติ หลังจากนั้นจะท าการสรุปช่วง
หรือค่าของพารามิเตอร์ที่เหมาะสมส าหรับวิธีการ CS โดยใช้ผลจากภาพการวิเคราะห์ผลกระทบของปัจจัยหลัก
(Main effect plot) ควบคู่ไปกับผลจากการเปรียบเทียบหลายระดับเป็นเครื่องมือชี้วัด

ส าหรับการเปรียบเทียบหลายระดับ (Multiple comparison) จะถูกน ามาใช้ในการค้นหาว่าระดับของ
ปัจจัยคู่ใดที่แตกต่างไปจากระดับอ่ืนอย่างมีนัยส าคัญทางสถิติด้วยโปรแกรมประยุกต์ทางด้านสถิติ Minitab
เวอร์ชัน 14 ซึ่งปัจจัยที่จะน ามาท าการเปรียบเทียบหลายระดับได้นั้นควรจะเป็นปัจจัยที่ได้ท าการวิเคราะห์
ANOVA แล้วพบว่ามีแตกต่างที่ระดับความเชื่อมั่นที่ 95 เปอร์เซ็นต์ เพียงแต่ยังไม่ทราบว่าเป็นระดับของปัจจัย
คู่ใดที่แตกต่างจากระดับอ่ืน ซึ่งวิธีการเปรียบเทียบหลายระดับที่ใช้ในงานวิจัยนี้คือ วิธีการ Tukey [44]
เนื่องจากวิธีการนี้เป็นที่นิยมใช้และเป็นวิธีการที่สามารถเชื่อมั่นได้ว่าค่า α ของทุกคู่ท่ีเปรียบเทียบจะยังคงเป็น
0.05 เท่าเดิม

นอกจากนี้ในส่วนของการวิเคราะห์ผลการทดลองอ่ืนที่เกี่ยวข้องกับการเปรียบเทียบประสิทธิภาพของ
วิธีการต่างๆ จะมีการใช้หลักการทางสถิติ เช่น ค่าน้อยที่สุด (Minimum) ค่ามากที่สุด (Maximum) การหา
ค่าเฉลี่ย (Average) การหาค่าเบี่ยงเบนมาตรฐาน (SD) การวิเคราะห์แบบจับคู่ (Pairwise comparisons) เป็น
ต้น เข้ามาช่วยในการสรุปผลการทดลองให้มีความน่าเชื่อถือมากยิ่งข้ึน

51

บทท่ี 4

ผลการวิจัย

หลังจากที่ได้ท าการพัฒนาโปรแกรมจัดตารางเรียนตารางสอนเสร็จสิ้นและได้ท าการตรวจสอบความ
ถูกต้องแล้ว ขั้นตอนถัดไปจะเป็นการทดสอบโปรแกรมตามวัตถุประสงค์ที่ได้ก าหนดไว้ เนื่องจากการก าหนด
ค่าพารามิเตอร์ที่เหมาะสมส าหรับวิธีการเมต้าฮิวริสติกส์นั้นมีความส าคัญเป็นอย่างมากต่อประสิทธิภาพของ
วิธีการดังกล่าว นอกจากนี้ค่าพารามิเตอร์ที่เหมาะสมของแต่ละวิธีการจะถูกน าไปใช้ในหลายวัตถุประสงค์ถัดไป
อีกด้วย ดังนั้นในการทดลองที่ 1 จึงจะท าการออกแบบและวิเคราะห์ผลการทดลองในการสืบทราบ
ค่าพารามิเตอร์ที่เหมาะสมส าหรับวิธีการ CS ก่อน จากนั้นในการทดลองที่ 2 จะท าการศึกษาเปรียบเทียบ
ประสิทธิภาพของวิธีการ CS ที่มีการปรับเปลี่ยนกระบวนการ (Modification) และในการทดลองที่ 3 จะ
ท าการศึกษาเปรียบเทียบประสิทธิภาพของวิธีการ CS แบบที่มีการผสมผสาน (Hybridisation) กับวิธีการ
ค้นหาแบบเฉพาะพ้ืนที ่

4.1 ผลการทดลองท่ี 1: การค้นหาค่าพารามิเตอร์ที่เหมาะสม

การค้นหาค่าพารามิเตอร์ที่เหมาะสมส าหรับวิธีการ CS เนื่องจากจ านวนพารามิเตอร์ของวิธีการ CS จะ
ประกอบด้วย 2 ค่า คือ จ านวนการค้นหาค าตอบ ซึ่งเกิดจากจ านวนประชากร (Population) คูณกับจ านวน
รอบท้ังหมด (Iteration) ที่ใช้ในการค้นหา (หรือ PI) และค่าความน่าจะเป็นในการละทิ้งค าตอบ (Pa) ดังนั้นการ
ทดลองนี้ได้ท าการออกแบบการทดลองเชิงแฟกทอเรียลแบบสมบูรณ์ 32 (Full factorial experimental
design) [44] เพ่ือค้นหาค่าพารามิเตอร์ที่เหมาะสมส าหรับวิธีการ CS ในการแก้ปัญหาการจัดตารางเรียน
ตารางสอนที่ได้สร้างไว้แล้วทั้งหมด 11 โจทย์แสดงดังตาราง 2

ตาราง 2 แสดงข้อมูลโจทย์ปัญหาการจัดตารางเรียนตารางสอนที่ถูกเสนอขึ้นของมหาวิทยาลัยนเรศวร

Problems
Characteristics of the NU course timetabling problems

No. Courses No. Events No. Classrooms No. Days/ week No. Periods/ day No. Lecturers No. Curricula
1 56 173 53 5 10 30 19
2 103 323 77 7 10 62 36
3 123 353 86 7 10 49 27
4 124 380 74 7 11 56 35
5 144 452 91 7 10 78 43
6 162 486 99 7 10 71 34
7 163 499 88 7 11 72 38
8 204 639 114 7 10 96 52
9 208 647 99 7 11 102 56
10 221 687 108 7 12 94 44
11 323 1,009 142 7 13 143 66

52

ในแต่ละโจทย์ปัญหานั้น ได้ก าหนดระดับค่าพารามิเตอร์ในแต่ละปัจจัยของวิธีการ CS ออกเป็น 3 ระดับ
คือ ระดับต่ า (-1) ระดับกลาง (0) และระดับสูง (1) ดังตาราง 3 โดยจ านวนประชากร (P) ที่เหมาะสมส าหรับ
ปัญหาการหาค่าที่เหมาะสมที่สุดได้ถูกทดลองและถูกแนะน าไว้ที่ 15 ถึง 40 ประชากร [23] และเนื่องจาก
โปรแกรมใช้เวลาในการประมวลผลที่ไม่นานมาก งานวิจัยนี้จึงได้ก าหนดจ านวนการค้นหาทั้งหมด (PI) ไว้ที่
24,000 ค าตอบ ในขณะที่ค่าความน่าจะเป็นในการละทิ้งค าตอบ (Pa) ที่เหมาะสมส าหรับปัญหาการหาค่าที่
เหมาะสมที่สุดได้ถูกทดลองและแนะน าไว้ที่ 0.25 [23] ดังนั้นงานวิจัยนี้จึงได้ก าหนดค่าดังกล่าวไว้ที่ระดับกลาง
ขณะที่ค่าระดับต่ าและสูงจะก าหนดค่าไว้ที่ ±0.15

ตาราง 3 แสดงการก าหนดค่าพารามิเตอร์ของวิธีการ CS ในแต่ละปัจจัย

Factors Levels
Values

Low (-1) Medium (0) High (1)

Number of population * Number of iterations (PI) 3 15*1600 25*960 40*600

Probability of abandon (Pa) 3 0.1 0.25 0.4

ในแต่ละโจทย์จะมีจ านวนวิธีปฏิบัติในการทดลอง 9 (32) วิธีปฏิบัติต่อ 1 ค่าของการสุ่ม (Random seed)

และแต่ละโจทย์จะถูกทดลองซ้ า 30 ครั้งโดยใช้หมายเลขของการสุ่มที่แตกต่างกัน เนื่องจากมีจ านวนโจทย์
ปัญหาทั้งหมด 11 โจทย์ ดังนั้นการทดลองนี้จะมีจ านวนรันทั้งหมดเท่ากับ 2,970 (11*9*30) รัน นอกจากนี้ใน
การทดลองนี้ได้ก าหนดวิธีการจัดล าดับรายวิชาแบบ LUPD และการประมวลผลการทดลองทั้งหมดได้ถูก
ทดสอบบนเครื่องคอมพิวเตอร์ Intel Core i7 ที่ความถ่ี 3.4 GHz และมีหน่วยความจ า 4 GB (DDR3)

ผลการทดลองที่ได้จากการประมวลผลทั้งหมดจะถูกน ามาวิเคราะห์ความแปรปรวน (ANOVA) ในรูปแบบ
เชิงเส้นแบบทั่วไป (General linear model) ซึ่งประกอบไปด้วย ผลรวมก าลังสอง (SS) ระดับความอิสระ
(DF) ค่าเฉลี่ยก าลังสอง (MS) ค่า F (F value) และ ค่า P (P value) ด้วยโปรแกรมประยุกต์ทางด้านสถิติ
Minitab เวอร์ชัน 14 เพ่ืออธิบายถึ งผลกระทบของปัจจัยหลัก (Main effect) และผลกระทบร่วม
(Interaction) ว่าปัจจัยหรือพารามิเตอร์ใดบ้างที่จะมีผลกระทบต่อการทดลองโดยนัยส าคัญ (Significance)
ทางสถิติดังตาราง 4

ผลการวิเคราะห์ความแปรปรวนของวิธีการ CS ส าหรับโจทย์ปัญหา 3, 4, 5, 7, และ 10 จากตาราง 4
พบว่าผลกระทบของปัจจัยหลัก (Main effect) และผลกระทบของปัจจัยร่วม (Interaction) จาก 2 ปัจจัย
ประกอบด้วย จ านวนการค้นหาค าตอบทั้งหมด (PI) และค่าความน่าจะเป็นในการละทิ้งค าตอบ (Pa) ไม่มี
นัยส าคัญทางสถิติที่ระดับความเชื่อมั่น 95% โดยพิจารณาได้จากค่า P ที่ได้มากกว่า 0.05 นอกจากนี้ยังพบว่า
หมายเลขของการสุ่ม (Seeds) นั้นไม่มีนัยส าคัญทางสถิติที่ระดับความเชื่อมั่น 95% อีกด้วย

ในขณะที่ผลการวิเคราะห์ความแปรปรวนของวิธีการ CS ส าหรับโจทย์ปัญหา 1, 2, 6, 8, 9 และ 11 จาก
ตาราง 4 พบว่า ผลกระทบของปัจจัยหลักของจ านวนการค้นหาค าตอบทั้งหมด (PI) มีนัยส าคัญทางสถิติที่
ระดับความเชื่อมั่น 95% โดยพิจารณาได้จากค่า P ที่ได้จะน้อยกว่าหรือเท่ากับ 0.05 ขณะที่ผลกระทบของ

53

ปัจจัยร่วมนั้นไม่พบว่ามีนัยส าคัญทางสถิติที่ระดับความเชื่อมั่น 95% นอกจากนี้ยังพบว่าหมายเลขของการสุ่ม
เฉพาะในโจทย์ปัญหา 6 มีนัยส าคัญทางสถิติที่ระดับความเชื่อมั่น 95%

ตาราง 4 แสดงผลการวิเคราะห์ความแปรปรวนของวิธีการ CS ส าหรับ 11 โจทย์
Problems Source DF SS MS F P

1

PI 2 576,316 288,158 43.89 0.000
Pa 2 30,338 15,169 2.31 0.102

PI*Pa 4 32,133 8,033 1.22 0.302
Seeds 29 247,749 8,543 1.30 0.148
Error 232 1,523,225 6,566
Total 269 2,409,761

2

PI 2 9,728,333 4,864,167 23.34 0.000
Pa 2 1,170,584 585,292 2.81 0.062

PI*Pa 4 320,577 80,144 0.38 0.820
Seeds 29 6,977,415 240,601 1.15 0.276
Error 232 48,353,774 208,421
Total 269 66,550,684

3

PI 2 1,417,618 708,809 0.79 0.456
Pa 2 1,749,929 874,964 0.97 0.380

PI*Pa 4 3,050,857 762,714 0.85 0.497
Seeds 29 33,060,258 1,140,009 1.27 0.173
Error 232 208,932,710 900,572
Total 269 248,211,371

4

PI 2 9,208,263 4,604,132 0.95 0.388
Pa 2 10,839,612 5,419,806 1.12 0.328

PI*Pa 4 8,930,587 2,232,647 0.46 0.764
Seeds 29 171,994,153 5,930,833 1.23 0.206
Error 232 1,122,530,543 4,838,494
Total 269 1,323,503,159

5

PI 2 1,101,544 550,772 1.38 0.253
Pa 2 1,424,859 712,429 1.79 0.169

PI*Pa 4 305,787 76,447 0.19 0.942
Seeds 29 11,690,452 403,119 1.01 0.452
Error 232 92,302,925 397,857
Total 269 106,825,567

6

PI 2 5,689,355 2,844,678 3.35 0.037
Pa 2 1,853,119 926,560 1.09 0.337

PI*Pa 4 3,341,783 835,446 0.98 0.416
Seeds 29 37,621,130 1,297,280 1.53 0.047
Error 232 196,798,215 848,268
Total 269 245,303,602

7

PI 2 23,156,156 11,578,078 2.75 0.066
Pa 2 11,461,652 5,730,826 1.36 0.258

PI*Pa 4 21,070,907 5,267,727 1.25 0.290
Seeds 29 103,618,664 3,573,057 0.85 0.692
Error 232 976,837,736 4,210,507
Total 269 1,136,145,115

54

Problems Source DF SS MS F P

8

PI 2 24,363,035 12,181,517 7.82 0.001
Pa 2 3,130,959 1,565,479 1.00 0.368

PI*Pa 4 13,162,120 3,290,530 2.11 0.080
Seeds 29 32,649,099 1,125,831 0.72 0.852
Error 232 361,618,994 1,558,703
Total 269 434,924,207

9

PI 2 71,907,246 35,953,623 4.89 0.008
Pa 2 7,519,674 3,759,837 0.51 0.600

PI*Pa 4 22,509,946 5,627,486 0.77 0.549
Seeds 29 291,826,850 10,062,995 1.37 0.107
Error 232 1,706,503,430 7,355,618
Total 269 2,100,267,145

10

PI 2 27,130,907 13,565,453 0.92 0.400
Pa 2 36,203,923 18,101,961 1.23 0.295

PI*Pa 4 88,284,774 22,071,193 1.50 0.204
Seeds 29 531,114,905 18,314,307 1.24 0.192
Error 232 3,420,245,184 14,742,436
Total 269 4,102,979,692

11

PI 2 148002875 74001438 4.68 0.010
Pa 2 47204008 23602004 1.49 0.227

PI*Pa 4 119012484 29753121 1.88 0.115
Seeds 29 531110852 18314167 1.16 0.272
Error 232 3669965471 15818817
Total 269 4515295691

ผลการสรุปค่าพารามิเตอร์ที่เหมาะสมของวิธีการ CS ส าหรับแนวทางการก าหนดค่าพารามิเตอร์ที่
เหมาะสมในแต่ละปัจจัยของวิธีการ CS ส าหรับ 11 ปัญหา จะพิจารณาได้จากจุดต่ าที่สุด (ค่าเฉลี่ยต้นทุนรวมที่
น้อยที่สุด) จากกราฟผลกระทบปัจจัยหลัก (Main effect plot) ซึ่งจะแสดงถึงระดับของแต่ละพารามิเตอร์ทั้ง
3 ระดับ (แกน x) กับต้นทุนรวมทั้งหมดเฉลี่ย (แกน y) ส าหรับกราฟแสดงผลกระทบหลักส าหรับวิธีการ CS กับ
11 โจทย์ปัญหาแสดงดังภาพ 12 ถึงภาพ 17

ภาพ 12 แสดงกราฟผลกระทบหลักชองปัจจัย PI และ Pa ส าหรับปัญหา 1 (ภาพซ้าย) และปัญหา 2 (ภาพขวา)

55

ภาพ 13 แสดงกราฟผลกระทบหลักชองปัจจัย PI และ Pa ส าหรับปัญหา 3 (ภาพซ้าย) และปัญหา 4 (ภาพขวา)

ภาพ 14 แสดงกราฟผลกระทบหลักชองปัจจัย PI และ Pa ส าหรับปัญหา 5 (ภาพซ้าย) และปัญหา 6 (ภาพขวา)

ภาพ 15 แสดงกราฟผลกระทบหลักชองปัจจัย PI และ Pa ส าหรับปัญหา 7 (ภาพซ้าย) และปัญหา 8 (ภาพขวา)

ภาพ 16 แสดงกราฟผลกระทบหลักชองปัจจัย PI และ Pa ส าหรับปัญหา 9 (ภาพซ้าย) และปัญหา 10 (ภาพขวา)

56

ภาพ 17 แสดงกราฟผลกระทบหลักชองปัจจัย PI และ Pa ส าหรับปัญหา 11

ผลการสรุปค่าพารามิเตอร์ที่เหมาะสมจากภาพ 12 ถึงภาพ 17 จะเห็นได้ว่าระดับของปัจจัยที่เหมาะสมซึ่ง
จะท าให้เกิดต้นทุนรวมทั้งหมดมีค่าน้อยที่สุดส าหรับวิธีการ CS กับปัญหาทั้ง 11 โจทย์นั้น ปัจจัย Pa ควร
ก าหนดในช่วง 0.1 ถึง 0.4 เพราะว่าผลการวิเคราะห์ความแปรปรวน แสดงให้เห็นว่าทุกคู่ระดับของปัจจัย Pa
แตกต่างแบบไม่มีนัยส าคัญทางสถิติในทุกโจทย์ปัญหา ในขณะที่ปัจจัย PI ส าหรับโจทย์ 1, 2, 6, 8, 9, และ 11
นั้นผลการวิเคราะห์ความแปรปรวน แสดงให้เห็นว่ามีบางคู่ระดับของปัจจัย PI แตกต่างแบบมีนัยส าคัญทาง
สถิติ

ดังนั้นค่าพารามิเตอร์ที่เหมาะสมที่สุดส าหรับวิธีการ CS ที่ประกอบด้วยปัจจัย PI และ Paทั้ง 11 โจทย์ซึ่ง
ถูกค้นหาด้วยวิธีการออกแบบการทดลองและการวิเคราะห์ทางสถิติ (Experimental design and analysis:
EDA) ได้ถูกสรุปดังตาราง 5 (คอลัมน์ซ้าย) อย่างไรก็ตามค่าพารามิเตอร์ที่เหมาะสมของบางปัจจัยอาจถูกสรุป
ไว้หลายค่า แต่ในทางปฏิบัติแต่ละปัจจัยจะต้องเลือกค่าที่เหมาะสมที่สุดเพียงหนึ่งค่าส าหรับน าไปใช้ในการ
ทดลองหรือน าไปใช้ต่อไป (Selected appropriate parameter settings for CS) ซึ่งได้ได้ถูกสรุปดังตาราง 5
(คอลัมน์ขวา)

ตาราง 5 แสดงสรุปค่าพารามิเตอร์ที่เหมาะสมส าหรับวิธีการ CS ส าหรับ 11 โจทย์

Problems Concluded appropriate parameter settings for
CS

 Selected appropriate parameter
settings for CS PI Pa PI Pa

1 15*1600 0.1, 0.25, 0.4 15*1600 0.25
2 15*1600 0.1, 0.25, 0.4 15*1600 0.10
3 15*1600, 25*960, 40*600 0.1, 0.25, 0.4 25*960 0.40
4 15*1600, 25*960, 40*600 0.1, 0.25, 0.4 15*1600 0.25
5 15*1600, 25*960, 40*600 0.1, 0.25, 0.4 25*960 0.10
6 25*960, 40*600 0.1, 0.25, 0.4 25*960 0.25
7 15*1600, 25*960, 40*600 0.1, 0.25, 0.4 40*600 0.10
8 40*600 0.1, 0.25, 0.4 40*600 0.40
9 25*960, 40*600 0.1, 0.25, 0.4 40*600 0.25
10 15*1600, 25*960, 40*600 0.1, 0.25, 0.4 25*960 0.40
11 25*960, 40*600 0.1, 0.25, 0.4 25*960 0.40

57

4.2 ผลการทดลองท่ี 2: การปรับเปลี่ยนกระบวนการวิธีการ CS

การทดลองนี้ได้ถูกออกแบบเพ่ือทดสอบและเปรียบเทียบประสิทธิภาพของวิธีการ CS ที่มีการปรับเปลี่ยน
กระบวนการ (Process modification) โดยประยุกต์ใช้การเดินสุ่มแบบ Lévy flights (CSLF) และวิธีการ CS
โดยประยุกต์ใช้การเดินสุ่มแบบ Gaussian random walks (CSGRW) โดยทั้งสองวิธีการจะใช้ค่าพารามิเตอร์
ที่ เหมาะสมที่ ได้จากการออกแบบการทดลองและการวิเคราะห์ เชิงสถิติ (Experimental design and
analysis) จากการทดลองแรกในทุกโจทย์ปัญหา ส าหรับการเปรียบเทียบประสิทธิภาพของวิธีการต่างๆ ในการ
จัดตารางเรียนตารางสอนเพ่ือให้เกิดต้นทุนรวมจากการใช้ทรัพยากรทางการศึกษาของมหาวิทยาลัยน้อยที่สุด
กับโจทย์ปัญหาที่ได้สร้างไว้จ านวน 11 โจทย์นั้น (แสดงดังตาราง 2) จะถูกวิเคราะห์โดย ค่าที่น้อยที่สุด
(Minimum) ค่าที่มากที่สุด (Maximum) ค่าเฉลี่ย (Average) ค่าเบี่ยงเบนมาตรฐาน (Standard deviation:
SD) และเวลาเฉลี่ยที่ใช้ในการประมวล (Average execution time: Time) ซึ่งมีหน่วยเป็นนาที (Minutes)
นอกจากนี้ค่า T ที่ได้จากการวิเคราะห์ t-test และค่า P value ได้ถูกน ามาวิเคราะห์ประสิทธิภาพของวิธีการที่
ได้น าเสนออีกด้วยดังตาราง 6 โดยในการทดลองนี้ได้ก าหนดจ านวนการค้นหาค าตอบในแต่ละโจทย์ปัญหาจะ
ถูกก าหนดไว้ที่ 24,000 ค าตอบ ซึ่งทั้ง 2 วิธีการจะท าการทดลองซ้ าจ านวน 30 ครั้งด้วยค่าหมายเลขในการสุ่ม
ที่แตกต่างกันในแต่ละโจทย์ปัญหา ดังนั้นจ านวนการรันทั้งหมดในการทดลองนี้ทั้งหมด 11 โจทย์จะเท่ากับ
660 (2*11*30) รัน

ผลการทดลองดังตาราง 6 พบว่า วิธีการ CSLF สามารถจัดตารางสอนโดยมีต้นทุนรวมเฉลี่ย (Average)
น้อยกว่าวิธีการ CSGRW เกือบทุกโจทย์ปัญหา ในขณะที่วิธีการ CSGRW จะสามารถจัดตารางสอนได้ผลลัพธ์ที่
ดีกว่าวิธีการ CSLF เฉพาะปัญหาที่ 9 ส าหรับค่าที่น้อยที่สุด (Minimum) ที่ได้จากวิธีการ CSLF จะดีกว่าค่า
ดังกล่าวที่ได้จากวิธีการ CSGRW ในบางโจทย์ปัญหา นอกจากนี้ค่าค่าเบี่ยงเบนมาตรฐาน (SD) และเวลาที่ใช้ใน
การประมวลผลเฉลี่ยที่ได้จากทั้งสองวิธีการจะมีความแตกต่างกันไม่มากนัก (หน่วย: นาท)ี

ผลการทดลองในด้านการวิเคราะห์ทางสถิติพบว่า ประสิทธิภาพของวิธีการ CSLF และวิธีการ CSGRW
จะแตกต่างกันอย่างมีนัยส าคัญทางสถิติที่ระดับความเชื่อมั่นที่ 95 เปอร์เซ็นต์จากการทดสอบแบบ t-test (P
value ≤ 0.05) ในโจทย์ปัญหาที่ 1 ปัญหาที่ 4 และปัญหาที่ 7 ซึ่งจะเห็นได้ว่าเป็นปัญหาที่อยู่ในขนาดเล็กและ
ขนาดกลางเท่านั้น ดังนั้นจึงสามารถสรุปได้ว่า ประสิทธิภาพของวิธีการ CSLF และวิธีการ CSGRW แตกต่าง
กันอย่างไม่มีนัยส าคัญทางสถิติเกือบทุกโจทย์ปัญหาโดยเฉพาะในปัญหาขนาดใหญ่

นอกจากนี้ ผลการเปรียบเทียบประสิทธิภาพในด้านความเร็วในการลู่เข้าสู่ค าตอบที่ดีที่สุดตั้งแต่เริ่มต้น
การประมวลผล (Best so far solution: BSF) ของวิธีการ CSLF และวิธีการ CSGRW ยกตัวอย่างในโจทย์
ปัญหาขนาดใหญ่ที่ 11 แสดงดังภาพ 18 ซึ่งจะเห็นได้ว่า วิธีการ CSGRW แม้ว่าจะลู่เข้าสู่ค าตอบที่ดีได้เร็วกว่า
วิธีการ CSLF ในช่วงแรก แต่ในรอบการประมวลผลช่วงกลางๆ ไปจนถึงช่วงการประมวลผลรอบการค้นหา
ท้ายๆ วิธีการ CSLF จะมีการลู่เข้าสู่ค าตอบที่ดีกว่าวิธีการ CSGRW อย่างเห็นได้ชัด

58

ตาราง 6 แสดงผลการเปรียบเทียบระหว่างวิธีการ CSLF และ CSGRW

Prob. Methods
Best so far solutions t-test

Minimum Maximum Average SD
Time

(minutes)
T

values
P values

1
CSGRW 202,054.50 202,272.50 202,147.83 54.10 2.44

3.11 0.003
CSLF 201,998.00 202,225.00 202,103.62 56.02 2.53

2
CSGRW 378,485.50 379,806.00 379,039.18 341.62 10.05

1.26 0.211
CSLF 377,927.25 379,754.50 378,919.28 390.96 9.86

3
CSGRW 301,028.25 305,228.75 303,160.19 1,052.36 21.79

0.06 0.956
CSLF 301,125.25 305,010.75 303,146.30 866.33 24.49

4
CSGRW 299,674.50 308,693.75 304,171.83 2,322.36 12.16

2.05 0.045
CSLF 300,210.00 307,450.25 302,937.73 2,337.29 13.25

5
CSGRW 488,054.75 490,183.00 489,362.45 534.46 25.99

0.62 0.540
CSLF 488,141.50 490,141.00 489,286.09 416.09 28.24

6
CSGRW 406,083.25 410,164.75 407,872.34 910.48 30.06

0.46 0.645
CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00

7
CSGRW 412,589.00 418,821.25 416,126.10 1,488.51 21.85

2.96 0.005
CSLF 412,089.00 418,062.50 414,820.20 1,901.27 23.14

8
CSGRW 581,132.00 587,924.25 584,719.17 1,569.00 58.34

0.66 0.514
CSLF 582,654.75 587,650.00 584,485.26 1,155.05 57.98

9
CSGRW 604,809.25 612,667.00 609,530.52 2,146.03 32.66

-0.12 0.902
CSLF 602,771.25 615,903.25 609,619.51 3,317.79 40.79

10
CSGRW 551,052.50 565,639.25 558,339.95 3,861.85 37.06

1.49 0.143
CSLF 546,314.50 563,997.25 556,667.98 4,798.57 37.73

11
CSGRW 932,438.50 955,456.00 947,073.63 4,194.05 141.78

1.15 0.256
CSLF 939,531.25 955,056.25 945,859.18 4,000.94 145.29

4.3 ผลการทดลองท่ี 3: การปรับปรุงประสิทธิภาพวิธีการ CS แบบผสมผสาน

การทดลองนี้ได้ถูกออกแบบเพ่ือท าการทดสอบและเปรียบเทียบประสิทธิภาพของวิธีการ CSLF ที่ได้รับ
การปรับปรุงประสิทธิภาพแบบผสมผสาน (Hybridisation) กับวิธีการ Local search (LS) ซึ่งวิธีการ LS ใน
การทดลองนี้จะประกอบไปด้วย 2 วิธีการคือ Insertion operator (IO) และ Exchange operator (EO)
ดังนั้นในการทดลองนี้จะมีวิธีการทั้ งหมด 3 วิธีการส าหรับท าการเปรียบเทียบในแต่ละโจทย์ปัญหา
ประกอบด้วย วิธีการ CSLF วิธีการ CSLF+IO และวิธีการ CSLF+EO

