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Abstract

An increasing number of multidrug-resistant Acinetobacter baumannii (MDR-AB) infections
have been reported worldwide, posing a threat to public health. The establishment of methods to
elucidate the mechanism of action (MOA) of A. baumannii-specific antibiotics is needed to develop
novel antimicrobial therapeutics with activity against MDR-AB. We previously developed bacterial
cytological profiling (BCP) to understand the MOA of compounds in E. coli, and B. subtilis. Given how
distantly related A. baumannii is to these species, it was unclear to what extent it could be applied.
Here we implemented bacterial cytological profiling (BCP) as an antibiotic MOA discovery platform for
A. baumannii. We found that the BCP platform can distinguish between six major antibiotic classes
and can also sub-classify antibiotics that inhibit the same cellular pathway but have different molecular
targets. We used BCP to show that the compound NSC145612 inhibits the growth of A. baumannii
via targeting RNA transcription. We confirmed this result by isolating and characterizing resistant
mutants with mutations in the rpoB gene. We conclude that BCP provides a useful tool for MOA

studies of antibacterial compounds that are active against A. baumannii.
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Objectives

To investigate the utility of Bacterial Cytological Profiling (BCP) in identifying the MOA of

antibacterial molecules that inhibit the growth of A. baumannii.

Materials and methods

Bacteria strain, growth and antibiotics. Acinetobacter baumannii strain ATCC 19606 and strain
ATCC 17978 were used in this study. The bacteria were grown in LB medium or LB agar at 30°C. A
total of twenty-two antibiotics were tested on A. baumannii from which fifteen antibiotics with minimal
inhibitory concentration of less than 112 Llg/ml were used in this study (Table 1). The compound
NSC145612 was obtained from the National Cancer Institute’s Developmental Therapeutics Program.

Preparation of the antibiotics was according to the manufacture’s recommendations.

Minimal Inhibitory Concentrations. Minimal inhibitory concentrations (MIC) of all antibiotics are
shown in Table 1. MIC was obtained using microdilution method (1) . Overnight cultures of A.
baumannii were diluted 1:100 in LB broth and allowed to grow at 30°C on a roller until exponential
phase or until the ODg,, of 0.2 was obtained. The bacteria culture was further diluted 1:100 into each
well of 96 well plate containing antibiotics in LB media at appropriate concentrations. Cultures were
allowed to grow at 30°C for 24 hours. MIC was determined by observing the concentration of the

antibiotic in the well where the bacteria was unable to grow.

Fluorescence microscopy. Overnight cultures of A. baumannii were diluted 1:500 in LB broth and
grown at 30°C on a roller until exponential phase. Antibiotics were added at various concentration.
Cultures were then grown at 30°C on a roller for 2 hours. A. baumannii cultures were stained with FM
4-64 (2 LLg/ml), DAPI (4 lg/ml) and SYTOX-green (0.5 LM). Stained bacterial cultures were harvested
by centrifugation and resuspended in 1/10 volume of the same culture media. Three microliters of this
was added to agarose pads on concave glass slides. Fluorescence microscopy was performed with

consistent imaging parameters throughout all experiments.



Cytological profiling. Cytological profiles were determined by automated cell analysis using
CellProfiller 3.0 (2). Briefly, images were pre-processed on Fiji software (3) and subsequently analyzed
on CellProfiler 3.0 software. Cell morphological parameters such as length, width, and area were
determined. To obtain the average intensity of SYTOX-green and DAPI, both the membrane and
nucleoid outlines were used and subtracted by background intensity in corresponding images.
Decondensation of the nucleoid was determined by the ratio of the area of the nucleoid to that of the

cell membrane.

Statistical analysis. As described previously (1, 4, 5), the cytological parameters of each antibiotic
were obtained from three independent experiments. Profiling data was from automated analysis of the
cells in each imaging field. Only images containing more than 20 for long cells and for the rest, more
than 30 cells per imaging field were selected into data points. Weighed principal component analysis
(PCA) was performed using statistic tools on MATLAB 2017a. Euclidean cluster analysis was

generated from Morpheus (https://software.broadinstitute.org/morpheus).

Isolation of NSC145612-resistant mutants. In A. baumannii, A. baumannii ATCC 19606 culture was
diluted into the LB media containing NSC145612 starting at 0.5X MIC. This process was repeated
with escalating concentration of NSC145612 until the NSC145612-resistant A. baumannii was
obtained. The resistant strains were purified on LB agar plates and MIC for NSC145612 and rifampicin

determined by broth dilution method, as mentioned above.

