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โครงการวิจัยโครงการนี้ประกอบดวยสองสวน
ในสวนแรกจะเกี่ยวของกับผลลัพธโดยตรงและผกผันของบทขยายของการประมาณคาแบบพารเดยบน

ลำดับแบบแถว ทฤษฎีของการลูเขาของแถวลำดับของการประมาณคาแบบพารเดย-ฟารเบอร ในรูปแบบเวก
เตอรและการประมาณคาแบบมัลติพอยท เอรมีต-พารเดย ไดถูกพิสูจน นอกจากนั้นเราไดพิสูจนวาโพลของ
ลำดับของเวกเตอรของฟงกชันตรรกยะดังกลาวลูเขาไปยังโพลระบบของเวกเตอรของฟงกชันที่ถูกประมาณ
คาดวยอัตราเร็วเรขาคณิต

ในสวนที่สองเกี่ยวกับการศึกษาตำแหนงของจุดN จุดที่ทำใหฟงกชันศักยะแบบริสซมีคาคงที่บนวงกลม
ในระนาบยุคลิด R2 และไดนำผลลัพธดังกลาวไปใชในการแกปญหาคาเหมาะสมโพลาไรเซชัน

This project contains two parts. The first part concerns direct and inverse results
on row sequences of generalized Padé approximations. Convergence theorems for these
approximants were proved. In particular, we gave necessary and sufficient conditions for
the convergence with geometric rate of the denominators of simultaneous Padé-Faber
approximants and multipoint Hermite-Padé approximants (multipoint Hermite-Padé ap-
proximation is a special case of simultaneous Padé (α, β)-approximation). The second
part focuses on generalized Riesz potentials on the Euclidean space R2. We gave a char-
acterization for a generalized Riesz s-potential function of a multiset of N points in R2



when s = 2 − 2N and the potential function is constant on a circle in R2. The char-
acterization allows us to partially prove a conjecture of Nikolov and Rafailov about the
relation between the potential functions being constant on a circle in R2 and locations of
N points. Moreover, we find all maximal and minimal polarization constants and configu-
rations of two concentric circles in R2 using the above the generalized potential function
for certain values of s.
Keywords: Montessus de Ballore’s Theorem; Padé-Faber approximation; Simultaneous
approximation; Multipoint Padé approximation; Inverse problems; Polarization; Potentials;
Roots of unity; Max-min and min-max problems.



Executive Summary
Our project consists of two parts:

(i) Generalized Padé Approximations

(i.1) Vector Cases
(i.1.1) We proved two convergence theorems for classical simultaneous Padé-

Faber approximants on row sequences in (2) and (3).
(i.1.2) Analogues of the Montessus de Ballore-Gonchar theorem for new simul-

taneous Padé-Faber approximants and multipoint Hermite-Padé approxi-
mants were obtained in (6) and (7). These are the main results of this
project.

(i.1.3) Convergences of (classical and new) simultaneous Padé-Faber approximants
and (classical and new) simultaneous orthogonal Padé approximants in
Hausdorff content in the maximal canonical domain in which each function
of an approximated vector can be continued to a meromorphic function
were proved in (8).

(i.2) Scalar Cases
(i.2.1) We showed in (4) that each pole of the approximated function in the maxi-

mal canonical domain in which the approximated function can be extended
as a meromorphic function with at most m poles attracts as many poles
of new orthogonal Padé and new Padé-Faber approximants on the m row
sequences as its order at a geometric rate.

(i.2.2) In (4), we also proved that if all m poles of new orthogonal Padé or new
Padé-Faber approximants on the m row sequences converge to m limit
points, then m limit points are singularities of the approximated function.



(i.2.3) We proved in (5) the convergence of new Padé-Faber approximants in Haus-
dorff content in the maximal canonical domain in which the approximated
function can be extended to a meromorphic function. This is a special case
of (i.1.3).

(ii) Constant Riesz Potentials and Polarization Optimality Problems

(ii.1) A characterization for a Riesz s-potential function of a multiset ωN ofN points in
R2 was given when s = 2−2N and the potential function is constant on a circle
in R2. The characterization allows us to partially prove a conjecture of Nikolov
and Rafailov, namely if the potential function is constant on a circle Γ, then
the points in ωN should be equally spaced on a circle concentric to Γ. As an
application of constant Riesz s-potential functions, we also located all maximal
and minimal polarization constants and configurations of two concentric circles
in R2 for certain values of s. All results here were proved in (1).

(ii.2) The results in (9) are similar to the results in (1). In (9), we considered more
general Riesz potential functions.
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1. บทนำ (Introduction)

เนื้อหาของเรื่องที่เคยมีผูทำการวิจัยมากอน ความสำคัญ ที่มาของปญหา

1.1. Pade Approximations

Rational approximation theory has been a mainstay of approximation theory
from the beginning. This subject occupies a large place in the literature. Especially, Padé
approximation, one type of rational approximations, can be classified as an independent
branch of complex analysis and approximation theory. Although polynomials seem to be
more familiar and comfortable, they are not such a good class of functions if one wants to
approximate functions with singularities because polynomials are entire functions without
singularities. Rational functions are the simplest functions with singularities.

The concept of (classical) Padé approximants generalizes the idea of Taylor
polynomials to rational approximants. Given a formal Taylor series at the origin

F (z) =
∞∑
k=0

fkz
k,

for any integers n,m ≥ 0, we can find polynomials Pn,m ∈ Pn and polynomials Qn,m ∈

Pm, Qn,m ̸≡ 0, such that

(Qn,mF − Pn,m)(z) = O(zn+m+1), as z → 0 (1)

(Pn is the set of all polynomials of degree at most n). The rational function

[n/m]F
def
=

Pn,m

Qn,m



is uniquely defined and is called the Padé approximant of type (n,m) to F .
Padé approximants are more powerful than polynomials at approximating func-

tions near singularities, with jumps, and on unbounded domains (see, e.g., [1, 2, 3, 4, 5]).
The idea is that under appropriate conditions, the poles of the classical Padé approximant
[n/m]F will move to the singularities of the function F (as n and m increase). Hence, the
domain of convergence could be enlarged and this allows classical Padé approximants
to approximate functions beyond their singularities. Padé approximation and its general-
izations have applications not only in approximation theory itself but also in many other
areas such as Numerical Analysis, Number Theory, Integral Equations, Spectral Theory of
Operators, Random Matrix Theory, Quantum Mechanics, Quantum Field Theory, Brownian
Motion, Toda lattices, Fluid Dynamics, Volatility Modelling, Multiple Orthogonal Polynomi-
als, Quadrature Formulas, Control and Identification of Linear Systems, Inverse Problems
for the Laplacian, and so on (see e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26]).

One of the goals of this project is to investigate the relation between the convergence
of the zeros of the common denominators of generalized Hermite-Padé approximants on
row sequences, and the singularities of a vector of approximated functions. To clearly
state known results and our goals, let us define Hermite-Padé approximation.