59

ภาพ 18 แสดงกราฟเปรียบเทียบการลู่เข้าสู่ค าตอบที่ดีของวิธีการ CSLF และ CSGRW ส าหรับปัญหา 11

ส าหรับการเปรียบเทียบประสิทธิภาพของวิธีการต่างๆ จะถูกทดสอบกับโจทย์ปัญหาที่ได้สร้างไว้จ านวน
11 โจทย์ (แสดงดังตาราง 2) และจะถูกวิเคราะห์โดย ค่าที่น้อยที่สุด (Minimum) ค่าที่มากที่สุด (Maximum)
ค่าเฉลี่ย (Average) ค่าเบี่ยงเบนมาตรฐาน (SD) และเวลาเฉลี่ยที่ใช้ในการประมวล (Time) ซึ่งมีหน่วยเป็นนาที
(Minutes) ส่วนค่า T ที่ ได้จากการวิเคราะห์ด้วยวิธีการ Tukey และค่า P value จะถูกน ามาวิเคราะห์
ประสิทธิภาพระหว่างวิธีการแบบเดิมกับวิธีการที่ได้รับการผสมผสานอีกด้วย นอกจากนี้ในแต่ละโจทย์ปัญหาจะ
ก าหนดจ านวนการค้นหาค าตอบไว้ที่ 24,000 ค าตอบและใช้วิธีการจัดล าดับรายวิชาแบบ LUPD โดย
ค่าพารามิเตอร์ต่างๆ ที่ก าหนดให้กับวิธีการ CSLF น ามาจากตาราง 5 ตามล าดับ ยิ่งไปกว่านั้นทั้ง 3 วิธีการจะ
ถูกท าการทดลองซ้ าจ านวน 30 ครั้งด้วยค่าหมายเลขในการสุ่มที่แตกต่างกันในแต่ละโจทย์ปัญหา ดังนั้นจ านวน
การรันทั้งหมดในการทดลองนี้ทั้งหมด 11 โจทย์จะเท่ากับ 990 (3*11*30) รัน แสดงผลดังจากตาราง 7

ตาราง 7 แสดงผลการเปรียบเทียบวิธีการ CSLF ผสมผสานกับวิธีการ LS

Prob. Methods
Best so far solutions Tukey’s method

Minimum Maximum Average SD
Time

(minutes)
T

values
P

values

1
CSLF 201,998.00 202,225.00 202,103.62 56.02 2.38

CSLF+IO 202,032.50 202,202.00 202,111.42 41.21 1.86 -0.70 0.767
CSLF+EO 201,878.50 201,999.50 201,933.75 28.73 1.33 15.14 0.000

2
CSLF 377,927.25 379,754.50 378,919.28 390.96 13.34

CSLF+IO 374,599.50 379,625.25 378,993.15 869.67 7.93 -0.52 0.864
CSLF+EO 378,097.25 378,759.75 378,578.39 128.49 4.70 2.38 0.051

3
CSLF 301,125.25 305,010.75 303,146.30 866.33 20.62

CSLF+IO 301,457.25 305,675.75 303,555.73 875.72 16.05 -2.01 0.116
CSLF+EO 301,621.50 304,104.00 302,957.78 594.69 9.64 0.93 0.626

60

Prob. Methods
Best so far solutions Tukey’s method

Minimum Maximum Average SD
Time

(minutes)
T

values
P

values

4
CSLF 300,210.00 307,450.25 302,937.73 2,337.29 14.07

CSLF+IO 300,121.50 303,155.00 301,810.26 602.98 8.90 3.11 0.007
CSLF+EO 299,378.25 300,493.00 299,818.81 283.40 5.71 8.60 0.000

5
CSLF 488,141.50 490,141.00 489,286.09 416.09 19.76

CSLF+IO 488,741.00 490,562.50 489,143.93 402.93 16.28 1.30 0.399
CSLF+EO 487,315.00 489,495.25 488,342.48 450.17 9.23 8.63 0.000

6
CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00

CSLF+IO 406,073.00 409,059.75 407,526.06 692.80 25.65 1.13 0.497
CSLF+EO 405,637.75 408,083.75 407,048.07 657.90 15.39 3.46 0.002

7
CSLF 412,089.00 418,062.50 414,820.20 1,901.27 23.14

CSLF+IO 410,564.75 413,794.75 412,277.72 799.64 15.75 8.11 0.000
CSLF+EO 408,279.50 410,263.25 409,320.88 409.69 9.07 17.54 0.000

8
CSLF 582,654.75 587,650.00 584,485.26 1,155.05 57.98

CSLF+IO 581,817.00 585,534.50 583,827.22 765.29 31.10 2.93 0.012
CSLF+EO 581,335.25 583,897.00 582,670.56 597.82 18.75 8.07 0.000

9
CSLF 602,771.25 615,903.25 609,619.51 3,317.79 40.79

CSLF+IO 602,841.25 607,679.50 605,291.43 1,161.05 24.98 7.95 0.000
CSLF+EO 598,125.75 602,827.50 600,343.48 988.88 16.07 17.04 0.000

10
CSLF 546,314.50 563,997.25 556,667.98 4,798.57 37.73

CSLF+IO 547,759.50 553,854.50 550,632.50 1,495.93 33.62 7.93 0.000
CSLF+EO 540,221.00 543,150.50 541,621.70 913.53 24.64 19.76 0.000

11
CSLF 939,531.25 955,056.25 945,859.18 4,000.94 145.29

CSLF+IO 926,254.75 933,329.00 930,400.41 1,874.13 61.96 21.46 0.000
CSLF+EO 909,172.75 917,453.00 914,026.72 1,954.70 36.86 44.20 0.000

ผลการทดลองโดยสรุปจากตาราง 7 พบว่า วิธีการ CSLF+EO จะมีประสิทธิภาพในการจัดตารางเรียน

ตารางสอนโดยมีต้นทุนรวมเฉลี่ยน้อยกว่าวิธีการ CSLF+IO และวิธีการ CSLF ในทุกโจทย์ปัญหาและใช้เวลาใน
การจัดตารางน้อยที่สุดในทุกโจทย์ปัญหา นอกจากนี้ยังพบว่า วิธีการ CSLF+EO จะมีประสิทธิภาพในการจัด
ตารางเรียนตารางสอนโดยมีต้นทุนรวมเฉลี่ยน้อยที่สุดดีกว่าวิธีการ CSLF แบบทั่วไปในทุกโจทย์ปัญหา แม้ว่า
วิธีการ CSLF+IO จะมีประสิทธิภาพที่ด้อยกว่าวิธีการ CSLF ในโจทย์ปัญหา 1 ปัญหา 2 และปัญหา 3 แต่ใน
ปัญหา 4 ถึงปัญหา 11 ซึ่งเป็นปัญหาขนาดกลางไปจนถึงขนาดใหญ่นั้นวิธีการ CSLF+IO จะมีประสิทธิภาพที่
ดีกว่าวิธีการ CSLF นอกจากนี้ค่า Minimum ค่า Maximum และค่าเบี่ยงเบนมาตรฐาน (SD) ที่ได้จากวิธีการ

61

CSLF+EO จะมีค่าที่น้อยกว่าค่าดังกล่าวในวิธีการ CSLF และวิธีการ CSLF+IO เกือบทุกโจทย์ปัญหา
โดยเฉพาะในปัญหาขนาดกลางไปจนถึงปัญหาขนาดใหญ่

ส าหรับเวลาเฉลี่ยที่ใช้ในการประมวลผลของวิธีการ CSLF ที่ได้รับการผสมผสานกับวิธีการ LS นั้นมีค่า
น้อยกว่าวิธีการ CSLF ที่ไม่ได้รับการผสมผสานกับวิธีการ LS อย่างมากในทุกโจทย์ปัญหา โดยเฉพาะอย่างยิ่ง
วิธีการ CSLF+EO นั้นใช้เวลาในการประมวลผลน้อยที่สุด เหตุผลเนื่องจากว่าในการทดลองนี้ได้ก าหนดให้มี
จ านวนการค้นหาค าตอบที่เท่ากันที่ 24,000 ค าตอบ ซึ่งวิธีการ CSLF+EO และ วิธีการ CSLF+IO ในแต่ละ
รอบการวนซ้ า (iteration) จะท าให้เกิดการพัฒนาค าตอบเป็น 2 เท่าของวิธีการ CSLF แบบทั่วไปจึงท าให้ต้อง
ลดจ านวนรอบการวนซ้ าลงครึ่งหนึ่งเพ่ือให้จ านวนการค้นหายังคงเท่ากับ 24,000 ค าตอบก่อนท าการ
เปรียบเทียบ นอกจากนี้วิธีการ LS ทั้งสองวิธีการนั้นมีขั้นตอนการท างานที่ง่ายและไม่ซับซ้อนจึงท าให้ใช้เวลา
เพียงเล็กน้อยในการพัฒนาค าตอบเมื่อเปรียบเทียบกับการพัฒนาค าตอบของวิธีการ CSLF ด้วยวิธีการ
random keys ซึ่งจะมีข้ันตอนและการค านวณท่ียุ่งยากมากกว่า

ส าหรับผลจากการวิเคราะห์การเปรียบเทียบแบบหลายระดับด้วยวิธีการ Tukey แสดงดังตาราง 7 จะ
เห็นได้ว่า ค าตอบที่ได้จากวิธีการ CSLF ที่ได้รับการผสมผสานกับวิธีการ LS (วิธีการ CSLF+IO และ/หรือ
วิธีการ CSLF+EO) จะแตกต่างอย่างมีนัยส าคัญทางสถิติกับวิธีการ CSLF ที่ระดับความเชื่อมั่นที่ 95 เปอร์เซ็นต์
เกือบทุกโจทย์ปัญหา ยกเว้นปัญหา 2 และปัญหา 3 ซึ่งจัดอยู่ในกลุ่มของปัญหาขนาดเล็ก

นอกจากนี้ ผลการเปรียบเทียบประสิทธิภาพในด้านความเร็วการลู่เข้าสู่ค าตอบที่ดีตั้งแต่เริ่มต้นการ
ประมวลผล (BSF) ของวิธีการ CSLF วิธีการ CSLF+EO และวิธีการ CSLF+IO ยกตัวอย่างในโจทย์ปัญหา
ขนาดใหญ่ที่ 11 ดังภาพ 19 จะเห็นได้ว่าวิธีการ CSLF+EO มีประสิทธิภาพในการลู่เข้าสู่ค าตอบที่ดีได้เร็วกว่า
วิธีการอ่ืนๆ ซึ่งวิธีการ CSLF+EO และ CSLF+IO จะลู่เข้าสู่ค าตอบที่ดีได้เร็วกว่าวิธีการ CSLF ตั้งแต่เริ่มต้น
การประมวลผลไปจนสิ้นสุดการประมวลผล ดังนั้นจึงสามารถสรุปได้ว่าวิธีการ CSLF ที่ได้รับการผสมผสานกับ
วิธีการ LS จะมีประสิทธิภาพในการค้นหาค าตอบที่ดีได้เร็วขึ้นเมื่อก าหนดจ านวนการค้นหาค าตอบที่เท่ากัน

ภาพ 19 แสดงกราฟเปรียบเทียบการลู่เข้าสู่ค าตอบที่ดีของวิธีการ CSLF, CSLF+IO และ CSLF+IO ส าหรับ
ปัญหา 11

62

บทท่ี 5

สรุปผลการวิจัย

โปรแกรมช่วยในการจัดตารางเรียนตารางสอนในระดับอุดมศึกษาแบบอัตโนมัติโดยประยุกต์ใช้วิธีการคุกคู
เสิร์ช (CST) ได้ถูกพัฒนาขึ้นเพ่ือแก้ปัญหาการจัดตารางสอนในระดับอุดมศึกษา ส าหรับโปรแกรมที่ถูก
พัฒนาขึ้นจะพิจารณาการจัดตารางเรียนตารางสอนโดยค านึงถึงต้นทุนการด าเนินการรวมของมหาวิทยาลัย
(Total university operating costs) ที่น้อยที่สุดตามข้อบังคับรองของงานวิจัย ซึ่งประกอบไปด้วย ต้นทุน
การใช้ห้องเรียนแต่ละห้อง ต้นทุนการจ้างอาจารย์ และต้นทุนการท าความสะอาดหรือจัดเตรียมห้อง โดย
ต้นทุนในแต่ละส่วนจะมีการก าหนดค่าถ่วงน้ าหนักที่แตกต่างกันไปตามคุณสมบัติและความชอบของแต่ละ
บุคคล ในแต่ละวัน ในแต่ละคาบเวลา โดยโจทย์ปัญหาการจัดตารางสอนได้ถูกออกแบบและสร้างขึ้นมาจาก
ข้อมูลจริงของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร ประกอบด้วย 11 โจทย์ที่มีขนาดเล็กไปจนถึงขนาด
ใหญ่ โดยพบว่าโปรแกรมจัดตารางเรียนตารางสอนที่ได้ถูกพัฒนาขึ้นนั้นสามารถท างานได้อย่างถูกต้องและมี
ประสิทธิภาพ

ผลการค้นหาอิทธิพลของปัจจัยและการก าหนดค่าพารามิเตอร์ที่เหมาะสมส าหรับการท างานของวิธีการ
CS โดยการออกแบบการทดลองและการวิเคราะห์ความแปรปรวน พบว่า ผลกระทบของปัจจัยหลัก (Main
effect) ของวิธีการ CS คือ จ านวนการค้นหาค าตอบทั้งหมด (PI) จะมีนัยส าคัญทางสถิติที่ระดับความเชื่อมั่น
95% ในบางโจทย์ปัญหา นอกจากนี้ค่าความน่าจะเป็นในการละทิ้งค าตอบ (Pa) และผลกระทบของปัจจัยร่วม
(Interaction) จาก 2 ปัจจัย จะไม่มีนัยส าคัญทางสถิติที่ระดับความเชื่อมั่น 95% ในทุกโจทย์ปัญหา อีกทั้งยัง
พบว่า หมายเลขของการสุ่ม (Seeds) นั้นไม่มีนัยส าคัญทางสถิติที่ระดับความเชื่อมั่น 95% เกือบทุกโจทย์
ปัญหา ในขณะที่ค่าพารามิเตอร์ที่เหมาะสมของวิธีการ CS จะมีความแตกต่างกันออกไปเมื่อโจทย์ปัญหาที่ได้
ก าหนดขึ้นมีขนาดแตกต่างกัน

ผลการทดสอบและเปรียบเทียบประสิทธิภาพของวิธีการ CS ที่มีการปรับเปลี่ยนกระบวนการ (Process
modification) โดยประยุกต์ใช้การเดินสุ่มแบบ Lévy Flights (CSLF) และวิธีการ CS โดยประยุกต์ใช้การเดิน
สุ่มแบบ Gaussian Random Walks (CSGRW) ในการจัดตารางเรียนตารางสอนเพ่ือให้เกิดต้นทุนรวมจากการ
ใช้ทรัพยากรทางการศึกษาของมหาวิทยาลัยน้อยที่สุดนั้น พบว่าวิธีการ CSLF สามารถจัดตารางสอนโดยมี
ต้นทุนรวมเฉลี่ย (Average) น้อยกว่าวิธีการ CSGRW เกือบทุกโจทย์ปัญหา ในขณะที่วิธีการ CSGRW จะ
สามารถจัดตารางสอนได้ผลลัพธ์ที่ดีกว่าวิธีการ CSLF ในบางโจทย์ปัญหา นอกจากนี้ค่าค่าเบี่ยงเบนมาตรฐาน
(SD) และเวลาที่ใช้ในการประมวลผลเฉลี่ยที่ได้จากทั้งสองวิธีการจะมีความแตกต่างกันไม่มาก ส าหรับผลการ
วิเคราะห์ทางสถิติพบว่า ประสิทธิภาพของวิธีการ CSLF และวิธีการ CSGRW แตกต่างกันอย่างไม่มีนัยส าคัญ
ทางสถิติที่ระดับความเชื่อมั่นที่ 95 เปอร์เซ็นต์เกือบทุกโจทย์ปัญหาโดยเฉพาะในปัญหาขนาดใหญ่ นอกจากนี้
ประสิทธิภาพในด้านความเร็วในการลู่เข้าสู่ค าตอบที่ดีที่สุดตั้งแต่เริ่มต้นการประมวลผล (BSF) ของวิธีการ
CSLF และ CSGRW ยังพบว่า วิธีการ CSGRW จะลู่เข้าสู่ค าตอบที่ดีได้เร็วกว่าวิธีการ CSLF ในช่วงแรก แต่ใน

63

รอบการประมวลผลช่วงกลางๆ ไปจนถึงช่วงการประมวลผลรอบการค้นหาท้ายๆ วิธีการ CSLF จะมีการลู่เข้าสู่
ค าตอบที่ดีกว่า

ส าหรับผลการทดสอบประสิทธิภาพของวิธีการ CS หลังจากท าการผสมผสานกับวิธีการค้นหาแบบเฉพาะ
พ้ืนที่ (Local Search: LS) พบว่า วิธีการ CSLF+EO จะมีประสิทธิภาพในการจัดตารางเรียนตารางสอนโดยมี
ต้นทุนรวมเฉลี่ยน้อยกว่าวิธีการ CSLF+IO และวิธีการ CSLF ในทุกโจทย์ปัญหาและใช้เวลาในการจัดตาราง
น้อยที่สุดในทุกโจทย์ปัญหา นอกจากนี้ยังพบว่าวิธีการ CSLF+IO จะมีประสิทธิภาพที่ด้อยกว่าวิธีการ CSLF ใน
โจทย์ปัญหา 1 ปัญหา 2 และปัญหา 3 เท่านั้น แต่ในปัญหา 4 ถึงปัญหา 11 ซึ่งเป็นปัญหาขนาดกลางไปจนถึง
ขนาดใหญ่นั้นวิธีการ CSLF+IO จะมีประสิทธิภาพที่ดีกว่าวิธีการ CSLF อย่างชัดเจน ยิ่งไปกว่านั้นผลการ
เปรียบเทียบประสิทธิภาพในด้านความเร็วการลู่เข้าสู่ค าตอบที่ดีตั้งแต่เริ่มต้นการประมวลผล (BSF) ของวิธีการ
CSLF วิธีการ CSLF+EO และวิธีการ CSLF+IO ยังพบว่า วิธีการ CSLF+EO มีประสิทธิภาพในการลู่เข้าสู่
ค าตอบที่ดีได้เร็วกว่าวิธีการอ่ืนๆ ซึ่งวิธีการ CSLF+EO และ CSLF+IO จะลู่เข้าสู่ค าตอบที่ดีได้เร็วกว่าวิธีการ
CSLF ต้ังแต่เริ่มต้นการประมวลผลไปจนสิ้นสุดการประมวลผล ดังนั้นสามารถสรุปได้ว่าวิธีการ CSLF ที่ได้รับ
การผสมผสานกับวิธีการ LS จะมีประสิทธิภาพในการค้นหาค าตอบที่ดีได้เร็วขึ้นเมื่อก าหนดจ านวนการค้นหา
ค าตอบที่เท่ากัน

64

เอกสารอ้างอิง

[1] P. Pongcharoen, W. Promtet, P. Yenradee, and C. Hicks, “Stochastic optimisation timetabling tool for
university course scheduling,” International Journal of Production Economics, vol. 112, no. 2, pp.
903-918, Apr, 2008.

[2] E. K. Burke, and S. Petrovic, “Recent research directions in automated timetabling,” European Journal
of Operational Research, vol. 140, no. 2, pp. 266-280, 2002.

[3] D. Datta, C. M. Fonseca, and K. Deb, “A multi-objective evolutionary algorithm to exploit the
similarities of resource allocation problems,” Journal of Scheduling, vol. 11, no. 6, pp. 405-419, Dec,
2008.

[4] S. Daskalaki, T. Birbas, and E. Housos, “An integer programming formulation for a case study in
university timetabling,” European Journal of Operational Research, vol. 153, no. 1, pp. 117-135,
2004.

[5] R. Lewis, “A survey of metaheuristic-based techniques for University Timetabling problems,” Or
Spectrum, vol. 30, no. 1, pp. 167-190, Jan, 2008.

[6] H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos, “Local search and constraint
programming for the post enrolment-based course timetabling problem,” Annals of Operations
Research, vol. 194, no. 1, pp. 111-135, 2012/04/01, 2012.

[7] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu, “A graph-based hyper-heuristic for
educational timetabling problems,” European Journal of Operational Research, vol. 176, no. 1, pp.
177–192, 2007.

[8] S. A. MirHassani, and F. Habibi, “Solution approaches to the course timetabling problem,” Artificial
Intelligence Review, vol. 39, no. 2, pp. 133-149, Feb, 2013.

[9] Z. Lü, and J.-K. Hao, “Adaptive Tabu Search for course timetabling,” European Journal of
Operational Research, vol. 200, no. 1, pp. 235-244, 2010.

[10] A. L. a. Bolaji, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, "Tackling University Course
Timetabling Problem Using Artificial Bee Colony Algorithm," Frontiers in Information Technology, A.-D.
Ali, ed., Jordan: MASAUM Network, 2012.

[11] R. Lewis, “A time-dependent metaheuristic algorithm for post enrolment-based course timetabling,”
Annals of Operations Research, vol. 194, no. 1, pp. 273-289, Apr, 2012.

[12] S. N. Jat, and S. X. Yang, “A hybrid genetic algorithm and tabu search approach for post enrolment
course timetabling,” Journal of Scheduling, vol. 14, no. 6, pp. 617-637, Dec, 2011.

[13] T. Thepphakorn, P. Pongcharoen, and C. Hicks, “An Ant Colony Based Timetabling Tool,”
International Journal of Production Economics, vol. 149, pp. 131–144, 2014.

[14] M. A. Al-Betar, A. T. Khader, and M. Zaman, “University Course Timetabling Using a Hybrid Harmony
Search Metaheuristic Algorithm,” IEEE Transactions on Systems Man and Cybernetics Part C-
Applications and Reviews, vol. 42, no. 5, pp. 664-681, Sep, 2012.

65

[15] J. K. Hao, and U. Benlic, “Lower bounds for the ITC-2007 curriculum-based course timetabling

problem,” European Journal of Operational Research, vol. 212, no. 3, pp. 464-472, Aug, 2011.
[16] D. B. Seo, A. I. L. Paz, and J. Miranda, “Information Systems for Organizational Agility: Action Research

on Resource Scheduling at the Universidad de Chile,” Asia Pacific Journal of Information Systems,
vol. 24, no. 4, pp. 417-441, 2014.

[17] C. Torres-Ovalle, J. R. Montoya-Torres, C. L. Quintero-Araújo, A. Sarmiento-Lepesqueur, and M.
Castilla-Luna, “University Course Scheduling and Classroom Assignment,” Ingeniería y Universidad,
vol. 18, pp. 59-75, 2014.

[18] C. Blum, and A. Roli, “Metaheuristics in combinatorial optimization: Overview and conceptual
comparison,” ACM Computing Surveys, vol. 35, no. 3, pp. 268-308, 2003.

[19] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. M. Gambardella, J. Knowles, M.
Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and T. Stützle, “A Comparison of the Performance of
Different Metaheuristics on the Timetabling Problem,” Lecture Notes in Computer Science, vol. 2740,
pp. 329-351, 2003/01/01, 2003.

[20] K. Socha, M. Sampels, and M. Manfrin, “Ant Algorithms for the University Course Timetabling Problem
with Regard to the State-of-the-Art,” Lecture Notes in Computer Science, vol. 2611, pp. 334-345,
2003.

[21] C. Meyers, and J. B. Orlin, “Very large-scale neighborhood search techniques in timetabling
problems,” Lecture Notes in Computer Science, vol. 3867, pp. 24-39, 2007.

[22] E. G. Talbi, Metaheuristics: From Design to Implementation: Wiley, 2009.
[23] X.-S. Yang, and S. Deb, “Engineering optimisation by cuckoo search,” International Journal of

Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330-343, 2010.
[24] X.-S. Yang, "A New Metaheuristic Bat-Inspired Algorithm," Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010), Studies in Computational Intelligence J. González, D. Pelta, C. Cruz, G.
Terrazas and N. Krasnogor, eds., pp. 65-74: Springer Berlin Heidelberg, 2010.

[25] X.-S. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” International Journal
of Bio-Inspired Computation, vol. 2, no. 2, pp. 78 - 84, 2010.

[26] A. H. Gandomi, and A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,”
Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 4831-4845,
2012.

[27] X.-S. Yang, "Flower Pollination Algorithm for Global Optimization," Unconventional Computation and
Natural Computation, Lecture Notes in Computer Science J. Durand-Lose and N. Jonoska, eds., pp.
240-249: Springer Berlin Heidelberg, 2012.

[28] A. R. Mehrabian, and C. Lucas, “A novel numerical optimization algorithm inspired from weed
colonization,” Ecological Informatics, vol. 1, no. 4, pp. 355-366, 2006.

[29] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Information
Sciences, vol. 179, no. 13, pp. 2232-2248, 2009.

66

[30] H. Shah-Hosseini, “The intelligent water drops algorithm: a nature-inspired swarm-based optimization

algorithm,” International Journal of Bio-Inspired Computation, vol. 1, no. 1, pp. 71-79, 2009.
[31] P. Civicioglu, “Backtracking Search Optimization Algorithm for numerical optimization problems,”

Applied Mathematics and Computation, vol. 219, no. 15, pp. 8121-8144, 2013.
[32] A. H. Kashan, “League Championship Algorithm: a new algorithm for numerical function

optimization,” Proceedings of Soft Computing and Pattern Recognition, 2009. SOCPAR '09, pp. 43-48,
2009.

[33] P. Civicioglu, and E. Besdok, “A conceptual comparison of the Cuckoo-search, particle swarm
optimization, differential evolution and artificial bee colony algorithms,” Artificial Intelligence Review,
vol. 39, no. 4, pp. 315-346, 2013/04/01, 2013.

