

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อลายขณะ พัฒนาการ เจริญเต็มวัย และชราภาพ

โดย ผศ.ดร.รัชกฤต ศรีเกื้อ

พฤษภาคม 2563

รายงานວิจัยฉบับສມບູຮົນ

ໂຄຮງການ ກາຣຕຶກຂາບທບກາຣທຳການຂອງວິຕາມິນດີ 3 ແລະ ກາຣຄວບຄຸມ
ກະບວນກາຣເມແທບອລື່ມເໜພາະທີຂອງວິຕາມິນດີໃນກລ້າມເນື້ອລາຍຂະະ
ພັນນາກາຣ ເຈີ້ງເຕັ້ມວຍ ແລະ ທຣາກາພ

ຜູ້ວິຈີຍ ພສ.ດຣ.ຮັບກຸດ ສວີເກື່ອ
ສັງກັດ ມາວິທຍາລັຍມິດລ

ສັນນູນໂດຍສໍາໜັກງານຄະນະກາຣກາຣອຸດມສຶກໝາ ແລະ ສໍາໜັກງານກອງທຸນສັນສູນກາຣວິຈີຍ

(ຄວາມເຫັນໃນຮາຍງານນີ້ເປັນຂອງຜູ້ວິຈີຍ ສກອ. ແລະ ສກວ. ໄມ່ຈະເປັນຕົ້ນດ້ວຍເສມອໄປ)

บทคัดย่อ

Project Code : MRG6080090

Project Title : การศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อสายของพัฒนาการ เจริญเต็มวัย และชราภาพ

Investigator : ผศ. ดร. รัชกร ศรีเกื้อ มหาวิทยาลัยมหิดล

E-mail Address : ratchakrit.sri@mahidol.ac.th

Project Period : 2 ปี (ได้รับการอนุมัติขยายระยะเวลาโครงการฯ)

การศึกษาวิจัยครั้นนี้มีวัตถุประสงค์เพื่อศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อสาย หนูทดลองสายพันธุ์ C57BL/6 เพศผู้ช่วงพัฒนาการ เจริญเต็มวัย และชราภาพ ถูกใช้เพื่อทำการศึกษาการเจริญเติบโตของกล้ามเนื้อสายแต่ละช่วงอายุ โดยระดับซีรัม $25(\text{OH})\text{D}_3$ รวมถึงการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (vitamin D receptor, VDR) และโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ในกล้ามเนื้อสาย ได้ถูกตรวจวิเคราะห์เพื่อศึกษาความสัมพันธ์กับการเจริญเติบโตของกล้ามเนื้อสาย นอกจากนี้สเต็มเซลล์ของกล้ามเนื้อสายจากแต่ละช่วงอายุได้ถูกสกัดแยกและเพาะเลี้ยงเพื่อศึกษาการตอบสนองต่อวิตามินดี 3 ในรูปแบบที่พฟอร์ม $[1\alpha,25(\text{OH})_2\text{D}_3]$ ผลการวิจัยพบว่ากลไกการเจริญเติบโตของกล้ามเนื้อสายเกิดขึ้นจากการเพิ่มขนาดพื้นที่หน้าตัด (cross-sectional area) ของเส้นใยกล้ามเนื้อสายในช่วงพัฒนาการถึงเจริญเต็มวัย ซึ่งมีความสัมพันธ์กับการเพิ่มขึ้นของระดับ $25(\text{OH})\text{D}_3$ ในเลือด โดยกล้ามเนื้อสายมีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีในระดับต่าช่วงพัฒนาการแต่มีการแสดงออกเพิ่มมากขึ้นอย่างมีนัยสำคัญในช่วงเจริญเต็มวัยและระยะเริ่มต้นของการชราภาพที่เป็นช่วงที่มีการเพิ่มขึ้นของปริมาณเส้นใยกล้ามเนื้อสายที่มีการพื้นฟูสภาพ การเปลี่ยนแปลงดังกล่าวมีผลต่อกล้ามเนื้อสายชนิด fast-glycolytic muscle มากกว่า slow-oxidative muscle ในทางตรงกันข้ามการแสดงออกของโปรตีน CYP27B1 และ CYP24A1 ในกล้ามเนื้อสายไม่มีการเปลี่ยนแปลงอย่างมีนัยสำคัญ ตลอดช่วงอายุที่ศึกษา ขณะที่การศึกษาในหลอดทดลองพบว่าสเต็มเซลล์ของกล้ามเนื้อสายที่สกัดแยกจากหนูทดลองในแต่ละช่วงของการเจริญเติบโตมีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีและโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี อย่างไรก็ตามการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีในสเต็มเซลล์ของกล้ามเนื้อสายที่ตอบสนองต่อการได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ มีค่าลดลงเมื่ออายุเพิ่มมากขึ้น เนื่องจากเซลล์มีคุณลักษณะการเข้าสู่ร่างกายการเปลี่ยนแปลงรูปร่างไปเป็นเส้นใยกล้ามเนื้อสายอย่างรวดเร็วเมื่อถูกกระตุ้นการเจริญเติบโต จากการศึกษาทั้งหมดนี้แสดงให้เห็นว่ากล้ามเนื้อสายมีการควบคุมระบบการทำงานของวิตามินดีแบบเฉพาะที่และมีการตอบสนองต่อวิตามินดี 3 ผ่านการควบคุมการแสดงออกของตัวรับสัญญาณวิตามินดีในสเต็มเซลล์ของกล้ามเนื้อสาย โดยความเข้าใจเกี่ยวกับระบบการทำงานของวิตามินดีในกล้ามเนื้อสายจะช่วยให้สามารถพัฒนาแนวทางการนำวิตามินดี 3 มาใช้ประโยชน์เพื่อเพิ่มมวลและความสามารถในการทำงานของกล้ามเนื้อสายเมื่ออายุเพิ่มมากขึ้นได้อย่างมีประสิทธิภาพต่อไป

คำสำคัญ กล้ามเนื้อสาย, เมแทบอลิซึม, วิตามินดี, ตัวรับสัญญาณวิตามินดี, สเต็มเซลล์

Abstract

Project Code : MRG6080090

Project Title : Investigation of non-calcemic function of vitamin D₃ and local regulation of vitamin D metabolism in skeletal muscle during development, maturation, and aging

Investigator : Asst. Prof. Dr. Ratchakrit Srikuea (Mahidol University)

E-mail Address : ratchakrit.sri@mahidol.ac.th

Project Period : 2 years (Project extension period has been approved)

The objective of this study was to investigate non-calcemic function of vitamin D₃ and local regulation of vitamin D metabolism in skeletal muscle. Male C57BL/6 mice at developmental, mature, and aging stages were used to investigate skeletal muscle plasticity across ages. Serum 25(OH)D₃ level and the expression of vitamin D receptor (VDR) and vitamin D-metabolizing enzymes (CYP27B1 and CYP24A1) in skeletal muscle were analyzed to determine their relationships with skeletal muscle plasticity. In addition, skeletal muscle stem cells (SMSCs) from different stages of growth were isolated and cultured to examine the response to the active form of vitamin D₃ [1 α ,25(OH)₂D₃]. The results revealed a significant increase of muscle fiber cross-sectional area during developmental to maturation stage and this change was associated with an increased in serum 25(OH)D₃ level. VDR protein expression in skeletal muscle was barely detected during developmental stage but significantly increased during maturation and initial aging stages, the latter related to increase centronucleated muscle fibers. This change was pronounced in fast-glycolytic muscle compared to slow-oxidative muscle. In contrast, vitamin D-metabolizing enzymes (CYP27B1 and CYP24A1) which locally expressed in skeletal muscle were not changed at any age investigated. In addition, SMSCs that isolated from different stages of growth expressed VDR and vitamin D-metabolizing enzymes. Nevertheless, the responses of SMSCs to 1 α ,25(OH)₂D₃ treatment on regulation of VDR protein expression was declined during advanced age and this change was related to a rapid commitment of SMSCs to differentiation. Taken together, these results provide insight about the local vitamin D system in skeletal muscle along with the regulation of VDR expression in SMSCs in response to vitamin D₃. Understanding vitamin D system in skeletal muscle could help develop the effective intervention on vitamin D supplementation to improve muscle mass and function during advanced age.

Keywords : skeletal muscle, metabolism, vitamin D, vitamin D receptor, stem cell

Executive Summary

การศึกษาบทบาทของวิตามินดี 3 ส่วนใหญ่มุ่งเน้นไปที่การวิจัยเกี่ยวกับบทบาทด้านการควบคุมระดับแคลเซียมในร่างกายเป็นหลัก (Haussler *et al.*, 2013; Veldurthy *et al.*, 2016) อย่างไรก็ตามบทบาทนอกเหนือไปจากด้านแคลเซียมได้มีการรายงานเพิ่มมากขึ้นภายหลังจากที่มีการค้นพบการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (vitamin D receptor, VDR) และโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบoliซึมของวิตามินดี (CYP27B1 และ CYP24A1) ในเนื้อเยื่อและอวัยวะอื่นๆที่ไม่ได้ทำหน้าที่เกี่ยวกับการควบคุมระดับแคลเซียมในร่างกาย เช่น สมองและหัวใจ (Jiang *et al.*, 2014) นอกจากนี้อีกหนึ่งนักวิจัยได้มีการรายงานว่ากล้ามเนื้อลายที่อยู่ในระหว่างการพัฒนาจากกระบวนการบาดเจ็บมีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีเพิ่มขึ้นเป็นอย่างมากเมื่อเทียบกับสภาวะปกติ (Srikuea *et al.*, 2012; Srikuea and Hirunsai 2016) ซึ่งแสดงให้เห็นถึงความเป็นไปได้ที่วิตามินดีจะมีบทบาทสำคัญในกระบวนการพัฒนาของกล้ามเนื้อลาย อย่างไรก็ตามการเจริญเติบโตของกล้ามเนื้อลายช่วงพัฒนาการ เจริญเติมวัย และชราภาพ สามารถส่งผลต่อการทำงานและกระบวนการเมแทบoliซึมของวิตามินดีในกล้ามเนื้อลายหรือไม่ยังไม่มีการศึกษา นอกจากนี้อีกหนึ่งนักวิจัยได้มีความสามารถมีผลต่อการควบคุมการทำงานของสเต็มเซลล์ของกล้ามเนื้อลายซึ่งเป็นเซลล์ที่มีบทบาทสำคัญต่อการเจริญเติบโตของกล้ามเนื้อลาย (Anderson, 2006) ที่มีคุณลักษณะแตกต่างกันในแต่ละช่วงอายุหรือไม่ยังไม่ทราบอย่างแน่ชัด โดยพบว่าสเต็มเซลล์ของกล้ามเนื้อลายอยู่ในสภาวะแอดคิทิฟชั่วพัฒนาการเพื่อทำการเพิ่มจำนวนและสร้างเส้นใยกล้ามเนื้อลาย (White *et al.*, 2010) ขณะที่ในช่วงเจริญเติมวัยสเต็มเซลล์ของกล้ามเนื้อลายจะทำงานต่อเมื่อถูกกระตุ้นภายหลังจากกล้ามเนื้อลายเกิดการบาดเจ็บเพื่อทำการซ่อมแซมเส้นใยกล้ามเนื้อลายที่เสียหาย (Hawke and Garry, 2001) ในทางตรงกันข้ามประสิทธิภาพการทำงานของสเต็มเซลล์ของกล้ามเนื้อลายจะลดลงอย่างมากในช่วงชราภาพเนื่องจากมีการลดลงของการตอบสนองต่อสารที่มีผลด้านการกระตุ้นการเจริญเติบโต (Conboy *et al.*, 2003) จากข้อมูลดังกล่าวข้างต้นการวิจัยในครั้งนี้จึงได้ออกแบบเพื่อศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบoliซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อลายขณะพัฒนาการ เจริญเติมวัย และชราภาพ ซึ่งเป็นการสร้างองค์ความรู้ใหม่เกี่ยวกับระบบการทำงานของวิตามินดี 3 ในกล้ามเนื้อลาย เพื่อช่วยให้สามารถนำวิตามินดี 3 มาใช้เพิ่มประสิทธิภาพการเจริญเติบโตและการทำงานของกล้ามเนื้อลายในช่วงพัฒนาการ เจริญเติมวัย และชราภาพได้อย่างเหมาะสมต่อไป

เนื้อหางานวิจัย (Research Contents)

1. วัตถุประสงค์ของโครงการวิจัย (Research objectives)

เพื่อศึกษาบทบาทการทำงานของวิตามินดี 3 และกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อสายของพัฒนาการ เจริญเติมวัย และชราภาพ โดยมีวัตถุประสงค์ย่อยดังนี้

1.1) การศึกษาກลไกการเจริญเติบโตของกล้ามเนื้อสายในหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ

1.2) การศึกษาความสัมพันธ์ของระดับชีรั้มวิตามินดีและระดับการแสดงออกของโปรตีนที่เกี่ยวข้องกับการทำงานของวิตามินดีในกล้ามเนื้อสายต่อกลไกการเจริญเติบโตของกล้ามเนื้อสายในหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ

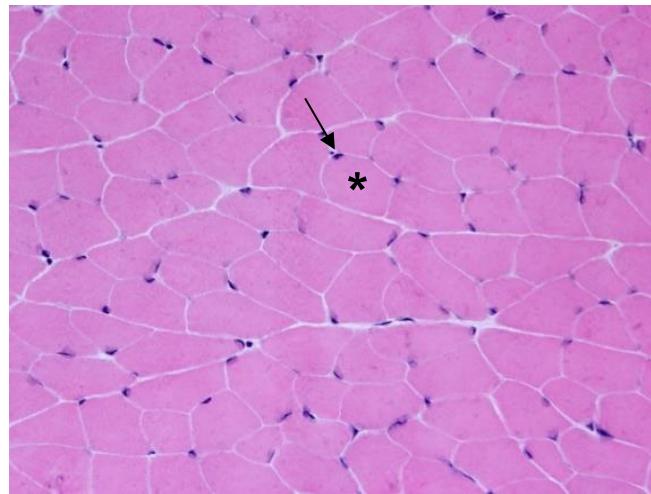
1.3) การศึกษาผลของวิตามินดี 3 ต่อสเต็มเซลล์ของกล้ามเนื้อสายของหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ

2. ขอบเขตของโครงการวิจัย (Scope of the research)

การวิจัยในครั้งนี้ทำการศึกษาบทบาทการทำงานของวิตามินดี 3 และกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อสายของสัตว์ทดลองประเภทหนูเม้าส์ สายพันธุ์ C57BL/6 เพศผู้ ที่ระดับเนื้อเยื่อและระดับเซลล์ (สเต็มเซลล์ของกล้ามเนื้อสาย) ภายในช่วงอายุของพัฒนาการ (1 เดือน) เจริญเติมวัย (6 เดือน) และชราภาพ (18 เดือน) (อายุที่ใช้ในการศึกษาลุ่มชราภาพคือช่วงระยะเริ่มต้นของการชราภาพเพื่อป้องกันผลกระทบจากโรค/สภาวะแทรกซ้อนที่สามารถพบรได้ในระยะหลังของการชราภาพและอาจส่งผลต่อการแปลผลการศึกษาเกี่ยวกับระบบการทำงานเฉพาะที่ของวิตามินดีในกล้ามเนื้อสาย)

โครงการวิจัยเรื่องนี้ได้ผ่านการอนุมัติให้ดำเนินการจากคณะกรรมการการใช้สัตว์ทดลองของคณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล (Protocol No. MUSC59-008-341)

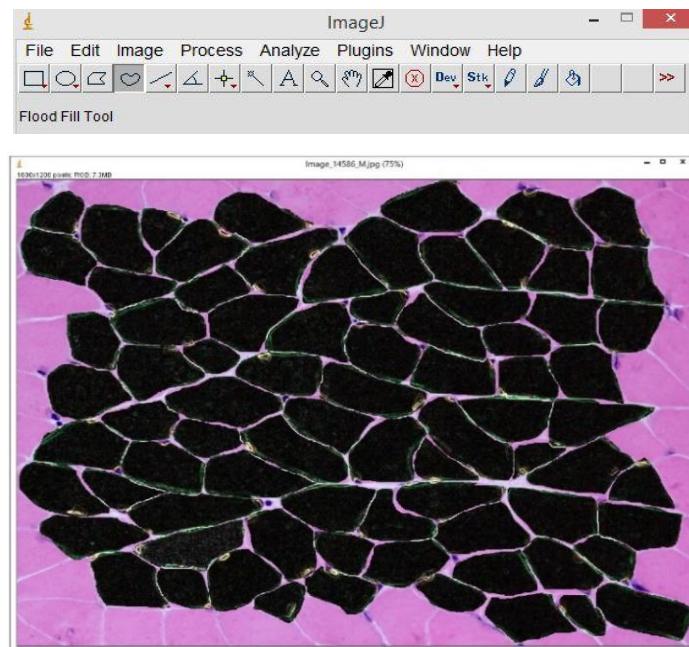
3. วิธีการทดลอง (Methodology)


3.1) การศึกษาກลไกการเจริญเติบโตของกล้ามเนื้อสายในหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ

(การดำเนินการวิจัยตามวัตถุประสงค์ย่อยข้อที่ 1.1)

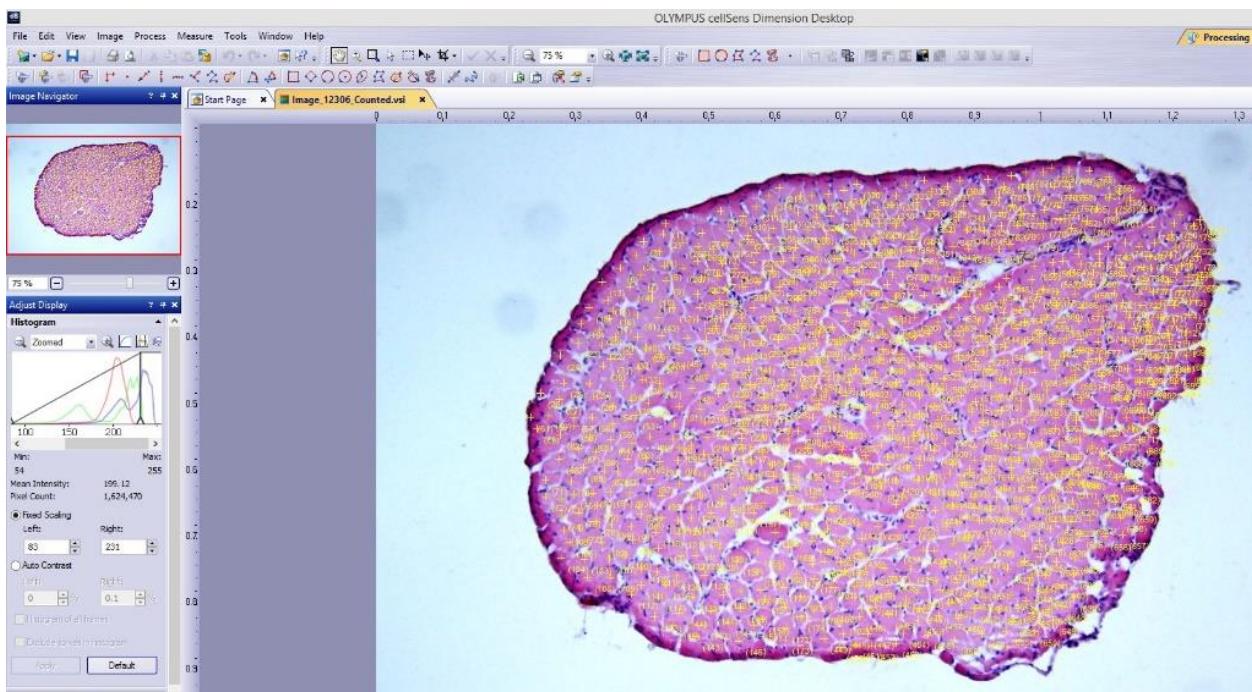
กระบวนการศึกษากลไกการเจริญเติบโตของกล้ามเนื้อสายในหนูทดลอง

การเปลี่ยนแปลงน้ำหนักกล้ามเนื้อ (muscle wet weight) ของหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพถูกวิเคราะห์ด้วย digital weight scale (MS204S, Mettler Toledo) หลังจากนั้นตัวอย่างกล้ามเนื้อสายได้ถูกเก็บโดยใช้ optimal cutting temperature (O.C.T) compound และแช่แข็งด้วย isopentane ที่ถูกทำให้เย็นด้วย liquid nitrogen ตัวอย่างกล้ามเนื้อสายที่แช่แข็งได้ถูกตัดแบบ cryosection ที่อุณหภูมิ -20 องศาเซลเซียสเพื่อทำการศึกษาด้วยเทคนิค histology และ immunohistochemistry


กระบวนการเจริญเติบโตของกล้ามเนื้อสายด้านการเปลี่ยนแปลงขนาดและจำนวนของเส้นใยกล้ามเนื้อสายถูกวิเคราะห์ด้วยการย้อม hematoxylin และ eosin ดังแสดงในภาพที่ 1

ภาพที่ 1 Histology ของกล้ามเนื้อลายแบบตัดตามขวาง (cross-section) เมื่อทำการย้อมด้วย hematoxylin และ eosin โดยนิวเคลียสและไซโตพลาสซึมของเส้นใยกล้ามเนื้อลายถูกแสดงด้วยลูกศรและสัญลักษณ์ * ตามลำดับ

3.1.1) การวิเคราะห์ขนาดของเส้นใยกล้ามเนื้อลาย


ขนาดของเส้นใยกล้ามเนื้อลายถูกวิเคราะห์โดยการวัดพื้นที่หน้าตัด (cross-sectional area, CSA) ที่จำนวน 200-300 เส้นใย/กล้ามเนื้อที่ทำการศึกษาด้วยโปรแกรม Image J ดังแสดงในภาพที่ 2 โดยภาพถ่ายของชิ้นเนื้อที่ถูกนำมาวิเคราะห์จะเป็นการถ่ายแบบสุ่มและครอบคลุมบริเวณทั้งหมดของกล้ามเนื้อที่ทำการวิเคราะห์

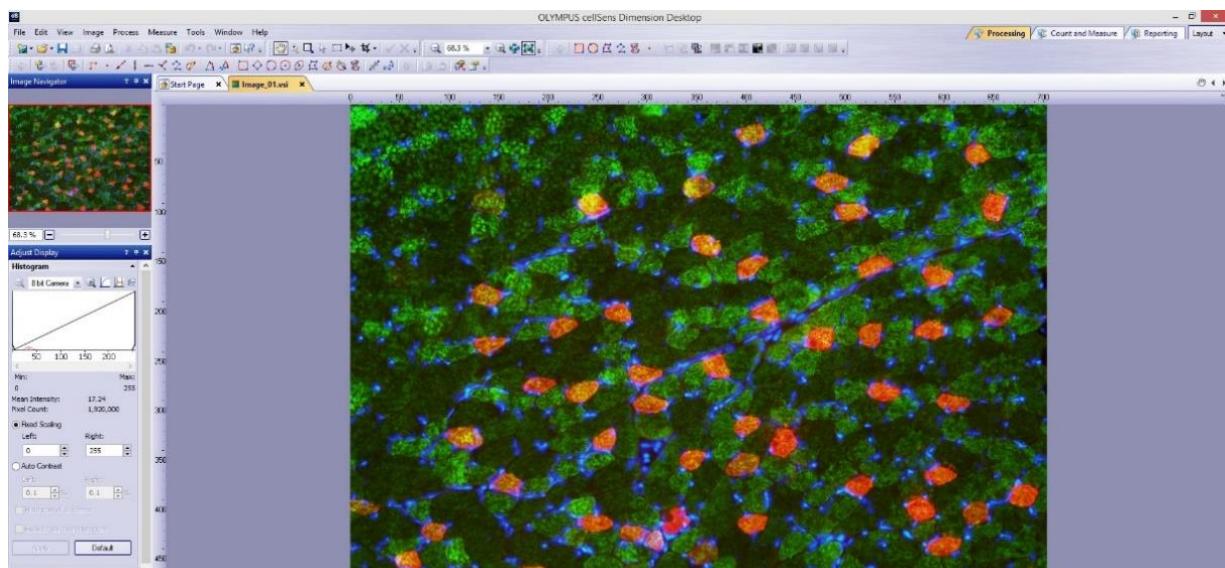
ภาพที่ 2 ลักษณะการวัดพื้นที่หน้าตัดของเส้นใยกล้ามเนื้อลายด้วยโปรแกรม Image J

3.1.2) การวิเคราะห์จำนวนเส้นไยกล้ามเนื้อลาย

จำนวนเส้นไยกล้ามเนื้อลายได้ถูกทำการวิเคราะห์ด้วยโปรแกรม CellSens Dimension Desktop ของ Olympus (Tokyo, Japan) แบบ manual counting ดังภาพที่ 3 โดยเป็นการวิเคราะห์จำนวนเส้นไยกล้ามเนื้อลายทั้งหมดในกล้ามเนื้อที่ทำการศึกษา

ภาพที่ 3 การวิเคราะห์จำนวนเส้นไยกล้ามเนื้อลายด้วยโปรแกรม CellSens Dimension Desktop

3.2) การศึกษาความสัมพันธ์ของระดับซีรั่มวิตามินดีและระดับการแสดงออกของโปรตีนที่เกี่ยวข้องกับการทำงานของวิตามินดีในกล้ามเนื้อลายต่อกลไกการเจริญเติบโตของกล้ามเนื้อลาย ในหนูทดลองช่วงพัฒนาการ เจริญเต็มวัย และชราภาพ


(การดำเนินการวิจัยตามวัตถุประสงค์ย่อยข้อที่ 1.2)

กระบวนการตรวจวัดระดับซีรั่มวิตามินดี

ตัวอย่างเลือดของหนูทดลองได้ถูกตั้งทิ้งไว้ที่อุณหภูมิห้องเป็นเวลา 30 นาที หลังจากนั้นเลือดได้ถูกนำไปปั่นที่อุณหภูมิ 4 องศา ด้วยความเร็ว 3,000 รอบต่อนาที เป็นระยะเวลา 15 นาทีด้วยเครื่องปั่น เหวี่ยงที่สามารถควบคุมความเย็นได้ (Refrigerated centrifuge, Eppendorf Model 5430R) เพื่อแยกส่วนซีรั่ม โดยระดับซีรั่มวิตามินดี [25(OH)D] ได้ถูกตรวจวิเคราะห์โดยเทคนิค LC-MS/MS ด้วย MassChrom® 25-OH-Vitamin D₃/D₂ in Serum/Plasma kit เพื่อแยกวิตามินดี 2 และวิตามินดี 3 ออกจากกันร่วมกับการวิเคราะห์ระดับ 3-Epi-25(OH)D ในขณะที่ระดับซีรั่มแคลเซียมที่เกี่ยวข้องกับการทำงานของวิตามินดีในร่างกายถูกตรวจโดยเทคนิค o-cresolphthalein complexone method

