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Abstract
Reduction of wvehicle emissions is a major component of sustainable
transportation development. The promotion of green transport modes is a

worthwhile and sustainable approach to change transport mode shares and to
contribute to healthier travel choices. In this paper, we provide an alternate weibit-

based model for the combined modal split and traffic assignment (CMSTA)

problem that explicitly considers both similarities and heterogeneous perception
variances under congestion. Instead of using the widely-adopted Gumbel

distribution, both mode and route choice decisions are derived from random
utility theory using the Weibull distributed random error. The joint distribution of

the random error is constructed by a copula. At the mode choice level, a nested
weibit NW) model is developed to relax the identical perception variance of the
logit model. At the route choice level, the recently developed path-size weibit
(PSW) is adopted to handle both route overlapping and route-specific perception
variance. Further, an equivalent mathematical programming (MP) formulation is
developed for this NW-PSW model as a CMSTA problem under congested
networks. Some properties of the proposed models are also rigorously proved.
Using this alternate weibit-based NW-PSW model, different go-green strategies
are quantitatively evaluated to examine (a) the behavioral modeling of travelers’
mode shift between the private motorized mode and go-green modes and (b)
travelers® route choice with consideration of both non-identical perception
variance and route overlapping. The results reveal that mode shares and route
choices from the NW-PSW model can better reflect the changes in model

parameters and in network characteristics than the traditional logit and extended
logit models.

Keywords: Nested weibit, path-size weibit, mathematical program, combined

modal split and traffic assignment problem



unagUgudms

| A . = = o \ |
N173Ud9R 289 (Green Transportation) tHunilelunnaaen NI sWmLITZLLNNIANKANT LA WIS
auan Miulassadeuanian Wiania anszAlnUNWIIRvasszamulunIngn Tnan1saugs
Aqearsrnaufag sTULINEIANE1T0LE BATITULNNTIUAWLL TBLATRIEUE W1 ANTENY LATNNT
a % ti} aI/ o a 1 al = a A A 1
A aelnediall nasandiunissruuaudadilaaasinisdesiiulasanis WeuuINIaansnge
UUNUFIULBIULLI1A849 Multinomial Logit (MNL) NB¢UNNLFIUI8IN1TUANLAY Gumbel N3
mumﬁgmfiﬁmqLﬁﬂﬂgmmumﬂum (Mode of Transportation) WALAITLAANLEUNINITLALNI
. - T d 44 ,

(Route) 10auAazni1aiaantiineaiieaiu waziaiinuilslsauinme® wee Identically and
Independently Distributed (11D) Msinazinliinanislsziiuinanaaan iesainluaanuduas
N3AeNIULLUNIIUA LA EUNINNIFEUNNTAMIALLTHE Y

nd1 20 T AnsAnsRNeInengNandefesanantFiguIeuULaIass MNL Tnadinseguy
& d - 44 , . -
AUFIUNITUANWAY Gumbel LiNaNasaIANLLsUIUNEAIes (Covariance) semdneniaiaenly
NSLAUNIN At lafimNy LULANAINgNWILIAINNSANE Tl UNNaNnsnandafealfunadou
Tnagnisaiansnnanulstsunesilesls uddassiasisaunaguliudazniaaeniiann
wilstgau (Variance) Miniuuazash luauagiuniaasuudatsinge iy n1anisaifindnaes
n13a3143 Nardnasaamuilslsun1sius waznisaianisnd an uazenldanelunisimunig &
Neanen9gafannslss i ULATIBEENNTIUESR e

A9A N AR89 08 AT Fa I ULILANABTIEIULN A8 AIM170RANTNAANY
wstlsamifeniies sswiramadennisiiunig ImﬂﬁLwi@zmu?mﬂﬁmmLLﬂ?ﬂmﬁ”uﬂgﬁum
Jades1e] (1981 uazAlianelunsiaunta) LLum"’]@mﬁﬁmm@ﬂ;uuﬁ”ugmmimﬂLLf-N Weibull
7 Joint Distribution #51931lne Copula lunssnasamginssunisidengduuuniaidunig g
WAILLLILAN084 Nested Weibit 715 TA3a6319 Nest drm13unnsfiansninanuutsisawieaiies
dawlunisdnaeanginssuninidendunieninidunisiinislfunudnang Path-size Weibit it
FANT0INANN AR UNNTIARAN NN P (Route Overlapping) wazAanuulsLlau 7
NAAINTLELNILAT Tz LUNIFLAUNNG (Perception Variance) AT NsAnE R AN TR
LWULRNABININAIAATARS (Mathematical Programming) FHUANLLLA 29 Nested Weibit LAz
LLILI41a04 Path-size Weibit lin8aaiu uaztniauedunauia (Algorithm) &1415UN133LATIEF LU
‘Eﬂmﬂjfmmmumﬂmu@'wmmﬁlum;ﬁmmmﬁm?mqm@m:wmmﬁﬁymmmmﬁmﬁmlu
suuuusine Auszuuaudadizes

anFA92¢19n13ANEY (Numerical Example) WA WUUANABINRMUY 418170 NANTUIANH
wistsauineailasldnndnuuuanaseeinuan nasilagunlasiunAnuesiniauntaludounes
ANININILENTE I g URLILINNSTIUAS AnadnATysiansaiuaun1saudadiaen

~



UNU

n’mumlﬂumLwﬁ;ﬁﬁﬁmmmmmqmmm@mmmmm@@ﬁu@ﬁm 29009 NANHNIBINALE
Agisaunszan (GHG) waznazlanteuainnisudeldtingudemaandnduansedy nanseny
Lmhf:ﬁﬂﬁ?gm@Lwi\rn’]muumﬂﬂ@:mﬁwmmmﬁumumﬂumu,uu "go-green" L N1IUUAS
UL geud LAzN1TIUdsEN81TY e NENAIIAReN BNt AN lEane luns AU AN
nan LL@zLﬁ@ﬁfmiﬁﬁmﬁumqLﬁ@m/imLﬁmﬁﬁmmwmummﬁiiﬂﬁummﬁmmﬂum@lﬁumqﬁ
R

lunalssfiudssdnduaresloansrudedidorduiufemaumginssuresdifumed
Lﬂ?}lﬂugﬂu:uuma@umwwdwmuwmu:muumﬂ@Lmzmimumﬁ@m wWiaw 7 funsendunig
N19LAUNIY Imﬂmiﬁmimﬁﬂﬁﬁuﬁﬁmqmmeﬁifmﬁisi WiHNauiu (Heterogeneous Perception
Variance) LAz e (Route Overlapping) 3N M T uat NI MaNE A ULLIA a8 3NN
SINANNFABINIINITALNNG (11 Boyce, 2007; Bricefo et al., 2008; Szeto et al., 2012; Kitthamkesorn
etal., 2016) Geiin19sziiutlerAnBuaT uANA19TEMIN9N1 280Nl U 8N 3TUE9R T 0 uay
Lﬂ"’imﬁ@ﬁmmfméﬂuqmlun?@quQIﬂiQﬂjﬁﬂﬁmw;@ (Network Equilibrium) Tngitannzaeinedanis
Wasungfnssuuaznisilasuuaadunsanananfansounededisrdninmlneliuuudiaes
Combined Modal Split and Traffic Assignment (CMSTA) FafluNNI AT LR AMFLANLERINNTANS
Lﬁumaﬁ'ﬁmimmmﬁﬂﬂgﬂLmumﬂaumqLmzﬁa?umqmuaumqmuq’ﬁu”l,ﬂ #nnsAnulaanig
ﬁfmmﬁﬁmu@:miﬂi:ﬂﬂﬁﬂfﬁﬁLLmﬂﬁmﬁummLmuﬁmm CMSTA (v Florian, 1977; Florian and
Nguyen, 1978; Abdulaal and LeBlanc, 1979; Oppenheim, 1995; Cantarella, 1997; Wu and Lam, 20
03: Garcia and Marin, 2005) $9589 CMSTA Ll uuuus1a89N19AdAAIERS (Mathematical
Programming: MP) (Florian and Nguyen, 1978; Abdulaal and LeBlanc, 1979; Oppenheim, 1995),
Variational Inequality (V1) (Florian, 1977; Wu and Lam, 2003; Garcia and Marin, 2005), &< Fixed
Point (FP) (Cantarella, 1997) 28i14130AN N3LAUNNeaNT AN I WL UIZ NI NN IEBNNITRUNG
e A laiuiuenil Cantarella (1997) Garcia and Marin (2005) Oppenheim (1995) Waz Wu
and Lam (2003) IA & uuuRanaee Multinomial Logit (MNL) %QﬂguuﬁpugmmmﬂmmLmLmu Gumbel
Tunnsas1euwLLaae Stochastic User Equilibrium (SUE) ﬁﬁmimmﬂiﬁ@ﬂgﬂmemm”mmqms
w9 lunsasreImNaNnatedlnetng

widniTogmnaaalaiuiueuay 13 5untsiansonudn usitunsiass MNL feilfedesdifiaann
ANNAFIU AR 1) ld@a1u1970R TN AUANNABIL AR (Similarity) TEUINNIALN LAY
2) TigunsnRan A aLLlsUmuRiAaT LA asnaiAen (Ben-Akiva and Lerman, 1985) iy
Tunsi@anidunianisiaunig Tnauuuanasd MNL TdaunsaiasanaiiuadanaesendegUuiy
NILADN TUNITLAUNIILAY miﬁ”‘u’ﬁLLmﬁmﬁummﬁmﬁumq (Sheffi, 1985) dlelaunuani
Kitthamkesorn et al. (2016) 1§ Mui1Lia1a@4 Nested Logit (NL) #13UNN31aanguuunIsauneuay
WLULANa8d Cross Nested Logit (CNL) iaandadesfanannlunsiansannisdendunanaiumig



7111909 Route Overlapping a2in9lsfin1u uuLa1ae9 CMSTA Helasladanunsniansninnisiu
ssiuluns@engluuuasi@unslunisimunigls

AN T R RULLLS1A8e Weibit-based CMSTA lnguLILA 1689 CMSTA @x@g’uuﬁvugm
189 Weibull Random Error Distribution Iuﬂfum@uﬂ’]iLaﬂﬂgﬂLLuumﬁ‘LauVl’N WULA88d Nested Weibit
(NW) %Qﬂﬁmmﬂ’m Copula (Nelsen, 2006) .-,me:ﬁ' Weibull distributed random error Wa135IN1g
5‘1_@@'3’134LLﬁmﬁiN‘ﬂfmgﬂLL‘LI‘Llﬂ’]:‘LauV]N (Heterogeneous Perception Variance) Iuﬂfumum?lﬁﬂﬂ
HUNNINTAUNNG BN9Ta TINMHEILY MP §19151 Weibit-based CMSTA figanadesiudeulaans
Kuhn-Tucker W5 famensnnsAnuans taznisthusudaesiiauel 1%



ALl hazniIsINLAas

Indices

A

A8 PAUD4 Links

IJ 78 9a1993nfiun19-9atlaemng (Origin-Destination: O-D)
U, e 7ane9 Upper Nests 3319w O-D ij € IJ
M, #egazesnadengduunnissiun1anels Upper Nests u e U, uag ij e 1J
R,, Pegareadunieresgluuunsiune me M neld u e U, uway ij e IJ
Variable
&,, ~ P® Gumbel distributed random error 2033UULLNSAWUNN m e M, ij € IJ
s P2 Weibull distributed random error 2043UWLLINAAWNN m e M, ij € IJ
V. P2 Weibull distributed random error 18WUNW r € R, UHgUIINIAUNN me M,
nel8 Upper Nests u € U,ijel
A s Ve dl o % a .
P2 assalslami (Utiity) NanunsadnlfvesgUuuunisdune me M, ijelJ
gl e A Mg lun1s@uneuuEunie £ e R, ugduuun iU me M, ueU,
ijell
g, P8 ANNABNNIINARUNNITUIN j € I
ql, P8 ANNABNNIINNARAUNNIBUULLNIPUNN me M, ueU, ijelJ
i P dTNnRasuEun e £ e R, LUULILNSBUN N me M, uelU, ijelJ
umr jum U yu y -]
r,  Aa A ldeelunsAunIsuu Link a € 4
Parameters
@, P8 NEmeiianizaed Nest u e U, ij e IJ
¢l e Arumilannsdineiaes Weibull Distribution 289LULULNNIAUNN me M, ue U,

ijell



Bl e dnmuzniaEianes Weibull Distribution 98431 WLLNTAUN me M, ueU,
ijell
o’

o Af Path-size Factor ULEUNY 7 € Rijum me Miju ue Uij el



wUUANaa9 Weibit

Tudoutlazlidiayainaniuuunanaas Nested Logit (NL) uazWmUILLUA1889 Nested Weibit
(NW) dufunisiaangtuuunisitiunis wanannidslidaganeaiun1swmuiLuL[1ae9 Path-
size Weibit 819%5UN171 R 2 NLEUNI9NITIRUNN

Nested Logit Model

WULANAa89 NL TE5UN199Wm1NT1ann Ben-Akiva and Lerman (1985) taglunnd 1 azuana
Tasea3n9r09uuLs1aedieefuedeANAf1eAfITEndegluuun1aensng ) Tnaaunas
Random Utility Maximization (RUM) 2894ULA18849 NL a1:150udndlasail

U=V + & VmeM,, ,ueU,,ije lJ (1)

iju?
9 Cumulative Distribution Function (CDF) Aa

F Eim = exp(—e_f”"” ) (2)

ward Joint CDF Ag
_é‘jm ¢/’/’u

H =exp —Z Z e (3)

ueU,»,» meM[/u

@, €[0,1] AaNITinaTLanIANANRUFILNIN9N19AaN (Ben-Akiva and Lerman, 1985)

e @, HAWinAL 1 wunsnaes NL angtifluuuusnans MNL

¥
Y o A

AuN17ANUNAzTUIRIMLLA1a89 NL @100 udnalinatl (Ben-Akiva and Lerman, 1985)

P = Pr(V,, + & 2V + &, Ynzm),NmeM, ,uel,,ijel
= Pr(V,,, —Vy + &g 2 E = m),Yme M, ueU,,ijelJ (4)
FeanunsnAuandldann
Pl = [HI(..&,)dE,, . (5)

v
Y o

e H7 heayiuiaed CDF WWenIN19Auans axn13axtnaztiiuaes NL aaunsouans1fsan

10



Piju -1

1 1
exp(— V) zneM,,u exp — Vi

iju iju

l’j _ .o
P’ = o VmeM, ,ueU,ijell (6)
1
S| S B
teU; seM p (01_7‘, s
MNL NL NL
Nest u
Nest m
Auto Bus Bike Auto Transit Bike Auto Transit Bike

& exxm)

M9 1 TAF98519289ULLANaa9 MNL wag NL

Nested Weibit Model

wuudnaes NL fepsilanuigiudignnisiuiiatnuudsdsauannnisiuinunndaeiy

(Perception Variance) L{1uA1A4% A8 TT°/6 (Marzano Wae Papola, 2008) 1NaaAqAABELAINEIY
AsAnEHAs RN IWRLILLLSNa8d Nested Weibit (NW) a1n Copula (Nelsen, 2006) a1n Joint
Distribution Ju@xn13% 3 way CDF Tuaunish 2 4un13284 Random Error @1:130 AR bAA9

fl.j = —ln(— lnuijm ) (7)

1563507 Inverse (Nelsen, 2006) 41H19DLNUANNNTN 7 A9MUENN97 3 (Bhat, 2009)

Piju

C=exp — ), Z(— lnuw)rp,l? (8)

uel; \ meMy,,

©

Y o

CDF @1%5u Weibull Distributed Random Error 28431/ULILINN9AUNING m UaaS15A9%

F, =1 —exp(— &; ) (9)
waz Survival Function Aa
Uy, = ngjm = exp(— Eiim ) (10)

o = Dy
UNRANNNIN 10 adluaunii s 1f

11



(piju

H =exp| - Z Z(gi/m)iju (11)

ueU,-j meMW

v
o

A1N17 NW RUM @1313002 a9 LA 9T

u., =V,

ijm ijm ljm >

VmeM, ,ueU,ijell (12)

iju >
ANUNAzTLEes NW ldx1a1n

P’ =Pr(V, >V . ,Nn#m),VYmeM,

ijm l}m ijn~ijn>

uelU,ijell

iju?

ueU,

ij

=Pr(V,_ ¢c. V. >2¢,.

ijm ~ ijm ijn ijn >

Vn#m),VmeM, ijell (13)

Iju’

AMNANNIIN 5 AMHNUNAZITUIAILLLANA89 NW 21:3770A1 L bEan

giju-1
oo l -1 0 1\
P’ = J.(gijm)% Z (gl.ﬂ)% exp —Z Z (gi].n)%v de,, (14)
0 leMy, veiju \ neM,
LNUANNITN 13 @ﬂummiw 14
Diju—1
- _1 1 +20 1 i
B/ = (Vum)l P Z(VW) P I eXPl Vi i Z Z(Vijn) o de, (15)
leMy, 0 veUy\ neMy,
ueU,j
yinlfianansauansannnsasttinazith Nw Essl
1 1 7%t
) (szm )_“’*‘f" l:ZneM,ju (V )_‘/’”"}
P’ = =TS VmeM, ueU,ijel) (16)
ZteU” |:ZseMm (I/lf/S )%t:|

a/

Taeaonuulsilsauaasuundnaas NW daoinutlstlsaunauagiu ¥, A9l (Kitthamkesorn and

ijm

Chen, 2013)

(G”)Z ( Um)z VmeM,, uel,

m ij°

jell (17)

W’Q’]ﬁ‘fuﬂﬂ’]WV] 1 Tnanuualifessndszlond 7, 209908UF s2ULIUANANE TS WAZANTENUE

Um

ANAD 4, 2.5 WAT 1 ATNAIAL NTFULREULLILAIa8d MNL, NL uaz NW Tugduniunisauaed

=

1Al dl o I A
Y9 WATNIFUUANALNT (Go-green & Go-gray) (N1wh 1) Taananuarn @, VDITNUUAAD 1 LAY

12



0.25, 0.5 LAY 1 AMFUITULIUANAIG1TULUAZANTHY WAASIUANTIT 1 TandnIDeANLNazLTTy

29INFADNIULLUNNAUN
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Qi 0.25 0.5 1
Model Auto | Transit Bike Auto | Transit Bike Auto | Transit Bike
MNL 0.786 | 0.175 | 0.039 | 0.786 | 0.175 | 0.039 | 0.786 | 0.175 | 0.039
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Turnigiuuusnaes NL uay NW Winadgninsweenlliledn ¢, 1093zuunudaaa1suzuas
o QI dy 1 A a ug// [~ dgj
AnsEUANIY ANAziiulunnaenguLuNSAUNIIERIRAz NN

o e g, HAWATY 1 wuudnaes NL uaz MNL azliinadndnmileudu iasainarlaiiinng

Wa170UN Mode Similarity aginglsiniu el lEAULLLSa0s NW (iteaannl¥ random error
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Scenario 1 2 3

Incentive 0 +0.25 0 +0.5 0 +1
Model Auto Transit Bike Auto Transit Bike Auto Transit Bike
MNL 0.741 0.212 0.047 0.690 0.254 0.057 0.574 0.348 0.078

(-5.74%) | (21.03%) | (21.03%) | (-12.21%) | (44.74%) | (44.74%) | (-26.92%) | (98.65%) (98.65%)

NL 0.760 0.211 0.029 0.712 0.254 0.034 0.600 0.352 0.048
(-5.3%) (21.6%) (21.6%) | (-11.33%) | (46.18%) | (46.18%) | (-25.29%) | (103.07%) | (103.07%)

NW 0.537 0.343 0.120 0.509 0.351 0.139 0.461 0.366 0.173

(-5.49%) (2.89%) (22.01%) | (-10.44%) (5.45%) (41.99%) | (-18.98%) (9.8%) (76.66%)
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q
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Aauanglumnei 3 TedAuuAnsNgsEdneANEareuraIuILeIaasat) 2 dsynng An 1.
Aruaney x7 uazananhazifluaes P Sunundrdtysesnudinveulunundians NL luna

ndufuaNtaveluuaaes NW liiesussusunuansnizaes x? uazannanhaziiluaes
P! widadusduupessadseland 7, ilasanuuudnaas NL 14 Exponential function 1w

AUFITBIULLA1889 Tuamueuuudtans NW 1 Power function 1uNuguaeauuudnaes 2.
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suUUNAENN LesannuuLaIang NW @'1@134'@6\1m@Wﬂﬁaﬂ@z‘lmﬁlﬁﬁyu@ﬂwﬁQm (Xu et
al., 2015) Mg N1 N3N meFues Weibull lEALLLLANA89 MNW kay PSW TunnaifinAINy
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A5 3ANEAngUATILazANNERUEUlITIALLLLIARY NL ke NW

Model Direct elasticity Cross elasticity

NL iy o ) ) n shares the same upper nest:
Eilo (1-g) P + (¢ -1) P
.
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i ;u"q( oIP!+(¢] -1)PL,)

n does not share the same upper nest:

pq tj Pt}
NW iviy-t ) n shares the same upper nest:
PaZmlin (1P 4+ (g1 ~1) 21, 1) o
@u u nju

n does not share the same upper nest:

ijn

uanaINiuLLa1aed NW il Covariance liuiariduaes 7,

mﬂLﬂu’ﬂ'Vl 1 Covariance 189lULANa8d NW Aararidulunisiuunassadszland v,

Um

9/
o

Aangan ANHNLLTTusINTaAUlEsail

u

COV[Ul]m ’ l]n ] E[Utjm > lj}’l ] E[Uljm ]E[Uzjn ] (21 )

v
1%

e E[] Aa Expected Value N153tAsziazBuanfafinuannaesdnnig Adtl

E[U Ul]n]_E[ ijm l]m zjn zjn]_ ijm zan[gzjm yn]

RN efiuILeaNNIIT 21 UAT &, AINANNTN 9, E[U,, 1= ElV,, &, 1=V, El,,]

uazilAvind ¥, Aufiuannuudnlsousesuuusians NW Ae

cov[U,,,U,, 1=V, V,, EL€,.€ (23)

Ijm ijn ijm ij’l] ijm yn

e U,, waz U, ladldegnels Upper Nest \neafu Ele,, ¢, 1= Elée,, 1El¢, ]=1unz

ijm 1/n ijm ijn

Covariance Winfiu 0 lunemassdnuinn U,,wac U, ﬂﬂﬂﬁfﬂ,m Upper Nest LagIniu Ele. €. ]

i € i
Taiwindu o M limnaudsdsuduieiduaes 7, o
lumamserudinunuudnass NL & Covariance Whwaridiuass Random Error i T
cov[Uy,,U;, 1= ElU;U;1- EIU,, 1E[U,;,]
= £l Um+§ym)( i+ & = BV, + &, 1EDV,, + &,
= BV + Vi +VinGim + En i = Vi + ELE, WV, + ELE,,1)
= E[Gy S 1= EL5 1ELS;;] 24)

ANANN19H1ANNLL T UTRBLILAN a8 NL azlfunannentesiasdwann Random Error
AR A9 ANULTUMIUIRILLLIANAeY NL HAnpsinaziiludgdsssa V.

ijm
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AMMFLNITATUIUNIAT Covariance 189ULLANA8d NW IagA1 &, & @aruisanivunlélae

ijm < ijn

o

Manski and McFadden (1981) Qﬁ

+00
oot [ sl
jin Gpm \'ij1n """ jpm at |fg'n:¢zjfmn/xzjm,V”

—0 ijm

(25)

A

le . =¢. &, anaunsf 11 Azl

ijmn ijm < ijn

Piju-1

P
A A e B T | (26)

6tl_‘/m leM veU,-j neM,-jv

iju

uely;

Wi @ =g, &, Tuann37 25 uay 26 Azl

ijmn ijm < ijn

L,l 1 (ﬂx/u -1 1 (pl]‘
H _ R s |7 Lim |7 — dx
Piin-Pipm ) = Z CXp Z Z ijm’”
0 ijm leMy, xjjm veU,| neMy, xijm
ue

Pijv

= ~Lijnm Z(tiﬂm )‘/’j’" I CXp ~ - > Z(tijnm )ﬁ jim (27)

leMy, 0 x@jm veU\ neM,
uely

Iu@'fsuﬁmwmtfh’&immﬁﬁmn’]smiﬁf]mc‘mﬂuﬁqLM Tagaru1sndseuno
o (ety)) AINUUAZTAIUITONTNUA

¢lj 1n - %ijpm

sy (il )OS PDF fiuates (4

Ele;,€,1= E[d;,,] e A aussanluanniad 23 TmmmwmuwmumwmqL@@ﬂiﬂu,i_lu
covlU,,,U;,]

ijm

NIFAUNN (corr = ”Lu”lmum@mmmmﬂ’mﬂ@ﬂuuﬂmmm Vi ANnANNNIT 17

o"o"

Az 23 ANNANRUSITUINNIABNIULLUNSAUN ALY

corr[U, 1=El¢. & 1 (28)

ijm 2 z;n ijm z/n]

4 ¥
o o =

191 mmmuwuﬁmu@ﬂﬂu Ele. €. ] Gﬂ\‘l‘ﬂuﬂﬁlﬂllﬂﬁﬁ‘ﬂﬁ‘ mﬂmﬂmumam@uwmm

ijm zjn a

ANNANTUTAZYNAMUAIIN @,

AnFateiindepReTuTaneiined 2 easiinimmadeLunanszLTesA LY
Anuuua1aes NW ineld ¢, = 0.75 (mﬁuﬁﬁ 3 lupn 9197 1) F9asfinra3198n U IR UL 3
anunsnd Seazinnnifiausigalasesessalsslmifuiuguussuuaudanansoisidlu 1, 1.5
uaz 2 Fandaslumasd 4 Wdwldmaieianisailpanuiasdulunisdengduuussuuauds
mmim:ﬁrﬁhqﬁyulw,l,uuﬁmm NL iitasannipanuutsilsaufiaedl (Marzano and Papola, 2008)
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TunepsanudnuauulsUsauresuuuanaas NW iluieddunasassntlssTeamd idamauulstlsu
WnAuazrnllslaminasifiniy aaiunisilasunlasaaanannunasiluaa9ss LI ugaa1a1704E A
Auansenulidunin g niunuuaians NW

M19199 4 NITATIAFDLNANTENUAINNLUTUFIULRINIFUAURIR L ALILALNITUURIR LN

Scenario 1 2 3

Incentive 0 +1 0 0 +1.5 0 0 +2 0

Model Auto | Transit Bike Auto Transit | Bike Auto Transit Bike
NL 0.773 | 0.216 | 0.011 0.726 0.261 0.013 0.617 0.365 0.018

[1.279] [1.279] [1.279]
NW 0.570 | 0.357 | 0.074 | 0.544 | 0.365 | 0.091 | 0.498 0.378 0.124
[2.408] [3.016] [3.704]

Path-size weibit model

Tun1randaseslunsuarasd MNL Castillo et al. (2008) lENIN1TWAUILLLSY889 Multinomial
Weibit (MNW) a0 Weibull distribution a1nsiis Kitthamkesorm and Chen (2013) 'l&1% Path-size
Factor Auferiduassndszlaas] MNW ieafmunuuudnand path-size weibit (PSW) F9d1u19D
LA aeslaENsauansuguN1g RUM Fafl

. = \pgi
i i YPum
Uij :< umr gumy

. i umr,VreRUum,meMw,ueUU,Ue]J, (29)
@’ <(0,]) Aa Path-size Feanunsnuanslis (Ben-Aklva ez Bierlaire, 1999)
= Z LP VreR,, . .meM, ueU;ijell (30)
wum” N Yom 2511 k g ijum > U”’u U’l‘] ’

keRy,,

e l ﬂ@ﬂ'ﬂllﬁl’]’ﬂ.l@\i link natléi u ‘?.Iﬂﬂ'iﬂLLll‘Llﬂ’Wﬁ‘LﬂuV]’]\i m, L’ ABAINENITRUEUNNG 1

umr

neld u luguuunsihun1e m vl O-Dij, y,, ABTEALDY links fravaaludumng r aneld u

gduuumIsiune m, 57 winiu 1 4 link widunie r nnel u lugduuunisiunie m uu

umar
d

O-D ij WAZWINAL 0 mmmuj ANENNTRREUN N M TniuLard s daEunne (1, /L7 )&

umr

prwlndiAssiuaudniusreaduni uay Y. 6, inisdaaauduiuseadunig

ijum

17



(Frejinger uwag Bierlaire, 2007) Path-size a5U12AMNIANATY Route sizes TAENATTUIRINAIN
2199849 Links N8 lALEUN19MAZANNANNUT AINE19209LEUN19TINAY Link (Ben-Akiva Wae
Bierlaire, 1999) aMnLLULA1A8d PSW RUM lua@unish 29 Amannunaziiluges PSW 18150 wand LA

o

=
JU

" . = \-p7
ij i wm
ij — wumr (gumr um ) Vr e R

umr ij o

P meM. uelU.
i (i _ i ) Pm
Zke Ry ZUunk (g k g um )

ijum > iju ® ij

ijell, (31)
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KULAIARINITLAANSLUUUNSLAUNILAZNITUANUAINITLAUNIG (Combined Model)

Wdetidunsimunldsunsun1satinAnans (Mathematical Programming: MP) 41915119594
Tryr1289n19188N 3L LULNFAUNINUAZNNTUANLAINITAUNIE (CMSTA) Taalfuuuaiananig
@angUuLLNITAUNIY NW kazuuudnaeuaenidunie PSW InsasBusiufaunisaseanusgiu

ﬂuummuw 1 AN ldaglun19AUNNg (Travel Cost) 7 Wudandunaaanlunighunig (Travel

(,l

Time) Tnefinnsiisduesnesieiios
ANNBIFIUN 2 &7 =0,
a9 um

aunmgun 3 Maiduldanalunsiiunisseausazidung dsenausienldqdnslun1snunis
Tusiay Link 1A

gl =I1z.-vreR,,.meM, U, ijel] (32)

iju>=ij
aer

1
¥ 1 =

muummm 3 Al aurieAnldans fiazdunimsiu Weibit Tngd ﬁLaumw:ﬁy\mmﬁﬂmdﬁ
ﬂ’mmmmu‘lﬂmu@qﬂmqmLuﬁmmqmmuwmmmmmﬂiximu (Fosgerau La Bierlaire, 2009) M1
1A 1daalunsiiuntsasudazidunisgnuiaslifeszau Link gluuudssdudnlfananng
Al iudadu (Non-linear) Tatenauf T iardrndeananlunaiumg (Exponential
Function) finainnsasunaienduanldanslunisidtiunng nralfieddusanann dnimuniaiugs
AuAENaEsaTiaslunsAenEUNN (Mirchandani and Soroush, 1987)

ANNAFIUN 4 [ and L/ uddsziuiinininigeas

llsunsaumnegmsnninAans

[ %

MP & wiutleyun CMSTA MuegiuanuRgudinabiu Seannsnuandls Al
mnZ=2,+2,+2+2,+72Z,+7Z,

SN LIXCOTEES 0 WD YD Y-SR (VIR ED 35 Vb ) Y/ R T

ij umr
agd ( ijel] uel;; meMy, reR;, ﬂum ijel] uel; meM, reRy, ﬂum

iju ijm

+zzz(¢,ﬂ,-

jjelJuelUymeM,;

qu(lnq:;cﬂ—l)iz(l—% sor |l Tqr

ijijeljuely meM ; meM ;

iju iju

ﬂum
+>° > gl InV¥,, (33)

jelJuely;meM,,

iju

s.t.
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> fh =l ImeM, ue U, € 1, =

reR;

Tjum

> >qb =q,.Y;€ll, (35)

uel;meMy,

i
fz;mer Z 0’ VI" € Rijum >

meM,, u eUl.j,ijeIJ;an >0,YmeM,, ,ueU,,ij €1J(36)

e £7 Ae n19a1eanszuaaIaudunig r lugduuunisiaunag m uaz Nest u 531409

umr

AARUNIG | Teqataneanie | g7 Aa Arudiasnispesiuin m seudneqafiunig i D4qalananig |
q,A2 ANNABINTITUINNRARUNT | T qadananie juag P, Ae ANNUIANgANEUaNLY

gUuuuNI9LAUNIe m lu nest u 9¥1I199ARUNIY | DIgALlaIANY | aunnsd 33 uiefdu
TanUsraaf1auuusIany NW-PSW sanifu Gatlszneudion 6 inen tnelunsazinonas
Ao luiaiesuazedn luiteuls Karush-Kuhn-Tucker lunnssmaanatinaziluges NW uaz
PSW 41915UN191A8n3U_ULNNAUNINLAZNITLABNLEUNIN ATNATAY Z, A Multiplicative
Beckmann (Kitthamkesorn Waz Chen, 2013) FeaanARaaf LA AN EUN19NTAUN9 Z, U
Entropy (Fisk, 1980) m:ﬁﬂuﬁqm@ﬂizwu@:mmmﬁu’gmmﬂﬁmﬁu Z; WA 15U path-size Z, WAy
Z. fmmifeafesiuanudullifidadeonlauaznanuiinasily Tadudeudfyesiaidugduuy
MAAUNI NW uaz Z iumentesusiiegn il lunisassuuudiasamisessatlsslaminieen
wdwefludeiduinglsrasddeiunuanlunsduiinnsespanuiasduwlugluuniads
aaAAR8ITUIUILLL Weibit Tiauiu A uFuniaiaenglununisiaunianazgliuy Weibit 111 a
Funnedufunisdenidunie aun1si 34 wazaunisi 3s WulednTnknu Flow Conservation
aunn3f 36 udiednrin Non-negativity AnaN1iF bunasunaymn

dard@uan 2 MP luaunisy 33 019 36 1HA0NFULLUNNTAUNNAINLLLANABI NW LAzLlA8n
EUNNAINLLLAA8Y PSW

v
Y o

Lagrangian udnalEmaT

L=Z+Y > > #olal = D [0 N+ DD A a4, =D Dab, (37)

ijelJ uelU;meMy, reRy,, ijelJ uely uel;meM,

e ¢ uaz A, 1l Shadow Price

|
=

A % A A o v =2 9y ) g
LA L Glﬂ\?@fﬂmmﬂLWEUﬂUL@%VINﬂ’]’ﬂM@ @Q[ﬁlﬂdmﬂﬂuimﬁ]ﬂﬂu

oL/ of,, =0; £, > n7, 8, +Inf) ~Ina), =440, (38)
ac4

ANANNFFIUN 3 Azl
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i

fi=explpl gl ol (g0, ) (39)

dagglaes £/ azinli

umr

g = S ri —explBigl) St (g, )™ (40)

reR;; rekR,

ijum ijum

TIANNTN 391IMNIAZNNNN 40 AL IFNTRANEUNIANLLILIANADS PSW 1A

o e @l (el (@)

umr ij

B
i ij s
Duim z keR @k (g umk )

ANUULIIALNATUINTRDNFULLLNIAUNS

[} 1 [} ij
oL/ dq" =0; [%u—ﬂ—]lnq’ +(1-4,,)In % gl [+, +ol —1,=0 (42

iju

i/

ANANNNTT 40 ¢! aunsnnuualuAan

4, =——Ing ——ln Sl (e, )" (43)

ﬂ um um r ERl/um

Tumannaanemuingtaazifandasiuaannany a1usuataunisiandiasl@su ETC

4

(Kitthamkesorn et al., 2015 ) 1% w’ ifluaanniaiu ETC anunsndanannsh 42 Tuadlfasd

o mZMl G - = expl4, J\¥,,,, expl-w! ))w1 (44)
S dh=|ools) D0t | =
=3 el T| S ol (6

a = a o
AINANNITN 44094H1NTTN 46 ’QZVLG]

1

D1
%MUM;wwmmﬂ

pi = G _ (47)

um 1 @'/' "
qz_’j )
ZteU ji l/t5 eXp v
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i Yl o Y
Luﬂ\‘]"«]"lﬂ‘l’ . expl—w?, ) uessaulsslani W v, =¥, expl—w/, | arnsiuaunistinediu

ijum um

%Lﬂumm@ﬂgﬂLmummumw NW o

AaLdUaN 3 LULA1aes NW-PSW dAimautasn (Unique Solution)

N

a

a o s . al' o o v d'
awg@u LNTNG Hessian 183 Z1 + Z2 + Z3 NALALLIEUNINNITATIRT BIATNITOUAAS

16 piatl
02, +2,+Z,) ! ZT”+W>O;r=k
ij = Ta Va umJ umr
6f"’”’ U i 0 ;otherwise (48)

TuABuNN8D4 Positive Definite Matrix wvisnd Hessian 184 Z, +Z, +Z, NeniusiautlsAn

o

ﬁl@\‘]ﬂ'ﬁ”ﬂ'ﬂ\‘]ﬁ‘ﬂLLUUﬂﬁﬁ‘LﬂUW% Gﬁﬂﬁﬂﬂﬂﬁ‘ﬂﬂﬁﬁuﬂi pail

2 ! =
Xz, +2 +Zé): (%u—ﬂ—J/qum (1—(/’i,u) m;q > Ou = = (49)
aqumaqm " N
0 ;otherwise

¥

=
uananu

o

JLNUANDN Positive Definite Matrix Anl #91ftd LLILANa89 NW-PSW asilATmaLiifgn o

YaLEuaN 4 Covariance sxudguuuunsiauniglugilaasuuuanass NW-PSW iiluisiduaas
ANNNI9991A9

v o < i W
daNgall AINannIsi 47 V, :(‘P‘. exp(—wgm)) ,w? A9 logarithmic ETC

a ijm ijum

v
[ %

mnuu @34ﬂ’]i@ﬁﬂﬂﬁ‘wiﬁl‘mﬂuﬂﬁ?L@@ﬂiﬁLLLI'LIﬂ’]‘J‘Lmu‘V]'N ANNNTOLARS LAATH

-1
1 i (i YPu
Ul:/'m = \IIl/um eXp ﬂz_‘j ln Zwumr( umr) gijm

um r ER”M,

1
i | B
ﬂ”/,” um
= tjum Z ZD-umr ( umr ) gijm- (5O>

reme

AMNANNIIN 22WLIH AN RN Uz MR AN lH nest u ANuLMANaUTY

-1 1 \!

1
ij B :Zn ij B :{n

COV[UUm ’ ijn ] = ljum z wumr ( umr ) z/un Z ZUunr( unr ) (51 )

rekR;; reR;;

ijum ijum
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X (Elgijm gijn J_ l)

¥ dl dl 73 1 1 = dgj =< A
wnngmRaINdaLauei 4 Wedun19sendnag 0-D HAuenININIL ANswelalunisiaan
sUnuunaunIsitiesas uanantiledunisdewiuiy @ azlA1g9au udazanANng

umr

walalunisaengluuunisfiuniees Anuansueinan i LuuaIaes Weibit HANA11130
Tunsilfuasudndanaasgiluuunisimunig Inanisanauienaladiuiunisiaangtuuunig
a allnzl ¥ dl dﬁl A ] tdIQJ [ ﬁ” nﬂl Y o ] =Y

AUN1NHLEUNIeneInviTediundauiuiuniniu e lddunagnilunisdadiugluuunig

B ua @ (Go-green) Aaotinaiu gLuLILNNIAUN AT T HANNNEUN 1 ALNG

dl = o a dl di/ a a A = d|9/ o o a v
e uiuguuun19iun19esy o uanani sduuunisiiunsdizasasldoundewiuiuiniies
N9 ANUFUNFEUATNNNTUUAIR eI
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Solution Algorithm

nsAnEilidunewis Path-based Partial Linearization Algorithm $anfun1slEnagnd Self-
regulated Averaging (SRA) HaR I LLLSNa8s NW-PSW Taavia1133 Partial Linearization &
Lmqmqmi%ﬁumﬁi’ﬁmﬂmiLL’ﬁﬁmmﬁi@mmmumﬁaLéﬁuquﬁmmz Stepsize Tngn13uszaunnd
ﬁvl,’rﬁmﬂﬂg Amijo (Bertsekas, 1976) 471 nstszanny Stepsize @W‘memummuﬁx‘mmu
famﬂsvmﬂmu%u Fatiu n3AnmnASaR A4S SRA taualag Liu et al (2009) ieandunaunis
ﬂa‘zmumummmqﬂimmwnusﬁﬂu LULUHLA8Y SRA Tlazfmuaduneulngendadafinnannd
e uazdunenlun g ez uduneulunisindiasadaly waaeliifiudndullay
ﬁ@uimm%jﬁh (Robbins tLlaz Monro, 1951; Blum, 1954; Liu et al., 2009)
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ABENNNITANUIY

fiadiatiazliiFnatinenisAtuan 2 faatng INeasUNaTNAMANHIIAIULLA1A8d NW-PSW
NARNFUBILLLANADINLAWe A FaUM LU LLULA1889 MNL-MNL a2 NL-CNL (Kitthamkesorn
etal, 2016) AnuanIsAimailunuudnges g7 =3.7,¢,, =0.56 wFugluuunisiaunie

o [ o

AUUETY ¢, =1 Amfugduuunisiiuniedase uas W

=1 Bunsszy Aiduatinedu visll
ij ijum (]
A1 =37 MinanuunAdudsr@nsidunnesaaenisiisdiu 0.3 (Kitthamkesorn and Chen, 2013,

2014) AMFUUULA1884 Logit (MNL-MNL wag NL-CNL) #1sRma3n1sdanwadidun19gnesaed
Winiu 0.1 war, =0

ijum

A1579N 5 ANBUSURILASITIUADILAUNI

Network ee i »(;
Origin Destination Origin Destination
Short network Long network
Route Upper Lower Upper Lower
Auto 10+ £ /10 5+ £7 /10 30+ £7 /10 25+ £ /10
Transit 15+ £7 /20 10+ £7 /20 35+ 17 /20 30+ f7 /20
Bike 20+ £ /20 15+ £7 /20 40+ £ /20 45+ £ /20

faaeinei 1: Insatnsdaadunig

Tasinanadiunnsilszaslunnadunauansnai Tasediadunaslassingeng waadluanmg
7is Imﬂﬁ”mmimwwﬁmugﬂLmumuaumq U3enNaufng Tn8UR FTULIUAIANTI1TUZUAY
204N9874 ANUTLUAAZLEUN19aLH free flow travel time (FFTT) 204 E1n191U A 8190971 8uNn1a
a4 5 vdae lumnatuuunisdunig Ieedainmndndunisuuazanandngunieany 2 win lulasedng
fu T fidunnsuuenand ez 20% 1eauniaanslulasengsng Anudeanisng
AUNIG AB 200 waE N133LAT1EIE31LuL Go-green & Go-gray AT LILTUANAN TN UAY
§neeud] Nest Futiudieniu (WA 1)

A1919% 6 WAASHARNFUBIRUUAIABIATNUUY (MNL-MNL, NL-CNL uaz NW-PSW) 41415y
dusuuwsnilunnImageuANgNFedTeINaans tnglsngdnnuuuaiaeslinainesa
. e <
Wraziduwindy 1 aduldmungeying
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mmfu%mmum@mzmwmmmLLﬂ?ﬂmumﬁu’ﬁﬁiwqﬁumﬂimijzﬁgml,@:mq HANNS
naaeuan L LS 1889 MNL-MNL uaz NL-CNL lignansnifiansanly uuudnaesieaes
Vinadnswinfudasuielnsingduuazens LﬁmmﬂmwLLﬂ@ﬂmummmﬁuﬁﬁwumﬁmwhﬁu
wazae ety uunsiaes NW-PsW azliinadnilunsdeniduneiiuansnaiuaesiastng
dunazen feRnranAuuLnlsunisiiaasnisuanias Weibull iuilaiduneseinldane dun
’mﬂmsﬁ:L%i?um\im\ﬂu‘im\ﬁmagmzﬁﬁmmwﬁmmmi@m@ﬁmﬂﬂfs’ﬁm\ﬁjmmq

AITNN 6 ARFIUTBURUNIUASTUULLNISIAUNNUBIUULRIADIFINULUFIUTUN
TAsetnassasdULATTEaZEN?

Route share Mode share
Short network Long network
Short network | Long network
Model Upper Route | Lower Route | Upper Route | Lower Route
Auto
MNL-MNL 42.32% 57.68% 42.32% 57.68% 61.94% 61.94%
NL-CNL 42.35% 57.65% 42.35% 57.65% 62.53% 62.53%
NW-PSW 34.67% 65.33% 40.61% 59.39% 47.43% 44.57%
Transit
MNL-MNL 39.56% 60.44% 39.56% 60.44% 36.52% 36.52%
NL-CNL 39.60% 60.40% 39.60% 60.40% 37.38% 37.38%
NW-PSW 28.23% 71.77% 38.71% 61.29% 33.25% 34.01%
Bike
MNL-MNL 37.84% 62.16% 37.84% 62.16% 1.54% 1.54%
NL-CNL 37.75% 62.25% 37.75% 62.25% 0.09% 0.09%
NW-PSW 29.94% 70.06% 40.34% 59.66% 19.32% 21.42%
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Transit I
7 1 lnterchange

station

1"

MNN 2 nMaanuidaslagedng Nguyen-Dupuis

finatingd 2: 13918l Nguyen-Dupuis

Faating 2 axlilasedng Nguyen-Dupuis FILARINING 2 Lﬁ@iﬁi’ﬁ"ﬁmﬂ@ﬁqﬁﬂﬁzﬁﬂﬁaﬂumﬂ%ﬁ
AnsRvUA AN TAssaE T AU AN (@mwﬁ' 1 AMFUBHUATNALLD) LAULILIAN AR AN AT
(ﬁuﬁmwuﬁ’mm logit-based NL-CNL WAz weibit-based LULA1a83 NW-PSW) U884
TAsen3Ns1udaR T enuaznisaudsdnn uazununslunslfieioseumuazunsldls e s

Tasadine Nguyen-Dupuis § O-D 4 ¢ Aa (1,2), (1,3), (4,2) uaz (4,3) NHAINAIN13 OD Wit
500, 500, 600 WA 300 HLAunIesadalus AINA1AL nstudstlsznaudion 3 guuy 1Hun snes
(Auto) TDUUANA119UL (Transit) WATANTEINY (Bike) LANNNTAUNNARRIITUU LN Bureau of

Public Road (BPR)
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AN9199 7 anrzaaIn1ganulaslasetng Nguyen-Dupuis

Distance FFTT Capacity Distance FFTT Capacity
Auto Auto
(km) (minute) (vph) (km) (minute) (vph)
Link 1 2.5 2.5 500 Link 15 2.0 2.0 400
Link 2 2.5 2.5 300 Link 16 2.5 2.5 500
Link 3 2.0 2.0 400 Link 17 2.5 2.5 300
Link 4 4.0 4.0 500 Link 18 7.0 7.0 400
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Reduction of vehicle emissions is a major component of sustainable transportation devel-
opment. The promotion of green transport modes is a worthwhile and sustainable ap-
proach to change transport mode shares and to contribute to healthier travel choices. In
this paper, we provide an alternate weibit-based model for the combined modal split and
traffic assignment (CMSTA) problem that explicitly considers both similarities and hetero-
geneous perception variances under congestion. Instead of using the widely-adopted Gum-
bel distribution, both mode and route choice decisions are derived from random utility
theory using the Weibull distributed random errors. At the mode choice level, a nested
weibit (NW) model is developed to relax the identical perception variance of the logit
model. At the route choice level, the recently developed path-size weibit (PSW) is adopted
to handle both route overlapping and route-specific perception variance. Further, an equiv-
alent mathematical programming (MP) formulation is developed for this NW-PSW model
as a CMSTA problem under congested networks. Some properties of the proposed mod-
els are also rigorously proved. Using this alternate weibit-based NW-PSW model, different
go-green strategies are quantitatively evaluated to examine (a) the behavioral modeling of
travelers’ mode shift between the private motorized mode and go-green modes and (b)
travelers’ route choice with consideration of both non-identical perception variance and
route overlapping. The results reveal that mode shares and route choices from the NW-
PSW model can better reflect the changes in model parameters and in network character-
istics than the traditional logit and extended logit models.

© 2017 Published by Elsevier Ltd.

1. Introduction

Transportation is a major cause of vehicular emissions. Transportation consumes million liters of fossil fuel daily, resulting
in not only severe congestion but also air pollution, greenhouse gas (GHG), and consequently global warming. These adverse
impacts have prompted the national government in many countries to promote “go-green” transport modes such as non-
motorized modes (e.g., bicycle) and public transit (e.g., metro, tram, bus, etc.) to keep the environmental costs low and to
help travelers make healthier travel choices, while accommodating the increasing travel demands.

To quantitatively evaluate the effectiveness of go-green transport policies, we need a sound behavioral model of travelers’
mode shift between the private motorized mode and go-green modes as well as travelers’ route choice with consideration
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of both non-identical perception variance and route overlapping. A widely used approach is the combined travel demand
model (e.g., Boyce, 2007; Bricefio et al., 2008; Szeto et al., 2012; Kitthamkesorn et al., 2016), which provides a rigorous quan-
titative evaluation of different go-green promotion policies and a tractable computational tool in the network equilibrium
framework. More specifically, the behavioral mode shift and route change can be effectively addressed by using the com-
bined modal split and traffic assignment (CMSTA) model, which is a special case of the combined travel demand model that
considers mode choice and route choice simultaneously. Based on different assumptions and applications, various CMSTA
models have been developed in the transportation literature to model the mode choice and route choice made by trav-
elers. A host of researchers (e.g., Florian, 1977; Florian and Nguyen, 1978; Abdulaal and LeBlanc, 1979; Oppenheim, 1995;
Cantarella, 1997; Wu and Lam, 2003; Garcia and Marin, 2005) has provided different modeling approaches to formulate
the CMSTA problem. These formulations include mathematical programming (MP) (Florian and Nguyen, 1978; Abdulaal and
LeBlanc, 1979; Oppenheim, 1995), variational inequality (VI) (Florian, 1977; Wu and Lam, 2003; Garcia and Marin, 2005),
and fixed point (FP) (Cantarella, 1997) for jointly determining the mode and route travel options. The early models (e.g.,
Florian, 1977; Florian and Nguyen, 1978; Abdulaal and LeBlanc, 1979) adopted a stochastic mode choice (i.e., random utility
model) and combined it with a deterministic route choice (i.e., user equilibrium (UE) model). However, there seems to be
an inconsistency between the two travel choices (i.e., using a deterministic UE to characterize route choice decisions while
adopting a stochastic discrete choice model to describe mode choice decisions). To overcome this behavioral inconsistency,
Cantarella (1997) and Garcia and Marin (2005) provided the option to combine the stochastic mode choice model with either
the UE model or the stochastic user equilibrium (SUE) model, while Oppenheim (1995) and Wu and Lam (2003) adopted
the multinomial logit (MNL) model for modeling both mode choice and route choice decisions in the network equilibrium
framework (i.e., integrating random utility model within the network equilibrium approach to model the congestion effect).
The main difference among these models is the modeling approach. Oppenheim (1995) provided a MP formulation, Wu and
Lam (2003) and Garcia and Marin (2005) used a VI formulation, and Cantarella (1997) adopted a FP formulation.

Although the behavioral inconsistency problem has been resolved, the MNL model has two known drawbacks that stems
from its independently and identically distributed (IID) assumptions with the Gumbel random error distribution: (1) its
inability to handle similarities among alternatives and (2) its inability to handle non-identical perception variances among
alternatives. At the mode choice level, the MNL model cannot handle the mode similarity (e.g., physical attributes and
operating policies) (Ben-Akiva and Lerman, 1985) and the difference in mode perceived utility or disutility. At the route
choice level, the MNL model cannot consider the route overlapping and route-specific perception variance (Sheffi, 1985).
Recently, Kitthamkesorn et al. (2016) adopted the nested logit (NL) for mode choice and the cross nested logit (CNL) model
for route choice model to handle the mode similarity and route overlapping, respectively. Both NL and CNL models used
a two-level tree structure to handle the independence assumption (i.e., similarity among the available modes that share
the same upper nest in the NL model and route overlapping in the CNL model). However, both NL and CNL models used
the Gumbel distribution as the random perception error term, which requires the identical variance assumption in order to
obtain an analytical probability expression. Hence, the CMSTA model developed by Kitthamkesorn et al. (2016) still cannot
consider the non-identical perception variance in both mode choice and route choice levels. One possibility is to adopt
the multinomial probit (MNP) model to overcome both shortcomings inherited by the IID Gumbel distribution (e.g., Meng
and Liu, 2012). However, the MNP model does not have a closed-form probability expression, which poses computational
difficulty since solving the MNP model requires intensive computation, e.g., Monte Carlo simulation (Sheffi and Powell, 1982),
Clark’s approximation method (Maher, 1992), or numerical method (Rosa and Maher, 2002).

In this paper, we develop an alternate weibit-based CMSTA model. Instead of the widely used Gumbel random error
distribution, the proposed CMSTA model is based on the Weibull random error distribution. At the mode choice level, a
nested weibit (NW) model is developed from the copula framework (Nelsen, 2006). Its nested structure handles the mode
similarity while the Weibull distributed random error considers the mode-specific perception variance. At the route choice
level, the recently developed path-size weibit (PSW) model is adopted to handle both route overlapping and route-specific
perception variance. An equivalent mathematical programming (MP) formulation for the combined NW-PSW model is pro-
vided with some solution properties. It should be noted that MP formulation requires more assumptions (e.g., separability,
differentiability, and symmetry of link cost functions, additivity of route cost structure, separable demand functions, etc.)
compared to VI and FP. According to Cantarella et al. (2013, 2015, 2016), FP is the most flexible formulation among the
three formulations as it can cope with a wider range of operational issues, including separable and non-separable (or asym-
metric) link cost functions, additive and non-additive route cost structures, separable and non-separable demand functions,
deterministic and stochastic choice models, single-user and multi-user classes, and uni-modal and multi-modal assignment
problems. However, convergent solution algorithms available to FP formulation are very limited. Most algorithms rely on
the method of successive averages (MSA) based on link flows or link costs (Cantarella et al., 2015,2016), which are known
to suffer from slow convergence when highly accurate solutions are required. This is partly due to the non-availability of
an objective function for performing a line search step, which is known to be an important component of solution algo-
rithms to many mathematical formulations (Chen et al.,, 2013). On the contrary, the development of a MP formulation for
the weibit-based CSMTA model provides the following benefits:

(1) The optimality conditions directly provide the equivalency between the MP formulation and the weibit-based mode
choice and route choice probabilities. This is similar to the Beckmann transformation used as the objective function
for the user equilibrium MP formulation (Beckmann et al., 1956) and its relationship to the Kuhn-Tucker conditions.
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These conditions are readily interpretable and easily understandable. For details, readers are directed to Boyce (2013)

for the interpretation of the Kuhn-Tucker optimality conditions.
(2) Given that the MP is a convex program, many convergent algorithms are readily available for solving the weibit-
based CMSTA model. A widely use algorithm for solving the combined travel demand models (e.g., including the
combined distribution and assignment problem, the combined modal split and traffic assignment (CMSTA) problem,
and the elastic demand traffic equilibrium problem) is the Evans’ algorithm (Evans, 1976), also known as the partial
linearization algorithm (Patriksson, 1994). Computational results conducted by LeBlanc and Farhangian (1981) revealed
the partial linearization algorithm performed better than the complete linearization of the Frank-Wolfe algorithm
suggested by Florian et al. (1975) and Florian and Nguyen (1978). Recently, Ryu et al. (2017) adapted the gradient
projection (GP) algorithm for solving the CMSTA problem and demonstrated the superiority of GP algorithm over
Evans’ algorithm.
Since the MP is a convex program, the objective function can be used not only to determine a suitable search direction
and a suitable step size in a typical iterative solution algorithm, but also used as a stopping criterion to monitor the
convergence of the algorithm.

(3

=

In addition, many researchers have adopted the MP approach to model different applications, including advanced dis-
crete choice models in a network equilibrium framework (e.g., cross-nested logit SUE model with fixed and elastic demand
(Bekhor and Prashker, 1999; Kitthamkesorn et al., 2016); paired combinatorial logit SUE model with fixed and elastic de-
mand (Bekhor and Prashker, 1999; Ryu et al., 2014a); generalized nested logit SUE model (Bekhor and Prashker, 2001); C-
logit SUE model with fixed and elastic demand (Zhou et al., 2012; Xu and Chen, 2013); path-size logit SUE model (Chen et
al., 2012a); weibit-based SUE model with fixed and elastic demand (Kitthamkesorn and Chen, 2013,2014; Kitthamkesorn et
al., 2015), spatially correlated logit model in the combined distribution and assignment problem (Yao et al., 2014), and sev-
eral emerging technological applications such modeling the range anxiety of electric vehicle users using a path-constrained
traffic assignment model (Wang et al., 2016), public charging stations with a combined distribution and assignment model
for capturing the travel demand distribution of plug-in hybrid electric vehicles (He et al., 2013), ridesharing as a new mode
choice option in a network equilibrium framework (Bahat and Bekhor, 2016), just to name a few. Suffice to say, the MP
formulation, despite the need to make many mathematically convenient assumptions compared to VI and FP formulations,
it has its own appeal as reflected by numerous applications in integrating advanced discrete choice models and modeling
emerging technologies within a network equilibrium framework.

The remainder of this paper is organized as follows. A list of notation is provided in Section 2. Section 3 describes the
weibit-based models for both mode choice and route choice. Specifically, a new nested weibit (NW) model is developed
for mode choice, and a path-size weibit (PSW) model is adopted for route choice. Section 4 provides the MP formulation
and solution properties of the NW-PSW model, and solution procedure for solving the NW-PSW model. Section 5 provides
several numerical experiments to illustrate the features of the weibit-based CMSTA model and its application to evaluate
green transportation policies. Finally, some concluding remarks are provided in Section 6.

2. List of notations

This section provides a list of notations used in this study unless specified otherwise. The notations are classified into
three group as follows.

Indices

A a set of links

. a set of origin-destination (O-D) pairs

Ujj a set of upper nests between O-D pair ij € IJ

My a set of transportation mode alternatives under the upper nest u € U; between O-D pair ij € IJ

Rijum a set of routes in mode m e My, under the upper nest u € Uy between O-D pair ij € IJ

Variable

& ijm the Gumbel distributed random error of mode m € M;;, between O-D pair ij € IJ

Eijm the Weibull distributed random error of mode m € M;;, between O-D pair ij € IJ

8{,1;71r the Weibull distributed random error of route r € Ry, in mode m € My, under the upper nest u € U; between
O-D pairij e

Viim the deterministic (observed) utility of mode m e M;;, between O-D pair ij € IJ

;{mr the travel cost on route r € Rjj,, in mode m € M;;, under the upper nest u e U; between O-D pair ij € [f
qij the travel demand between O-D pair ij € IJ

q{{m the travel demand of mode m € My, in nest u € U; between O-D pair ij € IJ
- the traffic flow on route r € Ry, in mode m e My, under the upper nest u € U; between O-D pair ij € I
Ta the travel cost on link a € A

Parameters
Diju the specific parameter of nest u € U; between O-D pair ij € I
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Fig. 1. Tree representations of the MNL and NL models.

L’,{n the Weibull location parameter of mode m e M;;, under the upper nest u € U; between O-D pair ij € IJ
o the Weibull shape parameter of mode m € My, under the upper nest u € U; between O-D pair i§j € IJ
wyl,,  the path-size factor on route r € Rjjum in mode m € My, under the upper nest u € U; between O-D pair ij € [J

3. Weibit-based models

In this section, we provide some background on the nested logit (NL) model and develop the nested weibit (NW) model
for mode choice. We also provide some background on the recently developed path-size weibit model for route choice.

3.1. Nested logit model

The NL model was developed to partially relax the independence assumption of the multinomial logit (MNL) model
(Ben-Akiva and Lerman, 1985). It uses a two-level tree structure to account for the similarities among the alternatives.
Using modes as the alternatives, Fig. 1 shows the mode alternatives m € Mj;, sharing the same upper nest u € U; between
origin-destination (O-D) pair ij € IJ are correlated (Marzano and Papola, 2008). The random utility maximization (RUM)
model of the NL model can be presented as an additive form:

Uijm:Vijm+$ijm’vm€Miju’ueuljsljel]v (1)

where Vi, is the deterministic utility, and &, is the Gumbel distributed random error with the marginal cumulative dis-
tribution function (CDF)

F%‘ijm = exp (_e_éijm)’ (2)
and the joint CDF
Piju

H=exp(-> [ > e % , (3)

uel;; \meM;j,

@iju € [0, 1] is the upper-nested-specific parameter, which can be considered as a degree of correlation between alterna-
tives (Ben-Akiva and Lerman, 1985). A smaller ¢y, indicates a higher correlation between modes under nest u. When ¢y,
equal to 1, the NL model collapses to the MNL model.

The NL probability can be derived from (Ben-Akiva and Lerman, 1985)

PH =Pr (VUm + &ijm = Vijn + &ijn, Y # m)’ vm e Miju u € Uy ij € I
= Pr (Vl]m = Vijn + Sijm > grl;js Vn # m)’ Vm € Mijy. u € Uy, ij e IJ ®
through
3 +oo
Pl = / H;,’l( &ijm» ~~)d$ijms ®)

where H#; is the partial derivative of the joint CDF with respect to (w.r.t.) §;;,,. Note that the negative sign is added when
the joint survival is used. Then, the NL probability can be expressed as

1 1 @iju—1
o <‘ﬂi7""vijm> [Z"Eiju exp (wTjuVijn)]
1 PDije
e, [, exp (35|

3.2. Nested weibit model

Pz;{ _ s Vm e M,’ju, ue Uij, l] IS U (6)

Although the NL model can relax the independent issue, it still encounters the identical perception variance issue, where
each mode alternative has the same and fixed perception variance of 72/6 (Marzano and Papola, 2008). To overcome this
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drawback, we develop a nested weibit (NW) model from a copula viewpoint (Nelsen, 2006) as follows. Recall that the joint
Gumbel distribution for the NL model can be expressed in Eq. (3), and its marginal CDF is presented in Eq. (2). Let u;, be
the marginal CDF. Thus, the random error can be presented as

Eijm = — In (= Inujjp). (7)
Using the inverse method (see Nelsen, 2006), we have the copula by substituting Eq. (7) in Eq. (3) (e.g., Bhat, 2009), i.e.,

C=exp <_ ) ( ) (_1nuijm)w3u)¢iju> (8)

uel;; \meMj,

Now consider the Weibull distributed random error of mode m between O-D pair ij whose CDF is

Fep =1 —eXp (—&ijm).- (9)
Then, the marginal survival function of the weibit model can be expressed as
L-lijm = F_gijm = exp (_Sijm) (10)

Substituting Eq. (10) into the copula in Eq. (8), we have a joint Weibull survival function

Diju
Al = exp <_ 3 ( 3 (eijm)«alu) ) (11)
uel;; \meM;j,

The NW RUM model can be presented as a multiplicative form:
Uijm :Vijmgijm’ VYm GMU‘”,U eU,-j,ij EU (12)
The NW probability can be derived from
P,i{r =Pr (Vijmeijm > Vijngijn’ Vn # m), Vm e Mijuv ue U,‘j, l] € U

. (13)
= Pr (Vijm&ijm/Vijn = €ijn, Y11 # m), ¥m € My, u € Uy, ij € .
Using Eq. (5), we have
Qiju—1
e 1 1 1 Y
ij o1 D D
P = / (&ijm) > (i) ™ exp|=> | X (ein)™ deijm. (14)
0 leM;jy veU;; \neMj,
uelj;
Substituting Eq. (13) into Eq. (14) gives
Piju—1
1 1 e 1 P
ij 1-5— v ~ o
P = (Vijm) P | > (Vig) ™ / exp | —Vijmeijm Y | D (Vijn) ™ deijm. (15)
leM;j, 0 veU;; \neMjj,
uel;;
Then, we have the NW probability expression:
_ 1 _ 1 il
- (Vm) 5 Snean, (i) ]
P,l,{ = s VmGiju,UEUjj,iJEU (16)

— 1%t
ZIEUU [ZseMUt (VUS) w”t:l

Following the Weibull distribution variance (see Kitthamkesorn and Chen, 2013 for more details), the NW model has a
mode-specific perception variance as a function of Vj;,, as follows:

(o) = (Viym)’, Y € My u e Uy, ij € I (17)
Eq. (17) is the result of assuming the shape parameter and location parameter of the Weibull distribution as 1 and O,
which leads to the exponential distribution with its mean equals to the standard deviation. Hence, a larger deterministic
term value would lead to a higher perception variance. However, one can incorporate the shape and location parameters in
the NW model similar to that in Kitthamkesorn and Chen (2013) for modelling flexibility.
Consider the three-mode example in Fig. 1. We assume that Vj;,, for auto, transit, and bike are 4, 2.5, and 1, respectively.
Without loss of generality, we compare the MNL, NL, and NW models under the go-green and go-gray scheme (i.e., middle
tree structure in Fig. 1) by setting the model parameters as ¢, =1 for the auto mode, and varying ¢, from 0.25, 0.5, and

1 for the transit and bike modes that share the upper nest. Table 1 presents the choice probability for all modes of each
model. Some observations for the models are summarized as follows:
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Table 1
Mode choice probability for the go-green and go-gray scheme.
Diju 0.25 0.5 0.75 1
Model  Auto Transit  Bike Auto Transit  Bike Auto Transit  Bike Auto Transit  Bike

MNL 0.786  0.175 0.039 0786 0.175 0.039 0786 0.175 0.039 0.786 0.175 0.039
NL 0.817 0.181 0.001 0814 0177 0.009 0.803 0174 0.023 0.786 0.175 0.039
NW 0.614 0376 0.010 0.598  0.347 0.055 0569 0.334 0.097 0533 0333 0.133

Table 2
Impact of additional mode incentive under the go-green and go-gray scheme.
Scenario 1 2 3
Incentive 0 +0.25 0 +0.5 0 +1
Model Auto Transit Bike Auto Transit Bike Auto Transit Bike
MNL 0.741 0.212 0.047 0.690 0.254 0.057 0.574 0.348 0.078
(=5.74%)  (21.03%)  (21.03%) (—12.21%) (44.74%) (44.74%) (-26.92%)  (98.65%)  (98.65%)
NL 0.760 0.211 0.029 0.712 0.254 0.034 0.600 0.352 0.048
(-53%)  (21.6%) (21.6%) (-11.33%)  (46.18%)  (46.18%) (-25.29%) (103.07%)  (103.07%)
NW 0.537 0.343 0.120 0.509 0.351 0.139 0.461 0.366 0.173

(-5.49%)  (2.89%) (22.01%) (-1044%)  (545%) (41.99%) (—18.98%) (9.8%) (76.66%)

Remark: The number in () presents the percentage change in mode choice probability compared to those in Table 1.

o The mode shares of the three modes (auto, transit, and bike) for the three models (MNL, NL and NW) satisfy conservation
(i.e., the sum of the three mode choice probabilities for all values of ¢;;, equals to 1.0).

o The MNL model gives the same mode choice probability for all values of ¢;;,, while the NL model and NW model give
different results. As ¢, for the transit and bike modes increases, both NL and NW models give a higher probability to
the transit and bike modes.

e When ¢y, =1, the NL model gives identical results as those in the MNL model (i.e., the NL model collapses to the MNL
model). However, this is not the case for the NW model since the two models use different random error distributions
(Gumbel for MNL and NL and Weibull for NW).

* On the other hand, the NW model collapses to the multinomial weibit (MNW) model (Castillo et al., 2008) when ¢, =1,
ie,

1
T L) VAR .
ZseM,-i (VUS)

o The logit models seem to give a higher probability on the go-green mode choice compared to that of the NW model.
This is because the MNL and NL models assume the same and fixed perception variance for all modes.

Next, we examine the impact of adding more utility to transit and bike using ¢;;, =0.75 (i.e., column 3 in Table 1). Three
scenarios are created by adding an incentive of 0.25, 0.5, and 1.0 to the utility of transit and bike as shown in Table 2. Recall
the base utility Vj;, is 2.5 for transit and 1 for bike. For scenario 1, the new utility with an incentive of 0.25 would be 2.75
(2.5+0.25) for transit and 1.25 (1 +0.25) for bike. Similarly, the new utilities are 3 and 1.5 for scenario 2 with an incentive
of 0.5, and 3.5 and 2 for scenario 3 with an incentive of 1, respectively. The results show that both transit and bike modes
receive a higher probability as the incentive increases. The MNL and NL models seem to be more sensitive to the incentive
than the NW model. This is because both logit models have the fixed perception variance of 72/6 while the NW model has
the perception variance as a function of the deterministic utility (see Eq. (17)).

Note that there exists a similar probability increasing pattern in the transit and bike modes for both MNL and NL models.
This is because the lower nest of the NL model is similar to that of the MNL model. It is not sensitive to the additive utility
due to the fixed and same perception variance (i.e., only concern with the utility difference in computing the probability) as
shown in Fig. 2. The NL probability pattern for the auto mode does not have such a problem since the logsum propagates
from the lower nest is sensitive to the additive utility. On the other hand, the NW model gives different mode choice
probability patterns for each additional unit of incentive. The mode choice in the lower nest is the MNW model. The mode-
specific perception variance can be calculated from Eq. (17), where a higher utility is associated with a larger perception
variance. When propagating the MNW probability to the upper nest, we can represent it as an inverse of the summation of
mode utility in the lower nest. For example, we can show from this go-green and go-gray scheme as

(Vauto) ™" 3 (Vauo) ™'
1 _ 1 Drransit bike 1
(Vﬂum)_] + I:(Vtransit) Yuransitbike (Vi) “transitbike ] (Vauto) ™ + (Vtransit,bike)

Pauto = 1 (19)
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NL NW
Lin Y exp(V,/0,) o. 0.

ex LV —_— ,___\_ — L \\_ — 1
p i r > 1 r / N a o
Py |} O o o o | O o | (n)

1 | Transit Bike | Auto  Auto | Transit Bike |
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PDE variance PDE
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Fig. 2. Comparison between NL and NW models.

Table 3
Direct elasticity and cross elasticity of the NL and NW models.
Model Direct elasticity Cross elasticity
NL p o - - n shares the same upper nest:
“o (Lol + (@l = DRy 2% (~ @R + (ol = DP],) n does not
share the same upper nest: —pé"xf,’;lP,’;j
NW ) n shares the same upper nest:
¢ X0V i pij ij i Ul 1 . i -
FE (P + (9 = DB, = 1) % (@IPY — (@] = 1)PI) n does

not share the same upper nest:
PUXE VP

ijn "N

where

1

1 1 Tl
— o o Ptransit, bike
Veransit,bike = I:(Vtrunsit) Yumansitbike 4 (Vi) “transicbite ] (20)

To further explore the difference between the NL and NW models, we consider the direct elasticity and cross elasticity.
Let xp, be an attribute g in the deterministic utility Vjy,, where Vi, = pg + % P Xihg- The direct elasticity describes the

effect of a change in the attribute x%q of mode m on the probability of choosing mode m, and the cross elasticity describes

the effect of a change in xi{q of mode n#m on the probability of choosing mode m. Obviously, the direct and cross elasticities
of the NW model are different from those of the NL model as presented in Table 3. There are two main differences between
the elasticities of the two models. First, only the attribute xﬁ{q and the probability P; play a key role in the elasticity in the

NL model. The elasticity of the NW model, on the other hand, includes not only the attribute xﬁ{'q and the probability Pr"nj , but
also the deterministic utility Vj,. This is because the NL model is based on an exponential function while the NW model
is based on a power function. Second, the sign of the elasticity is different between the NL and NW models. This indicates
that the deterministic utility Vj;, of the NL model could be different from that of the NW model. For example, the NL model
uses the negative value of the travel time to consider the disutility. The NW model, in contrast, uses the positive value of
the travel time directly to compute the mode choice probability. Note that, from the cross elasticity, the NW could provide
similar characteristics as the NL model for the mode choices that share the same upper nest. This is because the NW model
could be insensitive to the multiplicative increasing of the utility (Xu et al., 2015). We can adopt the Weibull parameters
like the MNW model and PSW model to enhance the model flexibility in handling mode-specific perception variance.

Remark. P!

rl;lu is the lower nest probability as shown in Fig. 2.

In addition, the NW model has the covariance as a function of Vj,.

Proposition 1. The covariance between modes in the nested weibit model is a function of the deterministic utility V.
Proof. The covariance can be calculated through

COV[Uijm, Uijn] = E[Uiijijn] — E[Uijm]E[Uijn]v (2])
where E[] is the expected value. We begin with the first term of the right hand side (RHS). From Eq. (12), we have

E[Uiijijn] = E[VijmeiijijnSijn] = Viijian[Siijijn] (22)
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Now, consider the second term of the RHS in Eq. (21). From the marginal of &, in Eq. (9), E[Ujj | =E[Vijm&jjm] = VijmE[€jm]
and is equal to Vj,. As such, the nested weibit covariance is
COV[Uijms Uijn] = Viijian[Sijmf?ijn] — ViimVijn (23)
Note that when Uj, and Uy, are not under the same upper nest, E[;jm&in ]| =E[&jjmE[€j] =1 and the covariance is equal
to zero. In contrast, if Uj;, and Uy, are under the same upper nest, E[g,€;5,] is not equal to zero, and hence the covariance
is a function of Vjj,,. This completes the proof. O

This is in contrast to the nested logit (NL) model. The NL model covariance is a function of the random error term alone.
From Eq. (1), we have

coV[Ujjm. Uijn] = E[UijmUijn] = E[Uijm |E[Uijn
= E[(Vijm + &ijm) (Vijn + &ijn) | — E[Vijm + &ijm |E[Vijn + &ijn]
E[Vumvun + Vijm&ijn + Vijn&ijm + éumgun] (Vijm + E[fi‘jm]) (Vijn + E[gijn])
= E[&jm&ijn] — E[&ijm |E[&ijn] (24)
From the above equation, the NL model covariance is a function of the expected values of the random error term only.

Hence, the NL model covariance is fixed and independent to V.
Note that the CDF of &;;,,&, can be determined by Manski and McFadden (1981) as follows:

[o¢]
OHe,, ey (Eif1-tijm)
_ ij1--Eijm \tij1--tijm B
H¢ij1""¢ijpm (tu]nntupm) N ./ 8tijrn tijn = ¢ijmn/xijmy Vn dXUm, (25)

where @jjmn =€jmé&ijn- From Eq. (11), we have
Piju—1 o
aHgi.l__givm (tijl--tijm) 1 1 1 1 .
Potelfin o) 5 5 ) | e (-2 (2 @) ) (26)
ym leM;j, velj; \neM;j,
uelj;

Substituting @ jjm, =¢€jjm€jjn into Eqs. (25) and (26) gives

Yiju—1
00 -1 S 7+ Pijv
_ Lijmm iju tUﬂ iju _ Lijnm ijv B
H¢’ij1n--¢>ijpm() = f <x,vj,,, ) > (Xu'm exp > > Xijm dx']”1
0 leMj, vel;; \neMyj,
ueU;;
Piju—1 (27)
BN 0 . N Pijv
= —~tijmm| X (tjim) Jexp( =g 3 [ X (i)™ dXijm
leMijy 0 vely; \neMyj,
uelj;

The second term of the RHS needs to be computed numerically. With this, one can approximate H¢ij1n-«¢ijpm (Eij1n--Lijpm)

and its corresponding PDF (i.e., h¢.~jm~¢upm (tijin-tijpm)- Then, we can determine E[&;jm&ijn]|=E[@jjmq] to find the covariance in

Eq. (23). Note that the correlation between the mode alternatives (i.e., corr = W) is not affected by the change in
Uman
Vijm. From Egs. (17) and (23), the correlation between the mode alternatives is equal to
COT'T'[U,‘jm, Uijn] = E[Sijmgijn] -1 (28)

As such, the correlation depends on E[g;,&5,], which is based on the joint distribution. In other words, the correlation
is governed by @jj,.

Similar to the previous example presented in Table 2, we examine the impact of the NW covariance feature using ¢,
=0.75 (i.e., column 3 in Table 1). Three scenarios are created by adding an incentive of 1, 1.5, and 2 to the utility of transit
mode only as shown in Table 4. As expected, the change in the transit probability is higher in the NL model. This is because
the NL model has a fixed covariance (see e.g., Marzano and Papola, 2008). In contrast, the NW covariance is a function of
the utility. The covariance is increased as the utility increases. Incorporating this feature with the perception variance, which
is also a function of the utility, the change in the transit probability is thus smaller for the NW model.

3.3. Path-size weibit model

To relax the identical perception variance issue in the MNL model, Castillo et al. (2008) developed the multinomial
weibit (MNW) model from the Weibull distribution. Then, Kitthamkesorn and Chen (2013) introduced a path-size factor to
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Table 4
An investigation of covariance impact under the go-green and go-gray scheme.
Scenario 1 2 3
Incentive 0 +1 0 0 +1.5 0 0 +2 0
Model Auto Transit Bike Auto Transit  Bike Auto Transit  Bike
NL 0.773  0.216 0.011 0.726  0.261 0.013  0.617 0.365 0.018
[1.279] [1.279] [1.279]
NW 0570  0.357 0.074 0544 0.365 0.091 0498 0378 0.124
[2.408] [3.016] [3.704]

2 [covariance] between transit and bike modes using a numerical technique.

the MNW utility function to develop the path-size weibit (PSW) model. This model can be expressed as the RUM model as

.. .. ij
i i Bim
i ( umr um) ij ..
Uimr = i Eimr> VT € Rijum, m € Myjy, u € Uy, ij € ], (29)
w_umr

where g is the Weibull distributed random error on route r in mode m under nest u between O-D pair ij, gl . is the
travel cost on route r in mode m under nest u between O-D pair ij, £, and B}, are the Weibull parameters related to

the route-specific perception variance, and wf;’,'nr € (0,1] is the path-size factor which can be presented as (Ben-Akiva and
Bierlaire, 1999)

i l 1
ij o _ uma ‘s
Dymr = Z T T Vr € Rijum, m € Mjy, u € Uyj, ij € ], (30)
aeYypy —umr Z umak
keRijum

where lyng is the length of link a under nest u in mode m, L:'j'mr is the length of route r under nest u in mode m connecting
0-D pair ij, Yymr is the set of all links in route r under nest u in mode m, Sf,f;nar is equal to 1 for link a on route r under
nest u in mode m between O-D pair ij and 0 otherwise. The lengths in the common part and the route ratio (i.e., lymq /L’L,jmr)
approximate the route correlation, and ZkeRijum Sz{;nak measures the contribution of link a in the route correlation (Frejinger
and Bierlaire, 2007). This path-size factor accounts for different route sizes determined by the length of links within a route
and the relative lengths of routes that share a link (Ben-Akiva and Bierlaire, 1999). With the PSW RUM model in Eq. (29),
the PSW probability can be presented as
L L ..o Bl
i Dol = 5th) ™"
umr —

VTER,’jum,mEMUu,UEUjj,ijEU (3])

ij

ZkERx‘jum wlznk (glk] - "I’{") N
4. Combined modal split and traffic assignment problem

In this section, we provide the assumptions, the mathematical programming (MP) formulation for the combined modal
split and traffic assignment (CMSTA) problem using the nested weibit (NW) mode choice model and path-size weibit (PSW)
route choice model, and some properties of the MP formulation. Let g; be the travel demand between O-D pair ij, and .
be the travel demand of mode m in nest u between O-D pair ij. After applying the NW and PSW probabilities as a function
of the route cost as a function of 7, travel cost on link a and W, exogenous modal attractiveness on mode m in nest

u between O-D pair ij, we have fl';{n, traffic flow on route r in mode m and nest u between O-D pair ij. With a route/link
relationship, we have v, traffic flow on link a. To begin with, some assumptions are made.

4.1. Assumptions

Assumption 1. The travel cost 7, which could be a function of the travel time is a strictly increasing function w.r.t. its own
flow.

Since we cannot easily decompose ¢4, into the link level, we make another assumption:
Assumption 2. (), =0.

Note that the variational inequality (VI) formulation can be adopted to incorporate {L’,{ﬂ (e.g., Zhou et al., 2009). Since the
weibit model is the multiplicative RUM model, the deterministic part is simply a set of multiplicative explanatory variables
(e.g., Cooper and Nakanishi, 1988). Then, the route travel cost assumption is:
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Assumption 3. The route travel cost function consists of the multiplicative link travel costs, i.e.,
Siimr = l_[ T, V1 € Rijym, m € Mjjy, u € U, ij € IJ (32)
aeYymr

This assumption maintains the weibit relative cost criterion where the travelers are assumed to make a decision based
on the relative difference of the utility (Fosgerau and Bierlaire, 2009). It makes the route travel cost decomposable to a
link level and workable with the Beckmann'’s transformation (i.e., multiplicative Beckmann objective function). One possible
non-linear travel cost functional forms could be the exponential function of travel time. With the exponential travel cost
function, travelers could be assumed as a constant risk averse when selecting the route (Mirchandani and Soroush, 1987).

Following the path-size logit (PSL) SUE formulation (Chen et al., 2012b), the path-size factors are assumed to be flow
independent:

Assumption 4. I; and Lumr are flow independent.

Note that we can also adopt the VI formulation (Zhou et al., 2012) to incorporate the flow dependent path-size factors.

4.2. Mathematical programming formulation

Based on the above assumptions, the mathematical program for the CMSTA problem can be formulated as follows:
minZ = 7Z; -‘rZz +Z3+24+27Z5+Zg

:Z/lnta(a))dw+zz > Z — fure (I fil = 1) =357 3 Z ity I @

aeA ijel] uel;j meM;jy reR;jm um ijel] uel;j meM;jy reRjm um

PR ((p”“ u)qym(lmﬂfm—l)+22(l—%u) S a3 g ) -1

ijel] uel;; meM;jy um ijel] uel;; meM;jy meM;jy

+ZZ Z qi{m 1n\I”ijurn (33)

ijel] uel;; meM;jy

Y fie = Qi Ym € My, u € Uy, ij €] (34)
r€R jum
>N din=ay Viiell (35)
uel;; meMjy,

umer >0, Vr € Rjjym, m € Myj, u € Uy, ij € J;

’ 36
i = 0, Vm € Myjy, u € Uy ij e ] B

where fum, is the traffic flow on route r in mode m and nest u between O-D pair ij; q{,jm is the demand of mode m in nest
u between O-D pair ij; g is the demand between O-D pair ij; and Wy, is an exogenous modal attractiveness on mode
m in nest u between O-D pair ij. Eq. (33) is the objective function of the combined NW-PSW model, which consists of six
terms. Each term has its own meaning and its contribution to the Karush-Kuhn-Tucker conditions in deriving the NW and
PSW probability expressions for mode choice and route choice, respectively. These six terms are: Z; is the multiplicative
Beckmann’s transformation (Kitthamkesorn and Chen, 2013) corresponding to the multiplicative route travel cost; Z, is the
well-known entropy term (Fisk, 1980) reflecting the stochastic effect of random perception; Z; is the penalty term using
the path-size factor (Ben-Akiva and Bierlaire, 1999) to capture the similarities among the routes; Z, and Zs are respectively
related to the conditional and marginal probabilities of the NW modal split function; and Zg is the attractiveness term incor-
porated to model the exogenous modal utility. The parameters in the objective function also play a role in the derivation of
the closed-form probability expressions that are consistent with the nested weibit model for mode choice and the path-size
weibit model for route choice (see the proofs for Propositions 2 and 3). Eqs. (34) and (35) are the conservation constraints.
Eq. (36) are the non-negativity constraints on the two sets of decision variables (i.e., modal splits and route flows).

Note that the combined NW-PSW model developed in this paper can be considered as an extension of the PSW stochastic
user equilibrium (SUE) with elastic demand (ED) or PSW-SUE-ED for short and the combined MNL mode choice and PSW-
SUE route choice (or combined MNL-PSW) model by Kitthamkesorn et al. (2015). The main differences between the com-
bined NW-PSW model and the PSW-SUE-ED/combined MNL-PSW models include: (a) the decision variables (modal splits
and route flows) need to account for the nested structure of mode choice (ie., gy, and f;}, instead of g; and ffor the

PSW-SUE-ED model or q% and f,’;{r for the combined MNL-PSW model), and (b) the conditional and marginal probabilities
of the NW modal split function represented by two entropy terms in Z4 and Zs. When ¢;;, =1 (i.e., no nesting structure, just
a single-level tree structure), the combined NW-PSW model becomes the combined MNW-PSW model; when wr’j =1 (ie,
no route overlapping), the combined NW-PSW model reduces to the combined NW-MNW model; and when both ¢;;, =1
and w,” =1, the combined NW-PSW model collapses to the combined MNW-MNW model.
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4.3. Solution properties

In this section, some properties of the MP formulation are provided.

Proposition 2. The MP formulation in Eqgs. (33) through (36) provides the NW mode choice and the PSW route choice.
Proof. The Lagrangian (L) of the equivalent MP problem w.r.t. the constraints can be formulated as:

L=2+Y 3 ¥ ¢L’}n(Qi{m— > umr)+ZZA,j(q,-j—Z > qi{m>, (37)

ijel] uel;; meM;jy r€R;jum ijel] uel;; uel;; meMjy

where ¢ and Ajj are the dual variables associated with the conservation constraints.
Given that L has to be minimized w.r.t. route flows, the following conditions have to hold:

8L/8fumr - 0 = /3 Z ln Tq :‘{1 + ln fumr ln wumr /3um um (38)

aeA

From Assumption 3, we have

i\ Bl
fumr - exp(ﬂum um)wujmr( L{mf) (39)
The summation of f,i%r gives
y ij \~Pim
q:,{m - Z fumr = exp(:Bum um) Z wu{nr( l{mf) (40)
T€R;jum r€R;jum

Dividing Eq. (39) by Eq. (40) gives the PSW route choice, i.e.,

iy i P
ij umr Dinr (&imr)
Pumr =i = ij (41)
Qum > w-if ( ij )_ﬂ“"‘
keRijum “ umk \Sumk
Then, we consider the mode choice:
1 g .
AL/3qi, =0 = (@iju 7 ) IngJ, (1 - (/)iju) In Z Qim | +InWijum + P — A5 =0 (42)
um meMijy
From Eq. (40), ¢, can be defined as
;ij = Lij lujm T Z lez{nr( dmr) , (43)

um um rERijum

where the second term in the right hand side is the logarithmic expected travel cost (ETC) (Kitthamkesorn et al., 2015). Let
wyn be the logarithmic ETC. Eq. (42) can be rearranged as

1~%iju

'S Iy wl}u . ——
qu( > qym> = exp(Aij) (Wijum €XP (—W;fm))w;f“, (44)

meM;jy

) Piju
> qum—{exp( i) D (Yijumexp (- W’L{m))“"'f“} , and (45)
meM;j, meM;jy
1 Piju
. uu

0= % 8 o[ o0o0) £ £ vimen () 49

uel;j meM;jy uel;; \meM;j;

From Eq. (44) through Eq. (46), we have

1

1 o Piju—
(\puum exp ( 11 )) wi]ju [ZmeM,-ju (q/ijum exp (_ng)) i :I .

ij Dijt
qij I:ngui (ZseM Wijcs €Xp ( )) 'ﬂllj[ ] j

o q’f
pi - dum _ (47)

iji
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Since Wjjym exp(—w{{m) is the utility, let Vijm = (Wjjum exp(—wi{m))—l. Then, the above equation is the NW mode choice.
This completes the proof. O

Proposition 3. The solution of NW-PSW model is unique.
Proof. It is sufficient to prove that the objective function in Eq. (33) is strictly convex in the vicinity of route flows and
modal splits and that the feasible region is convex.

The Hessian matrix of Z; +Z, +Z3 w.r.t. the route flow variables can be defined as
2 1 dz, Sij 1 . _
9 (Zli]fzzi‘]!‘z3) _ {fﬂdyaaumra B~ 0; r_.k (48)
0 fumr0 fi] 4 0 ; otherwise
This implies the positive definite matrix. The Hessian matrix of the Z4 +Zs5 +Zg w.r.t. the modal demand variables can be
defined as

92(Za + 75 + Zg) (‘piju - ﬂ%)/qiu"m +(1=@iu)/ X dim>Ou=t, m=n
U—a'] = " meMijy ’ (49)
09um 9y, 0 : otherwise

This also implies the positive definite matrix. Therefore, the NW-PSW model has a unique solution for both route flows
and modal splits. This completes the proof. O

Further, from the nested weibit covariance is a function of the deterministic utility, the mode covariance is also a function
of the traffic condition and network topology.

Proposition 4. The covariance between modes in the NW-PSW model is a function of the traffic condition and network topology.
Proof. From Eq. (47), Vijm = (Wijum €XP(~Wyin))~!, wily, is the logarithmic ETC (see Eq. (43)). Then, the mode choice utility
can be expressed as

- -1
i (i \~Pin
Uijm = (“Ijijum exp (}j In Z let{ﬂr( u]mr) )) 8ijm

um r€Rijum

oy 1 (50)
i (ij \~Pin | Pim
= | Yijum| X ZD_umr( umr) Eijm-
reRijum
From Eq. (22), we have the covariance between a mode pair under the same upper nest u as
1 -1 1 -1
i (i \~Pim B i (i \~Ph i
COV[UijmsUijn] = ‘Ijijum Z wumr( umr) “I'[ijun Z wunr( unr) 51
- ~ (51)
reRijum r€R;ijun

X(E[Sijmgijn] - 1)

It can be seen that the NW mode choice covariance resulted from the MP formulation of the NW-PSW model is a function
of the traffic conditions in terms of the route travel cost g, and the network topology in terms of the path-size factor
wl';{'m. This complete the proof. O

Note that from Proposition 4, when the routes between an O-D pair are longer, the mode utility is smaller. Further, when
the route overlapping @}, is larger, it also lowers the mode utility. This feature suggests that the nested weibit model has
the capability to adjust the mode share by lowering the utility for modes with longer routes and/or larger overlapped seg-
ments. When applying to the go-green mode promotion strategy as an example, the go-green modes should have a shorter
route length compared to the other modes. In addition, the go-green modes should have a smaller overlapped segment for
promoting green transportation.

4.4. Solution procedure

This study adopts the path-based partial linearization algorithm combined with a self-regulated averaging (SRA) line
search strategy to solve the proposed NW-PSW model. The path-based partial linearization method belongs to the descent
direction algorithm for solving continuous optimization problems (Patriksson, 1994). In general, the partial linearization
method has the search direction obtained by solving a partial linearized subproblem and an approximate stepsize obtained
by the classical generalized Armijo rule (Bertsekas, 1976). Note that the stepsize approximation could be computationally
expensive for a complex objective function. As such, this study adopts the SRA scheme recently proposed by Liu et al.
(2009) to determine a stepsize without the need to evaluate the complex objective and/or its derivatives. This SRA scheme
determine the stepsize based on the residual error and the stepsize in the current iteration to evaluate the stepsize in the
next iteration. It is shown to satisfy the convergence condition (Robbins and Monro, 1951; Blum, 1954; Liu et al., 2009). A
brief detail for applying the path-based partial linearization algorithm combined with a SRA line search strategy to solve
the combined NW-PSW model is as follows. The search direction can be done by updating the link costs and route costs,
computing the NW mode choice probabilities and PSW route choice probabilities, and assigning the auxiliary mode-specific
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Table 5
Characteristics of the two-route network.

o

Network  Origin Destination Origin Destination
Short network Long network

Route Upper Lower Upper Lower

Auto 10+ .10 5+ f0 /10 30+ /10 25+ fi /10

Transit 15+ fi,/20 10+ f /20 35+ fi 20 30+ fi. /20

Bike 20+ .20 15+ fi 20 40+ fi .20 45+ i /20

demands and auxiliary route flows according to the NW probabilities for mode choice and the PSW probabilities for route
choice, respectively. Then, the SRA scheme is used to determine the stepsize for updating the modal splits and route flows.
These two steps are solved iteratively until some convergence criterion is satisfied. For small networks used in this study,
we enumerate the routes and focus on the route equilibration procedure to produce the equilibrium solution that is consis-
tent with the mode choice and route choice probabilities. However, a column generation procedure could be incorporated to
generate routes as needed in the partial linearization algorithm. In other words, the partial linearization algorithm can work
with both route enumeration and column generation. For the partial linearization algorithm with route enumeration, see
Chen et al. (2014) for solving the paired combinatorial logit (PCL) SUE model, and Kitthamkesorn and Chen (2013,2015) for
solving the weibit-based SUE model with fixed demand and elastic demand, respectively. For the partial linearization algo-
rithm with column generation, see Bell et al. (1997), Chen et al. (2009, 2010), and Ryu et al. (2014b) for solving the path
flow estimator, and Yang et al. (2013) for solving the combined travel-destination-mode-route choice model.

5. Numerical experiments

This section provides two numerical examples to illustrate features of the NW-PSW model. The proposed model results
are also compared to those provided by the MNL-MNL model and NL-CNL model (Kitthamkesorn et al., 2016). Without loss
of generality, the model parameters are assumed as B, = 3.7, ®;ju=0.5 for the correlated modes, ¢;;, =1 for the indepen-

dent mode, and Wy, =1 unless specified otherwise. Note that Bin = 3.7 is used to provide the route coefficient of variation
of 0.3 (Kitthamkesorn and Chen, 2013, 2014). For the two logit models (MNL-MNL and NL-CNL), the route dispersion pa-
rameter is set equal to 0.1, and W, =0.

5.1. Example 1: two-route network

A two-route network with different trip lengths (i.e., short network and long network) shown in Table 5 is used in this
example. Both networks consist of three modes, including automobiles, transit, and bicycles for each route. The free flow
travel time (FFTT) of the upper route is 5 units longer than the lower route for all modes. Note that the upper route is two
times longer than the lower route in the short network, while the upper route is only about 20% longer than the lower
route in the long network. The O-D demand is 200 units. The nested structure is the go-green and go-gray scheme where
transit and bike share the same upper nest (see Fig. 1 for the tree structure representation). The purpose of using a simple
two-route network is three-fold: (a) to demonstrate the correctness of the NW-PSW model as a CMSTA problem, (b) to in-
vestigate the effect of heterogeneous perception variance on mode choice and route choice, and (c) to compare the proposed
NW-PSW model with the classical MNL-MNL model, which assumes the perception error is independently and identically
Gumbel distributed (i.e., not accounting for correlation among alternatives and assuming identical perception variance for all
alternatives), and the NL-CNL model proposed by Kitthamkesorn et al. (2016), which adopts the Gumbel distribution as the
perception error while using a two-level tree structure to only account for the correlation among alternatives (i.e., nested
logit (NL) model for mode choice and cross nested logit (CNL) model for route choice). Using a simple two-route network
with three modes has the benefits of clearly articulating the effects highlighted above, particularly the differences between
the logit-based and weibit-based models.

Table 6 provides the results of three models (i.e., MNL-MNL, NL-CNL, and NW-PSW) for both short and long net-
works. First, we check the correctness of the results by checking conservation for both mode choice and route choice.
As expected, the modal splits for both short and long networks satisfy the probability conservation (e.g., for the short
network: 61.94 +36.52 + 1.54=100.00 for the MNL-MNL model, 62.53 +37.38 +0.09 =100.00 for the NL-CNL model, and
47.43 +33.25 +19.32=100.00 for the NW-PSW model).

Next, we test the impact of heterogeneous perception variance from the short and long networks. The results show that
both MNL-MNL and NL-CNL models cannot handle the heterogeneous perception variance. These two models give the same
route choice probability for both short and long networks. This is because both MNL-MNL and NL-CNL models have the
identically distributed assumption (i.e., all perception variances are the same and fixed) despite that the NL-CNL model uses
a two-level tree structure to handle the independence assumption for both mode choice and route choice. On the other
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Table 6
Route share and mode share of three models for both short and long networks.
Model Route share Mode share
Short network Long network Short network  Long network

Upper route Lower route Upper route Lower route

Auto MNL-MNL 42.32% 57.68% 42.32% 57.68% 61.94% 61.94%
NL-CNL 42.35% 57.65% 42.35% 57.65% 62.53% 62.53%
NW-PSW 34.67% 65.33% 40.61% 59.39% 47.43% 44.57%
Transit MNL-MNL ~ 39.56% 60.44% 39.56% 60.44% 36.52% 36.52%
NL-CNL 39.60% 60.40% 39.60% 60.40% 37.38% 37.38%
NW-PSW 28.23% 71.77% 38.71% 61.29% 33.25% 34.01%
Bike MNL-MNL 37.84% 62.16% 37.84% 62.16% 1.54% 1.54%
NL-CNL 37.75% 62.25% 37.75% 62.25% 0.09% 0.09%
NW-PSW 29.94% 70.06% 40.34% 59.66% 19.32% 21.42%
Table 7
Expected perceived travel time of three models for both short and long
networks.
Model Short network Long network
Auto
MNL-MNL 6.64 26.71
NL-CNL 6.64 26.71
NW-PSW* 2.30 3.27
Transit
MNL-MNL 717 2722
NL-CNL 717 27.22
NW-PSW* 243 334
Bike
MNL-MNL 10.34 35.26
NL-CNL 10.34 35.26
NW-PSW* 2.70 3.58

* The NW-PSW model uses the logarithmic expected travel time.

hand, the NW-PSW model gives different route choice results for the short and long networks. This is due to the perception
variance of the Weibull distribution is a function of route cost. Hence, the lower route in the short network receives a larger
share than that of the long network.

When considering the mode share, both MNL-MNL model and NL-CNL model give the same results for both short and
long networks. This is because the exponential proportion of the expected perceived travel time (i.e., the log sum) is the
same for both networks. In contrast, the NW-PSW model has different mode shares for each network. Its logarithmic ex-
pected perceived travel time of all modes becomes more similar for the longer network (i.e., both alternatives becomes more
similar) in Table 7 and Fig. 3. As such, the go-green modes receive a higher share in the long network.

Then, we investigate the impact of the mode similarity in the short network. The parameter ¢y, for the go-green modes
is varied from 0.01 to 1. We can observe that the NW-PSW model is more sensitive to the change in ¢, as shown in Fig. 4.
This is because the covariance and perception variance of the NW-PSW model is a function of the deterministic utility. The
change in ¢y, impacts the choice correlation, covariance, and perception variance. By using a numerical method to compute
the correlation, the covariance and correlation between transit and bike can be presented in Fig. 5 (see Eqs. (21) and (27)).

Both NL-CNL and NW-PSW models have the correlation approaches to one as ¢;,—0 and the correlation equals to
zero when @, =1. The NL-CNL model seems to have a stronger correlation than the NW-PSW model. However, the NW-
PSW model presents a larger covariance between transit and bike modes. This results in a more dispersed mode share.
At a lower @, or a higher correlation, the covariance is high, and the expected perceived travel cost of each mode is
smaller according to the dispersed assignment results. At a higher ¢y, or a smaller correlation, the covariance is low, but
the expected perceived travel cost is high according to maintain the attractiveness of each mode at equilibrium. Hence, the
mode perception variance is high. In other words, for the NW model, the covariance dominates the mode share at a lower
@iju while the mode perception variance dominate the result at a higher ¢;,.

To visualize the change in the perception variance, we use the perception variance ratio of transit over bicycle. The per-
ception variance ratio resulted from the NL-CNL model equals to one since the NL model has the predetermined perception
variance of w2/6 for both modes under the same nest (e.g., Ben-Akiva and Lerman, 1985). In contrast, the perception vari-
ance ratio resulted from the NW-PSW model changes according to the value of g;;,. This is because the NW-PSW model has
the perception variance as a function of the route travel time and logarithmic expected perception variance (see Eq. (17)).
The change in ¢;;, would change the choice pattern, route travel time, logarithmic expected perception variance, and hence
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O-D demand MNL-MNL O-D demand
hort N rk Long Network
Auto Transit Auto Transit Bike
Mode choice prob. 0.62 0.36 0.02 0.62 0.36 0.02
Expected perceived travel time 6.64 / 7.17 10.34 26.71 27.22 35.26
Upper Lower Lower Lower Upper Lower Uppe: Lower Upper Lower
Route choice prob. 0.42 0.58 0.40 0.60 0.38 0.62 0.42 0.58 0.40 0.60 0.38 0.62
Route travel time 14.23 10.77 16.98 13.02 21.89 18.11 34.23 30.77 36.98 33.02 41.89 38.11
O-D demand NL-CNL O-D demand
Short Network Long Network G‘o‘%
2
Auto t Auto it
Mode choice prob. 0.62 0.3 0.0 0.62 0.3 0.0
Expected perceived travel time 6.64 7.17 10.34 26.71 27.22 35.26
Upper Lower Upper Lower Lower Lower Upper Lower Lower
Route choice prob. 0.42 0.58 0.40 0.60 0.38 0.62 0.42 0.58 0.40 0.60 0.38 0.62
Route travel time 14.23 10.77 16.98 13.02 21.89 18.11 34.23 30.77 36.98 33.02 41.89 38.11
O-D demand NW-PSW O-D demand
Short Network 3 Long Network g <
sy R o8 "é’*ee,,
< [y
Auto Tmnsnt Tmnsn Blke
Mode choice prob. 0.48 0.3 0.19 0.4 0.3: 0.2
Logarithmic 230 243 2.70 327 3.34 3.58
Expected perceived travel time,
Upper Lower Lower Upper Lower Upper Lower Upper Lower Upper Lower
Route choice prob. 0.35 0.65 0.28 0.72 0.30 0.70 0.41 0.59 0.39 0.61 0.40 0.60
Route travel time 13.47 11.53 16.41 13.59 21.50 18.50 34.06 30.94 36.94 33.06 42.02 37.98
Fig. 3. Multi-dimensional equilibrium demand and choice probability patterns.
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Fig. 4. Mode share by varying ¢;;, of the go-green modes in the short network.

the perception variance. As @y, increases, the perception variances of transit and bike become more similar. With these, the
choice patterns between the NL-CNL and NW-PSW models could be different. In sum, the change in ¢y, impacts correlation,
covariance, and perception variance in the choice patterns of the NW-PSW model.
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Fig. 6. Modified Nguyen-Dupuis network.

5.2. Example 2: Nguyen—Dupuis network

Similar to the simple two-route network used in example 1, example 2 adopts the modified Nguyen-Dupuis network
shown in Fig. 6 to obtain important insights of using different nested structure configurations (see Fig. 1 for the tree struc-
ture representations) and different models (i.e., logit-based NL-CNL model and weibit-based NW-PSW model) to model
the go-green and go-gray scheme and the motorized and non-motorized scheme. Compared to the two-route network, the
Nguyen-Dupuis network has four O-D pairs with routes consisting of multiple links (i.e., link equals to route as in the two-
route network) and multiple modes. The four O-D pairs are (1,2), (1,3), (4,2), and (4,3) with the O-D demands of 500, 500,
600, and 300 travelers per hour, respectively. The link travel time function is the Bureau of Public Road (BPR) type function.
The link travel time for the auto is

ta = t2[1+0.15(va/ca)*]. (52)
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Table 8
Characteristics of the modified Nguyen-Dupuis network.

Auto Distance (km) FFTT (min) Capacity (vph)
Link 1 25 2.5 500

Link 2 25 25 300

Link 3 2.0 2.0 400

Link 4 4.0 4.0 500

Link 5 3.0 3.0 400

Link 6 2.5 2.5 300

Link 7 3.0 3.0 600

Link 8 25 25 200

Link 9 2.5 2.5 200

Link 10 2.5 2.5 250

Link 11 25 2.5 400

Link 12 2.5 25 400

Link 13 3.75 3.75 400

Link 14 2.5 2.5 400

Link 15 2.0 2.0 400

Link 16 2.5 2.5 500

Link 17 2.5 2.5 300

Link 18 7.0 7.0 400

Link 19 3.0 3.0 400

Transit Distance (km) FFTT (min) Capacity (pph)
Section 1 25 25 300

Section 2 2.5 25 300

Section 3 10 10 600

Section 4 2.5 25 300

Section 5 2.5 25 300

Bike Distance (km) FFTT (min) Capacity
Bike lane 10 30 -

Transit Bike 1% Transit Bike 3% Bike 7% Bike 12%

12%

o / < /// 19% 2~ ////// Transit #7%"
% NL-CNL ////%// /%f NL.ONL %//%/ T wrsw ///,/% 16% /
/ Go-green and % / Motorized and ?/é ~~ Go-green and % . Motorized and %
/ Go-gray / / Non-motorized /é/% 7 Go-gra / © = Non-motorized /
Fig. 7. Mode share for the modified Nguyen-Dupuis network.
and the link travel time for the transit is
ta = to[140.5(va/ca)’]. (53)

where t, is the link travel time function on link g, t2 is the free flow travel time on link a, and ¢, is the capacity on link a.
For the bike mode, the travel time is fixed at 30 min for each route. Detailed network characteristics can be found in Table 8.
The value of Wy, for the go-green modes (i.e., transit and bike) is equal to 1. Since the logit model is an additive RUM
model and the weibit model is a multiplicative RUM model, we set the travel cost for comparison reason as follows:

hq = 0.25t;and, 7, = e®97% Vg e A (54)

where hq is the link travel cost for the logit model.

The mode share results for the two nested structure configurations are presented in Fig. 7. From the results, it is apparent
that the nested structure configurations do have an impact on the mode shares. The independent mode (i.e., the auto mode
in the go-green and go-gray scheme and the bike mode in the motorized and non-motorized scheme) receives a higher
share. This result is consistent with Kitthamkesorn et al. (2016). Note that the NW-PSW model give a higher go-green mode
share since it considers both mode-specific perception variance and route-specific perception variance.

Then, we vary the demand level and the exogenous modal utility W;;,,,. The demand level is varied from 0.5 to 4 times
of the base O-D demands, and Wy, of the go-green modes (i.e.,, transit and bike) is varied from 0 to 5. As the demand
level increases, the difference between the mode share estimated under each scheme (i.e., mode share from the go-green



308 S. Kitthamkesorn, A. Chen/Transportation Research Part B 103 (2017) 291-310

g S g S 7
245 245
g 4 £ 4
£3s £3s
2 2
P P
§,25¢ §,25¢
2 2 2 2
o 15 o 1.5
S 1] S 1
Sos Sos
5~ 0 . \ . L . . 0 . . . . . .
0.5q; i 1.5q; 245 2.5q;  3q; 3.5q; 4q; 0.5¢; Gij 1.5q;  2q; 2.5q;  3q; 3.5q; 4q;
Demand Level Demand Level
a) NL-CNL transit mode choice b) NL-CNL bike mode choice probability
probability difference difference
% 5 4 5
B ast TS / /
&
g 4 g 4p N b o
g3 5 S35t * /
= 3 g .3 / % polo
C 2% s
2.02 bénz —
en ) V) 3 &%
@ 2 @ 2
=55 =55
B [ -4%
€ 1 &
Sos Sos
0 . I . . . . 0 . ! . . .
0.5q; qij 1.5q;  2q; 2.5q;  3q;  3.5q5  4q; 0.5q; qjj L.5q;  2q5 2.5q;  3q;  3.5q5  4q;
Demand Level Demand Level
c) NW-PSW transit mode choice d) NW-PSW bike mode choice probability
probability difference difference

Fig. 8. Mode share difference when varying ¥;;,, and demand level.

go-gray scheme minus mode share from the motorized and non-motorized scheme) is decreased. This is because the con-
gestion effect dominates the results. On the other hand, when Wj,, increases, the mode share difference also increases.
The NW-PSW model seems to provide a larger mode share difference than the NL-CNL model. This is because the NW-PSW
exogenous utility is a multiplicative type as the weibit model, which is a member of the multiplicative RUM model. This is
unlike the NL-CNL model which has W;;,; as an additive form. As such, the mode share resulted from the NW-PSW model
will be more sensitive to the change in Wy, (Fig. 8).

6. Concluding remarks

This paper presented an alternate weibit-based combined modal split and traffic assignment (CSMTA) model based on
random utility theory derived from the Weibull distribution. The main contributions are twofold: (1) the development of
a nested weibit model, and (2) the development of a weibit-based CSMTA model as a mathematical programming (MP)
formulation. The nested weibit (NW) model was developed by adapting the nested structure of the well-established nested
logit (NL) model with the Weibull distributed random error for modeling mode choice, while the recently developed path-
size weibit (PSW) model was adopted for modeling route choice. The development of a MP formulation for the combined
NW-PSW model was provided to simultaneously consider both similarities and heterogeneous perception variance in the
joint mode-route travel choice decisions under congestion. The benefits of a MP formulation are: (1) Optimality condi-
tions are readily interpretable and easily understandable (i.e., the Kuhn-Tucker conditions provide the equivalency between
the MP formulation and the weibit-based mode choice and route choice probabilities), and (2) convergent algorithms (e.g.,
partial linearization algorithm) are readily available for solving the weibit-based CMSTA model. Numerical examples were
performed to illustrate features of the proposed combined NW-PSW model. Through the examples, the mode share re-
sulting from the combined NW-PSW model is more sensitive to changes in model parameters and network characteristics
than those produced by the two logit-based models (MNL-MNL and NL-CNL). This is because the proposed model has the
mode-specific and route-specific perception variance. The perception variance is a function of the (dis)utility. Moreover, its
exogenous utility is a multiplicative type as the weibit model, which is a member of the multiplicative RUM model.
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For future research, parameter calibration (e.g., Oppenheim, 1995; de Grange et al., 2010) should be performed for the
combined NW-PSW problem. An investigation on how to shift between the go-green and go-gray nested structure and the
motorized and non-motorized nested structure is also interesting since we could encourage a mode choice more effective
with one nested structure than the other (e.g., Kitthamkesorn et al., 2016). Applications of the combined NW-PSW model
should be tested in real networks to demonstrate proof of concept. In addition, several assumptions have been made for
simplifying the MP formulation so that the contribution of this paper is clear and focused. As suggested by Cantarella
et al. (2016), fixed point formulation could be considered as a general framework to relax the assumptions for modeling
more complex issues (e.g., asymmetric interactions, non-additive route cost structures, multi-user classes, etc.) and specific
operational details in public transport modes (e.g., bus, tram, and mass rapid transit).
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