ILIMNIVLAULRNY T

Tasens: msﬁum%agaﬁm@ o | TR U ININTUY B
1 (= 6 6 1
MIUTZUT AU UL TNS-NILAY, NTUTEu e UL
6 6 6 6 1
wwmm-ﬂwamaﬂugﬂuuuLaﬂmai, e N1IYUTzu4aN

6 6 v 6
LUUNTILALAANILL @lﬂugﬂ LUDLINLABI

lag: a3, aigwed lugassm

{ &
whaw 1l Nasalasanis

NN 2562



T LUl MRG6080133

ILIMUIVLAULFNY IO

lasamy miﬁ’ums’?jagm%m@ o | TR1AUYDININ T UV DS

ANITUTE N RA L ULDTIA-WITLAE, ANTUTENMALUL
6 6 6 6 1

W'm@U-W'ﬁmaﬂugﬂuum’mmai, ez NTUIZNN AN

6 6 % 6
LL‘U'U‘W’]?L@ElLLQﬂW’lLU@]’]I%EﬂLLUUL’JﬂL@] ap)

a3. tigwid lugdvi  awAnenspuiias

RUbL agmi@ JRIBNIIUN amuaﬁ’u agmmﬁfﬁ’ﬂ LRZA1

NI

(AaNuAnluMsukduseIdn

an.LacausIne liindudasrueiuane )



Abstract (UNARED)
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This project contains two parts. The first part concerns direct and inverse results
on row sequences of generalized Padé approximations. Convergence theorems for these
approximants were proved. In particular, we gave necessary and sufficient conditions for
the convergence with geometric rate of the denominators of simultaneous Padé-Faber
approximants and multipoint Hermite-Padé approximants (multipoint Hermite-Padé ap-
proximation is a special case of simultaneous Padé («, 3)-approximation). The second
part focuses on generalized Riesz potentials on the Euclidean space R2. We gave a char-

acterization for a generalized Riesz s-potential function of a multiset of N points in R?



when s = 2 — 2N and the potential function is constant on a circle in R, The char-
acterization allows us to partially prove a conjecture of Nikolov and Rafailov about the
relation between the potential functions being constant on a circle in R? and locations of
N points. Moreover, we find all maximal and minimal polarization constants and configu-
rations of two concentric circles in R? using the above the generalized potential function
for certain values of s.

Keywords: Montessus de Ballore’s Theorem; Padé-Faber approximation; Simultaneous
approximation; Multipoint Padé approximation; Inverse problems; Polarization; Potentials;

Roots of unity; Max-min and min-max problems.



Executive Summary

Our project consists of two parts:

(i) Generalized Padé Approximations

(i.1) Vector Cases

(i.1.1)

(i.1.2)

(i.1.3)

We proved two convergence theorems for classical simultaneous Padé-
Faber approximants on row sequences in (2) and (3).

Analogues of the Montessus de Ballore-Gonchar theorem for new simul-
taneous Padé-Faber approximants and multipoint Hermite-Padé approxi-
mants were obtained in (6) and (7). These are the main results of this
project.

Convergences of (classical and new) simultaneous Padé-Faber approximants
and (classical and new) simultaneous orthogonal Padé approximants in
Hausdorff content in the maximal canonical domain in which each function
of an approximated vector can be continued to a meromorphic function

were proved in (8).

(i.2) Scalar Cases

(i.2.1)

(i.2.2)

We showed in (4) that each pole of the approximated function in the maxi-
mal canonical domain in which the approximated function can be extended
as a meromorphic function with at most m poles attracts as many poles
of new orthogonal Padé and new Padé-Faber approximants on the m row
sequences as its order at a geometric rate.

In (4), we also proved that if all m poles of new orthogonal Padé or new
Padé-Faber approximants on the m row sequences converge to m limit

points, then m limit points are singularities of the approximated function.



(i.2.3) We proved in (5) the convergence of new Padé-Faber approximants in Haus-
dorff content in the maximal canonical domain in which the approximated
function can be extended to a meromorphic function. This is a special case

of (i.1.3).
(ii) Constant Riesz Potentials and Polarization Optimality Problems

(ii.1) A characterization for a Riesz s-potential function of a multiset wy of N pointsin
R? was given when s = 2—2N and the potential function is constant on a circle
in R?. The characterization allows us to partially prove a conjecture of Nikolov
and Rafailov, namely if the potential function is constant on a circle I'; then
the points in wy should be equally spaced on a circle concentric to I'. As an
application of constant Riesz s-potential functions, we also located all maximal
and minimal polarization constants and configurations of two concentric circles

in R? for certain values of s. All results here were proved in (1).
(ii.2) The results in (9) are similar to the results in (1). In (9), we considered more
general Riesz potential functions.
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1.1. Pade Approximations

Rational approximation theory has been a mainstay of approximation theory
from the beginning. This subject occupies a large place in the literature. Especially, Padé
approximation, one type of rational approximations, can be classified as an independent
branch of complex analysis and approximation theory. Although polynomials seem to be
more familiar and comfortable, they are not such a good class of functions if one wants to
approximate functions with singularities because polynomials are entire functions without
singularities. Rational functions are the simplest functions with singularities.

The concept of (classical) Padé approximants generalizes the idea of Taylor

polynomials to rational approximants. Given a formal Taylor series at the origin
F(z) = Z fu?,
k=0

for any integers n,m > 0, we can find polynomials P, ,, € P, and polynomials @, €

P, Qnm #Z 0, such that
(QuanF — Po)(2) = O(z"Tm ), as 2—0 (1)
(IP,, is the set of all polynomials of degree at most n). The rational function

e an
[n/m]p & 2

=
Qn,m



is uniquely defined and is called the Padé approximant of type (n,m) to F.

Padé approximants are more powerful than polynomials at approximating func-
tions near singularities, with jumps, and on unbounded domains (see, e.g., [1, 2, 3, 4, 5]).
The idea is that under appropriate conditions, the poles of the classical Padé approximant
[n/m]pF will move to the singularities of the function F' (as n and m increase). Hence, the
domain of convergence could be enlarged and this allows classical Padé approximants
to approximate functions beyond their singularities. Padé approximation and its general-
izations have applications not only in approximation theory itself but also in many other
areas such as Numerical Analysis, Number Theory, Integral Equations, Spectral Theory of
Operators, Random Matrix Theory, Quantum Mechanics, Quantum Field Theory, Brownian
Motion, Toda lattices, Fluid Dynamics, Volatility Modelling, Multiple Orthogonal Polynomi-
als, Quadrature Formulas, Control and Identification of Linear Systems, Inverse Problems
for the Laplacian, and so on (see e.g,, [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26]).

One of the goals of this project is to investigate the relation between the convergence
of the zeros of the common denominators of generalized Hermite-Padé approximants on
row sequences, and the singularities of a vector of approximated functions. To clearly
state known results and our goals, let us define Hermite-Padé approximation.

Let F = (FY,..., Fy) be a system of d formal Taylor expansions at the origin; that is,

foreachi=1,...,d, we have
Fi(2) =Y faiz",  fai€C. 2)
n=0
Definition 1. Given a system of d formal Taylor expansions F = (F7, ..., Fy) asin (2) and

a multi-index m = (my,...,my) € N% Set |m| = m; + my + - - - + mq. Then, for each



n > max{my, ..., mg}, there exist polynomials Q, P;,i = 1,...,d, such that

deg(Pl) S n — m'L? Z = 17‘ A 7d7 deg(Q) S |m|7 Q % 07

Q()FA(2) — P(2) = Az ..

The vector rational function R, m = (P1/Q, ..., P4/Q) is called an (n, m) (type ll) Hermite-

Padé approximant of F.

Therefore, Hermite-Padé approximation is an approximation of each function F;
separately by rational functions with a common denominator Q. For any fixed (n,m) €
N x N?, in general, Rn.m, May not be unique and we will assume that given (n, m), one

particular solution is taken. For that solution, we write

Rn,m - (Rn,m,h E) Rn,m,d) - (Pn,m,la ey Pn,m,d)/@n,ma

where @;, m is @ monic polynomial that has no common zero with all the P, ;. Sequences
{Ru.m}n>1 When m is fixed are called row sequences and sequences {R, m}n>1 When
my = -+ =mg = m,n = (d+ 1)m,m € N (or nearby configurations of multi-
indices) are called diagonal sequences. \We would like to emphasize that there is another
construction called type | Hermite-Padé approximants which has very close relation to the
type Il Hermite-Padé approximants (see [19, Chap. 4] for more details). In this work, we
studied just the type Il Hermite-Padé approximants. For convenience, we will omit the
word “type II” when we refer to the type Il Hermite-Padé approximants.

Most of the studies of Hermite-Padé approximants were concentrated on diag-
onal sequences (for more information, see some important papers [27, 28, 29, 30] and a

book by E.M. Nikishin [19] in this direction). There are very few papers [31, 32, 34, 35, 36]



dedicated to the study of row sequences. The pioneering one in this direction is the work
of Graves-Morris and Saff [31] where they proved an analogue of the Montessus de Bal-
lore theorem. The other significant work in this direction is due to Cacoq, de la Calle, and
Lopez [32] where they proved some results on the inverse problem of row sequences.

Hermite-Padé approximation and their relatives have various applications in
many areas, for example, in Number Theory (see [37, 38, 39]), in Numerical Analysis (see
[13, 40, 41, 42,43, 44, 45, 46, 50]), in Multiple Orthogonal Polynomials (see [13, 17, 23, 47,
48]), in Linear Algebraic Equations (see [49]), in Nonlinear Dynamical Systems (see [7]), in
Brownian Motion (see [12]), in Random matrices (see [9, 17, 18]), and so on. In particular,
Charles Hermite introduced the subject of Hermite-Padé approximation in his proof of the
transcendence of e. Hermite-Padé approximants were also used in various irrationality
proofs and transcendence proofs of important numbers (see the discussions in [24, Sec-
tion 3.2] and [51, Section 4.3] for more details). Moreover, one can say that the origin of
the definition of multiple orthogonal polynomials came from Hermite-Padé approximants
(see for example in [24, Section 2.2] for the explanation). See also [51] for the applications
of multiple orthogonal polynomials.

Let us continue introducing a definition and notations. The following definition

is an intrinsic definition of pole when we study a system of functions.

Definition 2. Given F = (Fy, Fy, ..., Fy) asin (2) and m = (mq, ma,...,my) € N¢, we
say that £ € C \ {0} is a system pole of order T of F with respect to m if T is the largest
positive integer such that for each t = 1,2,..., 7, there exists at least one polynomial

combination of the form



which is holomorphic on a neighborhood of {z € C : |z| < [{|} except for a pole at

z = & of exact order t.

Let £ be a system pole of order 7 of F with respect to m. Let G(F,m, &, k) be
the space of all functions g of type (3) that are analytic on a set {z € C : |z| < £}

except for a pole at z = £ of order k. Foreach k = 1,..., 7, we define

rex(F,m) :=min{R(g) : g € G(F,m, &, k)},

where Ry (g) is the radius of the largest disk centered at 0 containing at most & poles of
g. Set

Re¢(F,m) := k:rrlm TTM(F’ m).

We denote by QF the monic polynomial whose zeros are the system poles of F
with respect to m taking account of their order. The set of distinct zeros of Q¥ is denoted
by P(F,m). Moreover, we define Ry(F) to be the radius of the largest disk centered at 0
in which all the expansions F;, ¢ = 1,...,d correspond to analytic functions.

The following is the main result in [32].

Theorem 1. Let F be a vector of formal Taylor expansions at the origin and fix a multi-

index m € N%. The following two assertions are equivalent:

(a) Ry(F) > 0 and F has exactly |m| system poles with respect to m counting multi-

plicities.

(b) The denominators Q,,m, n > |m|, of the Hermite-Padé approximants of F are

uniquely determined for all sufficiently large n, and there exists a polynomial Q) |m



of degree |m|, Q|m(0) # 0, such that

lim sup [|Qm| — Quml|/" =0 <1, (4)
n—oo
where || - || denotes the coefficient norm in the space of polynomials.

Moreover, if either (a) or (b) takes place, then Qim| = QF, and

o= max{ pfs P}

In [32, Theorem 3.7], the rate of convergence of row sequences of the Hermite-
Padé approximants to the system of functions F is given. Theorem 1 characterizes the
situation when F has exactly |m| system poles with respect to m (counting multiplicities)
in terms of the exact rate of convergence in (4). The (b)=-(a) statement means that if (), m
has |m| zeros for n sufficiently large and all the zeros of @, m converge to |m| limit points
at the rate of a geometric progression, then all the limit points are the system poles of F
with respect to m.

In this project, we studied generalizations of the classical construction of Hermite-
Padé approximation, namely classical and new simultaneous Padé-Faber approximations,
classical and new simultaneous orthogonal Padé approximations, and multipoint Hermite-
Padé approximation. Before we state our interested problems and the significance of this
project, we need to introduce some more notation.

Let E be an infinite compact subset of the complex plane C such that C \ E
is simply connected. Note that we consider C \ E as a domain. Then, there exists a
unique exterior conformal mapping ® from C \ £ onto C \ {w € C : |w| < 1} satisfying

P (00) = oo and ®’(o0) > 0. We assume that F is such that the inverse function ¥ = ¢!



can be extended continuously to C \ {w € C : |w| < 1}. Note that the closure of a
bounded Jordan region and a finite interval satisfy the above conditions. For the rest of
this report, E' is as described above.

The first and second approximations are constructed from orthogonal polynomials on
E. Let u be a finite positive Borel measure with infinite support supp(u) contained in E.

We write 1 € M(E) and define the associated inner product,

(g, By = / g(ORO)AN(C), 9.k € Lou).

Let

p(2) = k2" +-+, K,>0, n=0,1,2...,

be the orthonormal polynomial of degree n with respect to p having positive leading coef-
ficient; that is, (pn, Pm )y = Onm. Denote by H(E) the space of all functions holomorphic

in some neighborhood of E. We define
H(E) = {(F\, Fy, ..., Fy): F; € H(E) foralli =1,2,...,d}

and the set of all nonnegative integers is denoted by Nj,.

Definition 3. Let F = (Fy, Fy, ..., F;) € H(E)Y and p € M(E). Fix a multi-index

m = (my,ma,...,my) € N¢\ {0}, where 0 is the zero vector in NZ. Set [m| = m; +
My + ... +mg. Then, for each n > max{my, ma, ..., ma}, there exist polynomials Q%
and P} ;,i=1,2,...,d such that

deg(P"

n,m,i

) <n-—m;, deg( Z,m) < |m|7 g,m §é 07



< z,mE_P;:m;i?pj),u:O; ij,l,...,n,

forallz =1,2,...,d. The vector of rational functions

Rim = (RZ7rn,17 Rz,m,% te >Rg,m,d) = (P#,m,l/Qg,m7 Prl:m,Q/QZ,m> Tt Pfim,d/Qg,m)

is called an (n, m) classical simultaneous orthogonal Padé approximant of F correspond-

ing to a measure .

This approximation was first introduced in [63]. In [63], the author proved two con-
vergence theorems for this approximation on row sequences. These two theorems are
direct results. It turns out, that the correct way to extend the notion of Hermite-Padé
approximation to the case of vector orthogonal expansions in order to obtain both direct

and inverse type results is through the following definition.

Definition 4. Let F = (Fy, Fy, ..., F;) € H(E)Y and p € M(E). Fix a multi-index
m = (my,ma,...,mg) € N? and n € N. Then, there exist polynomials Q" _, P*

n,m’ * n,m,k,’

k=0,1,...,m; —1,i=1,2,...,dsuchthatforalli =1,2,...,d,

deg(PY. ) <n—1, k=0,1,...m—1 deg(@Q" )<|m, QL #0, (5
(Qh 2" Fy = P pidu =0, k=0,1,...,m;—1 j=0,1,....n. (6)

The vector rational function

~ ~ ~ ~ ~ ~
Rn,m = (Rz,m,h ] Rz,m,d) = (Pvf:m,o,lv ety Pﬁ,m,o,d)/QZ,m

is called an (n, m) new simultaneous orthogonal Padé approximant of F with respect to

L.



Because this was recently introduced in [64], there is only one paper studying this
approximation. In [64], the authors proved an analogue of (b) < (a) in Theorem 1.

Next, let us define both classical and new simultaneous Padé-Faber approximations.
In order to do that, we need to state some more definitions.

Let us clarify what we mean by a pole of a vector function and its order.

Definition 5. Let © := (21,Q,...,8y) be a system of domains such that, for each
a = 1,2,...,d, F, is meromorphic in €2,. We say that the point A is a pole of F :=
(F1, Fy, ..., Fy) in Q2 of order 7 if there exists an index a« € {1,2,...,d} such that
A € Q, and itis a pole of F, of order 7, and for 3 # « either A is a pole of Fj3 of order
less than or equal to 7 or A &€ Q5. When @ = (©,Q,...,Q), we say that A is a pole of F
in €.

Denote by po(F) the index p of the largest canonical domain D, to which all F,,
a = 1,...,d, can be extended as holomorphic functions and by p,,(F) the index p of
the largest canonical domain D, to which all Fi,, « = 1,...,d can be extended so that
F has at most m poles counting multiplicities.

The Faber polynomial of E of degree n is defined as the polynomial part of the
Laurent expansion of ®" at infinity. The n-th Faber coefficient of G € H(E) with respect

to ®,, is given by
1 G(t)P'(t
=5 |, gy,
2mi Jp, @)

dt,
where p € (1, po(G)) and po(G) denotes the index of the largest canonical region to
which G can be extended as a holomorphic function.

The following is the definition of classical simultaneous Padé-Faber approximation.

Definition 6. LetF = (F}, Fy, ..., Fy) € H(E)® Fixamulti-indexm = (my, ma, ..., mq) €

N\ {0}, where 0 is the zero vector in Ng. Set |m| = my +my +. .. +my. Then, for each



n > max{my, ma, ..., my}, there exist polynomials Q and me »i=1,2,... dsuch
that
deg(Prmg) Sn—my,  deg(Qy ) < |ml, Qi Z0,
QF \Fi— Pl ;=0 j=0,1,...,n,
foralli =1,2,...,d. The vector of rational functions
RE, = (an17an27" and) ( ml/Qnm’ an/Qnmv""me,d/QE,m)

is called an (n, m) classical simultaneous Pade-Faber approximant of F corresponding to

E.

This definition was first introduced in [60] for the scalar case (when d = 1). This scalar
case was completely studied. We are the first who extended this scalar case to the vector
case in [66] and studied the convergence properties of this vector case.

The following is a new simultaneous Padé-Faber approximation. We need this defini-

tion in order to prove an analogue of (b) < (a) in Theorem 1.

Definition 7. LetF = (Fy, Fy, ..., Fy) € H(E)% Fixamulti-indexm = (my,ma, ..., my) €

N? and n € N. Then, there exist polynomials Q k=0,1,....m; — 1,1 =

n,m? nmkz?

1,2,...,dsuch thatforalli=1,2,...,d,
deg(PE ) <n—1, k=0,1,....m—1, deg(QF)<Im|, QF #0,

QF 2*F, — PE_ .1, =0, k=0,1,...,m; —1 j=0,1,...,n. (8



The vector rational function

~E
n,m

(anl and) (PnEmOU" and)/Q

is called an (n, m) new simultaneous Padé-Faber approximant of F corresponding to E.

The above definition is a brand new definition. Nobody studied this before (even the
scalar case).
The final approximation is multipoint Hermite-Padé approximation defined as follows.

Let v C E be a table of points; more precisely, & = {an 1}, k = ,n,n=12,...

Definition 8. Let F € H(E)% Fix a multi-index m = (my,...,mg) € N¢and n € N. Set
POL

n,m’ - n,mk’

Im| = my + - - 4+ mg. Then, there exist polynomials Q% k=1,...,dsuch that

deg Py < n—my, deg @y, , < |ml, mm Z 0,

( g,ka - Pr?,m,k:)/aTHJ € H(E)?

where a,(z) = [[}_;(z — ay k). The vector rational function

Rg,m:( z,m,lﬂ"w z,m,d) (P7?m17"' nmd)/Q

is called an (n, m) multipoint Hermite-Padé approximant of F with respect to a.

There are many papers studying multipoint Hermite-Padé approximation when d = 1.
We are the first who introduced this vector multipoint Padé approximation and studied
the convergence of this approximation.

Note that for given (n,m) € N x N4 Rt R\ | RF R, . andRZ . always exist but

n,m?’ " n,m?’ " n,m? nm7

they may not be unique.



1.2. Constant Riesz Potentials and Polarization Optimality Problems

1.2.1. Constant Riesz Potentials

For a fixed multiset of N points wy := {x1, s, ..., 2y} in R?* and a given constant

s € R, we define the Riesz potential function U*(-;wy) : R? — [0, oo] as the following

N
Us(z;wy) :== Z |z — ;7%
=1
where z € R? and | - | is the 2-dimensional Euclidean norm in R2. We call U*(-;wy) a

Riesz s-potential function of wy. We refer the reader to [52] for more information on Riesz
s-potential functions in a d-dimensional Euclidean space R.

Let wy be a fixed set of distinct equally spaced points on a circle T' C R? and I be a
circle concentric to 7' In [53], Nikolov and Rafailov showed in Theorem 1 that U®(z;wy)
is constant as a function of z on I' if and only if s € {0,—2,—4,...,4 —2N,2 — 2N }.
They also showed in Theorem 2 that this actually gives a characteristic property of distinct
equally spaced points on a circle. More precisely, given a set wy of N distinct points such
that U®(z;wy) is constant on a circle I for every s € {—2, —4,...,2—2N} (the constant
may depend on s), then the points in wy are equally spaced on some circle concentric
to I'. In the same paper, it was conjectured (Conjecture 1) that only s = 2 — 2N should

be sufficient. We state the conjecture below.

Conjecture 1. Given a set of N distinct points wy := {1, s, ...,xn} C R? such that
N
U (o) = 3 fo = P2
j=1

is constant as a function of x on S'. Then, wy forms a set of distinct equally spaced



points on Sk := {x € R?: |z| = R} for some R.

This conjecture is still open. We are able to solve many special cases of this conjecture.

1.2.2. Constant Generalized Riesz Potentials

After one year studying 1.2.1., we found that Conjecture 1 in 1.2.1. can be generalized
by considering more general Riesz potential functions defined as follows. For a fixed
multiset of N points wy = {z1,Zs,...,2x} C R? a given constant s € R, and a

given constant i > 0, we define the potential function U*"(:;wy) : R? — [0, 00] as the

following:
N
U™ (2; wy) Z \x—xj]2+h)_s/2, 9)
7=1
where x € R? and | - | is the 2-dimensional Euclidean norm in R2. We call U*" (-, wy)

a Riesz (s, h)-potential function of wy. The geometric interpretation of the function
Ush(-;wy) is as follows. Let us consider two parallel planes in R?: one is R?x {0} and the
other is R? x {v/h}. Basically, the potential function U*"(z,wy) is the Riesz s-potential
function in the 3-dimensional Euclidean space R? of w), C R? x {0} at 2/ € R? x {v/h},
where the projection from R? x {0} to R? of w/, is wy and the projection from R? x {v/h}
to R? of 2’ is . Moreover, if h = 0, then U%"(-;wy) is the Riesz s-potential function in
the 2-dimensional Euclidean space R? of wy.

We propose the following conjecture (see [73, Conjecture 2.1]).

Conjecture 2. Let h > 0. Given a set of N distinct points wy := {x1, 3, ..., 25} C R?

such that

U2 2Nh |x—l'J|2+h)N 1

Mz

Jj=1



is constant as a function of z on S'. Then, {x1, xs, ...,z N} forms a set of distinct equally

spaced points on a circle centered at 0.

Again, Conjecture 2 is still open but we can solve many special cases of this conjecture.

1.2.3. Polarization Optimality Problems

The next problems considered in this project are polarization optimality problems. Let
wy = {z1,...,zx} denote a configuration of N (not necessarily distinct) points in R2.
Denote by

Sk = {z € R?*: |z| = R}

the circle centered at the origin of radius R. When R = 1, we simply use the notation

St. Given s € R, R > 0, and r > 0, we define polarization constants

(

max min U*(y;wy)  ifs#0
wy S} yeSE

M3 (SE;SE) = { twn=N (10)
N ifs=0

\

min maxU*(y;wy)  ifs#0

CSk yest
mi(SL;SE) = woneh R (11)

N ifs=0

\

where #wy denotes the cardinality of the multiset wy. We will call wy a maximal (min-
imal) N-point Riesz s-polarization configuration of (S};Sk) if wy attains the maximum
in (12) (minimum in (13)). We give a brief history of such polarization optimality problems
below.

Farkas and Révész [54] were the first to introduce two-plate polarization constants

in general sense. However, all previous results [55, 56, 57] on polarization optimality



problems in (12) and (13) were considered for the case when R = r = 1. The maximality
of N distinct equally spaced points on the unit circle for the maximal Riesz s-polarization
problem of (S';S!) in (12) was proved by Ambrus, Ball, and Erdélyi in [55] for s = 2.
Erdélyi and Saff [52] established this for s = 4. For arbitrary s > 0, this result was proved
by Hardin, Kendall, and Saff [56]. In [56], they also showed the minimality of N distinct
equally spaced points on the unit circle for the minimal Riesz s-polarization problem of
(St;S') in (13) for —1 < s < 0. Note that minimal N-point Riesz s-polarization problems
of (S';S') when s > 0 are not interesting because m3(S*; S') = oo for all s > 0.
In [65], we gave a characterization of all maximal and minimal N-point Riesz s-polarization

configurations of (S!;SL) when s = —2,—4,...,2 — 2N.

1.2.4. Generalized Polarization Optimality Problems

Considering more general potential functions in (9), we define generalized polarization
constants and configurations as follows. Given s € R, A > 0, R > 0, and r > 0, we define

polarization constants

MY (S};Sg) i= max min U™ (y; wy), My"(S); Sg) :
(/JNCST yESR
Hon=N

N, (12)

m3t(SL;Sh) = min - max U™ (y; wn), m%"(Sk;SL) .= N, (13)
wN CS; yeSE
#WN:N

where #wy stands for the cardinality of the multiset wy. We will call wy a maximal
(minimal) N-point Riesz (s, h)-polarization configuration of (S};Sk) if wy attains the
maximum in (12) (minimum in (13)).

In [73], we gave a characterization of all maximal and minimal N-point Riesz (s, h)-

polarization configurations of (S};SL) when s = —2, —4,...,2 — 2N.



2. IUILEIALAZYIUIANTINY

We try to do the following:

2.1. Prove the analogue of Montessus de Ballore-Gonchar theorem for simultaneous

Padé-Faber approximants.

2.2. Prove the analogue of Montessus de Ballore-Gonchar theorem for multipoint Hermite-

Padé approximants.

We promised to have at least 2 accepted papers at the end of the second year. These
two papers must be published in Q1 mathematics journals indexed by JCR (impact factors

at least 1.000).
3. NadNWs (Main Results)
3.1. Convergence Theorems for Classical Simultaneous Padé-Faber

Approximants

We proved two convergence theorems for classical simultaneous Padé-Faber approx-

imants in [66, 67] on row sequences.

3.1.1. Convergence theorem under polewise independence

The first one is based on the the notion of polewise independence defined as follows.

Definition 9. LetF = (F}, Iy, ..., Fy;) € H(E)?be a vector of functions meromorphic in
some canonical domain D, and let m = (my,ma, ..., mq) € N4\ {0} be the multi-index.

Then the function F is said to be polewise independent with respect to the multi-index



m in D, if and only if there do not exist polynomials vy, va, ..., v4 at least one of which

is non-null, satisfying
() degv; <m; —1,1=1,2,...,d,ifm; > 1,
(i) v; =0if m; =0,
(i) S0, (v; 0 ®) - F; € H(D, \ E),
where H(D, \ E) is the space of all holomorphic functions in D, \ E.

Denote by Q|Fm| the monic polynomial whose zeros are the poles of F in D, _
counting multiplicities.
Our first result [66, Theorem 1] under the concept of polewise independence is stated

as follows.

Theorem 2. Let F = (I, Fy, ..., Fy) € H(E)? be a vector of functions meromorphic in
D, mandm € N&\ {0} be a fixed multi-index. Suppose that F is polewise independent
with respect to the multi-index m in D, ). Then, RY ., is uniquely determined for all
sufficiently large m and for each 1 = 1,2,...,d, Rf’ ma converges uniformly to F; inside

Dpi® \ Pm|(F). Moreover, for each i = 1,2,...,d and for any compact set K C

D@ \ Pimi(F),
n P
limsup ||F; — RZ_ ||/ < [2]x

n—o0 myme LK = p|m|(F)7

where || - ||k denotes the sup-norm on K and if K C E, then ||®||k is replaced by 1.

(14)

Additionally,

, L maxaep, ;) [P(A)]
lim sup HQE,m - Q'|:m|H1/ < -

(15)
n—00 p|m|(F>

where ||-|| denotes (for example) the norm induced in the space of polynomials of degree

at most |m| by the maximum of the absolute value of the coefficients.



3.1.2. Convergence theorem under incomplete Padé-Faber

approximants

Without the concept of polewise independence, we are able to prove another con-
vergence theorem for classical simultaneous Padé-Faber approximants. Before stating this
result, we need some more notation.

Given a vector F = (Fy, F,, ..., Fy) and a multi-index m = (mqy,ms,...,my) €

Nd\ {0}, we define

Din(F) := (D, (F1)s Doy (o) - - -3 Dy (F))-

By C/an, we denote the monic polynomial whose zeros are the poles of F in Dy, (F) counting
multiplicities. This set of poles is denoted by P (F). Fori = 1,2,...,d, set P (F) =
Pm(F) N mez'(Fi)'

To each pole A of F in this system of domains

Din(F) = (D, (F1)s Dy (F2)s -+ -3 Dy (Fa))

we associate an index i(A) € {1,2,...,d} as follows. The index i(\) verifies that A €
mei(M(Fi()\)) and A is a pole of Fj) of the same order as is a pole of F in Dy (F). If
there are several indices ¢ satisfying this condition, then we choose one among those with
greatest pp,, (F}).

Making use of the concept of incomplete Padé-Faber approximation, we proved an-

other Montessus de Ballore type theorem for classical simultaneous Padé-Faber approxi-

mants in [67, Theorem 1] stated as follows.

Theorem 3. Let Pm(F) = {\1, A2, ..., A\, }. Suppose that F € H(E)? has exactly |m|



poles in Dy (F). Then, Rf’ m s uniquely determined for all sufficiently large n and for each

i=1,2,...,d, RE_ . converges uniformly to F} inside mei(p‘i) \ Prm.i(F). Moreover,

n,m,i

P
limsup || F; — R ||}</n§ [l

n,m,t 9
n—00 Y pml(-Fz)

i=1,2,...,d, (16)

where K is any compact subset of D,, (r) \ Pmi(F) and if K C E, then [|®||x is
replaced by 1. Additionally, we have

_ B\
lim sup ||QF, — ﬁmHI/”g.max {w} (17)

meu 71=1,2,....q pmi(/\j)(ﬂ()\j))

3.2. Analogues of Theorem 1

It turns out that we need a concept of system pole and want to redefine the defini-
tions of vector Padé-Faber approximants and vector multipoint Padé approximants (see
Definitions 7 and 8) in order to prove analogues of Gonchar’s converse statement to the

Montessus de Ballore theorem.

Definition 10. Given F = ([, Fy,..., Fy) € H(E)? and m = (my, ma,...,my) € N%,
we say that & € C is a system pole of order T of F with respect to m if 7 is the largest
positive integer such that for each t = 1,2,..., 7, there exists at least one polynomial

combination of the form

d
> ik, deguv; < m;, i=1,2,....d, (18)
=1

which is holomorphic on a neighborhood of E@(g” except for a pole at z = ¢ of exact

order t.

Let 7 be the order of £ as a system pole of F. For each t = 1,...,7, denote by



pe.+(F, m) the largest of all the numbers p;(G) (the index of the largest canonical domain
containing at most ¢ poles of &), where G is a polynomial combination of type (18) that
is holomorphic on a neighborhood of E@(g)‘ except for a pole at z = £ of order ¢. Then,

we define

Pg,t(E m) = kmm tpﬁ,k(E m)7

ey

p§<F7 m) = pE,T(F7 m) = t:rTlﬂ.I:]Tpﬁ,t(Fu m)

Fixi e {1,...,d} and k € {0,1,...,m; — 1}. Let D, x(F, m) be the largest canonical
domain in which all the poles of ¥ F} are system poles of F with respect to m, their order
as poles of z¥F; does not exceed their order as system poles, and z*F}; has no other
singularity. By pi’k(F, m), we denote the index of this canonical domain. Let &, ..., ¢y
be the poles of 2*F; in D; x(F,m). For each j = 1,..., N, let 7; be the order of ; as
pole of z*F; and 7; its order as a system pole. By assumption, 7; < 7;. Set

Pi.(F,m) := min{p; ;(F, m)

Tj=1.,

and let D7 (F,m) be the canonical domain with this index.
Let QF, denote the monic polynomial whose zeros are the system poles (in the sense
of Definition 10) of F with respect to m taking account of their order. The set of distinct

zeros of QF is denoted by P(F, m).

3.2.1. New Simultaneous Padé-Faber Approximants

We proved an analogue of the Montessus de Ballore-Gonchar theorem for simultane-

ous Padé-Faber approximants in [70, Theorem 1.4] stated as follows.



Theorem 4. Let F = (Fy, Fy, ..., F;) € H(E)Y and m € N be a fixed multi-index.

Then, the following two assertions are equivalent:
(a) F has exactly |m| system poles with respect to m counting multiplicities.

(b) The polynomials QE = Of F are uniquely determined for all sufficiently large n, and

there exists a polynomial Qm| of degree |m| such that

im sup [|QF m — QpmI"/™ =6 < 1.

n—oo

Moreover, if either (a) or (b) takes place, then Qm| = QF,,
0= max{M € EP(F,m)},
pe(F

and for any compact subset K of D;y(F,m) \ P(F, m),

| Il
n,m,?

imsup || RE,. . — Fi|[}/" < £
n—00 K pz’,O(F7 m)

where || - || x denotes the sup-norm on K and if K C E, then ||®||x is replaced by 1.

3.2.2. Multipoint Hermite-Padé Approximants

We proved an analogue of the Montessus de Ballore-Gonchar theorem for multipoint

Hermite-Padé approximants in [70, Theorem 1.4] stated as follows.

Theorem 5. Let F = (I}, Fy, ..., Fy) € H(E)Y, m € N¢ be a fixed multi-index and

a C I be a table of interpolation points satisfying

im an(2)/c"®"(2) = G(2) # 0, (19)

n—oo



uniformly on compact subsets of C \ E, where ¢ denotes some positive constant. Then,

the following two assertions are equivalent:
(a) F has exactly |m| system poles with respect to m counting multiplicities.
(b) The polynomials Qf = Of F are uniquely determined for all sufficiently large n, and

there exists a polynomial Qm| of degree |m| such that

im sup | QY m — Q'™ =6 < 1.

n—oo

Moreover, if either (a) or (b) takes place, then Qm| = QF,

LG =~
0 = ma {pg(F’m).feP(F, )},

and for any compact subset K of Dj(F,m) \ P(F,m),

' R3S
n,m,i

imsup | 25, — Fn < 12l
n—o0 K p@o(Fy m)

where || - ||k denotes the sup-norm on K and if K C E, then ||®||k is replaced by 1.

3.3. Behaviors when m; — oo for all j

Let us introduce a concept of convergence in Hausdorff content. Let B be a subset of
the complex plane C. By U(B), we denote the class of all coverings of B by at most a

numerable set of disks. Let 5 > 0 and set

hg(B) == inf{z \U)P - {U;} € U(B)},



where |U;| stands for the radius of the disk U;. The quantity hg(B) is called the S-
dimensional Hausdorff content of the set B. This set function is not a measure but it

is subadditive and monotonic. Clearly, if B is a disk, then hg(B) = | B|”.

Definition 11. Let {g, }nen be a sequence of complex valued functions defined on a
domain D C C and g another complex function defined on D. We say that {g, }nen
converges in [3-dimensional Hausdorff content to the function g inside D if for every

compact subset K of D and for each € > 0, we have
im hg{z € K : |gn(2) —g(2)] > e} =0.
n—oo

Such a convergence will be denoted by hg-lim;, o g, = g in D.

We proved convergences in Hausdorff content of (classical and new) simultaneous
orthogonal Padé approximants and (classical and new ) simultaneous Padé-Faber approx-

imants in [74].

3.3.1. Classical Simultaneous Orthogonal Padé Approximants

We need to define three classes of measures contained in M(E). The measure p €

Reg!", (E) iff the corresponding sequences of p, and s,, satisfy

im [pa (=)' = |9(2)], (20)
im [sn(2)[V/" = |®(2)] Y, (21)

and there exists a positive constant ¢ such that




We write p € R(E) when the corresponding sequence of orthonormal polynomials has

ratio asymptotics; that is,
- pa(2) 1
lim = . (23)
n=00 Ppi1 (Z) (I)(Z)

We say that Szeg0 or strong asymptotics takes place, and write u € S(E), if

lim Pul2) = S(z) and  lm -2

=1. 24
n—00 qu)n(2> n—00 Cp41 20

The first limit in (24) and the ones in (20), (21), and (23) are assumed to hold uniformly
inside C \ E, the ¢,’s are positive constants, and S(z) is some holomorphic and non-
vanishing function on C \ E. It is not difficult to check that S(E) C R(E) C Regly(E).
The above three classes of measures are very common when we study asymptotic proper-
ties of orthogonal polynomials (see the book [62] for more information about orthogonal
polynomials).

Convergence in Hausdorff content of classical simultaneous orthogonal Padé approxi-

mants was proved in [74].

Theorem 6. Let E € Ky, F = (F\, Fy,...,Fy) € H(E)Y, and u € R(E). For each
i =1,2,...,d, denote by D,_ (r, the maximal canonical domain in which F; can be

continued to a meromorphic function. Assume that

iminfm,; =00, 7=1,2,...,d
n—oo
and
m,|n
lim u =0.
n—o0 n
Then for fixed numbers 3 > 0and i = 1,2,...,d, each sequence {Rlyi,m",i}nEN converges



in B-dimensional Hausdorff content to F; inside D, (r,) as n — oc.

3.3.2. New Simultaneous Orthogonal Padé Approximants

Convergence in Hausdorff content of new simultaneous orthogonal Padé approximants

was proved in [74].

Theorem 7. Let E € K, F = (F(, F3,..., Fy) € H(E)?, and 1 € Reg, ,(E). For each
i =1,2,...,d, denote by D,_ (r, the maximal canonical domain in which F; can be

continued to a meromorphic function. Assume that

iminfm,; =00, 7=1,2,...,d
n—oo
and
Myl thn
lim —— =0.
n—o0 n
Then for fixed numbers 3 > 0andi = 1,2, ... ,d, each sequence {ﬁﬁ’mm}neN converges

in B-dimensional Hausdorff content to F; inside D, (r,) as n — oc.

3.3.3. Classical Simultaneous Padé-Faber Approximants

Convergence in Hausdorff content of classical simultaneous Padé-Faber approximants

was proved in [74].

Theorem 8. Let E € Ky and F = (Fy, Fy,..., Fy) € H(E)®. Foreachi = 1,2,...,d,
denote by D, (r,) the maximal canonical domain in which F; can be continued to a
meromorphic function. Assume that

iminfm,; =00, 7=1,2,...,d

n—o0



and

Imy|tnn

lim 0.
n—o00 n

Then for fixed numbers 3 > 0and i = 1,2,...,d, each sequence {RrEL:mn,i}HEN converges

in B-dimensional Hausdorff content to F; inside D, (r,) as n — oc.

3.3.4. New Simultaneous Padé-Faber Approximants

Convergence in Hausdorff content of new simultaneous Padé-Faber approximants was

proved in [74].

Theorem 9. let E € K and F = (F\, Fy, ..., Fy) € H(E)L Foreachi = 1,2,...,d,
denote by D, (r,) the maximal canonical domain in which F; can be continued to a

meromorphic function. Assume that

iminfm,; =00, 7=1,2,...,d
n—oo
and
AL
i IMaltnn o
n—oo n

E
n,Mp,,%

Then for fixed numbers f > 0andi = 1,2, ..., d, each sequence {é }nen converges

in B-dimensional Hausdorff content to F; inside D, (r,y as n — oc.

3.4. Scalar Cases

in this section, because we limit ourselves to the scalar case (d = 1), we write F = F,,

Im|=m=m €N, p/(F) = pu(F), Rey = R and R, . = RE, .

n,m?

3.4.1. Rate of Attraction



Let us define two indicators of the asymptotic behavior of the zeros of Qfm and Qg,m

Fix m € N. Let
Pﬁ,m = {)‘5,17 /\g,27 o )‘Z,mn}ﬂ Mp S m, ne N07
E E E E
Pn,m = {)\n,lﬂ )‘n,27 MR )\n,mn}7 mp S m, ne NO

denote the collections of zeros of Qﬁym and Qfm (repeated according to their multiplicity),

respectively. Define
|z —w|; == min{l, |z — wl|}, z,w e C.
Fix A € C. The first indicators are defined by

AF(N) == lim supH An— AI/™ = lim sup H Ani— A
j=1

n—oo n—oo
I
[Ay,;—AI<1

AP(N) = timsup [T INY, — Al/™ = lim sup IT e =
j=1

n—oo n—oo
INE =A<l

Clearly, 0 < A#(\) < 1and 0 < AP()\) < 1 (when m, =0, the product is taken to be
1). The second indicators, nonnegative integers o#(\) and o¥(\), are defined as follows.

We suppose that for each n, the points in

Pﬁ,m = {)‘Z,la )‘Z,27 C AR }7 (25)

» \nymagy,

Pro = A ALY (26)

n,1y 'n,2



are enumerated in nondecreasing distance to the point A. We set

() = i sup = AR (27)
. 1/n
SF(N) = ll;anO%p AL — A/ (28)
These numbers are defined by (27) for 7 = 1,2,...,m/,m’ = liminf,_o my,; for j =

m' +1,...,n, we define 0¥ (\) = 1. We have 0 < 0%(\) < 1. If A*(A) = 1 (in that case
all 0%(X\) = 1), then o#(A) = 0. If A¥(X) < 1, then for some v, 1 < v < m, we have that
SN < ... <B(N) < land 0, (X)) = 1 or v = m; in this case we take o#(\) = v.

The same rules are applied for aZ()\).

3.4.1.1. New Orthogonal Padé Approximants

Main results [68, Theorem 2.1 and Corollary 2.2] about the rate of attraction of poles
of the approximated function to poles of new orthogonal Padé approximants are stated

below.

Theorem 10. Let E € K, F' € H(E), and 11 € Regy(E). Fix m € N. If F' has a pole of

order v at £ in D, (r, then

and at(&) > v.

Corollary 1. Let F' € H(E), u € Regy(E), and & be a pole of F'in D, (r of order v.
Assume that iminf,, o [€ — éﬁ,,jﬂl > 0, where {€" |, €",. ..., ~,’f’mn} are enumerated in

n,1»5n,2s

nondecreasing distance to the point £. Then,

wws@@sms&@s(



In particular, 81 (§) = 65(€) = ... = 6£(€) = (IB(E)|/pm(F))"" if and only if A#(¢) =
[/ pm (F).

3.4.1.2. New Padé-Faber Approximants

Main results [68, Theorem 2.3 and Corollary 2.4] about the rate of attraction of poles

of the approximated function to poles of new Padé-Faber approximants are stated below.

Theorem 11. Let F' € H(E). Fix m € N. If F has a pole of order v at § in D,, (), then

Corollary 2. Let E € K, F € H(E), and £ be a pole of F in D, (r of order v.
Assume that iminf, o [ — &2, | > 0, where {€],,&F,, ... &P, } are enumerated in

nondecreasing distance to the point . Then,

1/v
5E(E) < 65(6) < ... < 5B (¢) < (%) |

In particular, 57(€) = 65(€) = ... = 67(&) = (12(E)|/pm (F)"" if and only if AP (€) =
[/ pm (F).

3.4.2. Inverse Results

3.4.2.1. New Orthogonal Padé Approximants

Inverse result on new orthogonal Padé approximants [68, Theorem 2.5] is stated as

follows.



Theorem 12. Let F' € H(E) and p € S(E). Fixm € N. Iffor all n sufficiently large, Qg,m

(for F) has precisely m zeros and the zeros of Qﬁm have limits &1, ...,&n, as n — 00,

then
(i) Fis holomorphicin D, ., where pyin := mini<j<m |®(&;)];

(@) pm—1(F) = maxi<j<m [P(&;)

bl

(1) &1, ..., & are singularities of F'; those lying in D, (ry are poles (counting multi-

plicities), and F' has no other poles in D, . (r.

3.4.2.2. New Padé-Faber Approximants

Inverse result on new Padé-Faber approximants [68, Theorem 2.6] is stated as follows.

Theorem 13. Let F' € H(E). Fix m € N. If for all n sufficiently large, fom (for F') has

precisely m zeros and the zeros of QEm have limits &1, ..., &R, as n — 00, then

n,

(i) F'is holomorphicin D, ., where pyin := mini<j<m |P(§;)

(@) pm—1(F) = maxi<j<m [P(;)];

(i17) &, ..., &n are singularities of F'; those lying in D, (ry are poles (counting multi-

plicities), and F has no other poles in D,. ..

3.4.3. On the Boundedness of Poles of Generalized Padé

Approximants to Polynomial Expansions

3.4.3.1. Classical Orthogonal Padé Approximants

The following result was proved in [72, Theorem 2.1].



Theorem 14. Let F € H(E) and i € Reg;. Fix m € N and denote by P* the set of
all zeros of a polynomial @, ,,. Assume that the cardinality of P} is at least 1 for all n
sufficiently large and

inf sup{|¢|: ¢ € P*} < 0. (30)
sznzN

Then, either F'is a polynomial or po(F') < oo.

3.4.3.2. Classical Padé-Faber Approximants

The following result was proved in [72, Theorem 2.2].

Theorem 15. Let F € H(E). Fix m € N and denote by PE the set of all zeros of a
polynomial ,’im. Assume that the cardinality of P is at least 1 for all n sufficiently
large and

inf sup{|¢|: ¢ € PF} < 0. (31)
NZngN

Then, either F'is a polynomial or po(F') < oc.

3.4.3.3. New Orthogonal Padé Approximants

The following result was proved in [72, Theorem 2.3].

Theorem 16. Let F' € H(E) and 11 € Regl. Fix m € N and denote by P¥ the set of
all zeros of a polynomial ~ﬁ,m- Assume that the cardinality of 75,‘5 is at least 1 for all n
sufficiently large and

. . Nu
A}gi}j;g{](] 1 ePL} < 0. (32)

Then, either F' is a polynomial or po(F') < o0.

3.4.3.4. New Padé-Faber Approximants



The following result was proved in [72, Theorem 2.4].

Theorem 17. Let F' € H(E). Fix m € N and denote by 75E the set of all zeros of a

polynomial Q) m- Assume that the cardinality of PE is at least 1 for all n sufficiently
large and
mf sup{](] ¢ € PF} < . (33)
Mn>N

Then, either F' is a polynomial or po(F') < o0.
3.5. Constant Riesz Potentials and Polarization Optimality Problems

3.5.1. Constant Riesz Potentials on R?

A characterization of wy when U?72¥ (-; wy) is constant on the unit circle was proved

n [65, Theorem 1].

Theorem 18. Let wy = {x1,%2,...,2nx} C C be a set of N distinct points. Then, the

function
N

22N 2N—2
U (x;wn) E — ]

is constant on the circle S if and only if

N N—k-1
Z N -1 N -1 |$'|2N_2k_2q_21'k
q k+q)" g

j=1 ¢=0
=0, forall k=1,...,N—1, (34)

where

a* = (r¥ cos(kt), r*sin(kt))

if v = (rcos(t),rsin(t)) € R



Using the characterization given in Theorem 18, we can verify Conjecture 1 in various

cases. Our first result [65, Proposition 1] asserts that Conjecture 1 holds if the points

x1,To,..., Ty lie on the same circle centered at the origin (that is, they have the same
norm).
Theorem 19. Let wy = {x1,72,..., x5} C R? be a set of N distinct nonzero points

lying on some circle centered at the origin. If U*72N(;wy) is constant on S*, then

T1,To, ..., 2N are equally spaced.

Now we will consider another special case. Instead of assuming that all points have
the same norm, we will assume that they have equal angle distribution around the origin.

2mi/ N

More precisely, let ( = e and, without loss of generality, assume that

X1 :TICIJ X2 :T2C27 <oy IN :TNC-N (35)

for some positive real numbers 11,79, ..., 7ryN.
If we further assume that all norms are rational, then Conjecture 1 holds for all prime

N (see [65, Proposition 3]).

Theorem 20. Let N be a prime number. Let xy,xo,...,xy be as in (35) where all
r; € Q. Suppose that U2V (-;wy) is constant on S'. Then 1, xa, ...,z y are equally

spaced on a circle centered at the origin.

3.5.2. Constant Generalized Riesz Potentials on R?

Considering more general Riesz potentials, we gave a generalization of Theorem 1 in

[53]. The following theorem was proved in [73, Theorem 2.1].



Theorem 21. Let h > 0. Given a set of N distinct points wy = {x1,%2,...,ox} C R?
such that for each s = =2, —4,...,2 — 2N,

—s/2

N
USM (25 wy :Z (|z — z;]* + h)
7=1

is independent of the position of x € St. Then, wy forms a set of distinct equally spaced
points on a circle centered at 0. Moreover, if |x1| = |z2| = ... = |xn| = r, then for each

p=1,2..,N-1,

_2q

U=Ph(z;wy) =

Rl=

] <p>2(2r)2q <r2 F14+h+/((r =12+ h)((r+ 12+ h)>p

q=0 q

forall x € S'.

A characterization of sets of /N distinct points wy such that U2*2N’h(-, wy) is constant

on St is the following (see [73, Theorem 2.2]):

Theorem 22. Let h > 0 and wy = {x1, %9, ..., x5} C R? be a set of N distinct points.

Then, the function

N
U2 (g wy) = Z (|z — ;> + h)N_l

Jj=1

is constant on St if and only if

N
> Bk =0, k=1,...,N—1, (36)
=1

where

a* = (r¥ cos(kt), r*sin(kt))



if v = (rcos(t),rsin(t)) € R? and

Il [ G W

q=0

X (|:cj|2+1+h+ \/((Ixj! —1)2+ h)((Joy] + 1)2+h)> o ] (37)

As a consequence of this characterization, we obtain the following corollary (see [73,

Corollary 2.2]).

Corollary 3. Let h > 0 and let wy := {z1,x9,...,xN5} be a set of N distinct points in

R?, which belong to a circle S} C R?. Assume that
N
U azoy) = 3 a4 )N
=1

is constant on S*. Then, {1, 29,..., 2N} forms a set of distinct equally spaced points

1
onS,.

Applying Theorem 22 and Corollary 3, we proved Conjecture 2 when N = 3. The

following corollary was proved in [73, Corollary 2.3].

Corollary 4. Let h > 0 and {xy, x5, 23} C R? be a set of 3 distinct points. If the function
U= (2, {21, 29, 23}) is constant on St, then {x1, z2, 13} forms a set of distinct equally

spaced points on a circle centered at 0.

3.5.3. Polarization Optimality Problems

A complete characterization of all maximal and minimal /N-point Riesz s-polarization

configurations of (S}; SL)when s = =2, —4,...,2—2N is the following (see [65, Theorem



2]):

Theorem 23. Let N e N,pe {1,2,...,N—1}, R>0,r >0, and {x1,xa,...,xnx} C

SL. The following statements are equivalent:

(@) {x1,2a,...,2N}isamaximal N-point Riesz —2p-polarization configuration of (S}; Sk);

(b) {x1,2o,...,xN}isaminimal N-point Riesz —2p-polarization configuration of (S}; Sk);
N N N

(c) Zj:l Tj = Zj:l 5(7]2 == Zj:1 CL’? = 0, where

a* = (r¥ cos(kt), r*sin(kt))

if v = (rcos(t),rsin(t)) € R?