[34] X. Ouyang, Y. Zhou, Q. Luo, and H. Chen, “A Novel Discrete Cuckoo Search Algorithm for Spherical
Traveling Salesman Problem,” Applied Mathematics & Information Sciences, vol. 7, no. 2, pp. 777-
784, 2013.

[35] L. H. Tein, and R. Ramli, “Recent Advancements of Nurse Scheduling Models and A Potential Path,”
Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications
(ICMSA2010), pp. 395-409, 2010.

[36] S. Burnwal, and S. Deb, “Scheduling optimization of flexible manufacturing system using cuckoo
search-based approach,” The International Journal of Advanced Manufacturing Technology, vol. 64,
no. 5-8, pp. 951-959, 2013/02/01, 2013.

[37] X.-S. Yang, and S. Deb, “Cuckoo Search via Lévy flights,” Proceedings of World Congress on Nature &
Biologically Inspired Computing (NaBIC 2009), pp. 210-214, December 2009, 2009.

[38] A. Yildiz, “Cuckoo search algorithm for the selection of optimal machining parameters in milling
operations,” The International Journal of Advanced Manufacturing Technology, vol. 64, no. 1-4, pp.
55-61, 2013/01/01, 2013.

[39] Y. Yang, and S. Petrovic, “A Novel Similarity Measure for Heuristic Selection in Examination
Timetabling,” Lecture Notes in Computer Science, vol. 3616, pp. 247-269, 2005/01/01, 2005.

[40] N. Figlali, C. Ozkale, O. Engin, and A. Figlali, “Investigation of Ant System parameter interactions by
using design of experiments for job-shop scheduling problems,” Computers & Industrial Engineering,
vol. 56, no. 2, pp. 538-559, Mar, 2009.

[41] B. Naderi, S. M. T. F. Ghomi, and M. Aminnayeri, “A high performing metaheuristic for job shop
scheduling with sequence-dependent setup times,” Applied Soft Computing, vol. 10, no. 3, pp. 703-
710, 2010.

[42] P. Pongcharoen, W. Chainate, and P. Thapatsuwan, “Exploration of genetic parameters and operators
through travelling salesman problem,” Science Asia, vol. 33, pp. 215-222, 2007.

[43] H. Aytug, M. Khouja, and F. E. Vergara, “Use of Genetic Algorithms to solve production and operations
management problems: A review,” International Journal of Production Research, vol. 41, no. 17, pp.
3955-4009, 2003.

[44] D. C. Montgomery, Design and Analysis of Experiments, 8th ed., New York: John Wiley & Sons, 2012.

67

[45] W. Chen, G. Fu, P. Tai, and W. Deng, “Process parameter optimization for MIMO plastic injection

molding via soft computing,” Expert Systems with Applications, vol. 36, no. 2, Part 1, pp. 1114-1122,
2009.

[46] T. Thepphakorn, and P. Pongcharoen, “Heuristic ordering for ant colony based timetabling tool,”
Journal of Applied Operational Research, vol. 5, no. 3, pp. 113-123, 2013.

[47] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “A honey-bee mating optimization algorithm for
educational timetabling problems,” European Journal of Operational Research, vol. 216, no. 3, pp.
533-543, 2012.

[48] R.-M. Chen, and H.-F. Shih, “Solving University Course Timetabling Problems Using Constriction
Particle Swarm Optimization with Local Search,” Algorithms, vol. 6, no. 2, pp. 227-244, 2013.

[49] R. Perzina, “Solving the University Timetabling Problem with Optimized Enrollment of Students by a
Self-adaptive Genetic Algorithm,” Lecture Notes in Computer Science, vol. 3867, pp. 248-263, 2007.

[50] T. Lutuksin, and P. Pongcharoen, “Best-worst ant colony system parameter investigation by using
experimental design and analysis for course timetabling problem,” Proceedings of the International
Conference on Computer and Network Technology, pp. 467-471, 2010.

[51] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, “Hybrid metaheuristics in combinatorial optimization: A
survey,” Applied Soft Computing, vol. 11, no. 6, pp. 4135-4151, 2011.

[52] C. Blum, and A. Roli, “Hybrid Metaheuristics: An Introduction,” Studies in Computational Intelligence,
vol. 114, pp. 1-30, 2008.

[53] Z. N. Azimi, “Hybrid heuristics for examination timetabling problem,” Applied Mathematics and
Computation, vol. 163, no. 2, pp. 705-733, Apr, 2005.

[54] S. N. Jat, and S. Yang, “A Memetic Algorithm for the University Course Timetabling Problem,”
Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2008), vol. 1, pp. 427-433, 3-5 Nov. 2008, 2008.

[55] D. F. Shiau, “A hybrid particle swarm optimization for a university course scheduling problem with
flexible preferences,” Expert Systems with Applications, vol. 38, no. 1, pp. 235-248, Jan, 2011.

[56] K. Murray, T. Müller, and H. Rudová, "Modeling and Solution of a Complex University Course
Timetabling Problem," Practice and Theory of Automated Timetabling VI, Lecture Notes in Computer
Science E. Burke and H. Rudová, eds., pp. 189-209: Springer Berlin Heidelberg, 2007.

[57] H. Rudova, T. Muller, and K. Murray, “Complex university course timetabling,” Journal of Scheduling,
vol. 14, no. 2, pp. 187-207, Apr, 2011.

[58] T. Muller, “ITC2007 solver description: a hybrid approach,” Annals of Operations Research, vol. 172,
no. 1, pp. 429-446, Nov, 2009.

[59] S. Abdullah, and H. Turabieh, “On the use of multi neighbourhood structures within a Tabu-based
memetic approach to university timetabling problems,” Information Sciences, vol. 191, pp. 146-168,
May, 2012.

[60] C. Beyrouthy, E. K. Burke, B. McCollum, P. McMullan, and A. J. Parkes, “University space planning and
space-type profiles,” Journal of Scheduling, vol. 13, no. 4, pp. 363-374, Aug, 2010.

68

[61] P. De Causmaecker, P. Demeester, and G. Vanden Berghe, “A decomposed metaheuristic approach

for a real-world university timetabling problem,” European Journal of Operational Research, vol.
195, no. 1, pp. 307-318, May, 2009.

[62] L. D. Gaspero, B. McCollum, and A. Schaerf, The second international timetabling competition (ITC-
2007): Curriculum-based course timetabling (track 3), QUB/IEEE 2007/08/01, University of Udine
DIEGM, Udine, Italy, 2007.

[63] A. Abbas, and E. P. K. Tsang, “Software engineering aspects of constraint-based timetabling - a case
study,” Information and Software Technology, vol. 46, no. 6, pp. 359-372, May, 2004.

[64] S. Abdullah, E. K. Burke, and B. McCollum, “An Investigation of Variable Neighbourhood Search for
University Course Timetabling,” Proceedings of the 2nd Multidisciplinary Conference on Scheduling:
Theory and Applications (MISTA), pp. 413-427, 2005.

[65] S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan, "A multi-objective post enrolment course
timetabling problems: A new case study." pp. 1-7.

[66] S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan, “A hybrid metaheuristic approach to the
university course timetabling problem,” Journal of Heuristics, vol. 18, no. 1, pp. 1-23, Feb, 2012.

[67] A. Abuhamdah, and M. Ayob, “Adaptive randomized descent algorithm for solving course timetabling
problems,” International Journal of the Physical Sciences, vol. 5, no. 16, pp. 2516-2522, Dec, 2010.

[68] A. Abuhamdah, M. Ayob, G. Kendall, and N. R. Sabar, “Population based Local Search for university
course timetabling problems,” Applied Intelligence, vol. 40, no. 1, pp. 44-53, Jan, 2014.

[69] R. A. Acha, and R. Nieuwenhuis, “Curriculum-based course timetabling with SAT and MaxSAT,” Annals
of Operations Research, vol. 218, no. 1, pp. 71-91, Jul, 2014.

[70] L. E. Agustin-Blas, S. Salcedo-Sanz, E. G. Ortiz-Garcia, A. Portilla-Figueras, and A. M. Perez-Bellido, “A
hybrid grouping genetic algorithm for assigning students to preferred laboratory groups,” Expert
Systems with Applications, vol. 36, no. 3, pp. 7234-7241, Apr, 2009.

[71] M. A. Al-Betar, and A. T. Khader, “A harmony search algorithm for university course timetabling,”
Annals of Operations Research, vol. 194, no. 1, pp. 3-31, 2012/04/01, 2012.

[72] S. M. Al-Yakoob, and H. D. Sherali, “Mathematical programming models and algorithms for a class-
faculty assignment problem,” European Journal of Operational Research, vol. 173, no. 2, pp. 488-
507, Sep, 2006.

[73] S. M. Al-Yakoob, and H. D. Sherali, “A mixed-integer programming approach to a class timetabling
problem: A case study with gender policies and traffic considerations,” European Journal of
Operational Research, vol. 180, no. 3, pp. 1028-1044, Aug, 2007.

[74] C. H. Aladag, and G. Hocaoglu, “A tabu search algorithm to solve a course timetabling problem,”
Hacettepe Journal of Mathematics and Statistics, vol. 36, no. 1, pp. 53-64, 2007.

[75] C. H. Aladag, G. Hocaoglu, and M. A. Basaran, “The effect of neighborhood structures on tabu search
algorithm in solving course timetabling problem,” Expert Systems with Applications, vol. 36, no. 10,
pp. 12349-12356, Dec, 2009.

69

[76] R. Alvarez-Valdes, E. Crespo, and J. M. Tamarit, “Design and implementation of a course scheduling

system using Tabu Search,” European Journal of Operational Research, vol. 137, no. 3, pp. 512-523,
Mar, 2002.

[77] M. Amintoosi, and J. Haddadnia, "Feature selection in a fuzzy student sectioning algorithm," Practice
and Theory of Automated Timetabling V, Lecture Notes in Computer Science E. Burke and M. Trick,
eds., pp. 147-160, Berlin: Springer-Verlag Berlin, 2005.

[78] P. Avella, and I. Vasil'Ev, “A Computational Study of a Cutting Plane Algorithm for University Course
Timetabling,” Journal of Scheduling, vol. 8, no. 6, pp. 497-514, 2005.

[79] R. P. Badoni, D. K. Gupta, and P. Mishra, “A new hybrid algorithm for university course timetabling
problem using events based on groupings of students,” Computers & Industrial Engineering, vol. 78,
pp. 12-25, Dec, 2014.

[80] R. B. Bai, J. Blazewicz, E. K. Burke, G. Kendall, and B. McCollum, “A simulated annealing hyper-
heuristic methodology for flexible decision support,” 4or-a Quarterly Journal of Operations Research,
vol. 10, no. 1, pp. 43-66, Mar, 2012.

[81] K. R. Baker, M. J. Magazine, and G. G. Polak, “Optimal block design models for course timetabling,”
Operations Research Letters, vol. 30, no. 1, pp. 1-8, Feb, 2002.

[82] M. A. Bakir, and C. Aksop, “A 0-1 integer programming approach to a university timetabling problem,”
Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 1, pp. 41-55, 2008.

[83] M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub, “Answer set programming as a modeling
language for course timetabling,” Theory and Practice of Logic Programming, vol. 13, pp. 783-798,
Jul, 2013.

[84] R. Bellio, L. Di Gaspero, and A. Schaerf, “Design and statistical analysis of a hybrid local search
algorithm for course timetabling,” Journal of Scheduling, vol. 15, no. 1, pp. 49-61, Feb, 2012.

[85] R. Bellio, S. Ceschia, L. Di Gaspero, A. Schaerf, and T. Urli, “Feature-based tuning of simulated
annealing applied to the curriculum-based course timetabling problem,” Computers & Operations
Research, vol. 65, pp. 83-92, Jan, 2016.

[86] C. Beyrouthy, E. K. Burke, D. Landa-Silva, B. McCollum, P. McMullan, and A. J. Parkes, “Towards
improving the utilization of university teaching space,” Journal of the Operational Research Society,
vol. 60, no. 1, pp. 130-143, Jan, 2009.

[87] A. L. Bolaji, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, “University course timetabling using
hybridized artificial bee colony with hill climbing optimizer,” Journal of Computational Science, vol.
5, no. 5, pp. 809-818, Sep, 2014.

[88] A. Bonutti, F. D. Cesco, L. D. Gaspero, and A. Schaerf, “Benchmarking curriculum-based course
timetabling: formulations, data formats, instances, validation, visualization, and results,” Annals of
Operations Research, vol. 194, no. 1, pp. 59-70, 2012.

[89] E. K. Burke, G. Kendall, and E. Soubeiga, “A Tabu-Search Hyperheuristic for Timetabling and
Rostering,” Journal of Heuristics, vol. 9, no. 6, pp. 451-470, 2003/12/01, 2003.

70

[90] E. K. Burke, J. Marecek, A. J. Parkes, and H. Rudova, “Decomposition, reformulation, and diving in

university course timetabling,” Computers & Operations Research, vol. 37, no. 3, pp. 582-597, Mar,
2010.

[91] E. K. Burke, J. Marecek, A. J. Parkes, and H. Rudova, “A supernodal formulation of vertex colouring
with applications in course timetabling,” Annals of Operations Research, vol. 179, no. 1, pp. 105-130,
Sep, 2010.

[92] E. K. Burke, J. Mareček, A. J. Parkes, and H. Rudová, “A branch-and-cut procedure for the Udine
Course Timetabling problem,” Annals of Operations Research, vol. 194, no. 1, pp. 71-87, 2012/04/01,
2012.

[93] V. Cacchiani, A. Caprara, R. Roberti, and P. Toth, “A new lower bound for curriculum-based course
timetabling,” Computers & Operations Research, vol. 40, no. 10, pp. 2466-2477, Oct, 2013.

[94] H. Cambazard, B. O'Sullivan, and H. Simonis, “A Constraint-Based Dental School Timetabling System,”
Ai Magazine, vol. 35, no. 1, pp. 53-63, Spr, 2014.

[95] M. P. Carrasco, and M. V. Pato, “A comparison of discrete and continuous neural network approaches
to solve the class/teacher timetabling problem,” European Journal of Operational Research, vol.
153, no. 1, pp. 65-79, Feb, 2004.

[96] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria, “An effective hybrid algorithm for university
course timetabling,” Journal of Scheduling, vol. 9, no. 5, pp. 403-432, Oct, 2006.

[97] M. Chiarandini, L. Di Gaspero, S. Gualandi, and A. Schaerf, “The balanced academic curriculum
problem revisited,” Journal of Heuristics, vol. 18, no. 1, pp. 119-148, Feb, 2012.

[98] S. Ceschia, L. Di Gaspero, and A. Schaerf, “Design, engineering, and experimental analysis of a
simulated annealing approach to the post-enrolment course timetabling problem,” Computers &
Operations Research, vol. 39, no. 7, pp. 1615-1624, Jul, 2012.

[99] A. Dammak, A. Elloumi, H. Kamoun, and J. A. Ferland, “Course Timetabling at a Tunisian University: A
case study,” Journal of Systems Science and Systems Engineering, vol. 17, no. 3, pp. 334-352, Sep,
2008.

[100] S. Daskalaki, and T. Birbas, “Efficient solutions for a university timetabling problem through integer
programming,” European Journal of Operational Research, vol. 160, no. 1, pp. 106-120, Jan, 2005.

[101] L. Di Gaspero, and A. Schaerf, "Multi-neighbourhood local search with application to course
timetabling," Practice and Theory of Automated Timetabling Iv, Lecture Notes in Computer Science
E. Burke and P. DeCausmaecker, eds., pp. 262-275, Berlin: Springer-Verlag Berlin, 2003.

[102] M. Dimopoulou, and P. Miliotis, “An automated university course timetabling system developed in a
distributed environment: A case study,” European Journal of Operational Research, vol. 153, no. 1,
pp. 136-147, Feb, 2004.

[103] C. W. Fong, H. Asmuni, B. McCollum, P. McMullan, and S. Omatu, “A new hybrid imperialist swarm-
based optimization algorithm for university timetabling problems,” Information Sciences, vol. 283, pp.
1-21, Nov, 2014.

71

[104] C. W. Fong, H. Asmuni, and B. McCollum, “A Hybrid Swarm-Based Approach to University

Timetabling,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 6, pp. 870-884, Dec, 2015.
[105] M. J. Geiger, “Applying the threshold accepting metaheuristic to curriculum based course timetabling

A contribution to the second international timetabling competition ITC 2007,” Annals of Operations
Research, vol. 194, no. 1, pp. 189-202, Apr, 2012.

[106] A. Gunawan, K. M. Ng, and K. L. Poh, “A hybridized Lagrangian relaxation and simulated annealing
method for the course timetabling problem,” Computers & Operations Research, vol. 39, no. 12, pp.
3074-3088, Dec, 2012.

[107] Y. He, S. Hui, and E.-K. Lai, “Automatic Timetabling Using Artificial Immune System,” Lecture Notes in
Computer Science, vol. 3521, pp. 55-65, 2005/01/01, 2005.

[108] C. Head, and S. Shaban, “A heuristic approach to simultaneous course/student timetabling,”
Computers & Operations Research, vol. 34, no. 4, pp. 919-933, Apr, 2007.

[109] G. Jaradat, M. Ayob, and Z. Ahmad, “On the performance of Scatter Search for post-enrolment
course timetabling problems,” Journal of Combinatorial Optimization, vol. 27, no. 3, pp. 417-439,
Apr, 2014.

[110] S. N. Jat, and S. Yang, “A guided search non-dominated sorting genetic algorithm for the multi-
objective university course timetabling problem,” Lecture Notes in Computer Science, vol. 6622, pp.
1-13, 2011.

[111] D. Junaedi, and N. U. Maulidevi, “Solving Curriculum-Based Course Timetabling Problem with Artificial
Bee Colony Algorithm,” Proceedings of the First International Conference on Informatics and
Computational Intelligence (ICI2011), pp. 112-117, 2011.

[112] M. Kalender, A. Kheiri, E. Ozcan, and E. K. Burke, “A greedy gradient-simulated annealing selection
hyper-heuristic,” Soft Computing, vol. 17, no. 12, pp. 2279-2292, Dec, 2013.

[113] A. A. Kardan, H. Sadeghi, S. S. Ghidary, and M. R. F. Sani, “Prediction of student course selection in
online higher education institutes using neural network,” Computers & Education, vol. 65, pp. 1-11,
Jul, 2013.

[114] N. T. T. M. Khang, and T. T. H. Nuong, “The bees algorithm for a practical university timetabling
problem in Vietnam,” Proceedings of IEEE International Conference on Computer Science and
Automation Engineering (CSAE), vol. 4, pp. 42-47 2011.

[115] P. Kostuch, “The University Course Timetabling Problem with a Three-Phase Approach,” Lecture
Notes in Computer Science, vol. 3616, pp. 109-125, 2005.

[116] P. Kostuch, and K. Socha, "Hardness prediction for the University Course Timetabling Problem,"
Evolutionary Computation in Combinatorial Optimization, Proceedings, Lecture Notes in Computer
Science J. Gottlieb and G. R. Raidl, eds., pp. 135-144, Berlin: Springer-Verlag Berlin, 2004.

[117] G. Lach, and M. E. Lubbecke, “Curriculum based course timetabling: new solutions to Udine
benchmark instances,” Annals of Operations Research, vol. 194, no. 1, pp. 255-272, Apr, 2012.

[118] J. Lee, S. P. Ma, L. F. Lai, N. L. Hsueh, and Y. Y. Fanjiang, “University timetabling through conceptual
modeling,” International Journal of Intelligent Systems, vol. 20, no. 11, pp. 1137-1160, Nov, 2005.

72

[119] W. Legierski, "Search strategy for constraint-based class-teacher timetabling," Practice and Theory of

Automated Timetabling Iv, Lecture Notes in Computer Science E. Burke and P. DeCausmaecker, eds.,
pp. 247-261, Berlin: Springer-Verlag Berlin, 2003.

[120] R. Lewis, and B. Paechter, "Application of the grouping genetic algorithm to University Course
Timetabling," Evolutionary Computation in Combinatorial Optimization, Proceedings, Lecture Notes
in Computer Science G. R. Raidl and J. Gottlieb, eds., pp. 144-153, Berlin: Springer-Verlag Berlin, 2005.

[121] R. Lewis, and B. Paechter, “Finding feasible timetables using group-based operators,” Ieee
Transactions on Evolutionary Computation, vol. 11, no. 3, pp. 397-413, Jun, 2007.

[122] R. Lewis, and J. Thompson, “Analysing the effects of solution space connectivity with an effective
metaheuristic for the course timetabling problem,” European Journal of Operational Research, vol.
240, no. 3, pp. 637-648, Feb, 2015.

[123] R. Lewis, B. Paechter, and B. McCollum, “Post Enrolment based Course Timetabling: A Description of
the Problem Model used for Track Two of the Second International Timetabling Competition,” 2007.

[124] Y. K. Liu, D. F. Zhang, and F. Y. L. Chin, “A clique-based algorithm for constructing feasible
timetables,” Optimization Methods & Software, vol. 26, no. 2, pp. 281-294, 2011.

[125] Z. P. Lu, J. K. Hao, and F. Glover, “Neighborhood analysis: a case study on curriculum-based course
timetabling,” Journal of Heuristics, vol. 17, no. 2, pp. 97-118, Apr, 2011.

[126] M. R. Malim, A. T. Khader, and A. Mustafa, “Artificial immune algorithms for university timetabling,”
Proceedings of the 6th International Conference on Practice and Theory of Automated Timetabling
(PATAT 2006), pp. 234-245, 2006.

[127] A. L. Marquez, C. Gil, R. Banos, and J. Gomez, “Parallelism on multicore processors using Parallel.FX,”
Advances in Engineering Software, vol. 42, no. 5, pp. 259-265, May, 2011.

[128] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. Di Gaspero, R. Qu, and E.
K. Burke, “Setting the Research Agenda in Automated Timetabling: The Second International
Timetabling Competition,” Informs Journal on Computing, vol. 22, no. 1, pp. 120-130, Win, 2010.

[129] J. Miranda, P. A. Rey, and J. M. Robles, “udpSkeduler: A Web architecture based decision support
system for course and classroom scheduling,” Decision Support Systems, vol. 52, no. 2, pp. 505-513,
Jan, 2012.

[130] S. A. MirHassani, “A computational approach to enhancing course timetabling with integer
programming,” Applied Mathematics and Computation, vol. 175, no. 1, pp. 814-822, 2006.

[131] T. Mueller, and H. Rudova, “Real-life curriculum-based timetabling with elective courses and course
sections,” Annals of Operations Research, vol. 239, no. 1, pp. 153-170, Apr, 2016.

[132] T. Muller, H. Rudova, and R. Bartak, "Minimal perturbation problem in course timetabling," Practice
and Theory of Automated Timetabling V, Lecture Notes in Computer Science E. Burke and M. Trick,
eds., pp. 126-146, Berlin: Springer-Verlag Berlin, 2005.

[133] C. Nothegger, A. Mayer, A. Chwatal, and G. R. Raidl, “Solving the post enrolment course timetabling
problem by ant colony optimization,” Annals of Operations Research, vol. 194, no. 1, pp. 325-339,
Apr, 2012.

73

[134] A. H. Ozer, and C. Ozturan, “A direct barter model for course add/drop process,” Discrete Applied

Mathematics, vol. 159, no. 8, pp. 812-825, Apr, 2011.
[135] V. Pereira, and H. G. Costa, “Linear Integer Model for the Course Timetabling Problem of a Faculty in

Rio de Janeiro,” Advances in Operations Research, vol. 2016, Article ID 7597062, pp. 9 pages, 2016,
2016.

[136] A. E. Phillips, H. Waterer, M. Ehrgott, and D. M. Ryan, “Integer programming methods for large-scale
practical classroom assignment problems,” Computers & Operations Research, vol. 53, pp. 42-53,
Jan, 2015.

[137] S. Piechowiak, and C. Kolski, “Towards a generic object oriented decision support system for
university timetabling: An interactive approach,” International Journal of Information Technology &
Decision Making, vol. 3, no. 1, pp. 179-208, Mar, 2004.

[138] S. Piechowiak, J. X. Ma, and R. Mandiau, "An open interactive timetabling tool," Practice and Theory
of Automated Timetabling V, Lecture Notes in Computer Science E. Burke and M. Trick, eds., pp. 34-
50, Berlin: Springer-Verlag Berlin, 2005.

[139] D. Qaurooni, and M. R. Akbarzadeh-T, “Course timetabling using evolutionary operators,” Applied Soft
Computing, vol. 13, no. 5, pp. 2504-2514, May, 2013.

[140] R. Qu, and E. K. Burke, “Hybridizations within a graph-based hyper-heuristic framework for university
timetabling problems,” Journal of the Operational Research Society, vol. 60, no. 9, pp. 1273-1285,
Sep, 2009.

[141] A. Qualizza, and P. Serafini, “A Column Generation Scheme for Faculty Timetabling,” Lecture Notes in
Computer Science, vol. 3616, pp. 161-173, 2005/01/01, 2005.

[142] O. Rossi-Doria, C. Blum, J. Knowles, M. Samples, K. Socha, and B. Paechter, “A local search for the
timetabling problem,” Proceedings of the 4th International Conference on Practice and Theory of
Automated Timetabling (PATAT 2002), pp. 124-127, 2002.

[143] H. Rudova, and K. Murray, "University course timetabling with soft constraints," Practice and Theory of
Automated Timetabling Iv, Lecture Notes in Computer Science E. Burke and P. DeCausmaecker, eds.,
pp. 310-328, Berlin: Springer-Verlag Berlin, 2003.

[144] A. A. Salman, and S. Hamdan, “Differential evolution-based algorithm for solving the department's
course-scheduling problem,” Kuwait Journal of Science & Engineering, vol. 39, no. 1B, pp. 175-209,
Jun, 2012.

[145] R. Santiago-Mozos, S. Salcedo-Sanz, M. DePrado-Cumplido, and C. Bousono-Calzon, “A two-phase
heuristic evolutionary algorithm for personalizing course timetables: a case study in a Spanish
university,” Computers & Operations Research, vol. 32, no. 7, pp. 1761-1776, Jul, 2005.

[146] H. G. Santos, L. S. Ochi, and M. J. F. Souza, “A Tabu search heuristic with efficient diversification
strategies for the class/teacher timetabling problem,” Journal on Experimental Algorithmics, vol. 10,
pp. 2.9, 2005.

[147] H. G. Santos, E. Uchoa, L. S. Ochi, and N. Maculan, “Strong bounds with cut and column generation
for class-teacher timetabling,” Annals of Operations Research, vol. 194, no. 1, pp. 399-412, Apr, 2012.

74

[148] S. C. Sarin, Y. Q. Wang, and A. Varadarajan, “A university-timetabling problem and its solution using

Benders' partitioning-a case study,” Journal of Scheduling, vol. 13, no. 2, pp. 131-141, Apr, 2010.
[149] K. Schimmelpfeng, and S. Helber, “Application of a real-world university-course timetabling model

solved by integer programming,” Or Spectrum, vol. 29, no. 4, pp. 783-803, Oct, 2007.
[150] S. T. Shih, C. Y. Chao, and C. M. Hsu, “An Effective and Efficient Class-Course-Faculty Timetabling

Assignment for an Educational Institute,” Life Science Journal-Acta Zhengzhou University Overseas
Edition, vol. 9, no. 1, pp. 47-55, 2012.