Table 1 Complete list of drugs tested in this study



Antibiotic Class Antibiotic Name MIC (pg/ml) Target

Drugs tested in Acinetobacter baumannii ATCC 19606
Protein Synthesis Inhibitors

Aminoglycoside Amikacin 20 30s ribosome (promote mistranslation)
Gentamicin 28 30s ribosome (promote mistranslation)
Kanamycin 10 30s ribosome (promote mistranslation)
Streptomycin >112 30s ribosome (promote mistranslation)
Tobramycin 7 30s ribosome (inhibit initiation complex
formation)
Amphenicols Chloramphenicol 50 50s ribosome (inhibit peptidyl transferase)
Macrolide Azithromycin 16 50S ribosome (interfere aminoacyl
translocation)
Tetracycline Minocycline 0.75 30S ribosome (inhibit aminoacyl tRNA
binding)
Tetracycline 0.25 30S ribosome (inhibit aminoacyl tRNA
binding)
Tigecycline 2 30S ribosome (inhibit aminoacyl tRNA
binding)
RNA Transcription Inhibitor
Rifamycin Rifampicin 1 DNA-dependent RNA polymerase
Cell Wall Synthesis Inhibitors
Penicillin Ampicillin >112 Penicillin-binding proteins (PBPs)
Amoxicillin >112 Penicillin-binding proteins (PBPs)
Mecillinam >112 Penicillin-binding proteins (PBPs)
Piperacillin 16 Penicillin-binding proteins (PBPs)
Carbapenem Meropenem 1 Penicillin-binding proteins (PBPs)
Others Fosfomycin >112 UDP-N-acetylglucosamine enolpyruvyl
transferase (MurA)
p-Cycloserine >112 p-Ala-p-Ala terminal of peptidoglycan
Membrane Active Compounds
Polymyxin Colistin 1 Lipopolysaccharide (LPS)
Oxidative Phosphorylation 2,4-Dinitrophenol >112 Energy poisoning agents

uncoupling Agents

Lipid Synthesis Inhibitors

Polychloro Phenoxy Phenols Triclosan 0.2 Bacterial enoly-acyl carrier protein reductase
enzyme (ENR: Fabl product)

Tested compound NSC145612 25 M

Drugs tested in Acinetobacter baumannii ATCC 17978
DNA Synthesis Inhibitor
Fluoroquinolone Ciprofloxacin 1 DNA gyrase A

Results

BCP in A. baumannii can distinguish different classes of antibiotics

We first determined, based on cell morphological changes in A. baumannii ATCC 19606, if
BCP can distinguish between antibiotics that interfere with six major cellular pathways: protein
translation (chloramphenicol), RNA transcription (rifampicin), membrane integrity (colistin), lipid
synthesis (triclosan), cell wall synthesis (piperacillin), and DNA replication (Ciprofloxacin). After
incubation with antibiotics, we found that A. baumannii ATCC 19606 showed unique cell cytological
profiles depending on the class of antibiotics used for treatment (Fig. 1A-G). Overall, A. baumannii
cytological profiles of cells treated with different antibiotics were similar to those of E. coli shown in
our previous study (1). Next, we quantitated 36 different cytological parameters of cells treated with
each antibiotic and used principal component analysis (PCA) to determine if these cell profiles can be
used to quantitatively classify the MOAs. The results showed that antibiotics with different MOAs were
distinguishable from each other (Fig. 1H) and replicates of each antibiotic treatment were clustered

together (Fig. 11). These results suggest that BCP can be applied to A. baumannii in discriminating



antibiotics targeting six major cellular pathways including protein translation, RNA transcription,

membrane integrity, lipid synthesis, cell wall synthesis, and DNA replication.
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FIG 1 A. baumannii cells treated with antibiotics targeting different cellular pathways show distinct morphological changes.
(A) Untreated bacterial cells. Bacterial cells were treated with (B, D—F) 5x MIC and (C and G) 2x MIC of each antibiotic for 2 hours
and then stained with FM4-64 (red) and DAPI (blue). Scale bar represents 1 Llm. (H) A 3D PCA graph constructed from PC1
(57.11%), PC2 (17.90%) and PC3 (9.35%) shows antibiotics that are distinguished into different subgroups as coded by colors.
Three independent experiments were performed for each antibiotic treatment and cytological parameters measured as described
in Materials and Methods. (I) Euclidean cluster map of antibiotics, using values from PC1, PC2 and PC3 of PCA. Ciprofloxacin*

indicates that all data for treatment with ciprofloxacin was obtained in A. baumannii ATCC 17978 strain.

In A. baumannii, BCP can sub-classify different antibiotics that inhibit the same cellular pathway

based on their mechanism of action

Our previous study in E. coli also showed that BCP can be used to classify sub-groups of
antibiotics based on their MOA (1). To test if the ability of sub-classification by BCP is also observed
in A. baumannii, we investigated whether BCP can differentiate various protein translation inhibitors
and cell wall synthesis inhibitors. From all protein translation inhibitors tested (Fig. 2A-l), we found
that they were classified into 2 groups that correlated with their known MOA, similar to the previous
study in E. coli (1): translation inhibition (P1) and aminoglycosides (P2) (Fig. 2J and 2K). Protein
translation inhibitors belonging to the P1 group bind directly to the ribosome to inhibit translation (6—