Furthermore,
My™(S};Sk) = my™(S); Sg)

T (j) 2rR)¥ (r + R*+ r* — R*))" . (38)
j=0

3.5.4. Generalized Polarization Optimality Problems

A complete characterization of all maximal and minimal N-point Riesz (s, h)-
polarization configurations of (S!;SL) when s = —2,—4,...,2 —= 2N and h > 0 is the
following (see [73, Theorem 2]):

Theorem 24. let N € N, p € {1,2,...,.N -1}, R > 0, r > 0, h > 0, and

{z1,79,..., x5} C Sk The following statements are equivalent:

(@) {x1,29,...,xN} is a maximal N-point Riesz (—2p, h)-polarization configuration of

(St; Sk);



(b) {z1,x9,..., 2N} is a minimal N-point Riesz (—2p, h)-polarization configuration of

(St; Sk);

(c) Zjvzl ;=N 2= =N 2P =0, where 2¥ := (r* cos(kt), r*sin(kt)) if

J=1"J J J
x = (rcos(t),rsin(t)) € R%

Furthermore,
My*"(83; ) = my™"(S; Sp)

_Ny (p_)z(QrR)Zj <T2+R2+h+\/((T—R)2+h)(T+R)2+h)>p "9
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ABSTRACT: A characterization for a Riesz s-potential function of a multiset w,, of N points in R? is given when s = 2—2N
and the potential function is constant on a circle in R2. The characterization allows us to partially prove a conjecture
of Nikolov and Rafailov that if the potential function is constant on a circle I' then the points in wy should be equally
spaced on a circle concentric to I'. As an application of constant Riesz s-potential functions, we also find all maximal

and minimal polarization constants and configurations of two concentric circles in R? for certain values of s.
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INTRODUCTION

For a fixed multiset of N points wy :=
{x1,X5,...,xy} in R? and a given constant
s € R, we define the Riesz potential function
U(;; wy) : R2—[0,00] as

N
Us(x; wy) = le —x;|7,

=1

where x € R? and || is the 2-dimensional Euclidean
norm in R2. We call U’(-; wy) a Riesz s-potential
function of wy. See Ref. 1 for more information
on Riesz s-potential functions in a d-dimensional
Euclidean space RY.

In this paper, we consider two problems con-
cerning the Riesz s-potential functions U°(:; wy).
The first problem is to prove, in parts, Nikolov
and Rafailov’s conjecture about points in wy be-
ing equally spaced on some circle when a Riesz s-
potential function is constant. The second problem
is to solve polarization optimality problems when
this Riesz s-potential function is constant.

Let wy be a fixed set of distinct equally spaced
points on a circle T € R? and T be a circle concentric
to T. In Ref. 2, Nikolov and Rafailov show in
Theorem 1 that U°(x; wy) is constant as a function
of x on T if and only if s € {0,—2,—4,...,4—2N,2—

2N}. They also show in Theorem 2 that this gives
a characteristic property of distinct equally spaced
points on a circle. More precisely, given a set wy
of N distinct points such that U*(x; wy) is constant
on a circle T for every s € {—2,—4,...,2—2N} (the
constant may depend on s), the points in wy are
equally spaced on some circle concentric to I'. In
the same paper, it was conjectured (Conjecture 2)
that only s = 2— 2N should be sufficient. We state
the conjecture below.

Conjecture 1 Given a set of N distinct points wy :=
{x1,%s,...,xy} CR? and a circle T € R? such that

N
U ) = D =P
j=1

is constant as a function of x on I'. Then wy forms
a set of distinct equally spaced points on a circle
concentric to T'.

The conjecture was verified in the case N =3
(see Ref. 2, Proposition 2). In this paper, we prove
Conjecture 1 in the following cases (after translating
the centre of T to the origin):
(i) when all points xi,x,,..

norm (Proposition 1);

., Xy have the same
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(i) when N =4 and x;, x,, X3, x4 have an equal
angle distribution (Proposition 2);

(iii) when N is prime and x,x,,...,xy have an
equal angle distribution and rational norms
(Proposition 3).

The above results are based on a characterization of

wy when U272V (.; e, ) is constant on the unit circle

(Theorem 1).

The next problems considered in this paper
are polarization optimality problems. Let wy =
{x1,...,xy} denote a configuration of N (not nec-
essarily distinct) points in R?. Denote by

S}e :={xeR?:|x|=R}

the circle centred at the origin of radius R. When
R =1, we simply use the notation S'. Given s € R,
R> 0, and r > 0, we define polarization constants

M3 (SESp) = max minU*(y;wy), (1)
wyCS, yESy
#wy=N

My(S};Sh) :=N,

Togly .o s .

my, (S5 Sg) := min ma)l(Us(y,coN), (2)
wyES, yES;
#wy=N

mlov(Sl;S;) =N,

where #wy denotes the cardinality of the multiset
wy. We will call wy a maximal (minimal) N-point
Riesz s-polarization configuration of (S';S}) if wy
attains the maximum in (1) (minimum in (2)). We
give a brief history of such polarization optimality
problems below.

Farkas and Révész® were the first to introduce
two-plate polarization constants in a general sense.
However, all previous results“® on polarization op-
timality problems related to Riesz potentials were
considered for the case when R = r = 1. The
maximality of N distinct equally spaced points on
the unit circle for the maximal Riesz s-polarization
problem of (S';S!) in (1) was proved in Ref. 4 for
s = 2. Erdélyi and Saff! established this for s =
4. For arbitrary s > 0, this result was proved in
Ref. 5 where they also showed the minimality of N
distinct equally spaced points on the unit circle for
the minimal Riesz s-polarization problem of (S*;S!)
in (2) for —1 < s < 0. Note that minimal N-point
Riesz s-polarization problems of (S!;S') when s > 0
are not interesting because my, (S';S1) = oo for all
s> 0.

Up to the present, there are no results on po-
larization optimality problems in (1) and (2) for
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R # r. In this paper, we give a characterization of all
maximal and minimal N-point Riesz s-polarization
configurations of (S!;S;) when s =—2,—4,...,2—
2N.

Although the asymptotic properties of polar-
ization constants are not our main interest in this
paper, it is worth mentioning the asymptotic types
of behaviour of M3 (S';S') as N — oo °:

28(s)

———(2°—1)N* 1

(Zn)s( IN®, s>1,
Mls\l(sl;sl)N (1/m)NlogN, s=1,

- (i

2 15y g<set,

VAT (1-35)

where {(s) denotes the classical Riemann zeta func-
tion and ay ~ by means that limy_, o, ay/by = 1.
The reader is referred to Refs. 1,7, 8 for asymptotic
results of polarization constants and configurations
of general subsets of R? as N — oo when s > 0.

CONSTANT RIESZ s-POTENTIAL FUNCTIONS

The Euclidean space R? and the complex space C
over R have the same dimension and the same
norm. However, the complex space C has a richer
algebraic structure; for example, C is a field. Hence
when we prove all theorems in this and the next
section, any element x € R? will be replaced by x €
C, the 2-dimensional Euclidean norm || is replaced
by the modulus in C, and the notation xy is adopted
from the multiplication in C and the notation x/y
is adopted from the division in C. We recall that the
usual dot product in C is defined by

(al + azi) . (bl + bzi) = Cll bl +a2b2.

Now let wy := {x7,X5,...,Xy} € C be a set of
N distinct points. In this section, we will assume
that U2V (x; wy) = Z?Izllx — x;|*N7? is constant
(as a function of x) on a circle I' € C and prove that,
under various conditions, the points x;, Xy, ..., Xy
are equally spaced on some circle concentric to
I'. By translating and scaling the circle I', we can
assume without loss of generality that I is the unit
circle S*. The following conjecture is equivalent to
Conjecture 1.

Conjecture 2 Given a set of N distinct points wy =
{x1,x5,...,x5} € C such that

N
0 s ) = 3 =2
j=1
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is constant as a function of x on S!, then wy forms a
. . . 1
set of distinct equally spaced points on Sy for some R.

We begin with our main theorem which gives
a characterization of wy when U272V (-; wy) is con-
stant on the unit circle.

Theorem 1 Let wy = {xq,Xq,...,Xxy} € C be a set
of N distinct points. Then the function

N

U272N(x; wN) — Z|x _xj|2N72
j=1

is constant on the circle S if and only if
N—k—1

ﬁ: Z (N — 1)(N — 1)|x'|2N—2k—2q—2xlf

i q k+q)’ J
j=1 g=

=0, forall k=1,...,.N—1. (3)

Note that (3) gives a system of N —1 equations

in terms of elements in the set wy. The proof of The-

orem 1 requires a technical lemma which involves a

lot of calculations, and so we will postpone it to the

end of this section.

Example 1 Suppose U2 2N(x;wy) is constant on
S!. We list the systems of equations (3) that the X;
must satisfy for small values of N below.

(i) Let N =3. Then x;, x,, X3 must satisfy

3

j=1

x]?=0,

=

—

(ii) Let N =4. Then x;, x,, X3, x4 must satisfy

4
D1+ 1x P2 =0,

-
Il

-
~.
Il

-

> +31x 2+ [x; 1M = 0.
j=1

(iii) Let N =5. Then x4, x5, X3, X4, X5 must satisfy

dixt=0, DA+ =0,

j=1 j=1
5
D 3+ 8lx;1% +31x;[)x? = 0,
j=1

5
D+ 52+ x5+ 2, = 0.
j=1

269

Using the characterization given in Theorem 1,
we can verify Conjecture 2 in various cases. Our first
result asserts that Conjecture 2 holds if the points
X1, X5, ...,Xy already lie on the same circle centred
at the origin (i.e., they have the same norm).

Proposition 1 Let wy = {xq,Xq,...,xy} € C be a
set of N distinct non-zero points lying on some circle
centred at the origin. If U>"2N(-; wy) is constant on
SY, then x;,x,,...,xy are equally spaced.

Proof: It suffices to show that x;, x,,...,Xxy are the
Nth roots of some complex number. Suppose |x;| =

|x5] = -+ =|xy| =R. From (3) we deduce that
N
k_
ij =0,
=1

forallk=1,2,...,N—1. By Newton’s identities,

Ek(xl,xZ,...,xN):O, k=1,2,...,N—1,
where the e, are elementary symmetric polynomi-
als. Thus xi,x,,...,Xxy are distinct roots of the

polynomial

N
[ Jr—x)=x"—p
k=1

for some u € C. m|

Now we will consider another special case. In-
stead of assuming that all points have the same
norm, we will assume that they have an equal angle
distribution around the origin. More precisely, let
¢ = e>™/N and, without loss of generality, we assume
that

x; =1l x, =103 L xy =Y ()

for some positive real numbers ry,ry,...,ry. Our
next result proves Conjecture 2 when N =4 and x,
X,, X3, X4 have an equal angle distribution.

Proposition 2 Let x;, X, X3, X4 be as in (4). Sup-
pose that
N
U~(x; wy) := le —le6
j=1

is constant as a function of x on S*. Then x;, X, X3,
x4 are equally spaced on a circle centred at the origin.

Proof: By Proposition 1, it suffices to show that
|31 | = |x4| = |x3| = |x4]. From Example 1, the points
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X1, X9, X3, X4 Must satisfy

4 4

3 _ 2y,.2

2% = 2+ ]
j=1 j=1
4

=D (14302 + [x;[)x; =0.

. i . 4
= 3
With x; = r;{’, the equation > j=1%; =0 becomes

3,3 2
¢ +r2¢’ +r3§+r4—0

Let P(X) = r}X3 + r3X? + r3X +r} € R[X]. Since
{ =1, { = —i are roots of P(X), we have

P(X)=C(X*+1)(X+b)=C(X®+bX*+X +b),

for some non-zero C € R. Comparing the coeffi-
cients, we have r; = r3, Ty =Ty

The equation Z 1(T+x; |2 )x =0 becomes
Z] A+ rz)rzcjzl = 0. Expandmg the sum and
using r| = r3, r2 =r, we have

201+ )2 +2(1+1r3)r; =0.

Since {? =
t=ry/ryand a=1/r2

—1 we obtain (1+r2)rZ = (1+r3)r2. Let
We have

(a+1)=(a+t)t? = t*+at’—(a+1)=0

Thus
2= —a*val+4a+4 —ax(a+2)
B 2 B 2 '

The only possible case is t2 2( a+(a+2))=1.
Since t > 0 we have t = 1. Hence r, = r;. We have
shown that ry =ry =13 =r1y4. O
Actually, if we further assume that all norms are
rational, then Conjecture 2 holds for all prime N.

Proposition 3 Let N be a prime number.  Let
Xq,Xg,...,Xy be as in (4) where all r; € Q. Sup-
pose that U*2N(-;wy) is constant on S'. Then
X1,Xq,...,Xy are equally spaced on a circle centred
at the origin.

Proof: By Proposition 1, it suffices to show that

[xq] = |xg| =+ = |xyl. Applying the condition (3)
with k = N —1 gives Z, , X}t =0. Thus

N N
Zr}v_lg_j = Z rﬁ:}@’j =0.

j=1 j=1
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ScienceAsia 43 (2017)
Let A be a positive integer so that ArN jl € Zwy
for every j. Then Z] (Ary=Hgk=0. This is a
vanishing linear combination of 1 4., OV with
positive-integer coefficients.  Since the minimal
polynomial of £ is 1+X +---+X"~! (N is prime),
this implies that all coefficients are equal. Thus

ANt =Arl =... = Ar} ™" and hence r) =, =

=1y m]

Proof of Theorem 1

The following technical lemma is needed for the
proofs of Theorem 1 and Theorem 2.

Lemma 1l Let N € N and p € {1,2,...,N — 1} be
fixed. If x; := |xj|cost; +il|x;|sint; for all j =
1,2,...,N, then for all y :=cost +isint € S?,

N
Doy —x
j=1

P N
=E, +Z Z[Ek’i coskt;coskt +E ;sinkt;sinkt],
k=1 j=1
(5)
where

=ii( ) e

j=1q

ok

p\( P 2p—k—2
E i =(-1 sz |2k
ki =(—1) q:o(q)(k‘*'q)')c)l

Proof: Let y := cost + isint € S' and X; =
|x;| cost;+i|x;[sint; forall j=1,2,...,N. Asimple
calculation shows that

£i(®) = ly —x;17 = (Ix;1 + 1= 2|x;| cos(t — £;))P.

Since A := {1, cos(t —t;),...,cos p(t —t;)} forms an
orthogonal system with respect to the inner product

2
{f.8) :=J f(t)g()de
0
and f; € span(A), we have
p
f()=> Ey;cosk(t—t;) =E;
k=0

p
+ ZEk’j(cos kt;coskt +sinkt;sinkt).
k=1
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Now,

N N
Dy =xl =" i)
j=1 j=1

N

P
=E, +Z [Ey jcoskt;coskt+E; ;sinkt;sinkt],
k=1 j=1

where EO'= Z;\Izl Ey;. By the ortho.gon'ality of the
elements in the set A and the calculation in Lemma 3
in the last section, we have

and

(fj,cos k(t— t;))

=(— 1)’22( )(k+q) Jx, |22,

forall k€ {1,2,...,p}and j €{1,2,...,N}. O
Proof of Theorem 1: For each j=1,2,...,N, set

Eyj =

x;j :=|x;j|cost; +ilx;|sint;.

(=) By our assumption, f(y) := Z;V:lly —x;|PN?
is constant on S, say f(y) = C on S'. Set

y =cost+isint €S,

By (5) for all t € [0,27],

C=f(y)=E,
N-1 N
+Z [Ex jcoskt;coskt + Ey ;sinkt; sinkt].
k=1 j=1
(6)
Because the set {1,cost,sint,...,cos(N —

1)t,sin(N — 1)t} is linearly independent over
R, we deduce
C—E,=0

and forall k=1,2,...,N—1,
N N
ZE’(J coskt; =0 and ZE’%J sinkt; =0. (7)
j=1 j=1

Using the formulae of E; ; from Lemma 1, it follows
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from (7) that forallk=1,2,...,N—1,
N NE,.
_ . . _ Jo K
0= ZEk,j(cosktj +isinkt;) —Z |x'|kxj
j=1 j=1"J
N N—k—1
N—-1\/N—-1
=023 3 (Y ke
x |X |2N —2k—2q— 2xk’ (8)

which implies (3).

(<) Assume that (3) holds. Then we have (8)
and (7). Combining (7) and the second identity in
(6), we have for all y € S!,

N
Z|y—xj|2N*2 = Ey,
=

which implies that U?72V(-;¢y) is constant on
St i

AN APPLICATION TO POLARIZATION
OPTIMALITY PROBLEMS

We remind the reader that we will consider polar-
ization optimality problems in the complex plane.
A complete characterization of all maximal and
minimal N-point Riesz s-polarization configurations
of (S!;S!) when s = —2,—4,...,2—2N is given as

r> R
follows.
Theorem 2 Let N €N, p € {1,2,...,N—1}, R>
0, r >0, and {x;,xy,...,xy} CS.. The following

statements are equivalent:
(@) {xi,x5,...,xy}isamaximal N-point Riesz —2p-
polarlzatlon configuration of (81 Sl)
(b) {x1,x5,...,xy}is a minimal N-point Riesz —2p-
. . . . 1 1
pollvarlzatlon c]\c])nﬁguratlon of (Sr, SR)
— 2 ... = —
© % =2 x] = =2 x] =0
Furthermore,

My (S} 83) = my P (S} 87)
N

p 2
=5 (‘?) (2rR)Y (r2 +R2 + |12 — R P2,
— \J
j=0

9

Unlike the case when R =r =1 and s > 0, opti-
mal configurations for the cases in Theorem 2 may
not be unique up to rotation. For example, when p =
1 and N =4, our characterization of optimal config-
urations is Z?:l x; = 0. Hence there are infinitely
many optimal configurations that are not rotations
of one another. The proof of Theorem 2 relies on
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the fact that if wy is a configuration of N distinct
equally spaced points on Sl, then for each s =
—2,—4,...,2—2N, U*(:, wy) is constant on S. This
special property allows the problems to have more
than one solution (up to rotation). Furthermore,
our experimental study suggests that for the cases
when s € R?\{0,—2,—4,...,2— 2N}, any maximal
and minimal N-point Riesz s-polarization configu-
ration of (S!;Sy) is unique up to rotation, namely,
it is a configuration of distinct equally spaced points
on Sl. We make the following conjecture.

Conjecture 3 Let N € N, s € R\{0,—2,—4,...,2—

2N}, R>0, r >0, and {xy,x,,...,xy} €S The

following statements are equivalent:

(@) {x{,x,,...,xy} is a maximal N-point Riesz s-

1, X2 N ; li

polarization configuration of (S, ;Sg);

(b) {x1,x5,...,xy} is a minimal N-point Riesz s-
polarization configuration of (S!;S});

(© {x1,x5,...,xy} is a configuration of distinct
equally spaced points on Si.

Proof of Theorem 2

We need the following lemma.

Lemma2 Let N €N, pe{1,2,...,N—1}, R> 0,
and r > 0. Then any configuration of N distinct
equally spaced points on Si is both a maximal and
a minimal N-point Riesz —2p-polarization configura-
tion of (S!;Sp).

Proof: Let wy :={xq, X,,..., Xy} be a configuration
of N distinct equally spaced points on S} and p €
{1,2,...,N —1} be fixed. By Theorem 1 in Ref. 2,
we know that f(x) := Z;V:l |x — x;|? is constant as
a function of x on S}, say f(x) = C for all x € S}.
Thus

N

maxZIx —x*=Cc= mmZIx —x*. (10)
eSRl 1 Rl 1

Let {y1,¥s,..., Yy} be any N-point configuration on

S!. To show that wy is a minimal N-point Riesz
—2p-polarization configuration of (S!;S!), we will

r>~R
show that
N
maxZIx — x| < maley —x|?P. an
xes} & st
Consider
oyl |y U oxgr Cox/r|

www.scienceasia.org
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AsR/(y;/r) € S, for all i, we have

N RY_SN R |?

NC‘—;f(m)—;; -
_iz sz (12)
_j:1 i=1 g xj/r

It follows from (12) that there is j, € {1,2,...,N}
such that

mame—xFP

Rll

But C = maX,cs; Z?[:1|xi — x| from (10). Hence
we have (11) as required.

To show that wy is a maximal N-point Riesz
—2p-polarization configuration of (S};Sg), we will
show that

manly —x|? < m1nZ|x —x|?.

Rll Rll

(13)

It follows from (12) that there is jj € {1,2,...,N}
such that

mmZIy —x|* < Z

xESR =1

2p
<C.

=z

Yi—

x//r

But € = min,cg Zflzllxl- —x|?? from (10). Hence
we have (13) as required. O
Proof of Theorem 2: Because the proof of (a) &
(c) is similar to the proof of (b) < (c), we will show
only (b) & (c) and skip the proof of (a) & (c).
Without loss of generality, we can assume that R = 1.

let NeN, pe{l,2,...,N—1}, and r > 0
be fixed and {x;,x,,...,xy} be any configuration
in Sl. We recall from Lemma 1 that for x; :=
recost; +irsint; for all j =1,2,...,N and for all
y :=cost+isint € S?,

N
Z|J’—Xj|2p =E,
=1

p N
+ZZ Ey jcoskt;coskt + Ey ;sinkt; sinkt],
k=1 j=1

—.

(14)

— ahN Ey; k. .k
=R 2 S0t o)

1j=1
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where

oS50
0 q >

j:] q=0

——( 1)"22( )(k+q) PP (16)

Notice that the constant E, does not depend on a
configuration on S! and the constants Ey;/ rk do

not depend on a configuration on Si and j. For
convenience for all configurations {x;, x5,...,xy} C
St, we set
Ek’J
E, = — forallk=1,2,...,p. (17)
r

First of all, we will show that
my P (SL;S) = E,.

Let wy := {x],Xx,,...,X,} be a configuration of
distinct equally spaced points on Si. Using (15), we

have for all y € S*,

Z|y X[ —E0+ZZEk(y ()9

k=1 j=1
=E +ZEk(y’< -Z(X§)") =E, (18)
k=1 j=1

where the last equality follows from the fact that
Z;V:l(x;)k =0 for all k =1,2,...,p. Since w)} is
a minimal N-point Riesz —2p-polarization configu-
ration of (S!;S') (by Lemma 2), we obtain

my P (Sh;sh) = max U (y; w)y) = Ey.
y

We now prove (c)=>(b). Assume that wy =
{x1,x5,...,xy} € S} such that Z x =0 for all
k=1,2,...,p. Applylng the same argument as in
(18), we have for all y € S!,

Xf) = EO;

which implies that wy is a minimal N-point Riesz
—2p-polarization configuration of (S!;S").

Next, we show (b)=>(c). Assume that wy =
{x1,x5,...,x5} is @ minimal N-point Riesz —2p-
polarization configuration of (S!;S'). Then for all
yes!,

N

p
U™(y; wy) =Eo+ZEk(J’k'Z
k=1

N
U (y; ) = Y |y —x;1? <m?(s];8Y) = K.
j=1

273
Then, by (14) and (17) for all t € [0,27],

P
Ey = U ?(y;wy)=E, +Z(‘€ coskt + & sinkt).
k=1
where € = Z;V:l Ejcoskt;and & = 2;\]:1 Eysinkt;.
Thus for all t € [0,27],
P

0= Z(% coskt + & sinkt).
k=1

Hence for all t €[0,27],

p

Z(‘g coskt + S sinkt) =0

k=1
Because {cost,sint,cos2t,sin2t,...,cospt,sinpt}
is a linearly independent set over R for all k =
1,2,...,p,

N N
ZEk coskt; = ZEk sinkt; = 0.
j=1 j=1

Since forallk=1,2,..

N N

Zcos kt; = Zsinktj =0,

j=1 j=1

which implies that Z] X = Z;\]:l r¥(coskt; +
isinkt;)=0forallk=1,2,...,p.

To compute M;zp(Si, Si) and msz(Sl, 5) in
(9), we can use a similar argument in Lemma 1 by
replacing y =Rcos t+iRsint and f;(t) = |y—xj|2p =
(r?+R*—2Rr cos(t—t;))?. Applying the calculations
as in Lemma 4, it is not difficult to check that if wy
is a configuration of N distinct equally spaced points

on S!, then for all y €S},

-, Ex #0 ((16)),

k=1,2,...,p,

U (y; wy)
N P D 2 . .
= (1) (2rR)YI (12 + R? + [r2 — R P2,

p
20 £

COMPUTATIONS OF INTEGRALS

We collect our computations of all integrals in this
section.

Lemma 3 Let p €N, k € {0,1,..
Then

.,p}, and z € C.

2
f (%2 +1—2zcost)’ coskt dt
0

= (- 1)’%2( Sl a2
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Proof: Let p e N and k € {0,1,...,p}. First, we
prove the equality (19) for z € R. Let z € R. Then,
for { = €',

21
f (z2+1—2zcost)P coskt dt
0
27
= f (22 +1—z(e +e )P et dt
0
27
= f (z—e)P(z—e )P ekt dt
0

== f (=P E—1/0P¢ d
st
o )

Cpkarl ’

p—k
p p 2p—k—2
O AR
;0 q/\k+q

where the first equality follows from the fact that
the last expression is a real number. Notice that the
left-hand side and the right-hand side of (19) are
polynomials as functions of z. Thus both functions
are analytic on C and we have (19) forallze C. O

= ZrtRes(

Lemma 4 LetpeNand k€{0,1,...,p}. Fora,b e
C,

27
f (a—bcost) cosktdt
0

p—k

B (—1)"712 p\( P
T op-1 O(q)(k+q)ca,b,p,q,k’ (20)
a=

where Cy g = b (a% vaZ— b2 and the
square root function in (20) can be selected to be both
branches of the complex square root function.

Proof: Clearly, if b = 0, then the equation in (20) is
0 =0. Assume that b € C\{0} and a € C. To reduce
(20) to (19), we consider
(Aa—Abcost)?,
where A is chosen to satisfy the equations
2%z = bA, 22+1=al,

for some z € C. From the above equations,

e
b

z =

www.scienceasia.org
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and

2z 2a+2va2—b?

b b2
Furthermore, A # 0 because if A =0, then 2 =0
which implies that b = 0. Hence by Lemma 3,

A

2m
f (a—bcost) cosktdt
0
1 27
=— (Aa—Abcost) cosktdt
AP o

1 27
= — (z2+1—2zcost)P coskt dt
AP

p—k

(D' (P[P
T ;(q)(kw)c‘l’b’p’q""

0
O
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1. INTRODUCTION
Let E be a compact set in the complex plane C such that C\ E is simply connected and E
contains more than one point. There exists a unique exterior conformal mapping ® from C\ E onto
C\ {w € C: |w| < 1} satisfying ®(c0) = oo and ®'(c0) > 0. Forany p > 1, by
I',:={zeC:|®(2)] =p} and D, =FEU{zeC:|®(2)| <p}
we denote the level curve with respect to E of index p and the canonical domain with respect to £
of index p, respectively. The Faber polynomials (see[1]) for E are defined by the formulas

1 O"(t)
D,(2) = . dt, D,, =0,1,2,.... 1
(2) 27T2/ppt—z ZE€ L ()

Let H(E) denote the space of all functions holomorphic in some neighborhood of E. We set
H(E) := {(F\, F,...,Fy) : Fy, € H(E)foralla =1,2,...,d}
and denote the set of all nonnegative integers by N.
Definition 1. Let F = (Fy, By, ..., Fy) € H(E)?. Fix a multi-index
m = (my,ma, ..., mg) € N\ {0},

where 0 is the zero vector in N%. Let |lm| = my + mg + - -+ + my. Then, for each

n > max{my,ma,...,mq},
there exist polynomials Q,, m and P, m o, @ = 1,2,...,d, such that
deg(Prm,a) <1 —mqa, deg(Qnm) < |m], Qnm # 0,
QnmFo — Poma = aﬁzm@nﬂ(z) + aﬁ)Zn(I)nJrg(z) +
forallaa=1,2,...,d. The vector of rational functions

anl an2 and
Rn,m = (Rn,m,laRn,m,%---7Rn7m7d):< ” ” Y

s N
Qn,m Qn,m Qn,m

is called the (n, m) (linear) simultaneous Padé—Faber approximant of F.

*The text was submitted by the author in English.
“E-mail: nattapong.bos@mahidol.ac.th
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In fact, the numbers a,(:g depend on m, but to simplify notation, we do not indicate this dependence.

[t is easy to see that if d = 1, then the linear simultaneous Padé—Faber approximants reduce to the
linear Padé—Faber approximants with a slight modification of the index n (see, e.g., [2] for the definition
of linear Padé—Faber approximants). Moreover, let us mention that, for the case where d = 1, there is
another related construction, called nonlinear Padé—Faber approximants (see [3]). Unlike the classical
ones, these linear and nonlinear Padé—Faber approximants generally lead to different rational functions
(see examples in [3] and [4]). In this paper, we restrict our attention to linear simultaneous Padé—Faber
approximants; therefore, in the sequel, we omit the word “linear” when we refer to them.

For any pair (n, m), a vector of rational functions R, m, always exists, but may be nonunique in the
general case. In what follows, we assume that, given (n, m), only one solution is taken.
Now, let us introduce the definition of a pole and its order for a vector of functions.

Definition 2. Let F = (Fy, Fy,..., Fy) € H(E)? be a vector of functions meromorphic in some do-
main D. We say that X is a pole of F in D of order 7 if there exists an index o € {1, 2, ...,d} such that
Ais a pole of Fy, in D of order 7 and, for the rest of the indices j # a, either X is not a pole of Fj; or Ais a
pole of F; with order less than or equal to 7.

Let F € H(E)?, and let pjy, (F) denote the index p > 1 of the largest canonical domain D, inside
which F has at most [m| poles. Let A1, Ag, ..., A, be distinct poles of F in Dp‘m‘(F), and let
oo (Lrmingoio o [®(3)])
2
The set of these poles is denoted by Py, (F). The normalization of @, m used in this paper in terms of
its zeros A, ; is as follows:

Q= II G-np TT (1-,7). (@)

|®(An.j)|<L |©(An j)|>L "

By Q‘l‘:n‘ we denote the polynomial whose zeros are the poles of F in Dp‘m‘(p), counting multiplicities,
normalized as in (2).

Before going into details, we describe the convergence of row sequences of Padé—Faber approximants
corresponding to the simultaneous Padé—Faber approximants in the scalar case (d = 1). Ford =1 we
write

F—F  jml—m=meN,  PuF)=PulF),
p|m|(F) = pm(F)7 Rn,m = Rn,m'

Suetin[2] proved the following analog of Montessus de Ballore’s theorem for Padé—Faber approximants.

Theorem A. Suppose that F € H(E) has poles of total multiplicity exactly m in D, (p).
Then Ry, is uniquely determined [or all sufficiently large n, and the sequence R, ,, converges
uniformly to F inside D, (p)\ Pm(F) as n— oc. Moreover, for any compact subset K of

: n P
hal;nsolcl;pHF_ Rn,m“}{/ < /‘J (”lff) ; (3)

where || - ||k denotes the sup-norm on K; if K C E, then ||®|| k is replaced by 1.

Here and in what follows, the phrase “uniformly inside a domain" means “uniformly on each compact
subset of the domain." The goal of this paper is to extend the above result from the scalar case to the
vector case.

In [5], Graves-Moris and Saff proved a Montessus de Ballore-type theorem for simultaneous Padé
approximants (in the context of Taylor expansions) using the concept of polewise independence of a
vector of functions. We adapt their notion to fit our type of regions.

MATHEMATICALNOTES Vol. 103 No.5 2018



CONVERGENCE OF ROW SEQUENCES 685

Definition 3. Let F = (Fy, Fy, ..., Fy) € H(E)? be a vector of functions meromorphic in some canon-
ical domain D, and let m = (my,ma, ..., mq) € N¢\ {0} be a multi-index. Then the function F is said
to be polewise independent with respect to the multi-index m in D, if there do not exist polynomials
v1, V9, ..., g, at least one of which is not identically vanishing, that satisfy the following conditions:

(i) degvg < mo—1,a=1,2,...,d,formy > 1;
(il) vo = 0formg = 0;
(iii) Y0_)(va 0 ®) - Fo € H(D, \ E),
where H(D, \ E) is the space of all holomorphic functions on D, \ E.

Our main result, which extends Theorem A, is as follows.

Theorem 1. Let F = (F\, Fy, ..., Fy) € H(E)? be a vector of [unctions meromorphic in Dy (®)s

and let m € N9\ {0} be a fixed multi-index. Suppose that F is polewise independent with respect
to the multi-index min Dp‘m‘(p). Then R, m is uniquely determined for all sufficiently largen, and

foreach a =1,2,....,d, the sequence Ry, m o converges uniformly to F, inside Dy @) \ Pjm|(F).
Moreover, for each a = 1,2, ...,d and any compact set K C Dp‘m‘(p) \ Pim|(F),

. ||k
limsup |[|[Fy — R Ln < | , 4
n_wop || o n,m,aHK > p\m\(F) (4)

where || - ||k denotes the sup-norm on K; if K C E, then ||®|| k is replaced by 1. Moreover,

maxyep,, (F) [ 2(A)]

limsup HQn,m - Qli‘n ”1/n S } (5)
n—oo | P|m|(F)
where || - || denotes (for example) the norm induced on the space of polynomials of degree at

most |m| by the maximum absolute value of the coefficients.

Since the space of polynomials of degree at most |m| has finite dimension, all of its norms are
equivalent, so that we can take any norm in (5).

This paper is organized as follows. In Sec. 2, we introduce more notation and auxiliary lemmas. The
proof of the main result is given in Sec. 3.

2. NOTATION AND AUXILIARY RESULTS

First, we discuss some properties of Faber polynomial expansions of holomorphic functions, which
play a major role in our proof. The Faber coefficient of G € H(E) with respect to ®,, is given by

1 [ Gt

(Gln = o r Br(E)

dt,

where p € (1,p0(G)). The following lemma (see, e.g., [6]) is proved in the same way as similar
statements for Taylor series.

Lemma 1. Let G € H(E). Then

p0(G) = (tmsup (G

n—oo

Moreover, the series > ([G],,®, converges to G uniformly inside D, ).

MATHEMATICALNOTES Vol. 103 No.5 2018
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As a consequence of Lemma 1, if F = (F}, F, ..., Fy) € H(E)?, then, foreach o = 1,2,. .., d,

[e.9]

Qn,m(z)Fa(z) - Pn,rma(z) = Z [Qn,mFa]quk(z)y S DpO(Fa)7 (6)
k=n+1

n—meg,

and Py, ma = 21— " [@nmFalp Pk is uniquely determined by @, m.

Next, let us introduce the concept of convergence in h-content. Let B be a subset of the complex
plane C. By U(B) we denote the class of all coverings of B by at most countably many disks. We set

h(B) := inf{ > Ul {Us} € L{(B)},
j=1
where |U;| stands for the radius of the disk U;. The quantity h(B) is called the 1-dimensional

Hausdorff content of the set B. This set function is not a measure, but it is semi-additive and
monotonic.

Definition 4. Let {g, }nen be a sequence of complex-valued functions defined on a domain D C C, and
let g be another complex function defined on D. We say that {g, }nen converges in h-content to the
function g on compact subsets of D if, for every compact subset K of D and each ¢ > 0, we have

lim h{z € K :|gn(2) — g(2)| > e} =0.

We denote such a convergence by h-lim,,—,~ g, = g in D.

The next lemma, which is due to Gonchar (see [7, Lemma 1] or[8, Sec. 2, Subsec. 2, b]) allows us to
derive uniform convergence on compact subsets of the region under consideration from convergence in
h-content.

Lemma 2. Suppose that h-lim, .. g, = g in D. If each of the functions g, is meromorphic in D
and has no more than k < +oo poles in this domain, then the limit function g is meromorphic
(except on a set of h-content zero) and has no more than k poles in D. Hence, in particular, if g
has a pole of order v at a point A € D, then at least v poles of g, tend to A as n — oc.

Now, we discuss upper and lower bounds for normalized @, m in (2). We take an arbitrary e > 0 and
define an open set J. := J.(F) as follows. For n > |m|, let J, - denote the (¢/6)|m|n?-neighborhood of
the set of zeros of @ m, and let Jjy,—; . denote the (¢/6)|m|-neighborhood of the set of poles of F' in
Dp‘m‘(F). We set

Je= J Jne
n>|m|—1

[t easily follows from monotonicity and subadditivity that A(J.) < e and J., C Jg, fore; < 9. For any
set B C C, we put B(e) := B\ J.. Clearly, if {gn}nen converges uniformly to g on K(e) for every
compact set K C D and any € > 0, then h-lim,,_,» g, = g in D.

The normalization of @, m provides the following useful upper and lower bounds for @, m.

Lemma 3. Let K C C be a compact set, and let € > 0 be arbitrary. Then there exist constants
C1,C9 > 0independent of n and such that

|Qn.mllx < Ci, min |Qpm(z)] > Con 2l (7)
2€K (e)

where the second inequality makes sense when K () is a nonempty set.
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3. PROOF OF THEOREM 1
Proof of Theorem 1. 1t follows from (6) that, foreacha = 1,2, ... ,d,

Qnom(2)Fa(2) = Pomyal Z a0(2), 2 € Dyyr), (8)
k=n+1
where
1 Qn,m (1) Fo (1) ()
= |Qnmlalr = . ’ ’ L, Fa)).
@unkili = [ LT e B
Let
q 2 Tj
Qe =TI(1- )
=1 !
where A1, A9, ..., )\ are distinct poles of F in Dp‘m‘(F) and 11, Ty, ..., T4 are their respective multiplici-
ties. Since F is polewise independent with respect tom in D, @, it follows that the vector function F
has exactly |m| poles in D, . @) and Z = |m|. Multiplying (8) by le;nl and expanding
Q‘m‘Qn,mFa - Q|m|Pn,m,a S H(Dp‘m‘(F))
in the Faber polynomial system {®, }52 ,, we see that, foreacha =1,2,...,dand any z € Dp‘ (F)»
Qﬁm(z)Qn,m(z) a( ) Q‘m‘( nmoz Z ak nQ|m| Zb
k=n-+1
n+|m|—meq 00
DL 7 X ORI D LA O (9)
v=0 v=n+|m|—mq+1

Note that the constants b,(,a,)b can be calculated in the form

bu?[n = Z algfli[@ﬁmq)k]m VzO,l,...,n—l—\m\ — Mg,
k=n+1
1 QP (1) Qo (1) Fu (8) 9 (t)
a) . 10OF _ |m| ' > _
by [Q‘m‘Qn,mFa]y o /1“ B (1) dt, v>n+m|—ms+1, (10)

where p € (1, pjmy(F)). We want to show that, given any a = 1,2,... ,d,

n
_ el

11
x  Pm|(F) (h

lim sup
n—oo

VnV

for any compact set K such that £ C K C Dp‘m‘(p). Let K be a fixed compact set such that
ECKcCD, - Letp € (1, pm (F)) satisfy

KU{Ai,A,..., N} CD,,. (12)
Choose ¢ > 0 sufficiently small, so that

|®|lx +6 < p1 — 6. (13)
We first prove that, foreacha =1,2,...,d,
. - Dl x
lim sup Bd, || < | : (14)
n—00 Z K P\m\(F)

v=n+|m|-maq+1
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Using the normalization of @, m (the first inequality in (7)) and (10) when p = p;, we see that there
exists an ng € N such that, foreacha =1,2,...,d,

C1
(pr —O)’

where ¢; does not depend on n (from now on, we will denote constants not depending on n by co, c3, ... ).
Using (1), we obtain

)| < v > ng, (15)

[P]x < (@]l +0)”, v =0. (16)
Therefore, by (15) and (16), for n > ng, we have

< > ek

v=n+|m|-mq+1

= 1]l + 6\ @] + )"
< < .
- Z 63< p1—0 =4 -6

v=n+|m|-mq+1

> b\ @,

v=n+|m|-mq+1

K

Thus, foreach a = 1,2,...,d, we have
> Un @)k + 6
li b < PIETe
ol SR

v=n+|m|-mq+1

Letting § — 0 and p1 — pjm(F'), we obtain (14), as required.

Secondly, we show that

lim sup ”J”i:_mabaq) Y @k ' (17)
n—00 =0 wm K - p\m\(F)

Recall that b,(f;z = > it a,(ﬂ [Qﬁm@k]y. Therefore, to approximate b(y?‘,%, we need to approximate a,(ﬂ

first. We will adapt the technique used in[2] to approximate a,(fg. Take p1 € (1, pjm| (F')) satislying (12),

as above. Choose p3 € (1, po(F)). We have
/
akn (QnmFalr = ! . / Qrm (D Fa (1) dt, a=12,....d
r

2mi Jr,, Or+1(1)
We set
@ ._ 1 Qnn () Fa(t)2'(1) |
= t =1,2,...,d. 18
Yen 2m'/ N 10 b AT RS (18)
By virtue of our choice of p; and po, for each k>0 and each o =1,2,...,d, the polynomial

Qn.mFo®'/®FF1 is meromorphic in

Dp \Dp, ={2 € C:py < |2(2) < p1}

and has poles at A\i, Mg, ..., Ay with multiplicities at most 71, 79,...,7,. Applying Cauchy’s residue
theorem, we obtain

ana®/
n—akn E res(cgé),ﬁrl ,)\j>, a=1,2,...,d, k>0 (19)
The limit residue formula gives

res( @ Fa®' /B, ),) = i (57 Aj)”me@ffﬂ%<z><1>’<2>)(TH).

(r; — 1)1 2n, DR+1(2)
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Leibnitz’s formula allows us to write

689
<(Z B )\j)Tj Qn,m(Z)Fa(Z)Q)/(Z) > (Tj_l)
(ﬁk’-i—l (Z)

B Tﬂi -1 (Qmm(z)@
— " (I)n-i-l (Z)
Forj=1,2,.

2 (Tj_l t)
( )> (2 = A7 ()27 ()
,...,qgandt = 0,1,

.., 75— 1, we set
) 1 =1\ .. Qnm(2)?'(2) (ry=1=1)
n\J, ) = 1 ;
(note that the 3, (4, ) do not depend on k and «). Thus, we can rewrite (19)
q T]'—l
kn ak N Z Z Bn ]7

(2 = M) Fa(2)0"F (), a=1,2,
j=1 t=0
By the definition of simultaneous Padé—Faber approximants, we have

...,d, k>0.
a,(frz:&

a=12...,d,
which implies

k=n—mg+1,n—mg+2

Bn(G:)((2 = X)) Fo(2)0" % (2))
j=1 t=0
for all « =1,2

(21)
dand k=n—mq+1,n—myg+2,...,n. We regard (21) as a system of |m|
equations for the |m| unknowns 3, (7, t). The determinant of this system is
[(z =

Aj)T1 Fo(2) @4 (2));
A |l

e (2
A Fa(2)@Me 2 (2)] .y oo (2 -

N7 Fa(2)@me (2)] )
Aj)T Fo(2)@™Me2(2)]

(5-1)
Z=\;

[(z = Aj)7 Fa(2)]

Z:Aj

T Ti—1
=2 Fal 2 i
where the subscript means that the indicated columns are successively written for j = 1,2, .

the rows are repeated foraa=1,2,...,d.
exist polynomials vy (2), v2(2)

.,q, and
vg(z) such that deg v, < m, — 1 and
d

Z:Aj - 0’
Equivalently, 3%, va(®(2))Fa(z) € H( ol (F) \ E)

. This is impossible, because F is polewise
independent with respect tomin D, _ (). Therefore, A # 0 and Al >¢5 >0
In order to avoid long expressions, for all w = 1,2
0, 1, ceey T5 —

[f A = 0, then there exists a linear combination of rows giving the zero vector. This means that there
., 0q(%
Tj Ua

1, we set

d,y=1,2

s My, j:1727 c g, =

w—1
Juw,y ‘= ( Z my

J—1
> +vy and hjﬂg = (
r=0

Son) et
=0
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where mg = 79 = 0. Applying Cramer’s rule to (21), we obtain

A
Buliit) = = A Z 3 Al Pl (22)

w=1 y=1

where A,,(j,t) is the determinant obtained from A by replacing the h;¢th column by the column

T
(w) (w) (w)
[’yn my+1,n ’anmw-l-QTL : ,ann] w=1,2,....d

and Cg, h] is the determinant of the (g, h)th cofactor matrix of A,,(j,¢). Substituting the expression (22)
for B, (7,%) into (20) forae = 1,2,...,d and kK > n + 1, we obtain

Lz

d
> S Ay Clows il (2 = AT Fa(2)@" () (23)
1 t=0 w=1 y=1

(o) 1

q Ti—1
Ven — @ k,n

J

Weset B(A\,7r) :={z € C: |z — A\ <r}. Lete > 0 be sufficiently small, so that
{zeC:lz—=)j|=¢c} C{ze€C:|P(2)] > p2} forall j=1,2,...,q,

and let B(\;,e) NB(A\a,e) = @ forall  # j. Using Cauchy’s integral formula, we obtain

. _ ! (z = X)) Fp(2)®" % (2) dz
_N)ITE ()0 ()DL = / J . 24
((z =) (2) (Z))z:Aj 27 Jioo e (z = A1 (24)
We can easily check that there exists a constant cg such that, forall j =1,2,...,¢,1=0,1,...,7; — 1,
a=1,2,...,d,and k > n+ 1, we have
. e l C6
(2 =\ Fal2)e"F )0, <0 (25)
P2
for sufficiently large n. Similarly, there exists a constant ¢y such that, for all j =1,2,... ¢,

1=0,1,....,5—1La=12,...,d,andk =n—mqg+1,n —my + 2,...,n, we have

(2 = 3 Fa(2)@"F ()L | < er, (26)
for sufficiently large n. It follows from (26) that

|C(g,h)| < cs, g,h=1,2,... |mj|. (27)
Using (25), (27), and A > ¢5 > 0 and applying (23), we see that

d muyw

|al(fofn| |’7kn|+ k nz Zh/n mw-‘ryn 0421,2,...,(1, k=>n+1. (28)
w=1 y=1

By the definition of ’y (see (18)), for all sufficiently large n, we have

el €10
Vil < )
el = (o — oy

where 4 is sufficiently small, so that d satisfies (13) and p2 < p1 — d. This and equality (28) imply

a=1,2,...,d, k>n—|m|+1,

C11
lag ol < 4 , a=1,2,....,d, k>n+1. (29)
B (o1 - 6y
Moreover, forall v > 0and k > n + 1, we have
1 QL (1)@ (1) ®'(2) —5)*
[QF ®xlu =1, _. / e dt] < e1 P )V : (30)
2mi Jp, L, drHi(¢) (p2 — 39)
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where ¢ is sufficiently small, so that po —3d > 1. Combining (29) and (30), we obtain the following
inequalities foralla =1,2,...,d:

=1 > akn (ot AP Z |a il (@ @41
k=n-+1 k=n+1
€13 P2 h—- p2— 0 k
<
~ (p2 = 30)” <p1 - 5) k§+1< p2 >

< C14 < P2 >H<P2—5>n: 14 <P2—5>n
~ (p2 =30 \p1—9 P2 (p2 —38)»\p1 -0/

Now, let us prove (17). Recall that p; and § were chosen so that (see (12) and (13), respectively)
|®]x +6 < p1 — 6.

Moreover, ||®, ||k < co(||®||x + 0)” forall v > 0. Therefore, for each @ = 1,2,...,d, we have

n+|m|—mq

>,
K

v=0

n+|m|—mq

< Y ek

v=0

n nt|m|—mq

) ||<1>||K+a>”
<
(nos) % (Wl

v=0
. n ® +45 n+|m|—meq
< ci5(n + m| — ma+1)<z _5> <”p2H535 > .
Hence, foreach o =1,2,...,d,
TR g | < (101
. +0 P2 — 0 >
lim su by ®,, < K > < .
s Z ’ K ( p1—0 p2 — 30

v=0
Letting § — 0 and p1 — pjm|(F), we see that, foreacha = 1,2,...,d, we have

n+|m|—mq

1|z

lim sup b(u,zi;[) < . (31)
n—o00 IZZO K p\m\(F)
Combining (14) and (31), we obtain (11). Therefore, from (9) we have
n o
hmsup||Q|m|Qn mFo — Qb Prm.all il < |2l a=1,2,....d (32)

= pm|(F)’
where K is any compact set such that F C K C Dp‘m‘(p). To show that (32) is true for any compact

subset K of D, (), we let K be any compact subset of D, (). I K C E| then, clearly, [|®]|x on the
right-hand side of (32) can be replaced by 1. IT K N (Dp‘m‘(F) \ E) # @, then, foranya = 1,2, ... ,d,

) 1
lim sup ||Q|Fr‘n|Qn,mFa - Qﬁn\Pn,m,aHK/n
n—oo

[®llxue _ [®]x
<hmsup||Q QnmFa—QF P ||1/n < = .
om0 i romall kg = Pim|(F)  pjm|(F)

Therefore, (32) holds for any compact set K C Dp‘m‘(F).

Let € > 0. From the second inequality of (7), we obtain
HFa - Rn,m,a”K(s) < 616n2|m|HQ|]i‘n|Qn,mFa - Qﬁn‘Pn,m,a”Ky a = 17 27 cee 7d-
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Using (32), we see that

n o
limsup || F,, — Rn,m,a”}(/(g) < pH ug) , a=1,2,...,d, (33)

for any compact subset K of D,, (). This implies that, foreacha =1,2,...,d,

Plm|
h-1lim Ry mao = Fao

n—oo

in Dp‘m‘(F). By Lemma 2, each pole of F attracts zeros of @, m according to its multiplicity. Since

deg Qnm < |m|, we have deg @, m = |m| for sufficiently large n. For such n, R, m is unique. In
fact, if this were not the case, we could find an infinite subsequence of indices for which Definition 1
has solutions with deg @, m < |m|, which contradicts the above considerations. In what follows, we
consider only such n. Moreover, for sufficiently large n, we have

|m|

Qnm(2) = H <1 _ )\Z > and lim @Qpm(2) = Q‘IIH‘(Z)

he1 TL,]C n—oo

Since the set of limit points of the zeros of @ m i Py, (F), the inequality (33) implies (4).
Finally, we prove (5). We first need to show that, forj =1,2,... ¢,

. [D(A5)]
lim sup [(@n,m BNV < ) k=0,1,...,7, — 1. (34)

We argue by induction on k. Let € >0 be sufficiently small, so that B(\;,¢) C Dp‘m‘(F) for all
j=1,2,...,qand the disks B(\;,¢), j = 1,2,...,q, are pairwise disjoint. Let j € {1,2,...,¢}. There

exists an o := «(j) € {1,2,...,d} such that \; is a pole of F,, of order 7;. As a consequence of (32), we
have
lim su ||(z_>")TjF Q —(Z—A')ij Hl/n < ”q)H]B()\jﬁ) (35)
n—>oop 7 al¥n,m j n,m,q IB%()\J- &) = P|m|(F) )
so by Cauchy’s integral formula for the derivative, we obtain
lmsup 1z — )7 FaQuim — (= — 4)7 Pramal 7 < 1200 (36)
i 3" Fakmm 7 immal g, 0 = g (F)
forall kK > 0. Lettinge — 0T, we see that inequality (35) implies
. [(X)]
limsup |L;Qpn m(A\; 1/n < ,
where L; = lim, ). (z — A\j)"7 Fu(2) # 0 (because F,, has a pole of order 7; at \;). Therefore,
. [2(A)]
lim sup [@Qpn,m(A; n < .
n—00 | ) p\m\(F)
This is the base case. Now, let » < 7; — 1 and assume that
. [(X)]
limsup |(Qn.m)® (\)] < ., k=0,1,...,r—1. (37)
Let us show that the above inequality also holds for & = r. Since r < 75, it follows from (36) that
limsup|[(z — Aj)™ FaQum] ™ (MY < eI (38)

n—o0 N P\m\(F)
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By Leibnitz’ formula, we have

T

(2 = A) 7 FaQuaml D) = S [ ] 12 = A)7 Fal O O0) (@) "0 ().

1=0 \!

Therefore, relations (37) and (38) and the fact that L; # 0 imply the inequality

[P(A9)l

1H1 1/n
Jim (@) 0)1 7 < P

9

which completes the induction construction and the proof of (34).

Using Hermite interpolation, it is easy to construct a basis {ej+}j—1,2..4  in the space of
t=0,1,...,7;—1

polynomials of degree at most |m| — 1 so that

eg?()\e) = 0¢,j0k,t5 1</<q, 0<k<m -1
We have
q Tj—l
Qn,m Z Z Qnm ( )e] t( )+ OnQﬁ‘m(z)’
j=1 t=0
where Gy, = T, A7/ HLH:I|1 An k- Using (34), we obtain

. L maxXyep . (x) [P(N)]
hm sup HQn,m - CnQ‘l:n‘ ”1/ S I F
n—o0 P|m|( )

Evaluation at zero yields

max d(\
limsup |1 — Cy| /" < AEP|my (F) | 2(A)]

n—o0 P|m|(F)

This implies (5), which completes the proof.
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Abstract: We consider row sequences of vector valued Padé-Faber approximants (simultaneous Padé-Faber
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1 Introduction

Let E be a compact subset of the complex plane C, such that C \ E is simply connected and E contains more
than one point. By the Riemann mapping theorem, there exists a unique exterior conformal mapping @ from
C\EontoC\ {w € C : |w| = 1} satisfying ®@(cc) = o0 and @’(cc) > 0. For any p > 1, we denote by

Ip:={zeC:|D(2) =p}, and Dp:=Eu{zeC:|D(2) <p},

a level curve with respect to E of index p and a canonical domain with respect to E of index p, respectively. The
Faber polynomials (see [1]) for E are defined by the formulas

1 D"(t
Pnl2) := 2mi t—(z)
Fp

dt, zeDp,, n=0,1,2,... )

(that is, the polynomial parts of the functions @"). Denote by H(E) the space of all functions holomorphic in
some neighborhood of E. We define

H(E) := {(F1, F,...,Fg): Fa € H(E)foralla=1,2,...,d}

and the set of all nonnegative integers is denoted by Nj.

Definition1. LetF = (Fy, F,..., F,;) € H(E)Z. Fix amulti-index m = (my, m,, ..., my) € Ng \ {0}, where
0 is the zero vector in Ng. Set |m| := my + my + ... + my. Then, for each n > max{m,, my, ..., my,}, there
exist polynomials Qn,m and Py m,«, @ =1, 2, ..., d such that

deg(Pn,m,a) <N - Mg, deg(Qn,m) < |m‘, Qnm # O, 2

Qn’mFa - Pn,m’q = ag,ﬁ_)l’n®n+1(z) + agi)z’n@n+2(z) +... > (3)
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foralla=1,2,...,d. The vector of rational functions

Rn,m = (Rn,m,ly Rn,m,Za ey Rn,m,d) = (Pn,m,l/Qn,m; Pn,m,z/Qn,my ceey Pn,m,d/Qn,m)

is called an (n, m) (linear) simultaneous Padé-Faber approximant of F.

In fact, the numbers ai"% depend on m, but to simplify the notation we will not indicate it. Finding a solution
of (2)-(3) reduces to solving a homogeneous system of d(n + 1) linear equations on d(n + 1) + 1 coefficients
of Qu,m and Ppm,a, @« = 1, 2,..., d. This is where the word “linear” in Definition 1 comes from. Note that if
d = 1, then (n, m) linear simultaneous Padé-Faber approximants are the classical (n-m, m) linear Padé-Faber
approximants (see, e.g., [2] for the definition of classical linear Padé-Faber approximants). Moreover, for the
case when d = 1, there is another related construction called nonlinear Padé-Faber approximants (see [3]).
Unlike the classical case, these linear and nonlinear Padé-Faber approximants lead, in general, to different
rational functions (see the examples in [3] and [4]).Because in this paper we will restrict our attention to linear
simultaneous Padé-Faber approximants, in the rest of the paper we will omit the word “linear” when we refer
to them.

Furthermore, if E is the closed unit disk, then the corresponding Faber polynomials are @, (z) = z", which
implies that these simultaneous Padé-Faber approximants are exactly simultaneous Padé approximants or
type II Hermite-Padé approximants (see, e.g., [5, 6] for the definition of simultaneous Padé approximants or
type Il Hermite-Padé approximants). So, simultaneous Padé-Faber approximation serves as one of the gener-
alizations of type II Hermite-Padé approximation.

For any pair (n, m), a vector of rational functions Rn,m always exists but, in general, it may not be unique.
In what follows, we assume that given (n, m), one solution is taken. Moreover, since Qn,m # 0, we normalize
Qn,m to be a “monic" polynomial.

Because the studies of simultaneous Padé-Faber approximants and simultaneous Padé-orthogonal ap-
proximants are quite similar, we will follow many definitions from [7]. The following is a definition of poles
for a vector of functions.

Definition 2. Let Q := (Q1, Q,,..., Qy) be a system of domains, such that, foreach a = 1,2,...,d, Fq
is meromorphic in Q4. We say that the point A is a pole of F in Q of order 7 if there exists an index a €
{1,2,...,d} such that A € Q4 and it is a pole of F, of order 7, and for 8 # a either A is a pole of Fp of order
less than or equalto Tt or A ¢ Qﬁ. When Q = (Q, Q, ..., Q), we say that A is a pole of F in Q.

Let F € H(E)?. Denote by p|m‘(F) the index p > 1 of the largest canonical domain D, inside which F has
at most |m| poles. Denote by Qfm‘ the monic polynomial whose zeros are the poles of Fin D, (g counting
multiplicities. The set of these poles is denoted by P}y (F).

In [8], the author proved a Montessus de Ballore type theorem for simultaneous Padé-Faber approximants
using the following concept of polewise independence of a vector of functions adapted for our type of regions.

Pm|

Definition3. LetF = (F1,F,,...,F;) € H(E)? be a vector of functions meromorphic in some canonical
domain Dy and let m = (my, my,...,my) € Ng \ {0} be the multi-index. Then the function F is said to be
polewise independent with respect to the multi-index m in D, if and only if there do not exist polynomials
V1, V2, ...,V atleast one of which is non-null, satisfying

(1) degvasmg-1,a=1,2,...,d,ifmg 21,
(ll) Va = Olfma = O,
(iil) 9, (va o @) - Fa € H(Dp \ E),

where H(D, \ E) is the space of all holomorphic functions in D, \ E.

Note that if E is the closed unit disk, then Definition 3 is equivalent to the classical definition of polewise
independence (see, e.g., [5, Definition 1.3] or [6, Definition 1] for the classical definition of polewise indepen-
dence).

A Montessus de Ballore type theorem in [8, Theorem 1] is the following:
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Theorem A. Letm € Ng \{0} be a fixed multi-index andF = (F1,F,,...,F4) € H(E)? be a vector of functions
meromorphic in Dp\m| (F)- Suppose that F is polewise independent with respect to the multi-index m in Dp‘m‘ (F)-
Then, Ru,m is uniquely determined for all sufficiently large n and for each a = 1,2,...,d, Rnm,a cOnverges
uniformly to Fq on compact subsets Opo‘m ®) \(P|m‘ (F). Moreover, foreacha = 1, 2, ..., d and for any compact
setK C Dp\m\(F) \T|m\(F)’

; lie
limsup ||Fa — R yn I , 4
N p||Fa nm,al|g P I(F) (4)

where || - || denotes the sup-norm on K, and if K C E, then ||D|| is replaced by 1. Additionally,

maxcp () |PA)|
p|m\(F)

1im sup || Qn,m — Q1" <
n—oo

)

where || - || denotes (for example) the norm induced in the space of polynomials of degree at most |m| by the
maximum of the absolute value of the coefficients.

Because the space of polynomials of degree at most |m| has a finite dimension, all of its norms are equivalent
and therefore we can use any norm in (5). In [8, Theorem 1], the author used a different normalization for Qn,m
and Qfm‘ to state inequality (5). However, it is not difficult to see that inequality (5) above and the equation
(5) in [8, Theorem 1] are equivalent.

The goal of this paper is to give a new Montessus de Ballore type theorem for simultaneous Padé-Faber
approximants. Importantly, we provide some examples to show that in many cases, the new theorem offers
many advantages over Theorem A. For example, there are many simple examples of vectors of functions that
are not polewise independent yet satisfy our sufficient conditions in the new theorem. Moreover, for some
examples of vectors of functions (where both theorems can be applied), our new estimates for the limits in
(4) and (5) on the new theorem are better. We will present these examples and discussions in the next section.

Before stating this new result, we need some more terminology.

Given a vector F = (Fy, F5, ..., F;) and a multi-index m = (my, my, ..., my) € Ng \ {0}, we define

Di(E) = (O, 51> Dy 121>+ Dy )

Denote by QF, the monic polynomial whose zeros are the poles of F in Dm(F) counting multiplicities. The set
of these poles is denoted by Pm(F). Fora =1, 2,..., d, we define Pm,q(F) := Pm(F) N Dy, (Fo)-
For each pole A of F in this system of domains

Dm(F) = (Dp,, (71)s Do, (F)> + -5 Doy (F)>

we associate an index a(A) € {1, 2, ..., d} as follows. The index a(A) verifies that A € meaw (Fan) and Alisa
pole of F ) of the same order as is a pole of F in Dm (F). If there are several indices a satisfying this condition,
then we choose the one with the greatest pm, (Fq).

The following theorem is the main result of this paper.

Theorem 1. Letm € Ng \ {0} be a fixed multi-index, F H(E), and Pm(F) := {A1, Az, ..., Ag}. Suppose that
the vector of functions F has exactly |m| poles in Dm(F). Then, Ru,m is unique for all n sufficiently large and for
eacha=1,2,...,d, Rnm,a converges uniformly to F on compact subsets of mea(pa) \ Pm,«(F). Moreover,

. D
lim sup || Fa — Rn,m,a|¥" < 1Pl
n—oo

" pm.(Fa)’

g (F) \ Pm,a(F) and if K C E, then | ®@||g is replaced by 1. Additionally, we

a=1,2,...,d, 6)

where K is any compact subset of D
obtain

, |D(A)|
limsup |[Qnm - Q&Y< max { 4 L. )
H n,m mH . Pma(A,»)(FtX(/\j))

n—soo j=1,2,....q
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Note that for d = 1, Theorem 1 reduces to a Montessus de Ballore type theorem for Padé-Faber approximants
[2, Theorem 4]. Moreover, notice that the right hand side of (6) depends on a. Therefore, in many cases, this
new estimate is better than the estimate in (4) (see an example in the next section).

An outline of this paper is as follows. Section 2 contains the comparison between Theorem A and Theorem
1. The proof of Theorem 1 is in Section 3.

2 Comparison between Theorem A and Theorem 1

In this section, let us show that in many cases Theorem 1 offers many advantages over Theorem A.
First of all, let us give some very simple vectors F that are not polewise independent in D, (g but have
exactly jm| poles in Dm(F). Define

Pm|

E:={zeC:|zI<1},

1 1 1
G1(2) := z_2 + Z-31’ Ga(2) := Z 4’
1

Fl(Z) =

73 +log(z - 4), Fy(2) := i

and fix the multi-index m := (1, 1). Let G := (G1, G,) and F := (F1, F,). Obviously, p‘m|(G) = p|m‘(F) =4 and
Dp\m|(G) = Dp\m|(F) ={zeC:|z| < 4}.Ifweset v, = 0and v, = 1, then definitely, v, is non-null and it is easy
to check that vy and v, verify (i), (ii), and (iii) in Definition 3, particularly

V- Gl +Vy Gz =V F1 +Vy . F2 = S }C(Dp‘m‘(F)) = }C(Dp\m\(ﬁ))'

1
z-4
This implies that G and F are not polewise independent with respect to m in Dp‘m‘(G) = Dp‘m‘(F) ={zeC:

|z| < 4}. Therefore, using Theorem A, nothing can be said about the convergences of {Ry,m,1}, {Rn,m,2}, and
{Qn,m} as n — oo (for both G and F). However, G and F have exactly 2 poles in

Dm(G) = {z € C:|z| < 3},0),
Dm(F) = {z € C: |z| < 4},C),
respectively. Now, applying Theorem 1 to F, we can conclude that forany K C {z € C: |z| < 4} \ {2},

12l
4 ’

. 1
limsup ||F1 — Rym1|[¥" <
n—yoo

and forany K c C\ {4},
limsup ||F; - Rn,m,2||11</n = 0.
n—oo

Additionally, the inequality (7) in Theorem 1 for F implies that

limsup || Q% - Quml|/*/" < max{l, O} L
n—soo 2 2
Next, let us give an example of a vector F and a multi-index m to show that the estimates on the rates of
convergences of {Rn,m,a} fora=1,2,...,din (6) and {Qn,m} in (7) are better than the ones in (4) and in (5).
Define
E:={zcC:|z] <1},

Fi(z) := +log(z - 4), Fy(2) := +log(z - 5),

1
z-2 z-3
and fix the multi-index m := (1, 1). Let F := (Fy, F,). Clearly, p‘m|(F) = 4, F is polewise independent in
Dy, and F has exactly 2 poles in

Dm(F)=({z€C:|z| <4},{zeC:|z| <5}).
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By (4), for any compactset K Cc {z € C: |z| < 4}\ {2, 3},

. z
limsup ||F; - Rn,m,1\|11</" < zlx JK, 8)
n—oo
and Izl
. z
limsup |F2 - Ry 2lli/" < 150K )
N—soo 4

Applying (6), for any compactset K C {z € C: |z] < 4} \ {2},

A

. z
limsup |Fy - Rymt[§7 < 21X, (10)
n—oo
and for any compactset K C {z € C: |z] <5} \ {3},

lim sup | Fy - Ry m,o | Y7 < 2K, (1)
n—oo 5

For this example, the estimates in (8) and (10) for the convergence of {R,, m,1} are the same and the estimate

in (11) for the convergence of {R,, m 2 } is better than the one in (9). Therefore, for this example, Theorem 1 pro-

vides the better estimates on the rates of convergences of {R;,m,1} and {R,,m,>} than Theorem A. Moreover,

from (5) and (7), we have

. 3
lim sup || Qn,m — Qfpm| 1M < i (12)
n—oo
and
. 2 1
hmsupHQn,m—anHl/" < max —,E ==, (13)
n—soo 4°5 2
respectively. Note that the equations above imply that Q\Fm| and QF, are the same. Moreover, the estimate on

the rate of convergence of Qn,m using Theorem 1 is better than the one using Theorem A.

3 Proof of Theorem 1

3.1 Notation and auxiliary results

First of all, we want to discuss the domain of convergence of Faber polynomial expansions of holomor-
phic functions. The Faber coefficient of G € J((E) with respect to @, is given by

1 [GOD'()
[Gln := 5 Wdt, (14)
Tp

where p € (1, po(G)). The following lemma (see, e.g., [9]) provides the formula for computing po(G), where
G € H(E), and the domain of convergence of Faber polynomial expansions of holomorphic functions.

Lemmal. Let G € H(E). Then,
-1
po(G) = <nm sup \[G]nl”") .
n—oo

Moreover, the series Y |[G]n®n converges to G uniformly on compact subsets of Do)

As a consequence of Lemma 1, if F = (F1, F5,...,Fy) € H(E)4, then foreacha =1, 2,...,d,

Qn,m(2)Fa(2) - Pnm,a(2) = Z [QnmFali i (2), KAS DPO(FD()’ (15)

k=n+1

and Pnm,a = > -0 “[Qn.mFali @y is uniquely determined by Qn,m.
The next lemma (see [1, p. 43] or [10, p. 583] for its proof) gives an estimate of Faber polynomials @, on a
level curve.
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Lemma 2. Letp > 1 be fixed. Then, there exists ¢ > 0, such that

|@nlir, < cp”, n=o0.

The proof of the main theorem is a consequence of convergence in h-content and Gonchar’s lemma defined
as follows. Let B be a subset of the complex plane C. By U(B), we denote the class of all coverings of B by at
most a numerable set of disks. Define

h(B) :=inf { Y " |Uj| : {U;} € UB) ¢,
j=1

where |Uj| stands for the radius of the disk U;. The quantity h(B) is called the 1-dimensional Hausdor{f content
of the set B. Note that this set function h is semi-additive and monotonic, but it is not a measure.

Definition 4. Let {gn},cn, be a sequence of complex valued functions defined on a domain Q c Cand g be
another complex function defined on Q. We say that {gn } nen, converges in h-content to g on compact subsets
of Q if for each compact subset K of Q and for any € > 0, we have

lim h{z € K : |gn(2) - g(2)| > €} = 0.
n—oo
Such a convergence will be denoted by h-limy—.. gn = gin Q.

The following is Gonchar’s lemma (see [11, Lemma 1] or [12, §2.2 (b)]) which allows us to derive uniform con-
vergence on compact subsets of the region under consideration.

Lemma 3 (Gonchar’s lemma). Assume that h-limy—, gn = g in Q. If all functions gn are meromorphic in Q
and have no more than k < +oo poles in this domain, then the limit function g is (except on a set of h-content
zero) also meromorphic and has no more than k poles in Q. Hence, in particular, if g has a pole of order v at the
point A € Q, then at least v poles of gn tend to A as n — oo.

3.2 Incomplete Padé-Faber approximants

The following is a definition of incomplete Padé-Faber approximants which play a major role in the proof of
the main theorem.

Definition 5. Let F € 3((E). Fixm > m". Let n > m. Then, there exist polynomials Q,, ;. ,,» and Py, ,n+, Such
that
deg(P ) sn-m’, deg(Qy m,m*) <M, Qumm #0,

[Qn,m,m«F - Pn’m’m*]j =0, j=0,1,...,n.
The rational function R,y = Pym.m*/ Qu.m,m* is called an (n, m, m") incomplete Padé-Faber approximant
of F.
Clearly, finding Q,, ,, ,* is equivalent to solving the following linear equations
[Qnm,m Flj =0, j=n-m"+1,...,n. (16)

Givenn=m:=m’, Ry m,m and Qp , ,+ are not unique, so we choose one candidate. Notice that for each
a=1,2,...,d, Rym,q in Definition 1is an (n, |m|, m,) incomplete Padé-Faber approximant of F.

Now, we want to prove that h-limy—co Ry = F in me*(F). Let F € H(E). Let A1, A3, ...,Aq be the
distinct poles of F in D, .p and let

,,,,,,

L:= <1 + min |®(Aj)|) /2> 1.
J=1,2,....q
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The normalization of Q,, ,, ,,» used in our proofs is the following:

O @= TI E-hp TT (1-45). )

| DA )<L | D )[>L =

Firstly, let us discuss some upper and lower estimates on the normalized polynomials Q,, , ,,~ in (17). Let
€ > 0 and define an open set J; := J¢(F) as follows. For n > m, let J,e denote the ¢/ 6mn?-neighborhood of the
set of zeros of Q, ,, , and let Ju—1,e denote the £/6m-neighborhood of the set of poles of F in D,, | (). Define

By the monotonicity and subadditivity of h, we know that h(J¢) < € and h(J¢,) < h(J,) for €1 < €,. For each
set B C C, we set B(g) := B\ Je. It is easy to check that if {gn }ncn, converges uniformly to g on K(¢) for every
compact K C me,(F) and € > 0, then h-limp— gn = gin me,(F).

Since the following upper and lower bounds on the estimations of the normalized Q,, ,, ,,* are used many
times in our proofs, we keep them in the following lemma.

Lemma 4. Let K C C be a compact set and € > 0 be arbitrary. Then, there exist constants C1, C; > 0 indepen-
dent of n, such that
HQn,m,m’HK < Cy and min |Qn,m,m’(z)| 2 CZnizm’ (18)
z€K(¢)

where the second inequality has a meaning when K(g) is a non-empty set.

Theorem 2. Let F € H(E) and let m and m" be fixed nonnegative integers, such that m = m". For each n = m,
let R,y bean (n, m, m") incomplete Padé-Faber approximant of F. Then, for each € > 0 and every compact
subset K of D,, (),

. ~ in _ [Pl
hin 1Sup I = Ry, m |l ge) < o (F)’ (19)
where ||®@||g should be replaced by 1 when K C E. In particular,
h-nli—{lgo Rn’m’m* =Fin me*(F). (20)

Moreover, for each pole A of order T of F in me,(F) and every € > 0, the polynomials Q, , ,+ have at least T
zeros in the disk {z € C : |z - A| < €} for all sufficiently large n.

Proof of Theorem 2. Let an*(z) = Hl‘il(z —A;)" be the polynomial whose zeros are all the poles of Fin D,, g
counting multiplicities and set
m = deg(Qﬂ«). (21

By the definition of incomplete Padé-Faber approximants and Lemma 1, we have

Qn,m,m'(z)F(z) - Pn,m,m’(z) = Z ak,n(pk(z)y FAS Dpo(F)’ 22

k=n+1

where
Ay n = [Qn,m,m*F]k

and ay , = Oforallk = n-m" +1,..., n. Multiplying equality (22) by Q. and expanding Q. Q. . F -
an*Pn,m,m* € H(D, ., (p) in terms of the system of Faber polynomials {®y}}2,, we have for z € D, (s,

Q- (D) Qe (DF(2) = Qe @DPry (@) = Y @ n Qe (2)DPp(2) = Y bu,n@y(2)

k=n+1 v=0
n oo
= Z bv,nCDv(Z) + Z bv,n(pv(z)- (23)
v=0 v=n+1
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Note that the constants by,n can be calculated in two forms:
bv,n = Z ak’n[an*Qk]v, V= 0, 1, .
k=n+1

and
1QE-Qumm F - Q5 Py elv, ifv=0,1,2,...,n
v,n = .
[QF. Qi Flvs ifven+1.

Using (14) when G = Q5. Qp . F = Q5 Py, we have for p € (1, pp (F)),

dz, ifv=0,1,...,n,

1 / Q5 Qumym F = Q- Py ) (2P (2)
2mi v*1(2)

T
b = ’ (24
) 4 Qe Qe PEPG) o )
2mi Dv+1(z) ’ - )
Iy
Let K be a compact subset of me~(F) and set
0 := max{||®||x, 1} (25)
(0 = 1 when K C E). We want to show that
oo 1/n
o
limsu by,n®@ < —. (26)
n—>oop ; e e m*(F)
Let p1 € (1, p,,(F)) be such that
KU{A1,A2,...,Aq} C Dp,. @7)
We first prove that
oo 1/n
o
lim sup Z bv,n @y < —. (28)
= ly=n+1 K Pm: (F)

Due to the normalization of Q, ,, - (the upper estimate in (18)), the formula in (24) implies that for p; €
(1s pm’k (F))9

1 Qf.qQ “F)(2)D'(z
|by,n| < z—m./( m "g;’:’l(z))() ()dz <& van+1, (29)
T,

P1

where c; does not depend on n (from now on, we will denote some constants that do not depend on n by
¢», C3,...). Moreover, by Lemma 2, we have

|Dyl|x < c20”, v20. (30)

Therefore, by (29) and (30),

LS

Z bv,rICDv = Z |bV,"|||CDVHK

v=n+1 K v=n+l

v=n+1 p1 p1

Then,
oo 1/n

s o
lim sup Z by,n @y < —.

n—oo P1

v=n+1 K

Letting p; — p,~(F), we have (28) as we wanted.
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Secondly, we prove that
1/n
o

o) G

lim sup
n—oo

n
Z bv,n(pv

v=0

K

Recall that by,n = Y 5o ps1 x,n[Q5: @ilv. Hence, to estimate by, we need to estimate ay , first. We will use
the technique in [2] to estimate ay ,. Let p1 € (1, pp,-(F)) satisfying (27). Choose p; € (1, po(F)). We have

1 Qn,m,m*(t)F(t)(pl(t)
A = [Qn,m,m*F]k = i 0] dt.

P2

Define
_ 1 [ Quam (OFOP' ()
T 2mi Dk+1(f)

P1

dt. (32)

Yk,n

By our choices of p; and p,, and for each k = 0, Qr,,m,,,fFCD’/CDk"1 is meromorphic in Dp, \ Dy, = {z € C :
p2 < |@(2)| < p1} and has poles at A1, A5, . .., g with multiplicities at most 741, 75, .. ., Tq. Cauchy’s residue
theorem implies that

q
Vi = Aign = _ 1€S(Qu e FO' [ @1, 1)), k0. 33)
j=1

Then, it follows from the limit formula for the residue that

. (1;-1)
Sekel gy 1 . (=) Qy . @DF 2D (2)\ "
s QOS2 = Lt PH1) ‘

Leibniz’s formula allows us to write

(z- A]')Tj Qn,m,m* (2)F(2)D'(2) (-1
< (_pk+1(z) >

< (1- 1) (Qn,m,mx @) (2)(z - Aj)ffF(z))“"‘l‘“ (@n_k(z)><f> .

1
2\ e D+1(z)

Forj=1,2,...,qandt=0,1,...,T,~—1,set

o (2D _A)UF (1j-1-t)
Bl ) 1= (rji1)! (r, 1) - (Qn,m,m @' (2)(z - A) (Z))

t )z onHi(z)

(notice that the Bx(j, t) do not depend on k). Therefore, we rewrite (33) as

q 71
6]
_ . n-k
Yon = Qin =D > bali, 0 (@ (z))z%_ , k=0 (34)
j=1 t=0
By the definition of incomplete Padé-Faber approximants,
ayn =0, k=n—m*+1,...,n,
which implies
q Tf71 (t)
= DD Bl ) (@@ (35)
j=1 t=0 N
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forallk=n-m+1,..., n(werecall that i1 is defined in (21)). Equations (35) can be viewed as a system of m
equations on i1 unknowns fBx(j, t) and the corresponding determinant to this system is
-1 -1\ -1,y @Y
(0"@),, (@), - (e"'@),,
-2 -2\ -2\ 7Y
A:= ((D (Z))z=]l, ((D (Z))z=/11- (‘D (Z))z=}l,- s
1 0 o 0 j=1,...,q

where the subindex on the determinant means that the indicated group of columns are successively written
forj=1,2,...,q.Itis not difficult to check that

q
4] = T]@; - D@’ AP 2 T 190 - @A) ™™ =: c5 > 0,
j=1 1<l<ksq

where n!! stands for 0!1!- - - n! (use, e.g., [13, Theorem 1] for the calculation of the above equality). Therefore,
the system of equations (35) has a unique solution.

To avoid a long expression, let us define: forallj=1,2,...,gand t=0,1,...,7; -1,
j-1
hj ¢ := (Z T +t+1,
1=0

where 7¢ = 0. Using Cramer’s rule to (35), we have

. _ An(j, t) _
Bn(], t) - T -

=

m
Z Tn-f+y,n Cly, hj,t)’ (36)
y=1

where Ay (j, t) is the determinant obtained from A by replacing the h}ht column with the column

T
['Yn—ﬁl+1,n Tn-m+2,n  c e ’Yn,n]

and C(y, h) is the determinant of the (y, h)® cofactor matrix of Ax(j, t). Replacing Bn(, t) in (34) by the ex-
pression in (36), we obtain for k> n + 1,

q -1
1 _ ®
Yi,on — Akon = Z E E E ’Yn—ﬁ1+y,nc(y, hj,t) ((Dn k(Z)>z—A . (37)
j=1 t=0 y=1 e

Define
BA,r):={zeC:|z-A| <r}.

Let £ > 0 be sufficiently small so that {z € C: |z-Aj| =€} C {z € C: |®(z)| > p,} forallj=1,2,...,qand
B(A;, €) NB(Ay, ) = 0 for all k # j. Using Cauchy’s integral formula,

_ ® t! D" (2)dz
"k ) = — / — . 38
( @) z=p 270 (z - Ayt (38)
|z-A;|=¢
Clearly, there exists a constant ¢ such that forallj=1,2,...,4,t=0,1,...,7;-1,andk2n+1,
®
‘ (cp”*"(z)) <6 (39)
ZZA]' pz_n
and there exists a constant c¢; such thatforallj=1,2,...,4,t=0,1,...,7;-1,and k = n-m+1l,n-m+

2,...,0,

‘ ((Dn—k(z)) (6 . (40)

zZ=A;
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for sufficiently large n. From (40),
IC,h)<cs,  y,h=1,2,... 7

Using (39), (41), and |A| = ¢5 > 0, it follows from (37) that

m
C9
|ag,nl < ")’k,n“ﬂzrymmw,ﬂ, k=n+1.
P52

By the definition of ~; ,, (see (32)),

1 Qn,m,m* (t)F(t)CDI(t) C10

|’Yk,n| = s k+1 dt < K ?
27i Ok+1(t) pX

Tpy

where we recall that p, < p;. This and equality (42) imply

c
|y n] < 2, k=n+1.
2

1

Moreover, by Lemma 2, we have forallv = 0and forall k> n + 1,

F |1 QL (DD (O (1) . (p2 - 26)K
|[Qm*‘Dk]V| 20 / (DW—l(t)dt < Clzm,
I

py-26
where § > 0 is sufficiently small and p; € (1, po(F)) is chosen so that
0+62p,-26>1

(the reason for the first inequality will become clear later). Combining (43) and (44), we have

bl = | Y @ nlQf @icdv| < D~ g nl[[Qfm Piclv|
k=n+1 k=n+1
. C3 (Pz)n i (Pz—25)kS C1s4 (Pz)n(Pz—Z(s)n
(o2 - 26)V \ p1 P2 (p2 —26) \ p1 P2

k=n+1

__ Ciy (Pz —25)n
(p2 - 26) pP1 )

Now, we show (31). Recall that by Lemma 2, we have ||y ||k < c,0", for all v = 0. Therefore,

n n p 25 n n o v
.
v§=0 byn®@y| = E |bv,n|l|D@vl|k < C15 <7p1 ) E (pz — 26)

K v=0 v=0

p2—26)" - ( g+6 )V (p2—26>"( o+6 )n
<c re == <cis(n+1 s
b < p1 2; p2-26 1s(n+1) p1 p2—26

where the last inequality follows from the first inequality in (45). Hence,

n 1/n s
lim sup va,nc‘bv < (0+ ) .
n—oo V=0 X Pl
Letting § — 0" and p; — p,,+(F),
n 1/n

o

lim su by,n @ < —.

n—)oop ; ney X pm*(F)

— 55

(41)

(42)

(43)

(44)

(45)

(46)
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Combining (28) and (46), we have (26). Therefore, from (23), we obtain

. o
lim sup HQan*Qn,m,m*F_ an*Pn,m,m* H11</n S s (47)
n—oo Pm*(F)

where K is any compact subset of D,, (). Applying the second inequality of (18), we have

2 F F
HF_ Rn,m,m'HK(s) < Ci6N m”Qm’Qn,m,m'F_ Qm*Pn,m,m*HK-

Hence,

i/n Y
K@~ p, .(F)’
which implies that h-limn—eo Ry g = FinD,, | (). As animmediate consequence of Lemma 3, the statement
concerning the asymptotic behavior of some of the zeros of Q,, ,, .+ is proved. O

limsup |F - Ry .| (48)
n—oo

Next, we study the rate of convergence of some of the zeros of Q,, , ,, to the poles of F in D, .- Letus
define two indicators related to the asymptotic behavior of the zeros of Q,, ,,, - These two indicators were
first introduced in [12] and were also used in the study of incomplete Padé approximants in [5]. Let

:Pn,m,m* = {An,ly An,z, ceey An,vn}, Vn<m, n=m,
be the set of zeros of Q,, ..~ (repeated according to their multiplicities). Define
|z-w|1 :=min{1, |z - w|}, z,weC.

Choose a point a € C. The first indicator is defined by

n—oo

Vn
A(a) :=lim supH An,j - all/™ = lim sup H An,j - alM'n.
n—oo N
j=1 |An,1'_a|<1

Clearly, O < A(a) < 1 (if vn = 0, then the product is taken to be 1). The second indicator, a nonnegative integer
~(a), is defined as follows. We suppose that for each n, all points in

Tn,m,m* = {/\n,la An,Z, e /\n,v,,} (49)

are enumerated in nondecreasing distance to the point a. Define

8j(a) :=limsup|A,; - a|i/". (50)
n—oo

These numbers are defined by (50) forj =1, 2,..., m’, where m’ := liminf, .o voandforj=m’+1,...,n,
we define §;(a) = 1. We have 0 < §;(a) < 1. If A(a) = 1 (in that case all §;(a) = 1), then ~(a) = 0. If A(a) < 1,
then for some v, 1 < v < m, we have that §1(a) < ... < 6,(a) < 1 and §.+1(a) = 1 or v = m; in this case we
take y(a) = ~.

Note that A(a) < 1 < ~(a) 2 1and ) . ~(a) < m. It is not difficult to check that

A(a) = limsup |Qn,m,m'(a)|1/".
n—oo
Moreover, we would like to emphasize that A(a) and v(a) depend on our choice of a sequence {Q, p,m* tn=m
(recall that for given n = m = m", Qy, m,m may not be unique).

Theorem 3. Let F € H(E) and let m and m” be fixed nonnegative integers, such that m = m". Foreachn > m,
let Ry . m* e an (n, m, m") incomplete Padé-Faber approximant of F. Let A be a pole of order T of F in D, .-

Then,
|D(A)|

pm*(F)

A(A) < and ~A) = 1. (51)
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DE GRUYTER Simultaneous Padé-Faber approximants = 57

Proof of Theorem 3. Let Abeapoleof order T of Fin D 0,0+ (F)* Fix € > O arbitrarily small. Let r > 0 be sufficiently
small so that B(A, r) C D, .(r) contains no other pole of F and

T(A, ) :={z€C:lz=A/=1} C D, (»\Je (52)

(this is possible because ¢ > 0 is arbitrarily small and h(J¢) < €). By Theorem 2, Qn,m,m* have at least 7 zeros
in B(A, r) for all n sufficiently large. Since r is arbitrarily small, each pole of F in me*(F) attracts at least as
many zeros of Q, ,, ,,+ as its order. Let A1, An,2, . .., An,+, be the zeros of Q, , »+ in B(A, r) indexed in non-
deceasing distance from 4, i.e.,

A=2Apal s A=An2ls. .. < A= Anpy,l.

Indeed, for all sufficiently large n, T < v, < m. From now, we will only consider such n’s. Set

In
Qua@ = [ [~ A

j=1
Let 1 > 0 be sufficiently small so that

1Pl za,r) in<l.

Pm* (F)
Using (48) and (52), we obtain

12l "
”F_Rn,m,m*H’]I‘(/l,r) = ( o jl&(F,)r) +n s (53)
m

for n sufficiently large.

Let g(2)/(z - A)" be the principal part of the function F at the point A and gn/Q,  be the sum of the
principal parts of R, ,, - corresponding to its poles in B(A, r). Note that deg(q) < 7, g(A) # 0, and deg(gn) <
~n. It is known that the norm of the holomorphic component of a meromorphic function may be bounded in
terms of the norm of the function and the number of poles (see [14, Theorem 1]). Therefore, using (53), we

q(z) gn(2)

have 12| n
D7z, )
_ <c, | —=50 4 ,
(z-A7 Q) T 2 ( P (F) 1

for sufficiently large n. Multiplying the function in the norm by (z - 1)*Q, , and applying the maximum
principal, we obtain

T 1Pllra,n "
10E)0na(2)~ (= D @y = 0 (1 o) (s4)

for sufficiently large n. By (54), and the fact that g(A) # 0,
AQ) = limsup |Qp . WM™ = lim sup [Q 2 (W)™

n—oo n—oo

. TS 1n _ [19llra,n
< lim sup [|g(2)Qn,1(2) - (2 = V)" qn(2)ll555 < o(p) T

Letting 1, €, r — 0", we have proved that
|D(A)]

Pm (F) )
Now, we will verify that v(A) > 7. Because A(A) < 1, we have §1(A) < 1. Proceeding by induction, we let

61N <6,N)...<6,N) <1 and k<.

AA) <

We need to prove that 6;,;(4) < 1. Note that deg(qQ,, » — (z - A)"gn) < 2m. We differentiate the polynomial
inside the norm in (54) k times. Consequently, by Cauchy’s integral formula, its k-th derivative satisfies an
inequality like (54). Substituting z = A in the corresponding inequality, we have

Tn k) [0} n
(q(z)H(z—An,,-)) 0]z co (S0 1) 5)

j=1
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]:kﬂ()l—/ln,,-) by a group
of terms, each of which has one of the terms (A — /\n,,) j e {1,2,...,k}, as a factor (the modulus of the

products of the other factors are bounded at A). Since we assumed that 6]-(/1) <1forj=1,2,...,k, weobtain

Furthermore, it is easy to check that (q(z) H "z -2y ,)) . is different from k!q(A) [T

lim sup H Aj— AN < 1,
n—oo
j=k+1

‘l/n

which implies 6,1 (A) = limsup,,_, ., |4 = A k41 < 1. Therefore, «(A) > 7. The proof is complete. O

Theorem 4. Let F ¢ H(E) and A be a pole of order T of F in D, . Suppose that liminfy e |A = Ap,r+1]| > O.
Then,

(56)

()| )“’
pm'(F) '

Particularly, §:(A) = 6,(A) =...6:(A) = (|(D(/t)|/pm*(F))1/T if and only if A(A) = |@A)|/p > (F).

510 € 6, <. < 6:(A) < (

Proof of Theorem 4. In the proof of this theorem, we use the same notation defined in the proof of Theorem
3. By our assumption, we assume that

T
Qn,/I(Z) = H(Z - An,i)-
j=1
Recall that deg(q) < T and g(A) # 0. Substituting z with A in (54), we have
1Pl )"
Q,.Q)|=c (7 + ,
| n,A( )l 1 Pm'(F) n
which implies

. 1Dl n
lim sup |Q, ()" <« LNTAN
n—>oop| n,}l( )l Pm*(F)

Using the Leibniz’s formula, we obtain
k-1

(420 )® W) = gWaBW + > (’]‘) ¢“PWa?, (.

j=0
Applying the equality above and (55), by induction,
()
limsup\QElk)A()l)P/"sHHw, k=0,1,...,7-1. (57)
n—oo ’ Pm* (F)

Combining the inequalities above and the following expression

-1 Q(k)
Qi@ =GE-N"+> " A()

k=0

(z- Ak, (58)

we have

. o n _ I1Plran
llinjogp|‘(z A - Qn/\( )HIBB(AY) Pm (F) °

If we substitute z with Ay ¢ in the inequality above, then

lim sup |A —/11/"<(|@”W>m
noee "\ pw(F) :

Letting r — 0", we obtain

1/t
5:(0) < (ICD(A)I) ’

Pm (F )
which implies (56).
Furthermore, by Theorem 3, A(A) < |@(A)|/p,,-(F) always holds and the last equivalent conditions follow
from (56), which we just proved. O
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3.3 Proof of Theorem 1

LetF = (F1,F,,...,Fy) € H(E)? and fix m = (my, my, ..., my) € N¢\ {0}. Let A1, A, ..., Aq be the distinct
poles of F in D (F) and set

L:= (1 + min |<D()l]-)\) /2> 1.
j=1,2,-.00

Recall that the set of these poles is denoted by Pm(F). Let Qn,m be the polynomial Qu,m normalized as in (17),

namely
Gun@ = 1 -1 ] (1)
n,j

|D(An,j)|<L | @Ay, j)|>L

From now on, A and ~ are defined as in Section 3.2 taking P, ,, ,, in (49) to be the collection of zeros of the
denominator Qn,m. Clearly,

A(a) = limsup |On,m(a)|1/".
n—oo

Combining Theorems 2 and 3, we have the following.

Corollary 1. LetF = (F1,F,,...,Fy) € H(E) and let m = (my, my,...,my) € Ng\ {0}. For any a =
1,2,...,d,
h'HILII:ORn’m’a = Fa in mea(Fa) (59)

and if A is a pole of order T of Fy in Dy, (Fa)» then

|2(A)]

A < pm,(Fa)

and~v(A) > 1.

Proof of Corollary 1. Let a € {1,2,...,d} be fixed. Recall that Ry m,q« is an (n, |m|, mq) incomplete Padé-
Faber approximant of Fo. Applying (20) in Theorem 2, we have (59). Let A be a pole of order 7 of Fy in D, (7.
Since Qn,m satisfies

[QnmFalj=0,, j=n-ma+1,...,n,

(see the equations (16)), Qn,m is the same as Qu,jm|,m, Of Fa (up to a multiplication by some bounded con-
stant). Using (51), we have

A(A) = lim sup |én,m(A)|1/" = limsup |Qp,|m|,m (/1)|1/" < M
n—oo n—oo ’ e Pma (FO()
Moreover, it is easy to see that v(A) > 7. O

Now, we are ready to prove Theorem 1 which is the main theorem.

Proof of Theorem 1. Let A be a pole of F in Dm(F) and 7 be its order. So, A is a pole of order T of F,;, in
D,, o Fac)* By Corollary 1, we have v(A) > 7. Because this holds for any other pole of F in Dm(F) and

deg(Qn,m) < |m|, we have deg(Qn,m) = |m| for sufficiently large n, v(A) = 7, and
lim || Qf, - Quml| = 0. (60)
n—oo

This means that Ry m is uniquely determined for all sufficiently large n. In fact, if this was not the case, we
could find a sequence of Qn,m with deg Qn,m < |m|, which contradicts (60).

Let r > 0 be sufficiently small so that B(A, r) contains no other pole of F. Let A,,1, An,2, . . . , An,~, be the
zeros of Qn,m in B(A, r) indexed in increasing distance from A, i.e.,

A=2Ana] < A-Anals.o. A= Anyvyl.
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Note that v, = 7 and lim infn—eo [A = A5, 741| > 0, SO we can use the arguments employed in Theorem 4. In
particular, (57) and (58) imply that

limsup||(z - A)" - Q,M(z)||1/" < M, (61)
n—oo Prnggy(Fay)
where .
Qn,}t(z) = H(Z - An,j)-
j=1
Because inequality (61) is true for each of the poles of F in D (F),
. , @A)
lim su -A)7 - ) 1/"5‘7’, =1,...,q, 62
naoop Iz ]) Qn’/\’ | Pmaw‘) (Fa(/\;)) 1 (62
where 7; is the order of A; as a pole of F in D (F).
Therefore,
F _ _ AF _ (anQn,/h)(Z) (QgiQn,/h)(Z) _
(Qm Qn,m)(Z) = Qm(z) (Z—A]_)Tl + (Z—A]_)Tl
L (QnQup, Q)@ Onm()
C-A)T . (=g )T T
Hence,
7 | (QMQnp, -+ Qua, )(2)
F _ m Yl,/h Yl,/‘),l AT
|0h - Qnm|(2) < }213 oA Gy A7 = Q@]
Since

lim (anQn,/\l e Qua )@ _ QL (2)
n—eo (z-A)t...(z- A]')Tf (z- A},)T,‘ ’
uniformly on compact subsets of C and (62), we obtain the inequality (7).
Finally, let a € {1,2,...,d} and let K be a compact subset of me“(Fa) \ Pn,a(F). Using (60), if £ > 0
is sufficiently small, then K(¢) = K. By (19) applied to a sequence of incomplete Padé-Faber approximants
Rn,m,a, we obtain (6). This completes the proof. O

j=192,""q’
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Abstract. Starting from the orthogonal and Faber polynomial expansions
of a function F', we study the asymptotic behaviors of two generalized Padé ap-
proximations (orthogonal Padé approximation and Padé-Faber approximation).
We obtain both direct and inverse results relating the convergence of the poles of
these approximants and the singularities of F'. Thereby, we obtain analogues of
theorems by A. A. Gonchar and S. P. Suetin.

1. Introduction

Padé approximation theory contains two types of results, namely direct
and inverse types. In the direct type results, we draw conclusions about
the asymptotic behavior of the approximants and their poles from the an-
alytic properties and location of singularities of the approximated function.
In the inverse type results, the information is given in terms of the asymp-
totic behavior of the approximating functions from which the analyticity and
location of the singularities of the approximated function can be deduced.

Let us recall the definition of classical Padé approximants and state some
known direct and inverse type results on row sequences of classical Padé
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192 N. BOSUWAN

approximants related to our study in this paper. In the whole paper, N
stands for the set of all positive integers and Ny := N U {0}.

DEFINITION 1.1. Let f(z) = >3, fx2" be a formal power series. Fix
(n,m) € Ng x Ng. Then, there exist polynomials P and @ such that

deg(P) <n, deg(Q)<m, Q%#0,
and
(Qf — P)(2) = O(z"T™ ) as 2 — 0.

The rational function R, ,, := P/Q is called the (n,m) classical Padé ap-
proximant of f.

It is well-known that for any (n,m) € Ng x Ny, R, », always exists and
is unique. For a given pair (n,m) € Ny x Ny, we write

_ Pn,m
- )
Qn.m

where @), , is the monic polynomial that has no common zero with P, ,,.

Let f(2) =Y oy fxz" be a formal power series. Denote by Ro(f) the
radius of the largest disk centered at the origin to which f can be extended
analytically and by R,,(f) the radius of the largest disk centered at the
origin to which f can be extended so that f has at most m poles counting
multiplicities. Basically, Ry(f) is the radius of convergence of f and R,,(f)
is the radius of m-meromorphy of f. Set

(1) Rnm

B(a,R) :={z€C:|z—a|] < R}.

Let us define two indicators of the asymptotic behavior of the zeros of
Qnm- Fix m € N. Let

Pn,m = {An,la >\n,27 s 7>\n,mn}7 my, < m, n &< N0>

denote the collection of zeros of @y, ,, (repeated according to their multiplic-
ity). Define

|z —w|; == min{l, |z —w|}, zweC.
Fix A € C. The first indicator is defined by
A()) := limsup H |An; — )\\i/" = limsup H Anj — AY™

n—00 i=1 n—00 Py —Al<1
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Clearly, 0 < A(X) <1 (whenm, =0or [\, ; —A| >1forall j =1,2,...,m,,
the product is taken to be 1). The second indicator, a nonnegative integer
o(A), is defined as follows. We suppose that for each n, the points in

(2) Pn,m — {)\n,la >\n,27 cee 7>\n,mn}

are enumerated in nondecreasing distance to the point A\. We set

(3) §;(\) = limsup [Anj — A;/™
n—oo
These numbers are defined by (3) for j =1,2,...,m/', m' = liminf,,_, o my;

for j=m'+1,...,n, we define §;(A) =1. We have 0 <J;(\) <1. If
A(X) =1 (in that case all §;(A) = 1), then o(\) = 0. If A(X\) <1, then for
some v, 1 <v < m, we have that 6;(\) <--- <§,(A\) <1 and §,41(N) =1
or ¥ = m; in this case we take o(\) = v.

The first theorem proved by Gonchar [7, Theorem 1] serves as both direct
and inverse type results.

GONCHAR’S THEOREM. Let f(2) =Y ney frz" be a formal power series,
m €N, and let A # 0 be a given point in C. The following statements are

equivalent:
(a) A € B(0, R (f)) and f has a pole at .

(b) A(N) < 1 (or equivalently o(X\) > 1).
If either (a) or (b) holds, then
A(N) = A and o(N) =v
Rin(f) ’

where v is the order of the pole at .

The direct part of this theorem refers to the statement: if f has a pole
at A € B(0, R,,(f)) of order v, then

RY
AN S L)

On the other hand, the inverse result in this theorem is the statement:
if A(M\) <1, then f has a pole at A\ € B(0, R,,(f)),

and o(\) > v

RY

Rulf) 2 \0\)-

and v > o(A),

where v is the order of the pole at A.
In the same paper, Gonchar conjectured the following:
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194 N. BOSUWAN

GONCHAR’S CONJECTURE. Fizm € N. Let f(z) = Y 50, fu2" be a for-
mal power series and let Qp , be the denominator of the (n,m) classical
Padé approzimant of f. Assume that

lim A\, =X #0,

n—oo
where A, is a zero of Qpnm. Then this series defines a function which is
holomorphic at z =0, Ry—1(f) > ||, and X is a singularity of f.

Note that Gonchar’s conjecture has not yet been proved. Some progress
was made by Vavilov, Lépez, Prokhorov, and Suetin (see [12-14]). In the
final form, the following weaker version of Gonchar’s conjecture was proved
by Suetin [11].

SUETIN’S THEOREM. Assume that the formal power series

o

f2) =Y fi

k=0

has coefficients such that for fited m € N and sufficiently large n € N the
approxzimants R, ,, have precisely m finite poles \p 1, ..., Aym, which are
convergent:
lim)\mj:)\jyéo, ]:1,,m
n—oo
Then
(i) the power series defines a holomorphic function f in the disk B(0, Ruyin),
where Rpyin := minj<j<m |Ajl;
(il) Rp—1(f) = maxi<j<m |Ajl;
(iii) all the points A1, ..., Ay are singularities of f, the ones lying in the
disk B(0, Ry—1(f)) are poles, and f has no other poles in this disk.

When m = 1, Gonchar’s conjecture and Suetin’s theorem reduce to the
classical Fabry ratio theorem. However, since Suetin’s theorem has the as-
sumptions that for sufficiently large n € N, R,, ,,, have precisely m finite poles
and all m poles of R, ,, are convergent, Suetin’s theorem is much weaker
than Gonchar’s conjecture.

The aim of this paper is to prove the analogues of a direct part of Gon-
char’s theorem and Suetin’s theorem for two generalized Padé approxima-
tions to polynomial expansions introduced in [3] and [4]. The proofs of ana-
logues of Suetin’s theorem for these two generalized Padé approximations are
heavily relying on an extension of Poincaré’s theorem on recurrence relations
developed by Buslaev in [5].

The first approximation is called orthogonal Padé approximation defined
as follows. Let E be an infinite compact subset of the complex plane C
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such that C\ F is simply connected. Denote by K the collection of these
compact sets. Let p be a finite positive Borel measure with infinite support
supp(p) contained in E. We write u € M(E) and define the associated inner
product,

(g, By = / g(OR(Q)du(C),  g.h € La(n).

Let
pn(2) i =kp2" 4+, Kp>0,n=0,1,2,...,

be the orthonormal polynomial of degree n with respect to p with positive
leading coefficient; that is, (pn,Pm)y = On,m. Denote by H(E) the space of
all functions holomorphic in some neighborhood of E.

DEFINITION 1.2. Let E € K, F € H(E), and p € M(E). Fix (n,m) €
N x N. Then, there exists a polynomial Q4 ,, such that deg(Qh.m) < m,
nom Z 0, and
(4) ("QU W F,pn)y =0, k=0,1,...,m—1.

Define the corresponding polynomial

n—1
Pl (2) = (Qh W Fyps)upi(2).
=0
The rational function
oo Pim
n,m * o
n,m

is called an (n,m) orthogonal Padé approximant of F with respect to p.

Finding Q% in (4) is equivalent to solving a homogeneous system of
m linear equations on m + 1 unknowns. Therefore, for any pair (n,m) €
N x N, a polynomial Q% ,, always exists but it may not be unique. It is not
difficult to check, however, that the condition

(Fpndy (2FEpau o ("2 Fopa)y
(5) AE(F) = (zF,pn)p (Z°F,pp)y -+ <ZmF}pn>u

n,m

#£0
m—lF mF: . 2m—2.1_7
(2 apn>u ( apn>,u (z ,pnm

and the condition that every solution of (4) has deg Q% m = m are equivalent.
In turn, they imply the uniqueness of R} ,,. Since Q% # 0, we normalize
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it to be a “monic” polynomial. We call Q% a denominator of an (n,m)
orthogonal Padé approximant of F with respect to p.

The second approximation is related to Faber polynomials defined as
follows. Let E € K and ® be the exterior conformal mapping from C\ E
onto {w € C: |w| > 1} satisfying ®(c0) = oo and &’(c0) > 0. For each p > 1,
we introduce

I',:={2z€C:|®(2)|=p} and D,:=FEU{ze€C:|®(2)| <p},

as the level curve of indexr p and the canonical domain of index p, respec-
tively. Let F' € H(FE). Denote by po(F) the index p of the largest canonical
domain D, to which F' can be extended as a holomorphic function and by
pm(F') the index of the largest canonical domain D, to which F' can be
extended so that F' has at most m poles counting multiplicities.

The Faber polynomial of E € K of degree n is defined by the formula

1 [ ()
D, (2) = dt, D, n=0,1,2,....
(6 ()= oy [, ¢ 0t Z€Dp n=0

It equals the polynomial part of the Laurent expansion of ®” at infinity. The
n-th Faber coefficient of F' € H(E) with respect to ®,, is given by

o, L / FO®()

© 2w Jp, @nHL(D)

where p € (1, po(F)).
DEFINITION 1.3. Let F € K and F' € H(E). Fix (n,m) € N x N. Then,
there exists a polynomial QTELm such that deg( fm) <m, inm %0, and

(7) [*QF Fl,=0, k=0,1,...,m—1.

n,m

Define the corresponding polynomial

n—1
E E
Pn,m(z) = Z[ n7mF]jp]'(z)‘
=0
The rational function
E
E n,m
Ry = . F
n,m

is called an (n,m) Padé—Faber approzimant of F with respect to E.
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Similarly, for any pair (n,m) € N x N, a polynomial QE’ ., always exists
but it may not be unique. Moreover, the condition

[Fln [6Fln -+ [ F,
[2F]y, [zzF]n o [ZMF

(8) Ay (F) = 70

[Zm—.lF]n [ZmF]n . : . [z2m;2F]n

and the condition that every solution of (7) has deg QE’ m = m are equivalent.
In turn, they imply the uniqueness of R,{? m- Since in m Z 0, we normalize

it to be a “monic” polynomial. We call Qﬁm a denominator of an (n,m)
Padé-Faber approximant of F' with respect to E.

We would like to emphasize that the approximations in Definitions 1.2
and 1.3 are different from Padé-orthogonal approximation in [1,2] and Padé-
Faber approximation in [10] which are natural ways of extending the notion
of classical Padé approximation. Moreover, the approximations in Defini-
tions 1.2 and 1.3 were first introduced and studied in [3] and [4], respec-
tively. Before stating the main results in [3] and [4], we need to define some
classes of measures which are subsets of M(E). We say that u € Reg;(E)
when

9) Tim [pa()]'" = [@(2)],

uniformly on compact subsets of C\ E. Let us introduce the second kind
function

@)= [P (@), e C\suppio)

The measure 1 € Reg,(F) if and only if
(10) lim [ ()" = [8(2)] ",

uniformly on compact subsets of C\ E. The classes Reg;(F) and Reg,(E)
are more or less the same in some cases (see the details in [3, Section 1]). In
particular, if F is convex, then Reg;(F) = Regy(F) and these two classes
coincide with the regular class in the usual sense (see [8, Definition 3.1.2] for
the definition of the regular class in the usual sense). Define

Reg; »(F) := Reg,(F) N Regy(L).

We say that u € Reg(’»(F) if it is in Reg; o(£) and there exists a positive
constant ¢ such that
Rn—m

Kn

>c, n>ng.
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Combining [3] and [4], the authors proved the following result.

THEOREM A 1. Let F' € H(E), m € N be fized, and i € Regls(E). De-
note by P(F,m) the set of all poles of F in D, (r) and QF the monic polyno-
mial whose zeros are these poles counting multiplicities. Then, the following
assertions are equivalent:

(a) F' has exactly m poles in D, (p.

(b) The polynomials Qb m for F are uniquely determined for all suffi-
ciently large n, and there exists a polynomial Q,, of degree m such that

limsup QL — Q|7 = < 1.
n—oo
(¢) The polynomials Qﬁm for F are uniquely determined for all suffi-
ciently large n, and there exists a polynomial Om of degree m such that

tmsup Q5. — @[V = 0 < 1.
n—oo

The norm || - || in (b) and (c) denotes (for example) the norm induced in
the space of polynomials of degree at most m by the maximum of the absolute
value of the coefficients. Moreover, if one of the assertions (a), (b), or (c)

takes place, then Qu, = Qum = E.

[2(&)]

§:é:max{pm(F)

;& e P(Em)},
and for any compact subset K of D, g\ P(F,m),

. n o 12k . yn o 12k
limsup |RY ,,, — F Ln < | and limsup |RE, —F < ,
wp It = Ele =, () wp o = Ele= ()

where || - ||k denotes the sup-norm on K and if K C E, then || ®|| k is replaced
by 1.

In the current paper, we continue studying the relation between the con-
vergences of zeros of Q% and QE’ m (when m is fixed and n — o0) and the
singularities of F' € H(E).

An outline of this paper is as follows. The main results in this paper are
stated in Section 2. The proofs of the main results are in Section 3.

2. Main results

2.1. Direct type results. Theorems 2.1 and 2.3 stated below are the
analogues of the direct part of Gonchar’s theorem for orthogonal Padé ap-
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proximants and Padé—Faber approximants, respectively. Note that the nota-
tions A, o, and §; in Theorem 2.1 and Corollary 2.2 are defined as Section 1
taking

Pn,m = {gn,lagn,% . 7£n,mn}) mp <m, n €N,

to be the collection of zeros of Q%,m.

THEOREM 2.1. Let E € K, F € H(E), and pu € Regy(E). Fiz m € N.
If F has a pole of order v at § in D, (r), then

|2(8)]
A(g) < and o(§) > .
©= () ©
The following corollary concerns the numbers §;(§), j = 1,...,v, where

§isapoleof F'in D, (p) and v is an order of &.

COROLLARY 2.2. Let E € K, F € H(E), u € Reg,(FE), and £ be a pole

of Fin D, (ry of order v. Assume that liminf, o [§ — &npy1| > 0, where

{&n1:6n.2, - &nm, } are enumerated in nondecreasing distance to the point £.
Then,

P& 1/v
(1) @ <a© < <ao< ()"

In particular, 51(€) = 62(&) = ... = 6,(&) = (|®()|/pm(FN" if and only if
AE) = |2/ pm (F).

For Theorem 2.3 and Corollary 2.4, the notations A, o, and J; are de-
fined as Section 1 taking

Pn,m = {én,lafn,% cee 7€n,mn}7 m, <m, n €N,

to be the collection of zeros of Q¥ . We also obtain similar results to The-
orem 2.1 and Corollary 2.2 for Pade—Faber approximants.

THEOREM 2.3. Let E € K and F € H(E). Fix m € N. If F has a pole
of order v at § in D, (), then

and o(§) > .

COROLLARY 2.4. Let E € K, F' € H(E), and £ be a pole of F in D, (r)
of order v. Assume that

liminf |€ — &, 41| > 0,
n—oo
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where {éml,émg, ... ,énmn} are enumerated in nondecreasing distance to the
point £&. Then,

[@(E)[\1/v
JIGETIGESE L AGES ()
In particular, 5 (§) = 02(§) = ... =6,(&) = (|<I>(§)\/pm(F))1/” if and only if

AE) = |2/ pm (F).

2.2. Inverse type results. We obtain inverse type results (Theorems
2.5 and 2.6) analogous to Suetin’s theorem for orthogonal Padé approximants
and Padé—Faber approximants, respectively. In the results for orthogonal
Padé approximants, we need to restrict ourselves to a smaller collection of
compact sets F and a smaller collection of measures u defined as follows.
Denote by ;1 the collection of all sets FF € K that E is such that the inverse
function ¥ = ®~! can be extended continuously to C\ {w € C : |w| < 1}.
We say that Szegd or strong asymptotics takes place, and write u € S(E), if

(12) lim Pn(2) =5(z) and lim R 1,

n—o00 ¢, P(z) n—00 Cp41
where the first limit in (12) is assumed to hold uniformly on compact subsets
of C\ E, the ¢,’s are positive constants, and S(z) is some holomorphic and
non-vanishing function on C\ E. It is not difficult to check that (12) = (9).

THEOREM 2.5. Let E € Ky, F € H(E), and p€ S(E). Fix m € N. If
for all n sufficiently large, Qh.m (for F) has precisely m zeros and the zeros
of Qh.m have limits &1, ..., &n, as n — oo, then

(i) F is holomorphic in D, , where pyin = mini<j<m |®(&;)];

(i) pm—1(F) = maxi<j<m [P(;)];

(iii) &1, ..., &n are singularities of F; those lying in D, . (r) are poles
(counting multiplicities), and F has no other poles in D, _.(r)-

THEOREM 2.6. Let E € K and F € H(E). Fiz m € N. If for all n suffi-
ciently large, QTELm (for F') has precisely m zeros and the zeros of QTELm have
limits &1, ..., Em, as N — 00, then

(i) F is holomorphic in D, , where pyin = mini<j<m |(&;)];

(i) pm—1(F) = maxi<j<m [P()];

(iii) &1, ..., &n are singularities of F'; those lying in D, .(r) are poles
(counting multiplicities), and F has no other poles in D, _.(r)-

Applying Suetin’s theorem, Theorems 2.5 and 2.6 are direct consequences
of Theorems 2.7 and 2.8, respectively.

THEOREM 2.7. Let E € K1, F € H(E) and p € S(E). Define f(w) :=
F(U(w)). Let R > 1 be such that f € H({w € C: 1 < |w| < R}). Denote by
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S22 frw” the Laurent series of f in the annulus {w € C: 1< |w| < R}
and by f(w) := Sr o frwk the regular part of f. For each fived m > 1, the
following conditions are equiva{ent:

(a) The zeros of Qnm for f have finite limits A1, ..., Ay, as n — oo.
(b) The zeros of Qh.m for F have finite limits &, ..., &m, as n — 0.
Under appropriate enumeration of the sub-indices, the values \; and §&;,
j=1,...,m, are related by the formula ®(&;) = \; for all j =1,...,m.
THEOREM 2.8. Let E € K and F € H(E). Define f(w) := F(V(w)). Let
R > 1 be such that f € H({w € C: 1 < |w| < R}). Denote by > oo fruwk

the Laurent series of f in the annulus {w € C: 1 < |w| < R} and by f(w) :=
Yo frw® the reqular part of f. For each fized m > 1, the following condi-
tions are equivalent:
(a) The zeros of Qu.m for f have finite limits A1, ..., Am, as n — o0.
(b) The zeros of QTELm for F have finite limits &1, ..., &n, as n — oo.
Under appropriate enumeration of the sub-indices, the values \; and §;,
j=1,...,m, are related by the formula ®(&;) = \; for all j =1,...,m.

REMARK 2.9. Under the assumptions on Thereom 2.7, the condition (b)
in Theorem 2.7 is equivalent to the condition (b) in Theorem 2.8.

3. Proofs of main results
3.1. Proofs of direct type results. We begin this section by defin-
ing some more notation and stating some needed lemmas.

3.1.1. Auxiliary Lemmas. For a given compact set E € K, the n-th
Fourier coefficient of F' € H(FE) with respect to p, is given by

(Floi= (P padu= [ F@Ppalz) du(2).
Using Cauchy’s integral formula and Fubini’s theorem, it is easy to check
the following relation used frequently in this paper.

LEMMA 3.1. Let E € K, F € H(E), n € Ny, and p € (1, po(F')). Then,
1
(13) (Fyn= . / F(w)sy,(w) dw.
211 r,
The next lemma (see [6, p. 583] or [9, p. 43] for its proof) gives an esti-
mate of Faber polynomials ®,, (defined in (6)) on a level curve.

LEMMA 3.2. Let E € K and p > 1 be fized. Then, there exists ¢ > 0 such
that

(14) [®nlr, <cp”, n €N
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3.1.2. Proofs of the direct type results.

PROOF OF THEOREM 2.1. For each n € N, let g}, be the polynomial
#.m normalized so that

m m
(15) Do lonpl =1 dhn(2) =) g
k=0 k=0

This normalization implies that the polynomials g}, ,,, are uniformly bounded
on each compact subset of C.
First of all, we wish to show that for each pole & of order v of F' in

Dy, (),

(16) lim sup \(qﬁ,m)(j)(g)ﬁ/” < [2(S)]

=011

Denote by @, the monic polynomial whose zeros are all the poles of F' in
me(F)' Define

_ Qu(aF()
(z-9)F

Now, we consider a function G;. Notice that G is holomorphic on a
neighborhood of D)) except for a simple pole at z = £. Define

Gy(2) : (=1,2,...,u.

Hi(z) = (z = §)Gi(z) and af), = (ghnG1)n.

By the definition of Q% m, since deg(Q.,/(z —&)) < m, it is easy to check
that a%l}b = 0. Moreover, using (13), we have

1
A= (@hnGn = o1 [ ()G sal2)

Loy

where 1 < p; < |®(§)]. Define

1
W= gy [ HnlIG ()
where |®(€)| < p2 < pm(F). The function ¢ ,,G1s, is meromorphic on
D,,\ Dy, ={2€C:p; <|®(2)| < p2} and has a pole at £ of order at most 1.
Applying Cauchy’s residue theorem to the function ¢, G1sy, we have

1

(17) 271

/ 4t ()G (t)sn(t) dt

Lpy
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1
/ & (DG (B)5n(t) dt = res(ql! s, €).
Ty,

- 2mi
The limit formula for the residue of qﬁmGlsn at £ is
res(qh G150, §) = ll_ﬂl%(z = &)qh m(2)G1(2)sn(2) = H1(§)qh m(8)sn(§)-
We can rewrite (17) as

) =1 —all) = Hi(€)gh ,n(€)sn(€)

(recall that ag% = 0) which implies

o
Choose § > 0 sufficiently small so that

T

(18) hnl®) =

(19) p2 = pm(F) =6 > [®(§)] and [®(£)| 0> 1.

Using (10), there exist ng € N and ¢; > 0, ¢ > 0 such that

C1 C2
20 <|s < , N> ng,
( ) (,O—|—5)n — H nHFp — ( _5)11 0
where ¢; and ¢y do not depend on n (from now on, cs, ¢4, ... denote con-

stants that do not depend on n). From (20), we have

(1) . 1 C3
@) =y [ EaOGEREE S P
and
22 . o
(22) 5ul12 gierts gy
Combining (21) and (22), it follows from (18) that
(@) +dy\m
(23) @l a0 00)"

which means that

limsup|qﬁm(£)|l/n < ‘(I)(f)| +5‘
n—o00 ’ P2 -0
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Letting § — 0, we obtain ps — p,,,(F') and

limsup g/, (€)™ < .
msup gt (O < 70
Now we employ induction. Suppose that
. : 2(&) .
24 lim sup qﬁmmﬁ 1n < , j=0,1,...,4—2,
(28 tmswp|(eh,) VO <

with ¢ < v, and let us prove that the formula (24) holds for j = ¢ — 1. Con-
sider a function Gy that is holomorphic on a neighborhood of D)g¢) except
for a pole of order ¢ at z = €. Set

Hy(z):=(z — £)€Gg(z) and a%)n = (¢h mGe)n-

By the definition of Q} ,, since deg(Q/(z — €)*) < m, it is easy to check
that aq(f,)n = 0. Using (13), we have

0, = (@ Codm =" / ¢ (2)Ge()sn(2) dz,
’ ’ 27 r,

where 1 < p; < |®(§)]. Define

= / ¢ (2)Ci(2)sn(2) d,

21 T,

where |®(€)| < p2 < p(F). The function g ,mGys, is meromorphic on
D,,\ Dy, ={2€C:p; <|®(2)] < p2} and has a pole at £ of order at most .
Applying Cauchy’s residue theorem to the function g, ,,Gsy,, we have

1
(25) 9 —a®, = " / g (O Galt)s(t) i
Ly,

The limit formula for the residue of qﬁ,mGgsn at £ is

(26)  res(qp Grsn, ) = ( | lim (2 — &) Ge(2)sn(2) g (2)) 7Y

{— 1) z—E

1 Zr—a
= (Hysn) "0 (6) (g4 ,) D (8),
w—l)!;( ! > ‘ i,
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where the last equality follows from Leibniz’s formula. Since a% 2@ =0, the
equation (25) becomes

(-2

(C=rh=>_ (EQ 1) (Hesa) ™ 0(€) (al )P (€)

+ Hy(€)sn(€) (g% )1 (9),

which implies that
(27)

a0 22, ((-1-t) £y ()
po\ (1) (5 1 Tn,n <€ 1) (Hesn) (&) (gn,m)"M (§)
(gnm) (€)= () 2 Ho(€)s(c) :
Choosing 6 > 0 and py as in (19) and applying (20), we have
@)= ! s
@) =y [ daGOEn@E < T
and for all t =0,1,...,¢— 2,
(29)
Hys, )10 (6)| = ‘(f —1-)! Hy(2)sn(2) Ce 7
e R I

where {z€ C: |z —¢|=¢e} C{z€C:|P(2)| > |P(£)|—d}. Combining (22),
(24), (28), and (29), it follows from (27) that
(30) limsup | (¢/,,) V()"

n—oo

1/n

(£~ 1)k 0= 1\ (Hys,) 10 s><q¢:,m><t><s>
() o

B(E)|+5 (|D(E)]+0 |<I>< >\
ém“{ s o) 5 )< (F >)}'

Letting § — 0, we have ps — p,,(F') and from (30), we obtain

imsup | (g, V(0] < [T

= lim sup
n—o0

This completes the induction proof.
Next, we want to show that

(31) lim gn,jzga j:1,2,...,lj,
n—00
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i.e., there exist at least v zeros of Qb ., converge to £. By the normalization
of ghm (see (15)), it suffices to show that for any subsequence of indices {2
such that

lim =
oty qn m — 49,

ga is a non-null polynomial with a zero of order at least v at £&. Due to
the normalization of ¢hm, qq # 0. Computing Taylor’s expansion of gh m
around &, we obtain

Applying (16) and the Weierstrass approximation theorem for derivatives,
we have
m m
_ : (ahm) M (€) ke (g2)®(€) k
k=0 k=v
which implies what we wanted.

Let € > 0 be sufficiently small so that B(&,2¢) contains no other poles
of F'in D, (r) except . Let &1, ..., &0, be the zeros of @h.m contained
in B(&,2¢). By (31), we have v < g, < m for all sufficiently large n. In the
sequel, we only consider such values of n. Set

On

Qu(z) = [ = = &u).

J=1

It is easy to check that the functions Q,, /@h.m are holomorphic in B(&, 2¢)
and uniformly bounded on any compact subset of B(¢, 2¢), in particular on
B(&,e). Therefore, by Cauchy’s integral formula, for any j =0,1,...,v —1,
the sequence (Qn/qh.m)Y) is uniformly bounded on B(&,¢). Using Leibniz’s
formula and the inequalities in (16), we obtain

(32) nmwp@w@wmznmwp<%m¢")<@
Ly " (J ey [ On V0 o |77 2 12O _
= lim sup 2)( > @) (£)(q57m) @ < (1) <1

for each j =0,...,v —1.
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Finally, we want to show that

[2(&)]

(33) A() < olF)

and o(&) > .

Using (32) for j =0 and the ordering imposed on the indexing of zeros of
Qh.m, it follows that

A(€) = limsup Q4 (&))" = limsup |Q, (&) V" < |@(2‘ <1

n—oo n—oo m

and limsup,, . |€ — £,1|"/" < 1 so that o(€) > 1. Assume that for each
7=1,...,k, where k <v —1,

(34) limsup |£ — éw\l/" <1,

n—o0

and let us show that it is also true for k + 1. Consider Q%k) (£). Notice that
one of the terms thus obtained is H?;kﬂ(ﬁ — &p,5) and each one of the other
terms contains at least one factor of the form (£ — 5,”) for some j =1,...,k.
Combining (32) for j = k and (34), it follows that

On

H (5 - gn,j)

j=k+1

1/n

lim sup <1,

n—oo

and due to the ordering of the indices, we get

timsup € — Eupal! /7 < 1.

n—oo

Therefore, o(§) > v. O

PrROOF OF COROLLARY 2.2. Let us use the same notation defined in
the proof of Theorem 2.1. By our assumption, we can assume that

v

Qu(z) = [ (= = -

J=1

Recall that for each j =0,1,...,v,

imsup |G (@) < ).

Acta Mathematica Hungarica 157, 2019



208 N. BOSUWAN

Combining these inequalities and the expression,

v—1

. 2 (
A=+ 3% -9t
we have

. n |D
[ C A

In particular, if we replace z by &, ., then

1/v
3 =t 67 < (M)

This clearly implies (11).
Moreover, by Theorem 2.1, A(§) < |®(&)|/pm(F) is always true and the
last statement readily follows. [

PROOF OF THEOREM 2.3. Since the structure of the proof of Theorem
2.3 is similar to that of Theorem 2.1, we will skip some steps. For each
n €N, let qf’ m be the polynomial Qﬁ , normalized so that

(35) Z il =1, (2 Zan w2t
k=0

The polynomials qn m are uniformly bounded on each compact subset of C.
First of all, we show that for each pole § of order v of F'in D, (p),

(36) limsup\(qgm)(ﬂ (¢ )|1/n [2(8)]

. j=0,1,...,v—1.
n—o00 pm(F)

Denote by @, the monic polynomial whose zeros are all the poles of F' in
D, () Fix £ € {1,...,v}. Define

Qm(2)F(2)

Go(z) := (- &)

{=1,2,...,v

Set
Hy(z) == (z — €)*Gy(z) and a(g) = [qimGg]n.

By the definition of Q it follows that a%z@ = 0. Therefore,

n,m?

W0 1 / 05, (2)Gi(2)P'(2) 2 =0,
T,

Guin = Gl = o @n 1 (2)
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where 1 < p; < |®(&)]. Set

"=

1 B (2)Ge(2) @' (2)
/1“ dz,

2mi ontl(z)

where |<I>(§ )| < p2 < pm(F). Using Cauchy’s residue theorem on the function
(qF 'mG ") /@™ *!, we obtain

(37) Thh = Tah — A,
1 / G ()G ()P (1) gt 1 / e (1) G ()P (1) it
-2 Jp Prtl(t) 2mi Jr, Prtl(t)
= res((dy mGe®') /2", ).

Arguing as in (26),

mGe®) /2", €)

qn,m

T —1 1)! : <£ | 1) (gf1/>(é_l_t) () (@) (&),

The above equality and the relation (37) imply

res((

(£ — 1)1 (€)

E \(=1)(¢y
201\ fH@ N 10 ) (gF,) D (€)
> ( J(o) O ey
where the sum is empty when ¢ = 1.
Choose ¢ > 0 small enough so that
(39) p2 = pm(F) =6 > |(£)].
We have
0|1 0 (2)Ge(2)®'(2) c1
(40 0= o " e dz‘ =

If £ =1, combinging (38) and (40), we obtain

42 (6)] < 02(|<I><£>l)n

P2
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which implies that

limsup|q,€m(£)|l/n < |(I)(£)| ]

n—o00 P2

Letting § — 0, (36) readily follows for j = 0. For the remaining values of j,
we use induction.

Suppose that (36) is true for j =0,...,¢/ —2,2 < ¢ <7 and let us prove
that it is also valid for j = ¢ — 1. Choosing 6 > 0 as in (39) and applying
Cauchy’s integral formula as in (29), we obtain for t =0,1,...,¢ — 2,

€3

H,a\ 1
(@M4> ©1= (a)] - oy

Combining the induction hypothesis, (38), (40), and (41), we have

(41)

(¢ = ! Tad™ 1 (€)
Hy(§)®(€)

oe
20— 1\ fH N 10 B (gF, ) B (€)
—t;( ) ) O g
|2(£)
n(F)

B(E) [ |0(E))
S”“X{ ’Q@(»—é }

Letting 0 — 0, we have pa — pp,(F') and from (42), we obtain

(42) limsup | (qgm)(é_l)(fﬂ Y im sup

n—oo n—oo

1/n

P2

e < 100

hnlau>hq§n9“‘1W£) S plF)

n—oo

which completes the induction.
Arguing as in the proofs of (31) and (33) by replacing ¢/, m by q,ﬁm, Qhm

by Qﬁm, and

{511,17511,27 o 7gn,an} by {éﬂ,hén,?a s 7én,0n}7

we have
lim &, ;=¢ j=1,2,...,v
n—oo
and
|2(8)]
A < and o(&) > v,
GRS (©

as we wanted. [
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3.2. Proofs of the inverse type results. We keep all needed lem-
mas used in the proofs of the inverse type results in Section 3.2.1.

3.2.1. Auxiliary Lemmas. We begin by stating two lemmas due to
Buslaev (see [5, Theorems 5-6]). These results constitute the main tools
for proving our inverse type results. We make use of the following notation.
Let f(w) =Y . fxw”® be a Laurent series. We denote the regular part

of f(w) by f(w) = S22 frw”. Define the closed annulus

Tsm(f) = {w e C:eRo(f) < |w| < Rnr(f)},

where m € N and 6 > 0. We will use (+),, to denote the coefficient of w™ in
the Laurent series expansion of the function in the parentheses. Set

U:=C\B(0,1).

LEMMA 3.3 (Buslaev [5]). Letm € N, 6 > 0, and let f(w) => 02 fuw"
be a Laurent series such that

0< Ro(f) < Rm_l(f) <00, and limsup\f_n\l/” < Ro(f).

n—oo
Assume further that
(43) Ji_)nolo(fannn,j)nRﬁz—l(f)ean =0, j=0,....m—1,

where the functions o,y j € H(Tsm(f)) have the limits

a(w) == nli_)rroloan(w) #0, nj(w):= Y}l_)rrolonn](w) = (w), j=0,...,m—1,
uniformly on T, (f), n(w) is a univalent function in Ty, (f), and a(w) has
at most m zeros in the annulus Tp ,m(f). Then the function o(w) has pre-
cisely m zeros A1, ..., Am in Tom(f) and lim, o0 Anj = Aj, where the A, j,
Jj=1,...,m, are poles of the classical approzimants R, ., of f. Moreover,
for any functions Kn1,...,Kpm,Ln1,.. s Lom € H(T,m(f)), v >0, that
converge to Ky, ..., Ky, L1, ..., Ly, uniformly on T, n(f),

(44)

lim det[(fKn,iLn,j)n]i,j:l,...,m _ det[Kr(/\s)]s,r:I,...,m det[Lr()\s)]s,r:L...,m
n—oo  det|frn—i—jlij=o0,..m—1 W2(A1,..0, Am) ’
where W (A1, ..., Am) = det[\. Y5 21 _m is the Vandermonde determinant
of the numbers A1, ..., Ay (for multiple zeros the right-hand side of (44) is
defined by continuity).
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LEMMA 3.4 (Buslaev [5]). Letm € N, 0 > 1, and f(w) => 02 fpw"
be a holomorphic function in the annulus {1 < |w| < o}. Assume further
that

(45) (fannn,j)nzo, 7=0,....m—1, n>ng,
hold, where a,(w) and w™In, j(w) are holomorphic functions in U, the limits

a(w) = lim op(w) £ 0, nj(w) := lim n, j(w) =’ (w), j=0,...,m—1,
exist uniformly on each compact subset of U \ {00}, the function a(w) has
at most m zeros in U\ {oo}, and n(w) is a univalent function in U such that
n(oo) = oo. Then, only one of the following assertions takes place:

(i) f(w) is a rational function with at most m — 1 poles;

(ii) a(w) has precisely m zeros A1, ..., Ay in U\ {o0}, these zeros are
singularities of f(w), with an appropriate ordering |A\1| = Ro(f),...,|A\m| =
Rp—1(f), and the limits limy, oo A j = Aj exist, where the A, ;,7 =1,...,m,

are the poles of the classical Padé approximants Ry, n, of f.

Define
B(w) = cpw™ s, (U(w) V' (w), w € U.
Properties of h,, are stated the following lemma (see [1, Lemma 4.3] for its
proof).

LEMMA 3.5. Let E € Ky. Then, the functions h,(w) are holomorphic
in U. Moreover, if p € S(E), then the sequence h,(w) converges to some
non-vanishing function h(w) uniformly on each compact subset of U.

Note that the restriction condition that E € Ky is used to prove this
lemma (see [1, Lemma 3.1 and Lemma 4.3] for more details).

3.2.2. Proofs of Theorems 2.7 and 2.8.

PrROOF OF THEOREM 2.7. First of all, we prove that (b) implies (a)
using Lemma 3.4. We assume that the zeros of Q% (z) have limits &, ...,
Em, as n — o0o. For w € U, we define

an(w) = w™ " h(W) Qi (T (W),

n-+m,m

() cn+mq’j(w)w”+m+1sn+m(\11(w))\ll’(w)
Nn,j(w) 1= h(w) 7
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The functions oy, (w) and w7, j(w) = w7V (w)hyrm(w) /h(w), j .
m — 1, are holomorphic in U, and

a(w) = nli_)noloan(w =w "h(w H
J=1

uniformly on each compact subset of U \ {oo}. Since h(w) is never zero in U,
a(w) has at most m zeros in U \ {oo}. Set

v ={w e C:|w| =r}.

By Cauchy’s integral formula, Fubini’s theorem, and the definition of Q% n,
we have, for € > 0 sufficiently small so that F'(z) is analytic on D;4., and
forj=0,...,m—1,

(Fantosh = 507 [ W) Py (F(0)) 1 (F(0)) W (w0)

Vi+e

Cn+m
- HF(t )81 (1) dt
ot [ PO Ont)

= [ PRO@nt) [T

21 t— =z
t]F n+m m( )
=cuon [ o [ e ® () a2

— i [ FFE@ (i) duz) =0,

Therefore, the assumptions of Lemma 3.4 are satisfied. If the regular part of
f(w) is a rational function with at most m — 1 poles, then F(z) is a rational
function with at most m — 1 poles which implies that A%m(F ) =0 for n suf-
ficiently large. This is impossible because deg(Q%.m) = m, for n sufficiently

large. Therefore, by Lemma 3.4, a(w) has precisely m zeros A1, ..., Ay, in
U \ {oo} and the limits of the poles of the classical Padé approximants Ry, ,,
of f are Ay, ..., Ay, as n — oo. This implies (a).

Now, we prove that (a) implies (b) using Lemma 3.3. Assume that the
zeros of Q. (where f is the approximated function) have limits Ay, ...,
Am, as n — o0o. Define, for w € U,

(46) Gp(w) = w " Qnm(w),
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(47) (W) i=wl, j=0,...,m— 1.
Then,

a(w) = lim ap(z) =w™™ H(w — ),
=1

n—oo

ﬁ](w):wjv jZO,...,’I’I’L—l,

uniformly on each compact subset of U \ {oo}. By the definition of @y, ,,(w),
it follows that, for € > 0 sufficiently small so that f(w) is holomorphic on
Y1+¢ and for n sufficiently large,

2711 wm—J +n+1

(fdnﬁn,j)n - (fdnﬁn,j)n = L . / f(w)Qn’m(w) dw = 0, ] = 0, e, M — 1.
Yite

We can easily check the rest of the conditions required in Lemma 3.3 for
&y, (w) and 7y, j(w), so we can apply the equality (44) in Lemma 3.3.
Next, set

Cn<Fapn>u cn<zF7pn>u Cn<Z Fpn>
Cn<ZF>pn>u Cn<Z2F>pn>,u Cn( m+lF pn>u

(48) Qn,m(z) = : : .
Cn<zm_lF>pn>,u Cn<sz>pn>,u T Cn<z2m_lF7pn>u
1 z 2™

Note that the polynomials Qnm(z) satisfy
(49) <Zan,mF7pn>p =0, k=0,....,m—1,

and if we show that Ak, (F) # 0 (the leading coefficient of Q, m(2)/c),
which will be verified at the end of this proof, then Q% (z) is unique and

Qn,m(z)

( —
n,m(z) Alrim(F)CTnn N

Using Cauchy’s integral formula and Fubini’s theorem, for € > 0 sufficiently
small so that F'(z) is holomorphic on D14, for £=0,1,...,2m — 1, we have

: ()
ol Fonu=cn [ o [ e )

_ /F ¢F©) [P duzyac =

271 (—=z 271

CPF(¢)sn(€) dC

F1+5
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Cn

_ o / B () £ ()5 (U ()W (1) dw = (FhT),.
Ti+e

211

Computing the determinant in (48) by expanding along the last row and
applying the previous formula, we obtain

m

(50 Qn m Z m+k k det[(fKn th r)n] =1,....m,r=1,...k,k+2,...m+1,
k=0

where
Kpi(w) =V (w)h, (w), t=1,...,m,
Lopy(w):=9"Yw), r=1,..., m+1.

Moreover, all the functions K, ;(w) and L, ,(w), are holomorphic in U \ {oco},
and

Ky(w) = lim Ky (w) = ¥ (w)h(w), t=1,....m,
Lo(w) =9V w), r=1,...,m+1,

uniformly on each compact subset of U \ {oo}. By Lemma 3.3 and (50), we
have that Aq,..., Ay € Tom(f) and

Qnm(2)
51 lim
( ) n—00 det[fn — j] ,j=0,1,....,m—1
= hm i( 1)m+k kdet[(fKnthT)n] 17 -, T= l’ ’k k+2’7m+l

n—oo det[fn i— ,]] 4,7=0,1,...,m—1

k=0

m

— Z(—l)m+k2k det[KT()‘t)]t,TZl,...,m det[Lr()\t)]tzl,...,m,r:l,...,k,k+2,...,m+1

2
v W2(A1, Az, s Am)

1 \I/()\l) \Ilm()\l)
_ det[Kr(At)]rt=12,..m |1 : :
W2(A1, A2, Am) (1T (Ny) -+ U™ (A)

1z .. 27
a ) -T2 .
=[0I ( ()\j—)\i( )> 2"

where W (A1, Ag, ..., Ap) = det[)\:_l]t,rzl,,,,,m is the Vandermonde determi-
nant of the numbers A1, ..., Ay,. Since the degree of the polynomial in the
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last expression is m, the degree of Qnm(z) is m for all n sufficiently large.
Thus Apy m(F) # 0 and Qb n(2) = Qum(2)/(Ak 1 (F)c™). Moreover, the ze-
ros of the polynomial in the second last equality are &1, ..., &, so the zeros
of Qnm(z) (and Qh 1 (z)) converge to &1, ..., &, as n— oo, [

PROOF OF THEOREM 2.8. First of all, we prove that (b) implies (a)
using Lemma 3.4. We assume that the zeros of inm(z) have limits &1, ...,
Em, as n — oo. For w € U, we define

ap(w) :=w™ ™ ﬂm,m(\ll(w)), Nnj(w) = W(w), j=0,...,m—1.

The functions ay,(w) and win, j(w) = w7 W (w), j=1,...,m—1, are
holomorphic in U, and

a(w) = lim a,(w)=w""" H(‘I/(w) - &),

uniformly on each compact subset of U \ {co}. Then, a(w) has at most m
zeros in U \ {oo}. By the definition of QF, = we have, for ¢ > 0 sufficiently

n,m?

small so that F'(z) is analytic on Dy, and for j =0,...,m — 1,

_ 1/ W (w) F (W (w)) Qi (¥ (w))
2mi . wntm+1

1 / F(t)QF ()P (1)
2mi Thse Prtm+1 ()

(fannn,j)n dw

dt = [ZjFQg-pm,m]n-km =0,

where we recall that 4, := {w € C : |w| = r}. Therefore, the assumptions of
Lemma 3.4 are satisfied. If the regular part of f(w) is a rational function
with at most m — 1 poles, then F(z) is a rational function with at most
m — 1 poles which implies that AZ (F) =0 for n sufficiently large. This
is impossible because deg( nE m) = m, for n sufficiently large. Therefore, by
Lemma 3.4, a(w) has precisely m zeros Ai, ..., Ay, in U\ {oo} and the
limits of the poles of the classical Padé approximants R, ,, of f are A, ...,
Am, as n — oo. This implies (a).

Now, we prove that (a) implies (b) using Lemma 3.3. Assume that the
zeros of @y (Where f is the approximated function) have limits Aq, ...,
Am, as n — 00. Define &, (w) and 7, j(w), j =0,...,m — 1, as in (46) and
(47), respectively. Applying exactly the same argument, we can check the
conditions required in Lemma 3.3 for &, (w) and 7, ;(w), so we can apply
the equality (44) in Lemma 3.3.
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Now, set
[Fln  [2F]p -+ [2"Fln
[2F), [Z2F), - [¢™TF),
(52) Qn,m(z) =
[Zm_lF]n [sz]n [ZQm—lF]n
1 z e zm

Note that the polynomials Qnm(z) satisfy
(53) 2*QnmFln =0, k=0,....,m—1,

and if we show that AZ (F) # 0 (the leading coefficient of Qn.m(2)), which
will be verified at the end of this proof, then Qﬁ m(2) is unique and

Qn,m(z)

w9 = (e ()

n,m

For € > 0 sufficiently small so that F(z) is holomorphic on Dj., for ¢ =
0,1,...,2m — 1, we have

l / 4 w w
F), = 1ZZtF@¢@ﬁ:1 / V@) 4 gt

2mi ontl(y) 2mi wntl

Computing the determinant in (52) by expanding along the last row and
applying the previous formula, we obtain

m

k k
(54 Z m+ det [ (fKn,th,r)n] t=1,....m,r=1,....k,k+2,...,m+1’
k=0

where
Kpi(w) = 0" w), t=1,...,m,
Lopy(w):=9""Yw), r=1,...,m+1.

Clearly, all the functions K, +(w) and L, ,(w), are holomorphic in U \ {oc},
and

Ki(w) := ¥ (w), t=1,...,m,
Lo(w) =9V w), r=1,...,m+1,
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for all w € U \ {oo}. Applying Lemma 3.3 and (54), we have that A\1,..., \p,
€ To,m(f) and the same line of reasoning used to derive (51) implies that

: Qn,m(z)
"h_{rolo det[frn—i—jlij=01,..m1
1O --- U™()\)
W@, T(\2), ., T(A) |2 0 .

W2(A1 Mgy s Am) LT(y) - UT(A)
1 z Zm
B T(A) = (A2
— H Y )z +
1<i<j<m

Since the degree of the polynomial in the last expression is m, the de-
gree of Qpm(z) is m for all n sufficiently large. Thus A% (F)#0 and

bon(z) = Qnm(z)/Afm(F) Moreover, the zeros of the polynomial in the

second equality are &1, ..., &y, so the zeros of Qym(2) (and QF m(2)) con-
verge to &1, ..., &m, asn —oo0. O
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1 Introduction

Let E be a compact subset of the complex plane C such that C \ E is simply
connected and F contains more than one point. It is convenient to assume that
0 € E and this can be done, if necessary, without loss of generality making a
change of variables. By the Riemann mapping theorem, there exists a unique
exterior conformal mapping ® from C \ E onto C\ {w € C : |w| < 1} satisfying
®(00) = 0o and P'(00) > 0. For any p > 1, we define

I'y:={z€C:|®(2)|=p} and D,:=EU{zeC:|P(2)|<p},

as the level curve of index p and the canonical domain of index p, respectively.
We denote by po(F') the index p > 1 of the largest canonical domain D, to which
F can be extended as a holomorphic function, and by p,,(F) the index p > 1 of
the largest canonical domain D, to which F' can be extended as a meromorphic
function with at most m poles (counting multiplicities). We denote by

oo

DPOC(F) = U DPm(F)

m=0

the maximum canonical domain in which F' can be continued to a meromorphic
function.
The Faber polynomial of E of degree n is defined by the formula

o) L [ 20
T omi Jp, b2

dt, z€ Dy, n=20,1,2,....

Denote by H(E) the space of all functions holomorphic in some neighborhood of
E. The n-th Faber coefficient of F' € H(FE) with respect to ®,, is given by

), e L[ FO0

= — dt
2mi Jo, ®n(r)

where 1 < p < po(F). Denote by N the set of all positive integers. Set Ny :=
Nu {0}.

The definition of Padé-Faber approximants (first introduced in [0]) is stated
below.

Definition 1.1. Let F' € H(E) and (n,m) € N x N be fixed. Then, there exist

polynomials qﬁm, pﬁmb k=0,1,...,m — 1 such that
deg(ply ) <n—1,  deg(gy,,) <m, ¢y, £0, (1.1)
[2*qe W F —pl )i =0, j=0,1,2,...,n. (1.2)
For each £k =0,1,...,m — 1, the rational function
E L pﬁm,k
nmk T T E
Anm

is called an (n,m, k) Padé-Faber approzimant of F.
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To solve for ordered pairs (pfim > qf m), we need to find nm +m + 1 unknown
coefficients in (IT) from nm~+m linear equations in (IZ2). Then, RE . always ex-
ist but they may not be unique. Moreover, since qi m Z 0, we normalize it to have
leading coefficient equal to 1. Note that the definition of Padé-Faber approximants
in Definition I is totally different from the definition of “classical” Padé-Faber
approximants (see, e.g. [2]). Since this new definition of Padé-Faber approximants
was recently introduced, there are only two publications [, B] studying this ap-
proximation. In [I], Bosuwan and Lépez gave necessary and sufficient conditions
for the convergence with geometric rate of {¢},, }nen (when m is fixed), namely,
proving the analogue of the Montessus de Ballore-Gonchar theorem for Padé-Faber
approximants on row sequences (see [l, Corollary 1.6]). Later, Bosuwan [3] further
studied the convergence of zeros of {g/,, }nen (when m is fixed). These two results
show that the zeros of {inm}neN can be used to detect the location of the poles
of the approximated function F' € H(E).

Next, let us introduce a concept of convergence in Hausdorff content. Let B
be a subset of the complex plane C. By U(B), we denote the class of all coverings
of B by at most a numerable set of disks. Let 5 > 0 and set

hg(B) :=inf ¢ Y U7 : {U;} €U(B) 3,

j=1

where |U;| stands for the radius of the disk U;. The quantity hg(B) is called the
B-dimensional Hausdorff content of the set B. This set function is not a measure
but it is subadditive and monotonic. Clearly, if B is a disk, then hg(B) = |B|?.

Definition 1.2. Let {g,}nen be a sequence of complex valued functions defined
on a domain D C C and g be another complex function defined on D. We say that
{gntnen converges in B-dimensional Hausdorff content to the function g inside D
if for every compact subset K of D and for each € > 0, we have

ILm hg{z € K : |gn(2) —g(2)| > e} = 0.

Such a convergence will be denoted by hg-lim;,,_,o gn = g in D.

The objective of this paper is to investigate a convergence in Hausdorff con-
tent of the sequences of Padé-Faber approximants Rfimm . @ n — 0o when the
sequences {my }nen satisfy
. mylnn

lim
n— oo n

= 0. (1.3)

This type of sequences of indices {(n, my)}neny when {m, }nen satisty the limit
() was first considered by Gonchar [d] for Padé (a, §)-approximants. In the
current paper, we prove many results analogous to those in the paper by Gonchar
(see Theorem 2, Corollary 1, and Corollary 2 in [d]). As a consequence of our
main theorem in this paper, we give an alternative proof of a Montessus de Ballore
type theorem for row sequences of Padé-Faber approximants which was originally
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proved in [I]. Note that the normalization of qﬁ m introduced in the next section
is different from the one in [0].

An outline of the paper is as follows. In section 2, we state the main theorem
and its corollaries. All auxiliary lemmas are in section 3. Section 4 is devoted to
the proofs of all results in section 2.

2 Main Results

An analogue of Theorem 2 in [d] is the following theorem. This theorem
constitutes our main result.

Theorem 2.1. Let p > 1, F € H(E) be meromorphic in D,. Assume that

m* := liminfm,, > dj (2.1)
n—oo
and
nl
lim 2% g, (2.2)
n—oo n
where k is a fixed number in {0, 1,...,m* —1} and dj;, denotes the number of poles

E
N,y

of z*F in D,. Then, for any 8 > 0, each sequence {R
B-dimensional Hausdorff content to z*F' inside D, asn — oo.

kfneN converges in

One of the consequences of Theorem I is a Montessus de Ballore type theorem
for Padé-Faber approximants stated below.

Corollary 2.2. Let k € {0,1,...,m — 1} be fived. Suppose that z*F € H(E) has

poles of total multiplicity exactly m in D, (.xpy at the (not necessarily distinct)

points A1, Aoy ..., A Then, RE,m,k is uniquely determined for all sufficiently large
n and the sequence {Rﬁm,k}neN converges uniformly to z*F inside D, +py \
{Ms A2, A} as n — oo. Moreover, for any compact subset K of D, (.xp) \
{A, A, 5 Am )
P
limsup ||2*F — RE n < 121

e n,m,kHK = m7

where || - ||k denotes the sup-norm on K and if K C E, then ||®| x is replaced by
1.

Here and in what follows, the phrase “uniformly inside a domain” means “uni-
formly on each compact subset of the domain”.
The following corollary is an analogue of Corollary 2 in [4].

Corollary 2.3. Let k € Ny be fized and F € H(E). Denote by D, (.xp) the max-

imal canonical domain in which zFF can be continued to a meromorphic function.

Assume that
my,Inn

=0.

lim m, = o and lim
n—o0 n—o00 n
E

rm, kJneN converges in [3-dimensional

Then, for any B8 > 0, each sequence {R
Hausdorff content to z*F inside D, (xp)y asn — oo.
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3 Notation and Auxiliary Results

For each n € N, let inmn be the polynomial qfimn normalized in terms of its
7eros Ay ; so that

Enrm I -an IT (1- 1) (3.1)

IAn,jl<1 Anj|>1 "

and for all k =0,1,...,m, — 1,

B E
_ Pumak D

E _ _nyma,k
Rymak =5 = 0E
qnymn n,Mn

Now, we discuss some upper and lower estimates on the normalized Qf’m"

in (B). Let ¢ > 0,d € N, k € Ng, and F' € H(F) be fixed. Suppose that
the poles of z*F in D,k py are A1, Aay .oy Aar (they are not necessarily distinct
and d’ < d) and the zeros of nymn for Fare Ay 1, An2,...5 Any, (they are not
necessarily distinct and I,,, < m,,). We would like to emphasize that since 0 € E,
for any k € No, D,,(zxr) = Dyy(r) and A1, Az, ..., Ag are exactly all the poles of
Fin D,,ry. We cover each pole of ZFF in D, (.xry with an open disk of radius
(¢/(6d))'/? and denote by J(’iE (F,d) the union of these disks. For each n € N, we
cover each zero of QF | with an open disk of radius (g/(6m,n?))'/# and denote

by JE,E(F) the union of these disks. Set for each ¢ € N,

JEEd:0) = J(F.a) | (G J;Z,5<F>> (32)
n=>~¢,

and
J2(F,d) := JZ(F,d;1).

Using the monotonicity and subadditivity of hg, we have

ho(J2(F,d) < ha(Jg(F.d) + > ha(J7 o (F))
) 2
§2+26;2€<6+62> <e

Note that JZ (F,d) C JE (F,d) for e; < e;. For any set B C D, k), we put
B(e) := B\ J2(F,d). Clearly, if {g, }nen converges uniformly to g on K () for any
compact K C D,,(r) and € > 0, then hg-lim,, 00 gn = g in D,k ).

The normalization of QF

bounds on the estimation of Q% ,,, .

provides the following useful upper and lower
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Lemma 3.1. Fiz k € Ng and d € N. Let F' € H(E), K C D,,.»p) be a compact
set, € > 0 be fized, and ¢ € N be fized. Suppose that

liminf m,, > d’,
n— oo

where d’ is the total multiplicity of poles of zFF in D, :xFy, and

. mylnn
lim =0.
n—o00 n

Then, there exist constants Cy > 0 and Co > 0 independent of n such that for all
sufficiently large n,

197 m, I < CT™, (3-3)
where || - ||k is the sup-norm on K and
min Q7 ()| = (Camyn®) =2/, (3-4)

ze K\JE (F,d;0)
where the above inequality is meaningful when K \ J2(F,d;{) is a nonempty set.

Proof of Lemma B. Without loss of generality, we assume that K is a nonempty
compact subset of D, .« p). Moreover, it is easy to check that if K = {0}, the
inequalities (B3) and (BA) hold. Then, we can assume further that K # {0} and
set M := ||z||kx > 0. Therefore, there exists S € N such that SM > 1. From the
normalization of QF

n,my?

”Qf,mn”K = max H (2 — )‘n,j) H <1 _? ) < (M+ 1)mn

zeK ;
IAn. <1 IAnj1>1 "

and for z € K \ J3(F,d;{) and n > ¢,

@ = | TT G-ap T1 (1-5)

A

[An,s1<1 [An,j|>1 ™
z z
S e T (-35) T (-55)
IAn;1<1 1<|An j|<SM I A g |>SM "
Anj— 2 z

5]

S e T (7)1 (50
)\nj )\nj
[An,;1<1 1<|An,;|<SM ’ [An,j1>SM >

T () T [ ] )

|An,jl1<1 1< An 5|SSM [An.j1>SM
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Since (¢/(6mnn?))Y/? — 0 as n — oo, it is easy to see that for n sufficiently large,

s (=) e (=)
S /) — \ 6myn? an SM — \ 6m,n? '

Therefore, there exists a constant Co > 0 such that the expression in (B3X) is
greater than (Cym,,n?)~(2"=/B) This completes the proof. O

Next, the following lemma (see, e.g., [6]) concerns the formula for computing
po(F) and the domain of convergence of Faber polynomial expansions of holomor-
phic functions.

Lemma 3.2. Let F € H(E). Then,

-1
pol) = (1msup [
n—oo

Moreover, the series Y~ ([F],®, converges to F uniformly inside D, (.

As a consequence of Lemma B2 and Definition I, if F' € H(E), then for any
k=0,1,...,my,

Zk E,mn(z)F(Z) - PnE:mn,k(z) = Z [ZkQE,mnF]K @2(2)7 z € Dpo(sz)a
l=n+1
(3.6)
and memk = 2;01 [2*QF .. Fle @ are uniquely determined by QF,, .

The next lemma (see [B, p. 43] or [[4, p. 583] for its proof) gives an estimate
of Faber polynomials ®,, on a level curve.

Lemma 3.3. Let p > 1 be fized. Then, there exists ¢ > 0 such that
[®nllr, <cp”s  n=>0. (3.7)

Indeed, by the maximum modulus principle, the inequalities in (BZd) can be
replaced by the inequalities

[@nll5, <cp”,  n2>0, (3.8)

which are used frequently in this paper.
The following lemma is about the uniqueness of Q% . (and g7 ).

Lemma 3.4. Let (n,m) € N x N be fivred. Assume that for all qﬁm in Definition
3, deg(qy ,,) = m. Then, qf,, is unique.

Proof of Lemma B4. Let (n,m) € Nx N be fixed. From (I0) and (T2) in Defini-
tion [T, it is easy to check that a polynomial ¢y 2™ +cp12™ " +.. . 4co is ¢f,, if
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and only if ¢, 2™ + Cm_12™ "1 +. . . 4o is monic and the constants ¢, Cm_1, - ., Co
must satisfy the following equation

[z™F), [zm1F), ... [F]n Cm 0

[ F],  [MF, ... [2F]n Crm—1 0
: . . =1 69

2m1F], [2m2F], L [V | eo 0

For contradiction, let us suppose that there are distinct polynomials § = 2™ +
12 b G022+ g and § = 2™ F Cno12" T F G022+ + G
satisfying (B™). Let ¢ be the polynomial ¢ — ¢ normalized to be monic. Clearly,
deg(¢) < m and ¢ # 0 is a monic polynomial where all coefficients satisfying
(B). Therefore, ¢ is qfi m- This contradicts with the assumption that for all qfi s

deg(qﬁm) =m. O

The final lemma proved by Gonchar (see [d, Lemma 1]) allows us to derive
uniform convergence on compact subsets of the region under consideration from
convergence in hi-content under appropriate assumptions.

Lemma 3.5. Suppose that hq-lim,_,~ g, = g in D. Then the following assertions
hold true:

(i) If the functions gn,n € N, are holomorphic in D, then the sequence {gn }nen
converges uniformly inside D and g is holomorphic in D.

(ii) If each of the functions g, is meromorphic in D and has no more than
k < 400 poles in this domain, then the limit function g is also meromorphic
and has no more than k poles in D.

(#ii) If each function g, is meromorphic and has no more than k < +oo poles
in D and the function g is meromorphic and has exactly k poles in D,
then all g,,n > N, also have k poles in D; the poles of g, tend to the poles
A1, A2y ..o, Mg of g (taking account of their orders) and the sequence {gn }nen
tends to g uniformly inside the domain D' = D\ {\1, A2, ..., Ak}

4 Proofs of main results

Proof of Theorem 1. Let k € {0,1,...,m* — 1} be fixed and d be the number
of poles of z"F (counting multiplicities) in D, (particularly, in D,,sp)). For
j=1,2,...,7, let a; be a distinct pole of 2*F in D, (¥ ), and 7; be the order of
a;. Note that since 0 € E, D, .xpy = D, (r) and a1, az, ..., a, are all the poles
of F'in D,,(ry with orders 71,7,...,7,, respectively.
In the first step, we want to show that for each j =1,2,...,7,
|®(a;)|

1. b g e 1200l 41
1&2"‘( nom,) () < pa(F)’ ()
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where v = 0,1,...,7; — 1. This can be done by induction. Let j € {1,2,...,7} be
fixed. Define

wa(z) =[] (e = o).

where d = 371, 75,

F
Go(z) = dez(i)aj()ze)’ and Hy(z) = (2 — a;)'Gy(2),
where ¢ =1,2,...,7;. Note that Hy(a;) # 0 for all £ =1,2,...,7;. By Definition
[T, since deg(wq/(z — a;)¢) = d — € < m, — 1, it is not difficult to check that

L [ Gi)QE,. ()¥(2)
@ = E = M dz = 4.2
Apm [GZQn,mn]" i o CI)”+1(Z) z =0, ( )
where 1 < p; < |®(¢;)|. Define
o L[ GEQE, (V)
n,n 27_” sz q)n—i-l(z) )

where |®(a;)| < p2 < pa(F).
Because G1Qf,, ®'/®"*! is meromorphic on {z € C : p; < |z] < p} and

has a pole at «; of order at most 1, it follows from Cauchy’s Residue theorem to
G1QF ,,, @' /@™ at o that

1 [ GERE. (PR, 1 [ Gr()QE ., (IV(2)
2mi Jr,, Pntl(z) 2mi Jr, Pntl(z)
=res (G1Q) ,, ®'/®" T ))
(2= 0)Gi(2)Qp 1, (2)2'(2)
= lim —
z—ra (P"H‘l (z)
_ Hi(0)Qrm, ()@ (ay) (4.3)
ot (ay)
From (E2) and (E3), we have
1 [ GiERE, CC)  Hi()@E )P
2mi Jr,, ontl(z) N Ot (o) ’ '
and by Lemma B, we know that for all £ =1,2,...,7;,
G L P’ M
i/ Z(Z) rL,7n1n(Z) (Z)dZ < cic ’ (45)
2mi Jr o tl(2) 12




Convergence in Hausdorff Content of Padé-Faber Approximants 281

where the numbers ¢ and ¢; do not depend on n (from now on, we will denote
some constants that do not depend on n by ¢, ¢3,¢q,...). By (B2) and (E3), we

obtain
cac™ | ®(ay)|"

|Qrr ., ()] <

Py
Letting pa — pa(F), it is easy to check that
P(a;)|
lim su Y < |7]
n_)QQP'Qn mn( J)| — pd(F)

Next, we suppose that the inequality (E1) is true for u = 0,1,...,¢— 2, where
¢=2,3,...,7;, and we will show that the inequality (B0) holds for ¢ — 1. Since
GeQE ., ®' /@t is meromorphic on {z € C: p; < |2| < p2} and has poles at a
of order at most /, it follows from Cauchy’s Residue theorem to G,QF =~ &' /on+1
at o that

n,Mn

O o L[ G@ELEVE 1 [ GlE)E,, (P)
Tan = nn = o /F T+ (2) = 5 /F T+ (2) dz
= res (Gan m, ' /et O(j)
1 (e a) Gu2)QE,, ()9 ()T
=7 Trti(z) '

Using (E22) and the Leibniz formula, we have

1 =1\ (H@
= () (EY T @t e,
t=0

Consequently,

(QE Y =V(a;) =t — 1)1 (q)nH) ()
NyMy 1) = ‘'n,n HK‘I)/ J

ST ()T @) (B ) )

t=0
(4.6)

Let 6 > 0 such that ps := pg(F) — ¢ > |®(a;)|. Moreover, by (E3),

E / My
0 — %m /Fp2 Ge(z) @Zﬁﬂ((zz))q) (=), < 01;3 7 @)
and by Cauchy’s integral formula, for all t =0,1,...,¢ — 2,
H,o\ 0 (0—1—1t) Hy(2)®'(2)
(o) )=S0 L e

@ (4.8)

= [®(ay) = 0"
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where {z € C: [z — ;| = ¢} C {z € C: |®(2)] > |®(a;)| — ¢}. From (E2) and
(ER), the equality (E8) implies that

lim sup| (Qy7 1, )~ () /"

n—oo

N, My

17(0) et
=1 —1)! — ) (q
lin_il*ip ’(z ) Tn,n (qu)/ ) (Oé])

—Z () (Z) T @0t () e

o, (g )

Letting § — 0, we obtain the inequality

1/n

: B(ay)|
lim su - =D (g N7 < |7J
(@, )V a7 < I
Therefore, we have the inequality (E70) for all u =0,1,...,7; — 1.
From (BM), we obtain
QL F = Pl k= D a®e, (4.9)

{=n+1

where
k
a’é’l’)b = [Zk g,mnF}f'

Multiplying the equation (E9) by wy and expanding the result in terms of Faber
polynomial expansion, we have

zkwdQﬁmnF denmnk* Z a wdq)g Zb(y’f%q)y
v=0

l=n+1
n+d %)
=y b, + Y bR, (4.10)
v=0 v=n+d+1

where b,(,k% =Y et aﬁi}b[wd@g]y or bl(,ky), = [zkwdQE’ F — wq Pt mn,k]l"
Let K be a compact subset of D, .xp) and set

o = max{]| @], 1}

(¢ = 1 when K C FE). Next, we will estimate Y -
Since deg(wdpfmn_’k) <d+n,forallv>n+d+1,

v=n+d+1 |bV"||(I> ( )| on EO"

b(u]f) . [Z wdQn mnF - wdpn Mo, k]l/ = [kadQE,mnF]V



Convergence in Hausdorff Content of Padé-Faber Approximants 283

1 Fwa)Qf e, () F(2)P(2)
~ 2mir,, vl (z)

dz,

where 0 < py < pa(2*F). From Lemma B, for sufficiently large n, it is easy to
see that
13%2

v,n

<2 (4.11)
2

By (BR) and (B11), we get

- = cgcn a\"
Songied| < X () o —aen (2) . @
v=n+d+1 Eo‘ v=n-+d+1 2 P2

Consequently, as py — pg(2*F), we have

00 1/n o
lim sup %) || @, | < —. (4.13)
n— 00 u:nz—i—:d-&-l ’ o, pd(ZkF)

Now, we find the estimate of ZZig b,(,k%|\<l>,j(z)| on D,. By Definition [, we
know

W0 L[ A, FEY(E)
En T o T, Ol+1(z) ’
where 1 < p; < po(2*F), and we define
1 ZFQE  (2)F(2)® (2
Te(l;) = . "5 3 (2) 2 )dz, (4.14)
' 2mi Jr,, OH1(2)

where pg_1(2FF) < ps < pa(zFF). Because zFQF  F®'/®'*! is meromorphic

n,mn

on {z € C: p; < |z| < pa} and has poles at ay,as,...,aq of orders at most
T, To....,Tq, respectively, it follows from Cauchy’s Residue theorem that
Y kNE /
k k 2 Qnm, (2)F(2)®'(2)
= ) = e ( SOV,
Jj=1
i kNE F(2)P' (rj=1)
SN S (Catin e SRCTCLIO
j=1 (7 = Dl a=ay it (z)
T;i—1 ) (rj—1—u)
1 7, =1\ [ (2 — ;) 2FF®'\ u
= Zm Z < Ju ) <é)g+1 (a;)( E,mn)( )(aj)~
j=1 1 u=0
(4.15)
Let 6 > 0. By computations similar to (£22) and (E=8), we have
i g BT (4.16)

P2



284 Thai J. Math. (Special Issue, 2019)/ W. Chonlapap and N. Bosuwan

and (ry—1—u)
(z — aj)szqu)’) . cr
—_— ()| £ ———=. (4.17)
‘( Pt 7T (12(ay)] - 9)f
Moreover, the inequalities (E) imply that for all w =0,1,...,7; — 1,
O(aj)| +6\"
E W) ()] < |37 4.1
(QE,)as)| < e (LG EE (118)

(recall that D, .xpy = D,,(ry). From (E13), (E08), (E17), and (EI8), we obtain

k k
jal| <[7¥)

¥ Ti—1 ik s\ (T 1—w)
1 i =1\ ((z — ;) 2°F® u
e (O (BT @)@ e
= u=0
<G Co i (12 (aj)| +6)"

b (ol F) 107 2 ([@(ay) 0

Next, we estimate |[wq®Py],|. Suppose that 6 > 0 is sufficiently small so that
p1 — 0 > 1. Then, by (B1),

1 wa()P()¥(2) | | _ erolpr =)’
Dl = |— dz| < .
|[wd d | 27T’L'/F . (I)V-l,-l(z) 2= (p1 _5)u
Consequently, we get
BT < 3 laglllwa®e,|
l=n+1
[e%s) m Y n l
cgc™m c1o(p1 — ) )
< " (
£§1< ps (P ’“F +5”; )) (p1 = 0)
Y n
ciic™  (p1—6 c12 P1 5)
= + .
(p1 = 6)¥ ( p2 ) (pa(zFF) + 6)"(p1 — 6)¥ ]; (

(4.19)
Applying (88) and (1Y), we have

n-+d

> b lIp,
v=0

- clgcm<m—a)”+ cualpr — 6)" Z( a)“ §< o )
- p2 (Pa(F) +0)" <= \| = \(p1—9)
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n n n—+d

m p1—5> cuapr = )" & <|<1><aj>+6> =1,

< | ci3c™" + o
b ( p2 <pd<sz>+6>n; [®(ay)| ~ & 2

p176 " 014,017(; 7 |¢ |+5 +d
< Min d+1)o™me.
= | ( P > T aFF) +5"JZ_1(|<I> y—s) |rHdtle
(4.20)
This implies that

n+d 1/n
: —9) alp—9) |® ()| + 0
lim su bR 11D, <max{g(p1 max — )L
mawp | 3 Pali®l) < P TR PR N Tew

Letting § — 0, p1 — 17, and py — pa(2*F), we have

ntd 1/n
lim su b (1@, <7 4.21
maw |- W | < o (a.21)

Finally, by (83), (210), (E713) and (E=2T), we obtain for sufficiently large ¢,

. k B 1/n
llr?lﬁsolip |2 F — Ry, Mk ||50\JE(F,d;€)
n+d k) q) > b(k) b, 1/m
< lim sup Z bun ’
n— o0 n Mn y=ptd+1 dQ" D\ JE (Fdi0)
1/n
li !
- lim su
~ pa(ZFF) ey min Q1 (2)]
2€K\JZ (F,d;¢) ,
o 2mp g
< ——— limsup(eismpn?) W = ———| 4.22
= pa(FEF) nﬁoop( 15mn") pa(2*F) 2

where ¢15 > 0 and the last equality follows from the limit condition (22). There-
fore, for any 3 > 0, hg-lim, 0o RY =, = =2FFin D, k- Since D, C D, .rpy,
=2zFFin D,.

T, My,

hﬂ-limng)oo RE

n,mny,k

O

Proof of Corollary Z3. Let k € {0,1,...,m — 1} be fixed. By the assumption of
Corollary I, we have m,, = m. Then, the conditions (E1) and (Z2) in Theorem
P are obtained. By Theorem P, we get hi-lim,_ o Rf’mmk =2FFin D,k F)-
Applying (ii7) in Lemma B3, we get that each pole of z¥F in D, (.xF) attracts as
many zeros of QF . as its order. Therefore, since zFF has m poles in D,, (.15,

deg in = m for all sufficiently large n. Applying Lemma B4, QF  is unique for

n,1Mm
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all such n. From the discussion below (BH), since PnE,m,k is uniquely determined
by QF ., RE.,. , is also unique for all such n.

Let K C D, k) \{A1, A2, - -, A } be a compact set. Choose o := max{||®||x, 1}.
Since all points A1, A, ..., Ay, attract all zeros of Qf’m, for sufficiently small € > 0
and large /,

K C D, \JP(F,d:1).
By the inequality (E222), we have

. 1/n . 1/n
h,ﬁ“j;;p [2°F = Ryl |l e < hffo‘ip [ F = Ry Hﬁa\Jf(F,d;é)
_7
= pa(FF)

This implies that the sequence {Rf m,k}nGN converges uniformly to z*F inside
D, .+ \{A1, A2, ..., Am} as n — oo. The proof is completed. O

Proof of Corollary Z23. Let K be a compact subset of D, _(.rp), and let e >0, 3 >
0, and k € Ny be fixed. Then, since K is compact, K C D, .« ) for some d € N.
Clearly, lim,, o my > d. Applying Theorem 71, because hg-lim, o RY | =
ZkF in Dpd(sz),

ILm hs{z€ K:|RE, (2)—2"F(z)| >¢} =0.

;M ,

This completes the proof. O
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Abstract. Given a vector function F = (Fi,. .., Fy), analytic on a neigh-

borhood of some compact subset E of the complex plane with simply
connected complement, we define a sequence of vector rational functions
with common denominator in terms of the expansions of the components
Fi,k=1,...,d, with respect to the sequence of Faber polynomials asso-
ciated with E. Such sequences of vector rational functions are analogous
to row sequences of type II Hermite-Padé approximation. We give nec-
essary and sufficient conditions for the convergence with geometric rate
of the common denominators of the sequence of vector rational functions
so constructed. The exact rate of convergence of these denominators is
provided and the rate of convergence of the approximants is estimated.
It is shown that the common denominators of the approximants detect
the poles of the system of functions “closest” to F and their order.
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1. Introduction

Throughout the paper, E denotes a compact subset of the complex plane C,
which does not reduce to one point, such that C\ F is simply connected. There
exists a unique conformal representation ® from C\E onto the complement
of the unit circle, such that ®(c0) = oo and ®’(c0) > 0. It is well known
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that ®'(c0) = 1/cap(FE), where cap(F) is the logarithmic capacity of E. The
Faber polynomial of E of degree n is defined as the polynomial part of the
Laurent expansion of ®" at infinity.

Faber polynomials have been a subject of major interest in complex
analysis due to their close connection with conformal mappings and the log-
arithmic capacity. Their general properties and use in the approximation of
functions analytic on a neighborhood of E are well covered in [13]. For com-
pact sets with special configurations (m-cusped hypocycloid, starlike sets,
circular lunes, and arcs), they are known and numerical methods for their
computation have been proposed (see [12]). For recent results on their as-
ymptotic behavior, see also [1,10].

The object of this paper is to prove a Montessus de Ballore-Gonchar
type theorem for simultaneous Padé-Faber approximants analogous to the
one obtained in [7] in the context of Hermite-Padé approximation. Such re-
sults, motivated in [9], include a direct part where convergence of the approx-
imants and their poles is derived provided that the functions being approxi-
mated have convenient analytic properties, and an inverse statement in which,
starting out from the asymptotic properties of the poles of the approximants,
some important analytic properties of the functions being approximated are
determined. For scalar functions, several approximating models have been
explored which, in one way or another, extend the notion of Padé approxi-
mation; for example, see [5,9,14]. In the introduction of [5,7,11], you can find
an account on the history of the problem. In [4], we studied a similar problem
when the approximants are built on the basis of orthogonal expansions. Here,
we expand in terms of Faber polynomials which, as mentioned above, are well
known for a wide range of compact sets.

Let us clarify what we understand as a pole of a vector function and its
order.

Definition 1.1. Let € := (21,Q0,...,84) be a system of domains, such that,
for each o = 1,2,...,d, F, is meromorphic in 2,. We say that the point
A is a pole of F := (Fy, Fa, ..., Fy) in Q@ of order 7 if there exists an index
a € {1,2,...,d}, such that A\ € Q, and it is a pole of F, of order 7, and for
B # «, either A is a pole of Fg of order less than or equal to 7 or A & Qg.
When Q = (2,9Q,...,9Q), we say that X is a pole of F in Q.

Let E be a compact subset as described above and ® the associated
conformal map. For each p > 1, we define

I, ={zeC:|®(z)] =p} and  D,:=FEU{zeC:|®(2)| < p},

as the level curve of index p and the canonical domain of index p, respectively.
Denote by H(FE) the space of all functions holomorphic in some neighborhood
of F and

H(E) .= {(F\,Fy,...,Fy) : Fy € H(E) for all « = 1,2,...,d}.

Let F € H(E)Y. Denote by po(F) the index p of the largest canonical
domain D, to which all Fi,, « = 1,...,d, can be extended as holomorphic
functions and by p.,(F) the index p of the largest canonical domain D, to
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which all F,, @« = 1,...,d can be extended, so that F has at most m poles
counting multiplicities.

From the definition given above, it is easy to see that the Faber polyno-
mial of F of degree n is given by the formula:

1 o (t)
O,(2) = — at, D,, —0,1,2,.... 1.1
(2) 2m’/pﬂt—z FELp (1.1)
Notice that
®,,(z) = (z/cap(E))" + lower degree terms. (1.2)

The nth Faber coefficient of G € H(E) with respect to ®,, is given by the
following:

a, = L [ GO

= [ 22y
2mi Jr, (D)

where p € (1,p0(G)) and po(G) denotes the index of the largest canonical
region to which G can be extended as a holomorphic function. For an account
on Faber polynomials and its properties, see [13]. In particular, it is well
known that

lim |, ()| = [(2)

: (1.3)

uniformly on compact subsets of C\FE.
Let us introduce simultaneous Padé-Faber approximants.

Definition 1.2. Let F = (Fy,..., F;) € H(E)%. Fix m = (my,...,mg) € N¢
and n € N. Set |m| := my + mao + - -+ + mq. Then, there exist polynomials
Qn,mv Pn,m,k,om such that

deg Pn,m,k,a <n-1, deg(Qn,m) < |m‘7 Qn,m 3—'& 0, (14)
(Qumz"Fo — Pumkali =0, j=0,1,...,n (1.5)

forall kK =0,1,...,my — 1 and a = 1,2,...,d. The vector of rational func-
tions

Rom:=(Romis--sRomd) = (Prumo01/@nms - Pomo,d/Qnm)
is called an (n,m) simultaneous Padé—Faber approximant of F.
Clearly:
(Qnmz"Fu]n =0, a=1,....d, E=0,1,...,mq—1.  (1.6)

Since @, m # 0, we normalize it with leading coefficient equal 1. We call @, m
the denominator of the (n,m) simultaneous Padé—Faber approzimant of F.
We would like to emphasize that the solutions of the homogeneous linear
system of |m| Eq. (1.6) on the |m|+1 unknown coefficients of @), m determine
the possible denominators of the Padé-Faber approximants. Once a @y, m is
given, for each £k = 0,1,...,my — 1 and « = 1,2,...,d, the polynomial
Py k.o is uniquely determined. However, the linear system (1.6) can have
linearly independent solutions which may give rise to distinct Padé—Faber
approximants for a given n and m. This effect is well known already in
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the context of Hermite-Padé approximation (but does not occur in Padé
approximation).

Finding a solution of (1.4)—(1.5) reduces to solving a homogeneous sys-
tem of (n + 1)|m| linear equations on (n + 1)|m| + 1 coefficients of @, m and
Py, m ko Therefore, for any pair (n,m) € N x N¢, a vector of rational func-
tions R, m always exists. As already mentioned, it may not be unique. For
each n, we choose one solution. The definition of simultaneous Padé-Faber
approximants employed here differs from the one used in [2] which may seem
more natural, but has serious inconveniences for proving inverse-type results.

Notice that (1.5) implies that linear combinations of the functions ¥ F,,
0<k<mg,a=1,...,dalso verify (1.5) (with the same @, m and conve-
nient polynomial P, deg P < n). This motivates the concept of system pole.
System poles may not coincide with the poles of the individual functions F,
(see examples in [7]).

Definition 1.3. Given F = (F},..., Fy) € H(E)?andm = (my,...,mq) € N¢,
we say that & € C is a system pole of order T of ¥ with respect to m if T is
the largest positive integer, such that, for each t = 1,2, ..., 7, there exists at
least one polynomial combination of the form:

d
ZvaFa, deg(ve) < Ma, a=1,2,....d, (1.7)
a=1

which is holomorphic in a neighborhood of b@(g)‘ except for a pole at z =&
of exact order t.

To each system pole £ of F with respect to m, we associate several
characteristic values. Let 7 be the order of £ as a system pole of F. For
each t = 1,..., 7, denote by p¢+(F,m) the largest of all the numbers p;(G)
(the index of the largest canonical domain containing at most ¢ poles of G),
where G is a polynomial combination of type (1.7) that is holomorphic in a
neighborhood of E@(g)‘ except for a pole at z = £ of order ¢. There is only
a finite number of such possible values, so the maximum is indeed attained.
Then, we define the following:

Pg,t(F,m) = kirllln tpEJC(Fam)v

Pg(Fa m) := pg,-r(Fa m) = k_HlliIl . pe.k(F,m).

Fix o € {1,...,d}. Let D,(F,m) be the largest canonical domain in
which all the poles of F,, are system poles of F with respect to m, their order
as poles of F,, does not exceed their order as system poles, and F, has no
other singularity. By p, (F, m), we denote the index of this canonical domain.
Let &1,...,&n be the poles of F,, in D,(F,m). For each j = 1,..., N, let
7; be the order of §; as a pole of F,, and 7; its order as a system pole. By
assumption, 7; < 7;. Set

pZ(F7m) := min {pa(Fam)? _:H}iangj,@- (Fam)} )

Jj=1,...,
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and let DX (F,m) be the canonical domain with this index. For convenience,
in the sequel, we assume that 0 € E (E is the set where all the functions F,
are holomorphic); consequently, for a fixed « if we were to define an analogous
quantity for z*F,,, we would obtain the same number p (F, m) independently
of k.

By QF, we denote the monic polynomial whose zeros are the system
poles of F with respect to m taking into account their order. The set of
distinct zeros of QE is denoted by P(F,m).

We are ready to state the direct result.

Theorem 1.4. Let F = (F, ..., Fy) € H(E)? and let m € N? be a fized multi-
index. Suppose that F has exactly |m| system poles with respect to m counting
multiplicities. Then, for all sufficiently large n, the polynomials @y m and the
approximants Ry m . are uniquely determined:

. 12()]
lim sup Qmmeg 1mmax{:ﬁé?F,m , 1.8
msup| H iy EEPEmL (18)
where || - || denotes the coefficient norm in the space of polynomials. For any

a=1,....d, k=1,...,my — 1, and any compact subset K of D% (F,m)\
P(F,m):

P 1/m ®
lim sup Hn’m’k’a —ZFF, < 7” ILS ,
n—oo || Qnm k  Pa(F,m)

where || - ||k denotes the sup-norm on K. If K C E, ||®||x is replaced by 1.

(1.9)

In the inverse direction, we have the following.

Theorem 1.5. Let F = (Fy, F,,..., Fy) € H(E)? and m € N¢ be a fived
multi-index. Suppose that the polynomials Q. m are uniquely determined for
all sufficiently large n and there exists a polynomial Q|| of degree |m|, such
that

lim sup HQn,m - Q|m|||1/n =0 <1

n—oo

Then, F has ezactly |m| system poles with respect to m counting multiplicities
and Q) = Qn-

An immediate consequence of Theorems 1.4 and 1.5 is the following
corollary which is the analog of the Montessus de Ballore—Gonchar theorem
for simultaneous Padé—Faber approximation.

Corollary 1.6. Let F = (Fy,Fy,...,F;) € H(E)! and m € N? be a fized
multi-index. Then, the following assertions are equivalent:

(a) F has exactly |m| system poles with respect to m counting multiplicities.
(b) The polynomials Qnm of F are uniquely determined for all sufficiently
large n and there exists a polynomial Q| of degree |m|, such that
Hm sup || Qpm — Quy||*/" =0 < 1.

Consequently, if either (a) or (b) takes place, then Q |y = P and (1.8)(1.9)
hold.
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The outline of this paper is as follows. Section 2 contains the proof of
Theorem 1.4. The proof of Theorem 1.5 is in Sect. 3.

2. Proof of Theorem 1.4

2.1. Auxiliary Lemmas

The following lemma (see [13]) is obtained using (1.3) the same way as similar
statements are proved for Taylor series.

Lemma 2.1. Let G € H(E). Then:

p0(G) = (nmsup HG]nP/")_l. (2.1)

n— oo

Moreover, > ° (|G, @y (2) converges to G(z) uniformly inside D, (c)-

Here and in what follows, the phrase “uniformly inside a domain” means
“uniformly on each compact subset of the domain”.

As a consequence of Lemma 2.1, if F = (Fy, Fy, ..., Fy) € H(E)?, then
foreach a =1,2,...,dand £k =0,1,...,my — 1 fixed:

o0
Zkam(Z)Foc(z) = Pomk,a(z) = Z [Zan,mFa]fq)f(z)’ 2 € Dpy(ra)s
l=n+1
(2.2)
and Py m ko = ;:01 [28Qpn mFale®e is uniquely determined by Qy, m.

The next lemma (see [8, p. 583] or [13, p. 43] for its proof) gives an
estimate of Faber polynomials ®,, on a level curve.

Lemma 2.2. Let p > 1 be fized. Then, there exists ¢ > 0, such that
[®nllr, <cp”,  n=0. (2.3)

2.2. Proof of Theorem 1.4

Proof of Theorem 1.4. For each n € N, let g, m be the polynomial );, s nor-
malized, so that

|m| |m|

Gnm(2) = Z)\n’kzk, Z [An.k] = 1. (2.4)
k=0 k=0

With this normalization, the polynomials g,, m are uniformly bounded on each
compact subset of C.
Let £ be a system pole of order 7 of F with respect to m. We show that

. [0}
limsup [g9 &)/ < —12E)

< — j=01,....,7—1 (2.5)
n—00 Pg,j+1(F7m)

Fix ¢ € {1,...,7}. Consider a polynomial combination of Gy of the type
(1.7) that is holomorphic in a neighborhood of b@(gﬂ except for a pole of

order ¢ at z = £ and verifies that ps(Gy) = pe¢(F,m). Then, we have the
following:
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Gy = ZUQ,ZFQ, degva e <mqo, a=1,2,...,d

Set,
Hy(2) = (x — €)*Gy(2) and  al¥), = [gumGiln.

By the definition of @, m, it follows that a%)n = 0. Therefore:

1 In.m(2)Ge(2) ' (2)
(Z) i ; —
[QTL mGZ] omi A (I)7L+1(z) dZ 0,
where 1 < p1 < |®(§)]. Set
1 nm(2)Ge(2)P'(2)
(0 . dn, 14
Tm = 5 . (2 dz,
where |®(§)] < p2 < pee(F,m). Using Cauchy’s residue theorem on the
function (¢, mG¢®’)/@" !, we obtain the following:
1 (1) Ge(t) (1)
O _ 7O _ 0 dn. ¢
Tpon = Tnon — Ann 271—2’/1‘ (I)nJrl(t) dt
L[ saGAOY),,
2mi ontl(t)
= 1es((gnmGe®) /2", €). (2.6)
Now:
(1)
L (2= 8 Ge(2)®'(2)dnm(2)
/ n+1 _
reS((Qn,mGz@ )/(P y 5) - (( — 1)| il—f ( (I>n+1(2
-1 (e—1- t)
1 {—1 H,9’
() () =(8)
T t=0
(2.7)
Consequently:
H,(§)'(€)
_ (f) _ [ HAS)F ST (e-1)
(¢~ iris = (FeTE ) e
-2 (t—1—1)
=1\ [ H®
+z( ) (F) @,
t=
where the sum is empty when ¢ = 1. Therefore:
q(f 1)(5) _ (- 1)|T7(f21(1)n+1(£)
o Hz(ﬁ)‘l”(ﬁ)
. Z (f - 1) (H @')“‘1‘“ OO
Pntl He(@'(§)

Choose § > 0 small enough, so that
pa = pea(F,m) — 5 > |0(¢)). (2.9)
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We have
0 ()G ) | et -
|T )= 27”/ Bz z| < P (2.10)

If ¢ =1, from (2.8) to (2.10), we obtain
¢ n
nm(®) < o ()
P2

which implies that

. e
hmsup\qn,m(f)“/ §| ()‘

n— 00 P2

Letting 6 — 0, (2.5) readily follows for j = 0. For the remaining values of j,
we use induction.

Suppose that (2.5) is true for j = 0,...,4 — 2,2 < ¢ < 7 and let us
prove that it is also valid for j = ¢ — 1. Choosing § > 0 as in (2.9), for
t=20,1,...,f — 2, we obtain the following:

Ho\“D | =1 Hy(2)®(2)
(w) O =" /. e Gt
c3
= (e -0

where {z € C: |z — & =¢} C {2z € C: |P(2)] > |P(§)| — 6}. Combining the
induction hypothesis, (2.8), (2.10), and (2.11), it follows from (2.8) that:

(2.11)

. _ 1/n
liznsp | (g, m) 1 (€)|

(£ — 1)IF 0 (€)
Hy(£)®'(€)

() () ot

< ma"{@[f)" (mors) (m )} 212)
1

Letting § — 0, we have ps — p¢¢(F,m) and from (2.12), we obtain the
following:

[V mx{ B o) } (0)
limsup () O < ma{ T S S )

= lim sup
n—oo

1/n

which completes the induction.

Let &1,...,&, be the distinct system poles of F and let 7; be the order
of &; as a system pole, j =1,...,w. By assumption, 7y +--- + 7, = |m|. We
have proved that, for j =1,...,wand t =0,1,...,7; — L

. in o _ |20 [2(E)]
1713Ls01ip \q (&) st,t+1(F m) = Pg,; (F,m)

(2.13)
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Let Lj+,5=1,...,w,t=0,1,...,7; — 1, be the basis of polynomials of
degree < |m| — 1 defined by the interpolation conditions:

Lg?t)(fk):(sj,kist,& k:l,...,w, SZO,...,Tk—l.

Then
w 7']‘71
G = Mm@l = D D am(&) Lyt
j=1 t=0

where A, || is the leading coefficient of g, m. From (2.13), it follows that

[2(E)]

pe(F.m) A P(F,m)}

. 1
L g — A QF. 127 < max{

n—oo

for every compact set K C C. In finite-dimensional spaces, all norms are
equivalent; therefore:

. 2]
limsup ||gn,m — An, QF Y™ < max { €€ P(F,m) ;. (2.14)
noo fen pe(F,m)
In turn, this implies that
lim inf [A,, || > 0, (2.15)

since, otherwise, for a subsequence of indices A, we would have limye ||¢n,ml|
= 0 which contradicts the normalization imposed on the polynomials @, m
(see (2.4)). Combining (2.14) and (2.15), we get (1.8) with < in place of =.

Now, we know that deg @, m = |m|,n > ng, since these polynomials
converge to a polynomial of degree |m|. In turn, this implies that @, m is
uniquely determined for all sufficiently large n, because the difference of any
two distinct monic polynomials satisfying Definition 1.2 with the same degree
produces a new solution of degree strictly less than |m|, but we have proved
that any solution must have degree |m| for all sufficiently large n. Definition
1.2 implies that P, m 0, is determined uniquely through @, m; consequently,
R..m,o is uniquely determined for all large enough n.

Now, we prove the equality in (1.8). To the contrary, suppose that

hrILILSolip |Qnm — QEIIY™ = 0 < max {PS)F(‘,E)HI) €€ P(F,m)} . (2.16)
Let ¢ be a system pole of F, such that
2Ol _ KIC1I
o (F, m) = maX{Pg(F,m) € e P(F,m)} .

Clearly, the inequality (2.16) implies that p.(F,m) < co.
Choose a polynomial combination

d
G=> vaFa,  degva <ma, =124, (2.17)
a=1
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that is holomorphic in a neighborhood of 5@(0‘ except for a pole of order s
at z = ¢ with p,(G) = p;(F,m). Notice that QG must have a singularity
on the boundary of D, (G) which implies that

. F 1/n _ 1

lim sup [QuGlnl p(Fom)’
In fact, if QEG had no singularity on the boundary of D, (G), then all
singularities of G' on the boundary of D, (G) would be at most poles and
their order as poles of G would be smaller than their order as system poles of
F. In this case, we could find a different polynomial combination G; of type
(2.17) for which ps(G1) > ps(G) = p(F, m) which contradicts the definition
of p.(F,m). Therefore, QFG has a singularity on the boundary of D, (G)
and the equality (2.18) holds.

Choose 1 < p < |®(¢)]. Then, by the definition of Q, m, (2.16), and

(2.18):

(2.18)

ooy = e QLG = imsup QLG — Qi
1/n
= hfl—igp % /Fp (On = ngi(lz()z?(z)@/(z)dz < %
Letting p — |®(¢)] in the above inequality, we obtain the contradiction:
L6 _ROp w1
pc(F,m) — [®(()] £4(9] p(F,m)

Let us prove the inequality (1.9). Let « € {1,...,d} and k € {0,1,...,
me — 1} be fixed and let &, ...,Exn be the poles of z¥F, in D, (F,m). For
each j =1,..., N, let 7; be the order of fj as a pole of zFF,, and 7; its order
as a system pole of F. Recall that, by assumption, 7; < 7;. From Eq. (2.2),
we have the following:

o0
Qn,msza - Pn,m,k,a = Z aé,nq)l-
l=n+1
Multiplying the above equality by w(z) := Hj\;l(z — éj)ﬁ and expanding the
result in terms of the Faber polynomial expansion, we obtain the following:

o0
k
WQn,mZ F, — WPn,m,k,a = g aé,an)é

l=n-+1
00 n+|m| oo
=D bun®= > bun®t+ Y. byn®,. (2.19)
v=0 v=0 v=n-+|m|+1

Let K be a compact subset of D (F,m)\P(F,m) and set
o = max{||®| x,1} (2.20)
(0 =1 when K C E). Choose § > 0 so small that
p2:=pa(F,m) -0 > 0. (2.21)



MJOM Direct and Inverse Results for Simultaneous Page 11 of 21 36

||®,| on D,. For v >n+ |m|+1:

Let us estimate Ziin+|m|+1 by,

bu,n = [an,msz - WPn ,m,k a]u = [an mZkFa]u

L[ Q)R ()
2mi Jr,, v+ (2) ’

where 1 < py < p’ (F,m). By a computation similar to (2.10), we obtain the
following:

4
bunl < —- (2.22)
P2
Combining (2.21), (2.22), and Lemma 2.2, we have, for z € D,
o0 o0 o v o n
Z ‘bu,n||@u(z)| § (&5 Z () = Cg <> 5
v=n+|m|+1 v=n+|m|+1 P2 P2
which implies that
1/n
msup | Y @] <2
n—oo _ o P2
v=n-+|m|+1 D,
Letting 6 — 0, we have p; — p* (F,m) and
1/n
o
li bynll®, < —. 2.23
lglﬂsolip V_n;nH_l' ,n” | B — pj;(F,m) ( )
— .
Now, we wish to estimate Z"+|m| by,
bu,n = Z al,n[wq)l]zw
l=n+1

Therefore, we need to estimate both |ag,,| and |[w®¢],|.

First, we work on |as,|. Combining (2.13) and (2.15), it follows that,
for the system poles &1,...,&, of F, if 7; is the order (as a system pole) of
&j, then

. [2(&;)]
limsup |Q(Y), ()" < ——24 u=0,1,...,75, — 1.  (2.24)
n—oo e Pe,us1(F,m)’ !
We have
_ Qnm(2)2"Fa(2)®'(2)
al,n - [Q’n,mz [e] 2 271_2 / @e—‘rl( ) dZ?

where 1 < p; < po(2*F,) and define

Qun(2) Fu ()2 (2
i ), by
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where max{|®(¢;)| :j =1,..., N} < pa < p%(F, m). Arguing as in (2.6) and
(2.7), we obtain the following:
N

Tom — Qo = Zres(Qnymsz(X(I)'/q)erl, éj)

JN 1
:ZW

j=1
-1, VI N (Fi—1-w)
75— 1 (z — &) 2FF,® S\ ()
N E ( DA > (£ (E).
u=0
(2.25)
Notice that (z — ;)% z* F,, is holomorphic at &;. Let § > 0 be such that
|D(&)| —20 > 1, j=1,...,N.
Computations similar to (2.10) and (2.11) give us
cr
|T€,n| < v
P2
~ . (T5—1—u)
(z — &) 2K F, @ - cs
and )] < ——=———, (2.26)
< e U1 (@)l -0

respectively. Take ¢ > 0. From (2.24), it follows that for all j =1,..., N

6yl < e [ PG+ Y]
|Qn,m(§J)| < = <P§j,f—j (E‘vm) te

)

Using (2.25), (2.26) and the previous inequalities, we obtain

|a€,n| < ‘Tf n‘

N Tj—1 1 Zﬁ»«. 'szkFa(I)’ (f5—1—wu) )
Y =) <( e ) )

j=1 u=0
D(E; "
S ﬁmz (LA EE
oz, 7, (F,m) + ) ([8(E)] — 0)
Cr gj | + 5
<+
5 R Em T g TR
(2.27)
Next, we estimate |[w®],|. We can assume that p; — ¢ > 1. By Lemma
2.2:
1 w(2) Py (2)®'(2) (p1 —0)*
P < —d <clp—=. 2.2
[lw®e],| < QWZ/F e A S eni, —op (2.28)
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By (2.27) and (2.28), we have the following:

bunl < D laga||[we],|

{=n+1

< C12 <P1 - 5)n
(p1 —6)" P2
ci3(p1 — )"

T on®m) + o) (pr — o)

Combining (2.29) and Lemma 2.2, for z €

M=

<|®(§j)| + 5) . (2.29)
(&) =6

-, we obtain the following:

J

ol

n+|m|

Z by, @0(2)
v=0
n N n
p1—0 cis(p1 — 6 i) +e
< |ec —+
>~ 14< 02 ) (pa(Fm+€nZ< |5>

Jj=1

n N n
P1—5) cis(pr — 6 &) +e
<lc + E
14( P2 (pa(FmH"J_l( T

x(n + |m| + 1)g" il
This implies that

1/n
n+|m|
limsup || 3 [by.nll®]
n— v=0 o)

cmd 2010 ol —0) o ([R(E)|+e
- p2 pL(F,m) +ej=1.n8 \ @) =6 ) [

Letting £,0 — 0, and p; — 1, we have ps — p(F,m) and we obtain the
following:

nim| 1/n
o
lim sup E [byn]|Dy | < — = Fom)’ (2.30)
n—oo =0 D pOé )

Using (1.8), (2.19), (2.23), and (2.30), we obtain (1.9) and the proof is com-
plete. U
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3. Proof of Theorem 1.5

3.1. Incomplete Padé—Faber Approximation

Let us introduce the notion of incomplete Padé—Faber approximation. Similar
concepts proved to be effective in the study of Hermite—Padé approximation
and orthogonal Hermite-Padé approximation (see [4,6]).

Definition 3.1. Let F' € H(F). Fix m > m* > 1 and n € N. Then, there exist
polynomials Qs p,m+ and Py m=k, k=0,1,...,m* — 1, such that

deg(Pn,m,m*,k) é n— ]-, deg(Qn,m,m*) S m, Qn,m,m* §é 0
[Qn,m,m* ZkF - Pn,m,m*,k]j = 07 .7 = 07 17 ceey N

The rational function Ry, . m= = Pnm.m=.0/@n,m,m~ 1s called an (n,m, m*)
incomplete Padé—Faber approximant of F'.

Clearly:
" QummFln =0,  k=0,1,....,m" -1,

and @y, m,m+ may not be unique. For each m > m* > 1 and n € N, we
choose one candidate of @y m m=. Since Qpn m,m+ #Z 0, we normalize it to
have leading coefficient equal to 1. We call @y m,m= a denominator of an
(n,m, m*) incomplete Padé-Faber approximant of F. Notice that, for each
a=1,...,d, Qnm [from (1.6)] is a denominator of an (n, |m|, my) incomplete
Padé-Faber approximant of F,.

Let D, . (r) be the largest canonical region in which F' can be extended
as a meromorphic function having at most m* poles and p,,« (F) be the index
of this region.

Lemma 3.2. Let F' € H(E). Fiz m > m* > 1. Suppose that there exists a
polynomial Q,, of degree m, such that

nlL»Holo Qn,m,m* = Qm- (31)

Then, po(QmF) = pm(F).

Proof. Let gy m,m- be the polynomial @, m m+ normalized, so that

Grmans(2) =D Ang?® D gl =10 (3.2)
k=0 k=0

Let &£ be a pole of order 7 of F'in D, . (ry. Modifying conveniently the proof
of (2.5), one can show that

: o
limsup g} (&)™ < 12©)1 j=01,...,7—1.  (3.3)

n— 00 L o Pmx (F)7
Since the sequence of polynomials Qy m m+ converges to Q.,, (3.3) entails
that ¢ is a zero of Q,,, of multiplicity at least 7. Being this the case for each
pole of F'in D, . (), the thesis readily follows. U

The following technical lemma, whose proof may be found in [3, Lemma
3], is used for proving Lemma 3.4.
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Lemma 3.3. If a sequence of complex numbers {An}nen has the following
properties:
(1) limNHoo |AN‘1/N = 0;
(ii) there exists Ng € N and C > 0, such that |[Ax| < C Y07 oy |Akl, for
all N > No,

then there exists N1 € N, such that Ay =0 for all N > Nj.
Lemma 3.4 below is the cornerstone for the proof of Theorem 1.5.

Lemma 3.4. Let F' € H(E). Fizm > m* > 1. Suppose that F is not a rational
function with at most m* —1 poles and there exists a polynomial Q,, of degree
m, such that

Lm sup || Qu.mom — Q™ =6 < 1. (3.4)
Then, the poles of F'in D, . (r) are zeros of Qm counting multiplicities and
either F' has exactly m* poles in D, . (py or po(QmEF) > pm=(F).

Proof. From Lemma 3.2, we know that the poles of F' in D, . (r) are ze-
ros of @, counting multiplicities and po(QmF) > pm~(F). Assume that
po(QmE') = pm=(F). Let us show that F' has exactly m* poles in D, . (p).
To the contrary, suppose that F has in D, . ) at most m* —1 poles. Then,
there exists a polynomial ¢, with deg g, < m*, such that

Since deg g+ < m*, by the definition of Q. m+; [@n,m,m*qm=Fln = 0. Take
1< p < ppm=(F). Then, by Lemma 2.1:

1
= lim sup | [@mqm~ F]

‘l/n
pme(F) oo

= lim sup HQQO*F - Qn,m,m*Qm*F]n‘l/n
P o 1/n
_ lim sup 7/ (Qm - Qn,m,m*)('z)Qm* (Z) (Z) (Z) dZ
n—oo |27 Jp Prti(z)

From the equation above, using (3.4), it is easy to show that

1 0
<

pm+(F) — pm*(F)7
which is possible only if py,« (F) = po(gm+F) = co. Let us show that this is
not so.
From (3.4), without loss of generality, we can assume that deg @y, ym.m» =
m. Set

G- (F(2) = 3 aru(2)
k=0
and

m
Quanm=(2) = D bu i,
j=0
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where by, ,,, = 1. From (3.4), we have the following:
sup{|bn,j| : 0<j<m,neN}<ec. (3.5)

Since [Qn.m.m*qm*Fln = 0, [27®], = 0 whenever deg(z/®;) < n and
[2" Py, ]n = cap™(E) (see (1.2)), we obtain the following:

0= [Qn,m,m*Qm*F}n = Z Zakbn,j[zjq)k]n

k=0 j=0
= Z Z n,j Z (Pk
k=n—m j=0
= cap™(E)an—m + Z Zakbnyj[zjcbk]n. (3.6)

k=n—m+1 j=0

Take p > 1. Using Lemma 2.2, for 5 = 0,1,...,m,and k > n—m + 1, we
obtain the following;:

| () (2) o
Combining (3.5), (3.6), and (3.7), it follows that
tnml™ ™ < S laxlt. (3.8)
k=n—m-1

Taking n —m = N and |ag|p* = Ay, (3.8) is (ii) of Lemma 3.3 and we also
have (i), because

lim [Ay]/" = lim (lanlp™)""N = p/po(gm-F) = 0.
N—oo N —o0

Consequently, there exists Ny € N, such that ay = 0 for all N > N;. Thus,
qm~+F is a polynomial and F is a rational function with at most m* — 1 poles
contradicting the assumption that I is not a rational function with at most
m* — 1 poles. Therefore, F' has exactly m* poles in D, . (r) as we wanted to
prove. O

3.2. Proof of Theorem 1.5

Before proving the main result, let us point out several important ingredients.

Given a system of functions F € H(E)? and a multi-index m € N,
the space generated through polynomial combinations of the form (1.7) has
dimension < |m|. Therefore, F can have at most |m| system poles with
respect to m counting multiplicities, since the functions which determine the
system poles and their order are of the form (1.7) and they are obviously
linearly independent. For more details, see [7, Lemma 3.5].

The concept of polynomial independence of a vector of functions was
introduced in [7] and is also useful in this context.

Definition 3.5. A vector F = (F}, ..., Fy) € H(E)? is said to be polynomially
independent with respect to m = (my,...,mg) € N? if there do not exist
polynomials pq,...,pq, at least one of which is non-null, such that
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(i) degpa < Mo, a=1,...,d;
(ii) Zi:l PaFa is a polynomial.

According to the assumptions of Theorem 1.5, for all n > ng, the polyno-
mial @, m is unique and deg @, m = |m|. This implies that F is polynomially
independent with respect to m for, otherwise, it is easy to see that for all
sufficiently large n, we can construct (n,m) simultaneous Padé-Faber ap-
proximants of F with deg Q,, m < |m| (see [7, Lemma 3.2]). Notice that if F

is polynomially independent with respect to m, then, for each « = 1,...,d,
F,, is not a rational function with at most m, — 1 poles. As we pointed out
in Sect. 3.1, for each a = 1,...,d, Q,m is a denominator of an (n, |m|, m,)

incomplete Padé—Faber approximant of F,. Consequently, the assumptions
of Theorem 1.5 allow us to make use of Lemma 3.4 in its proof.

Finally, one can reduce the proof of Theorem 1.5 to the case when the
multi-index m has all its components equal to 1. Indeed, given F € H(FE)?
and m € N%, define

Fi=(F,....2" "B, By, 2™ Ey) = (f1, for ooy fim)) (3.9)
and

m=(1,1,...,1) (3.10)
with [m| = |m|. The following assertions are easy to verify:

(i) the systems of equations that define Q,, m for F and m, and @, m for F
and m are the same.
(ii) F is polynomially independent with respect to m if and only if F is
polynomially independent with respect to m.
(iii) the poles and system poles of (F, m) and (F,m), as well as their orders,
coincide.

(iv) pm(F) = pm(F), for all m € NU {0}.

Proof of Theorem 1.5. As shown above, without loss of generality, we can
restrict our attention to the analysis of (F,m) defined in (3.9) and (3.10).
Notice that (1.7) reduces to taking linear combinations of the components of
F. We also have that Q,, m = Qnm and F is polynomially independent with
respect to m.

The arguments used in the proof follow closely those employed in prov-
ing the inverse part of [7, Theorem 1.4];

Choose 8 = 1,...,|m|. From Lemma 3.4, either D, (;,) contains ex-
actly one pole of fz and it is a zero of Q|u|, or po(Qm|.f5) > p1(fp). Hence,
D, m # C and the zeros of Q| contain all the poles of fg on the boundary
of D,y (s,) counting their order. Moreover, the function fz cannot have on
the boundary of D, (y,) singularities other than poles. Thus, the poles of F
on the boundary of D po(F) A€ ZeTos of Q| counting multiplicities and the
boundary contains no other singularity but poles. Let us call them candidate
system poles of F and denote them by ay,...,a,, taking into account their
order. They constitute a first layer of candidate system poles of F.

Since deg Q| = |m[, ny < |m|. If n; = |m|, we are done finding candi-
date system poles. Let us assume that ny < |m| and let us find coefficients
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C1,- -, Cjm|, Such that Z‘;ﬂ:‘l ca fs is holomorphic in a neighborhood of EPU(F)'
For this purpose, we solve a homogeneous system of n; linear equations with
|m| unknowns. In fact, if 2 = a is a candidate system pole of F with multi-
plicity 7, we obtain 7 equations choosing the coefficients cg, so that

|m]

/ (w — a)* Zcﬁfg(w) dw =0, k=0,...,7—1. (3.11)
lw—al|=46 B=1

We write the equations for each distinct candidate system pole on the bound-
ary of D o () This homogeneous system of linear equations has at least |m| —
n1 linearly independent solutions, which we denote by c;, j=1,...,|m|—nj,
where nj < n; denotes the rank of the system of equations.

Let

c} = (c;)l,...,c}"m‘), j=1,...,jm| —nj.

Define the (jm| — n]) x |m| dimensional matrix:

cl =
1
Clm|—ng

Define the vector g; of |m| — n} functions given by the following:

—=t
gl :=C'F = (91,1, 91 jm|—n;)">

where A? denotes the transpose of the matrix A. Since all the rows of C" are
non-null and F is polynomially independent with respect to m, none of the
functions g1 ; = Zg’il c;ﬂfﬁ,j =1,...,|m| — n}, are polynomials.

Consider the canonical domain:

jm|—n;

Dpo(gl): ﬂ Dpo(gl,j)'
j=1

Clearly, D, ) is a proper subset of D, () and [Qn.mg1,j]n =0 for all j =
1,...,|m|—nj. Therefore, for each j =1,...,|m|—n}, @, = is a denominator
of an (n,|m|,1) incomplete Padé-Faber approximant of g ;. Since the g ;
are not polynomials, by Lemma 3.4 with m* =1, foreach j = 1,...,|m|—n],
either D, (4, ;) contains exactly one pole of g; ; and it is a zero of Q|n, or
£0(Qm|g1,5) > p1(g1,5). In particular, D, ) # C and all the singularities
of g; on the boundary of D, (4 ) are poles which are zeros of Q| counting
their order. They form the next layer of candidate system poles of F.
Denote by @p,+1,--.,an,+n, these new candidate system poles. Again,
if ny + ny = |m|, we are done. Otherwise, ny < |m| —ny < |m| — nj, and we
repeat the same process eliminating the ng poles ay, 41, ..., an,1n,. We have
lm| — nj functions which are holomorphic in D, ) and meromorphic in a
neighborhood of Epo(g1)~ The corresponding homogeneous system of linear
equations, similar to (3.11), has at least |m| — n} — ng linearly independent
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solutions ¢7, j = 1,...,[m| — nj — n3, where nj < ny is the rank of the new
system. Let
2. (2 2 - * *
¢j = (Cjsems Cj,lm\fn{% j=1,...,/m| —n] —nj.
Define the (Jm| — nj —n}) x (Jjm| — n}) dimensional matrix:

2
€1

C? =
2
Clm|—nj—n3

Define the vector g, with |m| — nj — n} functions given by the following:
=t
gt2 = CQgi = C2ClF = (92,17 <+ 92 |lm|—nt—n} )t'

As C' and C? have full rank, so does C?C*. Therefore, the rows of C2C' are
linearly independent; in particular, they are non-null. Thus, all the compo-
nent functions of g, are not polynomials, due to the polynomial independence
of F with respect to m, and we can apply again Lemma, 3.4. The proof is com-
pleted using finite induction.

On each layer of system poles, 1 < n; < |m|. Therefore, in a finite
number of steps, say that N — 1, their sum equals |m|. Consequently, the
number of candidate system poles of F in some canonical region, counting
multiplicities, is exactly equal to |m| and they are precisely the zeros of @y
as we wanted to prove.

Summarizing, in N — 1 steps, we have produced N layers of candidate

system poles. Each layer contains nj candidates, k = 1,..., N. At the same
time, on each step k, k =1,..., N — 1, we have solved a linear system of ny
equations, of rank n}, with |m| —nj —---—nj, nj < ng, linearly independent

solutions. We find ourselves on the Nth layer with nx candidate system poles.

Let us try to eliminate the poles on the last layer. For that purpose,
define the corresponding homogeneous system of linear equations as in (3.11),
and we get

ny=ml—ny —--—ny_1 <|m|—nj—---—ny_; =7n
equations with 7y unknowns. For each candidate system pole a of multiplicity

7 on the Nth layer, we impose the equations:

nN

/ (w — a)* ZngN,Lg(w) dw =0, k=0,...,7—1,
lw—a|=4d B=1

(3.12)

where 6 is sufficiently small and the gy—1,38, 8 =1,..., 7N, are the functions
associated with the linearly independent solutions produced on step N — 1.
Let n}; be the rank of this last homogeneous system of linear equations.
Assume that nj < ny for some k € {1,..., N}. Then, the rank of the last
system of equations is strictly less than the number of unknowns, namely
nj < ny. Repeating the same process, there exists a vector of functions

gn = (IN1s -+ ON Jm|—nt— e )



36 Page 20 of 21 N. Bosuwan and G. Lopez Lagomasino MJOM

such that none of gy g is a polynomial because of the polynomial indepen-
dence of F with respect to m. Applying Lemma 3.4, each gy s has on the
boundary of its canonical domain of analyticity a pole which is a zero of
Qm|- However, this is impossible, because all the zeros of Q| are strictly
contained in a smaller domain. Consequently, ny =nj, k=1,..., V.

We conclude that all the N homogeneous systems of linear equations
that we have solved have full rank. This implies that if, in any one of those N
systems of equations, we equate one equation to 1 instead of zero [see (3.11)
or (3.12)], the corresponding nonhomogeneous system of linear equations has
a solution. By the definition of a system pole, this implies that each candidate
system pole is, indeed, a system pole of order at least equal to its multiplicity
as zero of Q. However, F can have at most |m| system poles with respect
to m; therefore, all the candidate system poles are system poles, and their
order coincides with the multiplicity of that point as a zero of Q. This also
means that Qm| = Q. We have completed the proof. O

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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1 Statement of the main result.

We shall consider a general interpolation scheme for constructing vector ratio-
nal approximations to a given vector of analytic functions which generalizes
the construction of the classical Hermite-Padé approximants.

Let E be a bounded continuum with connected complement in the complex
plane C. By H(FE) we denote the space of all functions holomorphic in some
neighborhood of E. Set

HE) = {(f1,.-., fa) : [ € H(E),j=1,...,d}.

Let @ C E be a table of points; more precisely, « = {an 1}, k£ = 1,...,n,
n=1,2,.... We propose the following definition.

Definition 1.1 Let f € #(E)¢. Fix a multi-index m = (my,...,my) € N4
and n € N. Set |m| = my + --- + mg. Then, there exist polynomials @y m,
Pymk, k=1,...,d such that

(1) deg Pn,m,k <n —my, deg Qn,m < |m‘7 Qn,m §—é 0,
(ii) (Qn,mfk - Pn,m,k)/anJrl € H(E)a

where a,,(2) = [[1_;(z — an k). The vector rational function

Rn,m = (Rn,m,la ey Rn,m,d) = (Pn,m,la ey Pn,m,d)/Qn,m

is called a multipoint Hermite-Padé (MHP) approzimant of £ with respect to
m and «.

This vector rational approximation, in general, is not uniquely determined.
Hereafter, we assume that given (n, m), one particular solution is taken. With-
out loss of generality we can assume that @), m is a monic polynomial that has
no common zero simultaneously with all P, m, 1. In all what follows m remains
fixed and {R, m }nen is called a row sequence of MHP of f with respect to m.

Multipoint Hermite-Padé approximation reduces to classical Hermite-Padé
approximation when FE is a disk about the origin and a,(z) = 2™. There are
not many papers dealing with the convergence properties of row sequences of
Hermite-Padé approximation. The first significant contribution in this direc-
tion is due to Graves-Morris and Saff in [9], where an analogue of the Montes-
sus de Ballore theorem [10] was proved. In that paper, the authors studied the
classical case and stated a result for multipoint interpolation. They assume
that the system of approximated functions is, so called, polewise independent.
More recently, the authors of [4] and [5] managed to weaken the assumption of
polewise independence obtaining sharp estimates of the rate of convergence,
improving the region of convergence, and giving an analogue of Gonchar’s
converse statement to the Montessus de Ballore theorem for row sequences of
Padé approximants (see Remark in [6], also [7] and [8]). Here, we generalize
the results in [5] to MHP approximants. Extensions in other directions using
expansions in orthogonal and Faber polynomials of the vector function to pro-
duce the vector rational approximants of f were provided in [1,2]. For other
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approaches to the study of row sequences of vector rational approximation see
[11] and [12].

In the study of the convergence of general interpolation schemes, it is com-
mon to impose on the table of interpolation nodes various restrictions which
determine the asymptotic behavior of the sequence of polynomials a,,. Let @
be a holomorphic univalent function mapping the complement of FE onto the
exterior of the closed unit disk with #(c0) = oo and &'(c0) > 0. It is well
known that there exist tables of points « satisfying the condition

lim |a,(2)]"" = c|®(z)], (1.1)

n—roo

or the stronger condition

lim a,(z)/c"P"(2) = G(z) # 0, (1.2)
n—oo
uniformly on compact subsets of C\ E, where ¢ denotes some positive constant,
see [13, Chapters 8-9]. For each p > 1, we introduce

I,:={2€C:|®(2)|=p}, and D,:=EU{zeC:|P(2)| <p}

as the level curve of index p and the canonical domain of indez p, respectively.
Let po(f) be equal to the index p of the largest canonical domain D, to which
all fr, k=1,...,d can be extended as holomorphic functions simultaneously.

Gonchar proved the following analogue of the Cauchy-Hadamard formula
for f € H(E) and interpolation tables satisfying (1.2):

1/n -1
) , 13)

where I is a contour encircling F and lying in the domain of holomorphy of
f. This formula is a special case of [3, Corollary 3]. (We point out that (1.3)
is displayed as formula (17) in [3], but with the typo that ¢ is missing.)

ft)

r ant1(t)

po(f) = (c-limsup dt

n—oo

Definition 1.2 Given f = (fi,..., f4) € H(E)? and m = (my,...,my) € N?
we say that £ € C is a system pole of order T of (f, m) if 7 is the largest positive
integer such that for each s = 1,...,7 there exists at least one polynomial
combination of the form

d
Zpkfka degpk < Mg, k= 17"'ada (14)
k=1

which is analytic in a neighborhood of E@(éﬂ except for a pole at z = £ of
exact order s.

The concept of system pole depends not only on the system of functions f
but also on the multi-index m. For example, poles of the individual functions
fx need not be system poles of (f,m) and system poles need not be poles of
any of the functions fj (see examples in [5]). It is easy to see that system
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poles also depend on «, or more precisely on the geometry of the associated
canonical regions. However, since m and « will remain fixed, occasionally we
may simply refer to system poles of f.

Let 7 be the order of £ as a system pole of f. For each s = 1,...,7, let
pe,s(f, m) denote the largest of all the numbers p,(g) (the index of the largest
canonical domain containing at most s poles of g), where g is a polynomial
combination of type (1.4) that is holomorphic on a neighborhood of EI‘P(ﬁ)I
except for a pole at z = £ of order s. Then, we define

RE’S(fv m) = k:H1Hn Spf»k(fvm)v

and
Rg(f, m) = Rf,T(f7 m) = kgﬁlin p&k(f, m)

,T

Fix k = {1,...,d}. Let Dy(f, m) be the largest canonical domain in which
all the poles of fi are system poles of f with respect to m, their order as
poles of fi does not exceed their order as system poles, and f; has no other
singularity. By Ry(f,m), we denote the index of this canonical domain. Let
&1, ...,&n be the poles of fi, in Dy (f, m). For each j =1,..., N, let 7; be the
order of &; as pole of fi, and 7; be its order as a system pole. By assumption,
7A'j S Tj- Set

R;(f,m) := min {Rk(f,m), _7minNR§j7+j (f,m)}
and let Dy (f, m) be the canonical domain with this index.

By Qf, we denote the monic polynomial whose zeros are the system poles
of f with respect to m taking account of their order. The set of distinct zeros
of Qf, is denoted by PZ .

The following theorem constitutes our main result.

Theorem 1.3 Suppose (1.2) takes place. Let £ € H(E)? and fix a multi-index
m € N, Then, the next two assertions are equivalent:

(a) £ has exactly |m| system poles with respect to m counting multiplicities.
(b) For all sufficiently large n, the denominators Qn.m of multipoint Hermite-

Padé approximants of £ are uniquely determined and there exists a polyno-

mial Qm of degree |m| such that

lHm sup [|Qn,m — Qml|*/™ =0 < 1, (1.5)
n—oo
where || - || denotes the coefficient norm in the space of polynomials of degree
< |m|. Moreover, if either (a) or (b) takes place, then Qm = QF,
[2(8)] £
0= —_— 1.6
o { o €€ P} o)
and for any compact subset K of Di(f,m)\ PL,
, dlls
limsup ||Rp.m.kx — Ln < ”7, 1.7

where || - || denotes the sup-norm on K. If K C E, ||®||x is replaced by 1.
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2 Direct statements
2.1 An auxiliary result

For each n > |m|, let g, m be the polynomial @, m normalized so that
|m| |m]|

Z [Ank]l =1, Gn,m(2) = Z)\nykzk. (2.1)
k=0

This normalization implies that the polynomials ¢, m are uniformly bounded
on each compact subset of C.

Lemma 2.1 Let f € H(E)? and fix a multi-indexr m € N¢. Assume that (1.2)
takes place and & is a system pole of order T of £ with respect to m. Then

: 2(6)|

lim sup |¢*) Un < |7 s=0,....,7—1. 2.2
map (O < TR 22
Proof. Consider a polynomial combination g; of type (1.4) that is analytic
on a neighborhood of D|g(¢) except for a simple pole z = § and verifies that
p1(91) = Re1(f, m)(= pe1(f, m)). Then, we have

d

= Zpk,lfk, degprr <my, k=1,....d.
k=1

Define hi(z) = (z — £)g1(2). The function

qn,m(z)hl( _ Zpkl nmk( )

Any1(2) Any1(z

is analytic on Dp1(91) Take 1 < p < p1(g1), and set I, = {z € C: |®(z)| = p}.

Set P, 1(z) = Z Pk.1(2) Pom,k(2). Since deg(z — &) P, 1(2) < n, we have

1 (t—=&Pua(t) ,
2mi Jp, (t—2)ania(t =0

Using Hermite’s interpolation formula (see [13]), we obtain

1 an+1(2) dn m(t)hl(t)
n.m h - Pn m, - dta
n.m(2)1(2) = (2 Zp’“ W) =5 /r,, antr(t)  t—z

for all z with |®(2)| < p. In particular, taking z = £ in the above formula, we

arrive at . © (Oha(t)
An 41 qn,m t 1 t
~ 2mi /p () t-g " (23)
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Then, taking account of (1.2), it easily follows that

lim sup [gn m(E)ha (€)1 < [ZEN.

n— oo 14

Using that hq(£) # 0 and making p tend to p1(g1), we obtain

: 2(¢)|
1 » n < 121 < 1.
im sup |Gn,m (&)™ < Re 1 (£, m)
Now, we employ induction. Suppose that
: - 2(¢)| .
lim sup |¢\/) 1/"<|7, =0,1,...,8 =2, 2.4

where s < 7. Let us prove that formula (2.4) holds for j = s — 1. This will
imply (2.2).

Consider a polynomial combination gy of type (1.4) that is analytic on a
neighborhood of ﬁ@(g” except for a pole of order s at z = £ and verifies that
ps(gs) = Re o(f,m). Then,

d

Js :Zpk,sfka degpk,s < mg, k= ]-7"'7d'
k=1

Set hs(z) = (z — £)®gs(2). The function

d
Qn,m(z)hS(Z) _Z- < Zpk,s(z)Pn,m,k(Z)
() =

an-i-l(z)(z - 5)3—1 an+1\7

d
is analyticon D, (4.)\{¢}. Set P s = >~ pr,s P m k- Fix an arbitrary compact
k=1
set I C D, (g.) \ {§}. Take § > 0 sufficiently small so that {z € C: [z —¢| <
NK=0and 1< p < ps(gs). Using Hermite’s interpolation formula, for all
z € K, we have

Q@) o
(Z—f)s_l ( E)PMS( ) =1,(2) — Jn(2), (2.5)
where . ) o
_ an+1\Z dn,m s
I(2) = i /Fp ans1(t) (E— &)1 (t—2) dt
and
Jn(z) = 1 ant1(2)  @nm(t)hs(t) dt.

270 Jj—gms ana (B) (E— )5 1(t - 2)
The first integral I,, is estimated as in (2.3) to obtain
1/n

d
limsup || 1, || ¢ <7” lic
n— oo

= ps(gs) (26)
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For J,, as deg ¢pm < |m| write

lm| ()
Gom(t) = > L) (g

=

Then

s—

Tu(2) :ZL /l (2 hall) _ aim(E) g, (2.7)

2
2 9mi Jyo—eis anea () (£ €177 j1(t — 2)

Using the induction hypothesis (2.4), from (2.7) it easily follows that

yn o @lle 12O _ 19l

limsup ||/, < = . 2.8
s el < g Ry (fom) ~ Rena by )
Now, (2.5), (2.6), and (2.8) give
. @
limsup ||gn,mhs — (2 — &)° Py s Un < [l (2.9)

n—00 ko= Rf,s(f; m) .

As the function inside the norm in (2.9) is analytic in D, 4,), from the
maximum principle it follows that (2.9) also holds for any compact set K C

D,,(g,)- Using Cauchy’s integral formula, from (2.9) we also obtain that

i s s— n @ C
lim sup || (gn.mhs — (2 — €)° P! 1)||}1C/ < 2l

—_—. 2.10
n—00 N R&S(ﬂm) ( )

Taking z = £ in (2.10), we have

. _ 2(¢)|
1 nmhs (s—1) 1/n < |
lgisolip‘(q mhs) (T < Re.o(F, m)

Using the Leibniz formula for higher derivatives of a product of two functions,
the induction hypothesis (2.4), and that hs(£) # 0, it follows that

. — 2(8)|
lim sup |¢2 D (&)Y < ‘7
This completes the induction and the proof. ([

2.2 Proof of (a) = (b)

Let {&1,..., &} be the distinct system poles of £ with respect to m, and let 7;
be the order of §; as a system pole, j = 1,...,p. By assumption, 7 +---+7, =
|m|. We have proved that, for j =1,...,pand s =0,1,...,7;, — 1,

: P(&;)| |2(&;)|
lim sup |¢C) (€)Y < [P < A 2.11
ITILILOI;I) |qn,m(§1)‘ = Rfj,erl <f7 Il’l) = Rﬁj (f, 1’1’1) ( )
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where R, (f, m) := R, ;,(f,m). Using the Hermite interpolation, it is easy to
construct a basis {¢;s},1 <j <p,0<s <7; —1, in the space of polynomials
of degree at most |m| — 1 satisfying

(&) = 0ijoks,  1<i<p, 0<k<m-—1

Then,
p Tj—1

Qn,m Z Z q( 5] 7,8 )+ /\n,|m|Q£n' (212)

7j=1 s=0

Using (2.11) and (2.12), we have for any compact set K C C,

B sup |G m — A, ) QR 1" < (2.13)
n— oo
where (6|
D(€ £
0= —_— 1. 2.14
maX{Rg(f,m) fE’Pm}< (2.14)
Now, necessarily

lirr_1>inf |)\n"m‘| > 0. (2.15)

Indeed, if there is a subsequence of indices A C N such that lim,eca [ Ay, jm|| =
0, then from (2.14), as the polynomials g, m converge, we would have that
limy,e 4 gn,m = 0 which contradicts (2.1). Since

dn,m = /\n,|m|Qn,m7
from (2.13) and (2.15) it follows that

limsup [ Qpm — Q51" < (2.16)
n—o0

In finite dimensional spaces all norms are equivalent; therefore, (2.16) is also
true with the coefficient norm which means that (1.5) is satisfied with the
equality replaced by the inequality <.

In particular, for all sufficiently large n necessarily deg @, m = |m|. The
difference of any two distinct monic polynomials satisfying Definition 1.1 with
the same degree produces a new solution of degree strictly less than |m|, but
we have proved that any solution must have degree |m| for all sufficiently large
n. So, the polynomial ), m is uniquely determined for all sufficiently large n.

Now, we prove the equality in (1.5). To the contrary, suppose that

lirrlnﬁsolip 1Qnm — Q5 IIY™ < max{Rquf(,in) €€ P,f,,} . (2.17)

Let ¢ be a system pole of f such that

2@l _ R
Re(F,m) = {Rg(f, m) e Pm}. (2.18)
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Clearly, the inequality (2.17) implies that Rq(f, m) < oco.
Choose a polynomial combination

d

9=> pifr, degpy <my, k=1,....d, (2.19)
k=1

that is holomorphic on a neighborhood of blé(C)l except for a pole of some or-
der [ at z = ¢ with p;(g) = R¢(f, m). Notice that Qg must have a singularity
on the boundary of D, ) which implies

Qo) |

- o (®) (2.20)

1
——— = c-limsu
Re(fm) — O AP

In fact, if Qf g had no singularity on the boundary of D, (), then all singular-
ities of g on the boundary of D, ,) would be at most poles and their order as
poles of g would be smaller than their order as system poles of f. In this case,
we could find a different polynomial combination g; of type (2.19) for which
pi(91) > pi(g) = R¢(f, m) which contradicts the definition of R¢(f, m). There-
fore, Qf g has a singularity on the the boundary of D, 4 and the equality
(2.20) holds.
Now,

d
(Qn,m(Z)g(Z) - ZP&(Z)Pn,m,k(Z)> /ant1(2)

k=1

is holomorphic in D, ,) and deg Eizl Dk Pr,m,; < n; therefore, from Cauchy’s
integral theorem we have that

o- | Qum(2)9(2) = Sy P12 Pama2) [ Qum(2)g(2) |

an+1(2) r, @nt+1(2) 7
(2.21)
where 1 < p < |®(¢)|. Combining (2.20) and (2.21), we get
(t) 1/n
— —_ — ¢ limsu / J £ (#) — Quu(t)) dt 2.22
roe = e | [ 20 (@60~ Qum() (2:22)

This equality is impossible because from (1.2), (2.17), and (2.18) it follows
that (2.22) is strictly less than 1/R¢(f, m). This proves the equality in (1.5)
as well as (1.6).

If £ is any one of the system poles of f and 7 its order, from (2.11) and
(2.15), we have

i 1)
max limsup\Q;ﬂ’) M < 12(8)] I
j= m

S =01, 7~ 1 (2.23
0...0 nosco - Rf,l+1(fa m) ( )
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Now we are ready to prove (1.7). Let us fix k € {1,...,d}. Let K be a compact
subset contained in D} (f,m) \ P£,. Take § > 0 sufficiently small so that

Ny,
1< p:=R;(f,m) — 9, K C D,, U{ZGC:|Z—§j|§6}CDp\IC,
j=1

where &1,...,&n, are the poles of fi in D} (f, m). Set
Cj:={ze€C:|z—-¢&]| =4}

Let I', s be the positively oriented curve determined by I, and those circles
C;. On account of Definition 1.1, using Hermite’s formula, we have

(Qumnfi — Poami)(2) = —— /P tne1(2) (@um ) (D) gy g oy

2mi Jp, 5 ant1(t) t—z
From (1.2) it readily follows that for all z € IC,
1/n

2l
< — . .
< B m) (2.25)

limsup | —
n—oo

1 an—i—l(z) (Qn,mfk)(t)
= /F dt

L ant1(t)  t—z

Let 7; be the order of &; as pole of fi. Using the expansion
|m|
)

Qunit) = 3 P Qtim

for the circle C; we have

1 an+1(2) (Qnmfk)(t)
et .

2mi Jo, anta(t) t—z

t_£])7

dt

Ti—1

_ ant1(2) t—g)fsz()Qnm(g)
Z 27”/ ant1(t) t—Jg )7i=l [l(t_;) dt (2.26)

because the function under the integral sign is analytic inside C; for 7; <1 <
|m|. Now, (1.2) and (2.23) allow us to deduce from (2.26) that for all z € K,

1/n
1 n+1(2) (Qnm/fi)(t) 12l [2(&5)]
s o [ G e et )
Finally, (2.24), (2.25), and (2.27) give (1.7). |

A slight variation of the arguments employed above allows us to deduce
the following corollary of independent interest.
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Corollary 2.2 Let f € H(E)? and fir a multi-inder m € N?. Suppose that
(1.2) takes place and f has exactly |m| system poles with respect to m. Then,
for every system pole € of f,

P(¢)|
max limsu () 1/”:|7, [=0,1,...,7— 1. 2.28
max limsup QU (O = == (2.28)

where T is the order of €.
Proof. If (2.28) fails, due to (2.23), there is a system pole £ of f of order 7
such that for some [,0 <[l <7

max hmsup|Q(]) OV < [2(E)] (2.29)
=

0., nosoco R&H_l(f,m)'
Now, we argue by contradiction as in the proof of the equality in (1.5).
Choose a polynomial combination g as in (2.19) that is analytic on a neigh-
borhood of E@(g” except for a pole of order s(< [ 4+ 1) at z = £ with
ps(g9) = Reya(f,m). Set QF) = Qm. Take § > 0 sufficiently small and
1 < p < ps(g). Let I', 5 be the p081t1ve1y oriented curve determined by I’
and {t e C: |t —¢| = 5} Arguing as in (2.20), it follows from (1.3) that

Qm(o(0) [

Fp,(; an"l‘l(t)

= ¢ limsup

ps(9) n—00 (230)

The function

H,(2) Qnm(2)9(z) — Zpk( ) nmk( )

anra(z) e
is analytic in D,_(g) \ {{} and

Hy(t)
Fp,(; a’n"l‘l (t)

dt = 0.

d
Set P, := > prPrnmyk and h = (t — £)*g. Obviously,
k=1

ng = (Qm - Qn,m)g + P, + H,,

and since deg P,, < n — 1, we obtain

Qm(t)g(t) [Qm — Qnm](t)R(t)
Ty ant1(t) () /Fp,(; (t —&)*anta(t) “

|m|

[ [Qm — Quml(t — QUm](©h()
_/F (t—¢&)* an+1 dt Z/t el=s JU( t— §)*Iani1(t) a

P

1

[ [Qm = Quaml(DR() Fm(©)h(t)
_/r (t— dHZ/ﬁ ¢l=s I ' "

P §)ant1(t) = 1t = &) anta(t)




12 N. Bosuwan et al.

Estimating these integrals, using (1.2), (1.5), and the assumption (2.29), it is
easy to deduce that

1
ps(9)

Qm(y() [

Fpﬁg; an+1(t)

c - lim sup
n—oo

<

which contradicts (2.30). Therefore, (2.29) cannot occur and there is equality
in (2.28). O

Remark 2.1 We wish to underline that for the proof of the previous results,
excluding the equality in (1.5) and (2.28), it would have been sufficient to
assume that the table of points verifies (1.1) instead of (1.2). The condition
(1.2) has only been used in order to have the Cauchy-Hadamard type formula
(1.3). For the inverse type statement (b) = (a) the stronger assumption (1.2)
is much more substantial.

3 Inverse statements
3.1 Some auxiliary results
Let
f(2) =) faz" (3.1)
n=0

be a power series convergent in some neighborhood of the point z = 0 whose
radius of convergence we denote by Ro(f). According to the Cauchy-Hadamard

formula Ro(f) = (limsup,,_, . \fn|1/")71 .
The following theorem was proved by V.I. Buslaev in [3, Supplement of
Theorem 2].

Buslaev’s Theorem. Suppose that the power series (3.1) is not a polynomial,
RO(f) = o0, and

an,Ofn+an,—1fn+l+"' =0 (TL: 132a) (32)
where the a,(z) = E;o:o 0pn,—pz P (n=1,2,...) are holomorphic and con-

verge to a(z) in the exterior of some disk as n — oco. Then a(oco) = 0, and the
coefficients {f,,} of the series (3.1) satisfy

€n0fn+ F n—N41fniN-1 F fnyn =0, lim €, = €p,
n—oo
forp=0,—1,...,—N+1, N being the multiplicity of the zero of a at z = co.

This result will be useful in the next section to prove Lemma 3.2.
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3.2 Incomplete multipoint Padé approximants

Let us introduce the notion of incomplete multipoint Padé approximants. A
similar concept turned out to be effective in the study of Hermite-Padé ap-
proximation in [4] and [5] for proving results of inverse type.

Definition 3.1 Let f € H(E). Fix m > m* > 1 and n > m. We say that the
rational function R, ,, is an incomplete multipoint Padé approzimant of type
(n,m,m*) corresponding to f if R, ,, is the quotient of any two polynomials
Pym, Qn,m that verify

(i) deg Pom <n—m*, deg Qnm <m, Qnm # 0,
n,mJ Pn m
(ii) Onmf = Frm € H(E),
an+1

where a,,(2) = [[1_1(z — @nk)-

Since Qp,m # 0, we normalize it to be monic. We call @y, ,,, the denominator
of the corresponding (n, m, m*) incomplete multipoint Padé approximant of
f. Notice that for k =1,...,d, Qn m, given in Definition 1.1, is a denominator
of an (n, |m|,my) incomplete multipoint Padé approximant of fj.

In this section, we will study the relation between the convergence of @y,
and some analytic properties of f.

Lemma 3.2 Let f € H(E) and fit m > m* > 1. Suppose that f is not a
rational function with at most m* — 1 poles and there exists a polynomial Q.
of degree m such that

Hm sup [|Qn.m — Qml|'/" < 0 < 1. (3:3)
n— o0

Then, either f has exactly m* poles in D, .5y or po(Qmf) > pm=(f), where
Pm([f) is the index of the largest canonical region to which f can be extended
as a meromorphic function with at most m* poles counting multiplicities.

Proof. Let {{1,...,&,} be the distinct poles of fin D, . (s and 71,...,7,
be their orders, respectively. Consequently,

w
Z Tj S m*.
j=1
Modifying conveniently the proof of (2.2), one can show that for j =1,...,w

PD(E;
limsup [QW), (&)Y < &) 1, v=01,...,75—1 (3.4)

n—oo " Pmx (f)

Since the sequence of polynomials @y, », converges to Q,,, (3.4) entails that ¢;
is a zero of @y, of multiplicity at least 7;. Being this the case, we have

pO(me) 2> Pm= (f)
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Suppose that po(Qmf) = pm=(f). To conclude the proof, let us show that
in this situation f has exactly m* poles in D, . (). To the contrary, suppose
that f has in D, . at most m* — 1 poles. Then, there exists a polynomial
deg @+ < m* such that

pO(Qm* f) = Pm* (f) = Po(QQO* .f)
It follows from Definition 3.1 that
Qm* (Qn,mf - Pn,m)

An41

€ H(E).

Then

an-i-l( )

where 1 < p < pm*(f). Since each one of the n + 1 zeros of the polynomial
an41 lies on E and deg(Qm»Pym) < n — 1, it follows that

Qm (2) P (2) dz = 0.

r, ant1(2)

Therefore,

an-i—l )

Then, by (1.3),

1 1 .
= ¢ limsup

Pm=* (f) - PO(QQO* f) n—o00
/ (Qm* f)(t)
T

, dn+l (t)

I

", an+1(t)

1/n

= ¢ limsup
n—oo

Using (1.2) and (3.3) to estimate the last integral, it readily follows that
[ 0
pm(f) ~ pm*(f)’

which implies that p,,«(f) = co. Now, let us show that this is not possible.
Take F(w) = Q- (¥ (w))f(¥(w)), where ¥ = &=L, Let v be a contour
encircling {w € C : = 1} lying in the domain of holomorphy of F. Using

(3.5), we obtain
. F(’w)QnmL(w(w)) ! w)dw =
0= [{ an+1(¥(w)) v

0 <1,

wntl dw

Qnm (¥ (w)) o
[yF(w) o an+1@(w));p( )wnH*m
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Setting
Qnm(¥(w)) (cw)™

wm anp (P (w))

v (w),

an(w) =

the previous equality means that the equality in (3.2) holds. The functions
ay, (n=1,2,...) are holomorphic in the exterior of the unit disk (including
w = 00) and, due to (1.2) and (3.3), converge as n — oo to

a(w) =V (w) —o— Qo (¥ (w)) Za pw P, ap = ao0) # 0.

wm G (¥ (w))

Let Zzo:_oo F,w"™ be the Laurent expansion of the function F' outside the
unit circle, i.e:

ZFU) Fi(w) + Fa(w),

n=—oo

where Fy(w) = > 07, F,w™. Then, Ry(F;) = oo and (3.2) holds (for all suffi-
ciently large n) replacing F' with F;. According to Buslaev’s Theorem and the
fact that a(co) # 0, we get that F; must be a polynomial. Consequently, F'
is either analytic or has a pole at co. In turn this implies that Q,,~ f is either
analytic or has a pole at co. However, Q,,« f is an entire function because it
is holomorphic in C since Ry(Qm=f) = co. Therefore, Qn,« f is a polynomial,
or what is the same f is a rational function with at most m* — 1 poles against
our hypothesis on f. This contradiction implies that the assumption that f
had in D, . () at most m* —1 poles is impossible. So the number of poles on
fin D, . (s must equal m*. O

3.3 Polynomial independence

Let us introduce the concept of polynomial independence of a vector of func-
tions.

Definition 3.3 A vector f = (f1,..., f4) € H(E)? is said to be polynomially
independent with respect to m = (mq,...,mg) € N if there do not exist
polynomials p1,...,pq4, at least one of which is non-null, such that

(i) degpr <my, k=1,...,d,
(ii) Zz=1 Prfr is a polynomial.

In particular, polynomial independence implies that for each k = 1,...,d,
f1 is not a rational function with at most m; — 1 poles.

Lemma 3.4 Let f € H(E)? and fir a multi-index m € N?. Suppose that for
all n > nyg, the polynomial Qp m is unique and degQnm = |m|. Then the
system f is polynomially independent with respect to m.



16 N. Bosuwan et al.

Proof. Except for a small detail, the proof coincides with that of [5, Lemma
3.2]. Given f := (f1,...,f1) € H(E)? and m := (mq,...,mg) € N% we
consider the associated system

Fi=(fr,. 2™ s fore 2™ ) = (1o f )

We also define an associated multi-index m := (1,...,1) with [m| = |m]|. The
systems f and f share most properties. In particular, poles and system poles
of (f.m) and (f,m) coincide and f is polynomially independent with respect
to m if and only if f is polynomially independent with respect to m. Passing
to (f,m) if necessary and relabeling the functions, we can assume without loss
of generality that m = (1,...,1) and d = |m|.

Suppose that there exist constants c;, Kk =1,...,d, not all zero, such that
ZZ:1 crfr is a polynomial. Without loss of generality, we can assume that
c1 # 0. Then,

d
fi=p— Z k frs
k=2
where p is a polynomial of degree N.

On the other hand, for each n > d — 1, there exist polynomials @, Py k,
k=2,...,d, such that for all k = 2,...,d,

-degP,r<n—1,degQ, <d—-1,Q, #0,

P,
_ Qnfr — P € H(E).
Ap41
Therefore,

Qn (P - ZZ:2 Ckfk) - (an - ZZZQ CkPn,k>

Ap+1

e H(E)

and, for n > d + N, the polynomial P, = Qnp — 22:2 ¢, P verifies
deg P,1n < n — 1. Thus, for all n sufficiently large, the polynomials P, g,
k = 1,...,d satisfy Definition 1.1 with respect to f and m. Naturally, Q,
gives rise to a polynomial @, m with deg Q. m < d = |m| against our assump-
tion on @y m- O
The following corollary is a straightforward consequence of Lemma 3.2.

Corollary 3.5 Let f € H(E)? and fiz a multi-index m € N¢. Assume that f
is polynomially independent with respect to m and there exists a polynomial
Qm of degree |m| such that

Hmsup [|Qnom — QmlY™ <6 < 1.

n—oo
Then for each k = 1,...,d, either fi has exactly my poles in Dy, () or
pO(mek) > pmk,(fk>'

An elementary dimensional analysis leads to the following property of sys-
tem poles (for details see [5, Lemma 3.5]).
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Lemma 3.6 Let f € H(E)! and m € N Then, £ can have at most |m|
system poles with respect to m (counting their order). Moreover, if the system
f has exactly |m| system poles with respect to m and & is a system pole of
order T, then for all s > T there can be no polynomial combination of the form
(1.4) holomorphic in a neighborhood of ﬁ@(g” except for a pole at z = £ of
exact order s.

3.4 Proof (b) = (a)

The auxiliary results that we have established in this section allow us to adapt
the proof used in [5] to obtain the inverse statement of [5, Theorem 1.4]. One
simply has to follow step by step the arguments employed there and substitute
the use of [5, Lemma 3.2] by Lemma 3.4, [5, Corollary 3.4] by Corollary 3.5,
and [5, Lemma 3.5] by Lemma 3.6. The details are left to the reader.
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1 Introduction

In this paper, we study convergences of four generalizations of the construction of type II Hermite-Padé ap-
proximants. The first approximation is called simultaneous Padé-orthogonal approximation defined as follows.
Let E be an infinite compact subset of the complex plane C such that @\ E is simply connected. Denote by K
the collection of these compact sets. Let u be a finite positive Borel measure with an infinite support supp(u)
contained in E. We write € M(E) and define the associated inner product

(g, By = / 9 OROAu(), g.h € La(p).

Let

pn(2) == k2" +- ) kn >0, n=0,1,2,...,
be the orthonormal polynomial of degree n with respect to p with positive leading coefficient; that is
(Pn,pm)p = On,m. Define

H(E) = {(F1,F2,...,Fy) : Fo € H(E) for all a = 1,2,...,d},

where H(E) is the space of all functions holomorphic in some neighborhood of E.

Definition 1.1. Let E € K, F = (Fy, Fy,...,F;) € H(E)? and p € M(E). Fix a multi-index m =
(m1,ma,...,mg) € Nd\ {0} where 0 is the zero vector in N&. Set |m| := mj + mga + ---mg. Then, for
each n > max{mi,ma, ..., mg}, there exist polynomials ¢}y m, Ph,m,a» @ = 1,2,...,d, such that

deg(pﬁ,m,a) <n-—ma, deg(q#,m) < ‘m|a qﬁ,m i'é 0,
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<q’r,t,mFOé _pz,m,a,p‘jht = O, j = 07 17 cees T

The vector of rational functions

B _ (pH ” o
Rii = (RY o Rl oo B )
= (D) 1/ G000 Py 0/ @ms -+ Pl 0/ @hm)

is called an (n,m) simultaneous Padé-orthogonal approzimant of F with respect to p.

Finding g}, m is equivalent to solving a system of |m| homogeneous linear equations on |m| + 1 unknown.
Moreover, for each a = 1,2,...,d, pﬁymya is uniquely determined by qﬁ,m. Therefore, for any pair (n,m), a
vector of rational functions R’,im always exists but may not be unique.

The concept of simultaneous Padé-orthogonal approximation was first introduced by Cocoq and Lopez in
[6]. In their paper, those simultaneous Padé-orthogonal approximants are called simultaneous Fourier-Padé
approximants and the set E is the closed unit disk {z € C : |z| < 1}. Their definition was extended to a general
compact set E € K with some restricted conditions in [1]. In [1] and [6], the authors proved convergences of
row sequences of simultaneous Padé-orthogonal approximants, namely analogues of Montessus de Ballore’s
theorem.

Now, we introduce a definition of poles for a vector of functions.

Definition 1.2. Let Q := (Q1,Q2,...,Q4) be a system of domains such that for each « = 1,2,...,d, Fu
is meromorphic in o. We say that the point A is a pole of F in € of order 7 if there exists an index
a € {1,2,...,d} such that A € Qqn and it is a pole of Fyy of order 7, and for 3 # « either X is a pole of Fg of
order less than or equal to 7 or A ¢ Qg. When Q := (Q,Q,...,Q), we say that A is a pole of F in Q.

The second approximation is based on Faber polynomials defined as follows. Let £ € K and ® be the exterior
conformal mapping from C\ E onto C\ {w € C : |w| < 1} satisfying ®(co) = oo and &' (co0) > 0. For each
p > 1, we define a level curve with respect to E of index p and a canonical domain with respect to E of index
p by
I'py:={2€C:|®(2)|=p} and D, :=EU{z € C:|®(2)| < p},
respectively. Let F € H(E)d. Denote by p|p, | (F) the index p > 1 of the largest canonical domain D, to which
F has at most |m| poles. The Faber polynomial of degree n for E is defined by the formula
1 D" (t)
Dy (2) ::%/mdt, z€Dp, n=0,1,2,... (1)
FP

and the Faber coefficient of F € H(E) with respect to @, is given by

(Fp = ﬁ %qi(i?dt, @)

where p € (1, po(F)).

Definition 1.3. Let E € K and F = (Fy, Fs,..., Fy) € H(E)d. Fix a multi-index m = (mq1, ma,...,mq) €
N4\ {0}. Set |m| := my + mo + - - - mg. Then, for each n > max{my,ma, ..., mg}, there exist polynomials
q£m7 pg,mva, a=1,2,...,d, such that

E E E
deg(pmma) <n—ma, deg(Qn,m) < |ml], 4n,m Z0,

E E .
[Qn,mFa _pn,m,a}j =0, 7=0,1,...,n.
The vector of rational functions
E E E E
Rn,m = (Rn,m,h Rn,m,27 ERRE Rn,m,d)
) E E E E E E
= (pn,m,l/Qmm:pn,m,Q/‘]n,my cee 7pn,m,d/Qn,m)

is called an (n,m) simultaneous Padé-Faber approzimant of ¥ corresponding to E.
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Note that for any pair (n,m), a vector of rational Rfim always exists but may not be unique. In [2] and
[4], the concept of simultaneous Padé-Faber approximants was introduced and analogues of Montessus de
Ballore’s theorem for simultaneous Padé-Faber approximants were proved.

The third approximation is called orthogonal Hermite-Padé approximation defined as follows.

Definition 1.4. Let E € K, F = (F1, Fy, ..., Fy) € H(E)?, and p € M(E). Fix m = (m1, ma, ..., mg) € N
and n € N. Set |m| := m1 + ma + - --my. Then, there exists a polynomial g} m such that deg(q}, m) < |m)|,
@hm Z 0, and

" mFa,pn)p =0, a=12,...,d,  k=01,...,ma—1.

Define the corresponding polynomials

n—1
Phma(2) =Y (@ mFa,pj)upi(z),  a=12,....d
j=0
The vector of rational functions
Ry m=(R* . R R )
n,m n,m,1’ " *n,m,2>" " "'nm,d
= (5Z,m71/(ﬂ,m7§ﬁ;m72/?]ﬁ,m7 ce- 75Z,m7d/aﬁ,m)

is called an (n, m) orthogonal Hermite-Padé approximant of F with respect to p.

A vector of rational functions ﬁﬁﬁm always exists but may not be unique.

The last approximation is Hermite-Padé-Faber approximation defined as follows.

Definition 1.5. Let E € K and F = (F1, F»,...,F;) € H(E)%. Fix m = (my,ma,...,mg) € N¢ and n € N.
Set |m| := mj + mg + -+ - mg. Then, there exists a polynomial aﬁm such that deg(&im) < |m]|, aﬁ,m £ 0,
and

"G mFaln =0, a=1,2,...,d, k=0,1,...,mq—1.

Define the corresponding polynomials

n—1
~E B
pn,m,a(z) = Z[qn,mFa}jq)j (2)s 5 a=1,2,...,d
Jj=0
The vector of rational functions
=E =E ~E =E
Rn,m = (Rn,m,L Rn,m,2: ) Rn,m,d)
~F ~F ~F ~F ~F ~F
= (pn,m,l/QH,mapn,m,2/Qn,m7 cee 7pn,m,d/Qn,m)

is called an (n,m) Hermite-Padé-Faber approximant of F corresponding to E.

Again, a vector of rational functions ﬁfm always exists but may not be unique. The definitions of orthogonal
Hermite-Padé approximants and Hermite-Padé-Faber approximants were recently introduced in [3] and [5].
In those papers, analogues of a Montessus de Ballore-Gonchar type theorem for both approximations were
proved.

Next, let us introduce the concept of convergence in Hausdorff content. Let B be a subset of the complex
plane C. By U(B), we denote the class of all coverings of B by at most a numerable set of disks. Let 8 > 0
and set

hg(B) :=inf{ > U7 {U;} eU(B) ¢,
j=1

where |Uj| is the radius of the disk U;. This notation hg(B) is called the §-dimensional Hausdorff content of
the set B.

3
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Definition 1.6. Let {gn},en be a sequence of complex valued functions defined on a domain D C C and ¢
another complex function defined on D. We say that {gn }nen converges in 3-dimensional Hausdorff content

to the function g inside D if for every compact subset K of D and for each € > 0, we have
lim hg{z € K : |gn(z) — g(z)| > €} =0.
n—oo
Such a convergence will be denoted by hg — limp—00 gn = g in D.

The objective of this paper is to prove convergences in Hausdorff content of those four generalizations when
the sequences of indices {(n, my,)},en satisfy
lmy|Inn

lim
n—oo n

=0. (3)

This type of sequences of indices {(n, mn)}pen satisfying the limit (3) was first considered by Gonchar [7]
for Padé («, B)-approximants. In the current paper, we prove results analogous to Theorem 2 in [7] for four
generalizations of Hermite-Padé approximants. As consequences of our main theorems, we give alternate proofs
of the Montessus de Ballore type theorem for those generalizations.

The outline of this paper is as follows. Section 2 contains our main results. We collect needed auxiliary

lemmas in Section 3. Section 4 is dedicated to the proofs of all results in Section 2.

2 Main Results

Before we state our results about the convergence of simultaneous Padé-orthogonal approximants, we need to
define a class of measures and some more notation first. A class of measure that we are interested in the results
of simultaneous Padé-orthogonal approximants is R(E) C M(E). We write u € R(E) when the corresponding
sequence of orthonormal polynomials has ratio asymptotics; that is

lim _Pnl2) -

n—00 pn+1(z) CIJ(,Z)’

uniformly on each compact subset of @\ E. Moreover, we restrict ourselves to a smaller collection of compact
sets E defined as follows. Denote by K1 the collection of all sets E € K such that the inverse function of ®
can be extended continuously to C\ {w € C : |w| < 1}.

The definition of polewise independence is given below.

Definition 2.1. Let E € K, p > 1, F = (F|, Fy,...,Fy) € H(E)? be a vector functions of meromorphic
in Dy. Then F is said to be polewise independent with respect to m in D, if and only if there do not exist
polynomials vy, vs, ..., v at least one of which is non-null, satisfying

1. degva <mq—1, a=1,...,d, ifmqg>1,

2. va=0if mq =0,

3. Yo  (vao®) Fa € H(D,y\ E),

where H(D, \ E) is the space of all holomorphic functions in D, \ E.

The following theorem is our main result on simultaneous Padé-orthogonal approximants which is an analogue
of Theorem 2 in [7].

Theorem 2.2. Let E € Ky, F = (F1,Fa,...,Fy) € H(E)Y, and u € R(E). Suppose that F is polewise

independent with respect to the multi-index m := (my,ma,...,mg) € Ng \ {0} in Dp‘m‘(F) and the sequence
{mp} = {(mn,1,Mmn2,...,My.q)} satisfies the following conditions
liminfm, ; >m;, j=1,2,...,d

n—oo
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and !
lim [mn|lnn 0.
n—o0 n
Then for fized numbers > 0 and a = 1,2,...,d, each sequence {Rﬁ,mn,a}neN converges in [(-dimentional

Hausdorff content to Fn inside Dp‘ (F) as n — 0.

m|

As a consequence of Theorem 2.2, we also prove a Montessus de Ballore type theorem for simultaneous

Padé-orthogonal approximants stated below.

Corollary 2.3. Let E € K1, F = (F1, F>,...,Fy) € H(E)?, and p € R(E). Suppose that F is polewise
independent with respect to the multi-index m = (mq,ma,...,mg) € Ng \ {0} in Dp\m|(F) and has distinct
poles at A1, A2,..., g in Dp‘m‘(p). Then, {Rﬁ,m}neN is uniquely determined for all sufficiently large n and
for each a = 1,2,...,d, {R%,m,a}neN converges uniformly to Fo on each compact subset of Dp\m|(F) \
{A1,A2,..., ¢} as n — oo. Moreover, for each o = 1,2,...,d and for any compact subset K of Dp‘m‘(F) \

{A1, A2, ..., A},

. 1 o
thupHFa _R%,ma”[{/n < H HK )
n—

N p\m\(F)
where || - || denotes the sup-norm on K and if K C E; then ||®||x is replaced by 1.

Similar results for simultaneous Padé-Faber approximants are stated below.

Theorem 2.4. Let E € K and F = (F1,Fs,...,Fy) € ’H(E)d. Suppose that F is polewise independent

with respect to the multi-index m := (my,ma,...,mg) € N&\ {0} in D i (F) and the sequence {my} =
{(mn,1,mn2,...,my q)} satisfies the following conditions
liminf m,, ; > m;, j=1,2,...,d
n—oo
and !
lim M =0.
n—00 n
Then, for fized numbers > 0 and o = 1,2,...,d, each sequence {Rﬁﬁ,mma}neN converges in B-dimentional

Hausdorff content to Fn inside Dp‘ (F) a8 — 0.

m|

Corollary 2.5. Let E € K and F = (Fy,Fy,...,F;) € H(E)d. Suppose that F is polewise independent

with respect to the multi-index m = (my,ma,...,mg) € N\ {0} in D, ... (F) and has distinct poles at
A1, A2,...,Aq in DP\ml(F)' Then, {Rg,m}neN is uniquely determined for all sufficiently large n and for each
a=1,2...,d, {Rg,m,a}nEN converges uniformly to Fo on each compact subset of Dp\m\ (F) \{A1, A2, g}
as n — oo. Moreover, for each o = 1,2,...,d and for any compact subset K of Dy (F) \ {1, A2, .., A}
. Pk
limsup ||Fa — RE 1/n<”7. 4
nst p” «a mm,aHK > p\m|(F) ( )

Before stating the similar results for orthogonal Hermite-Padé approximants, we need to define the class of

measures Reg; 5(F). We say that u € Reg; o(F) if and only if
s 1/n _
gim_[pn(2)]/" = [0(2)

and

. 1/n _ 1
i lsn (@) = o)

uniformly on each compact subset of C\ E. Note that the above second type function s, is defined as the

following:

on(2) = / ’;f“gdmo, 2 € T\ supp(1).

Moreover, we need a definition of system pole and characteristic values.
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Definition 2.6. Let F = (Fy, Fy, ..., Fy) € H(E)? and m = (my,ma,...,mq) € N We say that £ is a
system pole of order T of F' with respect to m if T is the largest positive integer such that for each t = 1,2, .., 7,

there exists at least one polynomial combination of the form

d
ZvaFa, degvg < ma, a=1,2,...,d, (5)

a=1

which is holomorphic on a neighborhood of 5@(5” except for a pole at z = £ of exact order t.

Let 7 be the order of ¢ as a system pole of F. For each t = 1,2,...,7, denote by p¢ ;(F, m) the largest of all
the numbers p;(G) (the index of the largest canonical domain containing at most ¢ poles of G), where G is
a polynomial combination of type (5) that is holomorphic on a neighborhood of E|<I>(§)| except for a pole at
z = & of order t. Then, we define

pet(F,m) = k:nlnn tﬂg,k(F>m),
pf(F7 m) = pf,T(F7 m) = t=I{1in TpE,t(Fv m)

Fix a € {1,2,...,d}. Let Do(F,m) be the largest canonical domain in which all the poles of Fy are system
poles of F with respect to m, their order as poles of Fi, does not exceed their order as system poles, and Fy
has no other singularity. By po(F, m), we denote the index of this canonical domain. Let £1,&a,...,&n be
the poles of Fy in Do(F, m). For each j =1,2,..., N, let 7; be the order of §; as pole of Fiy and 7; its order
as a system pole. By assumption, 7; < 7;. Set

pz (F7 m) = min{pa (F7 m)7 j:min N P¢; 75 (Fa m)}

5.

and let D} (F, m) be the canonical domain with this index.

Theorem 2.7. Let E € K, F = (F1, Fy, ..., Fy) € H(E)?, and p € Reg; 5(E). Suppose that F has evactly
|m| system poles with respect to m := (m1,ma, ..., mq) € N and the sequence {m,} = {(mn,1,mn2,...,mpyq)}

satisfies the following conditions

liminfm, ; >m;, j=1,2,...,d
n—oo
and |
lim [mnllon o
n—roo n
Then, for fixred numbers B >0 and o = 1,2,...,d, each sequence {E%,mn,a}neN converges in [-dimentional

Hausdorff content to Fy inside D (F, m) as n — oo.

Corollary 2.8. Let E € K, F = (F1,Fa,...,Fy) € ?—[(E)d, and p € Regy o(E). Suppose that F has exactly
|m| system poles with respect to m := (my,ma,...,mg) € N¢ and the distinct system poles of F with respect
to m are £1,&2,...,&q. Then, {f{ﬁ}m}neN is uniquely determined for all sufficiently large n and for any
a=1,2,...,d, {Eﬁ,m,a}neN converges uniformly to Fo on each compact subset of D5,(F, m)\{&1,&2,...,&¢}
as n — oco. Moreover, for any compact subset K of D}(F,m) \ {{1,&2,...,&q} and for any a =1,2,...,d,

. _ Pk
1 Foo— Bl malifm < 120 "
1rgiup“ e! n,m,aHK ~ p&(F,m) “

With the same arguments used to prove Theorem 2.7 and Corollary 2.8, we prove

Theorem 2.9. Let E € K and F = (F1, Fy, ..., Fy) € H(E)?. Suppose that F has exactly |m| system poles

with respect to m := (my,ma,...,mg) € N and the sequence {my} = {(mn,1,Mn2,...,My.q)} satisfies the
following conditions
l%n;ioréfmn,j >mj, j=1,2,...,d
and |
lim M =0.

n—oo n
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Then, for fixed numbers B >0 and o = 1,2,...,d, each sequence {Eg,mn,a}neN converges in [B-dimentional
Hausdorff content to Fu inside D& (F, m) as n — oo.

Corollary 2.10. Let E € K and ¥ = (F1,Fy,...,Fy) € H(E)d. Suppose that F has exactly |m| system
poles with respect to m := (mi,ma,...,mg) € N and the distinct system poles of F with respect to m are
£1,62,...,&q. Then, {ﬁf,m}nEN is uniquely determined for all sufficiently large n and for any o = 1,2,...,d,
{Eg,m,a}nEN converges uniformly to Fo on each compact subset of D& (F,m)\ {£1,&2,...,&4} as n — oo.
Moreover, for any compact subset K of D} (F,m) \ {£1,&2,...,&¢} and for any a =1,2,...,d,

| e gm0k
s [Fo = Fmmoll = o2 m)
3 Auxiliary Lemmas

In this section we keep all needed notations and lemmas. Let £ € K and p € M(E). We define the n-th
Fourier coefficient of G € H(E) with respect to pn by

()= (Gopalys = [ Gl
We say that p € Reg(E) C M(E) when
lim [pa(2)] V" = [@(2)], (7)

uniformly on each compact subset of C\ E. The following two lemmas (see [3, Lemma 2.1]) concern the
formulas for computing po(G) and the domain of convergence of orthogonal and Faber polynomial expansions
of holomorphic functions.

Lemma 3.1. Let E € K, G € H(E) and pn € Reg;(E). Then,

n— oo

-1
po(G) = (hm sup |<G>n|1/”) :
Moreover, the series Y - (G)npn(z) converges to G(z) uniformly on each compact subset of D,

Lemma 3.2. Let E € K and G € H(E). Then,

n—oo

-1
po(G) = (nm sup |[G]n|1/") :
Moreover, the series Y. ([Gln®n(z) converges to G(z) uniformly on each compact subset of D)

Recall that the second type function s, by

sn(z) ::/Zf@gdu((j) z € C\supp(p).

The next lemma (see [8, Lemma 3.1]) is the asymptotic relation between the orthogonal polynomials p, and
the second type functions sy,.

Lemma 3.3. Let E € Ky. If up € R(E), then

Jim_pn(2)sn(z) = G,

uniformly on each compact subset of@\ E. Consequently, for any compact set K C C\ E, there exists ng € N
such that sp(z) # 0 for all z € K and n > ng.

7
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Using Cauchy’s integral formula and Fubini’s theorem, one can easily check the following:

Lemma 3.4. Let E € K, G € H(E), k € Ny, and p € (1, po(G)). Then,
- L G(w)sg(w)dw (8)
T 2w k '

Ty

(G

The following lemma (see [10], p. 43] or [11], p. 583] for its proof) gives an estimate of Faber polynomials on

on a level curve.

Lemma 3.5. Let p > 1 be fized. Then, there exists ¢ > 0 such that

|@nllp, <o n>0. (9)
Indeed, by the mazimum modulus principle, the inequalities (9) can be replaced by the inequalities

[@alp, <o, n>o0. (10)

The following lemma is about the uniqueness of the common denominators of generalized Hermite-Padé

approximants to polynomial expansions.

Lemma 3.6. Let (n,m) be a fized index. Then the following assertions hold:
(a) If for all qiim in Definition 1.1, deg ¢h m = |m|, then ¢h m is unique.
(b) If for all qfim in Definition 1.3, deg qfim = |m|, then qfim 18 unique.
(c) If for all gl m in Definition 1.4, deg qh.m = |m|, then @h m is unique.
(d) If for all ngm i Definition 1.5, deg ?jfm = |m|, then ?jfm 18 unique.

The following lemma (see [1, Lemma 2.2]) provides the relation between the polewise independence of a vector

of functions and the determinant A stated below.

Lemma 3.7. Let E € K, and F = (F1,Fs,...,F;) € H(E)? be a vector of functions in Dy . (r) and
m := (m1,ma,...,mg) € NI\ {0} be a fived multi-indez. Suppose that F has exactly |m| poles in D (F)»

A1, A2, ..., Ag are distinct poles of F in Dmm| (F) and T1,T2,. .., Tq are their multiplicities, respectively. Define
((zf)\v)er @mafl) () - ((zf)\l)T-fF @mafl)(”_l) )
J a J Jj a J
_\\Ti Mo —2 A )T Mo —2 (7i=1) .
A (z = Xj)7 Fa® (M) (z = Xj)7" Fa® (M)
. . 1
(2= X)) Fa) () (2= )7 Fa) ™70 () o actod

where the subindex on the determinant means that the indicated group of columns are successively written for
j=1,2,...,q and the rows repeated for « = 1,2,...,d. Then, F is polewise independent with respect to the
multi-indez [m| in D, _ (g if and only if A # 0.

The final lemma proved by Gonchar (see [7, Lemma 1]) allows us to derive uniform convergence on compact

subsets of the region under consideration from convergence in hi-content under appropriate assumptions.

Lemma 3.8. Suppose that hy — limp— o0 gn = g in D. Then, if each function gn is meromorphic and has
no more than k < +o0o poles in D and the function g is meromorphic and has ezvactly k poles in D, then
all gn,n > N, also have k poles in D; the poles of gn tend to the poles A1, Aa,..., A\p of g (taking account
of their orders) and the sequence {gn }neN tends to g uniformly on each compact subset of the domain D =
D\ {A1, 22, ..., A}
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4 Proofs of Main Results

Proof of Theorem 2.2. For each n > 0, we normalize the polynomials qﬁ’mn in terms of its zeros A, ; such

that
z
Qhim, ()= [ -2y ]] (1 - ) (11)
AnjI<1 Anj1>1 "
and for each a =1,2,...,d,
RM _ pﬁ,mm& _ P#,mn,a
ot qg,mn Q%,mn

With this normalization, we can estimate upper and lower bounds on the normalized Qﬁ}mn . Let € > 0 be fixed.
Suppose that the poles of F in D, (F) are A1, A2, ..., Aq and the zeros of Qhom, ate Ap1,An2;, .. s Al
(they are not necessary distinct and Im, < |mp|). We cover each pole of F in Dy . (F) with an open disk of
radius (6/(6|m\))1/5 and denote by Jél’a (F, m) the union of these disks. For each n > 0, we cover each zero
of Qh m, With an open disk of radius (e/(6|mn|(n+ 1)2))'/8 and denote by J,ﬁa(F) the union of these disks.
Set for each k > 0,

oo
JEE mik) =7 (Fm) [ | F)| and JZ(F m):= I (F,m;0).
n==k

By using the monotonicity and subadditivity of hg, it easy to check that hl;(JEﬁ(F, m)) < e and Jfl (F,m) C
JEB2 (F,m) for 1 < eg. For any set B C D (F), We put B(e) := B\ Jg(F,m). Clearly that if {gn}nen
converges uniformly to g on K () for any compact subset K C Dp,,,, (F) and € > 0, then hg —limn—o0 gn = g
in Dy (F).

Due to the normalization in (11), for any compact subset K C Dp‘m‘(F) and for any £ > 0, there exist
positive constant C7 > 0 and C2 > 0 independent of n such that for all sufficiently large n,

| m | < €™, (12)
and
min [Qfm, (2)] = (Cafmn|(n + 1)) 721/, (13)
ze K\JZ (F,m;k)
By the assumption of p, it follows that
pn(2) 1

lim —2 = , 1=0,1,2,..., 14
n—oo anrl(Z) CI)(Z)l ( )

uniformly on each compact subset of C\ E which implies that u € Reg;(E). Then from (14) and Lemma 3.3,
we obtain

b ) o pa() pri(2snsi(z) | 1 0()/B() 1 5)
i Tsn(z) o paaa() pa(2)sn(z) @) B()/B()  B()

uniformly on each compact subset of C\ E. Moreover, it follows from (14) and (15) that

s 1/n _
Tim_pn(2)[1" = [2(2)], (16)
and 1
lim |sn(z 1/n _ —_—, 17
JimJsn ()" = s ()

uniformly on each compact subset of C\ E, respectively.
Let

q
Q@) =] (z=2)"",

Jj=1

-_9
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where A1, A2, ..., \q are distinct poles of F in Dmm\(F)' From the definition of simultaneous Padé-orthogonal

approximants and Lemma 3.1, we have

fin, (2)Fa(2) = Plimy ol Z ol )pi(2), 2 € Dyy(r), (18)
k=n-+1
where
o\ = (Qhm, Fo)p, k=0,1,2,...,
and al(fy)L =0, foral k =n—mna+1,n—mna+2,...,n Since F is polewise independent with respect

tomin D, (), F has exactly |m| poles in Dy @) and 22:1 7j = |m|. Multiplying (18) by Qﬁn‘ and
expanding the result in terms of the orthogonal system {p, };2 such that for z € D pien| (F)>

Qo) (2)Q 1, (2)Fa(2) — Qfin (2) Pl mn, i (2) Z Qb (2)af ") pi(2)

k=n+1
n+my|—mp o %)
= Z bSpu (= S o)+ > bSp (2). (19)
v=0 v=n+|my,|—myu o+1
Let K be a compact subset of Dp‘ml(p) and set
o = max{|®] 5,1} (20)

(o =1 when K C E). Choose ¢ > 0 sufficiently small such that

1= Pim|(F) =0 > pm—1(F), p1—6>1, and <1l (21)

First, we approximate Ziozn-i-lmn\—mn ol |b$/a72||py (2)| on Dg. Due to the normalization of Q) m, (the

upper estimate in (12)) and Lemma 3.4, it follows that for v > n + |my| — mp,o + 1,

F F
16| = 1(Qfon Qi Foo — Qo Pl )] = (@) @i, o)

1
- %/Qr;n|(Z)Q%’m”(Z)Fa(Z)Sv(Z)dZ Sclo{mn‘nsynrpl’

py

where the constant ¢; does not depend on n (from now on, we will denote some constants that do not depend

on n by cg,c3,...). By using (17), there exists ng € N such that

C2
HSVHFpl S (Pl _6),/7 v Zno (23)

Moreover, from (16), it follows from maximum modulus principle that
pr||56 <c3(c+8)", v>0. (24)

Therefore, by (22), (23), and (24), for n; > no,

o o =
Z bSlpw(2)] < Z e (Z20) <ol (220 2 e D,
) 1 P1 — 1) ! p1 — 4
v=n+|my,|—mp,o+1 v=n+|m,|—mpy, o+1
(25)
Next we approximate Zgigm"lfm"’“ |b£,02||py(z)| on Dy. To approximate |bl(,a,2|, we need to approximate

|a \ first. Let pa € (1, po(F)). Using Lemma 3.4 when G = Q) m,, Fa, we have

a;caT)L:< Z,mn k 27rl /Qn mn ( ) (Z)dZ
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Define
2 / Qb (2)Fa(2) (7).
Notice that for each k > 0, Q) m,, Fa is meromorphic on Dy, \ Dp, and has poles at A1, A2, ..., A\q with
multiplicities at most 71,72, ..., Tq, respectively. Applying Cauchy’s residue theorem, we obtain
’y,(faz akay)b = ZRes (Qh m, Fasi, A\j). (26)
j=1

Recall that the limit formula for the residue of Q, m, Fasy at Aj is

1 3 1
Res(Qh,m, Fask, Aj) = RSPy (2 = A) 7 Qltm, Fasi) 7Y ().
By using Leibniz’s rule and the fact that for n sufficiently large sn(z) # 0 for z € C\ E (see Lemma 3.3), we

can transform the expression under the limit sign as follow

Tl (t)
) - i—1 11— )
(2= 2A)" Qi Fasi) ™V (z) = 3 (TJ , )(Qz,mnsn%” ) (<z = X)) Fa 2t ) (2)-
t=0 "
Forj=1,2,...,q,and t=0,1,...,7; — 1, set
Bulit) = s (7] i (@, s T O()
md, ’ (Tj —1)! t 2= e
(notice that Bn(7,t) do not depend on k and «). Thus, we can rewrite (26) as
(@) ) qg Ti—1 s (t)
a (e i k
i = 3 3 w60 (a7 ) ) @)
J

Since a,(caT)L =0fora=12...,d, k =n—mna+1,n—mnpa+2...,n,it follows from (27) and the

assumption that mn,a > ma,

q Tji— (t)
'y](cog —Z Z Bn(j,t <z— )TjFaZ—k) Nj), a=1,2,...,d, k=n—ma+1,n—ma+2,...,n. (28)
j=1 t=0 "

Now, we consider (28) as a system of |m| equations on the |m| unknowns £, (j,t) and the determinant A,,

corresponding this system is

(e e (B Y
(e O (B Y
(carmz)on o (s o)

where the subindex on the determinant means that the indicated group of columns are successively written

for j =1,2,...,q and the rows repeated for « = 1,2,...,d. Using (15), we have

(r;—1)
(=27 Fadm™ ) 0g) o (= AT Fad™ ) ()
i Ma— T Mo — (r;—1)
lim A, = A = ((z — )\j)"'JFa<1> o 2) (/\j) ((z — /\j) i, e 2) i ()\j)
n— o0 . )
((Z — )7 Fa) (M) ... ((z — X)) Fa)(‘l'jfl) (M) 12, am12d
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Since F is polewise independent with respect to m in Dmm\(F)’ it follows from Lemma 3.7 that A # 0 and

|An| > ¢g > 0 for all sufficiently large n. From now on, we will only consider such n’s.

To avoid long expressions, we define for all w = 1,2,...,d, y = 1,2,...,mw, j = 1,2,...,q, and t =
0,1,...,75—1,
— ] 1
Jw,y Zmr +y and hj;:= Zn +t+1,
r=0 =0

where mg = 79 = 0. Applying Cramer’s rule to (28), we have

d My

) A
6”(.]7t) ZZ n m,w-‘,-y nCn[gw7y7hj,t]7

w=1y=1
where Ay, (j,t) is the determinant obtained from A,, by replacing ht .+ column with the column

w w
[’Y',(L )mw+1 n + 'V( ) wt2,mn T 777(L,Tz]w:1,2,u.,d

and Cy[g,h] is the determinant of the (g, k)™ cofacter matrix of Ap(j,t). Substituting 8, (j,t) in (27), we
obtain for a =1,2,...,dand k > n+ 1,

Tj*l

q d my (t)
(ERLEEE D IDIPIPIL LT (G-amrs) o

j:

=1 d my t (u)
= Ai Z Z Z ’yT(Lw)mw+y nCn[gw,y,hj,t] Z (i) ((Z — )\j)"'jFa)(t*u) ()\j) (Si) ()\j)

S
7j=1 t=0 w=1y=1 u=0 "

?’L

g i1l d my (u)
T ZZZ( ) A ol ) (= 27 F) T 00 () ). @9)

7j=1 t=0 w=1y=1u=0

where the second identity follows from the Leibniz formula.
Define
B(\r)i={z € C:]z— A <r}.

Let ¢ > 0 be sufficiently small such that {z € C: |z — \j| < e} C {z € C:|®(2)| > p2} forall j =1,2,...,q
and B(A;,e) NB(Ag, e) =0 for all k£ # j. Using Cauchy’s integral formula, we obtain

s © sk(z
() = [ e (30)

z—Aj|=¢
lz=A;

Applying (15) and (30), we can see that there exists a constant c¢7 such that for sufficiently large n,

NG
‘(’“) ()| <

Moreover, by using Cauchy’s integral formula as before, there exist constant cg and cg such that for all
a=1,2,...,d, k:n—ma—kl,n—ma—i—?,.--,n,j: 1,2,...,q, andZZO,L...,T]’ -1

c7
k—mn’
P2

F=1,2,...,q £=0,1,...,75—1, k>n+1. (31)

)
‘ (-7 m) o) < es (32)
for sufficiently large n and
7 ¢
(=27 Fa) )] < o (33)

From (32),
|C’ﬂ(g7h)| < c10, g7h:1727"'7‘m|' (34)
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Using (31), (33), (34), and |Apn| > c11 > 0, it follows from (29) that

Jag™ | < |+ = = RZZW(’”%MR a=1,2,....d, k>n+1. (35)
w=1y=1

By the definition of 'y,(iarz and (17), for all sufficiently large n, we obtain

(@) < clzcllmn‘

<——— a=12,...,d, k>n—|m|+ 1. 36
k,n| (Pl—d)k | ‘ ( )
This implies that
C‘ nl
lay™)| < 6137, a=1,2,....d, k>n+1. (37)
2 "(p1 — o)

Recall that b(yan = Ek a1 ak n(le‘ pi)v. By Cauchy-Schwarz inequality and the orthonormality of
{pr}, we have for all v > 0,

F F F 1/2 1/2 F
[(@mipi)o] = [(Qfmiprspodul <|| Q| o2 e p)i® <[ Q]| < s (39)
Then,
S 0@ e15Cy™
F
A< D e Qfpi] < g @ =12 d
k=n+1

Therefore, for each a = 1,2,...,d and sufficiently large n,

n+|my |[—my o n+|my |—my o

+4)”
by I < c15CP] {o+0)"
;0 b5l (=) go T T o)
- s\"
<eci5(n+ |mp| — mp,a + 1)C‘Im”| <;17t5> (39)
where Cy := C1(0 + 6) and z € Do.
Combining (25) and (39), it follows from (19) that for each k > no,
|Qfn| (2)Qh m, (2)Fa(2) = Pl a(2)] < c160)™ 160", a=1,2,....d, 2€Do, n>k, (40)

where 6 is an arbitrary constant which satisfies

o+

<6<
p1—0

Let 8 > 0 and € > 0 be fixed. By the definition of Jg(F, m; k) and (13), the inequality (40) implies that for
each k > na,

c16Cy™ 0"

QF ()@, ()]

~Imy | pn (6m| mi/8 2\2/m,, |/
|Fa(2) = Ry m,,,a(2)] < e A (Ca|my |(n + 1)%)2mnl/P

for all z € Dy \ Jf(F, m; k) and n sufficiently large. Then, for each k > ng,

Im[/B\ /"
1 6/m ~1/2 m,|/n
(| Fa _Rg,mn,u|ygj\J§,(F7m;k) < <c16( |E |> ) 0(CL2CY Py VP (n + 1)2/8)2imnl/

< cMngelerst§ logtnt1) @lmal/m),

for sufficiently large n, which implies that for each k > na,

1/n

Do \JE (Fm;k) <9

hmsupHFa — RE mn,aH

- 13
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Letting 6 — 0 and p; — p|m‘(F), we have for each k > no,

(o

Since ¢ is arbitrary, we let 6 — o/p|m|(F), then for k > ng,

<0<

. 1 . 1
lim sup”Fa — Rﬁ*mﬂ’o‘HI(/(T;) < hmsupHFa — Rﬁ’mmaHﬁ/n(s)
o —00 a
. 1/n o
< limsup||Fo — RA malls <—— < 1. 41
o || @ T,1m ’aHDG\Jf(F,m;k) plm‘(F) ( )
This implies that for any 8 > 0 and a = 1,2,...,d, each sequence {R}) m, o }nen converges in S-dimentional
Hausdorff content to Fy, inside Dp‘m‘(F), as i — oo. O

Proof of Corollary 2.3. By the assumption of Corollary 2.3, m, = m. Then, the conditions in Theorem 2.2
are obtained. By Theorem 2.2, we get h; — limp— oo Rﬁ,mn,a = Fu in Dp|m\(F)' Applying Lemma 3.8, each
pole of Fy in Dp\ml(F) attracts as many zeros of Qﬁ;m as its order. Therefore, since F has |m| poles in
Dp|m\(F)’ deg Qf . m = |m)| for all sufficiently large n. By Lemma 3.6, for such n, Q} m is unique. This implies
that for sufficiently large n, R}, m is unique.

Let K C D, (F) \ {A1,A2,...,A¢} be a compact set. Choose o := max{||®||;,1}. Since all points
A1, A2, ..., Ag attract all zeros of Qﬁym, for sufficiently small € > 0 and for sufficiently large k,

K € Dy \ J2(F,m, k).

By the inequality (41),

1/n (o

= < — .
Do\JE(Fmik) = p oo (F) (42)

lim supHFa — Rﬁ’mmaH}(/n < lim supHFa — Rhm, 0 }
n— o0 n—oo

This implies that the sequence {Rﬁ,m,a}neN converges uniformly to Fn on each compact subset of Dp\m\ (F) \
{1, A2,...,A¢} as n — oco. This completes the proof. O

Proof of Theorem 2.4. Let Qﬁmn be the polynomial qf’m" normalized as in (11) and we have for all a =
1,2,....d,

RE _ Pnm,,a _ men,a
T ., QFm,
Note that the notations JEB(F, m; k) and B(e) are defined as in the proof of Theorem 2.2 replacing Qﬁ,mn by

Qﬁmn. Then, for any compact subset K C Dp\m|(F) and for any € > 0, there exist positive constants C7 > 0
and Cy > 0 independent of n such that for all sufficiently large n,

|@Fm, | <™, (43)

K

and
min |Qfim, (2)] = (Cafmn|(n +1)%) 72 1/7, (44)
2ze K\JZ (F,m;k)
Let
F . T
Qmi(2) =[] == 2)"

j=1

where A1, A2,...,\q are distinct poles of F in Dp‘m‘(F)’ From the definition of simultaneous Padé-Faber

approximants and Lemma 3.2, we have,
o0
E E
Qhmn, ()Fa(2) = Pim, a(2) = > al®)®4(2), 2 € Dyyr,), (45)
k=n-+1

where
a’](:;z/ = [QE,mnFa}lm k= 071727' ]
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(@)

and A = 0, for all k =n —mn,a +1,n — Mn,a + 2,...,n. Since F is polewise independent with respect
tomin D, (), F has exactly |m| poles in D (F) and Z?:l 7j = |m|. Multiplying (45) by lel and
expanding the result in terms of the Faber polynomial system {®,}52, such that for z € Dp\m\ (F)>

Qﬁn\('z)QE,mn( )F ( ) Q\m\( ) nmn,a Z Q|m| akn ( )

k=n-+1

0 ntmy | —map o 00
=Y uRee = Y e+ Y ble(). (46)

v=0 v=0 v=n+|my,|—mpy,o+1
Let K be a compact subset of Dmm\(F) and set
o = max{||®|| 5, 1} (47)
(0 =1 when K C E). Choose 6 > 0 sufficiently small such that
o+

p1 = p‘m|(F) — 6 > p\m|71(F)7 and < 1. (48)

p1—0

First, we approximate » - At M = a1 \b,, nH@ (2)] on Dy. With the similar computation as (22),
it follows from (2), (9), and (43) that for v > n + |mu| — mn,a + 1,

|mn‘
b)) < O (49)
P
Therefore, by (10) and (49),
oo o0 o v o n
3 ||y (2)] < 3 e (—) < ezo! (—) , 2€Ds. (50)
v=n+|my,|—mn,o+1 v=n+|m,|—mn o+1 P p1

n+|mn| Mn, o

Next, we approximate »_ |b ||<I>,,( )| on Dy. Again, we begin by approximating |a§€ag|.
Choose p3 € (1, po(F)), we have

(a) _ [Qn mnFOé]k _ / Qn m,, Fa(z)cb (z )dz

(I>k+1 )

Define . /
@._ 1 [ @Qum,(D)Fa(2)2(2)
kon " ong <I>k+1(z) '
P1
Arguing as (26), we obtain
) 0l = > Res(Q g, Fu® /3,0 (51)
j=1

Recall that the limit formula for the residue of Q{imn Fod'/ PFHL at Ajis

1 _ (7;-1)
Res(QF i, Fa®' /M1 ))) = o ((z—)\j)TJQﬁmnFaq)//(I)kJrl) ).
7—] ) Z—))\j

Leibniz’s formula allows us to write

1o\ (11 ol 1N (mi—1=1) )
(-2 Qm Fagter) ()= (Tﬂt 1) (@) @ (c-amre ).

t=0

- 15
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For j=1,2,...,q,and t =0,1,...,7; — 1, set

(1;—1—1)
a1 =1\ . E o’ I
ﬁ’ﬂ(]7t) R (T] _ 1)' ( t ) Zli{r){j (Qn,mn (pn-‘,-l) (Z)

(notice that 8n(j,t) do not depend on k and ). Then, we can rewrite (51) as

q Ti—1

A = ol =373 it (== A ) ) 52)
j=1 t=0
Since a](fT)L =0fora=1,2,...,d,k=n—mna+1,n—mna+2,...,n and the assumption that mn,o > maq,
we have
qg 71 (t)
A =3T3 Baliit ( Aj)TI P @™ ’“) (), a=1,2....d, k=n—ma+l,n—ma+2,...,n (53)
j=1 t=0

Now, we use the same technique as for simultaneous Padé-orthogonal approximants to find 8, (j,t) by
replacing sy, /sn with ®"F in (28). Consider (53) as a system of |m| equations on the |m| unknowns 8y (j, 1),
it follows that for « = 1,2,...,dand k > n+1,

q Ti—1l d my

o N
)=o) = 3 Y S Y Ay Ol bl (=27 Fa#™ ) (), (50

j=1 t=0 w=1y=1

(w)

where An, v, . and Cn[gw,y, hj ] are defined in the same way as for simultaneous Padé-orthogonal
approximants.

Arguing as (30) and (31) by replacing sj/sn with (z— ;)™ Fo®" ™% (32) by replacing s, /sy, with 77K,
(34) and (35) , we have for sufficiently large n, « = 1,2,...,d,

|a |<|7 9|+ = HZZI% o tyml @=1,2,...,d, k>=n+1.
w=1y=1

By the definition of 7](602, for all sufficiently large n, we obtain

C|mn‘
O < S0 —12 . d, k20— |m|+ L.
P1
This implies that
(a <C6C‘1m”| —1.2....d k>n+1 85
Gl S g @S L2eed, kzntl "
2 1

Now, we estimate |[Q|F;n‘<1>k]y\. Suppose that § > 0 is sufficiently small such that po — § > 1. then,

Qo ()04(2)9/(2) g
@hwtel =5, [ e < e 2 (56)

Lpy—s

Consequently, we get

— csCIm! n oo ok o o
s, & o <55 () £ (5 <55 ()

k=n+1 k=n+1

Therefore, for each o = 1,2,...,d and sufficiently large n,

n+|my|—my o

n Nt My [—my o v
(a) < ‘mnl L_(S L
Y. Rlee(z)] < 100y ( o ) 2 (p2 - 5)

v=0 v=0
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| ‘ 02 5 n o n+|mn|_mn,a
m,, -
<ci5(n+ [mp| —mp,a + 1)01 ( o ) (,02 — 5) (57)

where z € D, .
Combining (50) and (57), it follows from (46) that for each k > na,

Qi (D)@, ()Fa(2) = Pim, a(2)| < enC™10", a=1,2,...,d, €Dy, n>k,  (58)
where 6 is an arbitrary constant which satisfies
Z o<1
p1

Repeating the lines of reasoning used after (40) in the proof of Theorem 2.2, we arrive

I HF RE Hl/" <7 <1

im sup - s < — .

nooo I i 15 p\m\(F)

This implies that for any > 0 and o = 1,2,...,d, each sequence {Rg,mn,a}neN converges in [-dimentional
Hausdorff content to Fy, inside Dp|m\(F)’ as n — oo. O

Proof of Corollary 2.5. Arguing as the proof of Corollary 2.3 and replacing R%,mn,a with Rﬁ,mw, we have
(4). O

Proof of Theorem 2.7. For each n € N, we normalize the polynomial ‘}%,mn in terms of its zeros A, ; so that

G = ] G- TI (155 (59)

n,j
IAnj1<1 Anj|>1 I

and for each a =1,2,...,d,

~1 L

ép, _ Pnm,,a Pn,mn,a
n,Mm,,a — "~ ==

dn,m,, 7n,My,

With this normalization, we can estimate upper and lower bounds on the normalized éﬁ’mn. Let € > 0 and
a be fixed. Suppose that the poles of Fy in DA (F, m) are A1, Ao, ..., ¢ when d’ < |m| and the zeros of
éﬁ,mn are An,1, An,2s -+ An I (they are not necessary distinct and Im,, < |my|). We cover each pole of Fy
in D (F, m) with an open disk of radius (¢/(6/m|))"/? and denote by Jga(Fa, m) the union of these disks.
For each n > 1, we cover each zero of Qvﬁm" with an open disk of radius (a/(6|mn|(n)2))1/ﬁ and denote by
JE,E(F) the union of these disks. Set for each k € N,

o0
Jf(Fa,m; k) := JOB,E(FO"m)U U J’rﬁL,E(F)
n==k

and
JB(Fa,m) := J?(Fa,m;1).

By using the monotonicity and subadditivity of hg, it easy to check that hg(Jg (Fa,m)) < € and JE’B1 (Fo,m) C
JEB2 (Fo,m) for e1 < e2. For any set B C D (F, m), we put B(e) := B\ Jsﬁ(Fa,m). Clearly that if {gn}nen
converges uniformly to g on K (¢) for any compact subset K C D (F, m) and € > 0, then hg —limp—c0 gn = ¢
in DX (F, m).

Note that for any compact subset K C D}, (F, m) and for any € > 0, there exist positive constants C; > 0
and Cy > 0 independent of n such that for all sufficiently large n,

| @,

<ol 60
L <cl (60)

and

min |Ql m, (2)] > (Colmy |n?) 2™ l/5, (61)
2eK\J? (Fo,m;k)
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Let £ be a system pole of order 7 of F with respect to m. We begin the proof by showing that

I ) 1/7L & ‘20717---7 -1
171Ln_>s;p (@ hom, ) ()] = pe 1 (F,m)’ J T

Consider polynomial combination G of type (5) that is holomorphic on a neighborhood of 5@(5” except for
a simple pole at z = & and verifies that p1(G1) = p¢,1 (F,m)(= p¢,1(F, m)). Then, we have

d
G = ZUQJF@, degva,1 < Mo, a=12,...,d.

a=1
Define
Hi(z) == (2 = §)G1(2) and n : <Qn my, Gi)n-

By the definition of Qn .m,, , it follows that aﬁ}}L = 0. Then, we have

= <Qn m,, = 5 / Qn m,7 ( )Sn(z)dz = 07

where 1 < p1 < |®(&)]. Set

A = / @ m, ()61 (2)sm ()2,
where |®(§)| < p2 < p¢1(F,m). Arguing as in (26 we have

i /Q" m, (1)G1(t)sn dt—*/Qn m, ()G (t)sn (t)dt

(62)
= ReS(Qn,mnGlsmi) = zh_{ﬂ&(z - E)Qn,mn (2)G1(2)sn(2) = H1()@h m,, (€)sn(8).
Then, we can rewrite (62) as
i = Yk = @i = H1(E) Qi m,, (€)sn(€)
Since a,(l ZL =0, it follows that
AL '77(7.11)1
= 63
Choose § > 0 so small such that
D)+
pr = pea(Bm) = 5> [0, [0() -0 >1, and TEEL oy
By using (?7?), there exists ng € N and c2 > 0, ¢3 > 0 such that
c1 C2
— < < — > .
(p+5)n —HSTLHFP > (p_(s)n7 n = ng (64)
Then, from the definition of ’y( ) and (64), we have
[my, |
c3C
W< 2L and [sn(€) a (65)

(20" N CGEDR

By (65), it follows from (63) that

m| [ |® s\"

Letting 6 — 0, we obtain pas — p¢ 1 (F, m) and

1/n M
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Now we employ induction. Suppose that

i o)D) <|7, =0,1,...,0—2, d (<. 66
ﬂsolip |( n, n) €3] > pg,j+1(F, m) J an <rT (66)

We will show that (66) holds for j = ¢ — 1. Consider a polynomial combination G, of type (5) that is
holomorphic on a neighborhood of EI‘I’(E)I except for a pole of order £ at z = £ and verifies that p,(Gy) =
p¢ ¢(F,m). Then, we have

d
Gy = ZvalFf’“ degvg e <ma, a=1,2,...,d.
a=/{

Define
Hy(2) = (2= ©)'Ge(2) and  alf), = (QN m, Ge)n-

By the definition of Qn m,,, it follows that a%)n = 0. Consider

ag?n - [Qn,mnGé]n = 5 / Q’n, mn )Sn(z)dz = 0,

where 1 < p1 < |®(€)]. Set
()
Tn,n ‘= 271_2 / Qn mn ) n(z)dzv

where |®(§)| < p2 < p¢,¢(F, m). Again, arguing as in (26), we have

2ri /Q" m,, () Ge(t)sn 7/Qn m,, (1)G¢(t)sn(t)dt

[ " (67)
@, G ) = (g 3 (7 ) G 0@ ) 0
= hes(n,m, GeSn, _(571)! part ¢ ¢Sn n,m,, .

(0)

Since ap, = 0, equation (67) become

-2

(¢ — 1)1, <£1> (Hysn) 710 ()/(Qh ) () + Ho(€)sn (€)(Q4 )P (8),

t=0

which implies that

(&) £=2 (£—1—t)
S (£—1) (6 - 1 Tn n (Hysn) (5)(Qn mn) (5) 68
( n,mn) (6) P < > H@(g) n(g) . ( )
Choose § > 0 so small such that
pr = pe(Bm) =0 > (@), [2(©)] ~0> 1. ana TSy
Arguing as (65), we have
‘mn‘
0 o 01 c1
"Yn,n| < W7 and ‘Sn(f)‘ > W’ (69)
and for all t =0,1,2,...,¢ — 2,
(b—1—1) =1 -¢) / Hy(2)sn(2) cs
(o)™ O= 5 C-ort C| = @l - )

|s—El=<

19



20 = M. Wajasat and N. Bosuwan, Convergences in Hausdorff content of generalized Padé approximants to polynomial expansionsDE C

where {z € C: |z—¢| =€} C {z € C: |®(2)| > |P(§)|—I}. Moreover, by (66), we have for all j =0,2,...,0—2,

5 e <o (12O N (@@l "
@rma )] = 7(pg,j+1(F,m>> : 7<P§,1€—1(F7m)> | -
Combining (69), (70), and (71), it follows from (68) that
G\ <z—1 'T S (Hesn) " (€) (@, )V (€)

el (12©18\" (@@l +a\" (el "
= G ( p2—90 ) " 9<|‘1’(§)|—5> (Pg,e—1(F,m)) ’

which implies that

lim sup [(0F )0 (€)[/7< max § [2EL+0 (|¢(€)|+5) |2
o - p2—0 )

n—00 |2(8)] -0 p{,ffl(Fam

Letting 6 — 0, we obtain pa — p¢ ¢(F, m) and

e sup (@ ) (67 < mase 4 12O ( 2(©)] )
n—o00 " pe.e(F,m)" \ pe 1 (F,m)
-l
= peo(F,m)’
which completes the induction proof.
Let £1,&2,...,&w be the distinct system poles of F with respect to m, and let 7; be the order of {; as a
system pole, j = 1,2,..., w. By the assumption that Z = |m|, we have proved that, for j =1,2,...,w
andt=0,1,...,7; — 1,

lim O e yin « _ 12E) 2
n_f;—}"( n mn) (&)l pEJ,t—i-l(F m) < P, (F, m) (73)

Let v € {1,2,...,d} be fixed and let {£1,...,En} be the poles of Fy in D},(F, m). For each j =1,2,..., N,
let 7; be the order of éj as a pole of Fyy and 7; its order as a system pole. Choose p1 € (1, po(Fu)). Consider

al(vav)L - < nmn 27_” / Qn m71 ( ) (z)dz

Define )
W)= gr; [ Qhma () Fa()on(2)e,

F/’2

where p3 € (1, p5(F, m)). Arguing as in (26), we have

IYIE: 'rz ak n Z RGS Q" MMy FaSk’ £J) (74)
j=1

Recall that the limit formula for the residue of Qﬁ,mn Fasy at éj is

ReS(ég mnFaSk’ gj) - A; i ((Z B 57)+] éﬁ, mnFask) (%j_l) (Z)
) (75 = ! 2—E; ' ’

ol . . o _
~ i (Tjt 1><<z—fj>”Fask>“f1“(@-)( hama) " €):
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Let § > 0 be such that p2 — 6 > 1 and \<I>(§~J)\ — 6 > 1. Arguing as (65) and the computation similar as (70),

|my, |
c10C™ (7,—1—t) c11
) < S and (2 =€) Fasi) ™ ) € —m— (76)
Tl = oz = 0)F o TR - oF
respectively. By (75) and (76), it follows from (74) that
clma al o ()| ol o)
c10C] [D(&5)] c10C] 612 |D(&;)]
lak n| < T(or — )k +ci2 < 5F i Z e (77)
(b2 =0F = (o @ m)n (&)~ 0)F  (p2—0) (12(E)| )
Let
N
~1(-¢)”
From the definition of orthogonal Hermite-Padé approximants and Lemma (3.1), we have,
_ _ o0
b, (DFa(2) = Phma(z) = Y al®pi, 2 € Dyy(ry. (78)
k=n-+1

where
af®) = (Qhtwn, Fado: k=0,1,2,....

Multiplying (94) by w and expanding the result in terms of the orthogonal system {p,};—, such that for
z € Do(F, m),

o0
W(2)Qhm, (2)Fa(2) = 0(2) Phimy () = Y w(z)al)pi(2)
k=n+1

n+|m,, | 00

= Z bu npl/ Z bl/ an Z bI(Ja’r%pV( )- (79)
v=n+|m,|+1
Let K be a compact subset of D} (F, m) and set

o := max{||®| ;,1} (80)

(0 =1 when K C E). Choose ¢ > 0 sufficiently small such that

o+

p2 = po(F,m) =4, po(F,m)—25>1, and P 5
5 —

<1 (81)

First, we approximate 3 ) ., 10 |b,(,i¥,2||p,,(z)| on Dy. Auguring as in (22)-(25), we have

0o o435 n
S ()] < casep™ <7,5> . 2€Ds. (82)
v=n-+|m,|+1 p2
Letting § — 0, we have p1 — p5(F, m), then
1/n
> o
lim su b v < —. 83
msw| Y G| < (53)
v=n+|m,|+1 5

n+|m,,\ ‘b

Next, we approximate > © pr( )| on Dg. By using the same technique as (38) and inequality

(93), we have

n N
< S el < 2O + o S T80 o
v,nl > k,n [m| - (Ig2 —5)" pa F m n |<I) |7 5

k=n+1 =1
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Therefore, for z € D,

n+|mp, |

C|mn| 1 q B\ )|
bl) pu(2)| < c16(n+|mp|+1)(c+5 n+|my, | 1 + j (85
l;J | u,n“ u( )| = 16( ‘ n| )( ) (pg _5)n (pa(F,m))” = (|‘I)()\j)‘ _§)n ( )
which implies that
1/n
n‘Hmnl
. +4 (c+9) [D(A\;)]
lim su b(a) z < max <U ), max — 39 3
SN ;0 (bwnllpv (2)] T p2—3 ) p&(F,m) j=12...q (|2(\;)| - 9)
D,
Letting 6 — 0, we obtain
n+|my,| 1/n
lim su b(a) z S — 86
n_mop VZ:;) by 1w (2)] B = pi(F, m) (86)

D,
By (61), (99) and (102), it follows from (94) that for sufficiently large k,

~ 1/n ~ 1/n ~ 1/n
limsupHFa — R%mmaH < lim supHFa — R%“M@H— < lim supHFa — R%mma’ _
n—o00 K(e) n— oo o n—o00 DU\Jf(F,|m|;k)
| | 1/n
n+(m,
. b Ip (2) = bllpe ()
S hm sup f f
n—00 v=0 w(z)@n,m., (2) v=n-+|m,|+1 w(2)@n,m, (2)
K(e)
1/n
. 1 . 9\ 2Imn| o
< ——— limsup = < —— limsup(Co|lmp|n”) »F = ———.
pa(F,m) 5 oo min ‘Q%mn (2)] po(F,m) 500 (Cafmnfn) p&(F, m)
2€K\JE (Fo,mik)
(87)
This implies that for any > 0 and o = 1,2, ...,d, each sequence {Rf,mn,a}neN converges in [-dimentional
Hausdorff content to Fy inside D} (F, m) as n — oo. O

Proof of Corollary 2.5. Let £1,&2,...,&q be the distinct system poles of F with respect to m, and let 7; be
the order of ; as a system pole, j = 1,2,...,q. By the assumption that Z?Zl 7j = |m|, we have proved that,
forj=1,2,...,qand t=0,1,..., 75 — 1,

limsup|(@% m)(t)(gj)|1/" < ‘¢(€J)| < |'1’(€])|

. 88
n—o0o - ng,t+1(F,m) o pﬁj (va) ( )

The above inequalities imply that

limsup | Q@ m — Qmll'"/™ < max L) :
n—00 ’ J=1,2,....q P¢; (F7m)
where QE, denotes the monic polynomial whose zeros are the system poles of F with respect m and || - ||
is any norm in the space of polynomials of degree at most |m|. This implies that for all n sufficiently large,
deg é%m = |m|. By Lemma 3.6, for such n’s, @%’m is unique and ﬁﬁ’m is unique.
Using the same lines of reasoning as in the proof of (42), we have (6). O

Proof of Theorem 2.9. For each o =1,2,...,d, we normalize q,}imn in the same way as orthogonal Hermite-

Padé approximants (see (59)) such that

E
RE _ Pnm,,a Pn,mn,a
T, My &

E - E :
dn,m,, Qn,mn
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Note that the notations .J2 (Fa,m; k) and B(e) are defined as in the proofs of Theorem 2.7. Then, for any
compact subset K C D}, (F, m) and for any € > 0, there exist positive constant C; > 0 and Cy > 0 independent

of n such that for all sufficiently large n,

~E
|07 .

<C|mn\7 89
LSO (89)

and
min |Qf m, ()| > (Cafmy|n®) Hmn1/5, (90)
2e K\JZ (F,,m;k)
Let &£1,&2,...,&w be the distinct system poles of F with respect to m, and let 7; be the order of §; as
a system pole, j = 1,2,...,w. With the same idea as for orthogonal Hermite-Padé approximants, it is not
difficult to check that for j =1,2,...,w and t =0,1,...,7; — 1,
~ ®(&5)]
lim su E e < |7J 91
n—>oop|(Qn’mn) (fj)| > pgj(FJl’l) (91)
Let a € {1,2,...,d} be fixed and let {§~1, e ,§~N} be the poles of F, in D} (F, m). Foreach j = 1,2,..., N,
let 7; be the order of C:j as a pole of Fi, and 7; its order as a system pole. Choose p1 € (1, po(Fu)). Consider

NE /
(@) 1 Q@n\m, (2)Fa(2)®'(2)
a‘k n [Qn m,LFa]k = i (ID'IH'l(z) dz.

Pl

Define

(@ _ 1 [ @rim,()Fa(2)?(2)
Ten = 2 <I>k+1(z) 2,

P2

where pa € (1, p&(F, m)). Arguing as in (26), we have

q
VI(CCQ - aéar)l ZRGS(QE,mnFa‘I),/@k—i_l,gj).
j=1

N 75— (Z . é)ija(ID’ (F—=1-t) o y
=2 T fl i Z ( ) (qjkﬂ> €)@ m, )M ().
j:].

Arguing as (65) and the computation similar as (70),

|ma| Ny N\ (Fi—1=1)
Clcl (z—ﬁj) T Fa® ~ co
\fy( )| < ——=— and —_ E)N<— (92)
BT b okt P (e(E)] - o)
respectively. By (92), it follows that
|mn| N N ‘mnl N
c1 [D(&5)] c1C |P(&5)]
il < = e J St EEer 2 ) Y
kO S (e - 0F T s (aFm)" & (@) )
Let
N -
=1(-4)"
From the definition of Hermite-Padé-Faber approximants and Lemma (3.2), we have,
_ _ oo
Qfim, ()Falz) = Pima(z) = > af)y, 2€ Dy p,). (94)

k=n+1

-_— 23
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Multiplying (94) by w and expanding the result in terms of Faber polynomial system {®,}52 such that for
z € Da (F7 m)7

oo
(@)@, (2)Fa(2) = () Pim,a(2) = Y w(z)a®u(z)
k=n+1
oo n+|my| oo
=N ez = Y e+ Y bheu(2). (95)
v=0 v=0 v=n+|m,|+1
Let K be a compact subset of D}, (F, m) and set
o = max{||®|| g, 1} (96)
(0 =1 when K C E). Choose ¢ > 0 sufficiently small such that
p2 = po(F,m) —§ > 0. (97)

First, we approximate Ztﬁn+|mn|+1 |b,(,?72|\<l>y(z)| on Dy. Auguring as in (22)-(25), we have

o0

S ()] < cact! (pi) , 2€Do. (98)
2

v=n+|m,|+1

Letting § — 0, we have p2 — p& (F, m), then

1/n
= (o) o
lim su by ||®, (2 S — 99
v=n+|m,|+1 5

Next, we approximate ZZI(‘)mnl |b(a)|\®y(z)| on Ds. Suppose that § > 0 is sufficiently small such that
p1 — 0 > 1. Arguing as (56), we have

k
wply| < o5 LL=0)

(p1 — 0)¥
Thus,
> [my | n
(@) 6l " (p1 —9)" (N (p1 — )
b < a wd < . 100
pbl 2 Tl < = 05w + . ng GG g (0
Therefore, for z € ﬁg,
TL"F‘mn‘ |mn| " N B .
coCy " (p1—0)"  cio(p1 — )" |2 (&)
|b D (2)] < es(n + [mp| + 1)o" e il > ’
2 I : A R Y e
(101)
which implies that
1/n

n+|m,,| B
imsu max oo = 5)> alp1 =) max M
sy 3 plIe | < {( L0) S0 (|q>(gj)|5)}'

o

Letting § — 0, p; — 17 and p2 — p}(F, m), we obtain

n+|my, | 1/n
o
lim su b D, < —. 102
mowp| 3 BlIe G| < (102)
— B,

Arguing as for orthogonal Hermite-Padé approximants, we are done.

Proof of Corollary 2.10. The proof of this corollary is identical to the one of Corollary 2.8.
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1 Introduction

For a fixed multiset of N points wy = {z1,72,...,2x8} C R? a given
constant s € R, and a given constant A > 0, we define the potential function
Ush(;wn) : R? — [0, 00] as the following:

UM (z;wpn) Z |x—xj|2+h)_s/2, (1.1)

Jj=1

where x € R? and |- | is the 2-dimensional Euclidean norm in R?. In this paper, we
call Us"(-,wy) a Riesz (s, h)-potential function of wy. The geometric interpreta-
tion of the function U*"(-;wy) is as follows. Let us consider two parallel planes in
R3: one is R? x {0} and the other is R? x {v/h}. Basically, the potential function
U®"(z,wy) is the Riesz s-potential function in the 3-dimensional Euclidean space
R? of why € R? x {0} at 2’ € R? x {V/h}, where the projection from R? x {0} to
R? of wh is wy and the projection from R? x {v/h} to R? of 2’ is 2. Moreover,
if h = 0, then U*"(-;wy) is the Riesz s-potential function in the 2-dimensional
Euclidean space R? of wy. We refer the reader to [2} 3, 4 [5] for more information
on Riesz s-potential functions in a d-dimensional Euclidean space R?.

Now, let wy be a fixed set of distinct equally spaced points on a circle T C R2,
T be a circle concentric to T, and h > 0 be fixed. In [I Theorem 1], Nikolov
and Rafailov showed that fs(x) := U*"(z;wy) is constant as a function of z
on I' if and only if s = 0,—2,—4,...,4 — 2N, or 2 — 2N. Furthermore, for s €
R\ {0,—2,—4,...,2 — 2N}, they located extremum points of U*"(-;wy) on T in
[1, Theorem 1].

In the same paper, they also proved the following inverse type result (see [T}
Theorem 2]) of what proceeds.

Theorem A. Given a set of N distinct points wy = {x1,%2,...,on} C R? and
a circle T C R? such that for each s = —2,—4,...,2 — 2N,

U (z;wy) = Z|x—xj\

is independent of the position of x € T'. Then, wn forms a set of distinct equally
spaced points on a circle concentric to T.

Moreover, they proposed the following conjecture (see [I, Conjecture 1]):
Conjecture B. Given a set of N distinct points wy = {x1,%9,...,on} C R?

and a circle T' C R2 such that

U2—2N0wa Z‘x_xJPN 2

is constant as a function of x on I'. Then, wy forms a set of distinct equally spaced
points on a circle concentric to T'.
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Translating and scaling the circle T" in the above conjecture, it is easy to check
that Conjecture B is equivalent to the following conjecture.

Conjecture C. Given a set of N distinct points wy = {x1,22,...,on5} C R?
such that

N
U2_2N’O($;WN) _ Z |$ _ $j‘2N_2
Jj=1

is constant as a function of x on the unit circle. Then, wy forms a set of distinct
equally spaced points on a circle centered at 0.

In order to simplify further considerations, we shall study Conjecture C. This
conjecture for the case when N = 2 is trivial. The proof of this conjecture when
N = 3 is in [Il Proposition 2]. The one for the case when x1,xs,...zx have the
same norm is in [0, Proposition 1]. In the same paper, the authors also proved this
conjecture for the case when N is prime and z1,z9,...,zxy have an equal angle
distribution and rational norms (see [6, Proposition 2]).

In this paper, we extend Theorem A to more general potential functions defined
in . Moreover, the extension of Conjecture C is proposed (see Conjecturein
Section 2). A characterization of sets of N distinct points wy that U2=2N" (. wy)
is constant on some circle in R? is given. Using this characterization, we prove
some special cases of this new extended conjecture.

The next problems considered in this paper are polarization optimality prob-
lems corresponding to the potential functions defined in . Letwy = {z1,..., 2N}
denote a configuration of N (not necessarily distinct) points in R?. Denote by

Sk :={z € R?: |z| = R}

the circle centered at 0 of radius R in R?. When R = 1, we simply use the notation
St. Given s € R,h > 0,R > 0, and r > 0, we define polarization constants

Mﬁ,’h(Si;S}%) = max mirll Us’h(y;w]\;)7 MJ(\),’h(Si;S}%) =N, (1.2)
CS,. yes
7;21\,]\]:]\7 R

m3(SLSh) == min max US"(y; wy), m% (St sh) == N, (1.3)
wNCSE yeSE
Hwn=N
where #wy stands for the cardinality of the multiset wy. We will call wy a maz-
imal (minimal) N -point Riesz (s, h)-polarization configuration of (Sy;Sk) if wy
attains the maximum in (minimum in ) We give a brief history of such
polarization optimality problems below.

The idea of two-plate polarization constants was introduced by Farkas and
Révész [7] in general sense. However, almost all previous results on polarization
optimality problems related to Riesz potentials [2, B [, [B 8, O] were considered
for the case when R = r = 1 and A = 0. The maximality of N distinct equally
spaced points on the unit circle for the maximal Riesz (s, 0)-polarization problem
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of (S4;S1) in when s > 0 was proved by Hardin, Kendall, and Saff [5] (see
also [] and [8] for the history of this problem). In [5], they also showed the
minimality of NV distinct equally spaced points on the unit circle for the minimal
Riesz (s,0)-polarization problem of (S*;S!) in for —1 < s < 0. Recently,
a characterization of all maximal and minimal N-point Riesz (s, 0)-polarization
configurations of (S!;Sk) when s = —2,—4,...,2 — 2N was given in [6, Theorem
2]. One of the aims of this paper is to provide a characterization analogous to
Theorem 2 in [6] for the case when h > 0.

We would like call the reader’s attention to papers [2 [Bl [l [5] that contain
asymptotic results of polarization constants and configurations of subsets of R? as
N — oo when s > 0 and h = 0.

An outline of this paper is as follows. In Section 2, we state the extension of
Theorem A to more general potential functions in and give an extension of
Conjecture C. Some special cases of this new conjecture are considered. In Section
3, we state our results on polarization optimality problems. Section 4 and Section
5 are devoted to the proofs of all results in Section 2 and Section 3, respectively.
Finally, we perform our auxiliary computations in Section 6.

2 Constant Riesz (s, h)-potential functions

The first theorem is a generalization of Theorem A.
Theorem 2.1. Let h > 0. Given a set of N distinct points wy = {x1,Z2,...,25} C
R? such that for each s = —2,—4,...,2 — 2N,
al 2
UM (z;wy) = Z \x—mj|2+h)7s/
=1
is independent of the position of x € S'. Then, wy forms a set of distinct equally

spaced points on a circle centered at 0. Moreover, if |x1| = |xs| = ... = |zn| =1,
then for eachp=1,2,...,N — 1,

-2
U=2PM (g wp) = 2p2(> 2r2q(r +14+h++/((r—1)2 +h)((r+1)2+h))p !

q=0
for all z € S*.

This theorem brings us to the following conjecture which generalizes Conjec-
ture C.

Conjecture 2.1. Let h > 0. Given a set of N distinct points wy := {x1,x2,...,xn} C
R? such that

N
) =3 (e a0

is constant as a function of x on S'. Then, {x1,229,..., 2N} forms a set of distinct
equally spaced points on a circle centered at 0.
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A characterization of sets of N distinct points wx such that U272V (. wy) is
constant on S! is the following:

Theorem 2.2. Let h >0 and wy = {x1,72,...,25} C R? be a set of N distinct
points. Then, the function

N
U272N,h(x;wN) — Z (|.23 _ Z‘j‘Q + h)N_l

j=1

is constant on S' if and only if

where
zF = (r¥ cos(kt), r¥sin(kt))

if x = (rcos(t),rsin(t)) € R? and
NE (N -1\ (N -1 .
Bry= 3 [( [ i [

N—-2q—k—1
x <xj|2+1+h+\/((|xj| —1)2 + h)((|z4] +1)2+h)> ] (2.2)

As a consequence of this characterization, we obtain the following corollary.

Corollary 2.2. Let h > 0 and let wy = {x1,22,..., 2N} be a set of N distinct
points in R?, which belong to a circle St C R?. Assume that

N
UR N () = (e — a2+ )N
j=1

is constant on S'. Then, {x1,%a,...,xN} forms a set of distinct equally spaced
points on SL.

Applying Theorem[2.2]and Corollary [2.2] we prove Conjecture[2.I]when N = 3.
Corollary 2.3. Let h > 0 and {x1, 22,23} C R? be a set of 3 distinct points. If

the function U~*"(x, {x1, 19, 23}) is constant on S*, then {x,x2, x3} forms a set
of distinct equally spaced points on a circle centered at 0.
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3 Polarization optimality problems

A complete characterization of all maximal and minimal N-point Riesz (s, h)-
polarization configurations of (S};Sk) when s = —2,—4,...,2—2N and h > 0 is
the following:

Theorem 3.1. Let N € N, p € {1,2,...,N—1}, R > 0,7 > 0, h > 0, and
{x1,m2,..., 25} CSL. The following statements are equivalent:

(a) {x1,22,...,xN} is a mazimal N-point Riesz (—2p, h)-polarization configu-
ration of (SL;SL);

(b) {x1,22,...,2N} is a minimal N-point Riesz (—2p, h)-polarization configu-
ration of (SL;SL);
(c) Zjvzl ;= Z;V 2= = ZJ 2 =0, where ok = (rF cos(kt), r*sin(kt))
if © = (rcos(t), rsm( )) € R2
Furthermore,
N PI(SE; SR) = myP"(S); SR)
N & p—2j
:sz<> 27"R2](r +R2+h+\/r— —|—h)(r—|—R)2+h))
7=0
(3.1)

4 Proof of Section [2

The Euclidean space R? and the complex space C have the same dimension and
the same norm. However, the complex space C has a richer algebraic structure,
for example, C is a field. Therefore, when we prove all results in Section [2] and
any element x € R? will be replaced by = € C, the 2-dimensional Euclidean
norm | - | is replaced by the modulus in C, and the notation xy is adopted from
the multiplication in C and the notation z/y is adopted from the division in C.
We recall that the usual dot product in C is defined by

(a1 + agi) . (bl + bQZ) = a1b; + asbs.