[151] S. Shimazaki, K. Sakakibara, and T. Matsumoto, “Iterative optimization techniques using man-machine
interaction for university timetabling problems,” Springerplus, vol. 4, Jun 12, 2015.

[152] K. Socha, "The influence of run-time limits on choosing ant system parameters," Genetic and
Evolutionary Computation - Gecco 2003, Pt I, Proceedings, Lecture Notes in Computer Science E.
CantuPaz, J. A. Foster, K. Deb, L. D. Davis, R. Roy, U. M. Oreilly, H. G. Beyer, R. Standish, G. Kendall, S.
Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska
and J. Miller, eds., pp. 49-60, Berlin: Springer-Verlag Berlin, 2003.

[153] J. A. Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio, H. Puga, and E. K. Burke, “Effective learning hyper-
heuristics for the course timetabling problem,” European Journal of Operational Research, vol. 238,
no. 1, pp. 77-86, Oct, 2014.

[154] J. A. Soria-Alcaraz, E. Ozcan, J. Swan, G. Kendall, and M. Carpio, “Iterated local search using an add
and delete hyper-heuristic for university course timetabling,” Applied Soft Computing, vol. 40, pp.
581-593, Mar, 2016.

[155] C. Soza, R. L. Becerra, M. C. Riff, and C. A. C. Coello, “Solving timetabling problems using a cultural
algorithm,” Applied Soft Computing, vol. 11, no. 1, pp. 337-344, Jan, 2011.

[156] J. Studenovsky, “Polynomial reduction of time-space scheduling to time scheduling,” Discrete
Applied Mathematics, vol. 157, no. 7, pp. 1364-1378, Apr, 2009.

[157] V. Tam, J. Ho, and A. Kwan, "Applying an improved heuristic based optimiser to solve a set of
challenging university timetabling problems: An experience report," Pricai 2004: Trends in Artificial
Intelligence, Proceedings, Lecture Notes in Artificial Intelligence C. Zhang, H. W. Guesgen and W. K.
Yeap, eds., pp. 164-172, Berlin: Springer-Verlag Berlin, 2004.

[158] T. Thepphakorn, P. Pongcharoen, and C. Hicks, “Modifying Regeneration Mutation and Hybridising
Clonal Selection for Evolutionary Algorithms Based Timetabling Tool,” Mathematical Problems in
Engineering, vol. 2015, pp. 16, 2015.

[159] G. M. Thompson, “Using information on unconstrained student demand to improve university course
schedules,” Journal of Operations Management, vol. 23, no. 2, pp. 197-208, Feb, 2005.

[160] J. van den Broek, C. Hurkens, and G. Woeginger, “Timetabling problems at the TU Eindhoven,”
European Journal of Operational Research, vol. 196, no. 3, pp. 877-885, Aug, 2009.

[161] J. J. J. van den Broek, and C. A. J. Hurkens, “An IP-based heuristic for the post enrolment course
timetabling problem of the ITC2007,” Annals of Operations Research, vol. 194, no. 1, pp. 439-454,
Apr, 2012.

75

[162] Y. Z. Wang, “Using genetic algorithm methods to solve course scheduling problems,” Expert Systems

with Applications, vol. 25, no. 1, pp. 39-50, Jul, 2003.
[163] A. Wehrer, and J. Yellen, “The design and implementation of an interactive course-timetabling

system,” Annals of Operations Research, vol. 218, no. 1, pp. 327-345, Jul, 2014.
[164] C. C. Wu, “Parallelizing a CLIPS-based course timetabling expert system,” Expert Systems with

Applications, vol. 38, no. 6, pp. 7517-7525, Jun, 2011.
[165] L. Wu, “The application of Coarse-Grained Parallel Genetic Algorithm with Hadoop in University

Intelligent Course-Timetabling System,” International Journal of Emerging Technologies in Learning,
vol. 10, no. 8, pp. 11-15, 2015, 2015.

[166] S. X. Yang, and S. N. Jat, “Genetic Algorithms With Guided and Local Search Strategies for University
Course Timetabling,” Ieee Transactions on Systems Man and Cybernetics Part C-Applications and
Reviews, vol. 41, no. 1, pp. 93-106, Jan, 2011.

[167] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and S. J. E., “Parameter Control in Evolutionary
Algorithms,” Studies in Computational Intelligence, vol. 54, pp. 19-46, 2007.

[168] A. K. Qin, and P. N. Suganthan, “Self-adaptive Differential Evolution Algorithm for Numerical
Optimization,” Proceedings of The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785-
1791, 2005.

[169] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-Adapting Control Parameters in
Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Transactions
on Evolutionary Computation, vol. 10, no. 6, pp. 646-657, 2006.

[170] M. S. Arumugam, and M. V. C. Rao, “On the improved performances of the particle swarm
optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS)
variants for computing optimal control of a class of hybrid systems,” Applied Soft Computing, vol. 8,
no. 1, pp. 324-336, 2008.

[171] T. Stützle, M. López-Ibáñez, P. Pellegrini, M. Maur, M. Montes de Oca, M. Birattari, and M. Dorigo,
"Parameter Adaptation in Ant Colony Optimization," Autonomous Search, Y. Hamadi, E. Monfroy and
F. Saubion, eds., pp. 191-215: Springer Berlin Heidelberg, 2012.

[172] P. Avella, B. D'Auria, S. Salerno, and I. Vasil'ev, “A computational study of local search algorithms for
Italian high-school timetabling,” Journal of Heuristics, vol. 13, no. 6, pp. 543-556, Dec, 2007.

[173] Y.-T. Kao, and E. Zahara, “A hybrid genetic algorithm and particle swarm optimization for multimodal
functions,” Applied Soft Computing, vol. 8, no. 2, pp. 849-857, 2008.

[174] A. Layeb, “A novel quantum inspired cuckoo search for knapsack problems,” International Journal of
Bio-Inspired Computation, vol. 3, no. 5, pp. 297-305, 2011.

[175] A. Layeb, and S. R. Boussalia, “A Novel Quantum Inspired Cuckoo Search Algorithm for Bin Packing
Problem,” International Journal of Information Technology and Computer Science (IJITCS), vol. 4, no.
5, pp. 58-67, 2012.

[176] T. Thepphakorn, P. Pongcharoen, and C. Hicks, “An Ant Colony Based Timetabling Tool,”
International Journal of Production Economics, vol. In Press, 2013.

76

[177] T. Lutuksin, and P. Pongcharoen, “Experimental design and analysis on parameter investigation and

performance comparison of ant algorithms for course timetabling problem,” Naresuan University
Engineering Journal, vol. 4, no. 1, pp. 31-38, 2009.

[178] J. K. Ousterhout, Tcl and the tk toolkit, 2 ed., Massachusetts: Addison-Wesley, 2009.

77

ภาคผนวก

Manuscript หรือ Proceeding ที่ได้รับการตีพิมพ์เผยแพร์จากโครงการวิจัยนี้จ านวน 2 บทความ

1. Thepphakorn, T. and Pongcharoen, P. (2019). Performance Improvement Strategies
on Cuckoo Search Algorithms for Solving University Course Timetabling Problem.
Submitted to Expert Systems with Applications. (ISI Q1) IF2018: 4.292

2. Thepphakorn, T. and Pongcharoen, P. (2019). Variants and Parameters Investigations
of Particle Swarm Optimisation for Solving Course Timetabling Problems. Lecture
Notes in Computer Science, 11655, pp. 177-187. (Scopus Q2)

 Elsevier Editorial System(tm) for Expert

Systems With Applications or its open access mirror

 Manuscript Draft

Manuscript Number: ESWA-D-19-04418

Title: Performance Improvement Strategies on Cuckoo Search Algorithms for

Solving University Course Timetabling Problem

Article Type: Full length article

Keywords: course timetabling; cuckoo search; Levy flight; experimental

design; self adaptive; metaheuristics.

Corresponding Author: Dr. Pupong Pongcharoen, Ph.D.

Corresponding Author's Institution: Naresuan University

First Author: Thatchai Thepphakorn

Order of Authors: Thatchai Thepphakorn; Pupong Pongcharoen, Ph.D.

Dr. Binshan Lin

Editor-in-Chief

Expert Systems with Applications

September 17, 2019.

Dear Prof. Binshan Lin,

I would be most grateful if the attached manuscript entitled “Performance Improvement

Strategies on Cuckoo Search Algorithms for Solving University Course Timetabling

Problem” could be considered for publication in Expert System with Applications. The

manuscript presents three strategies for improving the Cuckoo Search (CS) algorithm’s

performance applied to solve real-world course timetabling problems. A comprehensive

literature survey on metaheuristics applied to solve course timetabling problems has been

systematically conducted, summarised and discussed. No previous research has reported on the

modifications and hybridisations of CS for solving real-world course timetabling problems. A

novel Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) program has been

developed for minimising the total university operating costs. Sequential computational

experiments were designed and conducted using eleven-size real-world timetabling problems.

Our proposed methods statistically outperformed the original CS and Particle Swarm

Optimisation both in term of solution’s quality and their convergence speeds.

We confirm that this manuscript has not been published elsewhere and is not being considered

by any other journals.

Thank you for your consideration of our manuscript. I look forward to hearing from you.

Yours sincerely,

Pupong Pongcharoen
Pupong Pongcharoen, Ph.D.

Director of the Research Centre for Operations Research and Industrial Applications (CORIA)

Faculty of Engineering,

Naresuan University,

Muang, Phitsanulok,

65000 Thailand

Email: pupongp@nu.ac.th

Telephone: + 66 55 964201

Cover Letter

- Title Page –

Performance Improvement Strategies on Cuckoo Search Algorithms for

Solving University Course Timetabling Problem

Thatchai Thepphakorn
1
 and Pupong Pongcharoen

2*

1
 Faculty of Industrial Technology, Pibulsongkram Rajabhat University,

Phitsanulok 65000, Thailand.

Email: thatchai.t@psru.ac.th

2

 Director of the Centre of Operations Research and Industrial Applications (CORIA),

Department of Industrial Engineering, Faculty of Engineering,

Naresuan University, Phitsanulok 65000, Thailand.

Emails: pupongp@nu.ac.th and pupongp@gmail.com

* Corresponding author’s email addresses: pupongp@nu.ac.th and pupongp@gmail.com

Manuscript
Click here to download Manuscript: HSCST Manuscript + title page new.doc Click here to view linked References

http://ees.elsevier.com/eswa/download.aspx?id=949142&guid=a5ebf319-1093-4cb4-bea0-b68712341c5c&scheme=1
http://ees.elsevier.com/eswa/viewRCResults.aspx?pdf=1&docID=67890&rev=0&fileID=949142&msid={2F5D4577-90B3-4070-B18C-343A297BED88}

2

Performance Improvement Strategies on Cuckoo Search Algorithms for

Solving University Course Timetabling Problem

Thatchai Thepphakorn
1
 and Pupong Pongcharoen

2*

1
Faculty of Industrial Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand

2
Centre of Operations Research and Industrial Applications (CORIA), Department of Industrial Engineering,

Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand
*Corresponding e-mail address: pupongp@nu.ac.th and pupongp@gmail.com

Abstract: University course timetabling problem (UCTP) arises every academic year and is solved by

academic staff with/without course timetabling tool. A feasible timetable must satisfy hard constraints.

A Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) tool has been developed for

minimising the total university operating costs. The HSCST tool was applied to solve eleven-size course

timetabling problems of Naresuan University. The performance improvements of Cuckoo Search (CS)

algorithm embedded within the proposed tool were demonstrated using three strategies: parameter

setting approaches (static and adaptive); movement strategies (Lévy Flights and Gaussian Random

Walks); and local search hybridisation techniques. Sequential computational experiments were designed

and conducted to investigate the efficiency of three proposed strategies. The statistical analysis on the

computational results suggested that the proposed algorithms significantly outperformed the

conventional algorithms by nine out of eleven (or 81.8%) datasets. The proposed methods also

outperformed Particle Swarm Optimisation in term of solution quality and their convergence speeds.

Keywords: course timetabling; cuckoo search; Levy flight; experimental design; self adaptive;

metaheuristics.

1. Introduction
Educational timetabling problem faced by schools, colleges, or universities is involved a set of

events (e.g. courses or examinations) that must be appropriately assigned into a certain number of
classrooms and timeslots subject to set of constraints (Burke et al., 2007). That problem arises every
academic year and is solved by academic staff either with or without timetabling program (Thepphakorn
et al., 2015). University course timetabling problem (UCTP) is one of the most challenging scheduling
problems due to its complexity and constraints (Jat and Yang, 2011a). The UCTP is well known to be a
non-deterministic polynomial (NP) hard problem, which means that the computational time required to
find the solution increases exponentially with problem size (Pongcharoen et al., 2008). Automated
timetabling tools are more desirable approach especially for solving very large problem size.

There has been a series of comprehensive literature surveys/review on Cuckoo Search (CS)
(Abdel-Basset et al., 2018; Fister Jr et al., 2013; Mohamad et al., 2014; Shehab et al., 2017; Yang and
Deb, 2014) and its modifications (Chiroma et al., 2017). Fister Jr et al. (2013) have surveyed 147 CS-
related articles indexed in international academic databases (e.g. Google Scholar, Scopus and Web of
Science). Mohamad et al. (2014) have reported a literature review of 35 articles related to the CS
algorithm in terms of its applications and its performance comparison with other methods. Yang and Deb
(2014) have reviewed 46 articles related to the fundamental idea of CS, its applications and search
mechanisms. Shehab et al. (2017) have studied 194 articles and described comprehensive and exhaustive
overview of the CS algorithm, its variants, application area and hybridisation. Chiroma et al. (2017) have

3

conducted a comprehensive literature survey on CS’s relevant papers across eleven international
academic databases (e.g. Scopus, IEEE Xplore, SpringerLink, etc.) and found on 76 articles. Abdel-
Basset et al. (2018) have researched 115 articles and presented the Cuckoo Optimisation Algorithm main
structure, variants, and their applications. Salgotra et al. (2018) have conducted a comprehensive
literature survey and concluded that CS has focused only on its application in different domains and very
limited work has been done to improve its performance. In this work, an update on the comprehensive
literature review focused on the application of metaheuristics for solving course timetabling problems has
been newly conducted and reported in the next section. According to the series of comprehensive reviews
above, there is no report on the applications of CS considering movement strategies, parameter setting
approaches, and its hybridisations for solving real-world university course timetabling problems.

Strategies for improving the metaheuristics performance can be classified as follows: (i) optimal
parameter settings, e.g., static parameter approach for GA (Phuc et al., 2011), adaptive parameter
approach in local search (Lindahl et al., 2018; Soria-Alcaraz et al., 2017a; Tarawneh and Ayob, 2013);
(ii) movement strategies, e.g., random walk in CS (Teoh et al., 2014), low-level heuristic in neighbour
search (Pillay and Özcan, 2017), neighbourhood in local search (Kiefer et al., 2017); and (iii)
hybridisation, e.g., GA (Pillay and Özcan, 2017), Local Search (Nothegger et al., 2012). Elaborations of
these strategies are sequentially presented in the following paragraphs.

According to the difference of problem domains, parameters play a significant role for the
algorithm’s performance (Chiroma et al., 2017). There are at least two approaches dealing with parameter
setting: tuning or control (Talbi, 2009). For tuning approach (static parameter), the parameter values of
the algorithms are fixed from the beginning of the computational run to the end (Eiben and Smit, 2011).
For seeking the optimal parameter setting, the tuning approach is usually done by experimenting with
different values and selecting the ones that give the best results on the test problems. Considering the
number of parameters and its possible value settings, this approach is very time-consuming (Eiben et al.,
2007). To overcome these difficulties, control approach allows the parameter values to change using
adaptive control mechanism during the computational run (Eiben et al., 2007). However, a single work
has been done on a particular problem domain to test which set of parameters gives the best performance
of CS algorithm (Salgotra et al., 2018). However, there has been no report on the investigation of control
approach for the CS parameters using the real-world university course timetabling problem.

Movement strategy has a direct impact on the balance of exploration and exploitation mechanisms
(Yang, 2014). Large step-size movement strategy enhances the exploration mechanism whilst the
exploitation mechanism would relatively prefer small step-size movement strategy. Step size is
commonly achieved via random numbers drawn from distributions e.g. Uniform distribution, Gaussian or
Normal distribution, Lévy distribution (Yang, 2014). For example, Lévy flight has been embedded within
the CS algorithms to generate step size and to search the large-scale solution space effectively for
standard benchmark problems (Salgotra et al. (2018). Zheng and Zhou (2012) have proposed that Gauss
distribution in CS algorithm outperforms the conventional CS for solving standard test functions and
engineering design optimisation problems. However, there has been no report on the comparative study
of step-size movement strategies for solving university course timetabling problems.

Hybridisation strategy between two or more algorithms has been widely accepted in that it
eliminates their limitations and increase their strengths for obtaining a better solution (Fong et al., 2015).
CS has a simple structure (Salgotra et al., 2018) and a few number of parameters to be tuned (Chiroma et
al., 2017; Khoja et al., 2018), but it is slow convergence (Rakhshani et al., 2016; Zhu and Wang, 2017),
and poor balance between exploration and exploitation (Rakhshani and Rahati, 2017), and lacks of
problem-specific knowledge (Mlakar et al., 2016). To overcome these weaknesses, the CS can be
hybridised in order to: (i) improve its performances, i.e., faster convergence to the optimal solution over a
shorter period of time (Chiroma et al., 2017); (ii) balance between exploration and exploitation of CS
using local exploitation ability because CS is very efficient in global exploration ability (Salgotra et al.,

4

2018); and (iii) increase problem-specific knowledge to CS incorporating with local search approaches
(Mlakar et al., 2016).

The objectives of this paper were to: (i) describe the development of Hybrid Self-adaptive Cuckoo
Search based Timetabling (HSCST) tool for minimising total operating costs using eleven datasets
obtained from the Faculty of Engineering, Naresuan University; (ii) conduct a comprehensive literature
survey on the application of metaheuristics for solving course timetabling problems; (iii) demonstrate the
use of experimental design and analysis (EDA) for identifying the appropriate settings of CS parameters;
(iv) improve CS performance by implementing three strategies: parameter tuning and control; movement
strategies (Lévy flight and Gaussian random walk); and hybridisation with Local Search; and (v) compare
the performance of the proposed methods with other methods.

The next section of this paper briefly explains the CS’s procedures, CS’s terminology, CS’s
advantages and disadvantages, and a brief literature survey. Section III describes the university course
timetabling based on the total operating costs followed by the architectural design of the HSCST tool.
Section V presents the experimental design and analysis, comparative results before conclusions. The
graphical outline of the article is given in Figure 1.

Figure 1 Graphical outline of this article

2. Cuckoo Search algorithm and literature survey

Metaheuristics are a class of approximation methods. They have been widely used to solve large-
scale combinatorial optimisation problems within acceptable computational time, but they do not
guarantee optimum solutions (Lewis, 2008). Metaheuristics have been investigated and found to be very
successful in solving a variety of timetabling problems (Burke et al., 2007) such as Genetic Algorithm
(GA) (Pongcharoen et al., 2008), Simulated Annealing (SA) (Kostuch, 2005), Tabu Search (TS) (Lü and
Hao, 2010), Variable Neighbourhood Search (VNS) (Abdullah et al., 2005), Particle Swarm Optimisation
(PSO) (Chen and Shih, 2013), Artificial Immune System (AIS) (He et al., 2005), Ant Colony
Optimisation (ACO) (Thepphakorn et al., 2014), Harmony Search (HS) (Al-Betar and Khader, 2012),
Artificial Bee Colony (ABC) algorithm (Junaedi and Maulidevi, 2011), and etc.

5

Cuckoo Search (CS) is one of the nature-inspired metaheuristic algorithms (Yang, 2010), inspired
by the obligate brood parasitism of some cuckoo species that lay their eggs in the nests of other host birds
(Li and Yin, 2015). Each egg in a host nest represents a solution, and a cuckoo egg represents a new
solution (Yang, 2010). The aim is to create the new and potentially better solutions (cuckoo egg) to
replace the worse solutions (host egg) in the host nests (Valian et al., 2013). There are mainly three
principle rules for simple CS algorithm: (i) each cuckoo lays one egg at a time, and dumps its egg in a
randomly chosen nest (Yang and Deb, 2013); (ii) the best nests with high quality eggs will be maintained
to the next generation (Yang and Deb, 2013); and (iii) the number of available host nests is fixed, and the
egg laid by a cuckoo is discovered by the host bird with a probability of alien egg discovery (Pa), in this
case, the host bird can either get rid of the laid egg or abandon the nest and build a new nest (Yang and
Deb, 2013). The pseudo code of conventional CS procedure based on these principle rules is shown in
Figure 2.

 Begin Objective function F(x), x = (x1, x2, . . . , xd)

 Generate initial population xi (i = 1, 2, …, P)
 While (t < Maximum Iteration: I) or (stop criterion)

 Get a cuckoo (say, xi) randomly

 Generate a solution xi by Lévy flights

 Evaluate quality/fitness of new solution xi or F(xi)

 Randomly select a nest within the population (say, xj) and evaluate its fitness F(xj)

 If F(xi) > F(xj), then replace xj by the new solution xi

 If rand < Pa then a current solution (xi) is abandoned and replaced by a new solution
 Keep best solutions (or nest with quality solutions)

 Rank the solutions and find the current best solution

 End while

 Post-process results and visualisation

 End

Figure 2 Pseudo code of the CS via Lévy flights (Yang and Deb, 2010)

In initial procedures, objective function F(x) is specified. Then, each solution xi (i = 1, 2, …, P) is

generated randomly and evaluated for its quality or fitness before identifying the current best solution.
When generating new solutions xi

(t+1)
 for a cuckoo i, the CS via Lévy flight (CSLF) is performed by using

equation (1) (Yang and Deb, 2013).

  )()1(t
i

t
i xx Lévy () (1)

Where xi
(t)

is the current solution at iteration t. The product  means entry wise multiplication that
is similar to those used in PSO (Yang, 2010). Where α > 0 is the step size which is related to the scales of
the problem of interest (Yang and Deb, 2013). In order to accommodate the difference between solution
quality, the α can be defined as equation (2) (Yang and Deb, 2013).

)()()(
0

t
i

t
j xx  (2)

Where α0 is a constant value between 0.01-0.001 recommended by Yang (2010), whereas the term
in the bracket corresponds to the randomly solution difference between xj and xi (Yang and Deb, 2013).

The Lévy () is random walks, in which random step lengths are drawn from a Lévy distribution in
equation (3) (Yang and Deb, 2013).

Lévy 
 1tu (0 <   2) (3)

The equation has an infinite variance with an infinite mean, in which the consecutive steps of a
cuckoo essentially form a random walk process with obeys a power-law step-length distribution with a

6

heavy tail (Yang and Deb, 2013). Therefore, the generation of step size s samples can be summarised by
equation (4) (Yang and Deb, 2013).

)()()(
0

t
i

t
j xxs  Lévy ()  0.01)()()(

1

t
i

t
j xx

v

u



 (4)

Where u and v are drawn from Normal distributions following in equations (5) and (6) (Yang and
Deb, 2013).

u ),0(2
uN  , v ),0(2

vN  (5)

 








/1

2/)1(22/)1(

)2/sin()1(














u
, 1v (6)

Where  is the standard Gamma function (Yang and Deb, 2013). In case of CS via Gaussian
random walks (CSGRW), a new solution xi

(t+1)
 generated from a cuckoo i is performed by using equation

(7) (Yang and Deb, 2010).

t
t

i
t

i xx  )()1((7)

Where εt obeys a Gaussian distribution, this becomes a standard random walk (Yang and Deb,
2010). The α is defined as equation (2) (Yang and Deb, 2013). After preforming the Lévy flight or
Gaussian random walks, the fitness value of new solution xi or F(xi) is evaluated. A nest or solution
among current population is randomly selected (called solution xj) in order to compare the solution
quality with a new solution xi. The new solution xi will be accepted and replaced to solution xj if the F(xi)
is better than the F(xj).

Next step, the worse nests (alien egg) will be detected and abandoned according to a probability

Pa [0, 1] (Yang and Deb, 2013). New nests will be built at new locations by using random permutation
or random walks according to the similarity/difference to the host eggs (Yang and Deb, 2013). High
probability of Pa increases the diversification mechanism whilst the low probability endorses the
intensification mechanism (Li and Yin, 2015). After that, the population will be sorted according to the
solution quality before identifying the best so far solution. These processes are repeated until getting to
the maximum iteration (I) or stop criterion.

Terminology always plays an important role for scientists or professionals to express,

communicate or transfer their knowledge and specialised texts for avoiding simple misunderstandings or

errors. Terminology of CS compared with one of the most classical metaheuristic terminology, called

Genetic Algorithm (GA), is shown in Table 1.

Table 1 Terminology comparison between GA and CS

General Terminology Genetic Algorithm (GA) Cuckoo Search (CS)
Decision variable Gens in a Chromosome Cuckoo eggs in a host nest

Solution Chromosome An egg in a host nest

Old solution Parent Chromosome An egg in a host nest

New solution Child Chromosome Cuckoo’s egg laid in a host nest

Best solution Chromosome having highest fitness value The nest having highest quality egg

Fitness function Survival fitness of a chromosome Survival of cuckoo eggs in the host nest

Initial solution Initial random chromosome Initial random host nest

Selection Roulette Wheel Selection Ranking from the best to worst nests

Solution improving process Crossover and Mutation Processes Random Walks and generating a new nest

Intensification Crossover Operation Movement strategies or Random Walks

Diversification Mutation Operation Abandon the nest and build a new nest

Proportional selection Probability of Crossover and Mutation Probability of alien egg discovery

7

It can be seen that both GA and CS have something in common but different in terminology. For

examples, a candidate solution in GA is called a chromosome whilst a cuckoo’s egg is called in CS. GA

has four parameters including population size, number of generations, probability of crossover, and

probability of mutation (Vitayasak and Pongcharoen, 2018; Vitayasak et al., 2017). CS has three

parameters including population size or host nests (P), maximum iteration (I), and probability of alien

egg discovery (Pa) (Yang and Deb, 2010). According to Yang (2014), the population size and the

probability of alien egg discovery were suggested at 15-40 and 0.25, respectively. The maximum iteration

can be reasonably assigned according to the size of the problem considered as well as the availability of

computational time and resources.

A review on advantages and disadvantages of both CS and GA is concisely summarised in Table

2. Both methods employ the population-based mechanism for performing multiple directional search

(Thepphakorn et al., 2015; Yang, 2010).

Table 2 Advantages and disadvantages of GA and CS
Algorithms Advantages Disadvantages

Genetic

Algorithm

(GA)

- The performance and final result on time constraints and

limited computer power (Karakatič and Podgorelec, 2015)

- Population based and perform multiple directional

search (Thepphakorn et al., 2015)

- Enhance convergence because of crossover operation

and elitism (Yang, 2014)

- Tuning the specific parameters (Vitayasak

and Pongcharoen, 2018)

- Premature convergence (Pandey et al., 2014)

- Slow convergence rate and high

computational cost (Patel et al., 2017)

Cuckoo

Search

(CS)

- It can solve both continuous and combinatorial problem

domains (Yang et al., 2014).

- It is a population-based algorithm (Yang, 2010).

- It uses some sort of elitism and/or selection similar to

that used in Harmony Search (Yang and Deb, 2010).

- The randomisation in CS is more efficient as the step

length is heavy-tailed, any large step is possible (Yang,

2010).