กระบวนการศึกษาการแสดงออกของโปรตีนในกล้ามเนื้อลายของหนูทดลอง

โปรตีนที่เกี่ยวข้องกับชนิดของเส้นใยกล้ามเนื้อลาย (fast myosin heavy chain และ slow myosin heavy chain) โปรตีนตัวรับสัญญาณวิตามินดี (VDR) และโปรตีนที่เกี่ยวข้องกับเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ได้ถูกวิเคราะห์ด้วยเทคนิค immunohistochemistry ตามวิธีการศึกษาในรายงานการวิจัยก่อนหน้า (Srikuea and Hirunsai, 2016) และถ่ายภาพด้วย fluorescence microscope เพื่อนำมาวิเคราะห์ด้วยโปรแกรม CellSens Dimension Desktop (ภาพที่ 4)

ภาพที่ 4 ภาพตัวอย่างการแสดงออกของโปรตีนที่ใช้ในการจำแนกชนิดของเส้นใยกล้ามเนื้อลายที่ทำการย้อมด้วยเทคนิค immunohistochemistry

นอกจากนี้การแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และโปรตีนที่เกี่ยวข้องกับเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ในกล้ามเนื้อลายช่วงพัฒนาการ เจริญเติมวัย และชราภาพได้ถูกวิเคราะห์เชิงปริมาณด้วยเทคนิค Western blot ตามวิธีการศึกษาในรายงานการวิจัยก่อนหน้า (Srikuea and Hirunsai, 2016) ดังแสดงในภาพที่ 5

ภาพที่ 5 ภาพแสดงการรันโปรตีนที่ต้องการศึกษาบนเจลด้วยเทคนิค Western blot analysis

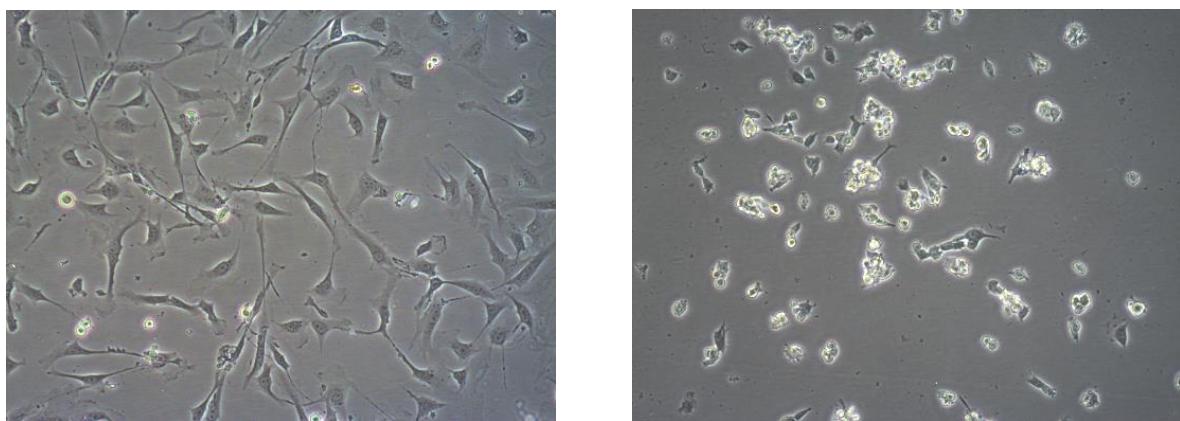
3.3) การศึกษาผลของวิตามินดี 3 ต่อสเต็มเซลล์ของกล้ามเนื้อลายของหนูทดลองช่วงพัฒนาการเจริญเติบโต และชราภาพ

(การดำเนินการวิจัยตามวัตถุประสงค์ข้อที่ 1.3)

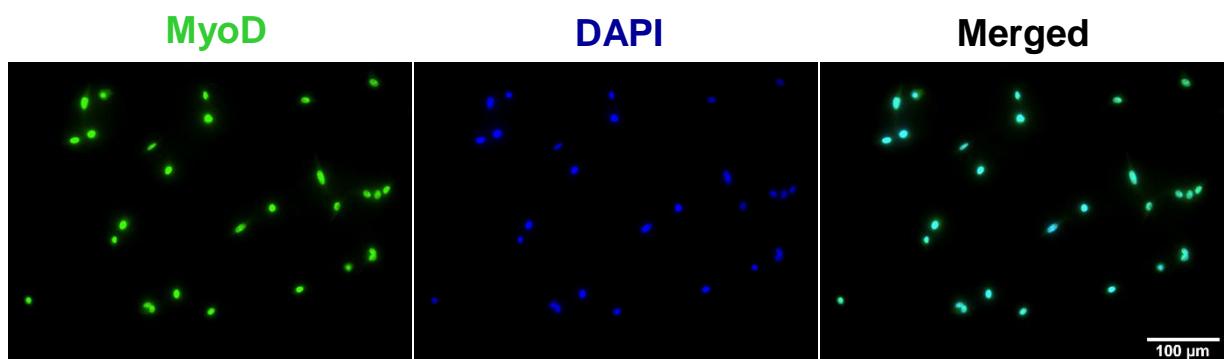
กระบวนการสกัดแยกสเต็มเซลล์ของกล้ามเนื้อลาย

ผู้วิจัยได้ทำการสกัดแยก (isolation) สเต็มเซลล์ของกล้ามเนื้อลายจากหนูทดลองโดยอ้างอิงกระบวนการในการสกัดแยกจากรายงานการวิจัยก่อนหน้า (Danoviz and Yablonka-Reuveni, 2012) กระบวนการสกัดแยกทั้งหมดเป็นการทำด้วย aseptic technique กล้ามเนื้อลายที่ศึกษาเมื่อถูกนำออกมาระบบว่างกายของหนูทดลองแล้วได้ถูกทำการล้างด้วยสารเพาะเลี้ยงเซลล์ที่มี antibiotic และนำไปทำการตัดให้เป็นชิ้นเล็กๆ ภายใน laminar flow ดังภาพที่ 6 โดยการ dissociate สเต็มเซลล์ของกล้ามเนื้อลายถูกทำด้วยเอนไซม์ 0.1% pronase ในตู้ CO_2 incubator ที่อุณหภูมิ 37°C เป็นระยะเวลา 60 นาที

ภาพที่ 6 ภาพตัวอย่างขณะทำการสกัดแยกสเต็มเซลล์ของกล้ามเนื้อลายเพื่อเพาะเลี้ยงในหลอดทดลอง

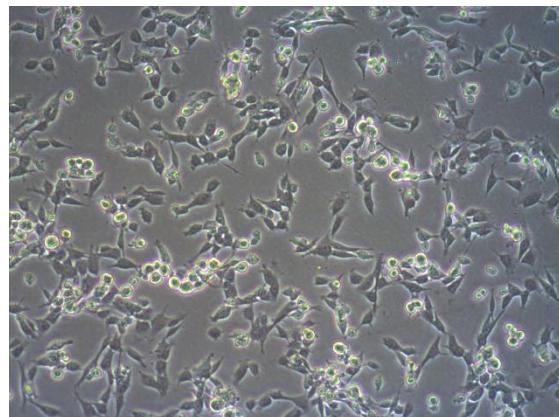

หลังจากนั้น เมื่อผ่านกระบวนการ trituration เพื่อทำให้เซลล์หลุดออกจากกล้ามเนื้อลายที่ถูกย่อย เซลล์จะถูกกรองผ่าน 40- μm cell strainer เพื่อแยกเศษชากเนื้อเยื่อต่างๆ ออก แล้วจึงทำการปั่นตกร่วมความเร็ว 2,200 rpm ให้ได้เซลล์ดังภาพที่ 7 เพื่อทำการนับจำนวนด้วย hemocytometer และเพาะเลี้ยงต่อไป

ภาพที่ 7 ภาพตัวอย่างเซลล์ (ลูกศร) ที่สกัดแยกได้จากการกระบวนการ enzymatic digestion


กระบวนการ purify สเต็มเซลล์ของกล้ามเนื้อลาย

เนื่องจากการสกัดแยกสเต็มเซลล์ของกล้ามเนื้อลายด้วยกระบวนการ enzymatic digestion จะทำให้มีเซลล์ชนิดอื่นปะปนมาด้วย ด้วยเหตุนี้ผู้วิจัยได้ใช้ pre-plating technique ในการ purify สเต็มเซลล์ของกล้ามเนื้อลายออกจากเซลล์อื่นๆ เช่น fibroblast ดังแสดงตัวอย่างในภาพที่ 8 ซึ่งหากมีการปะปนจะทำให้การเจริญเติบโตของสเต็มเซลล์ของกล้ามเนื้อลายไม่มีประสิทธิภาพ โดยกระบวนการ pre-plating technique ทำโดยการ plate เซลล์ที่สกัดแยกได้ลงบนวัสดุเพาะเลี้ยงพลาสติกเป็นเวลา 1 ชั่วโมง เพื่อให้เซลล์ประเภท fibroblast ยึดเกาะกับวัสดุเพาะเลี้ยงพลาสติก หลังจากนั้นจึงทำการเคลือบย้ำยับเซลล์ที่แขวนลอย (suspension cells) ในสารเพาะเลี้ยงไปยังวัสดุเพาะเลี้ยงเซลล์อันใหม่ที่มีการ coat พื้นผิวด้วย 2% gelatin เพื่อให้เซลล์ดังกล่าวที่เป็นสเต็มเซลล์ของกล้ามเนื้อลายสามารถยึดเกาะได้

ภาพที่ 8 ภาพตัวอย่างคุณลักษณะของเซลล์ fibroblast (ซ้าย) และสเต็มเซลล์ของกล้ามเนื้อลาย (ขวา) ที่สกัดแยกจากกล้ามเนื้อลายของสัตว์ทดลองและผ่านกระบวนการ pre-plating technique

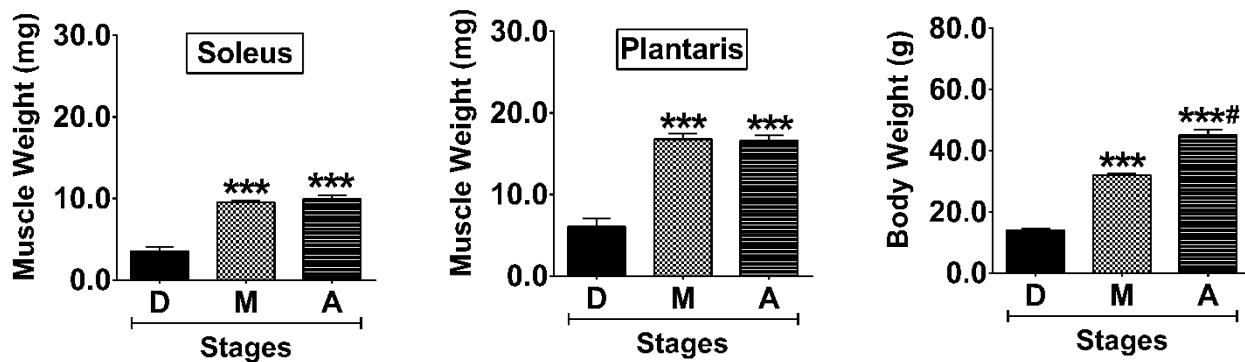

นอกจากนี้วิทยาลักษณ์จากการทำ pre-plating technique ผู้วิจัยได้ทำการยืนยันคุณสมบัติสเต็มเซลล์ของกล้ามเนื้อลายที่ใช้ในการศึกษาด้วยเทคนิค immunocytochemistry โดยใช้ Myogenic differentiation protein (MyoD) เพื่อบ่งชี้ถึงความจำเพาะของสเต็มเซลล์ของกล้ามเนื้อลาย (ภาพที่ 9)

ภาพที่ 9 ภาพตัวอย่างสเต็มเซลล์ของกล้ามเนื้อลายที่มีการแสดงออกของโปรตีน MyoD อย่างจำเพาะในนิวเคลียสของเซลล์ภายหลังกระบวนการ pre-plating technique โดยนิวเคลียสของเซลล์ถูกย้อมด้วย DAPI

กระบวนการทดสอบของวิตามินดี 3 ต่อสเต็มเซลล์ของกล้ามเนื้อลาย

สเต็มเซลล์ของกล้ามเนื้อลายที่สกัดแยกได้ถูกทำการเพาะเลี้ยงเพื่อเพิ่มจำนวนในสารเพาะเลี้ยง DMEM + 20% fetal bovine serum + 5 ng/ml basic fibroblast growth factor ดังแสดงในภาพที่ 10 หลังจากนั้นเซลล์ได้ถูก subculture ด้วย 0.5% trypsin EDTA (1X) เป็นเวลา 5 นาที และได้ถูกเพาะเลี้ยงใน 2% gelatin-coated well plate โดยคุณลักษณะการเจริญเติบโตของสเต็มเซลล์ของกล้ามเนื้อลายที่สกัดแยกจากกล้ามเนื้อลายของหนูทดลองช่วงพัฒนาการ เจริญเต็มวัย และชราภาพถูกตรวจสอบด้วยการแสดงออกของโปรตีน MyoD, myogenin และ myosin heavy chain (MHC) นอกจากนี้ในการศึกษาบทบาทของวิตามินดี 3 เซลล์จะได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ที่ความเข้มข้น 100 nM โดยเพาะเลี้ยงใน DMEM + 20% fetal bovine serum + 10% horse serum (growth-stimulating conditions) เพื่อศึกษาผลของวิตามินดี 3 ต่อการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ในสเต็มเซลล์ของกล้ามเนื้อลายที่สกัดแยกจากช่วงอายุต่างๆ

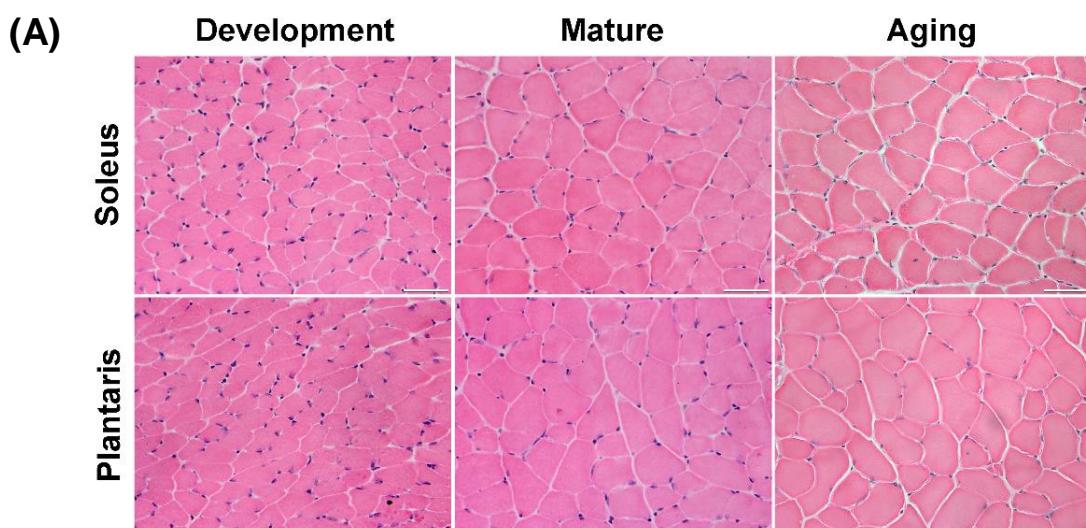
ภาพที่ 10 ภาพตัวอย่างสเต็มเซลล์ของกล้ามเนื้อลายที่ถูกทำการเพาะเลี้ยงเพื่อเพิ่มจำนวนในสารเพาะเลี้ยง DMEM + 20% fetal bovine serum + 5 ng/ml basic fibroblast growth factor

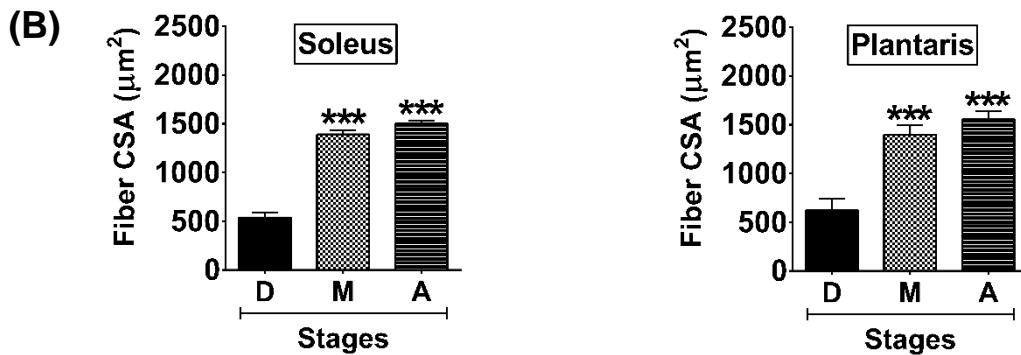

4. ผลการทดลอง (Results)

4.1) การศึกษากลไกการเจริญเติบโตของกล้ามเนื้อลายของหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ

(ผลงานวิจัยตามวัตถุประสงค์อย่างข้อที่ 1.1)

4.1.1) การวิเคราะห์การเปลี่ยนแปลงน้ำหนักกล้ามเนื้อลายและน้ำหนักตัวของหนูทดลอง

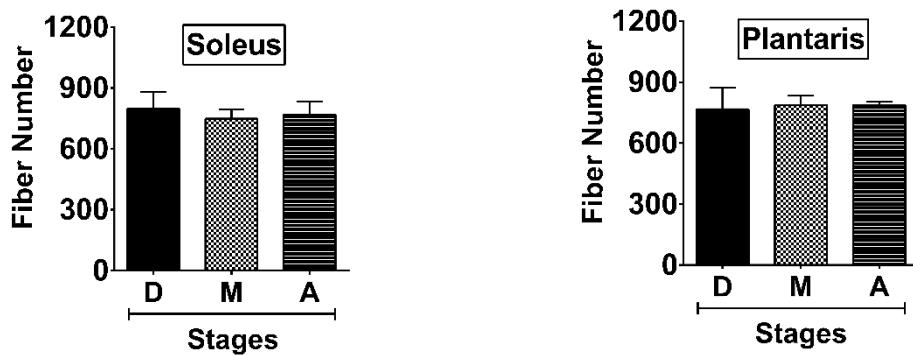

ผู้วิจัยพบว่าน้ำหนักของกล้ามเนื้อลายบริเวณ hindlimb ได้แก่ กล้ามเนื้อ soleus และ plantaris ที่ทำการศึกษามีการเพิ่มขึ้นอย่างมีนัยสำคัญในช่วงพัฒนาการไปเจริญเติมวัย โดยน้ำหนักของกล้ามเนื้อทั้งสองไม่มีการเปลี่ยนแปลงเมื่อเปรียบเทียบระหว่างช่วงเจริญเติมวัยและชราภาพ แม้ว่าน้ำหนักตัวของสัตว์ทดลองจะมีการเพิ่มขึ้นในช่วงดังกล่าว ดังแสดงในภาพที่ 11



ภาพที่ 11 น้ำหนักกล้ามเนื้อ soleus และ plantaris และน้ำหนักตัวของหนูทดลองเปรียบเทียบระหว่างช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) ($n=6$ ต่อกลุ่มการทดลอง) *** $p<0.001$ และ $\#p<0.001$ เปรียบเทียบกับช่วงพัฒนาการและเจริญเติมวัยตามลำดับ

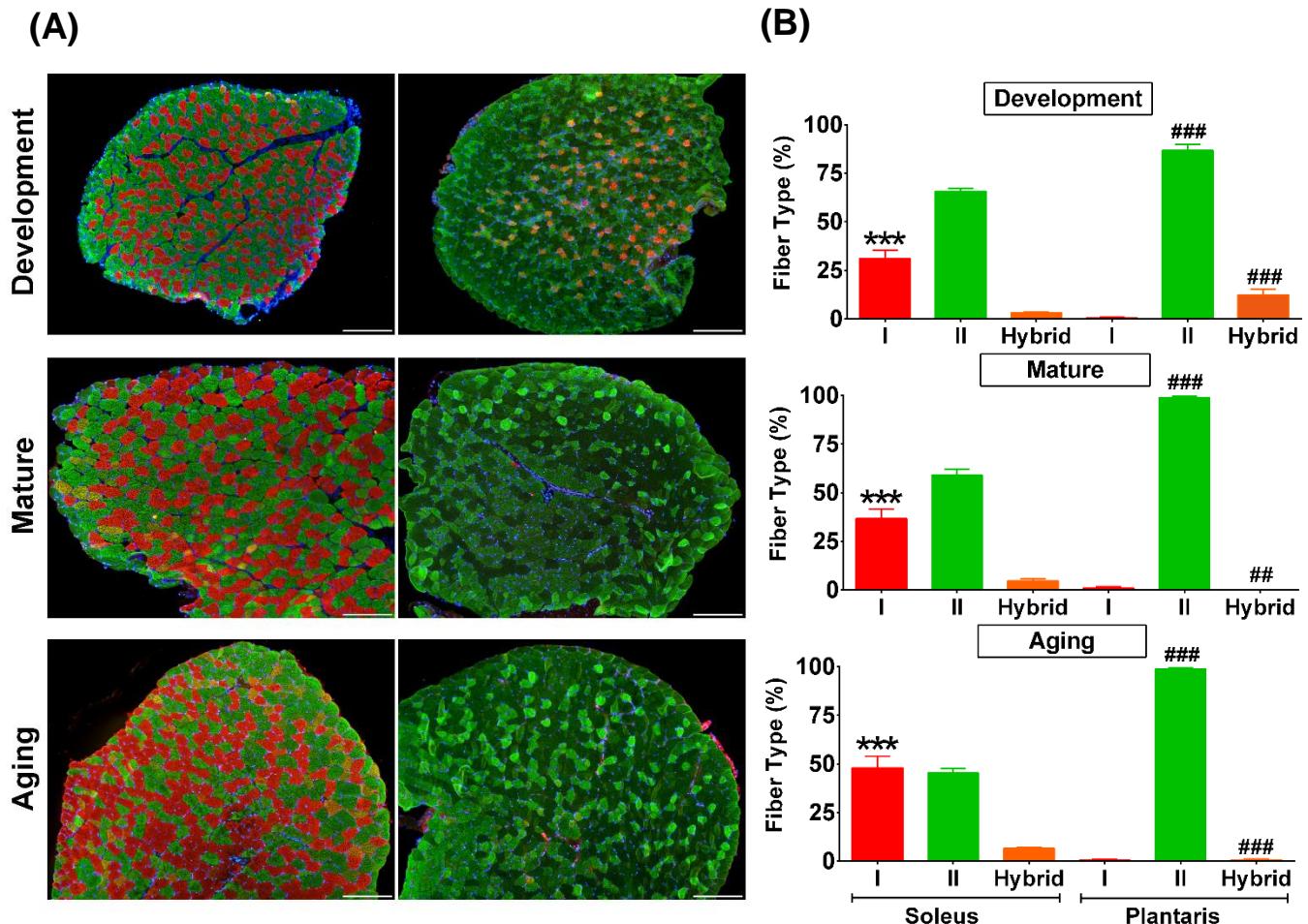
4.1.2) การวิเคราะห์ขนาดของเส้นใยกล้ามเนื้อลาย

ผู้วิจัยพบว่าขนาดของเส้นใยกล้ามเนื้อลาย (fiber CSA) ของกล้ามเนื้อ soleus และ plantaris มีการเพิ่มขึ้นอย่างมีนัยสำคัญในช่วงพัฒนาการไปยังเจริญเติมวัย โดยขนาดของเส้นใยกล้ามเนื้อลายไม่มีการเพิ่มขึ้นอีกเมื่อเปรียบเทียบระหว่างช่วงเจริญเติมวัยและชราภาพ ดังแสดงในภาพที่ 12



ภาพที่ 12 (A) ภาพแสดงคุณลักษณะเส้นใยกล้ามเนื้อลายของกล้ามเนื้อ soleus และ plantaris ในแต่ละช่วงของการเจริญเติบโต (scale bar = 50 μm) (B) การเปลี่ยนแปลงขนาดของเส้นใยกล้ามเนื้อลายของกล้ามเนื้อ soleus และ plantaris ระหว่างช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) (n=6 ต่อกลุ่มการทดลอง) ***p<0.001 เปรียบเทียบกับช่วงพัฒนาการ

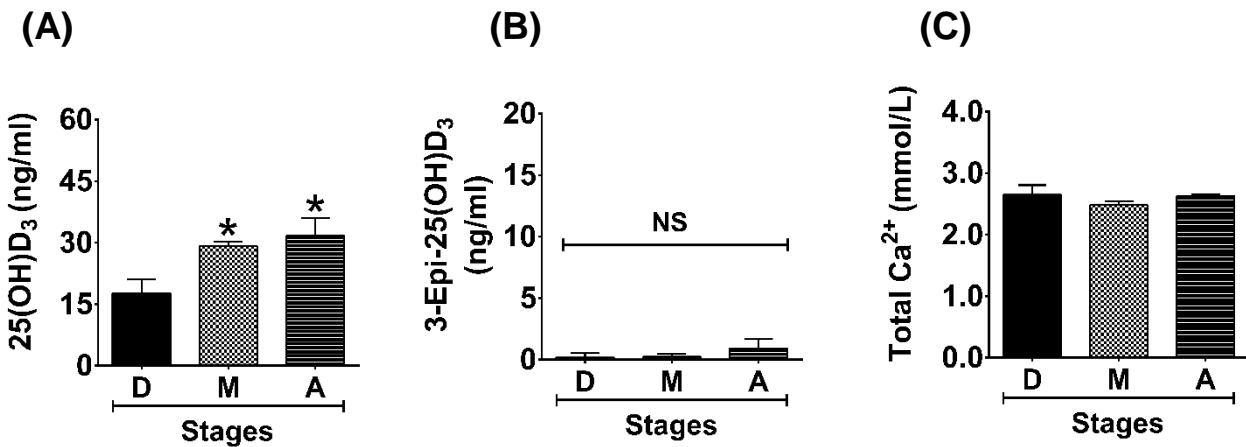
4.1.3) การวิเคราะห์จำนวนของเส้นใยกล้ามเนื้อลาย