9) resulting in the formation of toroidal-shaped DNA (Fig. 1B and Fig. 2B-D). In addition to the



translation inhibition, aminoglycosides (10) displayed a significant effect on A. baumannii membrane
permeability as indicated by the increase in SYTOX-Green uptake (Fig. 2F-1, Right panel) whereas
SYTOX-Green signal was not detected in the untreated cells (Fig. 2E, Right panel). We also found
that BCP could distinguish between two types of penicillin binding protein (PBPs) inhibitors in A.
baumannii (Fig. 3), as expected (11, 12). Meropenem-treated A. baumannii cells were round and
bloated compared to control cells in agreement with its affinity toward PBP2 (13) (Fig. 3A-B). Cells
treated with piperacillin were elongated with an average length of 12 ym (Fig. 3C) likely due to the
affinity of piperacillin toward PBP3 (14) which is required for cell septa formation in A. baumannii.
Together, these results suggest that BCP in A. baumannii can also sub-classify antibiotics based on

their MOA (Fig. 2 and Fig. 3) similar to what we previously reported in E. coli (1).
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FIG 2 A. baumannii cytological profiling differentiating protein translation inhibitors into subgroups by their MOA.
Bacterial cells were treated with each antibiotic at 5x MIC for 2 hours and then stained with FM4-64 (red), DAPI (blue) and SYTOX
green (green). Scale bar represents 1 Um. (A-D) Cells treated with protein translation inhibitors (P1 group) show distinct cell
profiles. (E) Untreated cells. (F-/) Cells treated with aminoglycosides (P2 group) showing altered membrane permeability. Arrows
indicate membrane pooling. SYTOX-green (Right panels) only stains nucleoids in the cells with permeabilized membranes. (J)
PCA graph of protein translation inhibitors using PC1 (44.30%), PC2 (26.82%) and PC3 (8.53%) and (K) Euclidean cluster map,
using PC1, PC2 and PC3 from PCA.
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FIG 3 Cytological profiling of cell wall synthesis inhibitors; meropenem treated cells showing different profiles to the cells
treated with piperacillin.

(A-C) Bacterial cells were treated with antibiotics at 5x MIC for 2 hours and then stained with FM4-64 (red) and DAPI (blue).
Scale bar represents 1 Llm. (D) PCA graph of cell wall synthesis inhibitors showing only PC1 (64.30%) and PC2 (22.81%) and
(E) Euclidean cluster map using PC1, PC2 and PC3 from PCA showing distinct morphological clusters.

The compound NSC145612 inhibits the growth of A. baumannii via RNA transcription inhibition

In this study, we have tested 64 compounds from National Cancer Institute’s Developmental
Therapeutics Program library for their antibacterial activities against Gram-negative bacterium E. coli
ATCC 25922 and found that 17 compounds were active. Among those Gram-negative active
compounds, the compound NSC145612 (Fig. 4A, right panel) showed a promising MIC against A.
baumannii ATCC 19606 at 25 uM (Table 1). Although the chemical scaffold of NSC145612 is closely
related to rifampicin (15), which is an antibiotic inhibiting DNA-dependent RNA polymerase (16), the
compound has never been tested for its mechanism of action. In order to investigate if the compound
exhibits the same MOA as rifampicin, we performed BCP on the compound against A. baumannii. As
expected, the result showed that NSC145612-treated A. baumannii cells exhibited a cytological profile
identical to rifampicin-treated cells (Fig. 4B-D) and grouped together in PCA analysis (Fig. 4E-F),
suggesting that NSC145612 inhibits RNA transcription of A. baumannii similar to rifampicin.
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FIG 4 A. baumannii cell treated with NSC145612 show similar profiles to the RNA transcription inhibitor, rifampicin.

(A) Chemical structure of rifamycin, rifampicin and NSC145612. (B) Untreated cells. Bacterial cells were treated with 2x MIC of

(C) Rifampicin or (D) NSC145612 for 2 hours and then stained with FM4-64 (red) and DAPI (blue). Scale bar represents 1 [lm.
(E) PCA graph of 6 major classes of representative antibiotics and NSC145612 using PC1 (56.28%), PC2 (18.80%) and PC3
(9.18%) and (F) Euclidean cluster map, using values from PC1, PC2 and PC3 from PCA, showing NSC145612 closely clustered

to Rifampicin. Ciprofloxacin* indicates that all data for treatment with Ciprofloxacin was obtained in A. baumannii ATCC 17978

strain.

To confirm the molecular target of NSC145612 in A. baumannii, two NSC145612-resistant A.
baumannii strains were also isolated with an MIC above 150 uM. As expected, NSC145612-resistant
A. baumannii contained a mutation in the rpoB gene, rpoB(G543S), which is located in the RRDR and
is known to be responsible for rifampicin resistance in A. baumannii (17, 18). BCP results showed that
neither NSC145612 nor rifampicin treatment resulted in cytological changes of NSC145612-resistant
A. baumannii strains as compared to the controls (Fig. 5), confirming that NSC145612 and rifampicin
are inactive against the resistant strains. Overall, these results suggest that NSC145612 inhibits RNA

transcription of A. baumannii by targeting its RNA polymerase subunit B.
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FIG 5 NSC145612-resistant A. baumannii cells show no morphological change upon NSC145612 and rifampicin treatment.
(A—C) NSC145612-sensitive strain. Arrows indicate signature phenotype of RNA transcription inhibition. (D—I) NSC145612-resistant
strains with rpoB mutations indicated. Bacterial cells were treated with 2x MIC of NSC145612 (B, E, and H) or Rifampicin (C, F,

and /) for 2 hours and then stained with FM4-64 (red) and DAPI (blue). Scale bar represents 1 [lm.