- Few number of parameters to be tuned (Chiroma et al.,

2017; Khoja et al., 2018)

- It is potentially more generic to apply to more categories

of optimisation problems (Yang, 2010).

- Balance between local and global searching (Chiroma et

al., 2017)

- It has a simple structure (Salgotra et al., 2018)

- Slow convergence (Rakhshani et al., 2016;

Zhu and Wang, 2017)

- Low precision (Zhao and Niu, 2017; Zhu and

Wang, 2017)

- Premature convergence (Rakhshani and

Rahati, 2017)

- Poor balance between exploration and

exploitation (Rakhshani and Rahati, 2017;

Salgotra et al., 2018)

- The performance of algorithm are based on

difference parameter setting (Mlakar et al.,

2016; Salgotra et al., 2018)

- Lack of problem-specific knowledge

(Mlakar et al., 2016)

A comprehensive literature survey on the applications of metaheuristics to solve the university

course timetabling problem (UCTP) was conducted on the ISI Web of Science and Scopus databases
covering the period from the past to September 2019. Using “course timetabl*” and “metaheuristic*” as
keywords. The survey found 81 papers on the Scopus database and 34 papers on the ISI Web of Science
database. However, some articles were duplicated; some were not research articles e.g. editorial
messages; and some papers were not related with university timetabling. After screening and filtering,
there were 75 papers that applied metaheuristics to solve UCTP as shown in Table 3. Various
conventional metaheuristics have been adopted, e.g., Genetic Algorithm (GA), Memetic Algorithm
(MA), Graph Heuristics, Ant Colony Optimisation (ACO), Artificial Bee Colony (ABC), Variable
Neighbourhood Search (VNS), Simulated Annealing (SA), Harmony Search (HS), Tabu Search (TS),
Scatter Search (SS), and etc.

8

Table 3 Comprehensive literature review on the applications of metaheuristics for solving university course timetabling problems

Authors Methods

Course

timetabling

Performance Improvement Strategies

Parameter

setting
Movement Strategies

In case of hybridisation

(hybridised with)

C
u

rr
ic

u
lu

m

P
o

st
 e

n
ro

lm
en

t

B
en

ch
m

ar
k

in
g

R
ea

l-
w

o
rl

d
 d

at
a

S
ta

ti
c

(T
u
n

in
g

)

A
d

ap
ti

v
e

C
o

m
p
a

ri
so

n

R
an

d
o

m
 w

al
k

 (
R

W
)

L
év

y
 f

li
g

h
t

R
W

G
au

ss
ia

n
 R

W

L
o

w
-l

ev
el

 h
eu

ri
st

ic

M
u
ta

ti
o
n

C
ro

ss
o

v
er

N
ei

g
h
b

o
u

rh
o
o
d

E
g
g

 L
ay

in
g

 R
ad

iu
s

P
h

er
o
m

o
n

e

C
o

m
p
a

ri
so

n

Mazlan et al. (2019) Ant Colony Optimisation (ACO)  

Wahid et al. (2019) Graph Heuristics 

Pillay and Özcan (2019) Genetic Programming (GP), Hyper-heuristics, GA 

Jafarinejad et al. (2019) Artificial Neural Networks (ANN) 

Mauritsius et al. (2018) Local Search (LS)   

Matias et al. (2018) Genetic Algorithms (GA)    Guided Search

Junn et al. (2018) Genetic Algorithms (GA)   

Lindahl et al. (2018) Neighbourhood Search     Integer Programming

Zhang et al. (2017) Eco-geography Based Optimisation (EBO)  

Soria-Alcaraz et al. (2017b) Hyper-heuristics, Neighbourhood Search    

Soria-Alcaraz et al. (2017a) Hyper-heuristics, Iterated Local Search (ILS)      

Junn et al. (2017) Great Deluge (GD) algorithm, SA  

Ortiz-Aguilar et al. (2017) Iterated Local Search (ILS), GA    

Obit et al. (2017b) GD, Constraint Programming (CP) Algorithm   GD, Constraint Programming (CP)

Obit et al. (2017a) Hyper-heuristics    Particle Swarm Optimisation (PSO)

Pillay and Özcan (2017) Hyper-heuristics       GA, Genetic Programming (GP)

Kiefer et al. (2017) Adaptive Large Neighbourhood Search    

Wahid and Hussin (2016b) Graph Heuristics   

Wahid and Hussin (2016a) Graph Heuristics   

Bellio et al. (2016) Simulated Annealing (SA)    

Badoni and Gupta (2016) Ant Colony Optimisation (ACO)    

Crawford et al. (2015) Ant Colony Optimisation (ACO)  

Lewis and Thompson (2015) Neighbourhood Search    

Fong et al. (2015) Artificial Bee Colony (ABC)     Great Deluge (GD) Algorithm

Dun et al. (2014) Simulated Annealing (SA)     Genetic Algorithms (GA)

Teoh et al. (2014) GA, CS, Cuckoo Optimisation Algorithm (COA)       

Soria-Alcaraz et al. (2014) Hyper-heuristics, ILS     

Jaradat et al. (2014) Scatter Search (SS)     

Bolaji et al. (2014) Artificial Bee Colony (ABC)     Hill Climbing

Abuhamdah et al. (2014) Gravitational Emulation Local Search (GELS)     LS, Collision and Descent Algorithm

Yassin et al. (2013) Tabu Search (TS)     Great Deluge (GD) Algorithm

Tarawneh and Ayob (2013) Simulated Annealing (SA)     

Soria-Alcaraz Jorge et al. (2013) Two-phase Algorithm 

Soria-Alcaraz et al. (2013) Two-phase Algorithm 

Mansour and El-Jazzar (2013) SA, Scatter Search (SS), Tuning Heuristic    Local Search (LS)

Jaradat and Ayob (2013) Big Bang-Big Crunch    

Bolaji et al. (2013) Artificial Bee Colony (ABC)   

Turabieh and El-Daoud (2012) Enhanced Great Deluge Algorithm  

9

Authors Methods

Course

timetabling

Performance Improvement Strategies

Parameter

setting
Movement Strategies

In case of hybridisation

(hybridised with)

C
u

rr
ic

u
lu

m

P
o

st
 e

n
ro

lm
en

t

B
en

ch
m

ar
k

in
g

R
ea

l-
w

o
rl

d
 d

at
a

S
ta

ti
c

(T
u
n

in
g

)

A
d

ap
ti

v
e

C
o

m
p
a

ri
so

n

R
an

d
o

m
 w

al
k

 (
R

W
)

L
év

y
 f

li
g

h
t

R
W

G
au

ss
ia

n
 R

W

L
o

w
-l

ev
el

 h
eu

ri
st

ic

M
u
ta

ti
o
n

C
ro

ss
o

v
er

N
ei

g
h
b

o
u

rh
o
o
d

E
g
g

 L
ay

in
g

 R
ad

iu
s

P
h

er
o
m

o
n

e

C
o

m
p
a

ri
so

n

Ozcan et al. (2012) Interleaved Constructive Memetic Algorithm    

Nothegger et al. (2012) Ant Colony Optimisation (ACO)     LS, Simulated Annealing (SA)

Karami and Hasanzadeh (2012) Genetic Algorithms (GA)     Hill Climbing

Alirezaei et al. (2012) Particle Swarm Optimisation (PSO)   Local Search (LS)

Lewis (2012) Neighbourhood Search   

Geiger (2012) Threshold Accepting Algorithm    

Ceschia et al. (2012) Simulated Annealing (SA)    

Al-Betar et al. (2012) Harmony Search (HS)    Hill Climbing, PSO

Al-Betar and Khader (2012) Harmony Search (HS)    

Abdullah et al. (2012) Electromagnetic-like Mechanism     Great Deluge Algorithm, TS

Lu et al. (2011) LS, ILS,TS, Adaptive Tabu Search   

La'aro Bolaji et al. (2011) Artificial Bee Colony (ABC)    Neighbourhood Search

Jula and Naseri (2011) Memetic Algorithm (MA)   

Joudaki et al. (2011) Memetic Algorithm (MA)     Simulated Annealing (SA)

Jat and Yang (2011b) Genetic Algorithms (GA)      Guided-search GA, TS

Jaradat and Ayob (2011) Scatter Search      Iterated Local Search (ILS)

Phuc et al. (2011) Genetic Algorithms (GA)      Bee Algorithm

Nguyen et al. (2011) Variable Neighbourhood Search    

Khang et al. (2011) Bee Algorithm   

Budiono and Wong (2011) Memetic Algorithm (MA)    

Jaradat and Ayob (2010) Elitist Ant System (EAS)     Iterated Local Search (ILS)

Nguyen et al. (2010) Tabu Search (TS)  

Dino Matijaš et al. (2010) Ant Colony Optimisation (ACO)   

Burke et al. (2010) Neighbourhood Search     Integer Programming

De Causmaecker et al. (2009) Local Search (LS)   

Al-Betar et al. (2008) Harmony Search (HS)  

Geiger (2008) Local Search (LS)   

Gunawan et al. (2008) Simulated Annealing (SA), TS   Simulated Annealing (SA), TS

Mayer et al. (2008) Ant Colony Optimisation (ACO)   

Qarouni-Fard et al. (2008) Particle Swarm Optimisation (PSO)   

Lewis et al. (2007) Grouping GA, SA, Heuristic Search      

Aladag and Hocaoglu (2007) Tabu Search (TS)  

Chiarandini et al. (2006) Local Search (LS)     SA, TS, Neighbourhood Search

Kostuch (2005) Simulated Annealing (SA)   

He et al. (2005) CLONALG, Genetic Algorithms (GA)      

Burke et al. (2003) Great Deluge (GD) Algorithm   

Rossi-Doria et al. (2003) Ant Colony Optimisation, GA, ILS, SA, TS       

Socha et al. (2003) Ant Colony System, Max-Min Ant System    Local Search (LS)

This Work CSLF, CSGRW, Adaptive Cuckoo Search         LS, Insert and Exchange Operators

10

From Table 3, there was only single published article from Teoh et al., (2014) that applied
conventional Cuckoo Search (CS) with static parameter setting to solve UCTP. No comparative study on
CS algorithm using either static or adaptive parameter setting approaches has been reported. There has
been no report on the movement strategies and hybridisation of CS for solving UCTP. Moreover, many
applications of metaheuristics to solve UCTP were considered and tested using the standard
benchmarking datasets, e.g. Curriculum-based course timetabling problems (CB-CTP) (Geiger, 2012; Lu
et al., 2011) and Post enrolment-based course timetabling problems (PE-CTP) (Lewis, 2012; Nothegger
et al., 2012; Rossi-Doria et al., 2003). However, the considerations on the real-world course timetabling
problems were marginal.

3. Real-world university course timetabling problem

In educational institutions, courses and examinations timetabling is a crucial activity, which
assigns the appropriate timeslots for students, lecturers, and classrooms according to all constraints
(Thepphakorn et al., 2014). Course timetabling constraints can generally be classified into two groups
including hard constraints (HCs) and soft constraints (SCs) (Lewis, 2008). Hard constraints are the most
important and must be satisfied to have a feasible timetable whereas soft constraints are more relaxed as
some violations are acceptable, although the number of violations should be minimised (Thepphakorn et
al., 2014).

There are two types of course timetabling datasets including benchmarking datasets and real-
world datasets. The International Timetabling Competition in 2002 (ITC2002) and the International
Timetabling Competition in 2007 (ITC2007) are popular benchmarking timetabling datasets, both of
which have been regularly solved and reported (Geiger, 2012; Lewis, 2012; Lu et al., 2011; Nothegger et
al., 2012). On another hand, many research works have also focused on the timetabling datasets obtained
from the real-life course timetabling problems (Junn et al., 2017; Matias et al., 2018; Mazlan et al., 2019;
Zhang et al., 2017). The major differences between the benchmarking and the real-world course
timetabling problems are the additional complexity imposed by course structures, the variety of
constraints, and the distributed responsibility for information needed to solve such problems at a
university-wide level (Rudova et al., 2011).

Most universities in the real-world usually have their special set of constraints to practise (Lewis
and Paechter, 2007). The complexity and difficulty to find a practical timetable become more relevance
when dealing with a large number and variety of constraints related to the large numbers of students,
lecturers, classrooms, and course structures as well as the special limitations arisen from university
regulations and/or lecturers’ requirements. For an example, the problem becomes more complex when
students attend courses from multiple academic units and the solutions depend on the availability of
students for the classes across multiple problems (Murray et al., 2006). Therefore, the complexity of the
course timetabling problems appearing on the benchmarking or artificial datasets was usually decreased
(Rudova et al., 2011). Some specific or local constraints will be cut off for more standard and easier
comparison, in which the constraints applicable to the complex real-world timetabling problems can be
reduced. Therefore, solving simplified problems or artificial datasets has rarely been extended to the
solution of actual university problems of any large scale (Rudova et al., 2011).

In this work, the real-world course timetabling data obtained from Naresuan University (NU) was
considered. The number of sub-course timetabling problems at NU generally depends on the number of
schools/faculties and departments. NU course timetabling becomes more complex when students attend
their courses arranged by different faculties or departments. NU course scheduling activities can be
considered into three levels including the central or university level, faculty level, and department level.
The central level is the most important level because it is related to many mandatory courses (such as
General Education subjects, etc.), enrolled by a large number of the first or second year students across
faculties or departments. All remaining courses are scheduled by faculties/departments staff.

11

NU’s course structures are not only considered for individual events or courses, but they are also
determined for the parts or details for each course. For examples: (i) a course may require either a lecture
or laboratory or both, in which there may be similar or difference requirements such as available days and
periods, classroom facilities, building locations, and etc.; (ii) mandatory courses for most of student
programs in the first or second years across faculties or departments are very hard and complex to share a
limited resources; (iii) a course having a number of students attending more than the size of available
rooms (e.g. laboratory rooms) will be split into many sections, whereas the conflict constraints for
lecturers responsible for multiple sections are increased.

There has been a number of constraints found in the NU course scheduling activities such as: (i) a
course having multiple sections and teaching by the same lecturers must be assigned to be only one
section at the same time; (ii) some courses having multiple lecturers must be considered, because many
practical courses have high dangerous risks to students (e.g. industrial tools, chemical laboratory), the
problem complexity in case of multiple lectures is based upon the number of the lecturers in charge; (iii)
the specific requirements on a course taught by external or high-administrative-position lecturers must be
obeyed; and (iv) all lectures of a course requiring special classrooms (such as drawing room, chemical
laboratory, etc.) should be scheduled in double or triple consecutive periods. Therefore, all course
timetabling constraints considered in this research can be described into the HCs and SCs as follows:

Hard constraints (HCs) considered were:

HC1 - all lectures/laboratories (elements) required for each course must be scheduled and assigned

to distinct periods;

HC2 - students and lecturers can only attend one lecture at a time;

HC3 - only one lecture can take place in a room at a given time;

HC4 - lecturers and students must be available for a lecture to be scheduled;

HC5 - all courses must be assigned into the classrooms according to their given requirements

including building location, room facilities, and room types; and

HC6 - all lectures within a course required consecutive periods must be obeyed.
In additions, soft constraints (SCs) considered were:

SC1 - all courses should be scheduled in the appropriate classroom in order to avoid unnecessary

operating or renting costs (per hour);

SC2 - the courses taught by the given lecturer(s) should be assigned into their available or

preferred day and periods in order to save the lecturing or hiring costs (per hour); and

SC3 - the classrooms should be scheduled in consecutive working periods of a day in order to

reduce the number of times to clean or setup after using the rooms (per time).

HC1–HC6 determine whether potential solutions are feasible. HC1–HC3 are the fundamental
timetabling constraints (called “event-clash” or binary constraint) that can be found in almost all
university timetabling problems (Lewis, 2008). HC4–HC6 are individual requirements and timetabling
policy found in the NU. SC1–SC3 are represented by an objective function in order to minimise the total
university operating costs () determined from the constructed course timetables. Moreover, HCs and
SCs considered in this work can be formulated as a simple mathematical model shown in Eq. (8) - Eq.
(10).

 
         


Rr Ll Dd Pep

rldprldp

Tt Ss Dd Pep

tsdptsdp

Rr Ll Dd Pep

rldprldp CxLyRxZMin (8)

 Subject to: ,,0 kHCk  (9)

 stpdlryx tsdprldp  ,,,,,},1,0{, (10)

12

Eq. (8) is the objective function that evaluated the total university operating costs (currency unit:

Thai Baht) consisting of three components. The first one determines the operating costs generated from
classrooms used (SC1). The next one considers the hiring cost calculated from lecturers (SC2). The last
one is to calculate the setup or cleaning costs after classrooms used (SC3). Where r, l, d, p, t, and s are the
index of classrooms, room types (such as lecture room, laboratory), days per week, periods per day,
teachers, and curricula whereas R, L, D, Pe, T and S are the number of classrooms, room types, days per
week, periods per day, teachers, and curricula, respectively. Rrldp is operating cost parameter for
classroom r with l type on period p of day d (per hour). Ltsdp is hiring cost parameter for lecturer t taught
student s on period p of day d (per hour). Crldp is setup-cleaning cost parameter for classroom r having l
types on period p of day d (per time). Eq. (9) checks a timetable to be a feasible timetable, in which all
hard constraints must be satisfied. Where k is an index relating to the k

th
 hard constraint (k = 1, 2, 3,…,

H), where H is the number of hard constraints. The binary decision variables are shown in Eq. (10).
Where xrldp is to be 1 if classroom r having l types is used on period p of day d; otherwise 0. ytsdp is to be 1
if lecturer t taught student s on period p of day d; otherwise 0.

4. Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) Program

The Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) tool has been coded in

modular style with graphic user interface using a general purpose programming language called

TCL/TK for front end with C extension for calculation in the back end. The program has been developed

for solving course timetabling problems by using Cuckoo Search (CS) algorithm. Three alternatives

strategies for improving CS performance, including self-adaptive parameter setting (SPS); movement

strategy based on random walk variants; and hybridisation strategy, have been embedded. The proposed

program can be implemented and graphically displayed the computational outputs on various platforms

of computer operating system.

The procedures of the proposed program shown in Figure 3 can be divided into six main steps:

(i) initialisation phase including data uploading, population initialisation and default parameter settings;

(ii) strategic movement procedures for Cuckoo Search algorithm either based on Lévy flight or Gaussian

random walks; (iii) repair process for rectifying infeasible timetables violated hard constraints; (iv)

fitness evaluation and best solution updating procedure; (v) hybridisation strategy with neighbourhood

search approaches (Insertion or Exchange Operators); and (vi) updating another CS parameter, which is

the probability of alien egg discovery. This probability is used to replace the worse solutions by the new

random-generated solutions. The following sub-sections describe these processes in more details.

4.1 Initialisation phase
Data encoding always plays an important role in computer programming. Each cuckoo egg in the

nest represents a candidate solution (timetable) that comprises a set of elements. An element can be
encoded using either numeric (binary, integer, or real) and/or alphanumeric characters (Pongcharoen et
al., 2008). In this work, numeric element was applied and consisted positive and negative integer values.
Positive integer values represent the elements/events of coded courses, each of which required a
classroom, a day, and a timeslot. Negative value such as -1 was used to indicate empty events/timeslots to
be assigned into a timetable. For an example shown in Figure 4, if there are three courses including
Drawing, Physics and Calculus; each of which requires 4, 5, and 3 teaching timeslots per week,
respectively. It can be seen that the Drawing course comprised four zero-coded elements according to the
given coding indices of all courses. Likewise, Physics and Calculus subjects have four one-coded and
three two-coded elements, respectively. Therefore, the number of coded elements/events is generated
from the summation of lecturing time-periods required for all courses.

13

 Begin Input university course timetabling data

 Generate a priority list of courses using heuristic orderings

 Set amount of search including numbers of Population (P) and Maximum Iteration (I)

 Create initial population of P solutions, xi (i = 1, 2, 3, …, P)

 Generate random keys for each xi

 If (Pa is adaptive) do Initial values of Pa for each xi

Step 1

 While t < Imax do

 For (i = 1, i <= P, i++) do get a cuckoo (say, xi) randomly

 If (CSLF was selected) do generate a new solution xi′ by using Lévy flights

 Else if (CSGRW was chosen) do generate a new solution using Gaussian random walks

 End if

Step 2

 If (xi′ = infeasible timetable) do

 Repair the xi′ to be a feasible timetable

 End if

Step 3

 Evaluate its fitness f(xi′)

 Choose a nest among n (say, xj) randomly

 If f(xi′) > f(xj) do replace the xj by the new solution xi′

 End for

Step 4

 For (i = 1, i <= P, i++) do get a cuckoo xi

 If (Insertion operator: IO) do produce a new solution xi′ using the IO

 Else If (Exchange operator: EO) do produce a new solution xi′ using the EO

 End if
 If f(xi′) > f(xi) do replace xi by a new solution xi′

 End for

Step 5

 If (Pa setting = SPS) do update values of Pa for each individual xi

 Rank all solutions (timetables) in current population

 If (rand < Pa of worse nests: xworse) do

 Build/generate new solutions xnew

 Replace the xworse by the new solution xnew

 End if

 Find the current best solution and keep the best so far solution

 End while

 Post-process on the results and its visualisation

 End

Step 6

Figure 3 Pseudo code of the HSCST program

Figure 4 Element encoding for a solution

4.1.1 Population initialisation
Courses may have different priorities, the generation of infeasible solutions can be avoided by

scheduling the highest priority activities first (Burke and Newall, 2004). This research, sorting the list of
course priority called the Largest Unpermitted Period Degree first (LUPD) (Thepphakorn and
Pongcharoen, 2013) is therefore adopted in order to ensure that all candidate solutions are feasible. Next

14

step is to create an empty solution (timetable) for assigning all coded elements. The length of that
solution are calculated by taking into account the multiplications among the number of classrooms (R),
days per week (D), and periods per day (Pe) shown in Figure 5.

Figure 5 Solution representation on empty-slot timetable

After that, all encoded elements of courses are scheduled into an empty solution according to the
list of course priority generated. The encoded elements of a course having the highest priority will be
scheduled first. Before assigning each element/event into a timeslot, hard constraint checking is produced
to ensure that the considering timeslots are feasible. Otherwise, the algorithm sequentially looks for the
next empty timeslots of a solution that do not have any hard constraint violation. These processes are
repeated until all courses were scheduled. For example, a completed timetable obtained from initialisation
can be shown in Figure 6. It can be seen that all encoded elements/events belonging to Physics, Drawing,
and Calculus subjects were completely scheduled, whereas the remaining empty timeslots of that solution
were set to be the -1 value.

Figure 6 Initialisation of a candidate solution/timetable

4.1.2 Random keys initialisation
Random keys is a technique for adapting the movement strategy used in the continuous

optimisation domains to discrete optimisation domains (Khadwilard et al., 2012). For course timetabling,
there are four steps to generate random keys for each solution as shown in Figure 7: (i) create an empty-
slot associated with all coded elements; (ii) randomly generate the values between 0 and 1 using Uniform
distribution for each element; (iii) sort the random keys ascending; and (iv) sequentially assign the sorted
random keys to the coded elements.

15

Figure 7 Random-keys generating steps

4.1.3 Adaptive parameter
Parameter setting always plays an important role on the balance between exploration and

exploitation mechanisms conducted in metaheuristics. For Cuckoo Search, despite the suggestion on the

setting of the probability of alien egg discovery (Pa) with a constant value of 0.25 (Yang, 2014), static

parameter setting of 0.10 has been used by Teoh et al. (2014) for solving university timetabling problems.

Adopting a constant value of Pa means that the static balance between exploration and exploitation

mechanisms is indifferently used during iterative search process conducted within the method. Adaptive

parameter setting has therefore been an alternative to employ dynamic balance as well as to avoid the

premature convergence resulting in local optimal solutions. The parameter setting of Pa considered in this

work is based on the iterative self-adaptive concept using the equation (11) or (12).

 randiPa  15.005.0)((11)

 randiPa  05.085.0)((12)

Where Pa(i) is the Pa value for solution i whilst rand is random values between 0 and 1 based on

Uniform distribution. The possibility intensity and slow down the search process will be increased by

using equation (11) whilst the diversity and the convergence speed will be increased by using equation

(12) (Li and Yin, 2015).

In the first step, an initial Pa(i) value for each solution is generated by using the equation (11).

Next step is to create two new integer variables for each solution i, called success_ratio(i) and

equation_selection(i) in order to: (i) store the binary values of the success ratio (0 is unsuccessful, 1 is

successful) from selected equations (11) or (12) in the previous periods; and (ii) keep the values of

equation used, 1 is to use an equation (11) or 2 is to use an equation (12), respectively. However, the

value of the variables is initially set to be 0 for all solutions. Both are crucial variables for self-adaptive

parameter updating process, which is described in the next section 4.6.

16

4.2 Strategic movement procedures
In this research, two movement strategies so called Lévy flights (CSLF) and Gaussian random

walks (CSGRW) were embedded within the CS. Both movement strategies can be described using
equations (13) and (14);

())()()(
0

)()1(randnstepsizexxxx t
i

t
best

t
i

t
i   (13)

1
v

u
stepsize  (14)

Where α0 is a constant value whilst the term in the bracket corresponds to the randomly solution
difference between xbest

(t)
 and xi

(t)
. The stepsize is the step length in a random walks that can be fixed or

varying (Yang, 2010). In case of CSLF, the stepsize is a varying random walk that obeyed the Lévy
distribution via the Mantegna’s algorithm shown in equation (14) (Yang, 2010) whilst the stepsize for
CSGRW in this work is a fixed random walk and set to be 1. The randn() is random values generated
from standard normal or Gaussian distribution with 0 mean and 1 standard deviation or N(0,1).

The movement procedure of each element in a solution xi
(t)

for CSLF and CSGRW are shown in
Figure 8. For example, if the first event of subject number 1 (the third element position) in the xi

(t)

solution is firstly selected to move. The first step is to find the position of the first event of subject
number 1 (the first element position) in the xbest

(t)
 solution. Next step, random key values for that event of

subject number 1 belonging to xbest
(t)

and xi
(t)

 solutions are collected. The third step, a new random key
value is calculated by using equation (13) before replacing it into the same position of subject number 1
in the xi

(t)
 solution. The fourth step is to select the next sequential event in the xi

(t)
 solution for movement.

These four steps are repeated until new random key values for all events in the xi
(t)

 solution have been
updated. The fifth step is to sort the new random keys in ascending order and move all elements of xi

(t)

solution to new position according to the ascending order of new random keys. It can be seen that the first
event of subject number 1 is moved from the third position of the xi

(t)
 solution to the second position of

the xi
(t+1)

 solution instead (see in Figure 8).

Figure 8 Example of movement procedures for CSLF and CSGRW

17

4.3 Repair process
After performing the movement procedure, new solutions obtained may be either feasible or

infeasible solutions (due to hard constraint violations). In this work, the repair process is introduced for
rectifying infeasible solutions. For an example of repair processes shown in Figure 9, Drawing subject
(element number 0) is required to schedule in double consecutive periods at the drawing room. The first
step is to find the possible empty timeslots having no hard constraint (HC) violation in drawing room. If
double empty timeslots without any violation of HCs are found, two elements of number 0 are firstly
move to that timeslots. Otherwise, a possible empty timeslot (-1 value) in drawing room is randomly
selected for swapping with element of number 0. If those elements are not assigned in consecutive
periods (see position numbers 3 and 5 in Figure 9), the second step is to the possible empty timeslots near
position numbers 3 and 5 (including position numbers 2, 4, and 6). If element number 0 at position 3 can
be swapped with the element number 2 at position 4 without any violation of HCs, both positions are then
accepted to swap together. These processes are repeated until all coded courses have been satisfied for all
hard constraints (HCs).