ผู้จัดพิจารณาจำนวนเส้นใยกล้ามเนื้อลายของกล้ามเนื้อ soleus และ plantaris ที่ทำการศึกษาช่วงพัฒนาการไปยังช่วงเจริญเติมวัยและชราภาพไม่ได้มีความแตกต่างกันอย่างมีนัยสำคัญ ดังแสดงในภาพที่ 13 โดยผลการศึกษานี้แสดงให้เห็นว่าการเจริญเติบโตของกล้ามเนื้อลายใช้กระบวนการเพิ่มขนาด (hypertrophy) ไม่ใช่การเพิ่มจำนวน (hyperplasia)

ภาพที่ 13 การเปลี่ยนแปลงจำนวนเส้นใยกล้ามเนื้อลายของกล้ามเนื้อ soleus และ plantaris ระหว่างช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) (n=6 ต่อกลุ่มการทดลอง)

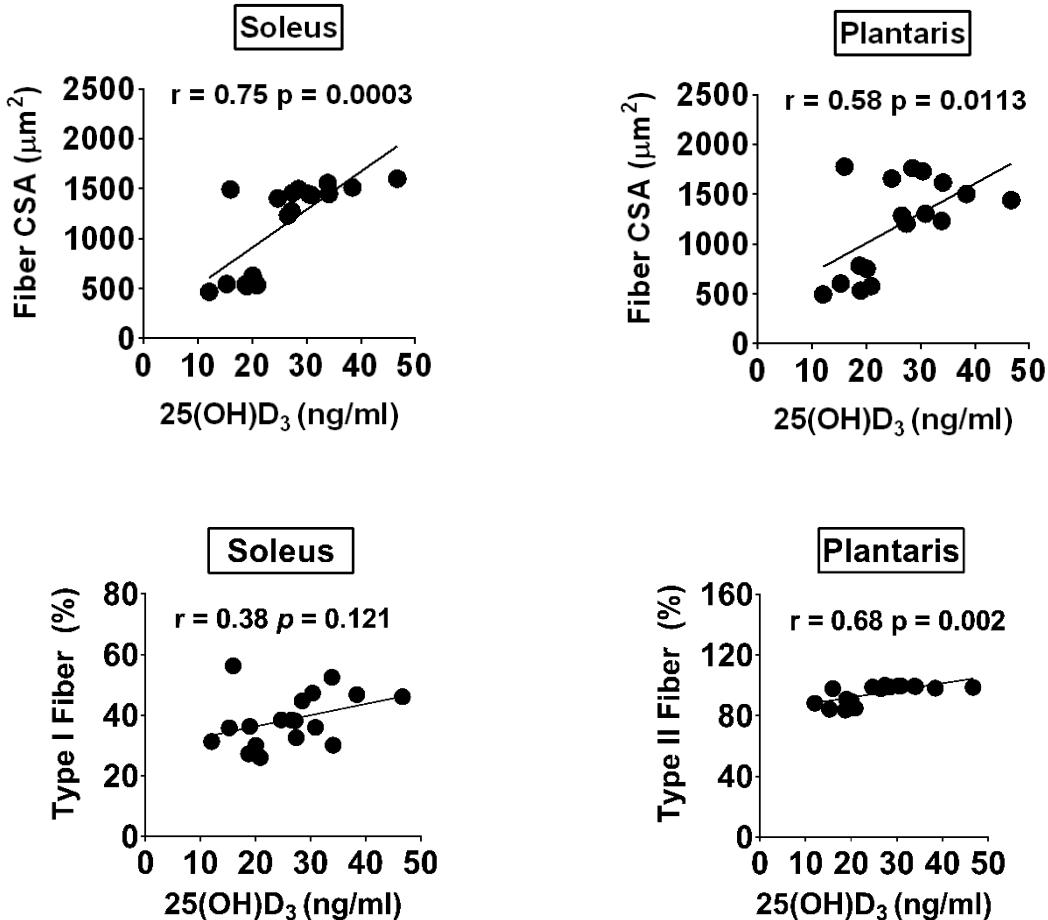
4.1.4) การศึกษานิดของเส้นใยกล้ามเนื้อลาย

ผลการศึกษาพบว่ากล้ามเนื้อ soleus มีเส้นใยกล้ามเนื้อลายชนิด type I มากกว่ากล้ามเนื้อ plantaris อย่างมีนัยสำคัญ และเส้นใยกล้ามเนื้อชนิด type I ของกล้ามเนื้อ soleus มีการเพิ่มมากขึ้นเมื่อเข้าสู่ช่วงชราภาพ ในทางตรงกันข้ามกล้ามเนื้อ plantaris มีองค์ประกอบของเส้นใยกล้ามเนื้อลายชนิด type II เป็นหลัก นอกจากนี้จำนวน hybrid fiber (เส้นใยกล้ามเนื้อลายที่มีการแสดงออกของโปรตีนที่พบได้ทั้งชนิด type I และ type II) ในกล้ามเนื้อ plantaris มีการลดลงอย่างชัดเจนหลังจากช่วงพัฒนาการ ซึ่งการเปลี่ยนแปลงดังกล่าวตรงข้ามกับกล้ามเนื้อ soleus ที่พบว่ามี hybrid fiber เพิ่มมากขึ้นในช่วงชราภาพ ดังแสดงในภาพที่ 14


ภาพที่ 14 การเปลี่ยนแปลงชนิดเส้นใยกล้ามเนื้อลายของกล้ามเนื้อ soleus และ plantaris ระหว่างช่วงพัฒนาการ (Development) เจริญเติบโต (Maturation) และชราภาพ (Aging) ($n=6$ ต่อกลุ่มการทดลอง)

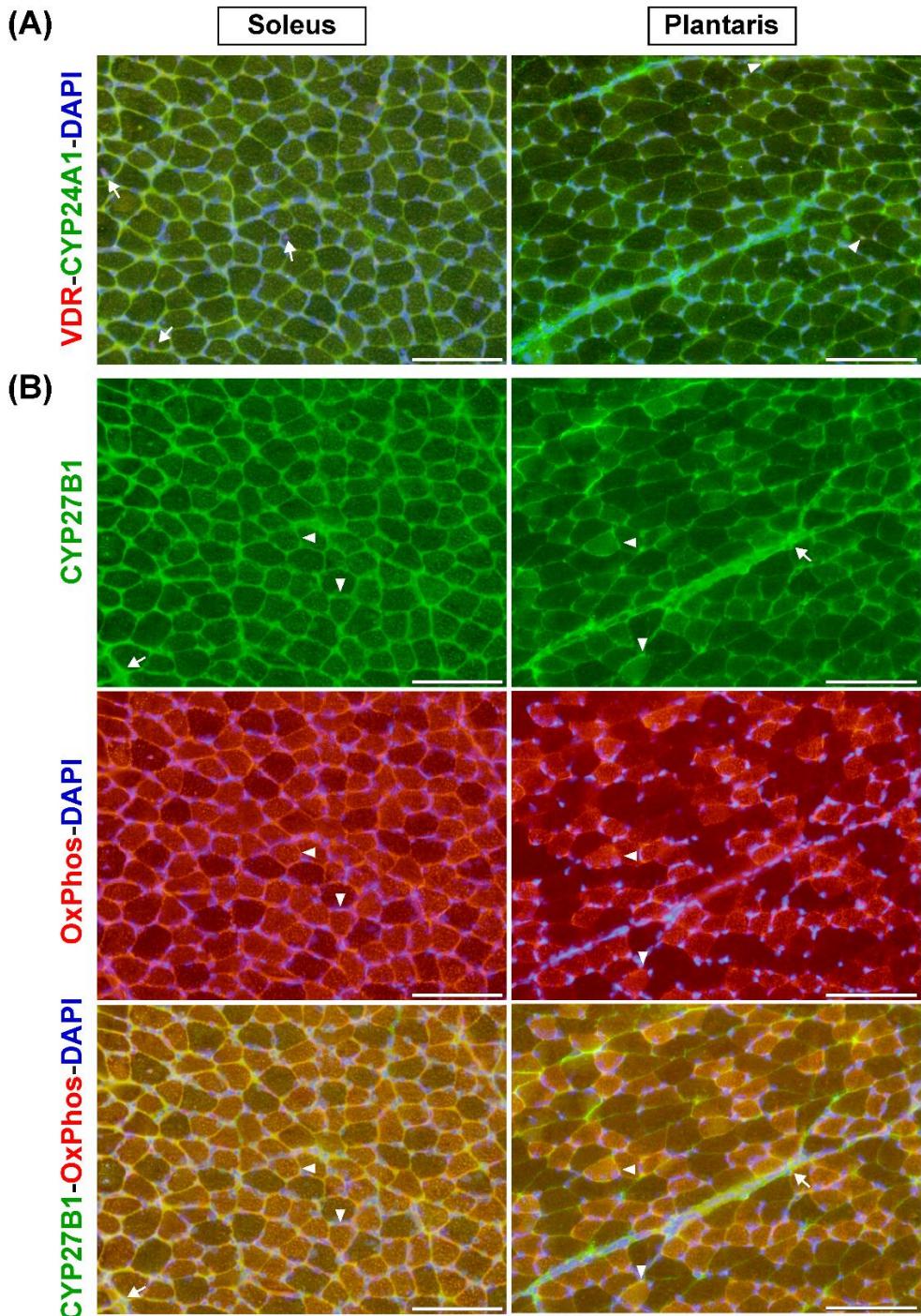
(A) ภาพแสดงองค์ประกอบเส้นใยกล้ามเนื้อลายชนิดต่างๆ ของกล้ามเนื้อ soleus และ plantaris ชนิด type I (สีแดง), ชนิด type II (สีเขียว) และชนิด hybrid (สีส้ม) (scale bar = 200 μ m) (B) สัดส่วนองค์ประกอบเส้นใยกล้ามเนื้อลายชนิดต่างๆ ของกล้ามเนื้อ soleus และ plantaris ในแต่ละช่วงอายุ *** $p<0.0001$ เปรียบเทียบกับเส้นใยกล้ามเนื้อลายชนิด type I ของกล้ามเนื้อ plantaris ## $p<0.001$, ### $p<0.0001$ เปรียบเทียบกับเส้นใยกล้ามเนื้อลายชนิด hybrid/type II ของกล้ามเนื้อ soleus ตามลำดับ

4.2) การศึกษาความสัมพันธ์ของระดับซีรั่มวิตามินดีและระดับการแสดงออกของโปรตีนที่เกี่ยวข้องกับการทำงานของวิตามินดีในกล้ามเนื้อลายต่อกลไกการเจริญเติบโตของกล้ามเนื้อลายในหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ
(ผลงานวิจัยตามวัตถุประสงค์อยู่ข้อที่ 1.2)

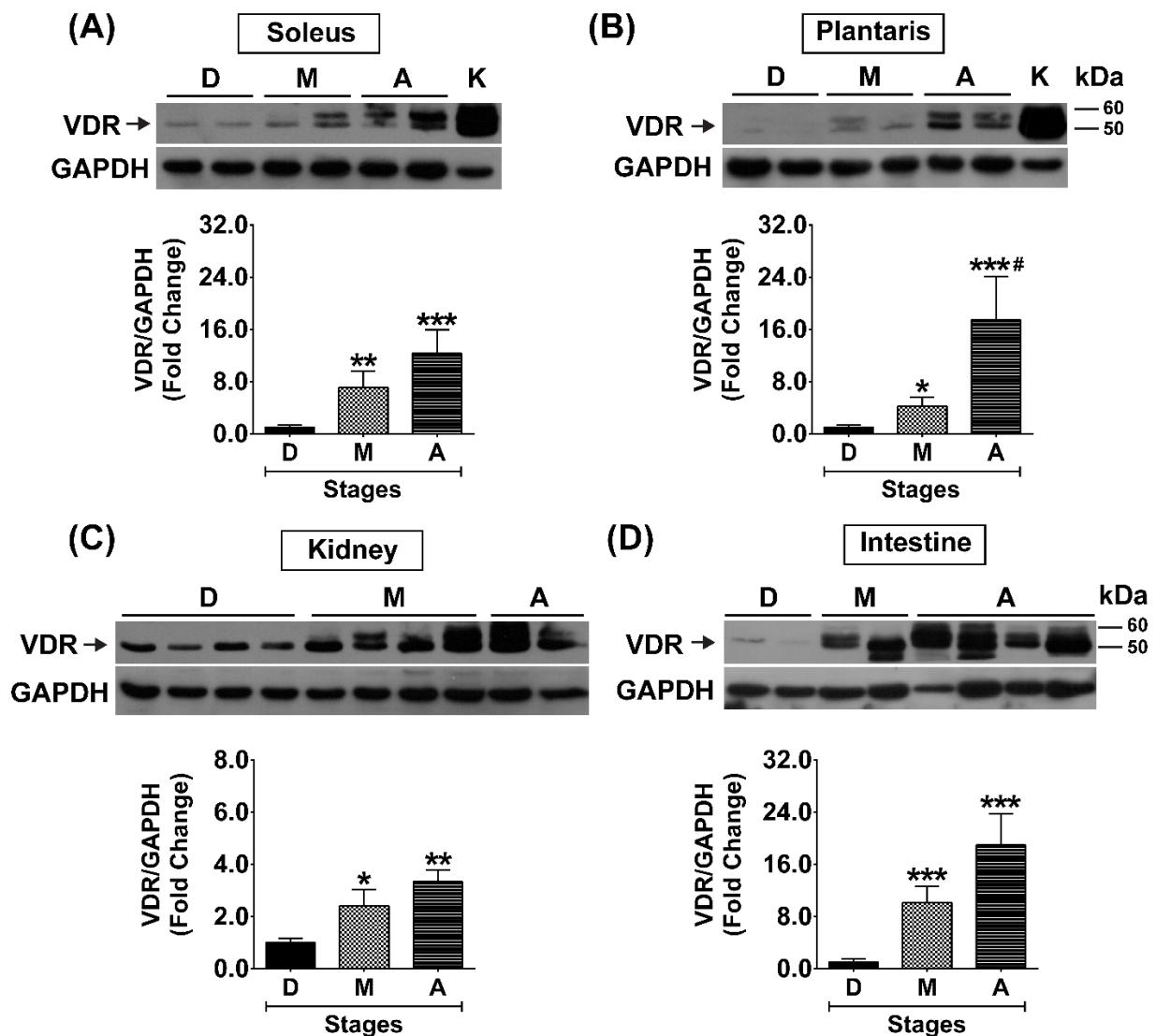

4.2.1) การศึกษาระดับซีรั่มวิตามินดี

ผู้วิจัยพบว่าระดับของวิตามินดี 3 ในเลือดที่ตรวจวัด [$25(\text{OH})\text{D}_3$] มีค่าต่ำในช่วงพัฒนาการ โดยระดับของ $25(\text{OH})\text{D}_3$ มีค่าเพิ่มมากขึ้นอย่างมีนัยสำคัญในช่วงเจริญเติมวัย และมีค่าต่ำกว่าในช่วงชราภาพ (ภาพที่ 15A) ในขณะที่ระดับของ 3-Epi- $25(\text{OH})\text{D}_3$ มีค่าต่ำมากและไม่มีการเปลี่ยนแปลงอย่างมีนัยสำคัญตลอดช่วงอายุที่ศึกษา (ภาพที่ 15B) นอกจากนี้ผลการศึกษาไม่พบระดับ $25(\text{OH})\text{D}_2/3\text{-Epi-}25(\text{OH})\text{D}_2$ ในเลือดแต่อย่างใด ขณะที่ระดับแคลเซียมในเลือดมีค่าต่ำกว่าในช่วงพัฒนาการ เจริญเติมวัย และชราภาพ (ภาพที่ 15C)

ภาพที่ 15 การเปลี่ยนแปลงระดับ (A) ซีรั่ม $25(\text{OH})\text{D}_3$, (B) ซีรั่ม 3-Epi- $25(\text{OH})\text{D}_3$ และ (C) ซีรั่มแคลเซียมของหนูทดลองช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) ($n=6$ ต่อกลุ่มการทดลอง) * $p<0.05$ เปรียบเทียบกับช่วงพัฒนาการ

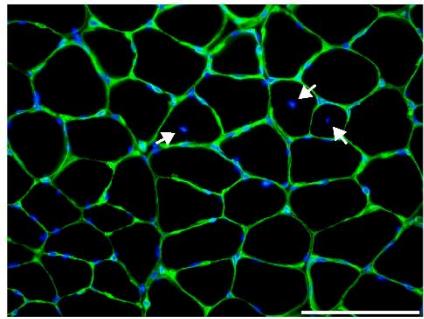

จากการวิเคราะห์ข้างต้นพบว่าระดับ $25(\text{OH})\text{D}_3$ ในเลือดมีค่าแตกต่างกันเมื่อเปรียบเทียบระหว่างช่วงพัฒนาการกับเจริญเติมวัยและชราภาพ ผู้วิจัยจึงได้ทำการศึกษาความสัมพันธ์ของระดับ $25(\text{OH})\text{D}_3$ ต่อการเพิ่มขนาดของเส้นใยกล้ามเนื้อลาย (fiber CSA) และการเปลี่ยนแปลงชนิดของเส้นใยกล้ามเนื้อลาย (fiber type composition) ของกล้ามเนื้อ soleus และ plantaris โดยผลการศึกษาพบว่าระดับ $25(\text{OH})\text{D}_3$ มีความสัมพันธ์ในเชิงบวกกับขนาดเส้นใยกล้ามเนื้อลายของกล้ามเนื้อ soleus ($r = 0.75$ $p = 0.0003$) และ plantaris ($r = 0.58$ $p = 0.0113$) อย่างไรก็ตามระดับ $25(\text{OH})\text{D}_3$ มีความสัมพันธ์เชิงบวกกับปริมาณเส้นใยกล้ามเนื้อลายชนิด type II ของกล้ามเนื้อ plantaris ($r = 0.68$ $p = 0.002$) เท่านั้น ดังแสดงในภาพที่ 16

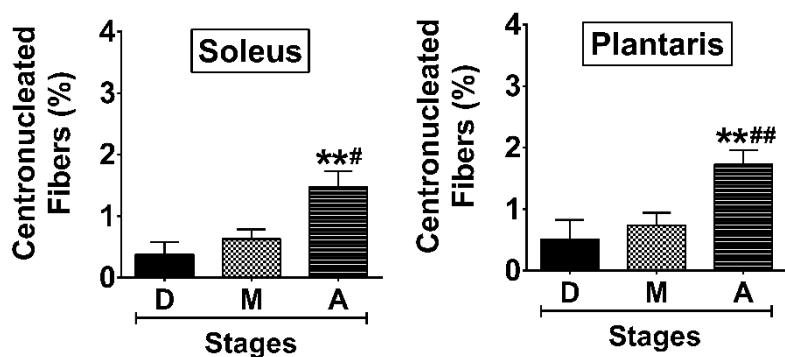
ภาพที่ 16 ความสัมพันธ์ของระดับซีรั่ม 25(OH)D₃ กับขนาดพื้นที่หน้าตัดเส้นไขกล้ามเนื้อลาย (fiber CSA) และชนิดเส้นไขกล้ามเนื้อลาย (fiber type composition) ของกล้ามเนื้อ soleus และ plantaris ช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) (n=6 ต่อกลุ่มอายุที่ทำการศึกษา รวมทั้งสิ้น n=18)


4.2.2) การศึกษาการแสดงออกของโปรตีนตัวรับสัญญาณและกระบวนการเมแทบอลิซึมของวิตามินดีในกล้ามเนื้อลายของหนูทดลอง

ผู้วิจัยได้ทำการศึกษาการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และโปรตีนที่เกี่ยวข้องกับเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ร่วมกับโปรตีน ATP synthase (Complex V) subunit alpha (OxPhos) ซึ่งเป็นโปรตีนที่มีการแสดงออกระดับสูงในเส้นไขกล้ามเนื้อลายที่มี mitochondria ปริมาณมากเพื่อใช้จำแนกคุณสมบัติของกล้ามเนื้อ soleus และ plantaris ที่ศึกษาด้วยเทคนิค immunohistochemistry ดังแสดงในภาพที่ 17 โดยผลการศึกษาพบว่าโปรตีนตัวรับสัญญาณวิตามินดี (VDR) สามารถถูกพบได้ในนิวเคลียสของกล้ามเนื้อลาย (ภาพที่ 17A) ขณะที่การแสดงออกของโปรตีนที่เกี่ยวข้องกับเมแทบอลิซึมของวิตามินดีมีแนวโน้มที่จะมีความจำเพาะต่อเส้นไขกล้ามเนื้อลายที่มีปริมาณ mitochondria ในระดับสูง รวมถึงพบรูปการแสดงออกที่บริเวณเมทริกซ์ออกเซลล์ (ภาพที่ 17A-B)

ภาพที่ 17 ภาพตัวอย่างการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และโปรตีนที่เกี่ยวข้องกับเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ในกล้ามเนื้อลายช้างพัฒนาการ (A) ลูกครรแสดงถึงนิวเคลียสที่มีการแสดงออกของโปรตีน VDR ขณะที่หัวลูกครรแสดงถึงบริเวณที่มีการแสดงออกของโปรตีน VDR ร่วมกับโปรตีน CYP24A1 (B) ลูกครรแสดงถึงการแสดงออกของโปรตีน CYP27B1 บริเวณเมทริกซ์นอกเซลล์ ขณะที่หัวลูกครรแสดงถึงเส้นใยกล้ามเนื้อลายที่มีไมโตรคอนเดรียในระดับสูง โดยโปรตีน OxPhos ถูกใช้แสดงระดับของไมโตรคอนเดรียในเส้นใยกล้ามเนื้อลายของกล้ามเนื้อ soleus และ plantaris (scale bar = 100 μ m)

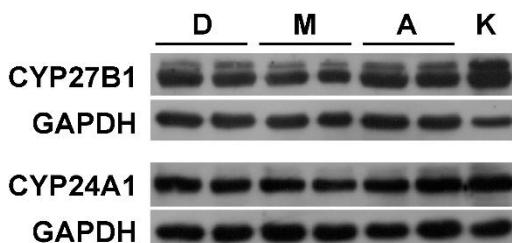

นอกเหนือไปจากนั้นการวิเคราะห์เชิงปริมาณด้วยเทคนิค Western blot พบว่าระดับการแสดงออกของโปรตีน VDR ซึ่งเป็นตัวรับสัญญาณการทำงานของวิตามินดีทั้งในกล้ามเนื้อ soleus และ plantaris มีระดับต่ำในกล้ามเนื้ออย่างหนทางด่องช่วงพัฒนาการ อย่างไรก็ตามระดับโปรตีน VDR เพิ่มสูงขึ้นอย่างมีนัยสำคัญในกล้ามเนื้อ soleus และ plantaris (ภาพที่ 18A-B) โดยเฉพาะเพิ่มขึ้นอย่างมากในกล้ามเนื้อ plantaris ช่วงชราภาพ ซึ่งลักษณะการเปลี่ยนแปลงของระดับโปรตีน VDR ในกล้ามเนื้ออย่างมีความสอดคล้องกับการเพิ่มขึ้นของโปรตีน VDR ในเนื้อยื่อที่มีความจำเพาะและตอบสนองต่อวิตามินดี ได้แก่ เนื้อยื่อไกและลำไส้เล็ก (ภาพที่ 18C-D)


ภาพที่ 18 การเปลี่ยนแปลงระดับโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) ของ (A) กล้ามเนื้อ soleus (B) กล้ามเนื้อ plantaris (C) เนื้อยื่อไก (kidney) ($n=6$ ต่อกลุ่มการทดลอง) และ (D) ลำไส้เล็ก (intestine; duodenum) ($n=5-6$ ต่อกลุ่มการทดลอง) ระดับโปรตีน VDR ถูกเปรียบเทียบกับระดับโปรตีน GAPDH ที่ถูกใช้เป็น loading control โดยค่าที่แสดงคือจำนวนเท่าของ การเปลี่ยนแปลงของโปรตีน VDR เมื่อเทียบกับการแสดงออกในช่วงพัฒนาการ * $p<0.05$, ** $p<0.01$, *** $p<0.001$ เปรียบเทียบกับช่วงพัฒนาการ # $p<0.05$ เปรียบเทียบกับช่วงเจริญเติมวัย

โดยการเพิ่มขึ้นของโปรตีน VDR ในกล้ามเนื้อ soleus และ plantaris มีความสัมพันธ์กับการเพิ่มขึ้นของปริมาณเส้นใยกล้ามเนื้อลายที่ฟื้นฟูสภาพในช่วงชราภาพ ดังแสดงในภาพที่ 19

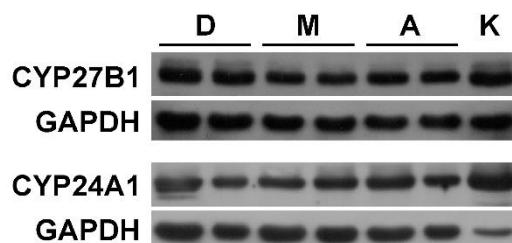
(A)

(B)



ภาพที่ 19 (A) ภาพแสดงเส้นใยกล้ามเนื้อลายที่ฟื้นฟูสภาพ (ลูกศร) (scale bar = 50 μ m) (B) เปอร์เซนต์เส้นใยกล้ามเนื้อลายที่ฟื้นฟูสภาพช่วงพัฒนาการ (D) เจริญเติบโต (M) และชราภาพ (A) ($n=6$ ต่อกลุ่มการทดลอง) ** $p<0.01$ เปรียบเทียบกับช่วงพัฒนาการ # $p<0.05$, ## $p<0.01$ เปรียบเทียบกับช่วงเจริญเติบโต

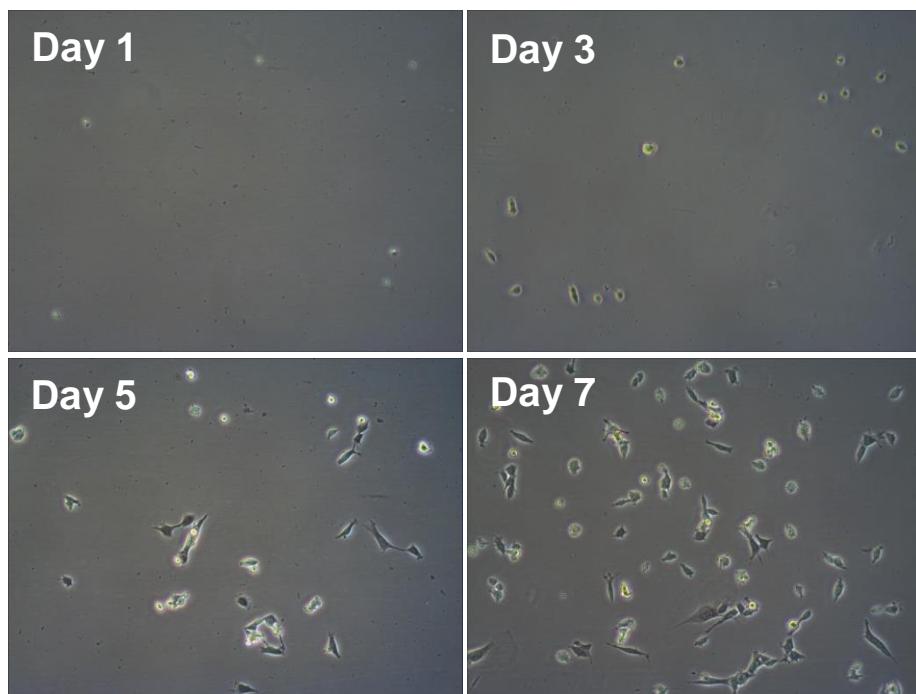
ในทางตรงกันข้ามผู้วิจัยพบว่าโปรตีน CYP27B1 และ CYP24A1 ซึ่งเป็นโปรตีนสำคัญที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดีในเนื้อยื่อเป้าหมายไม่มีการเปลี่ยนแปลงอย่างมีนัยสำคัญทั้งในกล้ามเนื้อ soleus และ plantaris ในแต่ละช่วงอายุ ดังแสดงในภาพที่ 20