Let F = (F1, . . . , Fd) be a system of d formal Taylor expansions at the origin; that is,
for each i = 1, . . . , d, we have

Fi(z) =
∞∑
n=0

fn,iz
n, fn,i ∈ C. (2)

Definition 1. Given a system of d formal Taylor expansions F = (F1, . . . , Fd) as in (2) and
a multi-index m = (m1, . . . ,md) ∈ Nd. Set |m| = m1 +m2 + · · · +md. Then, for each



n ≥ max{m1, . . . ,md}, there exist polynomials Q, Pi, i = 1, . . . , d, such that

deg(Pi) ≤ n−mi, i = 1, . . . , d, deg(Q) ≤ |m|, Q ̸≡ 0,

Q(z)Fi(z)− Pi(z) = Aiz
n+1 + · · · .

The vector rational function Rn,m = (P1/Q, . . . , Pd/Q) is called an (n,m) (type II) Hermite-
Padé approximant of F.

Therefore, Hermite-Padé approximation is an approximation of each function Fi

separately by rational functions with a common denominator Q. For any fixed (n,m) ∈

N× Nd, in general, Rn,m, may not be unique and we will assume that given (n,m), one
particular solution is taken. For that solution, we write

Rn,m = (Rn,m,1, . . . , Rn,m,d) = (Pn,m,1, . . . , Pn,m,d)/Qn,m,

whereQn,m is a monic polynomial that has no common zero with all the Pn,m,i. Sequences
{Rn,m}n≥1 when m is fixed are called row sequences and sequences {Rn,m}n≥1 when
m1 = · · · = md = m, n = (d + 1)m, m ∈ N (or nearby configurations of multi-
indices) are called diagonal sequences. We would like to emphasize that there is another
construction called type I Hermite-Padé approximants which has very close relation to the
type II Hermite-Padé approximants (see [19, Chap. 4] for more details). In this work, we
studied just the type II Hermite-Padé approximants. For convenience, we will omit the
word “type II” when we refer to the type II Hermite-Padé approximants.

Most of the studies of Hermite-Padé approximants were concentrated on diag-
onal sequences (for more information, see some important papers [27, 28, 29, 30] and a
book by E.M. Nikishin [19] in this direction). There are very few papers [31, 32, 34, 35, 36]



dedicated to the study of row sequences. The pioneering one in this direction is the work
of Graves-Morris and Saff [31] where they proved an analogue of the Montessus de Bal-
lore theorem. The other significant work in this direction is due to Cacoq, de la Calle, and
López [32] where they proved some results on the inverse problem of row sequences.

Hermite-Padé approximation and their relatives have various applications in
many areas, for example, in Number Theory (see [37, 38, 39]), in Numerical Analysis (see
[13, 40, 41, 42, 43, 44, 45, 46, 50]), in Multiple Orthogonal Polynomials (see [13, 17, 23, 47,
48]), in Linear Algebraic Equations (see [49]), in Nonlinear Dynamical Systems (see [7]), in
Brownian Motion (see [12]), in Random matrices (see [9, 17, 18]), and so on. In particular,
Charles Hermite introduced the subject of Hermite-Padé approximation in his proof of the
transcendence of e. Hermite-Padé approximants were also used in various irrationality
proofs and transcendence proofs of important numbers (see the discussions in [24, Sec-
tion 3.2] and [51, Section 4.3] for more details). Moreover, one can say that the origin of
the definition of multiple orthogonal polynomials came from Hermite-Padé approximants
(see for example in [24, Section 2.2] for the explanation). See also [51] for the applications
of multiple orthogonal polynomials.

Let us continue introducing a definition and notations. The following definition
is an intrinsic definition of pole when we study a system of functions.

Definition 2. Given F = (F1, F2, . . . , Fd) as in (2) and m = (m1,m2, . . . ,md) ∈ Nd, we
say that ξ ∈ C \ {0} is a system pole of order τ of F with respect to m if τ is the largest
positive integer such that for each t = 1, 2, . . . , τ, there exists at least one polynomial
combination of the form

d∑
i=1

viFi, deg vi < mi, i = 1, 2, . . . , d, (3)



which is holomorphic on a neighborhood of {z ∈ C : |z| ≤ |ξ|} except for a pole at
z = ξ of exact order t.

Let ξ be a system pole of order τ of F with respect to m. Let G(F,m, ξ, k) be
the space of all functions g of type (3) that are analytic on a set {z ∈ C : |z| ≤ |ξ|}

except for a pole at z = ξ of order k. For each k = 1, . . . , τ, we define

rξ,k(F,m) := min{Rk(g) : g ∈ G(F,m, ξ, k)},

where Rk(g) is the radius of the largest disk centered at 0 containing at most k poles of
g. Set

Rξ(F,m) := min
k=1,...,τ

rξ,k(F,m).

We denote by QF
m the monic polynomial whose zeros are the system poles of F

with respect to m taking account of their order. The set of distinct zeros of QF
m is denoted

by P(F,m). Moreover, we define R0(F) to be the radius of the largest disk centered at 0
in which all the expansions Fi, i = 1, . . . , d correspond to analytic functions.

The following is the main result in [32].

Theorem 1. Let F be a vector of formal Taylor expansions at the origin and fix a multi-
index m ∈ Nd. The following two assertions are equivalent:

(a) R0(F) > 0 and F has exactly |m| system poles with respect to m counting multi-
plicities.

(b) The denominators Qn,m, n ≥ |m|, of the Hermite-Padé approximants of F are
uniquely determined for all sufficiently large n, and there exists a polynomial Q|m|



of degree |m|, Q|m|(0) ̸= 0, such that

lim sup
n→∞

∥Q|m| −Qn,m∥1/n = θ < 1, (4)

where ∥ · ∥ denotes the coefficient norm in the space of polynomials.

Moreover, if either (a) or (b) takes place, then Q|m| ≡ QF
m and

θ = max
{

|ξ|
Rξ(F,m)

: P(F,m)

}
.

In [32, Theorem 3.7], the rate of convergence of row sequences of the Hermite-
Padé approximants to the system of functions F is given. Theorem 1 characterizes the
situation when F has exactly |m| system poles with respect to m (counting multiplicities)
in terms of the exact rate of convergence in (4). The (b)⇒(a) statement means that if Qn,m

has |m| zeros for n sufficiently large and all the zeros of Qn,m converge to |m| limit points
at the rate of a geometric progression, then all the limit points are the system poles of F
with respect to m.

In this project, we studied generalizations of the classical construction of Hermite-
Padé approximation, namely classical and new simultaneous Padé-Faber approximations,
classical and new simultaneous orthogonal Padé approximations, and multipoint Hermite-
Padé approximation. Before we state our interested problems and the significance of this
project, we need to introduce some more notation.

Let E be an infinite compact subset of the complex plane C such that C \ E

is simply connected. Note that we consider C \ E as a domain. Then, there exists a
unique exterior conformal mapping Φ from C \ E onto C \ {w ∈ C : |w| ≤ 1} satisfying
Φ(∞) = ∞ and Φ′(∞) > 0.We assume that E is such that the inverse functionΨ = Φ−1



can be extended continuously to C \ {w ∈ C : |w| < 1}. Note that the closure of a
bounded Jordan region and a finite interval satisfy the above conditions. For the rest of
this report, E is as described above.