Figure 9 Example of repair process embedded within the HSCST tool

4.4 Fitness evaluation and best solution updating
Once the timetables are complied with hard constraints, the timetables are evaluated for its quality

by using the objective function shown in Eq. (8) for calculating the total university operating costs (Z).
Due to minimisation problem, a solution or timetable having the lower Z value is more preferable than
that having the higher Z value.

4.5 Hybridisation strategy
There are many advantages on conducting hybridisation strategy: (i) improve the solution quality,

through increased exploitation search; and (ii) increase the opportunity to quickly discover the global best
solution. However, increasing more search usually requires more computational time and resources. In
this work, two local search strategies, so called Insertion Operator (IO) and Exchange Operator (EO),
were embedded for hybridisation with the Cuckoo Search. Both operators had been demonstrated on its
ability to improve the solution quality (Talbi, 2009). The main steps of the IO and EO procedures are
illustrated in Figure 10 and Figure 11, respectively. First step starts from specifying two positions within
a solution randomly (if the random number of position A is greater than position B). In the case of IO, an

18

element at position A will be moved to position B whilst the remaining elements between position A-1
and position B will be moved one position to the right hand (see Figure 10). For EO, the element values
located at position A and B are swopped (see Figure 11).

Figure 10 Steps of insertion operator (IO) (Talbi, 2009)

Figure 11 Steps of exchange operator (EO) (Talbi, 2009)

After conducting LS procedures, the repair process is applied if infeasible solution has been found

and followed by measuring its fitness value. If fitness value associated with the improved solution is
better than the fitness value associated with the old solution, the improved solution is accepted and
therefore replaced the old solution. These steps are similarly repeated for the remaining solutions.

4.6 Updating CS’s parameter
For updating the CS’s parameter in this work, two sequential procedures (which were self-

adaptive parameter update and population abandon) are proposed and described in the following sub-
sections.

4.6.1 Self-adaptive parameter update
The procedures of self-adaptive Pa setting are described in a pseudo code shown in Figure 12.

After fitness measurement, if the solution i using equation (11) (equation_selection(i) = 1) for Pa setting

has the solution quality better than that in the previous iteration, the success_ratio(i) will set to be 1,

otherwise it will set be 0. In the same way, the success_ratio(i) for solution i using equation (12)

(equation_selection(i) = 2) will be also updated. In the end of the every iteration, the summations of

19

success_ratio(i) for each selected equations will be calculated and kept at the success1 and success2

variables, respectively.

If the success1 is larger than the success2, it denotes that the parameter Pa obtained from adopting

equation (11) perform better than that generated by equation (12). Therefore, the probability (prob) of

selected equation (11) for Pa setting must be increased. Otherwise, it means that the Pa value obtained

from adopting equation (12) is very efficient, in which the prob value of selected equation (11) must be

reduced. These steps are repeated until all Pa values associated with all solutions are updated.

 Update success_ratio(i) variable

 Calculate success1 and success2 according to success_ratio(i) variable

 For (i=1, i <= P, i++) do

 If (iteration = 1) do

 If (rand < 0.5) do

 If (rand <= 0.05) do update Pa(i) using equation (11) and set equation_selection(i) = 1;

 Else
 If (rand <= 0.05) do update Pa(i) using equation (12) and set equation_selection(i) = 2;

 End if

 Else

 If (success1 > success2) do prob = 0.7 + 0.3*rand; else prob = 0.4 - 0.3*rand;

 If (rand < prob) do

 If (rand <= 0.5) do update Pa(i) using equation (11) and set equation_selection(i) = 1;

 Else
 If (rand <= 0.5) do update Pa(i) using equation (12) and set equation_selection(i) = 2;

 End if

 End if

 End for

Figure 12 Pseudo code of the self-adaptive Pa setting for CS (Li and Yin, 2015).

4.6.2 Population abandon
All solutions (timetables) in the population are decreasingly sorted by determining their fitness

values. The solution with the highest fitness is assigned to be the highest ranking or i = 1, (i = 1, 2, 3,…,
P), whereas the solution with the lowest fitness is ranked last (i = P). The last-rank solution (xworse) is

determined to be abandoned or kept according to its probability Pa(P)[0, 1]. If a random value based on
the Uniform distribution (rand) is more than or equal to Pa(P), the xworse solution is kept. Otherwise, the
xworse solution will be improved by using the standard random walks in equation (7) (Yang and Deb,
2010). After that, the repair process is applied if the new solution (xnew) is infeasible timetable. This
follows by measuring the total operating costs (Z) and its fitness value. At this point of the CS method,
the iteration is completed and the best-so-far solution is identified and kept. The CS process from step 2
to step 6 shown in Figure 3 are repeated until the maximum iteration (I) is satisfied. Finally, the best-so-
far solution and its fitness value are reported.

5. Experimental design and analysis
The computational experiments were aimed to: (i) identify the main factors and their interactions

that were statistically significant before concluding the appropriate parameter settings for the CS method;
(ii) explore the performance of the CS via Gaussian random walks and the CS via Lévy flights; (iii)
investigate the performances of CS using the optimal parameter settings via parameter tuning and
parameter control techniques; and (iv) compare the performance of the proposed CS hybridising with the
Local Search including Insertion Operator (IO) and Exchange Operator (EO) as well as Particle Swarm

20

Optimisation (PSO). The characteristics of the eleven real-world course timetabling datasets obtained
from the Faculty of Engineering, Naresuan University (NU) are shown in Table 4 (Thepphakorn et al.,
2016). The timetables generated by the HSCST program were measured by summation the total
university operating costs on the soft constraints mentioned in section 3. Personal computers with Core i7
3.4 GHz CPU and 4 GB RAM was used to determine the simulation time required to execute a
computational run.

Table 4 Characteristics of the proposed NU course timetabling problems

Problems

Characteristics of the NU course timetabling problems

No. Courses No. Events No. Classrooms
No. Days/

week

No. Periods/

day
No. Lecturers No. Curricula

1 56 173 53 5 10 30 19

2 103 323 77 7 10 62 36

3 123 353 86 7 10 49 27

4 124 380 74 7 11 56 35

5 144 452 91 7 10 78 43

6 162 486 99 7 10 71 34

7 163 499 88 7 11 72 38

8 204 639 114 7 10 96 52

9 208 647 99 7 11 102 56

10 221 687 108 7 12 94 44

11 323 1,009 142 7 13 143 66

A. CS’s optimal parameter investigations

The first experiment was aimed to demonstrate the use of advance statistical tools called
experimental design and analysis (EDA) for investigating the appropriate setting of CS’s parameters. The
factors included (i) the combination of population sizes (host nests) and the maximum iteration (PI),
which determines the total number of solutions generated, the amount of search and the execution time
required. In this computational experiment, the value was fixed at 24,000 to limit the amounts of search
and time taken for the computational search; and (ii) the probability of alien egg discovery (Pa). Yang
(2010) also suggested the sufficient values of the population sizes and the Pa parameters for most
optimisation problems should be set between 15 and 40, and 0.25, respectively. Table 5 summarises the
factors and its level considered.

Table 5 Experimental factors and its levels

Factors Levels
Values

Low (-1) Medium (0) High (+1)

PI 3 15*1600 25*960 40*600

Pa 3 0.1 0.25 0.4

Due to few parameter numbers, full factorial experiment based on the 3

2
 design (Montgomery,

2012) was adopted in this experiment for considering all the combinations of the factors in each

replication. The computational experiment was based on eleven problems (shown in Table 4), each of

which was repeated thirty times using different random seed numbers. The computational results

obtained from 270 (3
2
*30) runs per problem were analysed using a general linear model form of analysis

of variance (ANOVA). After conducting ANOVA tables for all proposed problems, the 1
st
, 5

th
, and 11

th

problems related to the small, medium, and large sizes were selected for examples to show the results of

21

ANOVA (shown in Table 6). The ANOVA table consisted of Source of Variation (Source), Degrees of

Freedom (DF), Sum of Square (SS), Mean Square (MS), F value, and P value. A factor with value of

P≤0.05 was considered statistically significant with 95% confidence interval. From Table 6, PI factor was

statistically significant in term of main effect in the 1
st
 and 11

th
 problems.

Table 6 ANOVA on the CS’s parameters for selected problems

Problems Source DF SS MS F P

1

PI 2 576,316 288,158 43.89 0.000

Pa 2 30,338 15,169 2.31 0.102

PI*Pa 4 32,133 8,033 1.22 0.302

Seeds 29 247,749 8,543 1.30 0.148

Error 232 1,523,225 6,566

Total 269 2,409,761

5

PI 2 1,101,544 550,772 1.38 0.253

Pa 2 1,424,859 712,429 1.79 0.169

PI*Pa 4 305,787 76,447 0.19 0.942

Seeds 29 11,690,452 403,119 1.01 0.452

Error 232 92,302,925 397,857

Total 269 106,825,567

11

PI 2 148,002,875 74,001,438 4.68 0.010

Pa 2 47,204,008 23,602,004 1.49 0.227

PI*Pa 4 119,012,484 29,753,121 1.88 0.115

Seeds 29 531,110,852 18,314,167 1.16 0.272

Error 232 3,669,965,471 15,818,817

Total 269 4,515,295,691

In this work, the appropriate parameter settings of the CS’s factors can be determined from the

lowest points in the main effect plots. For example, Figure 13 to Figure 15 suggested that the CS’s factors
including PI and Pa for the 1

st
, 5

th
, and 11

th
 problems should be defined at 15*1,600 and 0.25, 25*960 and

0.1, and 25*960 and 0.4, respectively. Moreover, the best parameter settings of the CS for remaining
problems are also concluded and shown in Table 7. There is no generic optimal parameter set that can be
efficiently applied to every problem sizes and domains due to the problem specific and the nature of the
algorithms (Figlali et al., 2009).

Figure 13 Main effect plots of PI and Pa for the 1

st
 problem

22

Figure 14 Main effect plots of PI and Pa for the 5

th
 problem

Figure 15 Main effect plots of PI and Pa for the 11

th
 problem

Table 7 Appropriate parameter settings of the CS for eleven problems

Problems
Appropriate parameter settings of the CS

Population size x Maximum Iteration (PI) Probability of alien egg discovery (Pa)

1 15*1,600 0.25

2 15*1,600 0.10

3 25*960 0.40

4 15*1,600 0.25

5 25*960 0.10

6 25*960 0.25

7 40*600 0.10

8 40*600 0.40

9 40*600 0.25

10 25*960 0.40

11 25*960 0.40

23

B. Perfomances of CS’s random walks

This experiment was designed to compare the performance between CS using Gaussian random
walks (CSGRW) and CS using Lévy flights (CSLF) to find the best so far timetables. The appropriate
parameter setting of the CS was adopted from the first experiment based on the experimental design and
analysis. The performance comparisons for both methods to solve the proposed datasets (detailed in
Table 4) were analysed in terms of the minimum, maximum, average, standard deviation (SD), and
execution time (Time: minutes unit) required to find the best so far solutions obtained. The T value
obtained from the t-test method and the P value are also shown in Table 8. The amount of search for each
method was equally fixed at 24,000 solutions to solve the proposed problems, each of which was also
repeated thirty times using different random seed numbers.

Table 8 Computational results obtained from the CSGRW and the CSLF

Prob. Methods

Best so far solutions (total operating costs) t-test

Minimum Maximum Average SD
Time

(minutes)

T

values

P

values

1
CSGRW 202,054.50 202,272.50 202,147.83 54.10 2.44

3.11 0.003
CSLF 201,998.00 202,225.00 202,103.62 56.02 2.53

2
CSGRW 378,485.50 379,806.00 379,039.18 341.62 10.05

1.26 0.211
CSLF 377,927.25 379,754.50 378,919.28 390.96 9.86

3
CSGRW 301,028.25 305,228.75 303,160.19 1,052.36 21.79

0.06 0.956
CSLF 301,125.25 305,010.75 303,146.30 866.33 24.49

4
CSGRW 299,674.50 308,693.75 304,171.83 2,322.36 12.16

2.05 0.045
CSLF 300,210.00 307,450.25 302,937.73 2,337.29 13.25

5
CSGRW 488,054.75 490,183.00 489,362.45 534.46 25.99

0.62 0.540
CSLF 488,141.50 490,141.00 489,286.09 416.09 28.24

6
CSGRW 406,083.25 410,164.75 407,872.34 910.48 30.06

0.46 0.645
CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00

7
CSGRW 412,589.00 418,821.25 416,126.10 1,488.51 21.85

2.96 0.005
CSLF 412,089.00 418,062.50 414,820.20 1,901.27 23.14

8
CSGRW 581,132.00 587,924.25 584,719.17 1,569.00 58.34

0.66 0.514
CSLF 582,654.75 587,650.00 584,485.26 1,155.05 57.98

9
CSGRW 604,809.25 612,667.00 609,530.52 2,146.03 32.66

-0.12 0.902
CSLF 602,771.25 615,903.25 609,619.51 3,317.79 40.79

10
CSGRW 551,052.50 565,639.25 558,339.95 3,861.85 37.06

1.49 0.143
CSLF 546,314.50 563,997.25 556,667.98 4,798.57 37.73

11
CSGRW 932,438.50 955,456.00 947,073.63 4,194.05 141.78

1.15 0.256
CSLF 939,531.25 955,056.25 945,859.18 4,000.94 145.29

From Table 8, the CSLF outperformed the CSGRW for finding the best so far solutions
(timetables) for most problems because of the lower maximum and average values of total operating
costs, whereas the CSGRW outperformed the CSLF for problem number 9. The minimum values of the
best so far solutions generated by CSLF were better that the values generated by CSGRW for some
problems and vice versa. Moreover, the SD values and the average computational times obtained from
both methods were slightly different for all problems.

In term of statistical analysis, the performance difference between the CSLF and the CSGRW was
statistically significant with a 95% confidence interval using t-test analysis (P value ≤ 0.05) for problem

24

numbers 1, 4 and 7, for small-size and medium-size problems. It can be concluded that the performance
of CSGRW was statistically indifference to the CSLF for most problems.

A comparison of convergence speeds between CSLF and CSGRW to find the best so far solution
is shown in Figure 16. The 11

th
 problem related with large problem size was selected for this experiment.

It can be seen that convergence speed belonging to the CSGRW was slightly better than that belonging to
the CSLF in early generations. However, the CSLF was able to find the best so far solutions quicker than
the CSGRW from the middle to the last generation.

C. Perfomances of CS’s parameter investigations

This experiment was designed to compare the performances of CS via Lévy flights (CSLF) using
two different ways to get the appropriate parameter settings: (i) parameter tuning via experimental design
and analysis (CSLF+EDA) demonstrated in the first experiment; and (ii) parameter control via self-
adaptive parameter setting (CSLF+SPS). The comparisons among the proposed methods for solving
eleven problems (detailed in Table 4) were analysed in terms of the minimum, maximum, average,
standard deviation (SD), and the execution time (Time: minute unit) required to find a timetable having
the minimum total university operating costs. The T value obtained by using the t-test method and the P
value are also shown in Table 9. The amount of search for each method was equally fixed at 24,000
solutions to solve the proposed problems (Table 4), each of which was also repeated thirty times using
different random seed numbers.

Figure 16 Convergence plots of CSLF and CSGRW for the 11

th
 problem

From Table 9, the CSLF+EDA produced the timetables with the average total operating costs

lower than the timetables obtained from the CSLF+SPS for all problems. The minimum and/or maximum
values generated from the CSLF+EDA were better than the CSLF+SPS for the first five problems. The
SD values and the average computational times obtained from both methods were slightly different for all
problems, excepted in problem numbers 2 and 4. However, the performance differences achieved by the
CSLF+EDA and the CSLF+SPS were not statistically significant with a 95% confidence interval using t-
test analysis (P value ≥ 0.05) except for the problem number 5. It means that the performance of the
CSLF+SPS was statistically equal to the CSLF+EDA for most problems.

25

Table 9 Comparative results between the CSLF+EDA and the CSLF+SPS

Prob. Methods

Best so far solutions t-test

Minimum Maximum Average SD
Time

(minutes)

T

values

P

values

1
CSLF+SPS 202,016.50 202,229.00 202,105.23 45.34 2.63

0.12 0.903
CSLF+EDA 201,998.00 202,225.00 202,103.62 56.02 2.53

2
CSLF+SPS 377,968.75 380,569.00 379,049.68 655.24 12.76

0.94 0.354
CSLF+EDA 377,927.25 379,754.50 378,919.28 390.96 9.86

3
CSLF+SPS 301,363.75 306,308.75 303,290.11 983.80 23.99

0.60 0.550
CSLF+EDA 301,125.25 305,010.75 303,146.30 866.33 24.49

4
CSLF+SPS 300,139.25 307,582.00 303,467.07 2,148.92 19.68

0.91 0.365
CSLF+EDA 300,210.00 307,450.25 302,937.73 2,337.29 13.25

5
CSLF+SPS 488,776.50 491,697.50 489,637.74 599.35 23.91

2.64 0.011
CSLF+EDA 488,141.50 490,141.00 489,286.09 416.09 28.24

6
CSLF+SPS 406,088.00 409,490.25 407,992.06 824.44 32.51

0.99 0.326
CSLF+EDA 406,149.75 409,963.50 407,758.56 991.47 35.00

7
CSLF+SPS 410,707.75 419,402.00 415,273.88 2,229.76 20.57

0.85 0.400
CSLF+EDA 412,089.00 418,062.50 414,820.20 1,901.27 23.14

8
CSLF+SPS 582,162.00 588,149.50 584,567.33 1,444.74 55.27

0.24 0.809
CSLF+EDA 582,654.75 587,650.00 584,485.26 1,155.05 57.98

9
CSLF+SPS 604,808.25 615,242.50 609,723.28 2,902.33 36.02

0.13 0.898
CSLF+EDA 602,771.25 615,903.25 609,619.51 3,317.79 40.79

10
CSLF+SPS 548,167.00 563,620.50 557,430.03 4,099.66 39.01

0.66 0.511
CSLF+EDA 546,314.50 563,997.25 556,667.98 4,798.57 37.73

11
CSLF+SPS 937,061.25 954,819.00 945,879.99 4,234.51 124.22

0.02 0.984
CSLF+EDA 939,531.25 955,056.25 945,859.18 4,000.94 145.29

A comparison of the convergence speed for the proposed methods to investigate the best so far

solution is shown in Figure 17. The problems number 11 that represented a large problem size was

selected for example. Although the CSLF+SPS had the performance lower than the CSLF+EDA in

middle generations, the averages of best so far solutions obtained from both methods were equal in the

last generation. Therefore, it can be concluded that the CSLF’s optimal parameter setting investigated by

the EDA was able to improve the performance of CSLF better than that investigated by the SPS in terms

of solution quality and convergence speed.
Parameter tuning via experimental design and analysis (EDA) is efficient statistical tool to

investigate the appropriate parameter setting of the CSLF but it requires a large number of experimental
runs and computational resources. For this research, a total run number using experimental design and
analysis, full factorial design, obtained from the first experiment is 2,970 (3

2
*30*11) runs. Fractional

factorial experimental design or reducing number of replications may be suitable if there are enough
computational times and resources for all experiments, low number of problems to solve, and no large or
very large problems sizes. Otherwise, self-adaptive parameter setting (SPS) is a choice to deal with
CSLF’s parameter settings so that the amount of computational runs associated with the experimental
design for each problem can be dismissed. Moreover, the experimental results indicated that the
performances of the CSLF+EDA and the CSLF+SPS were statistically insignificant with a 95%
confidence interval.

26

Figure 17 Convergence plots of CSLF+EDA and CSLF+SPS for the 11

th
 problem

D. Perfomances of CSLF with/without LS

This experiment was designed to compare the performance of the CSLF with/without the LS
strategies. Two types of the LS including Insertion Operator (IO) and Exchange Operator (EO) were
hybridised with the CSLF, called the CSLF+IO and the CSLF+EO, respectively. The performance of the
CSLF with/without the LSs was also compared with the well-known metaheuristic method, called
Maurice Clerc Particle Swarm Optimisation (MCPSO), which was the best performance of the PSO
variants to solve the university course timetabling problems (Thepphakorn and Pongcharoen, 2019). The
appropriate parameter setting of the proposed methods was adopted from the first experiment based on
the reliable statistical investigations. Because the amount of search for each method was equally fixed at
24,000 solutions, the maximum iteration (I) for the CSLF+IO and CSLF+EO were reduced to half
compared with the CSLF. Since the total number of improvements within population was double after
hybridising with the IO or EO. Solving each dataset shown in Table 4 via CSLF, CSLF+IO, and
CSLF+EO was repeated thirty times using different random seed numbers. The comparisons among the
proposed hybrid methods for solving eleven datasets were analysed in terms of the minimum, maximum,
average, standard deviation (SD), and the computational time (Time) required to find the best so far
timetables. Moreover, the T value obtained by using the Tukey’s method and the P value are also shown
in Table 10.

From Table 10, the CSLF with/without the hybrid LSs outperformed the MCPSO in terms of the
lower average total operating costs and computational times for all problem datasets. The CSLF
hybridised with the LSs can produce the timetables with lower average total university operating costs
than the CSLF without the LSs for all problems. The results obtained from CSLF+EO outperformed
those obtained from CSLF+IO and CSLF for all datasets. CSLF+IO outperformed CSLF for most
datasets, except in problem numbers 1, 2, and 3 related with small problem sizes. Moreover, the best so
far solutions constructed by the CSLF+EO were lower than those obtained from other methods in terms
of minimum and maximum total operating costs, excepted in problem numbers 2 and 3. The SD values
obtained from the CSLF hybridised with the LSs were lower than those values obtained from the
individual CSLF for many datasets, most of them are related with medium and large problem sizes.

27

Table 10 Comparative results obtained from the CSLF with/without the LSs and MCPSO

Prob. Methods

Best so far solutions (total operating costs) Tukey’s method

Minimum Maximum Average SD
Time

(minutes)

T

values

P

values

1

CSLF 201,998.00 202,225.00 202,103.62 56.02 2.38 - -

CSLF+IO 202,032.50 202,202.00 202,111.42 41.21 1.86 -0.520 0.955

CSLF+EO 201,878.50 201,999.50 201,933.75 28.73 1.33 11.280 0.000

MCPSO 202,668.50 203,135.50 203,030.80 134.34 6.44 -43.530 0.000

2

CSLF 377,927.25 379,754.50 378,919.28 390.96 13.34 - -

CSLF+IO 374,599.50 379,625.25 378,993.15 869.67 7.93 -0.528 0.952

CSLF+EO 378,097.25 378,759.75 378,578.39 128.49 4.70 2.435 0.077

MCPSO 382,239.00 383,409.50 382,744.20 391.59 22.82 -19.318 0.000

3

CSLF 301,125.25 305,010.75 303,146.30 866.33 20.62 - -

CSLF+IO 301,457.25 305,675.75 303,555.73 875.72 16.05 -2.050 0.177

CSLF+EO 301,621.50 304,104.00 302,957.78 594.69 9.64 0.944 0.781

MCPSO 304,349.25 306,025.75 305,400.33 596.58 36.55 -7.979 0.000

4

CSLF 300,210.00 307,450.25 302,937.73 2,337.29 14.07 - -

CSLF+IO 300,121.50 303,155.00 301,810.26 602.98 8.90 3.239 0.009

CSLF+EO 299,378.25 300,493.00 299,818.81 283.40 5.71 8.959 0.000

MCPSO 307,855.75 309,819.75 308,821.35 597.81 26.75 -11.951 0.000

5

CSLF 488,141.50 490,141.00 489,286.09 416.09 19.76 - -

CSLF+IO 488,741.00 490,562.50 489,143.93 402.93 16.28 1.277 0.580

CSLF+EO 487,315.00 489,495.25 488,342.48 450.17 9.23 8.473 0.000

MCPSO 492,248.50 493,737.00 493,002.15 500.36 47.81 -23.595 0.000

6

CSLF 406,149.75 409,963.50 407,758.56 991.47 35.00 - -

CSLF+IO 406,073.00 409,059.75 407,526.06 692.80 25.65 1.174 0.645

CSLF+EO 405,637.75 408,083.75 407,048.07 657.90 15.39 3.587 0.003

MCPSO 409,361.50 410,730.00 410,328.68 409.93 59.83 -9.175 0.000

7

CSLF 412,089.00 418,062.50 414,820.20 1,901.27 23.14 - -

CSLF+IO 410,564.75 413,794.75 412,277.72 799.64 15.75 8.380 0.000

CSLF+EO 408,279.50 410,263.25 409,320.88 409.69 9.07 18.130 0.000

MCPSO 418,731.50 420,752.00 419,722.18 688.56 31.97 -11.430 0.000

8

CSLF 582,654.75 587,650.00 584,485.26 1,155.05 57.98 - -

CSLF+IO 581,817.00 585,534.50 583,827.22 765.29 31.10 2.994 0.018

CSLF+EO 581,335.25 583,897.00 582,670.56 597.82 18.75 8.258 0.000

MCPSO 587,955.00 589,903.75 589,177.85 623.70 92.22 -15.099 0.000

9

CSLF 602,771.25 615,903.25 609,619.51 3,317.79 40.79 - -

CSLF+IO 602,841.25 607,679.50 605,291.43 1,161.05 24.98 8.320 0.000

CSLF+EO 598,125.75 602,827.50 600,343.48 988.88 16.07 17.820 0.000

MCPSO 616,349.00 618,259.00 617,236.60 612.54 54.29 -10.350 0.000

10

CSLF 546,314.50 563,997.25 556,667.98 4,798.57 37.73 - -

CSLF+IO 547,759.50 553,854.50 550,632.50 1,495.93 33.62 8.270 0.000

CSLF+EO 540,221.00 543,150.50 541,621.70 913.53 24.64 20.620 0.000

MCPSO 566,033.25 568,658.00 567,615.93 1,051.13 105.42 -10.610 0.000

11

CSLF 939,531.25 955,056.25 945,859.18 4,000.94 145.29 - -

CSLF+IO 926,254.75 933,329.00 930,400.41 1,874.13 61.96 22.110 0.000

CSLF+EO 909,172.75 917,453.00 914,026.72 1,954.70 36.86 45.530 0.000

MCPSO 956,528.50 961,157.00 958,843.10 1,734.03 212.91 -13.130 0.000

28

In term of statistical analysis, the performance differences achieved by the CSLF with/without the
LSs and MCPSO were statistically significant with a 95% confidence interval using Tukey’s method (P
value ≤ 0.05) for all problems. The results obtained from CSLF were significantly better than those
obtained from MCPSO for all problems. The CSLF+EO method was the best configuration of hybrid LSs
for most problems because of the highest T value. Therefore, it can be concluded that the performances of
the CSLF based upon the concept of individual diversification can dramatically be improved by
hybridising with the LSs related with intensification concept.

The average execution times required for the CSLF+IO and CSLF+EO were obviously lower than
the CSLF whereas the MCPSO required the longest execution times to solve the problems. For example,
the 11

th
 problem related with large problem sizes, CSLF+EO and CSLF+IO were able to reduce the

computational times (comparing with the CSLF) up to 75% and 57%, respectively. Since the number of
improved solutions within population were double after producing the LS improvements (both IO and
EO). Therefore, the number of iterations (I) for the proposed hybrid methods was reduced to half in order
to control the amount of search at the 24,000 solutions. Moreover, the IO and EO are also simpler
compared with the other improvement processes.