(A)

Soleus

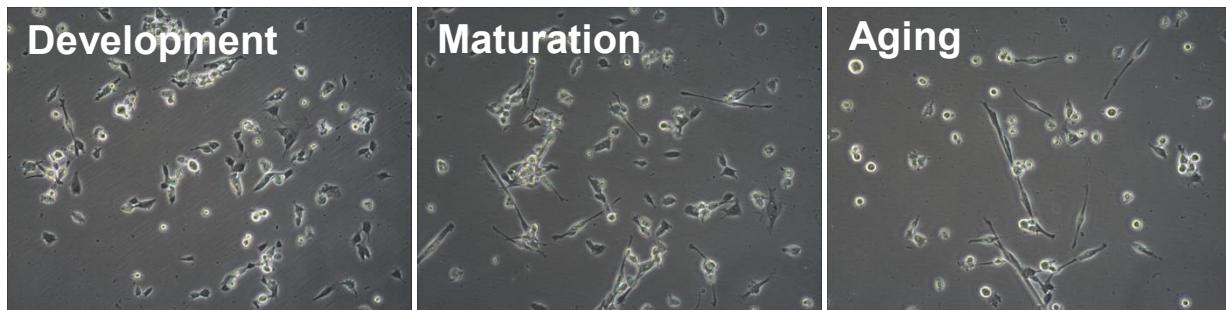
(B)

Plantaris


ภาพที่ 20 ผลการเปลี่ยนแปลงของระดับโปรตีน CYP27B1 และ CYP24A1 ในกล้ามเนื้อ soleus (A) และ plantaris (B) ช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) ($n=6$ ต่อกลุ่มการทดลอง), K = kidney (positive control) โดยระดับโปรตีนทั้งสองได้ถูกเปรียบเทียบกับระดับโปรตีน GAPDH ที่ใช้เป็น loading control และค่าที่แสดงคือจำนวนเท่าของ การเปลี่ยนแปลงของโปรตีน CYP27B1 และ CYP24A1 เมื่อเทียบกับระดับการแสดงออกในช่วงพัฒนาการ

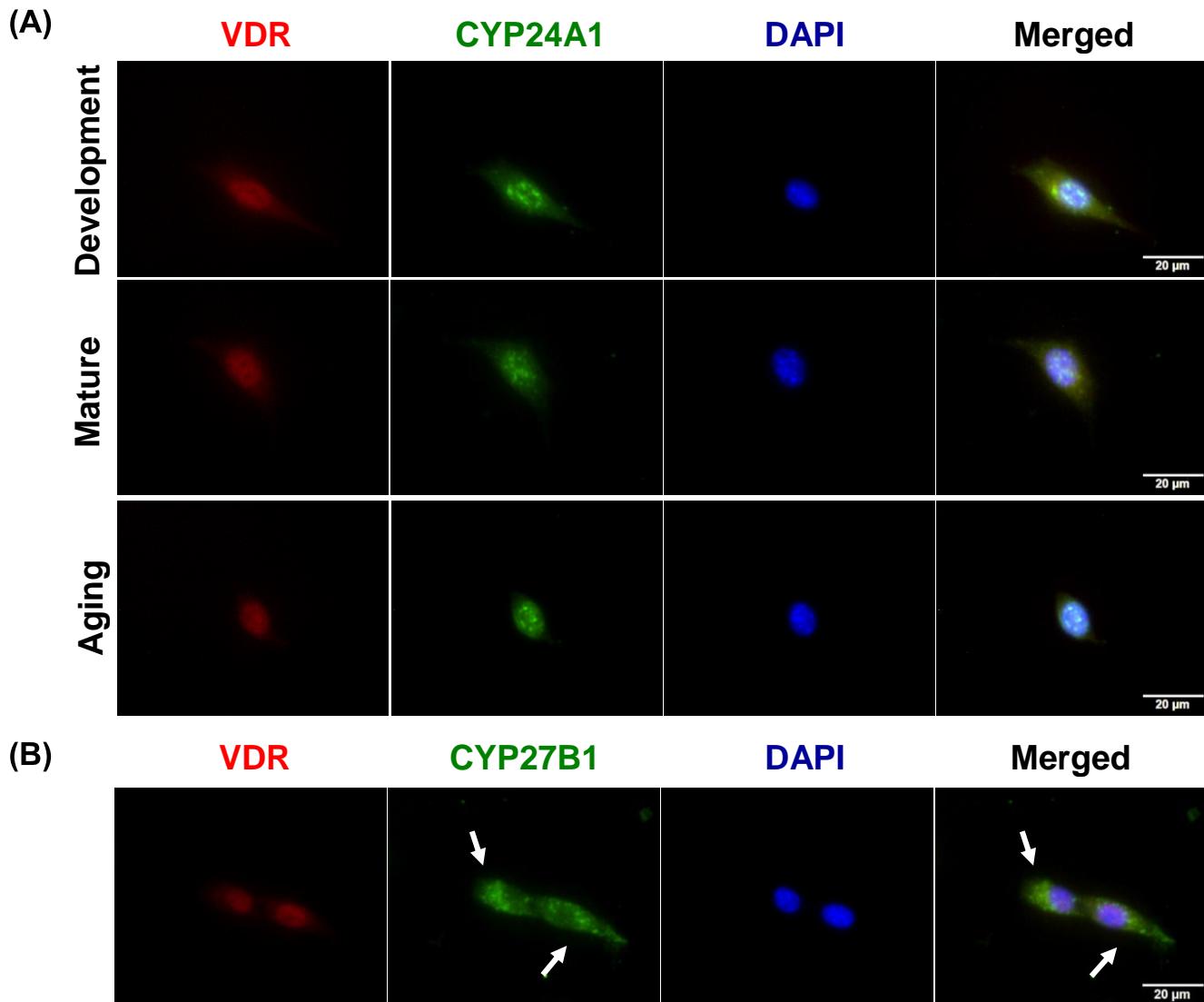
4.3) การศึกษาผลของวิตามินดี 3 ต่อสเต็มเซลล์ของกล้ามเนื้อลายของหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ

(ผลงานวิจัยตามวัตถุประสงค์อยู่ข้อที่ 1.3)

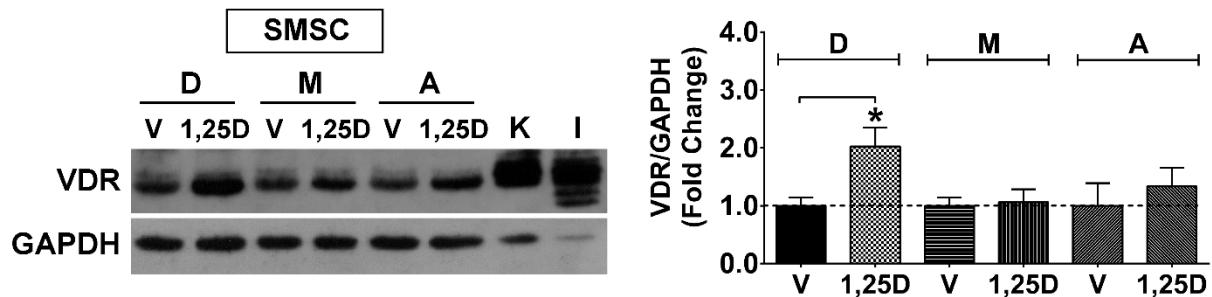

4.3.1) การเพาะเลี้ยงสเต็มเซลล์ของกล้ามเนื้อลายของหนูทดลองช่วงพัฒนาการ เจริญเติมวัย และชราภาพ

ภายหลังจากที่ผู้วิจัยได้ทำการสกัดแยกสเต็มเซลล์ของกล้ามเนื้อลายจากหนูทดลองในช่วงพัฒนาการ เจริญเติมวัย และชราภาพ ผู้วิจัยพบว่าหนูทดลองในกลุ่มชราภาพมีจำนวนสเต็มเซลล์ของกล้ามเนื้อลายน้อยกว่ากลุ่มพัฒนาการและเจริญเติมวัย ซึ่งสามารถสกัดได้ประมาณ 1.2×10^5 เซลล์ต่อหนูทดลอง 1 ตัว เมื่อเทียบกับกลุ่มพัฒนาการและเจริญเติมวัยที่สามารถสกัดแยกได้ประมาณ $1.5-2.0 \times 10^5$ เซลล์ โดยลักษณะการเพาะเลี้ยงสเต็มเซลล์ของกล้ามเนื้อลายได้ถูกแสดงในภาพที่ 21

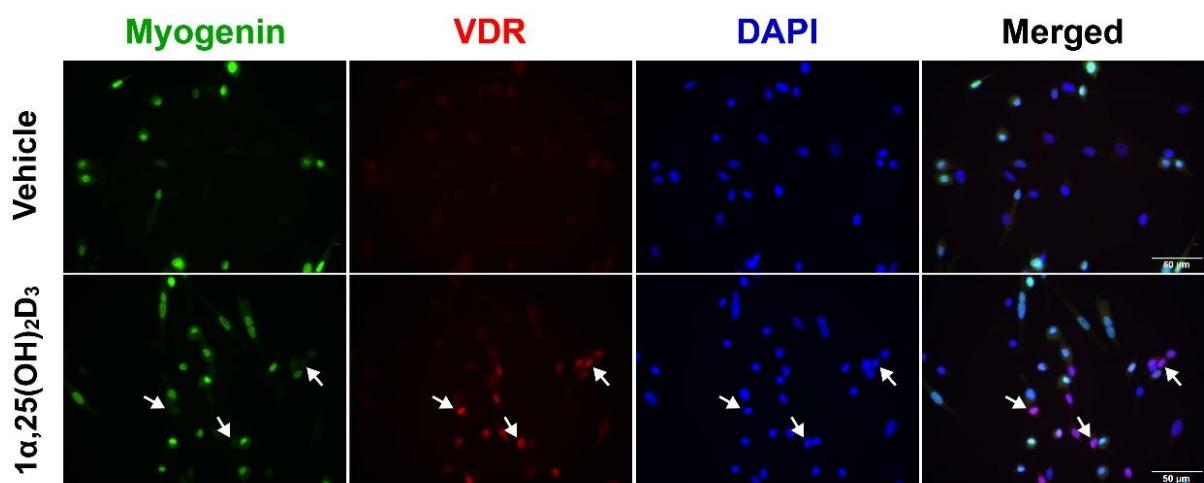
ภาพที่ 21 ภาพตัวอย่างสเต็มเซลล์ของกล้ามเนื้อลายที่ถูกทำการเพาะเลี้ยงเพื่อเพิ่มจำนวนในสารเพาะเลี้ยง DMEM + 20% fetal bovine serum + 5 ng/ml basic fibroblast growth factor ในตู้เพาะเลี้ยง (CO_2 incubator) ที่มีการควบคุมอุณหภูมิในขณะเพาะเลี้ยงที่ 37 องศาเซลเซียส และระดับ CO_2 ที่ 5%


โดยลักษณะสเต็มเซลล์ของกล้ามเนื้อลายในช่วงพัฒนาการ เจริญเต็มวัย และชราภาพ เมื่อทำการเพาะเลี้ยงเป็นระยะเวลา 7 วัน ได้ถูกเปรียบเทียบและแสดงในภาพที่ 22

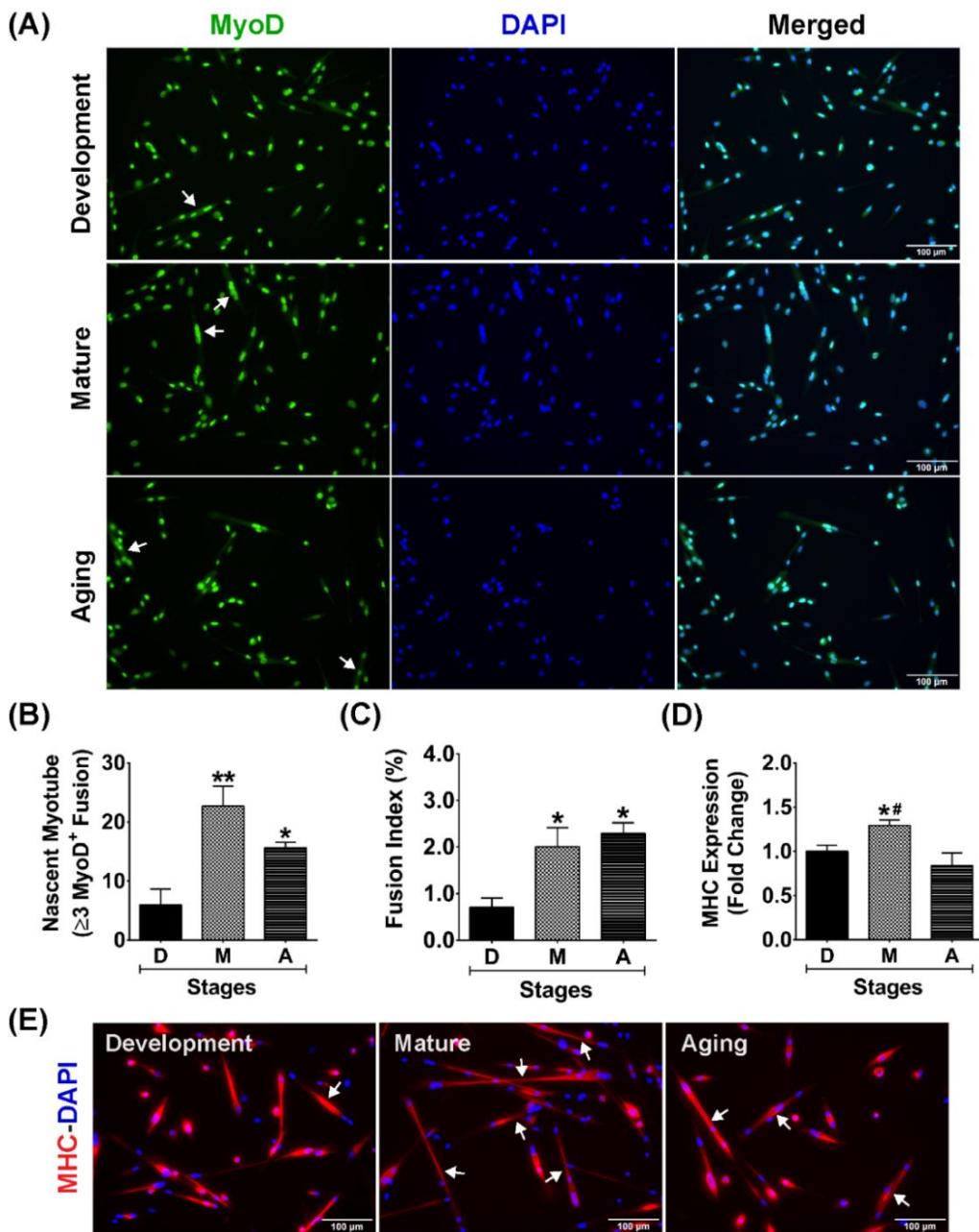
ภาพที่ 22 ภาพสเต็มเซลล์ของกล้ามเนื้อลายจากหนูทดลองช่วงพัฒนาการ (Development) เจริญเต็มวัย (Maturation) และชราภาพ (Aging) ที่ถูกเพาะเลี้ยงด้วย DMEM + 20% fetal bovine serum + 5 ng/ml basic fibroblast growth factor ในตู้ CO_2 incubator ที่มีการควบคุมอุณหภูมิในขณะเพาะเลี้ยงที่ 37 องศาเซลเซียสและระดับ CO_2 ที่ 5% เป็นเวลา 7 วัน


4.3.2) การศึกษาผลของวิตามินดี 3 ต่อสเต็มเซลล์ของกล้ามเนื้อลายของหนูทดลองช่วงพัฒนาการ เจริญเต็มวัย และชราภาพ

จากการศึกษาด้วยเทคนิค immunocytochemistry สเต็มเซลล์ของกล้ามเนื้อลายในช่วงพัฒนาการ เจริญเต็มวัย และชราภาพ ที่ทำการเพาะเลี้ยงในหลอดทดลอง (ความจำเพาะของเซลล์ถูกยืนยันด้วยการแสดงออกของโปรตีน MyoD) ได้มีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) รวมถึงเซลล์สามารถตอบสนองต่อการได้รับแอกทีฟฟอร์มของวิตามินดี 3 [$1\alpha,25(\text{OH})_2\text{D}_3$] โดยโปรตีนตัวรับสัญญาณวิตามินดี (VDR) มีการแสดงออกในนิวเคลียสของเซลล์ร่วมกับโปรตีน CYP24A1 ในขณะที่ไม่พบว่าโปรตีน CYP27B1 มีการแสดงออกในนิวเคลียสภายหลังจากได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ แต่อย่างใด ดังแสดงในภาพที่ 23 ซึ่งผลการศึกษาดังกล่าวแสดงให้เห็นว่าวิตามินดี 3 น่าจะมีบทบาทสำคัญในการควบคุมการทำงานของสเต็มเซลล์ของกล้ามเนื้อลายผ่านทางตัวรับสัญญาณวิตามินดี นอกจากนี้ผลการศึกษานี้สนับสนุนการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ที่พบในกล้ามเนื้อลายของสัตว์ทดลองว่า น่าจะเกี่ยวข้องกับการทำงานของสเต็มเซลล์ของกล้ามเนื้อลาย


ภาพที่ 23 ภาพการแสดงออกของโปรตีนที่เกี่ยวข้องกับตัวรับสัญญาณของวิตามินดีและกระบวนการเมแทบอลีซึมของวิตามินดีในสเต็มเซลล์ของกล้ามเนื้อลายช่วงพัฒนาการ (Development) เจริญเติมวัย (Maturation) และชราภาพ (Aging) ภายหลังจากได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ที่ความเข้มข้น 100 nM เป็นเวลา 24 ชั่วโมง (A) ภาพการแสดงออกโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ที่มีการแสดงออกร่วมกับโปรตีน CYP24A1 และ (B) ภาพการแสดงออกโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และโปรตีน CYP27B1 ในสเต็มเซลล์ของกล้ามเนื้อลาย

นอกจากนี้ผู้วิจัยพบว่าเมื่อสเต็มเซลล์ของกล้ามเนื้อลายช่วงพัฒนาการ เจริญเติมวัย และชราภาพได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ต่อเนื่องเป็นเวลา 48 ชั่วโมง (ได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ทุก 24 ชั่วโมง) เซลล์จากแต่ละช่วงอายุมีการแสดงออกของระดับตัวรับสัญญาณของวิตามินดีที่แตกต่างกัน โดยมีการตอบสนองเพิ่มขึ้นอย่างมีนัยสำคัญในเซลล์ที่สกัดแยกจากกล้ามเนื้อลายช่วงพัฒนาการ แต่ผลการตอบสนองดังกล่าวลดลงในเซลล์ช่วงเจริญวัยและชราภาพเมื่อถูกวิเคราะห์ด้วยเทคนิค Western blot ดังแสดงในภาพที่ 24


ภาพที่ 24 การแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ของสเต็มเซลล์ของกล้ามเนื้อลายช่วงพัฒนาการ (D) เจริญเติมวัย (M) และชราภาพ (A) ภายหลังจากได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ที่ความเข้มข้น 100 nM ต่อเนื่องเป็นเวลา 48 ชั่วโมง (เซลล์ได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ทุก 24 ชั่วโมง) โดยการแสดงออกของโปรตีน VDR ถูกเปรียบเทียบกับโปรตีน GAPDH (โปรตีนควบคุมในการศึกษา) ก่อนทำการเปรียบเทียบกับกลุ่ม vehicle (V) * $p<0.05$ เปรียบเทียบกับช่วงพัฒนาการ K = kidney I = intestine (positive controls)

จากการทดลองข้างต้น ผู้วิจัยพบว่าการตอบสนองต่อ $1\alpha,25(\text{OH})_2\text{D}_3$ มีความสัมพันธ์กับระยะการเปลี่ยนแปลงรูปร่าง (differentiation) ของเซลล์เมื่อได้รับสารกระตุ้นการเจริญเติบโต โดยพบว่าการแสดงออกของตัวรับสัญญาณวิตามินดี (VDR) ในสเต็มเซลล์ของกล้ามเนื้อลายจะมีการแสดงออกขณะที่เซลล์อยู่ในระยะที่ไม่เปลี่ยนแปลงรูปร่าง (undifferentiated) ซึ่งพบได้อย่างมีนัยสำคัญในสเต็มเซลล์ของกล้ามเนื้อลายช่วงพัฒนาการ ดังแสดงในภาพที่ 25

ภาพที่ 25 ภาพสเต็มเซลล์ของกล้ามเนื้อลายช่วงพัฒนาการ (Development) ในระยะที่ไม่มีการเปลี่ยนแปลงรูปร่าง (undifferentiated) ไปเป็นเส้นใยกล้ามเนื้อลาย (Myogenin⁻) ต่อการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) (ลูกครรภ์) ภายหลังจากได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ที่ความเข้มข้น 100 nM ต่อเนื่องเป็นเวลา 48 ชั่วโมง (เซลล์ได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ทุก 24 ชั่วโมง)

คุณสมบัติการเข้าสู่ระยะการเปลี่ยนแปลงรูปร่างที่แตกต่างกันในสเต็มเซลล์ของกล้ามเนื้อลายแต่ละช่วงอายุได้ถูกแสดงในภาพที่ 26 โดยการรวมตัวกันของนิวเคลียส (fusion index) เพื่อเริ่มกระบวนการเปลี่ยนแปลงรูปร่างไปเป็นเส้นใยกล้ามเนื้อลาย (nascent myotube) เพิ่มขึ้นอย่างมีนัยสำคัญในเซลล์กลุ่มเจริญเติบโตและชราภาพเมื่อได้รับสารกระตุ้นการเจริญเติบโตเป็นเวลา 48 ชั่วโมง

ภาพที่ 26 (A-D) คุณลักษณะการเปลี่ยนแปลงรูปร่าง (differentiation) ของสเต็มเซลล์ของกล้ามเนื้อลายช่วงพัฒนาการ เจริญเติบโต และชราภาพ เมื่อถูกเพาะเลี้ยงใน DMEM + 20% fetal bovine serum + 10% horse serum (growth-stimulating conditions) (E) ภาพแสดงการสร้างเส้นใยกล้ามเนื้อลายในหลอดทดลองที่ถูกยืนยันด้วยการแสดงออกของโปรตีน myosin heavy chain (MHC) * $p<0.05$, ** $p<0.01$ เปรียบเทียบกับช่วงพัฒนาการ (D) # $p<0.01$ เปรียบเทียบกับช่วงชราภาพ (A)

5. สรุปและวิจารณ์ผลการทดลอง

ในอดีตที่ผ่านมา มีรายงานการวิจัยที่แสดงถึงความสัมพันธ์ของระดับ 25(OH)D₃ ในเลือดกับความแข็งแรงของกล้ามเนื้อลาย เช่น ที่พบได้ในผู้สูงอายุที่มีสภาวะกล้ามเนื้อลายอ่อนแรงร่วมกับระดับของวิตามินดี 3 ในเลือดที่ต่ำกว่าปกติ (Mowé *et al.*, 1999; Visser *et al.*, 2003) ด้วยเหตุผลดังกล่าวจึงได้มีรายงานการวิจัยที่แสดงให้เห็นว่าผู้สูงอายุควรได้รับวิตามินดีเสริมเพื่อเพิ่มประสิทธิภาพการทำงานของกล้ามเนื้อลาย (Verhaar *et al.*, 2000; Sato *et al.*, 2005; Moreira-Pfrimer *et al.*, 2009; Pfeifer *et al.*, 2009; Cangussu *et al.*, 2015) อย่างไรก็ตามในปัจจุบันยังไม่มีงานวิจัยที่ศึกษาถึงความสัมพันธ์ระหว่างระดับของ 25(OH)D₃ ในเลือดกับการเจริญเติบโตของกล้ามเนื้อลายตั้งแต่พัฒนาการ เจริญเติมวัย ไปจนถึงระยะเริ่มต้นของการซราภาพ โดยการศึกษาครั้งนี้แสดงให้เห็นว่าการเพิ่มขนาดของเส้นใยกล้ามเนื้อลายช่วงพัฒนาการไปยังเจริญเติมวัย มีความสัมพันธ์เชิงบวกกับระดับ 25(OH)D₃ ในเลือด อย่างไรก็ตามในช่วงพัฒนาการนั้นพบว่ามีระดับ 25(OH)D₃ ในเลือดที่ต่ำ โดยคาดว่าจะเกิดจากการที่ตับซึ่งเป็นอวัยวะสำคัญที่ทำหน้าที่ในการเปลี่ยนวิตามินดี 3 ในเลือดให้เป็น 25(OH)D₃ ด้วยกระบวนการ 25-hydroxylation โดยเอนไซม์ CYP27A1/CYP2R1 (Bikle, 2014) ยังทำงานได้ไม่สมบูรณ์ ผลดังกล่าวอาจเป็นปัจจัยที่ส่งผลให้ระดับการแสดงออกของตัวรับสัญญาณวิตามินดี (VDR) ในกล้ามเนื้อลายมีค่าต่ำในช่วงพัฒนาการ เพราะระดับ 25(OH)D₃ ในเลือดเป็นปัจจัยสำคัญที่ส่งผลต่อการสร้างแอคทีฟฟอร์มของวิตามินดี 3 [1 α ,25(OH)₂D₃] ที่มีผลต่อการแสดงออกของระดับตัวรับสัญญาณวิตามินดีในเนื้อเยื่อเป้าหมาย โดยระดับการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ในกล้ามเนื้อลายมีค่าเพิ่มขึ้นในช่วงเจริญเติมวัยซึ่งสอดคล้องกับการเพิ่มขึ้นของระดับ 25(OH)D₃ ในเลือด