The first and second approximations are constructed from orthogonal polynomials on
E. Let µ be a finite positive Borel measure with infinite support supp(µ) contained in E.
We write µ ∈ M(E) and define the associated inner product,

⟨g, h⟩µ :=

∫
g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let
pn(z) := κnz

n + · · · , κn > 0, n = 0, 1, 2, . . . ,

be the orthonormal polynomial of degree n with respect to µ having positive leading coef-
ficient; that is, ⟨pn, pm⟩µ = δn,m. Denote by H(E) the space of all functions holomorphic
in some neighborhood of E. We define

H(E)d := {(F1, F2, . . . , Fd) : Fi ∈ H(E) for all i = 1, 2, . . . , d}

and the set of all nonnegative integers is denoted by N0.

Definition 3. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix a multi-index
m = (m1,m2, . . . ,md) ∈ Nd

0 \ {0}, where 0 is the zero vector in Nd
0. Set |m| = m1 +

m2 + . . .+md. Then, for each n ≥ max{m1,m2, . . . ,md}, there exist polynomials Qµ
n,m

and P µ
n,m,i, i = 1, 2, . . . , d such that

deg(P µ
n,m,i) ≤ n−mi, deg(Qµ

n,m) ≤ |m|, Qµ
n,m ̸≡ 0,



⟨Qµ
n,mFi − P µ

n,m,i, pj⟩µ = 0, j = 0, 1, . . . , n,

for all i = 1, 2, . . . , d. The vector of rational functions

Rµn,m := (Rµ
n,m,1, R

µ
n,m,2, . . . , R

µ
n,m,d) = (P µ

n,m,1/Q
µ
n,m, P

µ
n,m,2/Q

µ
n,m, . . . , P

µ
n,m,d/Q

µ
n,m)

is called an (n,m) classical simultaneous orthogonal Padé approximant of F correspond-
ing to a measure µ.

This approximation was first introduced in [63]. In [63], the author proved two con-
vergence theorems for this approximation on row sequences. These two theorems are
direct results. It turns out, that the correct way to extend the notion of Hermite-Padé
approximation to the case of vector orthogonal expansions in order to obtain both direct
and inverse type results is through the following definition.

Definition 4. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix a multi-index
m = (m1,m2, . . . ,md) ∈ Nd and n ∈ N. Then, there exist polynomials Q̃µ

n,m, P̃
µ
n,m,k,i,

k = 0, 1, . . . ,mi − 1, i = 1, 2, . . . , d such that for all i = 1, 2, . . . , d,

deg(P̃ µ
n,m,k,i) ≤ n− 1, k = 0, 1, . . . ,mi − 1, deg(Q̃µ

n,m) ≤ |m, Q̃µ
n,m ̸≡ 0, (5)

⟨Q̃µ
n,mz

kFi − P̃ µ
n,m,k,i, pj⟩µ = 0, k = 0, 1, . . . ,mi − 1 j = 0, 1, . . . , n. (6)

The vector rational function

R̃µn,m := (R̃µ
n,m,1, . . . , R̃

µ
n,m,d) = (P̃ µ

n,m,0,1, . . . , P̃
µ
n,m,0,d)/Q̃

µ
n,m

is called an (n,m) new simultaneous orthogonal Padé approximant of F with respect to
µ.



Because this was recently introduced in [64], there is only one paper studying this
approximation. In [64], the authors proved an analogue of (b) ⇔ (a) in Theorem 1.

Next, let us define both classical and new simultaneous Padé-Faber approximations.
In order to do that, we need to state some more definitions.

Let us clarify what we mean by a pole of a vector function and its order.

Definition 5. Let Ω := (Ω1,Ω2, . . . ,Ωd) be a system of domains such that, for each
α = 1, 2, . . . , d, Fα is meromorphic in Ωα. We say that the point λ is a pole of F :=

(F1, F2, . . . , Fd) in Ω of order τ if there exists an index α ∈ {1, 2, . . . , d} such that
λ ∈ Ωα and it is a pole of Fα of order τ, and for β ̸= α either λ is a pole of Fβ of order
less than or equal to τ or λ ̸∈ Ωβ. When Ω = (Ω,Ω, . . . ,Ω), we say that λ is a pole of F
in Ω.

Denote by ρ0(F) the index ρ of the largest canonical domain Dρ to which all Fα,

α = 1, . . . , d, can be extended as holomorphic functions and by ρm(F) the index ρ of
the largest canonical domain Dρ to which all Fα, α = 1, . . . , d can be extended so that
F has at most m poles counting multiplicities.

The Faber polynomial of E of degree n is defined as the polynomial part of the
Laurent expansion of Φn at infinity. The n-th Faber coefficient of G ∈ H(E) with respect
to Φn is given by

[G]n :=
1

2πi

∫
Γρ

G(t)Φ′(t)

Φn+1(t)
dt,

where ρ ∈ (1, ρ0(G)) and ρ0(G) denotes the index of the largest canonical region to
which G can be extended as a holomorphic function.

The following is the definition of classical simultaneous Padé-Faber approximation.

Definition 6. Let F = (F1, F2, . . . , Fd) ∈ H(E)d. Fix a multi-indexm = (m1,m2, . . . ,md) ∈

Nd
0 \{0}, where 0 is the zero vector in Nd

0. Set |m| = m1+m2+ . . .+md. Then, for each



n ≥ max{m1,m2, . . . ,md}, there exist polynomials QE
n,m and PE

n,m,i, i = 1, 2, . . . , d such
that

deg(PE
n,m,i) ≤ n−mi, deg(QE

n,m) ≤ |m|, QE
n,m ̸≡ 0,

[QE
n,mFi − PE

n,m,i]j = 0, j = 0, 1, . . . , n,

for all i = 1, 2, . . . , d. The vector of rational functions

REn,m := (RE
n,m,1, R

E
n,m,2, . . . , R

E
n,m,d) = (PE

n,m,1/Q
E
n,m, P

E
n,m,2/Q

E
n,m, . . . , P

E
n,m,d/Q

E
n,m)

is called an (n,m) classical simultaneous Padé-Faber approximant of F corresponding to
E.

This definition was first introduced in [60] for the scalar case (when d = 1). This scalar
case was completely studied. We are the first who extended this scalar case to the vector
case in [66] and studied the convergence properties of this vector case.

The following is a new simultaneous Padé-Faber approximation. We need this defini-
tion in order to prove an analogue of (b) ⇔ (a) in Theorem 1.

Definition 7. Let F = (F1, F2, . . . , Fd) ∈ H(E)d. Fix a multi-indexm = (m1,m2, . . . ,md) ∈

Nd and n ∈ N. Then, there exist polynomials Q̃E
n,m, P̃

E
n,m,k,i, k = 0, 1, . . . ,mi − 1, i =

1, 2, . . . , d such that for all i = 1, 2, . . . , d,

deg(P̃E
n,m,k,i) ≤ n− 1, k = 0, 1, . . . ,mi − 1, deg(Q̃E

n,m) ≤ |m|, Q̃E
n,m ̸≡ 0, (7)

[Q̃E
n,mz

kFi − P̃E
n,m,k,i]j = 0, k = 0, 1, . . . ,mi − 1 j = 0, 1, . . . , n. (8)



The vector rational function

R̃En,m := (R̃E
n,m,1 . . . , R̃

E
n,m,d) = (P̃E

n,m,0,1, . . . , P̃
E
n,m,0,d)/Q̃

E
n,m

is called an (n,m) new simultaneous Padé-Faber approximant of F corresponding to E.