The 11
th

 problem related with large problem sizes was selected as an example to: (i) demonstrate
a comparison of the convergence speeds for the MCPSO and CSLF with/without the LSs; and (ii)
investigate the best so far solution shown in Figure 18. It can be seen that the convergence line belonging
to the CSLF+EO can converge to the minimum total operating costs quicker than that lines generated
from MCPSO, CSLF, and CSLF+IO methods. The CSLF+IO was the second ranking to find the average
of best so far solution. Therefore, the LS strategies were able to improve the performances of the CSLF
both in terms of the solution quality and its convergence speed.

Figure 18 Convergence plots of CSLF with/without LS strategies and MCPSO for the 11

th
problem

6. Conclusions
A novel Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) tool has been

developed in order to solve the real world university course timetabling problems (UCTP). The solutions
or timetables generated by the HSCST program were measured by minimising the total university
operation costs: (i) lecturing cost; (ii) classroom operating cost; and (iii) classroom setup/cleaning cost.
Two random walks strategies for the Cuckoo Search (CS) algorithm, called CS via Lévy flights (CSLF)
and CS via Gaussian random walks (CSGRW), were embedded in the HSCST program. Two local search
(LS) heuristics including Insertion Operator (IO) and Exchange Operator (EO) were hybridised with the

29

proposed algorithm (CSLF+IO and CSLF+EO). Moreover, the CSLF integrated with self-adaptive
parameter setting (CSLF+SPS) technique was developed and also embedded in the HSCST program
before comparing its performance with the CSLF using optimal parameters obtained from the
experimental design and analysis (CSLF+EDA). Eleven datasets obtained from Naresuan University in
Thailand were computationally conducted using the proposed program. This paper also demonstrated the
use of the experimental design and analysis for investigating the appropriate parameters setting of the
proposed method before sequentially conducting a comparative study on its performance.

The experimental results indicated that the optimised parameter settings of the CS algorithm
investigated via experimental design and analysis were different in various problem sizes. In addition, the
Pa factor was a robust parameter with no statistical significance with 95% confidence interval for all
problems. The performance of CSGRW was statistically equal in the performances of CSLF for most
problems, whereas the average computational times required by both algorithms were slightly different.
Finding the timetable with the lowest total operating costs using the CSLF+SPS was statistically equal to
that using the CSLF+EDA for most problems. Moreover, the CSLF+SPS will be suitable for the cases of
limited computational resources and times to solve a lot of UCTPs, each of which has very large problem
sizes. The performances of CSLF can be dramatically improved by using the LS strategies in terms of
solution quality, convergence speeds, and execution times for all problems. The CSLF+EO was the best
performances followed by the CSLF+IO. The average execution times required for both hybridised
algorithms were obviously lower than the CSLF because of controlled amount of search and the simple
processes of the LSs. For example, the 11

th
 dataset related with large problem sizes, CSLF+EO and

CSLF+IO were able to reduce the computational times up to 75% and 57%, respectively. Moreover, the
CSLF with/without LS hybridisations outperformed the MCPSO in terms of the lower average total
operating costs, convergence speeds, and computational times.

Further work could be focused on the dissemination of these improvement strategies on other
optimisation methods or the applications of these strategies on the different problem domains.

Acknowledgements
This work was part of research project co-funded between the Thailand Science Research and

Innovation (TSRI) and the Office of the Higher Education Commission (OHEC) of Thailand under grant
number MRG6080066.

References
Abdel-Basset, M., Hessin, A.N., Abdel-Fatah, L., 2018. A comprehensive study of cuckoo-inspired algorithms. Neural

Computing & Applications 29, 345-361.

Abdullah, S., Burke, E.K., McCollum, B., 2005. An Investigation of Variable Neighbourhood Search for University Course

Timetabling, in: Kendall, G., Lei, L., Pinedo, M. (Eds.), The 2nd Multidisciplinary Conference on Scheduling: Theory

and Applications (MISTA 2005), New York, USA, pp. 413-427.

Abdullah, S., Turabieh, H., McCollum, B., McMullan, P., 2012. A hybrid metaheuristic approach to the university course

timetabling problem. Journal of Heuristics 18, 1-23.

Abuhamdah, A., Ayob, M., Kendall, G., Sabar, N.R., 2014. Population based Local Search for university course timetabling

problems. Applied Intelligence 40, 44-53.

Al-Betar, M.A., Khader, A.T., 2012. A harmony search algorithm for university course timetabling. Annals of Operations

Research 194, 3-31.

Al-Betar, M.A., Khader, A.T., Gani, T.A., 2008. A harmony search algorithm for university course timetabling, 7th

International Conference on the Practice and Theory of Automated Timetabling, PATAT 2008.

Al-Betar, M.A., Khader, A.T., Zaman, M., 2012. University Course Timetabling Using a Hybrid Harmony Search

Metaheuristic Algorithm. Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews 42,

664-681.

Aladag, C.H., Hocaoglu, G., 2007. A TABU SEARCH ALGORITHM TO SOLVE A COURSE TIMETABLING

PROBLEM. Hacettepe Journal of Mathematics and Statistics 36, 53-64.

30

Alirezaei, E., Vahedi, Z., Ghaznavi-Ghoushchi, M., 2012. Parallel hybrid meta heuristic algorithm for university course

timetabling problem (PHACT), pp. 673-678.

Badoni, R.P., Gupta, D.K., 2016. A new algorithm based on students groupings for university course timetabling problem.

Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., Urli, T., 2016. Feature-based tuning of simulated annealing applied to the

curriculum-based course timetabling problem. Computers & Operations Research 65, 83-92.

Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A., 2013. A modified artificial bee colony algorithm for post-

enrolment course timetabling, pp. 377-386.

Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A., 2014. University course timetabling using hybridized artificial

bee colony with hill climbing optimizer. Journal of Computational Science 5, 809-818.

Budiono, T.A., Wong, K.W., 2011. Memetic algorithm behavior on timetabling infeasibility, pp. 93-97.

Burke, E., Bykov, Y., Newall, J., Petrovic, S., 2003. A time-predefined approach to course timetabling. Yugoslav Journal of

Operations Research 13, 139-151.

Burke, E.K., Marecek, J., Parkes, A.J., Rudova, H., 2010. Decomposition, reformulation, and diving in university course

timetabling. Computers & Operations Research 37, 582-597.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R., 2007. A graph-based hyper-heuristic for educational

timetabling problems. European Journal of Operational Research 176, 177-192.

Burke, E.K., Newall, J.P., 2004. Solving examination timetabling problems through adaption of heuristic orderings. Annals

of Operations Research 129, 107-134.

Ceschia, S., Di Gaspero, L., Schaerf, A., 2012. Design, engineering, and experimental analysis of a simulated annealing

approach to the post-enrolment course timetabling problem. Computers & Operations Research 39, 1615-1624.

Chen, R.-M., Shih, H.-F., 2013. Solving University Course Timetabling Problems Using Constriction Particle Swarm

Optimization with Local Search. Algorithms 6, 227-244.

Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O., 2006. An effective hybrid algorithm for university course

timetabling. Journal of Scheduling 9, 403-432.

Chiroma, H., Herawan, T., Fister, I., Fister, I., Abdulkareem, S., Shuib, L., Hamza, M.F., Saadi, Y., Abubakar, A., 2017. Bio-

inspired computation: Recent development on the modifications of the cuckoo search algorithm. Applied Soft

Computing 61, 149-173.

Crawford, B., Soto, R., Johnson, F., Paredes, F., 2015. A timetabling applied case solved with ant colony optimization,

Advances in Intelligent Systems and Computing, pp. 267-276.

De Causmaecker, P., Demeester, P., Vanden Berghe, G., 2009. A decomposed metaheuristic approach for a real-world

university timetabling problem. European Journal of Operational Research 195, 307-318.

Dino Matijaš, V., Molnar, G., Čupić, M., Jakobović, D., Dalbelo Bašić, B., 2010. University course timetabling using ACO:

A case study on laboratory exercises, pp. 100-110.

Dun, Y.J., Wang, Q., Shao, Y.B., 2014. A simulated annealing genetic algorithm for solving timetable problems, Advances in

Intelligent Systems and Computing, pp. 365-374.

Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E., 2007. Parameter Control in Evolutionary Algorithms. Studies in

Computational Intelligence 54, 19-46.

Eiben, A.E., Smit, S.K., 2011. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and

Evolutionary Computation 1, 19-31.

Figlali, N., Ozkale, C., Engin, O., Figlali, A., 2009. Investigation of Ant System parameter interactions by using design of

experiments for job-shop scheduling problems. Computers & Industrial Engineering 56, 538-559.

Fister Jr, I., Fister, D., Fistar, I., 2013. A comprehensive review of Cuckoo search: Variants and hybrids. International Journal

of Mathematical Modelling and Numerical Optimisation 4, 387-409.

Fong, C.W., Asmuni, H., McCollum, B., 2015. A hybrid swarm-based approach to university timetabling. IEEE Transactions

on Evolutionary Computation 19, 870-884.

Geiger, M.J., 2008. An application of the threshold accepting metaheuristic for curriculum based course timetabling, 7th

International Conference on the Practice and Theory of Automated Timetabling, PATAT 2008.

Geiger, M.J., 2012. Applying the threshold accepting metaheuristic to curriculum based course timetabling A contribution to

the second international timetabling competition ITC 2007. Annals of Operations Research 194, 189-202.

Gunawan, A., Ming, N.K., Leng, P.K., 2008. A hybrid algorithm for the university course timetabling problem, 7th

International Conference on the Practice and Theory of Automated Timetabling, PATAT 2008.

He, Y., Hui, S., Lai, E.-K., 2005. Automatic Timetabling Using Artificial Immune System. Lecture Notes in Computer

Science 3521, 55-65.

Jafarinejad, T., Erfani, A., Fathi, A., Shafii, M.B., 2019. Bi-level energy-efficient occupancy profile optimization integrated

with demand-driven control strategy: University building energy saving. Sustainable Cities and Society 48.

31

Jaradat, G., Ayob, M., Ahmad, Z., 2014. On the performance of Scatter Search for post-enrolment course timetabling

problems. Journal of Combinatorial Optimization 27, 417-439.

Jaradat, G.M., Ayob, M., 2010. An elitist-ant system for solving the post-enrolment course timetabling problem, pp. 167-176.

Jaradat, G.M., Ayob, M., 2011. Scatter search for solving the course timetabling problem, pp. 213-218.

Jaradat, G.M., Ayob, M., 2013. Effect of Elite Pool and Euclidean Distance in Big Bang-Big Crunch Metaheuristic for Post-

Enrolment Course TimetablingProblems. International Journal of Soft Computing 8, 96-107.

Jat, S.N., Yang, S., 2011a. A guided search non-dominated sorting genetic algorithm for the multi-objective university course

timetabling problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) 6622 LNCS, 1-13.

Jat, S.N., Yang, S.X., 2011b. A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling.

Journal of Scheduling 14, 617-637.

Joudaki, M., Imani, M., Mazhari, N., 2011. Using improved memetic algorithm and local search to solve university Course

Timetabling problem (UCTP), pp. 501-506.

Jula, A., Naseri, N.K., 2011. Using CMAC to obtain dynamic mutation rate in a metaheuristic memetic algorithm to solve

university timetabling problem. European Journal of Scientific Research 63, 172-181.

Junaedi, D., Maulidevi, N.U., 2011. Solving Curriculum-Based Course Timetabling Problem with Artificial Bee Colony

Algorithm, The 1st International Conference on Informatics and Computational Intelligence (ICI 2011), Bandung,

Indonesia, pp. 112-117.

Junn, K.Y., Obit, J.H., Alfred, R., 2017. Comparison of simulated annealing and great deluge algorithms for university

course timetabling problems (UCTP). Advanced Science Letters 23, 11413-11417.

Junn, K.Y., Obit, J.H., Alfred, R., 2018. The Study of Genetic Algorithm Approach to Solving University Course

Timetabling Problem, Lecture Notes in Electrical Engineering, pp. 454-463.

Karakatič, S., Podgorelec, V., 2015. A survey of genetic algorithms for solving multi depot vehicle routing problem. Applied

Soft Computing 27, 519-532.

Karami, A.H., Hasanzadeh, M., 2012. University course timetabling using a new hybrid genetic algorithm, pp. 144-149.

Khadwilard, A., Chansombat, S., Thepphakorn, T., Thapatsuwan, P., Chainate, W., Pongcharoen, P., 2012. Application of

Firefly Algorithm and Its Parameter Setting for Job Shop Scheduling. The Journal of Industrial Technology 8, 49-58.

Khang, N.T.T.M., Phuc, N.B., Nuong, T.T.H., 2011. The bees algorithm for a practical university timetabling problem in

Vietnam, pp. 42-47.

Khoja, I., Ladhari, T., M'Sahli, F., Sakly, A., 2018. Cuckoo Search Approach for Parameter Identification of an Activated

Sludge Process. Computational Intelligence and Neuroscience.

Kiefer, A., Hartl, R.F., Schnell, A., 2017. Adaptive large neighborhood search for the curriculum-based course timetabling

problem. Annals of Operations Research 252, 255-282.

Kostuch, P., 2005. The University Course Timetabling Problem with a Three-Phase Approach. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3616

LNCS, 109-125.

La'aro Bolaji, A., Tajudin Khader, A., Azmi Al-Betar, M., Awadallah, M.A., 2011. An improved artificial bee colony for

Course Timetabling, pp. 9-14.

Lewis, R., 2008. A survey of metaheuristic-based techniques for University Timetabling problems. OR Spectrum 30, 167-

190.

Lewis, R., 2012. A time-dependent metaheuristic algorithm for post enrolment-based course timetabling. Annals of

Operations Research 194, 273-289.

Lewis, R., Paechter, B., 2007. Finding feasible timetables using group-based operators. Ieee Transactions on Evolutionary

Computation 11, 397-413.

Lewis, R., Paechter, B., Rossi-Doria, O., 2007. Metaheuristics for university course timetabling, Studies in Computational

Intelligence, pp. 237-272.

Lewis, R., Thompson, J., 2015. Analysing the effects of solution space connectivity with an effective metaheuristic for the

course timetabling problem. European Journal of Operational Research 240, 637-648.

Li, X., Yin, M., 2015. Modified cuckoo search algorithm with self adaptive parameter method. Information Sciences 298, 80-

97.

Lindahl, M., Sorensen, M., Stidsen, T.R., 2018. A fix-and-optimize matheuristic for university timetabling. Journal of

Heuristics 24, 645-665.

Lü, Z., Hao, J.-K., 2010. Adaptive Tabu Search for course timetabling. European Journal of Operational Research 200, 235-

244.

Lu, Z.P., Hao, J.K., Glover, F., 2011. Neighborhood analysis: a case study on curriculum-based course timetabling. Journal

of Heuristics 17, 97-118.

32

Mansour, N., El-Jazzar, H., 2013. Curriculum based course timetabling, pp. 787-792.

Matias, J.B., Fajardo, A.C., Medina, R.M., 2018. A fair course timetabling using genetic algorithm with guided search

technique, pp. 77-82.

Mauritsius, T., Fajar, A.N., Harisno, John, P., 2018. Novel Local Searches for Finding Feasible Solutions in Educational

Timetabling Problem, pp. 270-275.

Mayer, A., Nothegger, C., Chwatal, A., Raidl, G.R., 2008. Solving the post enrolment course timetabling problem by ant

colony optimization, 7th International Conference on the Practice and Theory of Automated Timetabling, PATAT

2008.

Mazlan, M., Makhtar, M., Ahmad Khairi, A.F.K., Mohamed, M.A., 2019. University course timetabling model using ant

colony optimization algorithm approach. Indonesian Journal of Electrical Engineering and Computer Science 13, 72-

76.

Mlakar, U., Fister Jr., I., Fister, I., 2016. Hybrid self-adaptive cuckoo search for global optimization. Swarm and

Evolutionary Computation 29, 47-72.

Mohamad, A.B., Zain, A.M., Bazin, N.E.N., 2014. Cuckoo Search Algorithm for Optimization Problems - A Literature

Review and its Applications. Applied Artificial Intelligence 28, 419-448.

Montgomery, D.C., 2012. Design and Analysis of Experiments, 8 ed. John Wiley & Sons, Incorporated.

Murray, K., Müller, T., Rudová, H., 2006. Modeling and Solution of a Complex University Course Timetabling Problem.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 3867 LNCS, 189-209.

Nguyen, K., Dang, N., Trieu, K., Tran, N., 2010. Automating a real-world university timetabling problem with Tabu search

algorithm, 2010 IEEE-RIVF International Conference on Computing and Communication Technologies: Research,

Innovation and Vision for the Future, RIVF 2010.

Nguyen, K., Nguyen, Q., Tran, H., Nguyen, P., Tran, N., 2011. Variable neighborhood search for a real-world curriculum-

based university timetabling problem, pp. 157-162.

Nothegger, C., Mayer, A., Chwatal, A., Raidl, G.R., 2012. Solving the post enrolment course timetabling problem by ant

colony optimization. Annals of Operations Research 194, 325-339.

Obit, J.H., Alfred, R., Abdalla, M.H., 2017a. A PSO inspired asynchronous cooperative distributed hyper-heuristic for course

timetabling problems. Advanced Science Letters 23, 11016-11022.

Obit, J.H., Junn, K.Y., Alfred, R., 2017b. A performance comparison of metaheuristics search for university course

timetabling problems. Advanced Science Letters 23, 11012-11015.

Ortiz-Aguilar, L.M., Carpio, M., Puga, H., Soria-Alcaraz, J.A., Ornelas-Rodríguez, M., Lino, C., 2017. Increase methodology

of design of course timetabling problem for students, classrooms, and teachers, Studies in Computational Intelligence,

pp. 713-728.

Ozcan, E., Parkes, A.J., Alkan, A., 2012. The Interleaved Constructive Memetic Algorithm and its application to timetabling.

Computers & Operations Research 39, 2310-2322.

Pandey, H.M., Chaudhary, A., Mehrotra, D., 2014. A comparative review of approaches to prevent premature convergence in

GA. Applied Soft Computing 24, 1047-1077.

Patel, J., Savsani, V., Patel, V., Patel, R., 2017. Layout optimization of a wind farm to maximize the power output using

enhanced teaching learning based optimization technique. Journal of Cleaner Production 158, 81-94.

Phuc, N.B., Khang, N.T.T.M., Nuong, T.T.H., 2011. A new hybrid GA-Bees algorithm for a real-world university

timetabling problem, pp. 321-326.

Pillay, N., Özcan, E., 2017. Automated generation of constructive ordering heuristics for educational timetabling. Annals of

Operations Research, 1-28.

Pillay, N., Özcan, E., 2019. Automated generation of constructive ordering heuristics for educational timetabling. Annals of

Operations Research 275, 181-208.

Pongcharoen, P., Promtet, W., Yenradee, P., Hicks, C., 2008. Stochastic Optimisation Timetabling Tool for university course

scheduling. International Journal of Production Economics 112, 903-918.

Qarouni-Fard, D., Najafi-Ardabifi, A., Moeinzadeh, M.H., Sharifian-R, S., Asgarian, E., Mohammadzadeh, J., 2008. Finding

feasible timetables with particle swarm optimization, pp. 387-391.

Rakhshani, H., Dehghanian, E., Rahati, A., 2016. Hierarchy cuckoo search algorithm for parameter estimation in biological

systems. Chemometrics and Intelligent Laboratory Systems 159, 97-107.

Rakhshani, H., Rahati, A., 2017. Snap-drift cuckoo search: A novel cuckoo search optimization algorithm. Applied Soft

Computing 52, 771-794.

Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L.M., Knowles, J., Manfrin, M.,

Mastrolilli, M., Paechter, B., Paquete, L., Stutzle, T., 2003. A comparison of the performance of different

33

metaheuristics on the timetabling problem, in: Burke, E., DeCausmaecker, P. (Eds.), Practice and Theory of

Automated Timetabling Iv, pp. 329-351.

Rudova, H., Muller, T., Murray, K., 2011. Complex university course timetabling. Journal of Scheduling 14, 187-207.

Salgotra, R., Singh, U., Saha, S., 2018. New cuckoo search algorithms with enhanced exploration and exploitation properties.

Expert Systems with Applications 95, 384-420.

Shehab, M., Khader, A.T., Al-Betar, M.A., 2017. A survey on applications and variants of the cuckoo search algorithm.

Applied Soft Computing 61, 1041-1059.

Socha, K., Sampels, M., Manfrin, M., 2003. Ant algorithms for the university course timetabling problem with regard to the

state-of-the-art, in: Raidl, G., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson,

C.G., Marchiori, E., Meyer, J.A., Middendorf, M. (Eds.), Applications of Evolutionary Computing, pp. 334-345.

Soria-Alcaraz, J.A., Martin, C., Héctor, P., Hugo, T.M., Laura, C.R., Sotelo-Figueroa, M.A., 2013. Methodology of design: A

novel generic approach applied to the course timetabling problem, Studies in Fuzziness and Soft Computing, pp. 287-

319.

Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figeroa, M.A., Burke, E.K., 2017a. A methodology for determining an effective

subset of heuristics in selection hyper-heuristics. European Journal of Operational Research 260, 972-983.

Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figueroa, M.A., Carpio, M., Puga, H., 2017b. Iterated VND versus hyper-heuristics:

Effective and general approaches to course timetabling, Studies in Computational Intelligence, pp. 687-700.

Soria-Alcaraz, J.A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.K., 2014. Effective learning hyper-heuristics for the

course timetabling problem. European Journal of Operational Research 238, 77-86.

Soria-Alcaraz Jorge, A., Martín, C., Héctor, P., Sotelo-Figueroa, M.A., 2013. Comparison of metaheuristic algorithms with a

methodology of design for the evaluation of hard constraints over the course timetabling problem, Studies in

Computational Intelligence, pp. 289-302.

Talbi, E.-G., 2009. Metaheuristics: From Design to Implementation. John Wiley & Sons.

Tarawneh, H.Y., Ayob, M., 2013. Adaptive neighbourhoods structure selection mechanism in simulated annealing for

solving university course timetabling problems. Journal of Applied Sciences 13, 1087-1093.

Teoh, C.K., Wibowo, A., Ngadiman, M.S., 2014. An adapted cuckoo optimization algorithm and genetic algorithm approach

to the university course timetabling problem. International Journal of Computational Intelligence and Applications 13.

Thepphakorn, T., Pongcharoen, P., 2013. Heuristic ordering for ant colony based timetabling tool. Journal of Applied

Operational Research 5, 113-123.

Thepphakorn, T., Pongcharoen, P., 2019. Variants and Parameters Investigations of Particle Swarm Optimisation for Solving

Course Timetabling Problems. Lecture Notes in Computer Science 11655, 177-187.

Thepphakorn, T., Pongcharoen, P., Hicks, C., 2014. An Ant Colony Based Timetabling Tool. International Journal of

Production Economics 149, 131-144.

Thepphakorn, T., Pongcharoen, P., Hicks, C., 2015. Modifying Regeneration Mutation and Hybridising Clonal Selection for

Evolutionary Algorithms Based Timetabling Tool. Mathematical Problems in Engineering 2015, Article Number

841748, 16.

Thepphakorn, T., Pongcharoen, P., Vitayasak, S., 2016. A new multiple objective cuckoo search for university course

timetabling problem. Lecture Notes in Computer Science 10053 LNAI, 196-207.

Turabieh, H., El-Daoud, E., 2012. University course timetabling problem at Zarqa University.

Valian, E., Tavakoli, S., Mohanna, S., Haghi, A., 2013. Improved cuckoo search for reliability optimization problems.

Computers & Industrial Engineering 64, 459-468.

Vitayasak, S., Pongcharoen, P., 2018. Performance improvement of Teaching-Learning-Based Optimisation for robust

machine layout design. Expert Systems with Applications 98, 129-152.

Vitayasak, S., Pongcharoen, P., Hicks, C., 2017. A tool for solving stochastic dynamic facility layout problems with

stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal

of Production Economics 190, 146-157.

Wahid, J., Abdul-Rahman, S., Mohamed Din, A., Mohd-Hussin, N., 2019. Constructing population of initial university

timetable: Design and analysis. Indonesian Journal of Electrical Engineering and Computer Science 15, 1109-1118.

Wahid, J., Hussin, N.M., 2016a. Combination of graph heuristics in producing initial solution of curriculum based course

timetabling problem.

Wahid, J., Hussin, N.M., 2016b. Construction of initial solution population for curriculum-based course timetabling using

combination of graph heuristics. Journal of Telecommunication, Electronic and Computer Engineering 8, 91-95.

Yang, X.-S., 2010. Nature-Inspired Metaheuristic Algorithms, 2 ed. Luniver Press, University of Cambrige, United Kingdom.

Yang, X.-S., 2014. Nature-Inspired optimization algorithms. Elsevier.

Yang, X.-S., Chien, S.F., Ting, T.O., 2014. Computational Intelligence and Metaheuristic Algorithms with Applications. The

Scientific World Journal 2014, 4.

34

Yang, X.-S., Deb, S., 2010. Engineering Optimisation by Cuckoo Search. International Journal of Mathematical Modelling

and Numerical Optimisation 1, 330-343.

Yang, X.-S., Deb, S., 2013. Multiobjective cuckoo search for design optimization. Computers & Operations Research 40,

1616-1624.

Yang, X.S., Deb, S., 2014. Cuckoo search: recent advances and applications. Neural Computing & Applications 24, 169-174.

Yassin, R.M., Nazri, M.Z.A., Abdullah, S., 2013. Hybrid approach: Tabu-based non-linear great deluge for the course

timetabling problem. Research Journal of Applied Sciences 8, 131-138.

Zhang, M.X., Zhang, B., Qian, N., 2017. University course timetabling using a new ecogeography-based optimization

algorithm. Natural Computing 16, 61-74.

Zhao, W.B., Niu, D.X., 2017. Prediction of CO2 Emission in China's Power Generation Industry with Gauss Optimized

Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression.

Sustainability 9.

Zheng, H., Zhou, Y., 2012. A novel cuckoo search optimization algorithm based on Gauss distribution. Journal of

Computational Information Systems 8, 4193–4200.

Zhu, X.H., Wang, N., 2017. Cuckoo search algorithm with membrane communication mechanism for modeling overhead

crane systems using RBF neural networks. Applied Soft Computing 56, 458-471.

Highlights

 First report on modified and hybrid Cuckoo Search for real-world course timetabling

 Comprehensive review on metaheuristics applied to solve course timetabling problem

 Describe the Hybrid Self-adaptive Cuckoo Search based Timetabling (HSCST) tool

 Proposed three improvement strategies: parameter setting, movement and hybridisation

 The proposed algorithms outperformed other conventional algorithms by 81.8%

*Highlights (for review)

Declaration of interests

☒ The authors declare that they have no conflict of interests on the work reported in this paper.