Conclusion and Discussion

A recent report from the World Health Organization revealed that among the ESKAPE
pathogens, A. baumannii poses a threat to public health and economies worldwide (19). A. baumannii
is a successful pathogen due to its ability to survive in desiccated environments and its intrinsic
antibiotic resistance (20). As a result, MDR-AB is spreading at an alarming rate (21-23). Multiple
approaches exist in order to help mitigate the rise of MDR-AB including developing more stringent
guidelines for antibiotic usage and establishing effective surveillance and containment programs (19).
A direct approach to combat MDR-AB is to find new antibiotics that are effective against this pathogen.

BCP has been developed for several species of bacteria including E.coli, S. aureus and B.
subtilis, but it has not been systematically applied to A. baumannii (4, 24, 25). Here we study the
cytological profiles of antibiotics commonly used to treat A. baumannii. We show that BCP can be
used to identify the MOA of newly discovered compounds to facilitate A. baumannii-specific antibiotic
discovery. BCP successfully differentiates A. baumannii cells treated with different antibiotics targeting
major cellular pathways: protein translation, RNA transcription, membrane integrity, lipid synthesis, cell
wall synthesis, and DNA replication. Similar to E. coli, A. baumannii cytological changes can reveal
subgroups of protein translation inhibitors and cell wall synthesis inhibitors suggesting similar
cytological responses across Gram-negative bacteria species.

The compound NSC145612 from the National Cancer Institute’s Developmental Therapeutics
Program has previously been tested for anti-cancer and AIDS antiviral activity, all of which gave
negative results (15). In this study, its antibacterial activity was tested by BCP and later confirmed by
resistant mutant selection and genome sequencing. NSC145612 inhibits the growth of A. baumannii

and E. coli via RNA transcription inhibition by targeting RpoB protein. Altogether, this study proves the



utility of BCP as a potential method to reveal the mechanism of action of compounds that are active

against A. baumannii.
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Abstract

An increasing number of multidrug-resistant Acinetobacter baumannii (MDR-AB)
infections have been reported worldwide, posing a threat to public health. The establishment
of methods to elucidate the mechanism of action (MOA) of A. baumannii-specific antibiotics
is needed to develop novel antimicrobial therapeutics with activity against MDR-AB. We
previously developed bacterial cytological profiling (BCP) to understand the MOA of
compounds in E. coli and B. subtilis. Given how distantly related A. baumannii is to these
species, it was unclear to what extent it could be applied. Here we implemented bacterial
cytological profiling (BCP) as an antibiotic MOA discovery platform for A. baumannii. We
found that the BCP platform can distinguish among six major antibiotic classes and can also
sub-classify antibiotics that inhibit the same cellular pathway but have different molecular
targets. We used BCP to show that the compound NSC145612 inhibits the growth of A.
baumannii via targeting RNA transcription. We confirmed this result by isolating and
characterizing resistant mutants with mutations in the rpoB gene. Altogether, we conclude
that BCP provides a useful tool for MOA studies of antibacterial compounds that are active

against A. baumannii.

Introduction

The discovery of penicillin led to the “golden era” of antibiotic research which lasted
for many decades before fading away in the 1970s. Since then, the rate of discovery of novel
antibacterial molecules has decreased dramatically, and most of the newly commercialized
antibiotics are analogues of existing ones (1-3). Although five new classes of Gram-positive
acting antibiotics were recently discovered, fewer novel Gram-negative antibiotics have been
developed (4). The incidence of Gram-negative pathogens that are resistant to almost all

existing antibiotics is growing rapidly (5, 6). As a result, the options for treating drug-
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resistant Gram-negative infections are limited; thus, new antibiotics that act against Gram-
negative bacteria are urgently needed (7). Among the ESKAPE pathogens (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) (5), A. baumannii is of particular
concern as it is (8, 9) responsible for a wide range of hospital-acquired infections including
meningitis, bacteremia, and skin infections (10). Apart from their intrinsic resistance, some
clinically isolated A. baumannii strains have developed resistance to antibiotics commonly
used for treatment such as B-lactams, aminoglycosides and tetracyclines (11). Also, a number
of cases have been reported of strains that are resistant to colistin (11-13) and tigecycline
(11, 14, 15), antibiotics considered to be the last line of defense (16), emphasizing the need of
novel antibiotics that are active against the pathogen.

In order to minimize the harmful effects of antibiotics on the microbiome and prevent
the spread of antibiotic resistance across various pathogens, narrow spectrum-antibiotics may
be preferable over broad spectrum ones in some cases (2). Species-specific antibiotic
screening platforms have been proposed as a potential approach to discover narrow spectrum-
antibiotics (17). A Mycobacteria-specific screening platform is an example of a successful
case of such screening approaches (4, 18). These screens resulted in the discovery of many
antibiotics exhibiting both broad spectrum, such as streptomycin (19), and mycobacteria-
specific activity including isoniazid, pyrazinamide, ethionamide, ethambutol (4), and
bedaquiline (20). Recently, Gram-specific (21-24) and pathogen-specific (25, 26) antibiotic
discovery were also proven to be successful, leading to the identification of narrow spectrum
compounds including some that are active only against A. baumannii (27-29). As more
candidate compounds are revealed through screening, there will be a need for better methods

to elucidate their MOA in A. baumannii.
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In recent years, we have developed a method for antibiotic mechanism of action
(MOA) study called bacterial cytological profiling (BCP) that can be applied to various
bacterial species (30-32). BCP generates reference cytological profiles of bacterial cells
upon treatment with different classes of antibiotics. BCP has been proven to be beneficial in
MOA studies of antibiotics (30, 31, 33-37) and in a rapid antibiotic susceptibility test (32).
Although a BCP-derived method was successfully used in a synergy study between
azithromycin and human antimicrobial peptide LL-37 against multidrug resistant A.
baumannii (MDR-AB) (38), reference BCP profiles of A. baumannii treated with various
types of antibiotics have not been reported. A. baumannii is very distantly related to E. coli
and it was therefore unclear to what extent BCP could be applied. Here we investigated the
utility of BCP for A. baumannii. We showed that BCP is a useful tool for identifying the
MOA of antibacterial molecules that inhibit the growth of A. baumannii (Table S1) and used
this platform to determine that the compound NSC145612 inhibits transcription in A.

baumannii.

Results

BCP in A. baumannii can distinguish different classes of antibiotics

We first determined, based on cell morphological changes in A. baumannii ATCC
19606, if BCP can distinguish between antibiotics that interfere with six major cellular
pathways: protein translation (chloramphenicol), RNA transcription (rifampicin), membrane
integrity (colistin), lipid synthesis (triclosan), cell wall synthesis (piperacillin), and DNA
replication (Ciprofloxacin). After incubation with antibiotics, we found that A. baumannii
ATCC 19606 showed unique cell cytological profiles depending on the class of antibiotics
used for treatment (Fig. 1A-F). Chloramphenicol-treated cells had a signature toroidal-

shaped chromosome (Fig. 1B) while treatment with the transcription inhibitor, rifampicin,
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resulted in diffuse DAPI staining throughout the cell except for a small rounded region near
the cell membrane (Fig. 1C) similar to the BCP profile of actinomycin D-treated E. coli from
the previous study (30). Colistin-treated cells were attached together creating a long chain of
small and round cells (Fig. 1D) similar to what we previously reported (38). Triclosan-treated
cells were shorter and slightly rounder than untreated cells (Fig. 1E). The Cell wall synthesis
inhibitor piperacillin resulted in cell elongation without visible cell septation (Fig. 1F). In the
case of DNA replication inhibitors, we found that even though DNA replication inhibitors
effectively inhibited growth of A. baumannii ATCC 19606 as measured by MIC, only less
than 10% of the cells treated with these inhibitors showed a possible DNA replication
inhibition phenotype in this strain (FIG S1). Thus, another well-studied A. baumannii strain
ATCC 17978 (39) was used in DNA replication experiment (FIG S2 and Table S1). We
found that the cell morphology of A. baumannii ATCC 17978 changed upon ciprofloxacin
treatment. The treated cells were elongated and their chromosomes formed a single large
nucleoid in the cell center (Fig. 1G). Overall, A. baumannii cytological profiles of cells
treated with different antibiotics were similar to those of E. coli shown in our previous study
(30). Next, we quantitated 36 different cytological parameters of cells treated with each
antibiotic (Table S2) and used principal component analysis (PCA) to determine if these cell
profiles can be used to quantitatively classify the MOAs. The results showed that antibiotics
with different MOAs were distinguishable from each other (Fig. 1H) and replicates of each
antibiotic treatment were clustered together (Fig. 11). These results suggest that BCP can be
applied to A. baumannii in discriminating antibiotics targeting six major cellular pathways
including protein translation, RNA transcription, membrane integrity, lipid synthesis, cell

wall synthesis, and DNA replication.
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In A. baumannii, BCP can sub-classify different antibiotics that inhibit the same cellular

pathway based on their mechanism of action

Our previous study in E. coli also showed that BCP can be used to classify sub-groups
of antibiotics based on their MOA (30). To test if the ability of sub-classification by BCP is
also observed in A. baumannii, we investigated whether BCP can differentiate various protein
translation inhibitors and cell wall synthesis inhibitors. From all protein translation inhibitors
tested (Fig. 2A-1), we found that they were classified into 2 groups that correlated with their
known MOA, similar to the previous study in E. coli (30): translation inhibition (P1) and
aminoglycosides (P2) (Fig. 2J and 2K). Tetracycline, tigecycline and minocycline, which are
structurally related, were closely clustered in the analysis (Fig. 2K). Protein translation
inhibitors belonging to the P1 group bind directly to the ribosome to inhibit translation (40—
43) resulting in the formation of toroidal-shaped DNA (Fig. 1B and Fig. 2B-D). In addition
to the translation inhibition, aminoglycosides (44) displayed a significant effect on A.
baumannii membrane permeability as indicated by the increase in SYTOX-Green uptake
(Fig. 2F-1, Right panel) whereas SYTOX-Green signal was not detected in the untreated
cells (Fig. 2E, Right panel). The increase in SYTOX-Green intensity found in
aminoglycoside-treated cells is more than 20 times higher than those of untreated cells
(Table S2). This permeability effect of aminoglycosides separated them from the untreated
and the others in the P1 group (Fig. 2J and 2K). We also found that BCP could distinguish
between two types of penicillin binding protein (PBPs) inhibitors in A. baumannii (Fig. 3), as
expected (45, 46). Among all cell wall synthesis inhibitors tested in this study (Table S1),
only meropenem, a preferred choice for treating A. baumannii infections (10, 47-49), and
piperacillin are active against the strain according to an MIC assay. Meropenem-treated A.
baumannii cells were round and bloated compared to control cells in agreement with its

affinity toward PBP2 (50) (Fig. 3A-B). Cells treated with piperacillin were elongated with
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an average length of 12 um (Fig. 3C and Table S2) likely due to the affinity of piperacillin
toward PBP3 (49) which is required for cell septa formation in A. baumannii. Together, these
results suggest that BCP in A. baumannii can also sub-classify antibiotics based on their

MOA (Fig. 2 and Fig. 3) similar to what we previously reported in E. coli (30).

The compound NSC145612 inhibits the growth of A. baumannii via RNA transcription

inhibition

In this study, we have tested 64 compounds from National Cancer Institute’s
Developmental Therapeutics Program library for their antibacterial activities against Gram-
negative bacterium E. coli ATCC 25922 and found that 17 compounds were active. Among
those Gram-negative active compounds, the compound NSC145612 (Fig. 4A, right panel)
showed a promising MIC against A. baumannii ATCC 19606 at 25 UM (Table S1). Although
the chemical scaffold of NSC145612 is closely related to rifampicin (51), which is an
antibiotic inhibiting DNA-dependent RNA polymerase (52), the compound has never been
tested for its mechanism of action. In order to investigate if the compound exhibits the same
MOA as rifampicin, we performed BCP on the compound against A. baumannii. As
expected, the result showed that NSC145612-treated A. baumannii cells exhibited a
cytological profile identical to rifampicin-treated cells (Fig. 4B-D) and grouped together in
PCA analysis (Fig. 4E-F), suggesting that NSC145612 inhibits RNA transcription of A.
baumannii similar to rifampicin. This conclusion was supported by examining NSC145612
in E. coli AtolC, whose growth was inhibited at 30 uM (Table S3). BCP of NSC145612-
treated E. coli AtolC cells showed decondensed DNA (Fig. S3), which is a hallmark of
transcription inhibition in E. coli (30).

In order to gain more information regarding molecular target of the compound

NSC145612, we isolated and characterized resistant mutations in both A. baumannii and E.
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coli AtolC. A total of four NSC145612-resistant mutants of E. coli were isolated (Table S3).
Whole genome sequencing of the resistant mutants revealed various mutations in DNA-
dependent RNA polymerase subunit B (rpoB gene) (Table S3), a well-known gene
responsible for rifampicin-resistance in E. coli and Mycobacterium tuberculosis (52, 53).
Notably, three of our four resistant mutants contain mutations (Table S3) which are located
in the Rifampicin Resistance Determining Region (RRDR) of the rpoB gene spanning from
codon 507 to 533 (54). The rare mutation rpoB(V146F), which is located near the rifampicin-
binding pocket of the enzyme (55), was also found in one of the NSC145612-resistant
mutants (LB143 strain). In accordance with the genetic profiles, the BCP profile of resistant
mutants treated with NSC145612 and rifampicin showed no cytological changes as compared
to the untreated controls (Fig. S3), confirming that NSC145612 and rifampicin are inactive
against the strains containing the rpoB mutation.

To confirm the molecular target of NSC145612 in A. baumannii, two NSC145612-
resistant A. baumannii strains were also isolated with an MIC above 200 uM (Table 1). As
expected, NSC145612-resistant A. baumannii contained a mutation in the rpoB gene,
rpoB(G543S) (Table 1), which is located in the RRDR and is known to be responsible for
rifampicin resistance in A. baumannii (56, 57). BCP results showed that neither NSC145612
nor rifampicin treatment resulted in cytological changes of NSC145612-resistant A.
baumannii strains as compared to the controls (Fig. 5), confirming that NSC145612 and
rifampicin are inactive against the resistant strains. Overall, these results suggest that
NSC145612 inhibits RNA transcription of A. baumannii by targeting its RNA polymerase

subunit B.

Discussion
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A recent report from the World Health Organization revealed that among the
ESKAPE pathogens, A. baumannii poses a threat to public health and economies worldwide
(9). A. baumannii is a successful pathogen due to its ability to survive in desiccated
environments and its intrinsic antibiotic resistance (8). As a result, MDR-AB is spreading at
an alarming rate (58-60). Multiple approaches exist in order to help mitigate the rise of
MDR-AB including developing more stringent guidelines for antibiotic usage and
establishing effective surveillance and containment programs (9). A direct approach to
combat MDR-AB is to find new antibiotics that are effective against this pathogen.

BCP has been developed for several species of bacteria including E. coli, S. aureus
and B. subtilis, but it has not been systematically applied to A. baumannii (31, 32, 61). Here
we study the cytological profiles of antibiotics commonly used to treat A. baumannii. We
show that BCP can be used to identify the MOA of newly discovered compounds to facilitate
A. baumannii-specific antibiotic discovery. BCP successfully differentiates A. baumannii
cells treated with different antibiotics targeting major cellular pathways: protein translation,
RNA transcription, membrane integrity, lipid synthesis, cell wall synthesis, and DNA
replication. Similar to E. coli, A. baumannii cytological changes can reveal subgroups of
protein translation inhibitors and cell wall synthesis inhibitors suggesting similar cytological
responses across Gram-negative bacteria species.

While A. baumannii ATCC 17978 treated with ciprofloxacin showed a clear
cytological profile consistent with inhibiting DNA replication (Fig. S2), treatment of A.
baumannii ATCC 19606 with ciprofloxacin did not induce similar cytological changes (Fig.
S1). The fact that A. baumannii ATCC 19606 did not respond to DNA replication inhibitors
made it unpractical for data from this strain to be used in the analysis. DNA damage and
replication inhibition caused by quinolone antibiotics induce SOS responses in E. coli (62—

64) and other bacteria (65, 66). In previous studies of E. coli (30, 67), filamentous E. coli
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10

observed after quinolone antibiotic treatment was a result of replication halt-induced SOS
response (65). Upon SOS response induction, sulA is derepressed due to the decrease in
LexA protein, a master regulator of SOS response genes. SulA then inhibits FtsZ
polymerization which leads to cell division inhibition and filamentation (68, 69). However,
the SOS response of Acinetobactor spp. is not well-understood due to the lack of similar SOS
response genes including lexA and sulA (68, 70-72). Since distinct responses to DNA damage
have been observed in different species of Acinetobacter (73, 74), it is possible that A.
baumannii ATCC 19606 and ATCC 17978 respond differently to the DNA replication
inhibitors. Based on these results, multiple A. baumannii strains should be used to establish a
comprehensive database of cytological profiles.

The compound NSC145612 from the National Cancer Institute’s Developmental
Therapeutics Program has previously been tested for anti-cancer and AIDS antiviral activity,
all of which gave negative results (51). In this study, its antibacterial activity was tested by
BCP and later confirmed by resistant mutant selection and genome sequencing. NSC145612
inhibits the growth of A. baumannii and E. coli via RNA transcription inhibition by targeting
RpoB protein. Altogether, this study proves the utility of BCP as a potential method to reveal

the mechanism of action of compounds that are active against A. baumannii.

Materials and Methods

Bacteria strain, growth and antibiotics. Acinetobacter baumannii strain ATCC 19606,
strain ATCC 17978 and Escherichia coli strain AD3644 (AtolC) were used in this study. The
bacteria were grown in LB medium or LB agar at 30°C. A total of twenty-two antibiotics
were tested on A. baumannii from which fifteen antibiotics with minimal inhibitory
concentration of less than 112 ug/ml were used in this study (Table S1). The compound

NSC145612 was obtained from the National Cancer Institute’s Developmental Therapeutics
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Program. Preparation of the antibiotics was according to the manufacture’s

recommendations.

Minimal Inhibitory Concentrations. Minimal inhibitory concentrations (MIC) of all
antibiotics are shown in Table S1. MIC was obtained using microdilution method (30) .
Overnight cultures of A. baumannii were diluted 1:100 in LB broth and allowed to grow at
30°C on a roller until exponential phase or until the ODggo 0f 0.2 was obtained. The bacteria
culture was further diluted 1:100 into each well of 96 well plate containing antibiotics in LB
media at appropriate concentrations. Cultures were allowed to grow at 30°C for 24 hours.
MIC was determined by observing the concentration of the antibiotic in the well where the

bacteria was unable to grow.

Fluorescence microscopy. Overnight cultures of A. baumannii were diluted 1:500 and those
of E. coli at 1:100 in LB broth and grown at 30°C on a roller until exponential phase.
Antibiotics were added at concentrations of 0.75 times MIC for colistin, 2 times the MIC for
rifampicin, NSC145612, and ciprofloxacin and, 5 times the MIC for the rest of the tested
antibiotics. Cultures were then grown at 30°C on a roller for 2 hours. A. baumannii cultures
were stained with FM 4-64 (2 pg/ml), DAPI (4 pg/ml) and SYTOX-green (0.5 uM). E. coli
the cells were stained with FM 4-64 (1 pg/mL), DAPI (2 pg/mL), and SYTOX-Green (0.5
MM). Stained bacterial cultures were harvested by centrifugation at 6,000 g for 30 seconds
and resuspended in 1/10 volume of the same culture media. Three microliters of this was
added to agarose pads (1.2% agarose in 20% LB broth) on concave glass slides. Fluorescence

microscopy was performed with consistent imaging parameters throughout all experiments.
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Cytological profiling. Cytological profiles were determined by automated cell analysis using
CellProfiller 3.0 (75). Briefly, images were pre-processed on Fiji software (76) and
subsequently analyzed on CellProfiler 3.0 software. Cell morphological parameters such as
length, width, area, perimeter, form factor, ferret diameter, radius, compactness, solidity and
eccentricity of both cell membrane and nucleoid were determined. To obtain the average
intensity of SYTOX-green and DAPI, both the membrane and nucleoid outlines were used
and subtracted by background intensity in corresponding images. The fold-increase in
permeability of aminoglycosides (P2 group) was determined by dividing the SYTOX-Green
intensity of aminoglycoside-treated cells with that of the untreated cells (Table S2).
Decondensation of the nucleoid was determined by the ratio of the area of the nucleoid to that

of the cell membrane.

Statistical analysis. As described previously (30, 31, 38), the cytological parameters of each
antibiotic were obtained from three independent experiments. Profiling data was from
automated analysis of the cells in each imaging field. Only images containing more than 20
for long cells and for the rest, more than 30 cells per imaging field were selected into data
points. Weighed principal component analysis (PCA) was performed using statistic tools on
MATLAB 2017a. Euclidean cluster analysis was generated from Morpheus

(https://software.broadinstitute.org/morpheus).

Isolation of NSC145612-resistant mutants. In E. coli, resistant mutants were obtained by
plating E. coli AD3644 (AtolC) on LB agar plates containing 2X MIC of NSC145612. The
plates were incubated at 30°C and resistant mutants were purified and stabilized on additional
2X MIC of NSC145612 selection plates. In A. baumannii, A. baumannii ATCC 19606 culture

was diluted into the LB media containing NSC145612 starting at 0.5X MIC. This process
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was repeated with escalating concentration of NSC145612 until the NSC145612-resistant A.
baumannii was obtained. The resistant strains were purified on LB agar plates and MIC for

NSC145612 and rifampicin determined by broth dilution method, as mentioned above.
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Figure legends and Tables

FIG 1 A. baumannii cells treated with antibiotics targeting different cellular pathways
show distinct morphological changes.

(A) Untreated bacterial cells. Bacterial cells were treated with (B, D—F) 5x MIC and (C and
G) 2x MIC of each antibiotic for 2 hours and then stained with FM4-64 (red) and DAPI
(blue). Scale bar represents 1 um. (H) A 3D PCA graph constructed from PC1 (57.11%), PC2
(17.90%) and PC3 (9.35%) shows antibiotics that are distinguished into different subgroups
as coded by colors. Three independent experiments were performed for each antibiotic
treatment and cytological parameters (Table S2) measured as described in Materials and
Methods. (1) Euclidean cluster map of antibiotics, using values from PC1, PC2 and PC3 of
PCA. Ciprofloxacin* indicates that all data for treatment with ciprofloxacin was obtained in

A. baumannii ATCC 17978 strain.

FIG 2 A. baumannii cytological profiling differentiating protein translation inhibitors
into subgroups by their MOA.

Bacterial cells were treated with each antibiotic at 5x MIC for 2 hours and then stained with
FM4-64 (red), DAPI (blue) and SYTOX green (green). Scale bar represents 1 um. (A-D)
Cells treated with protein translation inhibitors (P1 group) show distinct cell profiles. (E)
Untreated cells. (F-I) Cells treated with aminoglycosides (P2 group) showing altered
membrane permeability. Arrows indicate membrane pooling. SYTOX-green (Right panels)
only stains nucleoids in the cells with permeabilized membranes. (J) PCA graph of protein
translation inhibitors using PC1l (44.30%), PC2 (26.82%) and PC3 (8.53%) and (K)

Euclidean cluster map, using PC1, PC2 and PC3 from PCA.
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FIG 3 Cytological profiling of cell wall synthesis inhibitors; meropenem treated cells
showing different profiles to the cells treated with piperacillin.

(A-C) Bacterial cells were treated with antibiotics at 5x MIC for 2 hours and then stained
with FM4-64 (red) and DAPI (blue). Scale bar represents 1 um. (D) PCA graph of cell wall
synthesis inhibitors showing only PC1 (64.30%) and PC2 (22.81%) and (E) Euclidean cluster

map using PC1, PC2 and PC3 from PCA showing distinct morphological clusters.

FIG 4 A. baumannii cell treated with NSC145612 show similar profiles to the RNA
transcription inhibitor, rifampicin.

(A) Chemical structure of rifamycin, rifampicin and NSC145612. (B) Untreated cells.
Bacterial cells were treated with 2x MIC of (C) Rifampicin or (D) NSC145612 for 2 hours
and then stained with FM4-64 (red) and DAPI (blue). Scale bar represents 1 um. (E) PCA
graph of 6 major classes of representative antibiotics and NSC145612 using PC1 (56.28%),
PC2 (18.80%) and PC3 (9.18%) and (F) Euclidean cluster map, using values from PC1, PC2
and PC3 from PCA, showing NSC145612 closely clustered to Rifampicin. Ciprofloxacin*
indicates that all data for treatment with Ciprofloxacin was obtained in A. baumannii ATCC

17978 strain.

FIG 5 NSC145612-resistant A. baumannii cells show no morphological change upon
NSC145612 and rifampicin treatment.

(A-C) NSC145612-sensitive strain. Arrows indicate signature phenotype of RNA
transcription inhibition. (D-1) NSC145612-resistant strains with rpoB mutations indicated.
Bacterial cells were treated with 2x MIC of NSC145612 (B, E, and H) or Rifampicin (C, F,
and 1) for 2 hours and then stained with FM4-64 (red) and DAPI (blue). Scale bar represents

1 pum.
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Table 1. MIC of NSC145612 and rifampicin against A. baumannii strains

MIC
Strains rpoB mutations
NSC145612 (uM)  Rifampicin (uM)
A. baumannii - 25 1.2
A. baumannii HH1102 rpoB(G543S) >200 24
A. baumannii HH1105 rpoB(G543S) >200 24
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