The above definition is a brand new definition. Nobody studied this before (even the
scalar case).

The final approximation is multipoint Hermite-Padé approximation defined as follows.
Let α ⊂ E be a table of points; more precisely, α = {αn,k}, k = 1, . . . , n, n = 1, 2, . . ..

Definition 8. Let F ∈ H(E)d. Fix a multi-index m = (m1, . . . ,md) ∈ Nd and n ∈ N. Set
|m| = m1 + · · ·+md. Then, there exist polynomials Qα

n,m, Pα
n,m,k, k = 1, . . . , d such that

degPα
n,m,k ≤ n−mk, degQα

n,m ≤ |m|, Qα
n,m ̸≡ 0,

(Qα
n,mFk − Pα

n,m,k)/an+1 ∈ H(E),

where an(z) =
∏n

k=1(z − αn,k). The vector rational function

Rαn,m =
(
Rα

n,m,1, . . . , R
α
n,m,d

)
=
(
Pα
n,m,1, . . . , P

α
n,m,d

)
/Qα

n,m

is called an (n,m) multipoint Hermite-Padé approximant of F with respect to α.

There are many papers studying multipoint Hermite-Padé approximation when d = 1.

We are the first who introduced this vector multipoint Padé approximation and studied
the convergence of this approximation.

Note that for given (n,m) ∈ N×Nd, Rµn,m, R̃µn,m, REn,m, R̃En,m, and Rαn,m always exist but
they may not be unique.



1.2. Constant Riesz Potentials and Polarization Optimality Problems

1.2.1. Constant Riesz Potentials
For a fixed multiset ofN points ωN := {x1, x2, . . . , xN} in R2 and a given constant

s ∈ R, we define the Riesz potential function U s(·;ωN) : R2 −→ [0,∞] as the following

U s(x;ωN) :=
N∑
j=1

|x− xj|−s,

where x ∈ R2 and | · | is the 2-dimensional Euclidean norm in R2. We call U s(·;ωN) a
Riesz s-potential function of ωN . We refer the reader to [52] for more information on Riesz
s-potential functions in a d-dimensional Euclidean space Rd.

Let ωN be a fixed set of distinct equally spaced points on a circle T ⊆ R2 and Γ be a
circle concentric to T. In [53], Nikolov and Rafailov showed in Theorem 1 that U s(x;ωN)

is constant as a function of x on Γ if and only if s ∈ {0,−2,−4, . . . , 4 − 2N, 2 − 2N}.

They also showed in Theorem 2 that this actually gives a characteristic property of distinct
equally spaced points on a circle. More precisely, given a set ωN of N distinct points such
that U s(x;ωN) is constant on a circle Γ for every s ∈ {−2,−4, . . . , 2−2N} (the constant
may depend on s), then the points in ωN are equally spaced on some circle concentric
to Γ. In the same paper, it was conjectured (Conjecture 1) that only s = 2− 2N should
be sufficient. We state the conjecture below.

Conjecture 1. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊆ R2 such that

U2−2N(x;ωN) =
N∑
j=1

|x− xj|2N−2

is constant as a function of x on S1. Then, ωN forms a set of distinct equally spaced



points on S1
R := {x ∈ R2 : |x| = R} for some R.

This conjecture is still open. We are able to solve many special cases of this conjecture.

1.2.2. Constant Generalized Riesz Potentials

After one year studying 1.2.1., we found that Conjecture 1 in 1.2.1. can be generalized
by considering more general Riesz potential functions defined as follows. For a fixed
multiset of N points ωN := {x1, x2, . . . , xN} ⊂ R2, a given constant s ∈ R, and a
given constant h ≥ 0, we define the potential function U s,h(·;ωN) : R2 → [0,∞] as the
following:

U s,h(x;ωN) :=
N∑
j=1

(
|x− xj|2 + h

)−s/2
, (9)

where x ∈ R2 and | · | is the 2-dimensional Euclidean norm in R2. We call U s,h(·, ωN)

a Riesz (s, h)-potential function of ωN . The geometric interpretation of the function
U s,h(·;ωN) is as follows. Let us consider two parallel planes inR3: one isR2×{0} and the
other is R2 × {

√
h}. Basically, the potential function U s,h(x, ωN) is the Riesz s-potential

function in the 3-dimensional Euclidean space R3 of ω′
N ⊂ R2 ×{0} at x′ ∈ R2 ×{

√
h},

where the projection from R2×{0} to R2 of ω′
N is ωN and the projection from R2×{

√
h}

to R2 of x′ is x. Moreover, if h = 0, then U s,h(·;ωN) is the Riesz s-potential function in
the 2-dimensional Euclidean space R2 of ωN .

We propose the following conjecture (see [73, Conjecture 2.1]).

Conjecture 2. Let h ≥ 0. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2

such that
U2−2N,h(x;ωN) =

N∑
j=1

(
|x− xj|2 + h

)N−1



is constant as a function of x on S1. Then, {x1, x2, . . . , xN} forms a set of distinct equally
spaced points on a circle centered at 0.

Again, Conjecture 2 is still open but we can solve many special cases of this conjecture.

1.2.3. Polarization Optimality Problems
The next problems considered in this project are polarization optimality problems. Let

ωN = {x1, . . . , xN} denote a configuration of N (not necessarily distinct) points in R2.

Denote by
S1
R := {x ∈ R2 : |x| = R}

the circle centered at the origin of radius R. When R = 1, we simply use the notation
S1. Given s ∈ R, R > 0, and r > 0, we define polarization constants

M s
N(S1

r; S1
R) :=


max
ωN⊆S1r#ωN=N

min
y∈S1R

U s(y;ωN) if s ̸= 0

N if s = 0

(10)

ms
N(S1

r;S1
R) :=


min

ωN⊆S1r#ωN=N

max
y∈S1R

U s(y;ωN) if s ̸= 0

N if s = 0

(11)

where #ωN denotes the cardinality of the multiset ωN . We will call ωN a maximal (min-
imal) N -point Riesz s-polarization configuration of (S1

r;S1
R) if ωN attains the maximum

in (12) (minimum in (13)). We give a brief history of such polarization optimality problems
below.

Farkas and Révész [54] were the first to introduce two-plate polarization constants
in general sense. However, all previous results [55, 56, 57] on polarization optimality



problems in (12) and (13) were considered for the case when R = r = 1. The maximality
of N distinct equally spaced points on the unit circle for the maximal Riesz s-polarization
problem of (S1;S1) in (12) was proved by Ambrus, Ball, and Erdélyi in [55] for s = 2.
Erdélyi and Saff [52] established this for s = 4. For arbitrary s > 0, this result was proved
by Hardin, Kendall, and Saff [56]. In [56], they also showed the minimality of N distinct
equally spaced points on the unit circle for the minimal Riesz s-polarization problem of
(S1; S1) in (13) for −1 ≤ s < 0. Note that minimal N -point Riesz s-polarization problems
of (S1;S1) when s > 0 are not interesting because ms

N(S1;S1) = ∞ for all s > 0.