☐ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

*Conflict of Interest

Variants and Parameters Investigations
of Particle Swarm Optimisation for Solving

Course Timetabling Problems

Thatchai Thepphakorn1 and Pupong Pongcharoen2(&)

1 Faculty of Industrial Technology, Pibulsongkram Rajabhat University,
Phitsanulok 65000, Thailand

2 Centre of Operations Research and Industrial Applications (CORIA),
Department of Industrial Engineering, Faculty of Engineering,

Naresuan University, Phitsanulok 65000, Thailand
pupongp@nu.ac.th

Abstract. University course timetabling problem (UCTP) is well known to be
Non-deterministic Polynomial (NP)-hard problem, in which the amount of
computational time required to find the optimal solutions increases exponen-
tially with problem size. Solving the UCTP manually with/without course
timetabling tool is extremely difficult and time consuming. A particle swarm
optimisation based timetabling (PSOT) tool has been developed in order to solve
the real-world datasets of the UCTP. The conventional particle swarm optimi-
sation (PSO), the standard particle swarm optimisation (SPSO), and the Maurice
Clerc particle swarm optimisation (MCPSO) were embedded in the PSOT
program for optimising the desirable objective function. The analysis of vari-
ance on the computational results indicated that both main effect and interactions
were statistically significant with a 95% confidence interval. The MCPSO
outperformed the other variants of PSO for most datasets whilst the computa-
tional times required by all variants were moderately difference.

Keywords: Course timetabling � Particle swarm � Metaheuristic �
Parameter setting

1 Introduction

University course timetabling problem (UCTP) is one of the most challenging
scheduling problems and also classified into combinatorial optimisation problems due
to its complexity and constraints [1]. This problem arises every semester and is solved
either manually by academic staff or using automatic course timetabling tool [2, 3].
Solving large course timetabling problems without efficient timetabling program is
extremely difficult and may require a group of experts to work for several days [4].

Swarm intelligence (SI) has received great attention in the communities of opti-
misation, computer science, computational intelligence, bio-inspired algorithms, and
SI-based algorithms [5]. SI-based algorithms such as ant colony optimisation (ACO),
artificial bee colony (ABC) algorithm, firefly algorithm (FA), cuckoo search (CS), and
particle swarm optimisation (PSO) have become very popular to solve large-scale

© Springer Nature Switzerland AG 2019
Y. Tan et al. (Eds.): ICSI 2019, LNCS 11655, pp. 177–187, 2019.
https://doi.org/10.1007/978-3-030-26369-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26369-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26369-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26369-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-26369-0_17

combinatorial optimisation problems [5]. These algorithms have been widely adopted
to solve NP hard problems within acceptable computational time, but they do not
guarantee optimum solutions [6]. Among the intelligent algorithms, PSO has been
successfully applied to solve problems in several domains such as clustering problem,
image processing, function optimisation, etc. This is because of PSO algorithm has a
few parameters to adjust and requires little memory for computation, easy to under-
stand and implement [7].

We have conducted a comprehensive literature survey on articles indexed in Scopus
databases covering the period from the past to February 2019 using “course timetabl*”
and “particle swarm*” as keywords, several variants of PSO were found to be applied
to solve the UCTP. For examples, the conventional PSO (called PSO) has been applied
to generate the optimal course timetables for 16 lecturers, 10 classrooms, and 10 classes
[8]. The standard PSO using inertia weight factor (called SPSO) has been also
developed to solve the UCTP both real world datasets [9] and benchmarking datasets
[10]. Another variant of PSO introduced by Maurice Clerc (called MCPSO) has been
wildly applied to deal with the UCTP [11–14]. However, there is no report related with
the performance comparison among three variants of PSO to solve the UCTP. More-
over, parameter values of PSOs found on all articles have been set by using ad hoc
fashion approach [10–14] or one factor at a time experimental strategy [8, 9]. The
factorial experiment is one of the best statistical approaches for identifying optimal
parameter setting especially when considering several factors [15].

The objectives of this paper were to: (i) develop a particle swarm optimisation
based timetabling (PSOT) tool for solving real-world UCTP in Thailand; (ii) investi-
gate the appropriate parameter settings of PSOs using statistical experimental design
and analysis; and (iii) compare the performances of the conventional particle swarm
optimisation (CPSO), the standard particle swarm optimisation (SPSO), and the
Maurice Clerc particle swarm optimisation (MCPSO) in terms of the solution quality
and computational time. The next section of this paper briefly explains the PSO
algorithm. Section 3 describes the UCTP followed by the procedures of the PSOT tool
in Sect. 4. Section 5 presents the experimental results and analysis followed by
conclusions.

2 Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) was inspired by swarm behaviour in nature, such
as bird flocking, fish schooling, and proposed by Kennedy and Eberhart in 1995 [16].
PSO has become one of the most widely used swarm-intelligence-based algorithms to
solve every area in optimisation, computational intelligence, and design applications
due to its simplicity and flexibility [17].

According to the conventional PSO procedures, the objective function F(x) at an
initial process is specified. Each particle xi (i = 1, 2,…, P) is generated randomly and
evaluated its fitness. The iteration best solution (Pbest) and the global best solution
(Gbest) are identified by following Eq. (1) [18].

178 T. Thepphakorn and P. Pongcharoen

Pbestði; tÞ ¼ arg min
k¼1;2;...;t

½FðXk
i Þ�; i 2 ð1; 2; 3; . . .;PÞ;

GbestðtÞ ¼ arg min
i¼1;2;...;P
k¼1;2;...;t

½FðXk
i Þ�; : ð1Þ

Where i is index of particles, P is population (particle) size, t is current iteration,
and F(x) is objective function. For each generation of conventional PSO, generating
new solutions xtþ 1

i for each particle i is updated by using velocity and position vectors
according to Eqs. (2) and (3), respectively [19].

Vtþ 1
i ¼ Vt

i þ c1 r1ðPbestði; tÞ � Xk
i Þþ c2 r2ðGbestði; tÞ � Xk

i Þ: ð2Þ

Xtþ 1
i ¼ Xt

i þVtþ 1
i : ð3Þ

Where Vi denotes the velocity, c1 and c2 are positive constant parameters called
acceleration coefficients, and r1 and r2 are uniformly distributed random variables
within range from 0 to 1 [18]. For standard PSO (called SPSO), generating new
solutions xtþ 1

i is produced by using velocity and position vectors according to Eqs. (4)
and (3) [18, 19]. Another variant of PSO introduced by Maurice Clerc is called
MCPSO, in which applies Eqs. (5)–(6), and (3) for velocity and position updates [19].

Vtþ 1
i ¼ xVt

i þ c1 r1ðPbestði; tÞ � Xk
i Þþ c2 r2ðGbestði; tÞ � Xk

i Þ: ð4Þ

Vtþ 1
i ¼ KðVt

i þ c1r1ðPbestði; tÞ � Xk
i Þþ c2r2ðGbestði; tÞ � Xk

i ÞÞ: ð5Þ

K ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/2 � 4/
p

�

�

�

�

�

�

; / ¼ c1 þ c2; /[4: ð6Þ

Where x is the inertia weight used to balance the global exploration and local
exploitation [18], K is constriction factor to control the velocity of particles [19], and u
is a positive parameter depending on the acceleration coefficients. After preforming the
movement strategies of PSO, the fitness value of new solution xi or F(xi) is evaluated.
The new xiwill be replaced to the Pbest if the F(xi) is better than the F(Pbest). Moreover, if
the F(xi) is also better than the F(Gbest), The new xi will be replaced to the Gbest. These
processes are repeated until getting to the maximum iteration (G) or stop criterion.

Parameters required for any metaheuristic algorithm play a significant role for the
algorithm’s performance [20]. Parameters have to be tuned due to the optimal values
for the parameters depend on the problem domain, the instance, and the computational
time to solve [21]. A comprehensive literature survey on Scopus database covering the
period from the past to February 2019 focused on the application of PSO on UCTP has
been conducted and summarised in Table 1. There are many parameters to be assigned
before computational executions including: (i) the number of population (particle) sizes
(P); (ii) the acceleration coefficients (c1 and c2); and (iii) the inertia weight (x). Due to

Variants and Parameters Investigations 179

an ad hoc fashion, most of research articles have not reported on the investigation of the
best parameter setting of PSO via the appropriate statistical design and analysis.

3 University Course Timetabling Problem (UCTP)

Timetabling courses and examinations in educational institutions is a crucial activity,
which assigns appropriate timeslots for students, lecturers, and classrooms [22]. In this
research, the real-world university course timetabling data obtained from previous
research was considered [23]. Generally, the constraints found in course timetabling
can be classified into two types: hard constraints (HC) and soft constraints (SC) [6].
Hard constraints are the most important and must be satisfied to have a feasible
timetable whereas soft constraints are more relaxed as some violations are acceptable.
However, the number of SC violations should be minimised [22]. Both HC and SC
constraints considered in this research can be described as following [23].

The considered HC were: (i) all lectures within a course must be scheduled and
assigned to distinct periods (HC1); (ii) students and lecturers can only attend one
lecture at a time (HC2); (iii) only one lecture can take place in a room at a given time
(HC3); (iv) lecturers and students must be available for a lecture to be scheduled (HC4);
(v) all courses must be assigned into the classrooms according to their given
requirements including building location, room facilities, and room types (HC5); and
(vi) all lectures within a course required consecutive periods must be obeyed (HC6).

In additions, The considered SC were: (i) all courses should be scheduled in the
appropriate classroom in order to avoid unnecessary operating or renting costs (hour)

Table 1. Comprehensive literature review of PSO’s parameter settings to solve the UCTP

Authors PSO
variants

PSO’s parameter settings to solve the UCTP
No. of
Particles

c1 c2 x

Oswald and Anand Deva
Durai [11]

MCPSO 10 2.5 1.5 1/(2 * log(2))

Ahandani and Vakil
Baghmisheh [10]

SPSO 60 0.8 0.8 0.3

Chen and Shih [8] SPSO, PSO 30 2 2 0.8
Kanoh and Chen [9] SPSO 200 5 2 0.05
Irene, Safaai, Mohd and
Zaiton [12]

MCPSO 10 2.8 1.3 1/(2 * log(2))

Irene, Deris and Mohd
Hashim [13]

MCPSO 10 2.8 1.3 1/(2 * log(2))

Sheau Fen Ho, Safaai and
Siti Zaiton [14]

MCPSO 10 2.8 1.3 1/(2 * log(2))

Range 10–200 0.8–5 0.8–2 0.05–1.66

180 T. Thepphakorn and P. Pongcharoen

(SC1); (ii) the courses taught by the given lecturer(s) should be assigned into their
available or preferred day and periods in order to save the hiring costs (hour) (SC2); and
(iii) the classrooms should be scheduled in consecutive working periods of a day in
order to reduce the number of times to clean or setup after using the rooms (times)
(SC3).

HC1–HC6 determine whether potential solutions are feasible. HC1–HC3 are the
fundamental timetabling constraints (called “event-clash”) that can be found in almost
all university timetabling problems [6] whilst HC4–HC6 are individual requirements
and timetabling policy found in many universities in Thailand. This research, SC1–SC3

are considered as the objective function, which aim to minimise the total university
operating costs considered from the candidate timetables following (7);

Minimise FðXk
i Þ ¼ W1SC1 þW2SC2 þW3SC3: ð7Þ

Subject to : HCh ¼ 0; 8h; ð8Þ

Equation (7) is the objective functions that evaluate the total university operating
costs of the SC1–SC3, called FðXk

i Þ. The weightings (W1–W3) for each SC are not
restricted and depend upon the user preferences for each institution. In this work, W1–

W3 were specified at 50 (currency units per hour), 300 (currency units per hour), and
2.5 (currency units per times), respectively. Equation (8) checks a timetable to be a
feasible timetable, in which all HCs must be satisfied. Where h is an index relating to
the hth hard constraint (h = 1, 2, 3,…, H), where H is the number of hard constraints.

4 Particle Swarm Optimisation Based Timetabling (PSOT)
Tool

The PSOT program has been coded in modular style using a general purpose pro-
gramming language called TCL/TK with C extension [24]. It was developed in order to
solve the real world UCTP by using three variants of particle swarm optimisation
(PSO) including: (i) conventional PSO (PSO); (ii) standard PSO (SPSO), and
(iii) Maurice Clerc PSO (MCPSO). The main procedures within the PSOT program are
included in five steps and shown in Fig. 1.

Step 1: after uploading course timetable data and assigning PSO’s parameters, the
total number of events (n) is determined from the number of teaching periods required
for all modules (courses). Then, an event list containing a set of n events was ini-
tialised. The event sequence in the list was sorted by using the Largest unpermitted
period degree (LUPD) first heuristic [25]. This rule reduces the probability of getting
infeasible timetables that generally occur in the process of solution initialisation. Next
process is to create an empty timetable or solution. The length of that is calculated
taking into account the number of timeslots per day, working day per week, and given
classrooms. Then, all events according to the sorted list were inserted into an empty
timetable in order to produce an initial population xi (i = 1, 2, 3, …, P) that represents
a set of possible timetables. Next step is to create a new list having the same length of

Variants and Parameters Investigations 181

solution, in which each timeslot of a new list is assigned random numbers uniformly
distributed between 0 and 1. This process is called a random key technique [26].

Step 2: this is the evolution process of the PSO algorithm. Each particle xi is
selected to update particle’s velocity based on the variants of PSO. Particle’s velocity
of the CPSO, SPSO, and MCPSO are produced by using Eqs. (2), (3), and (4),
respectively. Next process, particle’s position of x0i for all variants of PSO are updated
by using Eq. (6). Step 3: after evolution process, a new solution (x0i) may be either
feasible or infeasible timetable. The repair process was therefore design and embedded
in the PSOT program in order to rectify infeasible solutions. Step 4: the solution quality
of the x0i can be measured by using Eq. (7). If F(x0i) is better than F(Pbest), a particle
Pbest is replaced by the x0i whereas a particle Pgest is replaced by the x0i if its solution
quality is better. This processes will be repeated until all particles in the population are
improved. Step 5: These processes (Step 2 to Step 4) will be repeated until reach the
maximum iterations before showing the best so far results.

5 Experimental Results and Analysis

The objective of the PSOT program is to construct course timetables with the lowest
total operating costs (Z). The aims of the computational experiments were to:
(i) identify which main factors and their interactions were statistically significant for
three variants of PSO; and (ii) explore and compare the performance of the PSO with
difference movement strategies including the conventional PSO, the standard PSO
(called SPSO), and the Maurice Clerc PSO (called MCPSO). Personal computer with
Core 2 Quad 3.00 GHz CPU and 4 GB RAM was used to determine the computational
time required to execute experimental runs. Five real-world university course time-
tabling datasets obtained from the previous research [23] were used in the computa-
tional experiment.

Begin /*Step 1*/
Input data and Set PSO’s parameters
Sort a list of courses using heuristic orderings
Create initial population, xi (i = 1,2,…,P)
Generate random keys for each xi

While t < Max_Iteration(I) do /*Step 2*/
For (i=1, i<= Max_Pop(P), i++) do

Pick random numbers: r1, r2 U(0,1)
If PSO do Update particle’s velocity xi using Eq.(2)
If SPSO do Update particle’s velocity xi 4)
If MCPSO do Update particle’s velocity xi 5)
Update particle’s position xi 3)
If (xi do

Repair xi /*Step 3*/
Evaluate objective functions F(xi) /*Step 4*/
If F(xi) > F(Pbest),do Replace Pbest by the new solution xi

If F(xi) > F(Gbest),do Replace Gbest by the new solution xi

Output results and visualisation of Gbest /*Step 5*/
End

Fig. 1. Pseudo code of the PSOT tool

182 T. Thepphakorn and P. Pongcharoen

5.1 PSO Parameters Investigation

The experiment was aimed to investigate which factors and first level interactions were
statistically significant; and to identify the best settings for these factors. The main
factors of the PSO, SPSO, and MCPSO included (i) the combination of population
(particle) sizes and the number of generation (PG), which determines the total number
of solutions generated (or amount of search) and the execution time, this computational
experiments the value was fixed at 24,000 to limit the time taken for computational
search; (ii) the acceleration coefficients (c1 and c2); and (iii) the inertia weight (x) for
the SPSO and the MCPSO, excepted the conventional PSO. The experimental design
for all PSO’s variants, shown in Table 2 was used together with data from dataset
number 1. The range of available values for each parameter of PSO were considered
from comprehensive literature reviews (shown in Table 1).

A full factorial experiment based on the design in Table 2 was considered for this
experiment. Thus, the total number of runs required for the PSO and MCPSO would be
33 = 27 runs per replication whereas the total runs for the SPSO would be 34 = 81 runs
per replication. The first instant problem was selected and replicated ten times using
different random seeds for all PSO’s variants. The computational results obtained from
the SPSO (34 * 10 = 810 runs), the PSO (33 * 10 = 270 runs), and MCPSO
(33 * 10 = 270 runs) were analysed by using a general linear model form of analysis of
variance (ANOVA). Table 3 shows the ANOVA table, which shows the source of
variation (Source), degrees of freedom (DF), F-value, and P-value.

Table 3 shows the PSO parameters in terms of the main effect and first level
interactions. PG, PG * c2, and PG * x were statistically significant with a 95%
confidence interval. The random seed number (Seeds) did not statistically affect the
PSO performance. Moreover, the most influential factor in this experiment was PG
because it had the highest F-value. After ANOVA analysis, the appropriate parameter
settings for each variant of PSO were determined by using the lowest mean obtained
from main effect and interaction plots. For example shown in Fig. 2, the best parameter
settings for SPSO are: PG = 200 * 120, c1 = 0.8–5.0, c2 = 0.8, and x = 0.8. More-
over, the best settings for PSO parameters are: PG = 200 * 120, c1 = 0.8, and
c2 = 0.8. However, the best settings for MCPSO are: PG = 10 * 2,400, c1 = 2.8, and
c2 = 1.5.

Table 2. Experimental factors and levels for the PSO variants

Factors Levels SPSO Factor values PSO Factor values MCPSO Factor values

−1 0 +1 −1 0 +1 −1 0 +1

PG 3 10 * 2400 60 * 400 200 *120 10 * 2400 60 * 400 200 * 120 10 * 2400 60 * 400 200 * 120

c1 3 0.8 2.8 5 0.8 2.8 5 2.8 4 5

c2 3 0.8 1.3 2 0.8 1.3 2 1.3 1.5 2

x 3 0.05 0.8 1.66 – – – – – –

Variants and Parameters Investigations 183

5.2 Performance of PSO’s Variants

The objective of this experiment was to explore and compare the performance of the
PSO with difference movement strategies including PSO, SPSO, and MCPSO in term
of the quality of the solutions. The appropriate parameter settings for three variants of
PSO were adopted from previous experiment. Five course timetabling datasets were
used to test and compare the performance of these algorithms to find the course
timetable with the lowest penalty Z. The computational run for each instance was
repeated ten times by using different random seeds. The computational results were
analysed in terms of Avg (currency unit), SD, and Time (minute unit) as shown in
Table 4.

Table 3. ANOVA analysis of PSOs parameters

Source DF SPSO PSO MCPSO
F-value P-value F-value P-value F-value P-value

PG 2 92.15 0.000 19.36 0.000 1.490 0.228
c1 2 0.00 1.000 1.17 0.311 0.600 0.548
c2 2 2.50 0.083 0.80 0.449 0.580 0.563
x 2 0.90 0.407 – – – –

Seeds 9 1.65 0.097 1.02 0.426 1.150 0.326
PG * c1 4 0.00 1.000 0.27 0.899 0.730 0.574
PG * c2 4 8.04 0.000 0.24 0.917 1.410 0.230
c1 * c2 4 0.00 1.000 0.53 0.714 0.490 0.740
PG * x 4 5.23 0.000 – – – –

c1 * x 4 0.00 1.000 – – – –

c2 * x 4 1.47 0.210 – – – –

Error 768
Total 809

Fig. 2. Example of SPSO’s main effect plots of PG, c1, c2, and x factors

184 T. Thepphakorn and P. Pongcharoen

From Table 4, it can be seen that the average values of the best so far solutions
(timetables) generated by MCPSO were better than those values generated by both PSO
and SPSO for most problems. The PSO outperformed the other methods for problem
number 1 whereas the SPSO outperformed both PSO and MCPSO for problem number
5. Moreover, the SD values and the averages of the computational times obtained from
both methods were moderately different for all problems.

6 Conclusions

A particle swarm optimisation based timetabling (PSOT) tool has been developed in
order to solve the real-world university course timetabling problems. The conventional
PSO, the SPSO, and the MCPSO were embedded in the PSOT program for con-
structing the desirable timetables with minimal objective function. Full factorial
experimental designs and ANOVA were adopted to investigate the statistically
influential factors for each variant of PSO before identifying its best parameter settings.
It was found that the PSOs’ parameters in terms of the main effect and interactions
including PG, PG * c2, and PG * x were statistically significant with a 95% confi-
dence interval. The most influential factor in this experiment was PG because it had the
highest F-value. Moreover, the MCPSO outperformed the other variants of PSO for
most datasets whereas the SPSO and PSO outperformed the other variants only one
dataset. However, the computational times required by the proposed PSO variants were
moderately difference.

Acknowledgements. This work was part of research project supported by the Thailand
Research Fund (TRF) and Office of the Higher Education Commission (OHEC) under grant
number MRG6080066.

Table 4. Performance comparisons between three variants of PSO

Dataset No. SPSO PSO MCPSO

Avg SD T Avg SD T Avg SD T

1 203,098.75 41.28 7.37 202,944.90 410.98 6.60 203,030.80 134.34 6.44
2 382,899.98 364.81 24.23 382,918.73 218.27 21.61 382,744.20 391.59 22.82
3 306,721.83 213.26 41.03 306,854.75 163.04 35.26 305,400.33 596.58 36.55
4 310,214.98 382.26 31.10 310,000.63 464.64 30.05 308,821.35 597.81 26.75
5 492,891.90 409.66 50.04 492,910.05 197.49 41.72 493,002.15 500.36 47.81

Variants and Parameters Investigations 185

References

1. Jat, S.N., Yang, S.: A guided search non-dominated sorting genetic algorithm for the multi-
objective university course timetabling problem. In: Merz, P., Hao, J.-K. (eds.) EvoCOP
2011. LNCS, vol. 6622, pp. 1–13. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20364-0_1

2. Thepphakorn, T., Pongcharoen, P., Hicks, C.: Modifying regeneration mutation and
hybridising clonal selection for evolutionary algorithms based timetabling tool. Math. Probl.
Eng. 2015, 16 (2015). Article Number 841748

3. Lutuksin, T., Pongcharoen, P.: Best-worst ant colony system parameter investigation by
using experimental design and analysis for course timetabling problem. In: 2nd International
Conference on Computer and Network Technology, ICCNT 2010, pp. 467–471 (2010)

4. MirHassani, S.A.: A computational approach to enhancing course timetabling with integer
programming. Appl. Math. Comput. 175, 814–822 (2006)

5. Yang, X.-S.: Swarm intelligence based algorithms: a critical analysis. Evol. Intel. 7, 17–28
(2014)

6. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems.
OR Spectrum 30, 167–190 (2008)

7. Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and
their applications to data clustering. Artif. Intell. Rev. 35, 211–222 (2011)

8. Chen, R.M., Shih, H.F.: Solving university course timetabling problems using constriction
particle swarm optimization with local search. Algorithms 6, 227–244 (2013)

9. Kanoh, H., Chen, S.: Particle Swarm Optimization with Transition Probability for
Timetabling Problems. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.)
ICANNGA 2013. LNCS, vol. 7824, pp. 256–265. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37213-1_27

10. Ahandani, M.A., Vakil Baghmisheh, M.T.: Hybridizing genetic algorithms and particle
swarm optimization transplanted into a hyper-heuristic system for solving university course
timetabling problem. WSEAS Trans. Comput. 12, 128–143 (2013)

11. Oswald, C., Anand Deva Durai, C.: Novel hybrid PSO algorithms with search optimization
strategies for a university course timetabling problem. In: Proceedings of the 5th
International Conference on Advanced Computing, ICoAC 2013, pp. 77–85 (2014)

12. Irene, H.S.F., Safaai, D., Mohd, H., Zaiton, S.: University course timetable planning using
hybrid particle swarm optimization. In: Proceedings of the 1st ACM/SIGEVO Summit on
Genetic and Evolutionary Computation, GEC 2009, pp. 239–245 (2009)

13. Irene, S.F.H., Deris, S., Mohd Hashim, S.Z.: A combination of PSO and local search in
university course timetabling problem. In: Proceedings - 2009 International Conference on
Computer Engineering and Technology, ICCET 2009, pp. 492–495 (2009)

14. Sheau Fen Ho, I., Safaai, D., Siti Zaiton, M.H.: A study on PSO-based university course
timetabling problem, pp. 648–651 (2009)

15. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken (2012)
16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference

on Neural Networks, pp. 1942–1948 (1995)
17. Yang, X.-S.: Nature-Inspired Optimization Algorithms. Elsevier, Amsterdam (2014)
18. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization

algorithm and its applications. Math. Prob. Eng. 2015, 38 (2015)
19. Thangaraj, R., Pant, M., Abraham, A., Bouvry, P.: Particle swarm optimization:

hybridization perspectives and experimental illustrations. Appl. Math. Comput. 217,
5208–5226 (2011)

186 T. Thepphakorn and P. Pongcharoen

http://dx.doi.org/10.1007/978-3-642-20364-0_1
http://dx.doi.org/10.1007/978-3-642-20364-0_1
http://dx.doi.org/10.1007/978-3-642-37213-1_27
http://dx.doi.org/10.1007/978-3-642-37213-1_27

20. Chiroma, H., Herawan, T., Fister, I., Fister, I., Abdulkareem, S., Shuib, L., Hamza, M.F.,
Saadi, Y., Abubakar, A.: Bio-inspired computation: recent development on the modifications
of the cuckoo search algorithm. Appl. Soft Comput. 61, 149–173 (2017)

21. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)
22. Thepphakorn, T., Pongcharoen, P., Hicks, C.: An ant colony based timetabling tool. Int.

J. Prod. Econ. 149, 131–144 (2014)
23. Thepphakorn, T., Pongcharoen, P., Vitayasak, S.: A New Multiple Objective Cuckoo Search

for University Course Timetabling Problem. In: Sombattheera, C., Stolzenburg, F., Lin, F.,
Nayak, A. (eds.) MIWAI 2016. LNCS (LNAI), vol. 10053, pp. 196–207. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49397-8_17

24. Ousterhout, J.K., Jones, K.: Tcl and the Tk Toolkit, 2nd edn. Addison-Wesley, Boston
(2009)

25. Thepphakorn, T., Pongcharoen, P.: Heuristic ordering for ant colony based timetabling tool.
J. Appl. Oper. Res. 5, 113–123 (2013)

26. Khadwilard, A., Chansombat, S., Thepphakorn, T., Thapatsuwan, P., Chainate, W.,
Pongcharoen, P.: Application of firefly algorithm and its parameter setting for job shop
scheduling. J. Ind. Technol. 8, 49–58 (2012)

Variants and Parameters Investigations 187

http://dx.doi.org/10.1007/978-3-319-49397-8_17

	1. ปกนอก
	2. ปกใน
	3. ESWA-D-19-04418
	4. Thepphakorn 2019 (online)
	Variants and Parameters Investigations of Particle Swarm Optimisation for Solving Course Timetabling Problems
	Abstract
	1 Introduction
	2 Particle Swarm Optimisation (PSO)
	3 University Course Timetabling Problem (UCTP)
	4 Particle Swarm Optimisation Based Timetabling (PSOT) Tool
	5 Experimental Results and Analysis
	5.1 PSO Parameters Investigation
	5.2 Performance of PSO’s Variants

	6 Conclusions
	Acknowledgements
	References