อย่างไรก็ตามเป็นที่น่าสนใจว่าระดับของตัวรับสัญญาณวิตามินดีกลับมีค่าเพิ่มสูงขึ้นในช่วงระยะเริ่มต้นของการซราภาพทั้งที่ระดับของ 25(OH)D₃ ในเลือดไม่มีการเปลี่ยนแปลงอย่างมีนัยสำคัญเมื่อเทียบกับช่วงเจริญเติมวัย รวมถึงผลการเปลี่ยนแปลงดังกล่าวสามารถพบรได้ในกล้ามเนื้อ plantaris (fast-glycolytic muscle) มากกว่ากล้ามเนื้อ soleus (slow-oxidative muscle) การคันพับดังกล่าวแสดงให้เห็นถึงปัจจัยอื่นนอกเหนือจากระดับ 25(OH)D₃ ในเลือดที่สามารถส่งผลต่อการแสดงออกของระดับตัวรับสัญญาณวิตามินดี (VDR) ของกล้ามเนื้อลายได้ โดยผลการวิจัยก่อนหน้านี้พบว่ากล้ามเนื้อลายที่อยู่ในสภาวะการฟื้นฟูสภาพจากการบาดเจ็บจะเพิ่มการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีอย่างมีนัยสำคัญ (Srikuea *et al.*, 2012; Srikuea and Hirunsai, 2016) ผลการศึกษาดังกล่าวมีความสอดคล้องกับการเพิ่มขึ้นของเส้นใยกล้ามเนื้อลายที่มีนิวเคลียสอยู่บริเวณกึ่งกลาง (centronucleated muscle fiber) ที่บ่งชี้ถึงการทำงานของสเต็มเซลล์ของกล้ามเนื้อลายที่กำลังทำการซ่อมแซมเส้นใยกล้ามเนื้อลายที่เสียหาย (Hawke and Garry, 2001; Shi and Garry, 2006; Relaix and Zammit, 2012) ซึ่งลักษณะการเพิ่มขึ้นของ centronucleated muscle fiber ในสภาวะการฟื้นฟูสภาพจากการบาดเจ็บดังกล่าวสอดคล้องกับผลการศึกษาวิจัยครั้งนี้ที่พบการเพิ่มขึ้นของ centronucleated muscle fiber ร่วมกับการเพิ่มขึ้นของระดับโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ในกล้ามเนื้อลายช่วงระยะเริ่มต้นของการซราภาพ จากความสัมพันธ์ระหว่างการทำงานของสเต็มเซลล์ของกล้ามเนื้อลายกับการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ในกล้ามเนื้อลาย จึงมีความเป็นไปได้ว่าในระยะหลังของการซราภาพที่เกิด

สภาวะมวลและความแข็งแรงของกล้ามเนื้อลายลดลง (sarcopenia) จะสามารถส่งผลกระทบโดยตรงต่อระดับการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และการทำงานของวิตามินดี 3 ได้เนื่องจากจำนวนสเต็มเซลล์ของกล้ามเนื้อลายมีการลดลงอย่างมีนัยสำคัญในสภาวะดังกล่าว (Sousa-Victor and Munoz-Canoves, 2016)

นอกเหนือไปจากนั้นการศึกษารังนี้พบว่าสเต็มเซลล์ของกล้ามเนื้อลายช่วงพัฒนาการ เจริญเติมวัย และชราภาพที่ทำการเพาะเลี้ยงในหลอดทดลองมีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และสามารถตอบสนองต่อการได้รับแอดค์ทีฟฟอร์มของวิตามินดี 3 [$1\alpha,25(\text{OH})_2\text{D}_3$] ผลการศึกษาดังกล่าวมีส่วนในการยืนยันได้ว่าวิตามินดี 3 น่าจะมีบทบาทในการควบคุมการเจริญเติบโตของกล้ามเนื้อลายผ่านการควบคุมการทำงานของสเต็มเซลล์ของกล้ามเนื้อลาย โดยผลของการตอบสนองของสเต็มเซลล์ของกล้ามเนื้อลายต่อการเพิ่มการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) อย่างมีนัยสำคัญ เมื่อได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ที่พัฒนาการเปรียบเทียบได้กับรายงานการวิจัยก่อนหน้าที่ศึกษาในสเต็มเซลล์ของกล้ามเนื้อลายจากสัตว์ทดลองและมนุษย์ (Girgis et al., 2014b; Pojednic et al., 2015; Olsson et al., 2016; Barga et al., 2017) รวมถึง mouse skeletal muscle cell line (C2C12) (Garcia et al., 2011; Srikuea et al., 2012; Ryan et al., 2013; Salles et al., 2013; Girgis et al., 2014a; Srikuea and Hirunsai, 2016; van der Meijden et al., 2016; Camperi et al., 2017) อย่างไรก็ตามการศึกษาในครั้นนี้พบว่าการตอบสนองของสเต็มเซลล์ของกล้ามเนื้อลายต่อ $1\alpha,25(\text{OH})_2\text{D}_3$ มีความจำเพาะในช่วงพัฒนาการเท่านั้น และมีค่าลดลงในช่วงเจริญเติมวัยและชราภาพ โดยการลดลงของการตอบสนองต่อ $1\alpha,25(\text{OH})_2\text{D}_3$ น่าจะเกี่ยวข้องกับการเปลี่ยนแปลงคุณลักษณะการเจริญเติบโตของเซลล์เข้าสู่สภาวะการเปลี่ยนแปลงรูปร่าง (differentiation) อย่างรวดเร็วเมื่อได้รับสารกระตุนการเจริญเติบโต โดยมีรายงานก่อนหน้าที่สนับสนุนว่า สเต็มเซลล์ของกล้ามเนื้อลายช่วงชราภาพจะมีคุณสมบัติด้านการแบ่งตัวที่ลดลงอย่างมีนัยสำคัญเมื่อเปรียบเทียบกับช่วงพัฒนาการ (Conboy et al., 2003) จากข้อมูลดังกล่าวสามารถบ่งชี้ได้ว่าคุณลักษณะการเจริญเติบโตของสเต็มเซลล์ของกล้ามเนื้อลายเป็นปัจจัยที่สำคัญในการตอบสนองต่อ $1\alpha,25(\text{OH})_2\text{D}_3$

แม้ว่าผลการวิจัยครั้นนี้ได้พบการเปลี่ยนแปลงของโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ที่มีการเพิ่มขึ้นอย่างมีนัยสำคัญในช่วงระยะเริ่มต้นของการชราภาพเมื่อเทียบกับช่วงพัฒนาการ อย่างไรก็ตาม ระดับการแสดงออกของโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ในกล้ามเนื้อลายไม่มีการเปลี่ยนแปลงอย่างมีนัยสำคัญลดลงช่วงอายุที่ทำการศึกษา รวมถึงไม่พบความสัมพันธ์ของโปรตีน CYP27B1 และ CYP24A1 กับระดับ $25(\text{OH})\text{D}_3$ ในเลือด ผลการศึกษาดังกล่าวแสดงให้เห็นว่ากระบวนการเมแทบอลิซึมของวิตามินดีในกล้ามเนื้อลายไม่ขึ้นอยู่กับระดับ $25(\text{OH})\text{D}_3$ ดังนั้นกล้ามเนื้อลายน่าที่จะมีระบบควบคุมระดับการสร้างและสลายวิตามินดี 3 เฉพาะที่ภายในเซลล์กล้ามเนื้อลายเองเท่านั้น และไม่ใช่เนื้อเยื่อที่มีหน้าที่หลักในการสังเคราะห์ $1\alpha,25(\text{OH})_2\text{D}_3$ ในร่างกาย ในทางตรงกันข้ามรายงานการวิจัยก่อนหน้าพบว่าระดับโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และโปรตีน CYP24A1 มีการเพิ่มขึ้นอย่างมีนัยสำคัญจากได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ ใน mouse skeletal muscle cell line (C2C12) (Ryan et al., 2013; Girgis et al., 2014a; van der Meijden et al., 2016), สเต็มเซลล์ของกล้ามเนื้อลาย (Girgis et al., 2014b; Pojednic et al., 2015) และกล้ามเนื้อลายที่

อยู่ระหว่างการพื้นฟูสภาพจากการบาดเจ็บ (Srikuea and Hirunsai, 2016) ผลการศึกษาดังกล่าวแสดงให้เห็นว่าหากกล้ามเนื้อลายได้รับแอดคีฟฟอร์มของวิตามินดี 3 สามารถส่งผลต่อการเพิ่มขึ้นของระดับโปรตีนตัวรับสัญญาณวิตามินดี (VDR) และกระตุ้นกลไกการป้องกันสภาพภาวะการได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$ มากเกินกว่าที่ต้องการโดยการเพิ่มระดับโปรตีน CYP24A1 ดังนั้นการเพิ่มขึ้นเฉพาะระดับโปรตีนตัวรับสัญญาณวิตามินดีแต่ไม่เพิ่มระดับโปรตีน CYP24A1 ในกล้ามเนื้อลายช่วงระหว่างการศึกษาครั้งนี้จึงไม่น่าเกิดจากการที่ร่างกายมีระดับความเข้มข้นของ $1\alpha,25(\text{OH})_2\text{D}_3$ เพิ่มมากขึ้น แต่น่าจะเกิดจากการกระตุ้นการทำงานของสเต็มเซลล์ของกล้ามเนื้อลายเพื่อช่วยพื้นฟูสภาพของเส้นใยกล้ามเนื้อลายที่เสียหายในขณะเข้าสู่ระยะเริ่มต้นของการซ่อมแซม

โดยสรุปการวิจัยในครั้งนี้มีวัตถุประสงค์เพื่อศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อลายขณะพัฒนาการ เจริญเติมวัย และชราภาพ โดยกล้ามเนื้อลายมีการแสดงออกของตัวรับสัญญาณวิตามินดี (VDR) รวมถึงโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี (CYP27B1 และ CYP24A1) ซึ่งการแสดงออกของตัวรับสัญญาณวิตามินดีมีการเพิ่มขึ้นอย่างมีนัยสำคัญในช่วงระยะเริ่มต้นของการซ่อมแซมเมื่อเปรียบเทียบกับช่วงพัฒนาการ และการเปลี่ยนแปลงดังกล่าวมีผลต่อกล้ามเนื้อลายชนิด fast-glycolytic muscle มากกว่า slow-oxidative muscle อย่างไรก็ตามไม่พบการเปลี่ยนแปลงระดับการแสดงออกของโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดีในกล้ามเนื้อลายตลอดช่วงอายุที่ทำการศึกษาร่วมถึงความสัมพันธ์กับระดับ $25(\text{OH})\text{D}_3$ ในเลือด นอกจากนี้คุณลักษณะการเจริญเติบโตของสเต็มเซลล์ของกล้ามเนื้อลายเป็นปัจจัยสำคัญที่ส่งผลต่อการแสดงออกของระดับโปรตีนตัวรับสัญญาณวิตามินดี (VDR) ภายในเซลล์เมื่อได้รับ $1\alpha,25(\text{OH})_2\text{D}_3$

6. ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

การวิจัยครั้งนี้แสดงให้เห็นว่ากล้ามเนื้อลายมีการแสดงออกของโปรตีนตัวรับสัญญาณวิตามินดีและโปรตีนที่เกี่ยวข้องกับกระบวนการเมแทบอลิซึมของวิตามินดี โดยการตอบสนองต่อวิตามินดี 3 ของสเต็มเซลล์ของกล้ามเนื้อลายมีความแตกต่างกันในช่วงพัฒนาการ เจริญเติมวัย และชราภาพ ด้วยเหตุนี้การพัฒนาแนวทางการนำวิตามินดี 3 มาใช้ประโยชน์เพื่อเพิ่มมวลและความสามารถในการทำงานของกล้ามเนื้อลายในแต่ละช่วงอายุอย่างมีประสิทธิภาพเป็นสิ่งที่ควรทำการศึกษาเพิ่มเติมต่อไป

เอกสารอ้างอิง

1. Anderson JE. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. *J Exp Biol.* 2006;209:2276-92.
2. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. *Chem Biol.* 2014;21(3):319-29.
3. Braga M, Simmons Z, Norris KC, Ferrini MG, Artaza JN. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. *Endocr Connect.* 2017;6(3):139-50.
4. Cangussu LM, Nahas-Neto J, Orsatti CL, Bueloni-Dias FN, Nahas EA. Effect of vitamin D supplementation alone on muscle function in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. *Osteoporos Int.* 2015;26(10):2413-21.
5. Camperi A, Pin F, Costamagna D, Penna F, Mendum ML, Aversa Z, et al. Vitamin D and VDR in cancer cachexia and muscle regeneration. *Oncotarget.* 2017;8(13):21778-93.
6. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. *Science.* 2003;302(5650):1575-77.
7. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)₂vitamin D₃ stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C₂C₁₂ skeletal muscle cells. *Endocrinology.* 2011;152(8):2976-86.
8. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. *Endocrinology.* 2014;155(2):347-57.
9. Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. *Endocrinology.* 2014;155(9):3227-37.
10. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. *J Appl Physiol (1985).* 2001;91(2):534-51.
11. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of vitamin D action. *Calcif Tissue Int.* 2013;92(2):77-98.
12. Jiang P, Xue Y, Li HD, Liu YP, Cai HL, Tang MM, et al. Dysregulation of vitamin D metabolism in the brain and myocardium of rats following prolonged exposure to dexamethasone. *Psychopharmacology (Berl).* 2014;231(17):3445-51.
13. Danoviz ME, Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. *Methods Mol. Biol.* 2012;798:21-52.

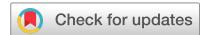
14. Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. *Ann Nutr Metab.* 2009;54(4):291-300.
15. Mowé M, Haug E, Bohmer T. Low serum calcidiol concentration in older adults with reduced muscular function. *J Am Geriatr Soc.* 1999;47(2):220-26.
16. Olsson K, Saini A, Stromberg A, Alam S, Lilja M, Rullman E, et al. Evidence for vitamin D receptor expression and direct effects of $1\alpha,25(\text{OH})_2\text{D}_3$ in human skeletal muscle precursor cells. *Endocrinology.* 2016;157(1):98-111.
17. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. *Osteoporos Int.* 2009;20(2):315-22.
18. Pojednic RM, Ceglia L, Olsson K, Gustafsson T, Lichtenstein AH, Dawson-Hughes B, et al. Effects of 1,25-dihydroxyvitamin D₃ and vitamin D₃ on the expression of the vitamin D receptor in human skeletal muscle cells. *Calcif Tissue Int.* 2015;96(3):256-63.
19. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. *Development.* 2012;139(16):2845-56.
20. Ryan KJ, Daniel ZC, Craggs LJ, Parr T, Brameld JM. Dose-dependent effects of vitamin D on transdifferentiation of skeletal muscle cells to adipose cells. *J Endocrinol.* 2013;217(1):45-58.
21. Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, et al. 1,25(OH)₂-vitamin D₃ enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. *Mol Nutr Food Res.* 2013;57(12):2137-46.
22. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. *Cerebrovasc Dis.* 2005;20(3):207-192.
23. Shi X, Garry DJ. Muscle stem cells in development, regeneration, and disease. *Genes Dev.* 2006;20(13):1692-708.
24. Sousa-Victor P, Munoz-Canoves P. Regenerative decline of stem cells in sarcopenia. *Mol Aspects Med.* 2016;50:109-17.
25. Srikuea R, Zhang X, Park-Sarge OK, Esser KA. VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. *Am J Physiol Cell Physiol.* 2012;303(4):C396-405.

26. Srikuea R, Hirunsai M. Effects of intramuscular administration of $1\alpha,25(\text{OH})_2\text{D}_3$ during skeletal muscle regeneration on regenerative capacity, muscular fibrosis, and angiogenesis. *J Appl Physiol (1985)*. 2016;120(12):1381-93.
27. van der Meijden K, Bravenboer N, Dirks NF, Heijboer AC, Den Heijer M, De Wit GMJ, et al. Effects of $1,25(\text{OH})_2\text{D}_3$ and $25(\text{OH})\text{D}_3$ on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy. *J Cell Physiol*. 2016;231(11):2517-28.
28. Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH, Christakos S. Vitamin D, calcium homeostasis and aging. *Bone Res*. 2016;4:16041.
29. Verhaar HJ, Samson MM, Jansen PA, de Vreede PL, Manten JW, Duursma SA. Muscle strength, functional mobility and vitamin D in older women. *Aging (Milano)*. 2000;12(6):455-60.
30. Visser M, Deeg DJ, Lips P, Longitudinal Aging Study A. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. *J Clin Endocrinol Metab*. 2003;88(12):5766-72.
31. White RB, Bierinx AS, Gnocchi VF, Zammit PS. Dynamics of muscle fibre growth during postnatal mouse development. *BMC Dev Biol*. 2010;10:21.

กิตติกรรมประกาศ (Acknowledgement)

ผู้วิจัยขอขอบคุณพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปี 2560 จากสำนักงานกองทุนสนับสนุนการวิจัย (สกอ.) ร่วมกับสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) รวมถึงทุนสนับสนุนเงินสมทบในการทำวิจัย จากคณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล สำหรับการดำเนินงานโครงการวิจัยเรื่อง “การศึกษาบทบาทการทำงานของวิตามินดี 3 และการควบคุมกระบวนการเมแทบอลิซึมเฉพาะที่ของวิตามินดีในกล้ามเนื้อลายขณาพพัฒนาการ เจริญเติบโต แล้วชราภาพ” นอกจากนี้ผู้วิจัยขอขอบคุณหน่วยวิจัยเพื่อความเป็นเลิศเทคโนโลยีชีวภาพกุ้ง คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ที่ให้ความอนุเคราะห์ในการใช้เครื่องมือสำหรับการตัดชิ้นเนื้อ (Cryostat) และ Olympus Bioimaging Center (Center of Nanoimaging) คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล สำหรับการให้บริการกล้อง fluorescence microscope เพื่อถ่ายภาพที่ทำการศึกษาด้วยเทคนิค immunohistochemistry และ immunocytochemistry

ภาคผนวก


Output ของโครงการวิจัย (MRG6080090)***Corresponding author****1. Meeting Abstract**

Experimental Biology 2019 Meeting April 6-9, 2019, Orlando, Florida, USA.

Ratchakrit Srikuea*, Muthita Hirunsai, Narattaphol Charoenphandhu. Expression of vitamin D receptor and local vitamin D metabolism at the different stages of skeletal muscle growth. FASEB Vol. 33(1) Supplement, April 2019.

2. International Publication

Ratchakrit Srikuea*, Muthita Hirunsai, Narattaphol Charoenphandhu. Regulation of vitamin D system in skeletal muscle and resident myogenic stem cell during development, maturation, and ageing. *Sci Rep.* 2020;10:8239. **(Q1, IF 4.011)**

OPEN

Regulation of vitamin D system in skeletal muscle and resident myogenic stem cell during development, maturation, and ageing

Ratchakrit Srikuea¹✉, Muthita Hirunsai² & Narattaphol Charoenphandhu^{1,3,4,5}

Skeletal muscle exhibits enormous plasticity throughout life, however, less is known regarding how the stages of growth regulate its local vitamin D system. Herein, we investigated serum 25(OH)D₃ and Ca²⁺ levels along with the vitamin D system in skeletal muscle and resident myogenic stem cells of male C57BL/6 mice during development, maturation, and ageing. Compared with development, significant increases in vitamin D receptor (VDR) protein expression in mature and aged muscles were associated with increased serum 25(OH)D₃ and centronucleated fibres, respectively. The substantial increase in VDR protein expression in aged muscle was also related to reduced downstream mTOR signalling protein expression which was more pronounced in fast-glycolytic compared to slow-oxidative muscles. Intriguingly, serum Ca²⁺ and vitamin D-metabolising enzyme (CYP27B1 and CYP24A1) levels in skeletal muscle were not different across age. In primary cell culture, nuclear VDR protein was expressed in undifferentiated skeletal muscle stem cells (SMSC) after 1 α ,25(OH)₂D₃ treatment. Additionally, a diminished response to 1 α ,25(OH)₂D₃ was observed with age as there was a rapid commitment of SMSC towards differentiation under growth-stimulating conditions. Collectively, understanding the local vitamin D system in skeletal muscle could help develop effective interventions for vitamin D supplementation to improve skeletal muscle mass and function during ageing.

Vitamin D research has primarily focused on the role of Ca²⁺ homeostasis regulation in classical vitamin D target tissues, i.e., bone, intestine, and kidney^{1,2}. However, non-calcemic action of vitamin D has been suggested as expression of vitamin D receptor (VDR) and vitamin D-metabolising enzymes (CYP27B1 and CYP24A1) has been reported in non-classical vitamin D target tissues, i.e., brain and heart³ and skeletal muscle⁴. This emerging evidence has suggested possible novel functions of vitamin D besides calcium homeostasis as well as how the vitamin D system is regulated in these non-classical vitamin D target tissues.

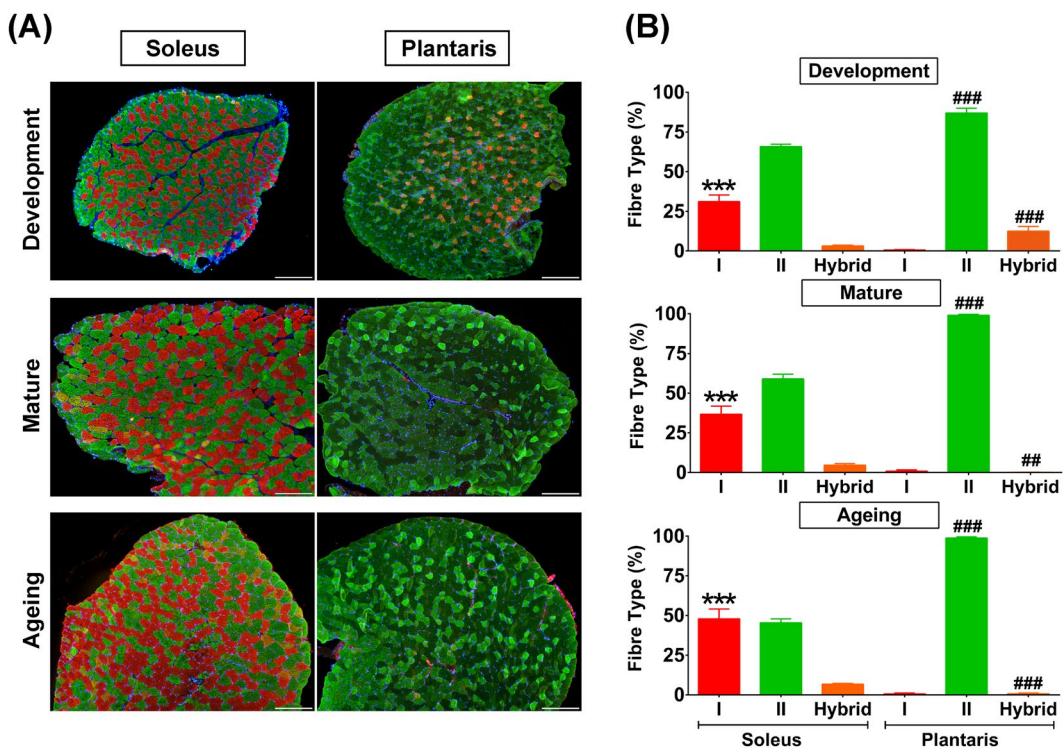
In skeletal muscle, VDR protein has been reported to be expressed in both skeletal muscle cells and tissue, including mouse skeletal muscle cell line (C2C12)⁴⁻⁹, primary skeletal muscle cells^{10,11}, human skeletal muscle cells¹²⁻¹⁴, rodent skeletal muscle^{4,6,9,10,15-18}, and human skeletal muscle^{12,14,19-21}. In addition, vitamin D system-related proteins (VDR, CYP27B1, and CYP24A1) are expressed in regenerating muscle along with expression of VDR in skeletal muscle stem cells (SMSC) after injury⁴, suggesting a contribution of this resident myogenic stem cell (namely satellite cell) in the local vitamin D system during skeletal muscle regeneration. However, less is known regarding the regulation of the vitamin D system in skeletal muscle in a fibre-type specific manner. Data in the predominantly fast-twitch tibialis anterior revealed alterations in vitamin D system regulation during recovery from injury⁴.

¹Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. ²Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand. ³Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. ⁴Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand. ⁵The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand. ✉e-mail: ratchakrit.sri@mahidol.ac.th

Skeletal muscle consists of slow-oxidative (type I) and fast-glycolytic (type II) muscle fibres, which are characterized based on the abundant of slow and fast myosin heavy chain (MHC) expression in rodents and humans²². These characteristics of muscle fibre type directly affect skeletal muscle function, i.e., force production, speed of contraction, and fatigue resistance²³. Providing clinical relevance, the vitamin D₃ deficiency (serum 25(OH)D₃ < 20 ng/ml)²⁴ has been associated with muscle weakness in older adults^{25,26}. Therefore, vitamin D₃ supplementation has been recommended to older adults who have a vitamin D deficiency in order to improve skeletal muscle function^{27–30}. However, whether regulation of the vitamin D system in skeletal muscle is differentially regulated among fibre types during ageing is currently unknown.

Additionally, specific expression of the VDR protein in SMSC during muscle regeneration has been demonstrated⁴. This finding suggests a potential connection of non-calcemic action of vitamin D on the regulation of SMSC activity. Skeletal muscle is a post-mitotic tissue and it relies on SMSC function³¹. During development, rapid skeletal muscle growth also represents an active stage for SMSC³². In contrast, SMSC becomes quiescent during maturation but can be activated upon muscle injury³³. Ageing reduces the proliferative potential of SMSC which can decrease the regenerative capacity of aged muscle³⁴. However, the effect of age on vitamin D regulation of SMSC function at distinct stages of muscle growth is an unresolved question. Previously, the active form of vitamin D₃ [1 α ,25(OH)₂D₃] has been shown to regulate the expression of VDR and vitamin D-metabolising enzymes (CYP27B1 and CYP24A1) in primary muscle cells¹⁰. A limitation of that study was that, the primary muscle cells were isolated from 3 week-old developing muscle. Hence, it is difficult to extrapolate these findings to mature and aged SMSCs.

Therefore, the purpose of this study was to investigate the local vitamin D system in slow-oxidative (type I) and fast-glycolytic (type II) muscles and its associations with skeletal muscle plasticity during development, maturation, and ageing. Additionally, we examined the expression of VDR and vitamin D-metabolising enzymes (CYP27B1 and CYP24A1) in SMSCs isolated from developmental, mature, and aged muscles to reveal how age affects the SMSC response to vitamin D₃.

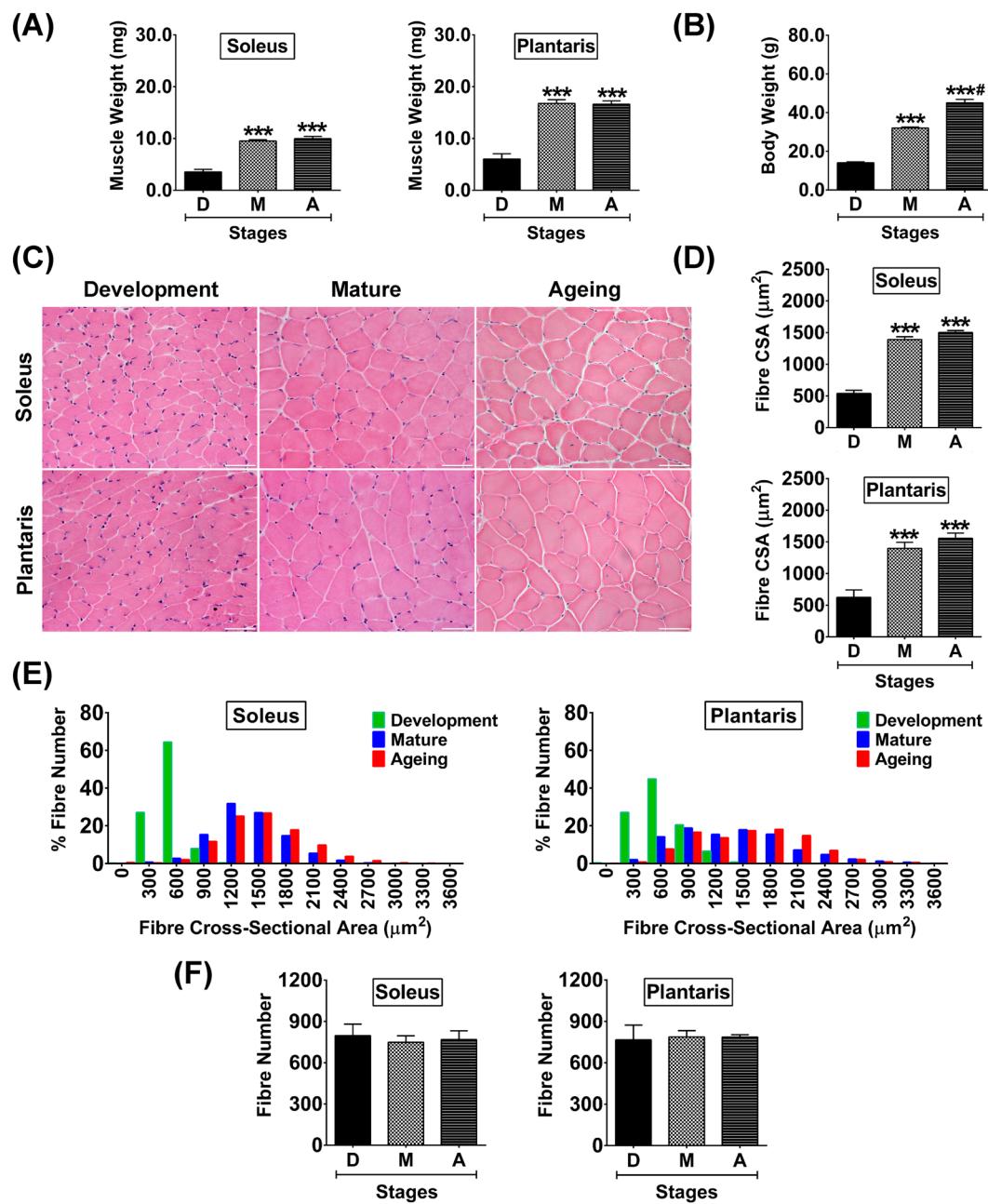

Results

Fibre type composition in slow-oxidative and fast-glycolytic muscles during development, maturation, and ageing. To assess the potential contribution of muscle fibre type on the regulation of the vitamin D system, we studied the slow-oxidative (soleus) and fast-glycolytic (plantaris) muscles at different stages of growth as illustrated in Fig. 1A. The ageing group in this study represents an early stage of ageing to control for age-related comorbid conditions that could confound the interpretation of the results on vitamin D system in skeletal muscle. The quantitative analysis revealed a remarkable significant difference of type I muscle fibre distribution, which was higher in the soleus than plantaris muscle at development (31.12 ± 1.74% vs. 0.65 ± 0.11%, $p < 0.0001$), maturation (36.64 ± 2.08% vs. 0.91 ± 0.31%, $p < 0.0001$), and ageing (47.89 ± 2.48% vs. 0.58 ± 0.20%, $p < 0.0001$) (Fig. 1B). In contrast, type II muscle fibre frequency was significantly higher in plantaris than soleus muscle in development (86.90 ± 1.24% vs. 65.75 ± 1.52%, $p < 0.0001$), maturation (99.02 ± 0.31% vs. 58.95 ± 3.07%, $p < 0.0001$), and ageing (98.76 ± 0.29% vs. 45.38 ± 2.47%, $p < 0.0001$) (Fig. 1B). Nevertheless, hybrid muscle fibre frequency (co-expressions of fast MHC and slow MHC isoforms) was significantly higher in the plantaris compared to soleus muscle during development (12.45 ± 1.21% vs. 3.14 ± 0.59%, $p < 0.0001$). This difference was reversed during advanced age where the plantaris muscle had a significantly lower proportion of hybrid fibres than the soleus muscle during maturation (0.10 ± 0.05% vs. 4.67 ± 0.94%, $p < 0.001$) and ageing (0.66 ± 0.21% vs. 6.73 ± 0.53%, $p < 0.0001$) (Fig. 1B). Altogether, these difference show distinct skeletal muscle properties between soleus and plantaris muscles at different stages of growth.

Characteristics of slow-oxidative and fast-glycolytic muscles at different stages of growth. Although the difference in fibre type composition in slow-oxidative (soleus) and fast-glycolytic (plantaris) muscles was demonstrated, skeletal muscle plasticity during the different stages of growth are comparable. Muscle wet weight was significantly increased in parallel with body weight in soleus ($p < 0.001$) and plantaris ($p < 0.001$) muscles during development to maturation (Fig. 2A). There was no further increase in muscle wet weight during maturation to ageing (Fig. 2A), despite a progressive increase in body weight (Fig. 2B). To support findings in tissue wet weight, histological analysis across ages (Fig. 2C) revealed muscle fibre CSA was significantly increased during maturation ($p < 0.001$) and ageing ($p < 0.001$) compared to development in both muscles (Fig. 2D). However, fibre size, as demonstrated by histogram analysis showed differences between soleus and plantaris muscles during maturation and ageing (Fig. 2E). The frequency distribution of soleus muscle fibre size was concentrated at a median level. This distribution pattern differs from the plantaris, which showed a more widespread fibre size distribution, suggesting higher variation of muscle fibre size. In contrast to the changes of fibre size, the number of fibres in the soleus and plantaris were not significantly different at any age investigated (Fig. 2F).

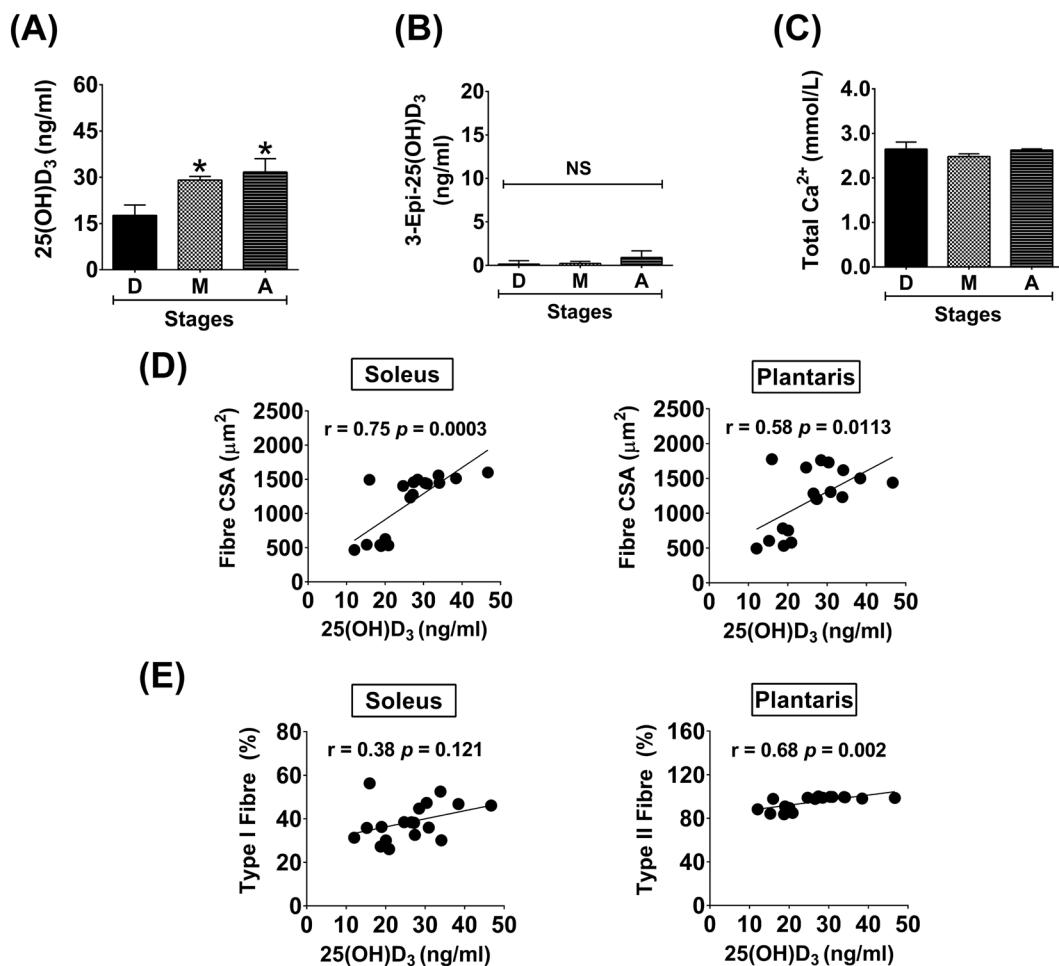
Serum levels of 25(OH)D₃/D₂, 3-Epi-25(OH)D₃/D₂, and total Ca²⁺ during advanced age. In this study, mice were fed with a standard diet containing 205 IU/100 g vitamin D₃ throughout the study period, however, serum 25(OH)D₃ level (17.7 ± 1.4 ng/ml) during development was lower than the normal range for vitamin D status (~30 ng/ml). Serum 25(OH)D₃ level was significantly greater during maturation (29.1 ± 1.2 ng/ml) ($p < 0.05$) and ageing (31.7 ± 4.4 ng/ml) ($p < 0.05$) compared to development (Fig. 3A). In contrast to 25(OH)D₃, 3-Epi-25(OH)D₃ was barely detected in serum samples and no significant differences between growth stages was ascertained (Fig. 3B). Neither 25(OH)D₂ nor 3-Epi-25(OH)D₂ were detected in any samples. Additionally, there was no association between serum 25(OH)D₃ and total Ca²⁺ level at different stages of growth (Fig. 3C).

Associations of serum 25(OH)D₃ level and skeletal muscle plasticity. According to the changes of serum 25(OH)D₃ during different stages of growth, 25(OH)D₃ level had a positive relationship with


Figure 1. Fibre type composition in developmental, mature, and aged soleus and plantaris muscles. **(A)** Representative images of fibre type composition in soleus and plantaris muscles at different stages of growth. Type I fibres (red), type II fibres (green), and hybrid fibres (orange). Images were taken at $\times 100$ magnification, scale bars = 200 μm . **(B)** Quantitative analysis of fibre type composition during development, maturation, and ageing ($n=6$ mice/group). *** $p < 0.0001$ compared to type I fibre of plantaris muscle, # $p < 0.001$ and ## $p < 0.0001$ compared to hybrid fibre/type II fibre of soleus muscle.

slow-oxidative (soleus) muscle fibre CSA ($r = 0.75 p = 0.0003$) and fast-glycolytic (plantaris) muscle fibre CSA ($r = 0.58 p = 0.0113$) (Fig. 3D). Moreover, serum 25(OH)D₃ level positively correlated with the percentage of type II fibres in plantaris muscle ($r = 0.68 p = 0.002$) but not type I fibres of soleus muscle ($r = 0.38 p = 0.121$) (Fig. 3E).

Vitamin D system in slow-oxidative and fast-glycolytic muscles during advanced age. To clarify whether skeletal muscle plasticity affects the vitamin D system in skeletal muscle, the expression of vitamin D system-related proteins (VDR, CYP27B1, and CYP24A1) in slow-oxidative (soleus) and fast-glycolytic (plantaris) muscles at different stages of growth were investigated. During development, VDR protein was expressed at low level in the soleus muscle but significantly increased during maturation (7.1 ± 2.5 -fold) ($p < 0.01$) and ageing (12.3 ± 3.6 -fold) ($p < 0.001$) (Fig. 4A). However, VDR protein was barely detectable in the plantaris muscle during development but significantly increased during maturation (4.2 ± 1.4 -fold) ($p < 0.05$) and increased at a substantial level during ageing (17.5 ± 6.6 -fold) ($p < 0.001$) (Fig. 4B). These temporal changes in VDR protein expression were coordinated with VDR protein expression in kidney and intestine which are vitamin D-sensitive tissues (Fig. 4C,D). Additionally, VDR protein expression in soleus ($r = 0.68 p = 0.002$) and plantaris ($r = 0.65 p = 0.004$) muscles positively correlated with serum 25(OH)D₃ level. Contrary to VDR protein expression, vitamin D-metabolising enzyme (CYP27B1 and CYP24A1) protein expression was not significantly different at any age in soleus muscle (Fig. 5A) and plantaris muscle (Fig. 5B).


Expression and localisation of vitamin D system in slow-oxidative and fast-glycolytic muscles. The expression and localisation of vitamin D system-related proteins (VDR, CYP27B1, and CYP24A1) in slow-oxidative (soleus) and fast-glycolytic (plantaris) muscles during development that could impact vitamin D action during advanced age are illustrated in Fig. 6. VDR protein could be detected in centronucleated muscle fibres in soleus muscle (arrows). In contrast, co-localisation of VDR and CYP24A1 protein expression (arrowheads) was observed in plantaris muscle (Fig. 6A). CYP27B1 protein expression in soleus and plantaris muscles tended to localise in the mitochondrial compartment (arrowheads) as indicated by OxPhos staining and was also expressed in the extracellular matrix compartment (arrows) (Fig. 6B).

VDR protein expression in aged muscle associated with increased centronucleated muscle fibres and decreased phosphorylation of downstream mTOR signalling proteins. To elucidate how VDR protein expression was substantially increased in the aged muscle, the percentage of centronucleated muscle fibres (Fig. 7A) that could be observed during ageing was evaluated. The results revealed that the percentage of centronucleated muscle fibres was significantly greater in soleus muscle ($0.38 \pm 0.08\%$ vs. $1.47 \pm 0.26\%$,

Figure 2. Muscle weight, body weight, and histological characteristics of soleus and plantaris muscles during development, maturation, and ageing. (A) Muscle weight, (B) Body weight, (C) Representative hematoxylin and eosin-stained images of developmental, mature, and aged muscles, (D) Quantitative analysis of fibre cross-sectional area (CSA), (E) Histogram analysis of muscle fibre size distribution, and (F) Quantitative analysis of fibre number. Images were taken at $\times 400$ magnification, scale bars = $50\text{ }\mu\text{m}$. *** $p < 0.001$ compared to developmental stage, $\#p < 0.001$ compared to maturation stage ($n = 6$ mice/group).

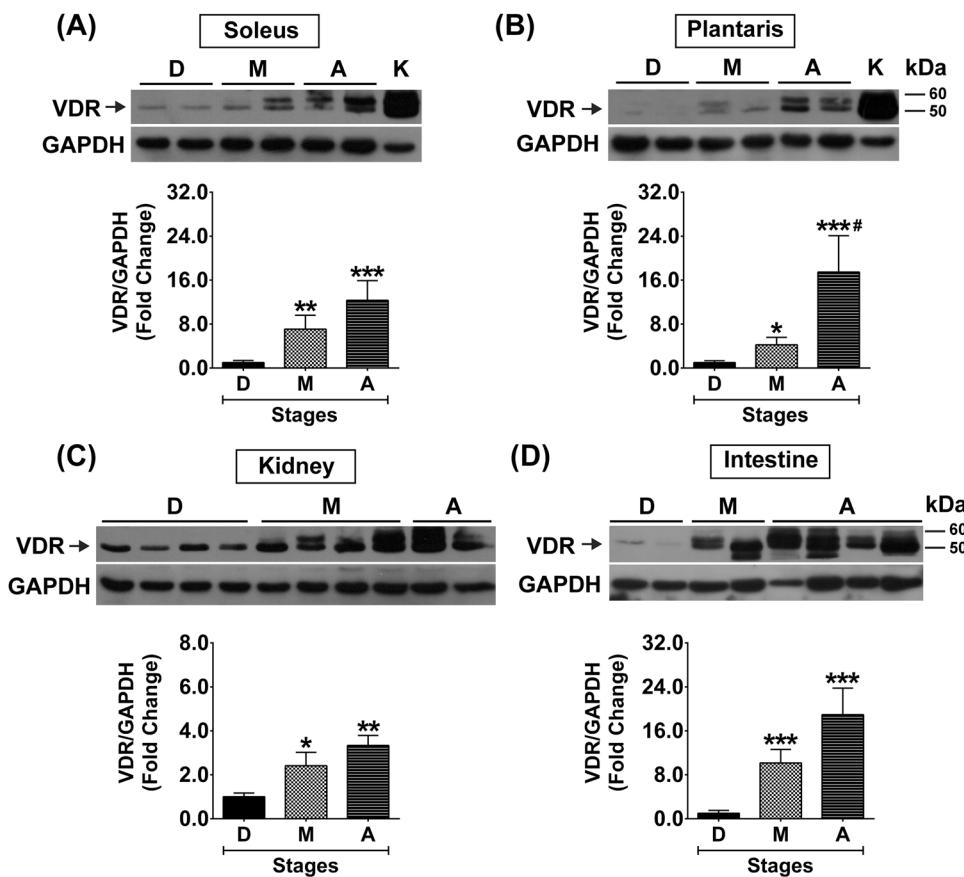
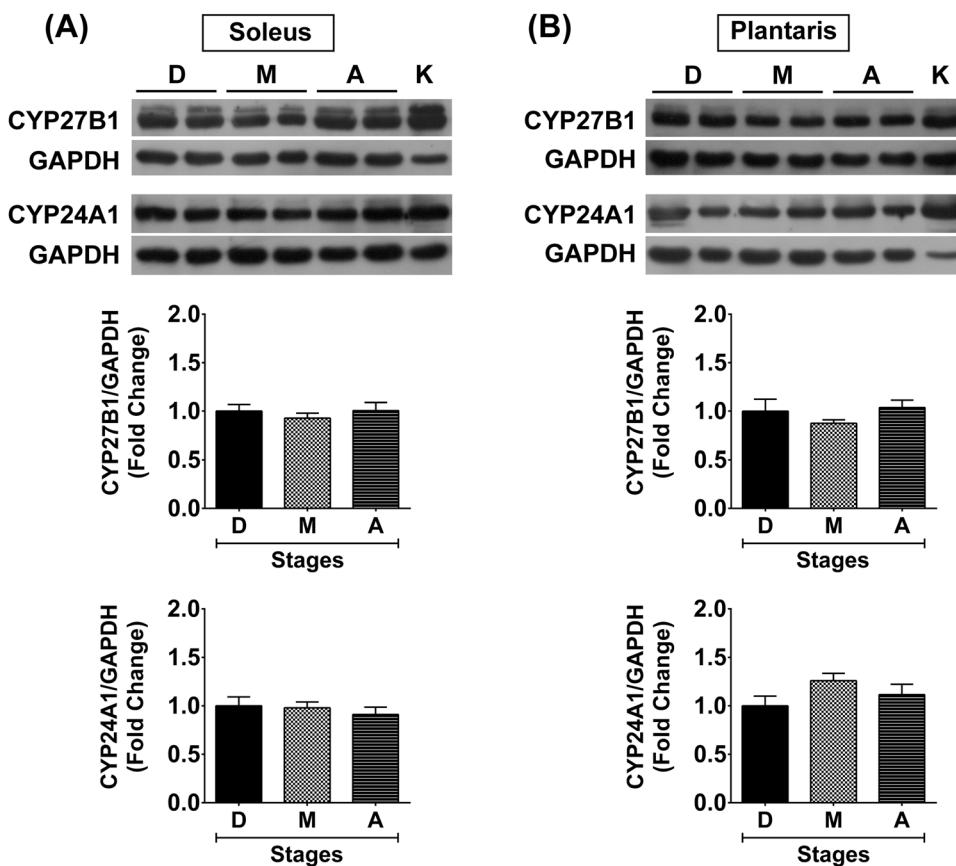

$p < 0.01$) and plantaris muscle ($0.51 \pm 0.13\%$ vs. $1.73 \pm 0.23\%$, $p < 0.01$) when development and ageing were compared (Fig. 7B). These results suggest an increase in SMSC activity to maintain muscle integrity during ageing that might contribute to an increase in VDR protein expression in the aged muscle. In addition, phosphorylation of downstream mTOR signalling proteins that regulate skeletal muscle protein synthesis³⁵ were different in development and ageing. Phosphorylation of 4E-BP1 protein was significantly decreased during ageing to a greater degree in the plantaris muscle (1.00 ± 0.02 -fold vs. 0.13 ± 0.04 -fold, $p < 0.001$) as compared to the soleus muscle (1.00 ± 0.08 -fold vs. 0.54 ± 0.12 -fold, $p < 0.01$) (Fig. 7C). Additionally, phosphorylation of p70 S6K1 protein was significantly decreased only in aged plantaris muscle (1.00 ± 0.07 -fold vs. 0.42 ± 0.09 -fold, $p < 0.001$) but not aged soleus muscle (1.00 ± 0.03 -fold vs. 0.68 ± 0.18 -fold, $p > 0.05$) (Fig. 7D). The significantly lower of 4E-BP1 and p70 S6K1 phosphorylation in aged plantaris muscle suggest a decrease in protein synthesis that might augment the substantial elevation of VDR protein expression compared to aged soleus muscle.

Figure 3. Serum levels of 25(OH)D₃, 3-Epi-25(OH)D₃, and total Ca²⁺ during advanced age and the association of 25(OH)D₃ level and skeletal muscle plasticity. (A) 25(OH)D₃, (B) 3-Epi-25(OH)D₃, (C) Total Ca²⁺, (D) Correlation analysis between 25(OH)D₃ level and fibre CSA, and (E) Correlation analysis between 25(OH)D₃ level and fibre type. **p* < 0.05 compared to developmental stage (n = 6 mice/group). NS indicates not statistically significant.


Expression of vitamin D system-related proteins in SMSC. To further validate a role for the vitamin D system in skeletal muscle tissue, the expression of vitamin D system-related proteins (VDR, CYP27B1, and CYP24A1) were investigated in isolated SMSCs. The purity of SMSC in this study was determined using MyoD staining to evaluate the expression of this myogenic regulatory factor in cultured SMSC (Fig. 8A). The results demonstrated that cultured SMSC (MyoD⁺ cells) derived from different growth stages expressed VDR protein in responses to 1 α ,25(OH)₂D₃ treatment (Fig. 8B). In addition, CYP24A1 protein, responsible for the catabolism of vitamin D in target cells, was expressed and co-localised with VDR protein in developmental, mature, and aged SMSCs treated with 1 α ,25(OH)₂D₃ (Fig. 8B). In contrast, SMSCs expressed CYP27B1 protein mainly in the cytoplasmic compartment (arrows) and no co-localisation with VDR protein after 1 α ,25(OH)₂D₃ treatment was observed (Fig. 8C). These results suggest that SMSC is a source of vitamin D system-related proteins in skeletal muscle and this resident myogenic stem cell could be a direct target of vitamin D₃ during skeletal muscle plasticity changes that occur in advanced age.

Decreased responsiveness of SMSC to 1 α ,25(OH)₂D₃ during advanced age. To evaluate the response of SMSC to vitamin D₃ during advanced age, VDR protein expression in response to 1 α ,25(OH)₂D₃ treatment was examined in SMSCs derived from developmental, mature, and aged muscles (Fig. 9A). The results revealed that VDR protein expression in developmental SMSC was significantly increased after treatment with 1 α ,25(OH)₂D₃ compared to vehicle-treated control (2.0 ± 0.3-fold) (*p* < 0.05). In contrast, the responses to 1 α ,25(OH)₂D₃ treatment was diminished in mature SMSC (1.1 ± 0.1-fold) and aged SMSC (1.3 ± 0.2-fold) as compared with their respective vehicle-treated controls. To support this notion, the expression and localisation of VDR protein in developmental SMSC in response to vehicle treatment or 1 α ,25(OH)₂D₃ treatment conditions are illustrated in Fig. 9B. An increase in nuclear localisation of VDR protein expression was demonstrated after 1 α ,25(OH)₂D₃ treatment (arrows). Taken together, it appears that SMSC is a vitamin D₃-sensitive cell, however, the response of SMSC to the active form of vitamin D₃ declined during advanced age.

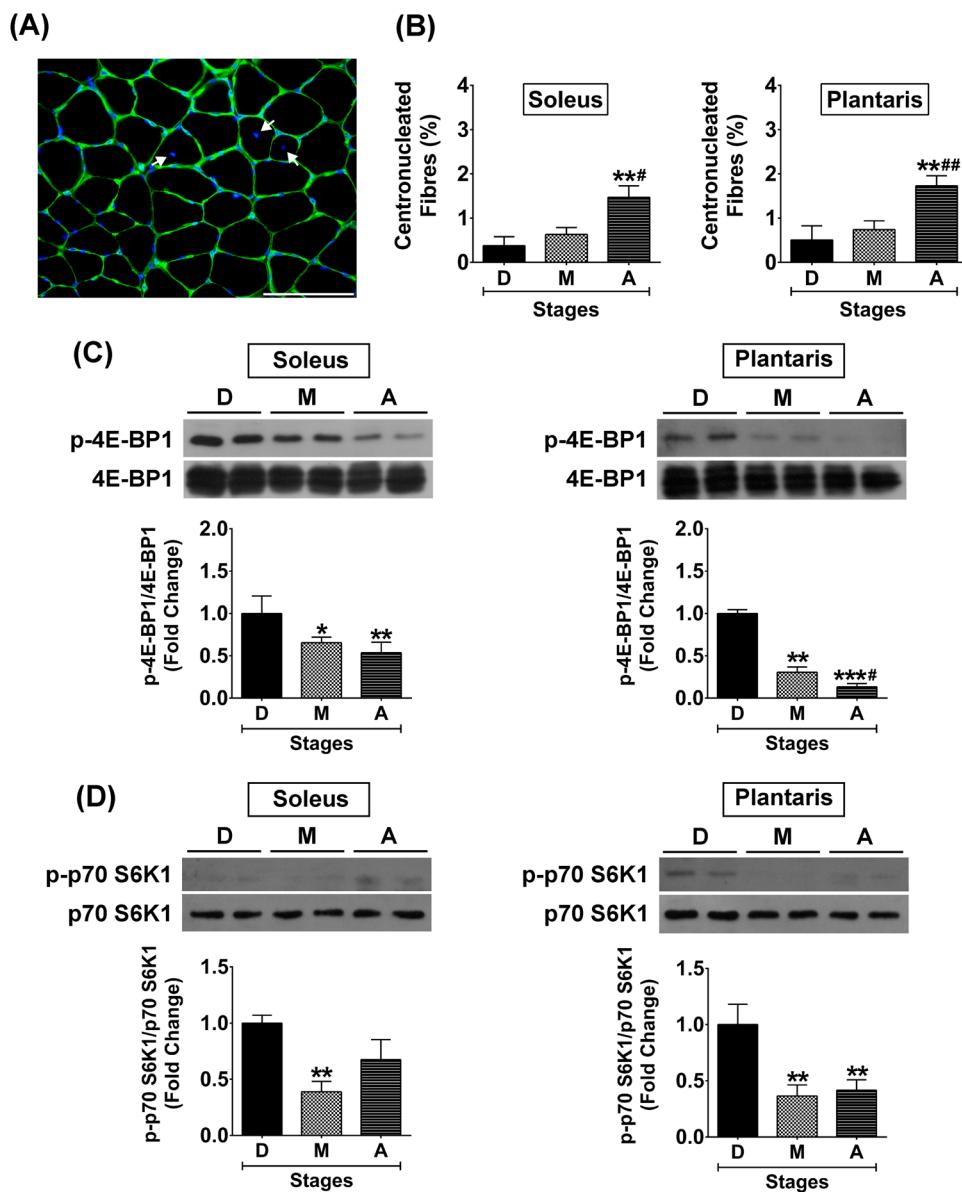
Figure 4. VDR protein expression in soleus and plantaris muscles, kidney, and intestine during development, maturation, and ageing. VDR protein expression (A) soleus muscle and (B) plantaris muscle ($n = 6$ mice/group). K = Kidney samples serve as a positive control for VDR protein expression in soleus and plantaris muscles. (C,D) VDR protein expression in the vitamin D-sensitive tissues including (C) kidney ($n = 6$ mice/group) and (D) intestine ($n = 5-6$ mice/group). $*p < 0.05$, $**p < 0.01$, $***p < 0.001$ compared to developmental stage, $#p < 0.05$ compared to maturation stage. The highly sensitive VDR (D-6) antibody was used to detect VDR protein expression and GAPDH served as loading control. VDR protein expression level was normalized with GAPDH protein expression that obtained from the same gel and experiment.

State-specific VDR protein expression in undifferentiated SMSC. Nuclear VDR protein was non-uniformly expressed in SMSCs (MyoD^+ cells) under growth-stimulating conditions (Fig. 9B), suggesting that the expression of VDR protein in response to $1\alpha,25(\text{OH})_2\text{D}_3$ treatment could be state-specific. To support this hypothesis, SMSCs strongly expressed VDR protein specifically in the undifferentiated state (Myogenin^- cells) as illustrated in Fig. 9C (arrows). This result supports the notion that VDR protein expression is down-regulated in SMSCs undergoing differentiation (Myogenin^+ cells). Based on this finding, the differentiation characteristics of developmental, mature, and aged SMSCs were investigated to evaluate the diminished response of SMSC under $1\alpha,25(\text{OH})_2\text{D}_3$ treatment during advanced age. The characteristics of SMSCs (MyoD^+ cells) derived from the different growth stages under growth-stimulating conditions are illustrated in Fig. 10A. Results reveal that developmental SMSC had a significantly lower number of nascent myotubes (≥ 3 MyoD^+ nuclei fusion) (Fig. 10B) and fusion index (number of ≥ 3 MyoD^+ nuclei fusion/total MyoD^+ nuclei) (Fig. 10C) than mature and aged SMSCs. These results suggest that developmental SMSC can retain an undifferentiated state under growth-stimulating conditions which corresponded with a substantial increase in VDR protein expression after $1\alpha,25(\text{OH})_2\text{D}_3$ treatment. In contrast, mature and aged SMSCs had a significantly greater number of nascent myotubes ($p < 0.01$ and $p < 0.05$) (Fig. 10B) and a fusion index ($p < 0.05$) (Fig. 10C) compared to developmental SMSC which was associated with a diminished response to $1\alpha,25(\text{OH})_2\text{D}_3$. However, the rapid commitment of SMSC to differentiation was reduced in aged SMSC compared to mature SMSC ($p < 0.05$) (Fig. 10D) as illustrated by MHC protein expression (Fig. 10E). This result was supported by a lower number of aged SMSC compared to mature SMSC (decreased to $58.0 \pm 11.2\%$) in response to growth-stimulating conditions ($p < 0.05$). Altogether, these findings suggest that state-specific VDR protein expression in SMSC could be a primary factor that influencing vitamin D_3 action in skeletal muscle during advanced age.

Figure 5. Expression of vitamin D-metabolising enzymes in soleus and plantaris muscles during development, maturation, and ageing. CYP27B1 and CYP24A1 protein expression (A) soleus muscle and (B) plantaris muscle. GAPDH served as loading control ($n = 6$ mice/group), K = Kidney sample (positive control). CYP27B1 and CYP24A1 protein expression level was normalized with GAPDH protein expression that obtained from the same gel and experiment.

Discussion

This study provides insight about the vitamin D system in skeletal muscle at a tissue and cellular level during advanced age. The primary findings of this work are 1) VDR protein was barely detected in developmental muscle but substantially increased in aged muscle which was more pronounced in fast-glycolytic compared to slow-oxidative muscles; 2) levels of vitamin D-metabolising enzymes (CYP27B1 and CYP24A1) in skeletal muscle were not affected by local VDR protein expression or circulating $25(OH)D_3$ level; and 3) SMSC expressed vitamin D system-related proteins, however, there was a diminished response of SMSC to $1\alpha,25(OH)_2D_3$ during advanced age due to a rapid commitment of SMSC towards differentiation under growth-stimulating conditions.


Currently, the non-calcemic actions of vitamin D on skeletal muscle have been reported, i.e., development, strength, ageing, and repair³⁶. In addition, there is supportive evidence in the beneficial effects of vitamin D on elderly population where muscle mass and function is compromised^{20,30}. However, how vitamin D exerts its action and regulates the vitamin D system in skeletal muscle remains unknown. Previous studies have demonstrated undetectable levels of VDR protein in skeletal muscle tissue^{37,38}. Subsequent investigations reported that VDR protein expression was detected in normal muscle^{10,12,18,21} and substantially increased during skeletal muscle regeneration^{4,6}. The latter findings suggest that skeletal muscle plasticity is associated with SMSC function during repairing process, which could be a primary factor regulating VDR protein expression in skeletal muscle. However, whether vitamin D system-related proteins are differentially regulated in slow-oxidative and fast-glycolytic muscles currently unknown.

In this study, slow-oxidative muscle (soleus) expressed VDR protein at low level during development, which progressively increased during advanced age. In contrast, fast-glycolytic muscle (plantaris) had barely detectable levels of VDR protein expression compared to soleus muscle. However, we observed significant increases in VDR protein expression in plantaris muscle during transition from maturation to ageing. These findings on differential expression of VDR protein between soleus and plantaris muscles during ageing suggest an intrinsic factor related to fibre type composition could contribute to the regulation of VDR protein expression. To support this notion, soleus muscle contains a majority of type I muscle fibres that are associated with a higher number of SMSCs than plantaris muscle^{39,40}. SMSCs are a potential source of VDR in skeletal muscle tissue according to a previous investigation⁴. Therefore, the differences in SMSC content during postnatal development could be responsible for the higher level of VDR protein expression in soleus muscle. However, an increase in SMSC activity in plantaris muscle to compensate for type

Figure 6. Expression and localisation of vitamin D system-related proteins in soleus and plantaris muscles. (A) VDR and CYP24A1 protein expression; VDR protein was expressed in centronucleated muscle fibres of soleus muscle (arrows) while co-localisation of VDR and CYP24A1 protein expression (arrowheads) was observed in plantaris muscle. (B) CYP27B1 and OxPhos protein expression; CYP27B1 protein mainly expressed in mitochondrial compartment (arrowheads) as indicated by OxPhos staining and expressed in extracellular matrix (arrows) in soleus and plantaris muscles. The representative images of VDR-CYP24A1-DAPI and CYP27B1-OxPhos-DAPI staining are illustrated using serial-sections. DAPI was used to delineate nuclear localisation of the stained-sections. Images were taken at $\times 200$ magnification, scale bars = 100 μm .

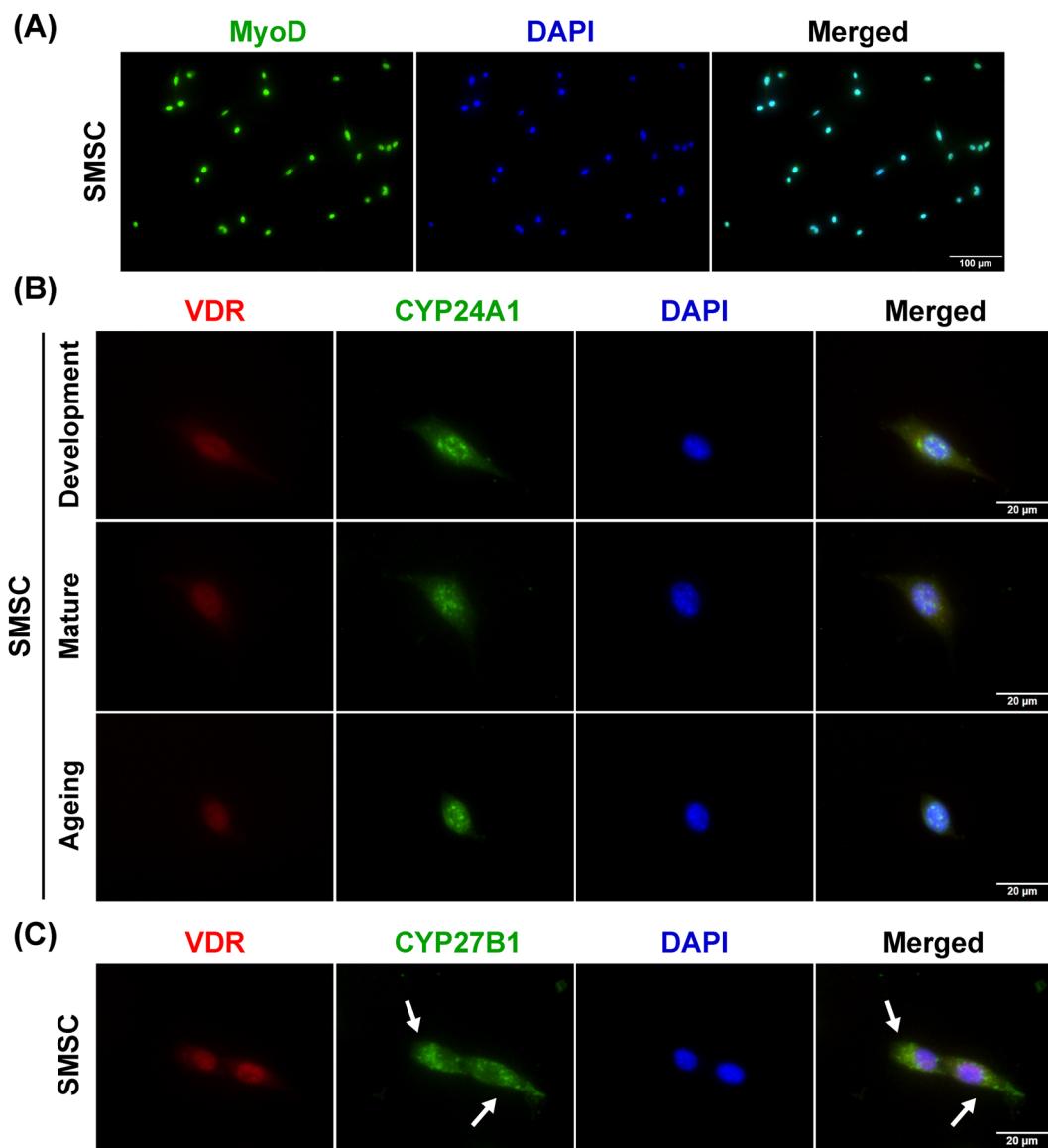

II muscle fibre atrophy during ageing could lead to a substantial increase in VDR protein expression. Since SMSC are required to maintain the myonuclear domain (ratio of cytoplasmic volume to myonuclear number) in atrophic muscle⁴¹. Additionally, a significant reduction of downstream mTOR signalling protein expression (decreased phosphorylations of 4E-BP1 and p70 S6K1 proteins) was more pronounced in plantaris compared to soleus muscle during ageing supporting a decreased in protein synthesis that requires increased SMSC activity. Altogether, increased SMSC activity could augment VDR protein expression in plantaris compared to soleus muscle during ageing.

Figure 7. Centronucleated muscle fibres and downstream mTOR signalling protein expression in soleus and plantaris muscles during development, maturation, and ageing. (A) Representative image of centronucleated muscle fibres, (B) Percentage of centronucleated muscle fibres at different stages of growth, (C) Phosphorylation of 4E-BP1/4E-BP1 protein expression level, and (D) Phosphorylation of p70 S6K1/p70 S6K1 protein expression level. Image was taken at $\times 400$ magnification, scale bar = 50 μ m. $*p < 0.05$, $**p < 0.01$, $***p < 0.001$ compared to developmental stage and $*p < 0.05$, $**p < 0.01$ compared to maturation stage ($n = 6$ mice/group).

Even though our results provide compelling evidence about the up-regulation of VDR protein expression in aged muscle, SMSC as a potential source of VDR expression in skeletal muscle, declined after birth (P0) and underwent quiescence during postnatal development (P21)³². Reductions in SMSC content and activity could lead to decreased VDR protein expression in skeletal muscle during postnatal development compared to neonatal stage as previously reported¹⁰. Intriguingly, the increased VDR protein expression observed in aged muscle compared to developmental muscle is paradoxical. To explain the current findings, an increase in VDR protein expression in aged muscle was associated with increased centronucleated muscle fibres, suggesting an increased number of activated SMSC. SMSC activation in aged muscle might recapitulate SMSC activity during neonatal stages would result in substantially increased VDR protein expression.

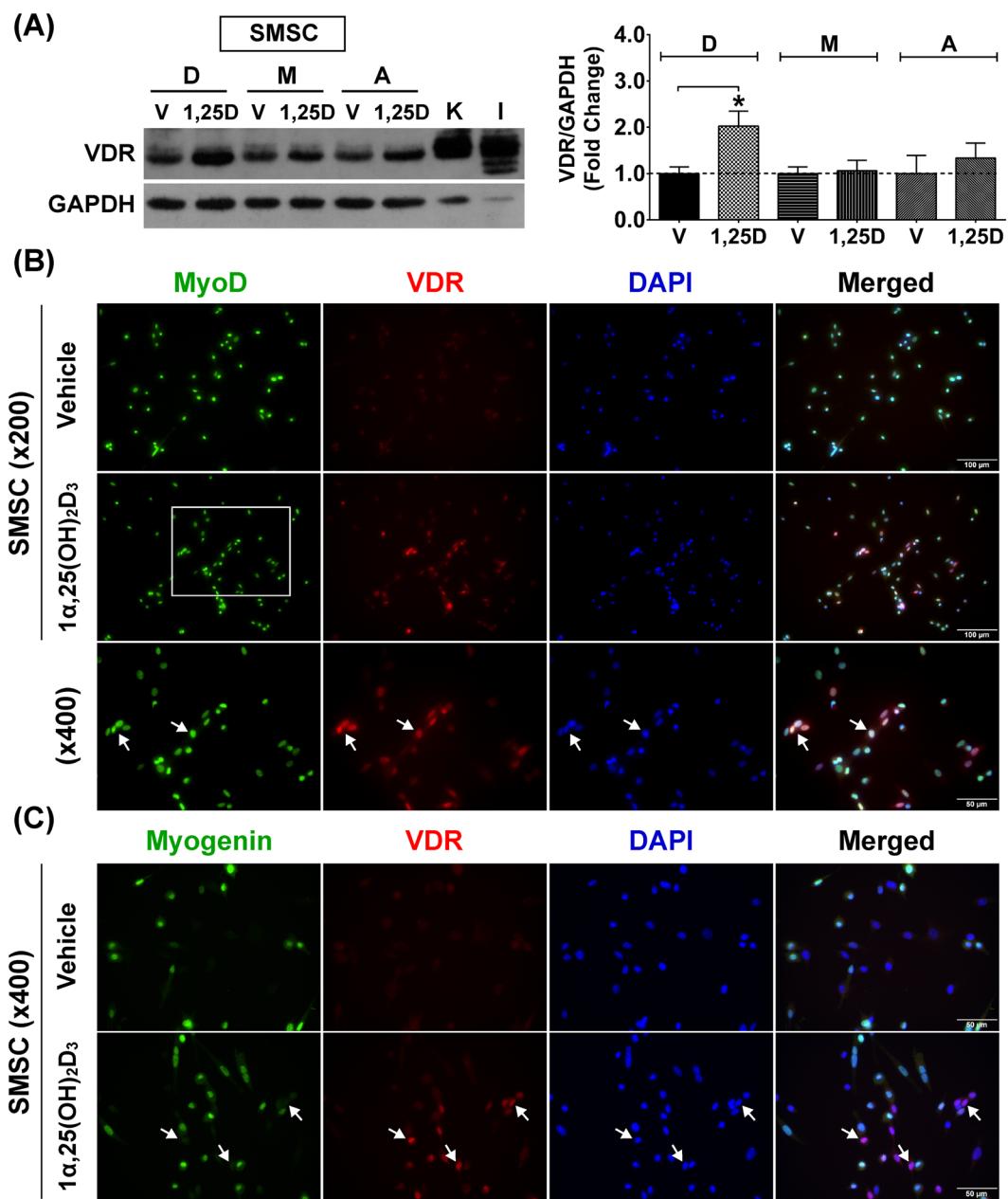
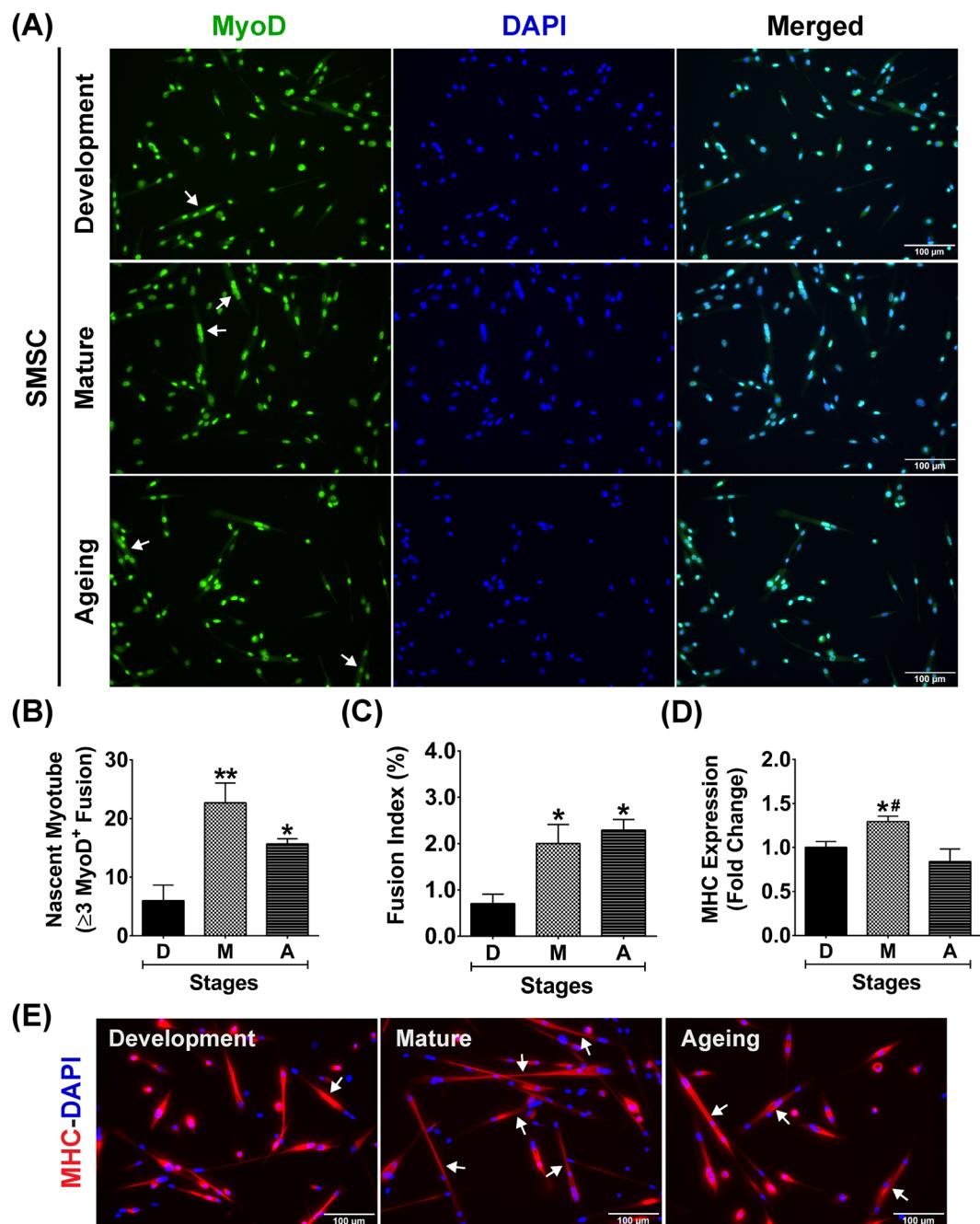

To prevent age-related concomitant diseases that could affect an interpretation of the results on vitamin D system in skeletal muscle, the age of mice in this study represents an early stage of ageing without signs of sarcopenia (age-associated loss of muscle mass and function). Therefore, the potential reduction of VDR protein expression during sarcopenia that occurs in very old age should not be excluded. Lower muscle VDR protein expression in sarcopenic patients with a significant reduction of lean body mass and grip strength has been reported²¹.

Figure 8. Expression and localisation of vitamin D system-related proteins in SMSC. (A) Representative image of purified SMSCs (MyoD⁺ cells), (B) Representative images of VDR and CYP24A1 protein expression in developmental, mature, and aged SMSCs. Co-localisation of VDR and CYP24A1 protein expression in the nucleus (DAPI-stained) was demonstrated in SMSCs after treated with 100 nM 1 α ,25(OH)₂D₃ for 24 h. (C) CYP27B1 protein expression was localised in the cytoplasmic compartment of SMSCs (arrows) in response to 100 nM 1 α ,25(OH)₂D₃-treated for 24 h. Images of A and B-C were taken at \times 200 and \times 400 magnifications, respectively.


Additionally, a reduced SMSC pool in sarcopenic muscle⁴² could be a potential contributing factor to decreased VDR protein expression during sarcopenia.

In the current study, vitamin D deficiency was detected at development as indicated by serum 25(OH)D₃ level <20 ng/ml. The low levels of serum 25(OH)D₃ were associated with low VDR protein expression in developmental muscle and vitamin D-sensitive tissues (kidney and intestine). The temporal expression of VDR protein in skeletal muscle that orchestrates with vitamin D-sensitive tissues suggests an influence of circulating 25(OH)D₃ level on systemic VDR protein expression during development. In contrast, total serum Ca²⁺ level at development was normal suggesting that low levels of 25(OH)D₃ and VDR protein expression are sufficient to maintain Ca²⁺ homeostasis at this stage of postnatal development. These results were supported by a previous investigation demonstrating that serum Ca²⁺ remained normal in severe vitamin D deficient patients if serum 25(OH)D concentration not fall below \sim 10 nM⁴³. Although serum 25(OH)D₃ was increased toward normal level (\sim 30 ng/ml) during maturation and maintained during ageing, VDR protein expression in aged muscle was increased independent of serum 25(OH)D₃ level. These results suggest that the contribution of intrinsic factors (i.e., SMSC activity), in addition to systemic 25(OH)D₃ level, regulate VDR protein expression in skeletal muscle during ageing.

Figure 9. State-specific VDR protein expression of SMSCs in response to $1\alpha,25(\text{OH})_2\text{D}_3$ treatment. **(A)** Representative immunoblot of VDR protein expression of developmental (D), mature (M), and aged (A) SMSCs after vehicle-treated and 100 nM $1\alpha,25(\text{OH})_2\text{D}_3$ -treated for 48 h (daily-treated). The highly sensitive VDR (D-6) antibody was used to detect VDR protein expression and GAPDH served as loading control. K = Kidney and I = Intestine (positive controls). VDR protein expression level was normalized with GAPDH protein expression that obtained from the same gel and experiment. Data obtained from $1\alpha,25(\text{OH})_2\text{D}_3$ -treated group was normalized with the respective vehicle-treated group to demonstrate the fold change at each growth stage ($n = 3$ SMSCs isolated from different mice/growth stage). $*p < 0.05$ compared to vehicle-treated group (developmental SMSC). **(B)** VDR protein expression (arrows) in developmental SMSC (MyoD $^+$ cells) was substantially increased after treated with 100 nM $1\alpha,25(\text{OH})_2\text{D}_3$ for 48 h (daily-treated). **(C)** VDR protein specifically expressed in undifferentiated SMSC (Myogenin $^-$ cells) (arrows) after treated with 100 nM $1\alpha,25(\text{OH})_2\text{D}_3$ for 48 h (daily-treated). DAPI was used to visualize nuclear localisation. Image **(B,C)** were taken at $\times 200$ and $\times 400$ magnifications. Rectangular line in **(B)** represents the area that is illustrated at $\times 400$ magnification.

In contrast to the increased VDR protein expression during advanced age, no significant change in vitamin D-metabolising enzymes (CYP27B1 and CYP24A1) were evident in skeletal muscle at any age. In general, vitamin D-metabolising enzymes in the kidney regulate $1\alpha,25(\text{OH})_2\text{D}_3$ concentration under influence of parathyroid hormone, fibroblast growth factor 23 (FGF23), and circulating $1\alpha,25(\text{OH})_2\text{D}_3$ level⁴⁴. However, changes in

Figure 10. Differentiation characteristics of developmental, mature, and aged SMSCs. (A) Representative images of developmental, mature, and aged SMSCs (MyoD⁺ cells) under growth-stimulating conditions for 48 h. Arrows in (A) indicate fusion of ≥ 3 MyoD⁺ nuclei (nascent myotube formation). (B–D) Quantitative analyses of (B) number of nascent myotubes, (C) fusion index, and (D) MHC protein expression from developmental, mature, and aged SMSCs ($n = 3$ SMSCs isolated from different mice/growth stage). (E) Representative images of MHC staining in developmental, mature, and aged SMSCs under growth-stimulating conditions for 48 h. Arrows in (E) indicate nascent myotubes (MHC⁺) that contains ≥ 3 nuclei fusion. * $p < 0.05$ and ** $p < 0.01$ compared to developmental stage and # $p < 0.01$ compared to ageing stage. Images were taken at $\times 200$ magnification.

serum 25(OH)D₃ level from development to maturation that could affect systemic 1 α ,25(OH)₂D₃ concentration did not alter CYP27B1 and CYP24A1 protein expression in skeletal muscle. These findings suggest that vitamin D-metabolising enzymes in skeletal muscle might be responsible for the local regulation of vitamin D metabolism but not regulate systemic production of 1 α ,25(OH)₂D₃ or its inactive metabolite (calcitroic acid). Moreover, no associations between VDR and vitamin D-metabolising enzyme expression levels in aged muscle were evident. These results differ from previous investigations showing VDR and CYP24A1 mRNA/protein expression in skeletal muscle cells/tissue are concurrently increased in response to 1 α ,25(OH)₂D₃ treatment, i.e., studies in

primary muscle cell culture^{10,12}, skeletal muscle cell line^{8,45,46}, and regenerating muscle⁴. From this point of view, an increase in VDR protein expression in aged muscle could be due to local factors in skeletal muscle rather than changes in systemic 1 α ,25(OH)₂D₃.

To support the local vitamin D system in skeletal muscle, SMSCs isolated from developmental, mature and aged muscles were shown to express vitamin D system-related proteins (VDR, CYP27B1, and CYP24A1). These findings reveal a potential impact of vitamin D₃ on SMSC, which are major contributors to skeletal muscle plasticity. Up-regulation of VDR protein expression in SMSC (MyoD⁺ cell) after 1 α ,25(OH)₂D₃ treatment was consistent with previous reports on vitamin D₃ action in rodent and human primary skeletal muscle cells^{10,11,13}. Additionally, cultured SMSC expressed nuclear VDR protein that co-localised with CYP24A1 protein after 1 α ,25(OH)₂D₃ treatment. This result supports previous work regarding regulation of vitamin D₃ action in SMSC during regeneration through VDR and CYP24A1 activation after intramuscular administration of 1 α ,25(OH)₂D₃⁴. However, the decreased response of SMSC to 1 α ,25(OH)₂D₃ treatment was apparent during advanced age in this study. Alteration of SMSC characteristics during advanced age could influence the effect of vitamin D₃ on the regulation of VDR protein expression. To support this notion, the rapid commitment to differentiation of mature and aged SMSCs under growth-stimulating conditions might diminish the response to 1 α ,25(OH)₂D₃, as VDR protein is highly expressed in undifferentiated SMSCs (Myogenin⁺) after 1 α ,25(OH)₂D₃ treatment. This novel finding suggests that state-specific regulation of VDR protein expression in SMSC could be a crucial factor affecting vitamin D₃ action on skeletal muscle during advanced age. To substantiate this finding *in vivo*, conditional knockout models using Cre-Lox recombination targeting myogenic regulatory factors (MRF4, Myf5, MyoD, and myogenin) would be a useful tool to study the state-specific response of SMSC to vitamin D₃ supplementation at different stages of skeletal muscle growth.

In conclusion, the present study provides insight into the local vitamin D system in skeletal muscle at different stages of growth. We observed significant elevations in VDR protein expression in skeletal muscle during advanced age. This difference was more pronounced in fast-glycolytic compared to slow-oxidative muscle during the transition from maturation to ageing. The substantial increase in VDR protein expression in aged muscle could be impacted by an increase in SMSC activity. Additionally, SMSC express vitamin D system-related proteins to support the action of vitamin D₃ on the regulation of skeletal muscle plasticity via SMSC. However, the diminished response of SMSC to 1 α ,25(OH)₂D₃ treatment during advanced age could due to the rapid commitment of SMSC towards differentiation under growth-stimulating conditions. In addition, we observed no association of vitamin D-metabolising enzyme (CYP27B1 and CYP24A1) protein expression in skeletal muscle with circulating 25(OH)D₃ suggesting that skeletal muscle is not the tissue responsible for regulation of systemic 1 α ,25(OH)₂D₃. Taken together, our evidence on vitamin D system in skeletal muscle supports a role for non-calcemic action of vitamin D in this non-classical vitamin D target tissue.

Materials and Methods

Animals. Male C57BL/6 mice were obtained from Nomura Siam International Co, Ltd. (Bangkok, Thailand) and assigned into three groups: development (aged 4-week-old), maturation (aged 24- to 25-week-old), and ageing (aged 72- to 76.5-week-old). The maximum age of mice in each growth stage corresponded approximately to 1-month-old, 6-month-old, and 18-month-old study periods, respectively. In each group, mice were allocated for an investigation of vitamin D system in skeletal muscle tissue (*in vivo* study) and SMSC culture (*in vitro* study). Mice were housed in temperature- and humidity-controlled room with a 12:12 light-dark cycle. In addition, mice were fed with CLEA Rodent Diet CE-2 containing 205 IU/100 g vitamin D₃ (Nomura Siam International Co, Ltd.) and reverse osmosis water ad libitum throughout the study.

Tissue sample collection. Before tissue sample collection, mouse body weight (g) was recorded to determine body weight at different stages of growth. Soleus and plantaris muscles were dissected and muscle wet weight (mg) was measured using a digital weight scale (Model MS204) (Mettler Toledo, Greifensee, Switzerland). For Western blot and histological/immunohistochemical analyses, muscle samples were frozen in liquid nitrogen or covered with Tissue-Tek O.C.T. compound (4583) (Sakura Finetek, CA, USA) before being frozen in 2-methylbutane (M32631) (Sigma-Aldrich, MO, USA) pre-cooled with liquid nitrogen. In addition, kidney and intestine (duodenum) were collected and frozen in liquid nitrogen to serve as the positive controls for vitamin D system-related protein expression analysis.

Analyses of serum 25(OH)D₃/D₂, 3-Epi-25(OH)D₃/D₂, and total Ca²⁺ levels. Serum was obtained from blood placed at room temperature for 30 min followed by centrifugation at 4 °C using refrigerated centrifuge Model 5430 R (Eppendorf, Germany) (3,000 rpm for 15 min). Serum levels of 25(OH)D₃/D₂ and 3-Epi-25(OH)D₃/D₂ were determined by LC-MS/MS using the MassChrom® 25-OH-Vitamin D₃/D₂ in Serum/Plasma kit (Chromsystems Instruments & Chemicals GmbH, Germany). Serum concentration of total Ca²⁺ was analysed using the *o*-cresolphthalein complexone method.

Histological analysis. Muscle sections at 10 μ m thickness were obtained using a cryostat (model CM1850, Leica, Wetzlar, Germany). The sections were stained with Hematoxylin solution modified acc. to Gill II (105175) and Eosin Y (C.I. 45380) (115935) (Merck Millipore, MA, USA) to evaluate the histological structure of muscle fibres, fibre cross-sectional area (CSA), and fibre number. Images were taken at $\times 100$ and $\times 400$ magnifications using an Olympus microscope (BX53) (Olympus, Tokyo, Japan) equipped with a digital camera (DP73) (Olympus, Tokyo, Japan). Fibre CSA and the distribution of fibre size were analysed from 200–300 fibres/individual muscle section. Fibre number was counted from the entire muscle cross-section. The quantitative analyses of fibre CSA and fibre number were performed using ImageJ (National Institutes of Health, Bethesda, MD) and cellSens Dimension software (Olympus, Tokyo, Japan), respectively.

Immunohistochemistry. Immunostaining protocols were performed following previously described¹⁴. Briefly, the sections were fixed with 4% paraformaldehyde (PFA) (15713) (Electron Microscopy Sciences, PA, USA), permeabilized with 0.5% Triton X-100 (X100) (Sigma-Aldrich, MO, USA), blocked with mouse IgG blocking reagent (MKB-2213) (Vector Labs, CA, USA), and with 10% normal goat serum (PCN5000) (Invitrogen, CA, USA). Primary and secondary antibodies were used as follows: mouse monoclonal anti-VDR (D-6) (1:100, sc-13133), rabbit polyclonal anti-CYP24A1 (1:100, sc-66851), and rabbit polyclonal anti-CYP27B1 (1:100, sc-67261) (Santa Cruz Biotechnology, CA, USA); rabbit polyclonal anti-fast MHC (1:1,000, ab91506) and mouse monoclonal anti-slow MHC (1:2,000, ab11083) (Abcam, Cambridge, UK); rabbit polyclonal anti-laminin antibody (1:400, L9393) (Sigma-Aldrich, MO, USA); mouse monoclonal anti-ATP synthase (complex V) subunit α (OxPhos) (1:200, 459240), goat anti-mouse Alexa Fluor[®] 568 IgG (H + L) (1:500, A-11004), and goat anti-rabbit Alexa Fluor[®] 488 IgG (H + L) (1:500, A-11008) secondary antibodies (Invitrogen, CA, USA). Nuclear localisation was visualized using 4,6-diamidino-2-phenylindole, dihydrochloride (DAPI) (D1306) (Thermo Fisher Scientific, MA, USA). Stained sections were mounted with antifade mounting medium (H-1000) (Vector Labs, CA, USA). Images were taken using an Olympus microscope (BX53) (Olympus) equipped with a digital camera (DP73) (Olympus) using image acquisition software (cellSens Dimension Desktop, Olympus, Japan) at $\times 100$, $\times 200$, and $\times 400$ magnifications.

SMSC isolation and culture. An isolation protocol was performed according to a previously described method⁴⁷. Isolated SMSCs were obtained from developmental, mature, and aged muscles and seeded on 2% gelatin-coated T25 flasks and cultured using DMEM supplemented with 20% fetal bovine serum (FBS) (10270-106) (Gibco, NY, USA) and 5 ng/ml of basic fibroblast growth factor (bFGF), human recombinant (GF003) (Merck Millipore, MA, USA) at 37 °C and 5% CO₂. The pre-plating technique was performed during passaging to eliminate contaminating fibroblasts during the isolation process. The purity of SMSCs was determined by myoblast determination protein (MyoD) expression. Ten randomized fields of cultured SMSCs from developmental, mature, and ageing stages (n = 3 SMSCs isolated from different mice/growth stage) were analysed to evaluate the percentage of MyoD⁺ nuclei [(number of MyoD⁺ nuclei/total nuclei) \times 100]. SMSCs at passage 5–6 with $>98\%$ of MyoD⁺ nuclei were used in this study.

Assessment of vitamin D system in SMSC. Developmental, mature, and aged SMSCs were seeded on 2% gelatin-coated 12-well plate and cultured with DMEM + 20% FBS + 5 ng/ml bFGF for 48 h. On the day of treatment, culture media was washed twice with sterile phosphate-buffered saline (PBS) (10010023) (Gibco, NY, USA) and replaced with DMEM + 20% FBS + 10% horse serum (HS) (16050-130) (Gibco, NY, USA) to represent growth-stimulating conditions. SMSCs were treated daily with vehicle (0.1% ethanol) or 1 α ,25(OH)₂D₃ (100 nM) (final concentrations) (71820) (Cayman Chemical, MI, USA) to assess the expression of vitamin D system-related proteins (VDR, CYP27B1, and CYP24A1) under growth-stimulating conditions for 24 h and 48 h, respectively.

Assessment of SMSC differentiation. Developmental, mature, and aged SMSCs were seeded on 2% gelatin-coated 12-well plate and cultured with DMEM + 20% FBS + 5 ng/ml bFGF for 48 h. After twice washing with PBS, SMSCs were cultured in growth-stimulating conditions (DMEM + 20% FBS + 10% HS) for 48 h. Thereafter, MyoD and myogenin protein expression was determined to investigate the differentiation characteristics of SMSCs under growth-stimulating conditions. Quantitative analysis was performed using image acquisition software (cellSens Dimension Desktop, Olympus, Japan). MyoD-DAPI stained images (10 randomized images at $\times 200$ magnification) were used to analyse the nascent myotube formation (≥ 3 MyoD⁺ nuclei fusion) and fusion index (number of ≥ 3 MyoD⁺ nuclei fusion/total MyoD⁺ nuclei). Quantification of MHC protein expression and cell number were analysed using MHC-DAPI stained images (15 randomized images at $\times 100$ magnification).

Immunocytochemistry. Cells were fixed with 4% PFA, permeabilized with 0.1% Triton X-100, and blocked for non-specific staining with 5% normal goat serum. The primary and secondary antibodies were used as follows: mouse monoclonal anti-MyoD (G-1) antibody (1:500, sc-377460), mouse monoclonal anti-myogenin (F5D) antibody (1:200, sc-12732), mouse monoclonal anti-VDR (D-6) (1:200, sc-13133), rabbit polyclonal anti-CYP24A1 (1:500, sc-66851), and rabbit polyclonal anti-CYP27B1 (1:500, sc-67261) (Santa Cruz Biotechnology, CA, USA); mouse monoclonal anti-myosin heavy chain antibody (MHC) (1:500, 05-716) (Upstate, CA, USA); goat anti-mouse Alexa Fluor[®] 488 IgG1 (1:500, A-21121), goat anti-mouse Alexa Fluor[®] 568 IgG2a (1:500, A-21134), goat anti-mouse Alexa Fluor[®] 488 IgG2b (1:500, A-21141), goat anti-mouse Alexa Fluor[®] 568 IgG (H + L) (1:500, A-11004), and goat anti-rabbit Alexa Fluor[®] 488 IgG (H + L) (1:500, A-11008) (Invitrogen, CA, USA). Nuclei were stained with DAPI to delineate nuclear localisation. Representative images were taken at $\times 200$ and $\times 400$ magnifications using an Olympus Inverted Fluorescence Microscope Model IX83 (Olympus, Tokyo, Japan) equipped with ORCA-Flash 2.8 Digital CMOS Camera (C11440) (Hamamatsu Photonics, Hamamatsu, Japan).

Western blot analysis. Proteins from tissue samples (skeletal muscle, kidney, and intestine) and SMSC samples were extracted using RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, and 1% Triton[®]X-100) supplemented with protease inhibitor (1:100) (P8340) (Sigma-Aldrich, MO, USA) and phosphatase inhibitor cocktails (1:100) (524625) (Merck Millipore, MA, USA). Protein concentrations were determined using BCA assay and the optical density was measured using Spark[™] 10 M multimode microplate reader (Tecan Trading AG, Männedorf, Switzerland). After denaturing the protein samples by heating at 60 °C for 10 min, 30 μ g (tissue samples) or 20 μ g (SMSC samples) of protein was loaded into SDS-polyacrylamide gel (4% stacking and 10% separating). Protein samples were transferred to PVDF membrane, blocked with 5% non-fat milk, and probed with primary antibodies as follows: mouse monoclonal anti-VDR (D-6) (1:200, sc-13133),

rabbit polyclonal anti-CYP24A1 (1:200, sc-66851), and rabbit polyclonal anti-CYP27B1 (1:200, sc-67261) (Santa Cruz Biotechnology, CA, USA); rabbit polyclonal anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1:5,000, ABS16) (Merck Millipore, MA, USA); rabbit polyclonal anti-phospho-4E-BP1 Ser65 (1:1,000, 9451), rabbit monoclonal anti-4E-BP1 (1:1,000, 9644), mouse monoclonal anti-phospho-p70 S6K1 Thr389 (1:1,000, 9206), and rabbit monoclonal anti-p70 S6K1 (1:1,000, 2708) (Cell Signaling, MA, USA). Membranes were incubated with goat anti-rabbit peroxidase-conjugated antibody (1:7,000, AP132P) and goat anti-mouse peroxidase-conjugated antibody (1:7,000, AP124P) (Merck Millipore, MA, USA). Protein bands were visualized using chemiluminescence horseradish peroxidase detection reagent (WBLUR0100) (Merck Millipore, MA, USA) and exposed to UltraCruz Autoradiography Film (sc-201696) (Santa Cruz Biotechnology, CA, USA). Quantification of the protein expression levels was performed using Image J (National Institutes of Health, Bethesda, MD).

Statistical analysis. Data are expressed as means and standard errors of the mean (means \pm SEM). Significant differences among groups were determined using One-way ANOVA with Tukey's post-hoc test, independent-samples Kruskal-Wallis test, or independent sample *t*-test. Correlation analysis was evaluated using Pearson correlation coefficient. All statistical tests were performed using SPSS and $p < 0.05$ represents the significant difference between groups.

Ethical approval and informed consent. Experimental procedures in animals were performed in accordance with institutional guidelines for the care and use of laboratory animals. The animal protocol has been approved by the Animal Care and Use Committee of Faculty of Science, Mahidol University (SCMU-ACUC; Protocol ID MUSC59-008-341).

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Received: 7 November 2019; Accepted: 22 April 2020;

Published online: 19 May 2020

References

1. Haussler, M. R. *et al.* Molecular mechanisms of vitamin D action. *Calcif Tissue Int* **92**, 77–98 (2013).
2. Veldurthy, V. *et al.* Vitamin D, calcium homeostasis and aging. *Bone Res* **4**, 16041 (2016).
3. Jiang, P. *et al.* Dysregulation of vitamin D metabolism in the brain and myocardium of rats following prolonged exposure to dexamethasone. *Psychopharmacology (Berl)* **231**, 3445–3451 (2014).
4. Srikuea, R. & Hirunsai, M. Effects of intramuscular administration of $1\alpha,25(\text{OH})_2\text{D}_3$ during skeletal muscle regeneration on regenerative capacity, muscular fibrosis, and angiogenesis. *J Appl Physiol* (1985) **120**, 1381–1393 (2016).
5. Garcia, L. A., King, K. K., Ferrini, M. G., Norris, K. C. & Artaza, J. N. $1,25(\text{OH})_2$ vitamin D_3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C₂C₁₂ skeletal muscle cells. *Endocrinology* **152**, 2976–2986 (2011).
6. Srikuea, R., Zhang, X., Park-Sarge, O. K. & Esser, K. A. VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. *Am J Physiol Cell Physiol* **303**, C396–405 (2012).
7. Salles, J. *et al.* $1,25(\text{OH})_2$ -vitamin D_3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. *Mol Nutr Food Res* **57**, 2137–2146 (2013).
8. Gergis, C. M., Clifton-Bligh, R. J., Mokbel, N., Cheng, K. & Gunton, J. E. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. *Endocrinology* **155**, 347–357 (2014).
9. Camperi, A. *et al.* Vitamin D and VDR in cancer cachexia and muscle regeneration. *Oncotarget* **8**, 21778–21793 (2017).
10. Gergis, C. M. *et al.* The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. *Endocrinology* **155**, 3227–3237 (2014).
11. Braga, M., Simmons, Z., Norris, K. C., Ferrini, M. G. & Artaza, J. N. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. *Endocr Connect* **6**, 139–150 (2017).
12. Pojednic, R. M. *et al.* Effects of $1,25$ -dihydroxyvitamin D_3 and vitamin D_3 on the expression of the vitamin d receptor in human skeletal muscle cells. *Calcif Tissue Int* **96**, 256–263 (2015).
13. Olsson, K. *et al.* Evidence for vitamin D receptor expression and direct effects of $1\alpha,25(\text{OH})_2\text{D}_3$ in human skeletal muscle precursor cells. *Endocrinology* **157**, 98–111 (2016).
14. Ryan, Z. C. *et al.* $1\alpha,25$ -Dihydroxyvitamin D_3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells. *J Biol Chem* **291**, 1514–1528 (2016).
15. Stratos, I. *et al.* Vitamin D increases cellular turnover and functionally restores the skeletal muscle after crush injury in rats. *Am J Pathol* **182**, 895–904 (2013).
16. Makanae, Y. *et al.* Acute bout of resistance exercise increases vitamin D receptor protein expression in rat skeletal muscle. *Exp Physiol* **100**, 1168–1176 (2015).
17. Abboud, M. *et al.* $1,25$ -Dihydroxycholecalciferol (calcitriol) modifies uptake and release of 25-hydroxycholecalciferol in skeletal muscle cells in culture. *J Steroid Biochem Mol Biol* **177**, 109–115 (2018).
18. Gergis, C. M. *et al.* Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. *J Cachexia Sarcopenia Muscle* **10**, 1228–1240 (2019).
19. Ceglia, L. *et al.* Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle. *J Mol Histol* **41**, 137–142 (2010).
20. Ceglia, L. *et al.* A randomized study on the effect of vitamin D_3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. *J Clin Endocrinol Metab* **98**, E1927–1935 (2013).
21. Roh, Y. H., Hong, S. W., Chung, S. W. & Lee, Y. S. Altered gene and protein expressions of vitamin D receptor in skeletal muscle in sarcopenic patients who sustained distal radius fractures. *J Bone Miner Metab* **37**, 920–927 (2019).
22. Bloomberg, D. & Quadrilatero, J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. *PLoS one* **7**, e35273 (2012).
23. Scott, W., Stevens, J. & Binder-Macleod, S. A. Human skeletal muscle fiber type classifications. *Physical therapy* **81**, 1810–1816 (2001).

24. Holick, M. F. *et al.* Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* **96**, 1911–1930 (2011).
25. Mowé, M., Haug, E. & Bohmer, T. Low serum calcidiol concentration in older adults with reduced muscular function. *J Am Geriatr Soc* **47**, 220–226 (1999).
26. Visser, M., Deeg, D. J. & Lips, P. & Longitudinal Aging Study, A. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. *J Clin Endocrinol Metab* **88**, 5766–5772 (2003).
27. Verhaar, H. J. *et al.* Muscle strength, functional mobility and vitamin D in older women. *Aging (Milano)* **12**, 455–460 (2000).
28. Moreira-Pfrimer, L. D., Pedrosa, M. A., Teixeira, L. & Lazaretti-Castro, M. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. *Ann Nutr Metab* **54**, 291–300 (2009).
29. Pfeifer, M. *et al.* Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. *Osteoporos Int* **20**, 315–322 (2009).
30. Cangussu, L. M., Nahas-Neto, J., Orsatti, C. L., Bueloni-Dias, F. N. & Nahas, E. A. Effect of vitamin D supplementation alone on muscle function in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. *Osteoporos Int* **26**, 2413–2421 (2015).
31. Anderson, J. E. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. *J Exp Biol* **209**, 2276–2292 (2006).
32. White, R. B., Bierinx, A. S., Gnocchi, V. F. & Zammit, P. S. Dynamics of muscle fibre growth during postnatal mouse development. *BMC Dev Biol* **10**, 21 (2010).
33. Hawke, T. J. & Garry, D. J. Myogenic satellite cells: physiology to molecular biology. *J Appl Physiol (1985)* **91**, 534–551 (2001).
34. Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. *Science* **302**, 1575–1577 (2003).
35. Wang, X. & Proud, C. G. The mTOR pathway in the control of protein synthesis. *Physiology (Bethesda)* **21**, 362–369 (2006).
36. Girgis, C. M. Vitamin D and skeletal muscle: Emerging roles in development, anabolism and repair. *Calcif Tissue Int* **106**, 47–57 (2020).
37. Wang, Y. & DeLuca, H. F. Is the vitamin d receptor found in muscle? *Endocrinology* **152**, 354–363 (2011).
38. Wang, Y., Zhu, J. & DeLuca, H. F. Where is the vitamin D receptor? *Arch Biochem Biophys* **523**, 123–133 (2012).
39. Keefe, A. C. *et al.* Muscle stem cells contribute to myofibres in sedentary adult mice. *Nat Commun* **6**, 7087 (2015).
40. Fry, C. S. *et al.* Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. *Nat Med* **21**, 76–80 (2015).
41. Brack, A. S., Bildsoe, H. & Hughes, S. M. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. *J Cell Sci* **118**, 4813–4821 (2005).
42. Sousa-Victor, P. & Munoz-Canovas, P. Regenerative decline of stem cells in sarcopenia. *Mol Aspects Med* **50**, 109–117 (2016).
43. Need, A. G. *et al.* Vitamin D metabolites and calcium absorption in severe vitamin D deficiency. *J Bone Miner Res* **23**, 1859–1863 (2008).
44. Bikle, D. D. Vitamin D metabolism, mechanism of action, and clinical applications. *Chem Biol* **21**, 319–329 (2014).
45. Ryan, K. J., Daniel, Z. C., Cragg, L. J., Parr, T. & Brameld, J. M. Dose-dependent effects of vitamin D on transdifferentiation of skeletal muscle cells to adipose cells. *J Endocrinol* **217**, 45–58 (2013).
46. van der Meijden, K. *et al.* Effects of 1,25(OH)₂D₃ and 25(OH)D₃ on C2C12 myoblast proliferation, differentiation, and myotube hypertrophy. *J Cell Physiol* **231**, 2517–2528 (2016).
47. Danoviz, M. E. & Yablonka-Reuveni, Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. *Methods Mol Biol* **798**, 21–52 (2012).

Acknowledgements

This work was supported by grants (to R.S.) from the Thailand Research Fund (TRF) and Office of the Higher Education Commission (MRG6080090) and the Faculty of Science, Mahidol University. N.C. is a TRF Senior Research Scholar awarded by TRF and a senior investigator of a Mahidol University Multidisciplinary Research Cluster (MU-MRC). The authors gratefully acknowledge Center of Excellence for Shrimp Molecular Biology and Biotechnology and Olympus Bioimaging Center (Center of Nanoimaging, Faculty of Science, Mahidol University) on supporting the cryostat for muscle sample sectioning and image acquisition, respectively. Proofreading of the manuscript by Associate Professor Dr. Christopher Fry is appreciated.

Author contributions

R.S. and N.C. conceived and designed of research; R.S. and M.H. conducted experiments and analysed data; R.S. interpreted results of experiments; R.S. wrote manuscript and prepared figures; R.S., M.H., and N.C. edited and revised manuscript; R.S., M.H., and N.C. approved final version of manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at <https://doi.org/10.1038/s41598-020-65067-0>.

Correspondence and requests for materials should be addressed to R.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2020