In [65], we gave a characterization of all maximal andminimalN -point Riesz s-polarization
configurations of (S1

r;S1
R) when s = −2,−4, . . . , 2− 2N.

1.2.4. Generalized Polarization Optimality Problems

Considering more general potential functions in (9), we define generalized polarization
constants and configurations as follows. Given s ∈ R, h ≥ 0, R > 0, and r > 0, we define
polarization constants

M s,h
N (S1

r;S1
R) := max

ωN⊂S1r#ωN=N

min
y∈S1R

U s,h(y;ωN), M0,h
N (S1

r; S1
R) := N, (12)

ms,h
N (S1

r;S1
R) := min

ωN⊂S1r#ωN=N

max
y∈S1R

U s,h(y;ωN), m0,h
N (S1

r;S1
R) := N, (13)

where #ωN stands for the cardinality of the multiset ωN . We will call ωN a maximal
(minimal) N -point Riesz (s, h)-polarization configuration of (S1

r;S1
R) if ωN attains the

maximum in (12) (minimum in (13)).
In [73], we gave a characterization of all maximal and minimal N -point Riesz (s, h)-

polarization configurations of (S1
r;S1

R) when s = −2,−4, . . . , 2− 2N.



2. วัตถุประสงคและขอบเขตการวิจัย

We try to do the following:

2.1. Prove the analogue of Montessus de Ballore-Gonchar theorem for simultaneous
Padé-Faber approximants.

2.2. Prove the analogue of Montessus de Ballore-Gonchar theorem for multipoint Hermite-
Padé approximants.

We promised to have at least 2 accepted papers at the end of the second year. These
two papers must be published in Q1 mathematics journals indexed by JCR (impact factors
at least 1.000).

3. ผลลัพธ (Main Results)

3.1. Convergence Theorems for Classical Simultaneous Padé-Faber
Approximants

We proved two convergence theorems for classical simultaneous Padé-Faber approx-
imants in [66, 67] on row sequences.

3.1.1. Convergence theorem under polewise independence

The first one is based on the the notion of polewise independence defined as follows.

Definition 9. Let F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions meromorphic in
some canonical domainDρ and letm = (m1,m2, . . . ,md) ∈ Nd

0\{0} be the multi-index.
Then the function F is said to be polewise independent with respect to the multi-index



m in Dρ if and only if there do not exist polynomials v1, v2, . . . , vd at least one of which
is non-null, satisfying

(i) deg vi ≤ mi − 1, i = 1, 2, . . . , d, if mi ≥ 1,

(ii) vi ≡ 0 if mi = 0,

(iii) ∑d
i=1(vi ◦ Φ) · Fi ∈ H(Dρ \ E),

where H(Dρ \ E) is the space of all holomorphic functions in Dρ \ E.

Denote by QF
|m| the monic polynomial whose zeros are the poles of F in Dρ|m|(F)

counting multiplicities.
Our first result [66, Theorem 1] under the concept of polewise independence is stated

as follows.

Theorem 2. Let F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions meromorphic in
Dρ|m|(F) andm ∈ Nd

0\{0} be a fixed multi-index. Suppose that F is polewise independent
with respect to the multi-index m in Dρ|m|(F). Then, REn,m is uniquely determined for all
sufficiently large n and for each i = 1, 2, . . . , d, RE

n,m,i converges uniformly to Fi inside
Dρ|m|(F) \ P|m|(F). Moreover, for each i = 1, 2, . . . , d and for any compact set K ⊂

Dρ|m|(F) \ P|m|(F),
lim sup
n→∞

∥Fi −RE
n,m,i∥

1/n
K ≤ ∥Φ∥K

ρ|m|(F) , (14)

where ∥ · ∥K denotes the sup-norm on K and if K ⊂ E, then ∥Φ∥K is replaced by 1.

Additionally,
lim sup
n→∞

∥QE
n,m −QF

|m|∥1/n ≤
maxλ∈P|m|(F) |Φ(λ)|

ρ|m|(F) , (15)

where ∥·∥ denotes (for example) the norm induced in the space of polynomials of degree
at most |m| by the maximum of the absolute value of the coefficients.



3.1.2. Convergence theorem under incomplete Padé-Faber
approximants

Without the concept of polewise independence, we are able to prove another con-
vergence theorem for classical simultaneous Padé-Faber approximants. Before stating this
result, we need some more notation.

Given a vector F = (F1, F2, . . . , Fd) and a multi-index m = (m1,m2, . . . ,md) ∈

Nd
0 \ {0}, we define

Dm(F) := (Dρm1 (F1), Dρm2 (F2), . . . , Dρmd
(Fd)).

By Q̂Fm, we denote the monic polynomial whose zeros are the poles of F in Dm(F) counting
multiplicities. This set of poles is denoted by Pm(F). For i = 1, 2, . . . , d, set Pm,i(F) =
Pm(F) ∩Dρmi (Fi).

To each pole λ of F in this system of domains

Dm(F) := (Dρm1 (F1), Dρm2 (F2), . . . , Dρmd
(Fd)),

we associate an index i(λ) ∈ {1, 2, . . . , d} as follows. The index i(λ) verifies that λ ∈

Dρmi(λ)
(Fi(λ)) and λ is a pole of Fi(λ) of the same order as is a pole of F in Dm(F). If

there are several indices i satisfying this condition, then we choose one among those with
greatest ρmi

(Fi).

Making use of the concept of incomplete Padé-Faber approximation, we proved an-
other Montessus de Ballore type theorem for classical simultaneous Padé-Faber approxi-
mants in [67, Theorem 1] stated as follows.

Theorem 3. Let Pm(F) = {λ1, λ2, . . . , λq}. Suppose that F ∈ H(E)d has exactly |m|



poles in Dm(F). Then, REn,m is uniquely determined for all sufficiently large n and for each
i = 1, 2, . . . , d, RE

n,m,i converges uniformly to Fi inside Dρmi (Fi) \ Pm,i(F). Moreover,

lim sup
n→∞

∥Fi −RE
n,m,i∥

1/n
K ≤ ∥Φ∥K

ρmi
(Fi)

, i = 1, 2, . . . , d, (16)

where K is any compact subset of Dρmi (Fi) \ Pm,i(F) and if K ⊂ E, then ∥Φ∥K is
replaced by 1. Additionally, we have

lim sup
n→∞

∥Q̂Fm −QE
n,m∥1/n ≤ max

j=1,2,...,q

{
|Φ(λj)|

ρmi(λj)
(Fi(λj))

}
. (17)

3.2. Analogues of Theorem 1
It turns out that we need a concept of system pole and want to redefine the defini-

tions of vector Padé-Faber approximants and vector multipoint Padé approximants (see
Definitions 7 and 8) in order to prove analogues of Gonchar’s converse statement to the
Montessus de Ballore theorem.

Definition 10. Given F = (F1, F2, . . . , Fd) ∈ H(E)d and m = (m1,m2, . . . ,md) ∈ Nd,
we say that ξ ∈ C is a system pole of order τ of F with respect to m if τ is the largest
positive integer such that for each t = 1, 2, . . . , τ, there exists at least one polynomial
combination of the form

d∑
i=1

viFi, deg vi < mi, i = 1, 2, . . . , d, (18)

which is holomorphic on a neighborhood of D|Φ(ξ)| except for a pole at z = ξ of exact
order t.

Let τ be the order of ξ as a system pole of F. For each t = 1, . . . , τ, denote by



ρξ,t(F,m) the largest of all the numbers ρt(G) (the index of the largest canonical domain
containing at most t poles of G), where G is a polynomial combination of type (18) that
is holomorphic on a neighborhood of D|Φ(ξ)| except for a pole at z = ξ of order t. Then,
we define

ρξ,t(F,m) := min
k=1,...,t

ρξ,k(F,m),

ρξ(F,m) := ρξ,τ (F,m) = min
t=1,...,τ

ρξ,t(F,m).

Fix i ∈ {1, . . . , d} and k ∈ {0, 1, . . . ,mi − 1}. Let Di,k(F,m) be the largest canonical
domain in which all the poles of zkFi are system poles of F with respect to m, their order
as poles of zkFi does not exceed their order as system poles, and zkFi has no other
singularity. By ρi,k(F,m), we denote the index of this canonical domain. Let ξ1, . . . , ξN
be the poles of zkFi in Di,k(F,m). For each j = 1, . . . , N, let τ̂j be the order of ξj as
pole of zkFi and τj its order as a system pole. By assumption, τ̂j ≤ τj. Set

ρ∗
i,k(F,m) := min{ρi,k(F,m), min

j=1,...,N
ρξj ,τ̂j

(F,m)}

and let D∗
i,k(F,m) be the canonical domain with this index.

Let QF
m denote the monic polynomial whose zeros are the system poles (in the sense

of Definition 10) of F with respect to m taking account of their order. The set of distinct
zeros of QF

m is denoted by P(F,m).

3.2.1. New Simultaneous Padé-Faber Approximants

We proved an analogue of the Montessus de Ballore-Gonchar theorem for simultane-
ous Padé-Faber approximants in [70, Theorem 1.4] stated as follows.



Theorem 4. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and m ∈ Nd be a fixed multi-index.
Then, the following two assertions are equivalent:

(a) F has exactly |m| system poles with respect to m counting multiplicities.

(b) The polynomials Q̃E
n,m of F are uniquely determined for all sufficiently large n, and

there exists a polynomial Q|m| of degree |m| such that

lim sup
n→∞

∥Q̃E
n,m −Q|m|∥1/n = θ < 1.

Moreover, if either (a) or (b) takes place, then Q|m| = QF
m,

θ = max
{

|Φ(ξ)|
ρξ(F,m)

: ξ ∈ P(F,m)

}
,

and for any compact subset K of D∗
i,0(F,m) \ P(F,m),

lim sup
n→∞

∥R̃E
n,m,i − Fi∥1/nK ≤ ∥Φ∥K

ρ∗
i,0(F,m)

,

where ∥ · ∥K denotes the sup-norm on K and if K ⊂ E, then ∥Φ∥K is replaced by 1.

3.2.2. Multipoint Hermite-Padé Approximants

We proved an analogue of the Montessus de Ballore-Gonchar theorem for multipoint
Hermite-Padé approximants in [70, Theorem 1.4] stated as follows.

Theorem 5. Let F = (F1, F2, . . . , Fd) ∈ H(E)d, m ∈ Nd be a fixed multi-index and
α ⊂ E be a table of interpolation points satisfying

lim
n→∞

an(z)/c
nΦn(z) = G(z) ̸= 0, (19)



uniformly on compact subsets of C \E, where c denotes some positive constant. Then,
the following two assertions are equivalent:

(a) F has exactly |m| system poles with respect to m counting multiplicities.

(b) The polynomials Q̃E
n,m of F are uniquely determined for all sufficiently large n, and

there exists a polynomial Q|m| of degree |m| such that

lim sup
n→∞

∥Q̃E
n,m −Q|m|∥1/n = θ < 1.

Moreover, if either (a) or (b) takes place, then Q|m| = QF
m,

θ = max
{

|Φ(ξ)|
ρξ(F,m)

: ξ ∈ P(F,m)

}
,

and for any compact subset K of D∗
i,0(F,m) \ P(F,m),

lim sup
n→∞

∥R̃E
n,m,i − Fi∥1/nK ≤ ∥Φ∥K

ρ∗
i,0(F,m)

,

where ∥ · ∥K denotes the sup-norm on K and if K ⊂ E, then ∥Φ∥K is replaced by 1.

3.3. Behaviors when mj → ∞ for all j

Let us introduce a concept of convergence in Hausdorff content. Let B be a subset of
the complex plane C. By U(B), we denote the class of all coverings of B by at most a
numerable set of disks. Let β > 0 and set

hβ(B) := inf
{

∞∑
i=1

|Ui|β : {Ui} ∈ U(B)

}
,



where |Ui| stands for the radius of the disk Ui. The quantity hβ(B) is called the β-
dimensional Hausdorff content of the set B. This set function is not a measure but it
is subadditive and monotonic. Clearly, if B is a disk, then hβ(B) = |B|β.

Definition 11. Let {gn}n∈N be a sequence of complex valued functions defined on a
domain D ⊂ C and g another complex function defined on D. We say that {gn}n∈N
converges in β-dimensional Hausdorff content to the function g inside D if for every
compact subset K of D and for each ε > 0, we have

lim
n→∞

hβ{z ∈ K : |gn(z)− g(z)| > ε} = 0.

Such a convergence will be denoted by hβ-limn→∞ gn = g in D.

We proved convergences in Hausdorff content of (classical and new) simultaneous
orthogonal Padé approximants and (classical and new ) simultaneous Padé-Faber approx-
imants in [74].

3.3.1. Classical Simultaneous Orthogonal Padé Approximants
We need to define three classes of measures contained in M(E). The measure µ ∈

Regm1,2(E) iff the corresponding sequences of pn and sn satisfy

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (20)

lim
n→∞

|sn(z)|1/n = |Φ(z)|−1, (21)

and there exists a positive constant c such that

κn−m

κn

≥ c, n ≥ n0. (22)



We write µ ∈ R(E) when the corresponding sequence of orthonormal polynomials has
ratio asymptotics; that is,

lim
n→∞

pn(z)

pn+1(z)
=

1

Φ(z)
. (23)

We say that Szegö or strong asymptotics takes place, and write µ ∈ S(E), if

lim
n→∞

pn(z)

cnΦn(z)
= S(z) and lim

n→∞

cn
cn+1

= 1. (24)

The first limit in (24) and the ones in (20), (21), and (23) are assumed to hold uniformly
inside C \ E, the cn’s are positive constants, and S(z) is some holomorphic and non-
vanishing function on C \ E. It is not difficult to check that S(E) ⊂ R(E) ⊂ Regm1,2(E).
The above three classes of measures are very common when we study asymptotic proper-
ties of orthogonal polynomials (see the book [62] for more information about orthogonal
polynomials).

Convergence in Hausdorff content of classical simultaneous orthogonal Padé approxi-
mants was proved in [74].

Theorem 6. Let E ∈ K1, F = (F1, F2, . . . , Fd) ∈ H(E)d, and µ ∈ R(E). For each
i = 1, 2, . . . , d, denote by Dρ∞(Fi) the maximal canonical domain in which Fi can be
continued to a meromorphic function. Assume that

lim inf
n→∞

mn,j = ∞, j = 1, 2, . . . , d

and
lim
n→∞

|mn| lnn
n

= 0.

Then for fixed numbers β > 0 and i = 1, 2, . . . , d, each sequence {Rµ
n,mn,i

}n∈N converges



in β-dimensional Hausdorff content to Fi inside Dρ∞(Fi) as n → ∞.

3.3.2. New Simultaneous Orthogonal Padé Approximants

Convergence in Hausdorff content of new simultaneous orthogonal Padé approximants
was proved in [74].

Theorem 7. Let E ∈ K, F = (F1, F2, . . . , Fd) ∈ H(E)d, and µ ∈ Reg1,2(E). For each
i = 1, 2, . . . , d, denote by Dρ∞(Fi) the maximal canonical domain in which Fi can be
continued to a meromorphic function. Assume that

lim inf
n→∞

mn,j = ∞, j = 1, 2, . . . , d

and
lim
n→∞

|mn| lnn
n

= 0.

Then for fixed numbers β > 0 and i = 1, 2, . . . , d, each sequence {R̃µ
n,mn,i

}n∈N converges
in β-dimensional Hausdorff content to Fi inside Dρ∞(Fi) as n → ∞.

3.3.3. Classical Simultaneous Padé-Faber Approximants

Convergence in Hausdorff content of classical simultaneous Padé-Faber approximants
was proved in [74].

Theorem 8. Let E ∈ K1 and F = (F1, F2, . . . , Fd) ∈ H(E)d. For each i = 1, 2, . . . , d,
denote by Dρ∞(Fi) the maximal canonical domain in which Fi can be continued to a
meromorphic function. Assume that

lim inf
n→∞

mn,j = ∞, j = 1, 2, . . . , d



and
lim
n→∞

|mn| lnn
n

= 0.

Then for fixed numbers β > 0 and i = 1, 2, . . . , d, each sequence {RE
n,mn,i}n∈N converges

in β-dimensional Hausdorff content to Fi inside Dρ∞(Fi) as n → ∞.

3.3.4. New Simultaneous Padé-Faber Approximants

Convergence in Hausdorff content of new simultaneous Padé-Faber approximants was
proved in [74].

Theorem 9. Let E ∈ K and F = (F1, F2, . . . , Fd) ∈ H(E)d. For each i = 1, 2, . . . , d,
denote by Dρ∞(Fi) the maximal canonical domain in which Fi can be continued to a
meromorphic function. Assume that

lim inf
n→∞

mn,j = ∞, j = 1, 2, . . . , d

and
lim
n→∞

|mn| lnn
n

= 0.

Then for fixed numbers β > 0 and i = 1, 2, . . . , d, each sequence {R̃E
n,mn,i}n∈N converges

in β-dimensional Hausdorff content to Fi inside Dρ∞(Fi) as n → ∞.

3.4. Scalar Cases

in this section, because we limit ourselves to the scalar case (d = 1), we write F = F,

|m| = m = m ∈ N, ρ|m|(F) = ρm(F ), R̃µn,m = R̃µ
n,m, and R̃En,m = R̃E

n,m.

3.4.1. Rate of Attraction



Let us define two indicators of the asymptotic behavior of the zeros of Q̃E
n,m and Q̃µ

n,m

Fix m ∈ N. Let

Pµ
n,m := {λµ

n,1, λ
µ
n,2, . . . , λ

µ
n,mn

}, mn ≤ m, n ∈ N0,

PE
n,m := {λE

n,1, λ
E
n,2, . . . , λ

E
n,mn

}, mn ≤ m, n ∈ N0

denote the collections of zeros of Q̃µ
n,m and Q̃E

n,m (repeated according to their multiplicity),
respectively. Define

|z − w|1 := min{1, |z − w|}, z, w ∈ C.

Fix λ ∈ C. The first indicators are defined by

∆µ(λ) := lim sup
n→∞

mn∏
j=1

|λµ
n,j − λ|1/n1 = lim sup

n→∞

∏
|λµ

n,j−λ|<1

|λµ
n,j − λ|1/n,

∆E(λ) := lim sup
n→∞

mn∏
j=1

|λE
n,j − λ|1/n1 = lim sup

n→∞

∏
|λE

n,j−λ|<1

|λE
n,j − λ|1/n.

Clearly, 0 ≤ ∆µ(λ) ≤ 1 and 0 ≤ ∆E(λ) ≤ 1 (when mn = 0, the product is taken to be
1). The second indicators, nonnegative integers σµ(λ) and σE(λ), are defined as follows.
We suppose that for each n, the points in

Pµ
n,m := {λµ

n,1, λ
µ
n,2, . . . , λ

µ
n,mn

}, (25)

PE
n,m := {λE

n,1, λ
E
n,2, . . . , λ

E
n,mn

} (26)



are enumerated in nondecreasing distance to the point λ. We set

δµj (λ) := lim sup
n→∞

|λµ
n,j − λ|1/n1 , (27)

δEj (λ) := lim sup
n→∞

|λE
n,j − λ|1/n1 . (28)

These numbers are defined by (27) for j = 1, 2, . . . ,m′,m′ = lim infn→∞mn; for j =

m′ + 1, . . . , n, we define δµj (λ) = 1. We have 0 ≤ δµj (λ) ≤ 1. If ∆µ(λ) = 1 (in that case
all δµj (λ) = 1), then σµ(λ) = 0. If ∆µ(λ) < 1, then for some ν, 1 ≤ ν ≤ m, we have that
δµ1 (λ) ≤ . . . ≤ δµν (λ) < 1 and δµν+1(λ) = 1 or ν = m; in this case we take σµ(λ) = ν.

The same rules are applied for σE(λ).

3.4.1.1. New Orthogonal Padé Approximants

Main results [68, Theorem 2.1 and Corollary 2.2] about the rate of attraction of poles
of the approximated function to poles of new orthogonal Padé approximants are stated
below.

Theorem 10. Let E ∈ K, F ∈ H(E), and µ ∈ Reg2(E). Fix m ∈ N. If F has a pole of
order ν at ξ in Dρm(F ), then

∆µ(ξ) ≤ |Φ(ξ)|
ρm(F )

and σµ(ξ) ≥ ν.

Corollary 1. Let F ∈ H(E), µ ∈ Reg2(E), and ξ be a pole of F in Dρm(F ) of order ν.
Assume that lim infn→∞ |ξ− ξ̃µn,ν+1| > 0, where {ξ̃µn,1, ξ̃

µ
n,2, . . . , ξ̃

µ
n,mn

} are enumerated in
nondecreasing distance to the point ξ. Then,

δµ1 (ξ) ≤ δµ2 (ξ) ≤ . . . ≤ δµν (ξ) ≤
(
|Φ(ξ)|
ρm(F )

)1/ν

. (29)



In particular, δµ1 (ξ) = δµ2 (ξ) = . . . = δµν (ξ) = (|Φ(ξ)|/ρm(F ))1/ν if and only if ∆µ(ξ) =

|Φ(ξ)|/ρm(F ).

3.4.1.2. New Padé-Faber Approximants

Main results [68, Theorem 2.3 and Corollary 2.4] about the rate of attraction of poles
of the approximated function to poles of new Padé-Faber approximants are stated below.

Theorem 11. Let F ∈ H(E). Fix m ∈ N. If F has a pole of order ν at ξ in Dρm(F ), then

∆E(ξ) ≤ |Φ(ξ)|
ρm(F )

and σE(ξ) ≥ ν.

Corollary 2. Let E ∈ K, F ∈ H(E), and ξ be a pole of F in Dρm(F ) of order ν.
Assume that lim infn→∞ |ξ− ξEn,ν+1| > 0, where {ξEn,1, ξEn,2, . . . , ξEn,mn

} are enumerated in
nondecreasing distance to the point ξ. Then,

δE1 (ξ) ≤ δE2 (ξ) ≤ . . . ≤ δEν (ξ) ≤
(
|Φ(ξ)|
ρm(F )

)1/ν

.

In particular, δE1 (ξ) = δE2 (ξ) = . . . = δEν (ξ) = (|Φ(ξ)|/ρm(F ))1/ν if and only if ∆E(ξ) =

|Φ(ξ)|/ρm(F ).

3.4.2. Inverse Results

3.4.2.1. New Orthogonal Padé Approximants

Inverse result on new orthogonal Padé approximants [68, Theorem 2.5] is stated as
follows.



Theorem 12. Let F ∈ H(E) and µ ∈ S(E). Fixm ∈ N. If for all n sufficiently large, Q̃µ
n,m

(for F ) has precisely m zeros and the zeros of Q̃µ
n,m have limits ξ1, . . . , ξm, as n → ∞,

then

(i) F is holomorphic in Dρmin , where ρmin := min1≤j≤m |Φ(ξj)|;

(ii) ρm−1(F ) = max1≤j≤m |Φ(ξj)|;

(iii) ξ1, . . . , ξm are singularities of F ; those lying in Dρm−1(F ) are poles (counting multi-
plicities), and F has no other poles in Dρm−1(F ).

3.4.2.2. New Padé-Faber Approximants

Inverse result on new Padé-Faber approximants [68, Theorem 2.6] is stated as follows.

Theorem 13. Let F ∈ H(E). Fix m ∈ N. If for all n sufficiently large, Q̃E
n,m (for F ) has

precisely m zeros and the zeros of Q̃E
n,m have limits ξ1, . . . , ξm, as n → ∞, then

(i) F is holomorphic in Dρmin , where ρmin := min1≤j≤m |Φ(ξj)|;

(ii) ρm−1(F ) = max1≤j≤m |Φ(ξj)|;

(iii) ξ1, . . . , ξm are singularities of F ; those lying in Dρm−1(F ) are poles (counting multi-
plicities), and F has no other poles in Dρm−1(F ).

3.4.3. On the Boundedness of Poles of Generalized Padé
Approximants to Polynomial Expansions

3.4.3.1. Classical Orthogonal Padé Approximants

The following result was proved in [72, Theorem 2.1].



Theorem 14. Let F ∈ H(E) and µ ∈ Reg11. Fix m ∈ N and denote by Pµ
n the set of

all zeros of a polynomial Qµ
n,m. Assume that the cardinality of Pµ

n is at least 1 for all n
sufficiently large and

inf
N≥m

sup
n≥N

{|ζ| : ζ ∈ Pµ
n} < ∞. (30)

Then, either F is a polynomial or ρ0(F ) < ∞.

3.4.3.2. Classical Padé-Faber Approximants

The following result was proved in [72, Theorem 2.2].

Theorem 15. Let F ∈ H(E). Fix m ∈ N and denote by PE
n the set of all zeros of a

polynomial QE
n,m. Assume that the cardinality of PE

n is at least 1 for all n sufficiently
large and

inf
N≥m

sup
n≥N

{|ζ| : ζ ∈ PE
n } < ∞. (31)

Then, either F is a polynomial or ρ0(F ) < ∞.

3.4.3.3. New Orthogonal Padé Approximants

The following result was proved in [72, Theorem 2.3].

Theorem 16. Let F ∈ H(E) and µ ∈ Reg11. Fix m ∈ N and denote by P̃µ
n the set of

all zeros of a polynomial Q̃µ
n,m. Assume that the cardinality of P̃µ

n is at least 1 for all n
sufficiently large and

inf
N≥m

sup
n≥N

{|ζ| : ζ ∈ P̃µ
n} < ∞. (32)

Then, either F is a polynomial or ρ0(F ) < ∞.

3.4.3.4. New Padé-Faber Approximants



The following result was proved in [72, Theorem 2.4].

Theorem 17. Let F ∈ H(E). Fix m ∈ N and denote by P̃E
n the set of all zeros of a

polynomial Q̃E
n,m. Assume that the cardinality of P̃E

n is at least 1 for all n sufficiently
large and

inf
N≥m

sup
n≥N

{|ζ| : ζ ∈ P̃E
n } < ∞. (33)

Then, either F is a polynomial or ρ0(F ) < ∞.

3.5. Constant Riesz Potentials and Polarization Optimality Problems

3.5.1. Constant Riesz Potentials on R2

A characterization of ωN when U2−2N(·;ωN) is constant on the unit circle was proved
in [65, Theorem 1].

Theorem 18. Let ωN = {x1, x2, . . . , xN} ⊆ C be a set of N distinct points. Then, the
function

U2−2N(x;ωN) =
N∑
j=1

|x− xj|2N−2

is constant on the circle S1 if and only if

N∑
j=1

N−k−1∑
q=0

(
N − 1

q

)(
N − 1

k + q

)
|xj|2N−2k−2q−2xk

j

= 0, for all k = 1, . . . , N − 1, (34)

where
xk := (rk cos(kt), rksin(kt))

if x = (r cos(t), r sin(t)) ∈ R2.



Using the characterization given in Theorem 18, we can verify Conjecture 1 in various
cases. Our first result [65, Proposition 1] asserts that Conjecture 1 holds if the points
x1, x2, . . . , xN lie on the same circle centered at the origin (that is, they have the same
norm).

Theorem 19. Let ωN = {x1, x2, . . . , xN} ⊆ R2 be a set of N distinct nonzero points
lying on some circle centered at the origin. If U2−2N(·;ωN) is constant on S1, then
x1, x2, . . . , xN are equally spaced.

Now we will consider another special case. Instead of assuming that all points have
the same norm, we will assume that they have equal angle distribution around the origin.
More precisely, let ζ = e2πi/N and, without loss of generality, assume that

x1 = r1ζ
1, x2 = r2ζ

2, . . . , xN = rNζ
N (35)

for some positive real numbers r1, r2, . . . , rN .
If we further assume that all norms are rational, then Conjecture 1 holds for all prime

N (see [65, