

บทคัดย่อ

Project Code : MRG6080090

Project Title : การศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อสายของพัฒนาการ เจริญเต็มวัย และชราภาพ

Investigator : ผศ. ดร. รัชกร ศรีเกื้อ มหาวิทยาลัยมหิดล

E-mail Address : ratchakrit.sri@mahidol.ac.th

Project Period : 2 ปี (ได้รับการอนุมัติขยายระยะเวลาโครงการฯ)

การศึกษาวิจัยครั้นนี้มีวัตถุประสงค์เพื่อศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อสาย หนูทดลองสายพันธุ์ C57BL/6 เพศผู้ช่วงพัฒนาการ เจริญเต็มวัย และชราภาพ ถูกใช้เพื่อทำการศึกษาการเจริญเติบโตของกล้ามเนื้อสายแต่ละช่วงอายุ โดยระดับซีรัม $25(\text{OH})\text{D}_3$ รวมถึงการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (vitamin D receptor, VDR) และโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ในกล้ามเนื้อสาย ได้ถูกตรวจวิเคราะห์เพื่อศึกษาความสัมพันธ์กับการเจริญเติบโตของกล้ามเนื้อสาย นอกจากนี้สเต็มเซลล์ของกล้ามเนื้อสายจากแต่ละช่วงอายุได้ถูกสกัดแยกและเพาะเลี้ยงเพื่อศึกษาการตอบสนองต่อวิตามินดี 3 ในรูปแบบที่พฟอร์ม $[1\alpha,25(\text{OH})_2\text{D}_3]$ ผลการวิจัยพบว่ากลไกการเจริญเติบโตของกล้ามเนื้อสายเกิดขึ้นจากการเพิ่มขนาดพื้นที่หน้าตัด (cross-sectional area) ของเส้นใยกล้ามเนื้อสายในช่วงพัฒนาการถึงเจริญเต็มวัย ซึ่งมีความสัมพันธ์กับการเพิ่มขึ้นของระดับ $25(\text{OH})\text{D}_3$ ในเลือด โดยกล้ามเนื้อสายมีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีในระดับต่าช่วงพัฒนาการแต่มีการแสดงออกเพิ่มมากขึ้นอย่างมีนัยสำคัญในช่วงเจริญเต็มวัยและระยะเริ่มต้นของการชราภาพที่เป็นช่วงที่มีการเพิ่มขึ้นของปริมาณเส้นใยกล้ามเนื้อสายที่มีการพื้นฟูสภาพ การเปลี่ยนแปลงดังกล่าวมีผลต่อกล้ามเนื้อสายชนิด fast-glycolytic muscle มากกว่า slow-oxidative muscle ในทางตรงกันข้ามการแสดงออกของโปรตีน CYP27B1 และ CYP24A1 ในกล้ามเนื้อสายไม่มีการเปลี่ยนแปลงอย่างมีนัยสำคัญ ตลอดช่วงอายุที่ศึกษา ขณะที่การศึกษาในหลอดทดลองพบว่าสเต็มเซลล์ของกล้ามเนื้อสายที่สกัดแยกจากหนูทดลองในแต่ละช่วงของการเจริญเติบโตมีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีและโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี อย่างไรก็ตามการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีในสเต็มเซลล์ของกล้ามเนื้อสายที่ตอบสนองต่อการได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ มีค่าลดลงเมื่ออายุเพิ่มมากขึ้น เนื่องจากเซลล์มีคุณลักษณะการเข้าสู่ร่างกายการเปลี่ยนแปลงรูปร่างไปเป็นเส้นใยกล้ามเนื้อสายอย่างรวดเร็วเมื่อถูกกระตุ้นการเจริญเติบโต จากการศึกษาทั้งหมดนี้แสดงให้เห็นว่ากล้ามเนื้อสายมีการควบคุมระบบการทำงานของวิตามินดีแบบเฉพาะที่และมีการตอบสนองต่อวิตามินดี 3 ผ่านการควบคุมการแสดงออกของตัวรับสัญญาณวิตามินดีในสเต็มเซลล์ของกล้ามเนื้อสาย โดยความเข้าใจเกี่ยวกับระบบการทำงานของวิตามินดีในกล้ามเนื้อสายจะช่วยให้สามารถพัฒนาแนวทางการนำวิตามินดี 3 มาใช้ประโยชน์เพื่อเพิ่มมวลและความสามารถในการทำงานของกล้ามเนื้อสายเมื่ออายุเพิ่มมากขึ้นได้อย่างมีประสิทธิภาพต่อไป

คำสำคัญ กล้ามเนื้อสาย, เมแทบอลิซึม, วิตามินดี, ตัวรับสัญญาณวิตามินดี, สเต็มเซลล์

Abstract

Project Code : MRG6080090

Project Title : Investigation of non-calcemic function of vitamin D₃ and local regulation of vitamin D metabolism in skeletal muscle during development, maturation, and aging

Investigator : Asst. Prof. Dr. Ratchakrit Srikuea (Mahidol University)

E-mail Address : ratchakrit.sri@mahidol.ac.th

Project Period : 2 years (Project extension period has been approved)

The objective of this study was to investigate non-calcemic function of vitamin D₃ and local regulation of vitamin D metabolism in skeletal muscle. Male C57BL/6 mice at developmental, mature, and aging stages were used to investigate skeletal muscle plasticity across ages. Serum 25(OH)D₃ level and the expression of vitamin D receptor (VDR) and vitamin D-metabolizing enzymes (CYP27B1 and CYP24A1) in skeletal muscle were analyzed to determine their relationships with skeletal muscle plasticity. In addition, skeletal muscle stem cells (SMSCs) from different stages of growth were isolated and cultured to examine the response to the active form of vitamin D₃ [1 α ,25(OH)₂D₃]. The results revealed a significant increase of muscle fiber cross-sectional area during developmental to maturation stage and this change was associated with an increased in serum 25(OH)D₃ level. VDR protein expression in skeletal muscle was barely detected during developmental stage but significantly increased during maturation and initial aging stages, the latter related to increase centronucleated muscle fibers. This change was pronounced in fast-glycolytic muscle compared to slow-oxidative muscle. In contrast, vitamin D-metabolizing enzymes (CYP27B1 and CYP24A1) which locally expressed in skeletal muscle were not changed at any age investigated. In addition, SMSCs that isolated from different stages of growth expressed VDR and vitamin D-metabolizing enzymes. Nevertheless, the responses of SMSCs to 1 α ,25(OH)₂D₃ treatment on regulation of VDR protein expression was declined during advanced age and this change was related to a rapid commitment of SMSCs to differentiation. Taken together, these results provide insight about the local vitamin D system in skeletal muscle along with the regulation of VDR expression in SMSCs in response to vitamin D₃. Understanding vitamin D system in skeletal muscle could help develop the effective intervention on vitamin D supplementation to improve muscle mass and function during advanced age.

Keywords : skeletal muscle, metabolism, vitamin D, vitamin D receptor, stem cell