Lemma 4.1. Let N e N, p e {1,2,...,N — 1}, and h > 0. If z; := |zj| cost; +
ilz;|sint; for all j =1,2,..., N, then for all y := cost + isint € S!,

N
S (ly — @y + b +ZZEk cos(kt; — kt), (4.1)
j=1 k=1 j=1
N N (p)
(ly — z;* + h)P = B +ZZ |k -z, (4.2)

j=1 kl]l'J
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where
) 1 N p D 2 p—2q
B =5 o3 (1) el (1 14 (gl = D2+ 1)l 4 240 )
j=1q=0
(4.3)
and for allk=1,2,...,pand j=1,2,...,N,
w O\ [ p
p) .__ 1\2q+k
g =1 Z[(q) (1)@
p—k—2q
X (|xj2 14 b+ (g = 12+ ) (] + 12+ h)) ] LA

Proof of Lemmal[{.1l Let y := cost + isint and x; := |z;|cost; + i|lz;|sint; for
all j =1,2,..., N. A simple calculation shows that

Fi(®) = (ly = z5* + h)P = (Jaj|* + 1+ h = 2f; | cos(t — t;))".

We know that
A= {1,cos(t —t;),...,cos(p(t —t;))}

forms an orthogonal set with respect to the inner product

27

(fi9) = ; f(t)g(t)dt.
Moreover,
f; € span{1, cos(t — tj),cosg(t —t;)y...,cosP(t —t;)}

= span {1, cos(t —t;),...,cos(p(t —t;))}.

Therefore,

P
fi(t) = Z E,(ij) cos(kt; — kt).

k=0
This implies that
N N D N
STy —ail?+n =" ;)= B + 33 EP) cos(kt; — kt),
j=1 j=1 k=1j=1

where E(()p ) = Z;\le E(()p]) By the orthogonality of the set A and the calculation

in Lemma (see Appendix), we have

N
B =Y {f

j=1

j71>
2w
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-7 iZ <§>2<2le>2‘1 (m? F L b (g = 102 4 B (| + 12 + h)>

pyp) - oot L)) kZ[()( )@l

p—k—2q
x(|xj|2+1+h+¢<<xj|—1>2+h><<|xj|+1>2+h>) ]

forallk € {0,1,...,p} and j € {1,..., N}. Moreover, it is clear that the equations

and (3.

O

Proof of Theorem[2.1 Suppose that there exist constants Cp, p =1,2,..., N — 1,
such that

U_Qpﬁ(x;WN):Cpu ,’EESl, p=12...,N—-1,

where wy = {z1,22,...,zn}. f 2 = cost+isint and z; := |x;| cost; +i|z;|sint;,
then by (4.1)), for each p =1,2,..., N — 1, we have for all ¢ € [0, 27],

p N
P4 Z Z [E,(f]) cos(kt;) cos(kt) + El(f) sin(kt; )sm(k‘t)}

k=1 j=1
and
P N N
0= (E(()p)—C’p)—FZ ZEP cos(kt;) | cos(kt) + ZE,(CPJ) sin(kt;) | sin(kt)
k=1 Jj=1

Since {1, cos(t), bll’l(t),COb( t),sin(2t), ..., cos(pt),sin(pt)} is linearly independent
=1

over R, for all p ,2,...,N -1,
c, =EP, (4.5)
N
ZE;’? cos(kt;) =0 and ZEM sin(kt;) = (4.6)
j=1 j=1
Using (4.4), we can compute
(=1)”
B = oy (2l (4.7)

Combining (4.6) and , we have for all p=1,2,... N — 1,

N

Z 2P1)1p (2lz; 1) (cos(pt;) + isin(pt;)) = “””Zxﬁ

P—2q
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which implies that SV
tities, we have

=175 P =0forall p=1,2,...,N — 1. Using Newton’s iden-

ep(z1,22,...,2n) =0, p=1,2,...,N—1.

Then,
N

H(w—ac])—x + ( NHxJ

j=1
Hence, |z1]| = |z2| = ... = |xn| = r for some r > 0 and {x1,22,...,2y} forms a

set of distinct equally spaced points on S!. In turn, the equality (4.5 implies that
forallz € S' and forallp=1,2,...,N — 1,

U=Ph(z0n) = Cp = Eép)

pP—2q

-y z,,: <p>2(2r)2q (P14 h+ V=PRI 12+ h))

Proof of Theorem[2.3 Set
xj = |zj] cos(t;) + ila;| sin(t;)

forall j=1,2,...,N.

(=) By our assumption, we assume that f(y) := Zjvzlﬂy —z;|2 4+ )Nt s
constant on S, say f(y) = C on S!. Set y = cost +isint € St. By (4.1)), for all
t €0, 27],

N
(Jy — x> + )N
Jj=1

=

~1 N
= E(ngl) + Z {E(N b cos(kt;) cos(kt) + E,(c]’\jf-fl) sin(kt;) sin(kt)

1 j=1

o>
Il

N-1 N
ESN71)+Z ZE,(C{\;%) cos(kt;) | cos(kt) + ZE (N—1) sin(kt;) | sin(kt)
j=1 j=1
(4.8)
Because {1, cos(t), sin(t), cos(2t), sin(2t), . .., cos((N—1)t), sin((N—1)¢)} is linearly
independent over R,
c-ENY =0

and for all k=1,2,...,N — 1,

=

ZE,” 2 cos(kt;) =0 and ZE,” 2 sin(kt;) = (4.9)

j=1 j=1
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Then, for all k=1,2,...,N — 1,

N E(N_l)
0= ZE (cos(kt;) + isin(kt;)) = Z |];J|k J;f (4.10)
j=1

Using the calculation in (4.4)), it is not difficult to check that the equations (4.10))

imply the equations ([2.1)).
(<) Assume that the equations (2.1)) hold true. Then,

N p(N-1)

B
S hak =0, k=1...N-1
= lzjl

From (4.10), we have (4.9). Combining the relations (4.9)) and the identity (4.8]),

we have for all y € S',

N
|y*$1| Jrh E(()N_l)a
j=1

which implies that U2~2N:"(.: wy) is constant on S'. This completes the proof. [

Proof of Corollary[2.3 Assume that {z1,zs,...,2xy} C S}. It is easy to check
that the constants By ; # 0 do not depend on j. Therefore, by the system of
equations , Zjvzl x;“ =0forall k =1,2,..., N —1. Using Newton’s identities,
we have

ex(z1,z2,...,2n) =0, k=1,2,...,N—1.

Then,

N

H T — ;)= =z +( N H Tj.
Hence, |z1| = |z2| = ... = |zn| = r and {x1,22,...,25} forms a set of distinct
equally spaced points on S!. O

Proof of Corollary[2-3 Using Theorem 2.2 we have
o]+ 23+ 3 =0, (4.11)

E(lz1)zy + E(|lz2|)z2 + E(|l2s|)2s = 0, (4.12)

where

(m2 +1+h++/((z—1)2+h)((z+1)?2 +h)>2 + 422

(3:2 +1+h+/((z—1)2+h)((z +1)2 +h))

E(x) :=
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Without loss of generality, we can assume that |z1]| > |z2| > |z3|. Moreover, it
is easy to check that E(z) is a positive increasing function on [0, 00). Therefore,

E(|z1]) = E(Jz2]) > E(|xs]) > 0. From (4.12), we have
E(jzs|)zs = —E(lx1])r1 — E(|lz2])z2

and
E(lzs)zs = —E(|21|)71 — E(|22])72,

which imply that
|23 E(Jzs])? = |a1 [ B(Je1|)* + |22 B(|22])*+ E(|21 ) B (|22]) (21 T2 +2277). (4.13)

Note that since |z1| > |z2| > |z3| and 1, x2, x5 are distinct,

21T3 + x2T1 € (—00,0). (4.14)
From (4.11)), we have
x% = —x% — a:g and T32 = —T12 — @2,

which imply that
3]* = |1 |* + w2 ]* + 27727 + 23717 = |21 |* + |wo]* — 20w *|wo] + (2172 + 2077)”.

Therefore,

(2172 + 2977)% = |23]* — (|21 ]2 — |22)?)2.

By (1),

(@173 + wo1) = —V/|wa|t = (|21 ]2 — [a2]?)2
From (4.13)), we obtain

|23 2 E(|os])* +E(|Je1)) E(|lw2)V]zs* = (l21? = [222)? = |21 E(Ja1])*+]wa]* E(|22])*.

Since

E(jz1)) E(lz2)V]zs* — (l21]? = |22?)? < |21 E(|a )

and
|23 E(|2s])? < 2ol E(|22])?,

Vizslt = (Jo1]? — |22]2)? = |21,

which implies |z1] = |x2| = |z3]. Applying Corollary {z1, 22, x5} forms a set
of distinct equally spaced points on a circle cantered at 0.

O
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5 Proof of Section 3l

Recall that for the proofs in this section, we also consider our problems in the
complex plane (see our discussion at the beginning of Section .

Lemma 5.1. Let N e N, pe {1,2,....N—1}, R>0,r >0, and h > 0. Then,
any configuration of N distinct equally spaced points on Sl is both mazimal and
minimal N-point Riesz (—2p, h)-polarization configuration of (St;Sk).

Proof of Lemma[5.1 Let wy := {z1,...,zn} be a configuration of N distinct
equally spaced points on S}, p € {1,2,...,N — 1} be fixed, and h > 0 be fixed.
By [1, Theorem 1], we know that f(z) := Zjvzlﬂx — ;% + h)P is constant as a
function of z on Sk, say f(z) = C for all z € S,

Let {y1,...,yn} be any N-point configuration on S}. Clearly, y;/r, z;/r € S!
forall j =1,2,...,N. Then,

NC = Zlf< Z/T> g:f:@

N N 2 P N N 2 P
xj/r R R
= Yi +h)] = Yi +h
25 (5] bl +) =2 (sl )
N 2 p
+h| .
;E( sl )

Therefore, there exist jg, j 1,2,..., N} such that

E
N N R 2 P
Yi — and Yi — +h| <C.
Then, we have
N N
max (\yz—x|2+h) >C = maxz |a:,—x|2+h)
S}%’L 1 Rz 1
and
N N
2 P : 2 p
min i —x|*+h) <C = min T, —x|°+h
iy 3 (i —of 17 £ €= i 3 1)
which imply
N
max y (|lz; —z[*+h)" = PMSL; sk
v€8k o7
and N
2p,
rr€11Sr11 (Jzi — x| + )" = My "(SL;sh),

Ri=1
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respectively. Therefore, wy is both maximal and minimal N-point Riesz (—2p, h)-
polarization configuration of (S!;Sk).
O

Proof of Theorem[3.1] Because the proof of (a) < (c) is similar to the proof of
(b) & (c), we will show only (b) < (c¢) and skip the proof of (a) < (c). Moreover,
without loss of generality, we can assume that R = 1.

Let NeN,pe{l1,2,...,N—1},r >0, and h > 0 be fixed. Notice that for all
configurations {z1, s, ...,zn} C S., the constants E(p) and E(p) in (4.3)) and
depend only on k. For convenience, for all configurations {331,1‘2, ...,xn} C Sk
we set

E®
E:=EP and E:= ’jj, k=1,2,....p.
T

First of all, we show that
myP" (S st = E. (5.1)

Let w)y := {z}, 25, ..., 2y} be a configuration of distinct equally spaced points on
St. Using ([4.2)), we have for all y € St,

N p N N
YNly-ajP+nr=E+> 3 EW @) =E+Y E@ > ()" =F
j=1 k=1j=1 k=1 j=1

(5.2)

where the last equality follows from the fact that Zjvzl(x;)k = 0 for all k =
1,2,...,N — 1. By Lemma since w), is a minimal N-point Riesz (—2p, h)-

polarization configuration of (S%;S?!),
my"(8,381) = max U (y; wly) = B (5:3)
ye
as we wanted.

NOW we prove (c)=>(b). Assume that wy = {z1,22,...,2x} C S! and
Z;V 1:10 = 0 for all kK = 1,2,...,p. Applying the same argument as in (5.2,
we have for all y € S',

P N
Ut (yrwn) = B+ Y Bi(y" - Y _wj) = F,
k=1 j=1

which implies that wy is a minimal N-point Riesz (—2p, h)-polarization configu-
ration of (S};St).

Next, we show (b)=(c). Assume that wy := {z1,22,...,2x} is a minimal
N-point Riesz (—2p, h)-polarization configuration of (S%;S!). Then, for all y € St,

N
U= () = > (ly — a5 + B < mP" (58" =
j=1
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Set y = cos(t) + isin(t) € S' and x; = rcos(t;) + irsin(t;) € S} for all j =
1,2,..., N. Hence, by (4.1)), for all ¢ € [0, 27],

N

N
Z % cos(kt;) | cos(kt)+ Z E—: sin(kt;) sin(kt)] .

r

P

E>U"Ph(ywuy) = EJrZ
k=1

Jj=1 Jj=1

Then, for all ¢ € [0, 27],

P N
E}, .
0> ;[ Z cos(kt;) | cos(kt) + Z o sin(kt;) sm(kt)}.

j=1

It is not difficult to check that for all ¢ € [0, 27],

P N p N g
Z l Z T’f cos(kt;) | cos(kt) + Z r—: sin(kt;) sin(kt)] =

k=1L \j=1 j=1

Because {cos(t), sin(t), cos(2t), sin(2t), ..., cos(pt), sin(pt) } is linearly independent
over R, forall k=1,2,... p,

N

N
E E
Z r’f cos(kt;) = Z r: sin(kt;)

Jj=1 Jj=1

Since for all k =1,2,...,p, Ex # 0 (see the formula in (4.4])),

N N
Zcos(/ctj) = Zsin(ktj) =0, k=1,2,...,p,
j=1 j=1

which imply that Z =0 for all £k = 1,2,...,p. Moreover, from (4.3)), we

Jj=1 J
have
M§2p,h(Sl,Sl) —2;107 (Sl Sl)
N p=2j
=E= 22( > (2r)% (r +1+h++/((r—1)2 +h)(r+1)2+h))
i=
To compute MyZ""(SL;SL) = my*"(SL;SL) in (9), we can use a similar

argument as in the proof of Lemma 4.1} - by replacing y = Rcost + iRsint and
fit) == (ly = ;> + h)? = (Rj + R*> + h — 2R;Rcos(t — t;))P. Applying the
calculations as in Lemmal6.2] it is not difficult to check that if wy is a configuration
of N distinct equally spaced points on S}, then for all y € Sk,

U=y wi)

p—2j

(?)2(2TR)23 (r +R2+h+\/ (r—R +h)(7”+R)2+h))

N D
:27)2
§=0
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6 Appendix
We collect our computations of all integrals in this section.

Lemma 6.1. Letpe N, k€ {0,1,...,p}, and z € C. Then,

/0%(22 + 1 —2zcos(t))P cos(kt)dt = (—1)F2n Z < ) <k N q) 2Pk =20 0 (6.1)

Proof of Lemma[6.1. Let p € N and k € {1,...,p}. First, we prove the equality
.forzeR Let z € R. Then, for ¢ = e,

27 o
/ (22 + 1 —2zcos(t))? cos(kt)dt = / (22 +1— Z(eit + e—it))peiktdt
0 0
27 ) ) ) 1
— [ G-t - e tpeta = / (2 = OP(z — 1/C)r¢E1de
0 1 Jst
= 27 - res ((z — 2 (:fl_ D ) yeor Z ( ) (k L q) J2p—k=2q

where the first equality follows from the fact that the last expression is a real
number. Notice that the left-hand side and the right-hand side of the equation
are polynomials as functions of z. Then, both functions are analytic on C
and we have the equation for all z € C. O

Lemma 6.2. Letp € N and k € {0,1,...,p}. Fora,beC,

27 k p—k
(_1) T D D 9 p—k—2q
p - q+k 2 2
/0 (a—bcos(t))P cos(kt)dt p1 qEO o) \k+q b (a:l: a b) ,

(6.2)
where the square root function in can be selected to be both branches of the
complex square root function.

Proof of Lemma[6.3 Clearly, if b = 0, then the equation in (6.2)) is 0 = 0. Assume
that b € C\ {0} and a € C. To reduce the equation (6.2]) to the equation (6.1)), we
consider

(Aa — Abcos(t))?,
where X is chosen to satisfy the equations
2z = bA and 22+ 1=a)\,
for some z € C. From above equations,

a+va? — b2 2a + 2va? — b2
e and \= —p
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Moreover, A # 0 because if A = 0, then z = 0 which implies that b = 0. Therefore,
by Lemma 6.1}

2m 1 2
/0 (a — bcos(t))? cos(kt)dt = ﬁ/o (Aa — Abcos(t))? cos(kt)dt

27
= (2% 4+ 1 — 2z cos(t))P cos(kt)dt
0
= (_l)kﬂ- piic p p b2q+k (a:l: \/m)pfk72q
9p—1 = q k+q .
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Abstract

Given a function F' holomorphic on a neighborhood of some compact subset of the
complex plane, we prove that if zeros of denominators of generalized Padé approximants
(orthogonal Padé approximants and Padé-Faber approximants) for some row sequence
remain uniformly bounded away from oo, then either F' is a polynomial or F' has a
singularity in the complex plane. The proofs of our main results rely, on the one hand,
on difference equations where their coefficients relate to the coefficients of denominators
of these generalized Padé approximants and, on the other hand, on an interesting
property of Fourier and Faber coefficients of an entire function.

Keywords: Padé approximation, Orthogonal polynomials, Faber polynomials, Dif-
ference equations, Inverse results.

Mathematics Subject Classification: 30E10, 41A21, 41A27.

1 Introduction

Currently, Padé approximation theory emphasizes inverse-type problems where we
want to describe the analytic properties of the approximated function from the knowl-
edge of the asymptotic behavior of poles of the approximating functions. Moreover,
the theory of higher order recurrence relations (difference equations) plays very im-
portant roles in solving recent inverse-type problems (see, e.g., [1, 3, 4, 5, 8]). The
object of the present paper is to investigate the relation between the boundedness

*Corresponding author.



of zeros of denominators of orthogonal Padé approximants and Padé-Faber approxi-
mants on row sequences and an analyticity of the approximated function. Our results
in this paper are considered as inverse-type results.

In order to state a known result related to our study, we need to remind the reader
the definition of classical Padé approximants. In what follows, N := {1,2,3,...},
Ny := NU {0}, and P, is the set of all polynomials of degree at most n.

The concept of (classical) Padé approximants generalizes the idea of Taylor poly-
nomials to rational approximants. Given a formal Taylor series at the origin

F(z) = Z frz®,
k=0

for any integers n,m > 0, we can find polynomials P, ,, € P, and polynomials
Qn,m E ]:P)m’ Qn,m 7_é O, SuCh that

(QunmE — Pom)(2) = O(z"rmH), as z— 0.

The rational function
R, Lo
n,m

s T
Qn,m

is uniquely defined and is called the (n,m) classical Padé approximant of F. Here,
Qnm 1s nomalized so that @, ,,(0) = 1 and it does not share zeros with P, ,,. In
order to find @, .m(2) =1 +Z;n:1 n 77, one has to solve for all k = n+1,...,n+m,

fk + Qn,lfk—l + ...+ Qn,mfk—m =0.

Indeed, the above recurrence relation has very strong connection to inverse-type prob-
lems (see e.g., [5, Propositions 1-3 and Theorems 4-6] and [8, Section 1.1]). In par-
ticular, a generalization of the Poincaré theorem for recurrence relations developing
in [5] provides a bridge connecting an inverse result for classical Padé approximation
in [11] and the ones for several generalized Padé approximations in [1, 3, 5].

Given a formal power series F/(z) = > p fx2", we denote by Ry(F) the radius of
the largest disk centered at 0 to which F' can be extended holomorphically. Basically,
Ry (F') is the same as the radius of convergence of F. In this paper, we are interested
in proving analogues of the following theorem (see [8, Theorem 1.1] or [6, Corollary
2.4]) for orthogonal Padé approximants and Padé-Faber approximants.

Theorem A. Let m € N be fized and let P, be the set of all zeros of Qy, m. Suppose
that the cardinality of P, is at least 1 for all n sufficiently large,

;ggn;g]fv{lél € Pu} >0,

2



and
&QQSEE{M (€ P} < o0

Then, F is a polynomial or 0 < Ry(F) < oo.

In other words, if F' is not a polynomial and the poles of R, ,, stay far from
the origin and bounded for all n sufficiently large, then 0 < Ry(F) < oco. Up to my
knowledge, this result is the first one of this sort. Moreover, the sequence (R, 1 )n>no
where m remains fixed, is called the mth row sequence.

Now, let us define four generalized Padé approximations. Let E be a bounded
continuum with connected complement containing infinitely many points. From
now on, the set E will verify the above condition. Let u be a finite positive Borel
measure with infinite support supp(u) contained in E. We write p € M(FE) and the
corresponding inner product is defined by

(g, B = / (DR du(z), g, € La(p).

Using this inner product, one can generate a unique sequence of orthonormal poly-
nomials

(pn)nZO = (’fnzn +oe )nzo
with positive leading coefficients &, > 0. By H(E), we denote the space of all func-
tions holomorphic in some neighborhood of E. The first two definitions are gener-
alized Padé approximants constructed from the sequence of orthogonal polynomials
(Pn)n>0-
Definition 1.1. Let F € H(FE) and p € M(E). For any integers n,m > 0, there

exists Q4 ,, € Py, such that Q% # 0 and (Q%  F, pnix), = 0 for all k =1,...,m.
The associated rational function

o Z?:0<Qﬁ,mF7 Dj)ub;

n,m ° o
n,m

is called an (n,m) classical orthogonal Padé approzimant of F with respect to p.

Definition 1.2. Let I' € H(&) and p € M(E). For any integers n > 0 and m > 1,
there exists Q%,, € Py, such that Q% = # 0 and (2"Q¥ F, ppi1), = 0 for all k =

0,....,m—1. The associated rational function
Su Z?:0<Qﬁ,mF7 Pj)ub;
e Qhtm

is called an (n,m) new orthogonal Padé approximant of F with respect to .
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Let ® the unique Riemann mapping function from C\ E to the exterior of the
closed unit disk verifying ®(oco) = 0o, ®’(c0) > 0. For each p > 1, the level curve of
indez p and the canonical domain of index p are defined by

I,:={ze€C:|®(2)| =p} and D, =FEU{zeC:|0(2)| < p},

respectively. Given F' € H(E), we denote by po(F) the largest index p of D, to
which F' can be extended as a holomorphic function.

The Faber polynomial of E of degree n is
1 O (t
D,(2) = — (*)

©2mi r, t—=%

dt, z €D, n=0,1,2,....

One can check that
P, (z) = (z/cap(E))" + lower degree terms,

where cap(FE) is the logarithmic capacity of the set E. The n-th Faber coefficient of
F € H(E) with respect to ®,, is defined by the formula

1 [ F@)®(t)

F n = -
7] 2mi Jp, @)

dt,
where p € (1, po(F)).

The next two definitions are definitions of generalized Padé approximants con-
structed from the sequence of Faber polynomials (®,,),>0.

Definition 1.3. Let F € H(F). For any integers n,m > 0, there exists Qfm eP,
such that Q7 # 0 and [QF, Flnr = 0 for all k = 1,...,m. The associated rational

function . .
Zj:O[ n,mF]jq)j
E

n,m

E ._
Ry, =

is called an (n,m) classical Padé-Faber approximant of F with respect to E.

Definition 1.4. Let ' € H(E). For any integers n > 0 and m > 1, there exists
QFm € Py, such that QF,, # 0 and [2*QF, Fl,41 = 0 for all k =0,...,m — 1. The
associated rational function

Z?:O[ 7EL:mF]J®]
YE

pE .
Ry, =

is called an (n,m) new Padé-Faber approrimant of F' with respect to E.

4



n,m)

for m + 1 unknowns from a system of m homogeneous linear equations. Therefore,
for any integers n > 0 and m > 1, polynomials Q% Q% QF —and QF  always
exist but they may not be unique. Since Q*, Q"

In order to find Q# . Qg,m, QF . or Qfm in Definitions 1.1-1.4, one has to solve

Ho QL QFand QF are not the zero
function, we normalize them to be “monic” polynomials. Unlike the classical Padé
approximants, for any integers n > 0 and m > 1, Rt Rt RT .~ and R, may
not be unique. The rational functions R}, and Rfi . are natural extensions of R, ,,
and were introduced by Maehly [9] in 1960. The rational functions R’Zm and Rf m
were recently introduced (in the vector forms) in order to solve some inverse-type
problems about detecting poles of a vector of functions nearest the set E (see [2, 4]
for more details). Note that in general, the approximations in Definitions 1.1 and
1.3 are not the same as the ones in Definitions 1.2 and 1.4, respectively.

An outline of this paper is as follows. In Section 2, we state analogues of Theorem
A which are our main results. We keep all lemmas in Section 3. The proofs of the
main results are in Section 4.

2 Main Results

Before stating the main results, we need to define two subclasses of M(E). The
measure i € Reg, (F) if and only if

Tim [p ()" = |(2)] 1)

uniformly on each compact subset of C \ E. This is the minimum requirement to
have the limit formula for po(F') and the convergence of the orthogonal polynomial
expansion in Lemma 3.1 in Section 3. Moreover, the class Reg;(FE) is exactly the
regular class in [10, Definition 3.1.2] when FE is convex. The measure p € Regj(E)
when p € Reg,(F) and

nl > C, n 2 Ny, (2)

for some ¢ > 0 and ng € N.
The main results of this paper are the following.

Theorem 2.1. Let F' € H(E) and u € Reg]. Fix m € N and denote by P* the set
of all zeros of a polynomial QY . Assume that the cardinality of Pl is at least 1 for
all n sufficiently large and

inf sup{|(]:( € P!} < 0. (3)

Then, either F' is a polynomial or po(F') < oo.



Theorem 2.2. Let F € H(E). Firm € N and denote by PE the set of all zeros of a
polynomial Qfm Assume that the cardinality of PE is at least 1 for all n sufficiently
large and

inf sup{[¢|: ¢ € PF} < co. (4)
Then, either F' is a polynomial or po(F') < oo.

Theorem 2.3. Let F' € H(E) and pn € Regy. Fiz m € N and denote by PH the set
of all zeros of a polynomial QY .. Assume that the cardinality of PJ is at least 1 for
all n sufficiently large and

inf sup{[|: ¢ € P*} < 0. (5)

Then, either F is a polynomial or po(F) < oco.

Theorem 2.4. Let F' € H(E). Fizm € N and denote by PE the set of all zeros of a
polynomial Qﬁm. Assume that the cardinality of PE is at least 1 for all n sufficiently
large and

inf sup{|¢|: ¢ € PF} < . (6)
N>m n>N
Then, either F' is a polynomial or po(F') < oo.

Note that we are not interested in proving po(F) > 1 because this is a direct
consequence of F' € H(E).

3 Auxiliary Lemmas

Recall that the n-th Fourier coefficient of F' € H(E) corresponding to p,, is defined
as follows

(Flui=(F,pa) = [ Fpaldn(2)

The first lemma (see, e.g., [2, Lemma 2.1.] and [12] for its proof) concerns the
convergences of orthogonal and Faber polynomial expansions.

Lemma 3.1. Let F' € H(E) and 1 € Reg,(E). Then,

po(F) = (limsup |<F>n|1/”> B - (limsup I[F]n|1/n) -1

n—o0 n—oo

and . .
Jim > (Fhpe(z) = lim > [Fle®i(z) = F(2),
k=0 k=0
uniformly on each compact subset of D, (ry.
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An estimation of ||®,[|r, is given in the succeeding lemma (see [7, p. 583] or [12,
p. 43]).

Lemma 3.2. Fiz p > 1. Then, there exists ¢ > 0 such that for all n € N,
[Pnllr, < cp™.

An interesting property of Fourier and Faber coefficients of an entire function
which serves as the cornerstone for the proofs of our main results is the following.

Lemma 3.3. Let i € Reg,(F). If G is an entire function and G satisfies one of the
following properties:

(1) {G)nl < e pii G|, for all n > ng and for some constant ¢ > 0;
(#) |[Gla] < X pe it l[Glils for all n > ng and for some constant ¢ > 0,
then G is a polynomial.

Proof of Lemma 3.3. We will prove only the statement concerning Fourier coeffi-
cients of G. By Lemma 3.1, since GG is an entire function,

lim [(G),|Y" = —— =0,
i (G =
which implies that
1 n
6l < (15) )

for all n > ny. By the assumption,

(Ghal < Y HGl, (8)

k=n+1

for all n > ng. Claim that for each n > max{ng,n1},

@ni=(55) () )

for all £ € Ny. We prove the above statement by mathematical induction on ¢. The
case when ¢ = 0 is from (7). Now, we suppose that (9) holds for ¢ and show that (9)
holds for £+ 1. By (7), (8), and (9), for each n > max{ng,n;},

(Gl = ¢ i (Gl = e i <cj1>£(ci2)k: <cj1>€+l (ciz)n’

k=n+1 k=n+1




which implies that (9) holds for ¢ + 1 This completes the mathematical induction
proof. Next, letting £ — oo in (9), we have for each n > max{ng,n1}, (G), = 0.
Therefore, GG is a polynomial. [

Simple properties of (-),, and [-],, used frequently in the proofs of the main results
are in

Lemma 3.4. Let F' € H(E) and p € M(E). Then,

1 ifn=m
[(I)n]m:<pn>m:{0 z'jinsém.

4 Proofs of Main Results

Proof of Theorem 2.1. Let

Z,m(z> = ﬁ Z - an ZQn]Z
k=1

and
o0

F(z) =Y (F)p.(2).

v=0

Note that m,, > 1 for all n sufficiently large and ¢, ,,, = 1. We will show that if (3)
holds and F' is an entire function, then F' is a polynomial.

From the definition of @} ,,, we have for all k =1,...,m,
0= <Qn mF nt+k — ZZ VQnJ 2 pu nt+k — Z Z Van Z py>n+k
j=0 v=0 7=0 v=n+k—j
e’} mp—1
= Z <F> pl/ n+k 1 Z Z anj z pu>n+k
v=n+k—mn 7=0 v=n+k—j
e’} mp—1
Rn k—mn
= ;—<F>n+k—mn+ Z <F> pl/ n+k+ Z Z Qn] Z pu>n+k
ntk v=n+k—mn—+1 7=0 v=n+k—j

(10)

Using the Vieta formulas, since

. ' .
ﬁgasgg{lél 1 CEPRY < oo,



there exists ¢; > 0 such that

sup{|gn ;| : 0 < j <my,,n>ne} <. (11)

From the Cauchy-Schwarz inequality and the orthonormality of p,, for all n, v, k € Ny
and j = 0,...,m, there exists co > 0 such that

|<iju>n+k| = ’<ijuapn+k>u| S Ca. (12)

Because 11 € Regy, there exists ¢3 > 0 such that

Rn+k—my,
S > 5, n > g, (13)
Rn+k

where ¢3 does not depend on k and m,,. Combining (11), (12), and (13), it is easy to
check that (10) imply that for all k =1,...,m, and for all n > ny,

[e.e]

(F ) ntb—ma| < ca Z [(E)ul,

v=n+k—myn+1

where ¢, is a positive constant that does not depend on n, k and m,,. For each n > ny,
we choose k = m,, in the previous inequality and we obtain for all n > ny,

[(F)nl < c4 Z [(F),|.

v=n+1
Applying Lemma 3.3, F' is a polynomial. O]
Proof of Theorem 2.2. Let
(2 =[G = Gr) =D ani?
k=1 J=0
and -
F(2) = S FL()
v=0

Note that m,, > 1 for all n sufficiently large and ¢, ,,, = 1. We will follow the same
plan by proving that if (4) holds and F is an entire function, then F' is a polynomial.
The analogous arguments used to derive (10) implies that for all k =1,... m,

0= (cap(E))"™ [Fly s,



0 mp—1

Z [F]u [z @y Jngr + Z Z n j[F T, |tk (14)

v=n+k—my,+1 7=0 v=n+k—j

Moreover, there exists ¢; > 0 such that

sup{|gn,;| : 0 < j <mp,n>mne} < ey (15)
Take p > 1. Using Lemma 3.2, for j =0,1,...,m, k=1,...,m, and n,v € Ny, we
obtain
, 1 2P,(2)P(2) P’
IO ikl = |— T2 T dy| < oo, 16
10l = gz | Tty | < e (16)

Combining (14), (15), and (16), it is easy to check that for all k =1,...,m, and for

all n > ny,
(o]

[Flutbomald" < e Y FLI",

v=n+k—mn-+1

where c3 is a positive constant that does not depend on n, k and m,,. For each n > ng,
we choose k = m,, in the previous inequality and we obtain for all n > ng,

[Flulo™ <5 > [[FLlp". (17)

v=n+1

Using Lemma 3.3 by setting

G = Y ([Flu")®

n=0
since (17) is

G]nl <c3 Z HG]

v=n+1

and 0
M NG =

(which means G is an entire function), G is a polynomial. Consequently, F' is a
polynomial. [

Proof of Theorem 2.3. Let

mMn

~5,m(2) = H 2 an ZQn]Z

k=1

10



and
[ee]

F(z) =Y (F),p.(2).
v=0
Note that m,, > 1 for all n sufficiently large and ¢, ,,, = 1. Our plan is to prove that

F ' is a polynomial under the assumptions that (5) holds and F' is an entire function.

From the definition of Qnm, we have for all k =0,...,m —1,
< an mF n+1 — ZZ VQn] pu n+1l — Z Z <F>VQn,j<zk+jpu>n+l
7=0 v=0 7=0 v=n+1—-k—j
0o mp—1
- Z <F>V<Zk+mn n+1 + Z Z <F>VQ7L,j <2k+]pu>n+1
v=n+1l—k—my, 7=0 v=n+1-k—j

o0

K ke
M<F>n+l—k—mn + Z <F>V<Zk+mnpy>n+1
Rn+1 _
v=n—k—mn+2

mp—1

+ 2 Z (F)utng (2" po)nsn (18)

7=0 v=n+1—k—j

Applying exactly the same arguments as in (11), (12), and (13), there exists
c1 > 0 such that
sup{[gnj| : 0 < j <mp,n > no} < ey, (19)

there exists co > 0 such that forall k=0,...,m—1, j=0,...,m, and n,v € Ny,

|< k+]pV>n+1| - |<Z puapn+k> | < ¢y, (20)
there exists ¢3 > 0 such that forall k=0,...,m—1, m, =1,...,m, and n > ny,
Bntlohomn > ¢, (21)
Rn41
Using (18), (19), (20), and (21), we have for all £k =0,...,m — 1 and n > ny,

(Fhnbematl Ses Y [(F)l.

v=n—k—mn+2

For each n > ngy, we choose k = m — m,, in the previous inequality and we obtain

for all n > ng,
o

(Fyacmnl e > [(F).

v=n—m-+2

11



Setting N =n —m + 1, we have

(F)nl<er Y WFWL N =N
v=N+1
By Lemma 3.3, F' is a polynomial. ]

Proof of Theorem 2.4. Let

~7EL,m(Z) = ﬁ Z - an ZQn]Zj
k=1
and

v=0
Note that m,, > 1 for all n sufficiently large and g, ,,, = 1. Following the same
plan by assuming that (6) holds and F' is an entire function, we show that F' is a
polynomial.
The analogous arguments used to derive (18) implies that for all k = 0,...,m—1,

oo

0= (Cap(E))an+k[F]n-i-l—k—mn + Z [F]V[Zk+m7l(bu]n+1

v=n—k—mn+2

mp—1

3 g, (22)

7=0 v=n+1—k—j

Moreover, there exists ¢; > 0 such that
sup{|gn ;| : 0 < j <my,n >} < e (23)

Take p > 1. Using Lemma 3.2, we obtain for all j = 0,1,...,m, k=0,...,m —1,
and n, v € Ny,

P
S Co—. (24)
P

k+jq) —
2 vt 211 Ont+2(z)

1 D, (2) P
L[ ),
Lp

By (22), (23), and (24), we have for all k =0,...,m — 1 and n > ny,

|[F]n+1—k—mn|pn_m+1 < c3 Z [Fl.p”.

v=n—k—mn+2

12



For each n > ngy, we choose k = m — m,, in the previous inequality and we obtain

for all n > ng,
o0

[Fln-mial 0" <es > NIFL:

v=n—m-+2

Setting N =n —m + 1 and

we have
[Glvl <es > IGLI, N =N
v=N+1

By Lemma 3.3, the above inequalities and

lim |[G]y|YY = 2 =0
A Gl po(F)
(G is an entire function) imply that G is a polynomial. Therefore, F' is a polynomial.

]

5 Conclusion

We prove that if zeros of denominators of four generalized Padé approximations
based on orthogonal and Faber polynomials stay uniformly bounded away from oo,
then either the approximated function is a polynomial or it has a singularity in the
complex plane.

6 Acknowledgements

Not applicable.

7 Funding

The research of N. Bosuwan was supported by the Strengthen Research Grant for
New Lecturer from the Thailand Research Fund and the Office of the Higher Edu-
cation Commission (MRG6080133) and Faculty of Science, Mahidol University.

13



8 Availability of data and materials

Not applicable.

9 Competing interests

The authors declare that they have no competing interests.

10 Authors’ contributions

All authors contributed equally to the writing of this paper. All authors conceived
of the study, participated in its design and coordination, read and approved the final
manuscript.

References

[1] Bosuwan, N., Lopez Lagomasino, G., Saff, E.B.: Determining singularities using
row sequences of Padé-orthogonal approximants. Jaen J. Approx. 5(2), 179-208
(2013)

[2] Bosuwan, N., Lépez Lagomasino, G.: Determining system poles using row se-
quences of orthogonal Hermite-Padé approximants. J. Approx. Theory 231, 15—
40 (2018)

[3] Bosuwan, N.: Direct and inverse results on row sequences of generalized Padé
approximants to polynomial expansions. Acta Math. Hungar. 157(1), 191-219
(2019)

[4] Bosuwan, N., Lépez Lagomasino, G.: Direct and inverse results on row sequences
of simultaneous Padé-Faber approximants. Mediterr. J. Math. To appear.

[5] Buslaev, V.I.: An analogue of Fabry’s theorem for generalized Padé approxi-
mants. Math. Sb. 200(7), 39-106 (2009)

[6] Cacoq, J., de la Calle Ysern, B., Lépez Lagomasino, G.: Direct and inverse
results on row sequences of Hermite-Padé approximants. Constr. Approx. 38,
133-160 (2013)

[7] Curtiss, J.H.: Faber polynomials and the Faber series. Amer. Math. Monthly
78(6), 577-596 (1971)

14



[8] Lépez Lagomasino, G., Zaldivar Gerpe, Y.: Higher order recurrences and row se-
quences of Hermite-Padé approximation. J. Difference Equ. Appl. 24(11), 1830—
1845 (2018)

[9] Maehly, H.J.: Rational approximations for transcendental functions. Proceed-
ings of the International Conference on Information Processing, Butterworths,
57-62 (1960)

[10] Stahl, H., Totik, V.: General Orthogonal Polynomials. Cambridge University
Press, vol. 43, Cambridge (1992)

[11] Suetin, S.P.: On an inverse problem for the mth row of the Padé table. Sb.
Math. 52, 231244 (1985)

[12] Suetin, P.K.: Series of Faber Polynomials. Nauka (Moscow, 1984); Gordon and
Breach Science Publishers (1998)

15



References

[1] Chantrasmi T, Doostan A, laccarino G. Padé-Legendre approximants for uncertainty
analysis with discontinuous response surfaces. J. Comput. Phys. 2009;228(19):7159-
7180.

[2] Emmel L, Kaber SM, Maday Y., Padé-Jacobi filtering for spectral approximations of
discontinuous solutions. Numeric. Algorithm. 2003;33:251-264.

[3] Matos AC. Recursive computation of Padé-Legendre approximants and some acceler-

ation properties. Numer. Math. 2001;893:535-560.

[4] Saff EB. An extension of Montessus de Ballore’s theorem on the convergence of inter-

polating rational functions. J. Approx. Theory. 1972;6:63-67.

[5] Trefethen LN. Approximation theory and approximation practice. Philadelphia, USA:
SIAM;2013.

[6] Aptekarev Al, Buslaev VI, Martinez-Finkelshtein A, Suetin SP. Padé approximants, con-
tinued fractions, and orthogonal polynomials. Russian Math. Surveys. 2011;66(6):1049-
131.

[7] Aptekarev A, Kaliaguine V, Iseghem JV. The genetic sums’ representation for the mo-
ments of a system of Stieltjes functions and its application. Constr. Approx. 2000;16(4):
487-524.

[8] Baker GA, Graves-Morri P. Padé approximants. Cambridge University Press. 1996;59.

[9] Bleher, P. M., Kuijlaars, A. B. J. Random matrices with external source and multiple

orthogonal polynomials. Internat. Math. Res. Notices. 2004;2004(3):109-129.



[10] Brezinski C. Extrapolation algorithms and Padé approximations: A historical survey,

Appl. Numer. Math. 1996;20:299-319.

[11] Brezinski C., Sadok H. Lanczos-type algorithms for solving systems of linear equations.

Appl. Numer. Math. 1993;11(6):443-473.

[12] Daems E, Kuijlaars ABJ. Multiple orthogonal polynomials of mixed type and non-

intersecting Brownian motions. J. Approx. Theory. 2007;146(1):91-114.

[13] Coussement J, Van Assche W. Gaussian quadrature for multiple orthogonal polyno-

mials. J. Comput. Appl. Math. 2005;178(1):131-145.

[14] Farina MCG, Alegria RML. An application of Padé approximation to volatility modeling.

International Advances in Economic Research. 1999;5:446-473.

[15] Gonnet P, Guttel S, Trefethen LN. Robust Padé approximation via SVD. 2011;SIAM
review,1:101-117.

[16] Higham NJ, AL-Mohy AH. Computing matrix functions. Acta Numer. 2010;19:159-208.

[17] Kuijlaars ABJ. Multiple orthogonal polynomial ensembles. Recent trends in orthogonal

polynomials and approximation theory. Contemp. Math. 2010;507:155-176.

[18] Kuijlaars ABJ. Multiple orthogonal polynomials in random matrix theory. In Proc. In-

ternat. Hydebarad, India. Congress Math. vol. lll. 2010. pp. 1417-1432.

[19] Nikishin EM. Rational approximations and orthogonality. Providence, RI, USA: Amer.
Math. Soc.; 1991.

[20] Pozzi A. Applications of Padé approximation theory in fluid dynamics. World Scientific;
1994.



[21] Suetin SP. Padé approximants and efficient analytic continuation of a power series.

Russian Math. Surveys 2002;57(1):45-142.

[22] Trefethen LN, Halpern L. Well-posedness of one-way wave equations and absorbing

boundary conditions. Math. Comp. 1986;47(176):421-435.

[23] Van Assche W, Geronimo JS, Kuijlaars ABJ. Riemann-Hilbert problems for multiple
orthogonal polynomials. In: Special Functions 2000: Current Perspectives and Future

Directions, J. Bustoz et al., eds., Dordrecht: Kluwer 2001. p. 23-59.

[24] Van Assche W. Padé and Hermite-Padé approximation and orthogonality. Surv. Ap-
prox. Theory. 2006;2:61-91.

[25] Weideman JAC. Computing the dynamics of complex singularities of nonlinear PDEs.

SIAM J. Appl. Dyn. Syst. 2003;2(2):171-186.
[26] Wimp J. Sequence transformations and their applications. Academic Press.;1981.

[27] Fidalgo Prieto U, LOpez Lagomasino G. Nikishin systems are perfect. Constr. Approx.
2011;34(3):297-356.

[28] Gonchar AA, Rakhmanov EA, Sorokin VN. Hermite-Padé approximants for systems of
Markov-type functions. Mat. Sb. 1997;188(5):33-58.

[29] Nikisin EM. On simultaneous Padé approximants. Math. USSR Sbornik. 1982;41:409-
425,

[30] Nuttall J. Asymptotics of diagonal Hermite-Padé polynomials. J. approx. theory.
1984;42(4):299-386.



[31] Graves-Morris PR, Saff EB. A de Montessus theorem for vector valued rational inter-
polants. In Rational Approximation and Interpolation: Springer Berlin Heidelberg; 1984.
p. 227-242.

[32] Cacoq J, de la Calle Ysern B, Lopez Lagomasino G. Direct and inverse results on row

sequences of Hermite-Padé approximation. Constr. Approx. 2013;38(1):133-160.

[33] Cacoq J, de la Calle Ysern B, Lopez Lagomasino G. Incomplete Padé approximation
and convergence of row sequences of Hermite-Padé approximants. J. Approx. Theory.

2013;170:59-77.

[34] Graves-Morris PR, Saff EB., Row convergence theorems for generalized inverse vector-

valued Padé approximants. J. Comput. Appl. Math. 1988;23:63-85.

[35] Graves-Morris PR, Saff EB. An extension of a row convergence theorem for vector Padé

approximants. J. Comput. Appl. Math. 1991;34:315-324.

[36] Sidi A. A de Montessus type convergence study of a least-squares vector-valued ra-

tional interpolation procedure. J. Approx. Theory. 2008;155:75-96.

[37] Chudnovsky DV, Chudnovsky GV. Applications of Padé approximations to Diophantine
inequalities in values of G-functions. volume 1135. Heidelberg, Germany: Springer

Berlin; 1985.

[38] Chudnovsky DV, Chudnovsky GV. Approximations and complex multiplication accord-

ing to Ramanujan. New York, USA: Springer New York; 2000.

[39] Loxton JH, Van Der Poorten AJ. Arithmetic properties of automata: regular sequences.

J. reine angew. Math. 1988;392:57-69.



[40] Beckermann B, Labahn G. A uniform approach for Hermite Padé and simultaneous
Padé approximants and their matrix-type generalizations. Numer. Algorithms. 1992;3(1):

45-54.

[41] Beckermann B, Labahn G. A uniform approach for the fast computation of matrix-type

Padé approximants. SIAM J. Matrix Anal. Appl. 1994;15(3):804-823.

[42] Beckermann B, Labahn G. Fraction-free computation of matrix rational interpolants

and matrix GCDs. SIAM J. Matrix Anal. Appl. 2000;22(1):114-144.

[43] Borges CF. On a class of Gauss-like quadrature rules. Numer. Math. 1994;67(3), 271-
288.

[44] Cabay S, Jones AR, Labahn G. Computation of numerical Padé-Hermite and simulta-
neous Padé systems II: A weakly stable algorithm. SIAM J. Matrix Anal. Appl. 1996;17(2):
268-297.

[45] Cabay S, Labahn G. A superfast algorithm for multi-dimensional Padé systems. Numer.

Algorithms 1992;2(2):201-224.

[46] Fidalgo Prieto U, Illan J, Lopez Lagomasino G. Hermite-Padé approximation and si-

multaneous quadrature formulas. J. Approx. Theory. 2004;126(2):171-197.

[47] Aptekarev Al. Asymptotics of simultaneously orthogonal polynomials in the Angelesco

case. Math USSR Sb. 1989;64:57-84.

[48] Aptekarev Al. Strong asymptotics of multiply orthogonal polynomials for Nikishin sys-
tems. Sbornik: Mathematics 1999;190:631-69.

[49] Martin P, Baker Jr GA, Two-point quasifractional approximant in physics. Truncation

error. J. Math. Phys. 1991;32(6):1470-1477.



[50] Lindman EL. Free-space boundary conditions for the time dependent wave equation.

J. Comput. Phys. 1975;18(1):66-78.

[51] Van Assche W, Coussement E. Some classical multiple orthogonal polynomials. J.

Comput. Appl. Math. 2001;127:317-347.

[52] Erdeélyi T, Saff E.B. Riesz polarization inequalities in higher dimensions. J. Approx. The-
ory 2013;171:128-147.

[53] Nikolov N, Rafailov R. On extremums of sums of powered distances to a finite set of

points. Geom. Dedicata 2013;167:69-89.

[54] Farkas B, Révész Sz. Gy. Potential theoretic approach to rendezvous numbers.

Monatsh. Math. 2006;148:309-331.

[55] Ambrus G, Ball K, Erdélyi T. Chebyshev constants on the unit ball. Bull. London Math.
Soc. 2013;45:236-248.

[56] Hardin DP, Kendall AP, Saff E.B. Polarization optimality of equally spaced points on

the circle for discrete potentials. Discrete Comput. Geom. 2013;50:236-43.

[57] Nikolov N, Rafailov R. On the sum of powered distances to certain sets of points on

the circle. Pac. J. Math. 2011;253:157-68.

[58] Buslaev VI. On the Fabry ratio theorem for orthogonal series. Proc. Steklov Inst. Math.

2006;253(1):8-21.

[59] Buslaev VI. An analogue of Fabry’s theorem for generalized Padé approximants. Sb.

Math. 2009;200(7):39-106.



[60] Suetin SP. On the convergence of rational approximations to polynomial expansions

in domains of meromorphy of a given function. Math USSR Sb. 1978;34:367-381.

[61] Suetin SP. Inverse theorems on generalized Padé approximants. Math.USSR Sb.

1980;37(4):581-597.

[62] Stahl H, Totik V. General Orthogonal Polynomials. Cambridge, United kingdom: Cam-

bridee University Press; 1992.

[63] Bosuwan N. Convergence of row sequences of simultaneous Padé-orthogonal approx-

imants. Comput. Methods Funct. Theory 2017;17(3):525-556.

[64] Bosuwan N, Lopez Lagomasino G. Determining system poles using row sequences of

orthogonal Hermite-Padé approximants. J. Approx. Theory. 2018;231:15-40.

[65] Bosuwan N, Ruengrot P. Constant Riesz potential on a circle in a plane with an appli-

cation to polarization optimality problems. ScienceAsia, 2017;43(4):267-274.

[66] Bosuwan N. Convergence of row sequences of simultaneous Padé-orthogonal approx-

imants. Math. Notes 2018;103(8):643-656.

[67] Bosuwan N. On Montessus de Ballore’s theorem for simultaneous Padé-Faber ap-

proximants. Demonstr. Math. 2018;51:45-61.

[68] Bosuwan N. Direct and inverse results on row sequences of generalized Padé approx-

imants to polynomial expansions. Acta Math. Hungar. 2019;157(1):191-219.

[69] Chonlapap W, Bosuwan N. Convergence in Hausdorff content of Padé-Faber approxi-

mants and its applications. Thai J. Math. 2019;17:272-287



[70] Bosuwan N, Lopez Lagomasino G. Direct and inverse results on row sequences of
simultaneous Padé-Faber approximants. Mediterr. J. Math. 2019;16(36) https://doi.org/
10.1007/500009-019-1307-0

[71] Bosuwan N, Lopez Lagomasino G, Zaldivar Gerpe Y. Direct and inverse results for

multipoint Hermite-Padé approximants, Anal. Math. Phys. 2019;accepted

[72] Bosuwan N. On the boundedness of poles of generalized Padé approximants. sub-

mitted

[73] Bosuwan N. Constant generalized Riesz potential functions and polarization optimality

problems. submitted

[74] Wajasat M, Bosuwan N. Convergences in Hausdorff content of generalized Hermite-

Padé approximants to polynomial expansions. submitted.



	หน้าปก
	1 ปิดทุน สกว.
	paper1
	paper2
	paper4
	DIRECT AND INVERSE RESULTS ON ROW
SEQUENCES OF GENERALIZED PAD´E
APPROXIMANTS TO POLYNOMIAL
EXPANSIONS
	Abstract.
	1. Introduction
	2. Main results
	2.1. Direct type results.
	2.2. Inverse type results.

	3. Proofs of main results
	3.1. Proofs of direct type results.
	3.1.1. Auxiliary Lemmas.
	3.1.2. Proofs of the direct type results.

	3.2. Proofs of the inverse type results.
	3.2.1. Auxiliary Lemmas.
	3.2.2. Proofs of Theorems 2.7 and 2.8.

	Acknowledgement.
	References


	letter_accepted_ก่อน_paper7
	paper7
	paper10
	2 ปิดทุน สกว.



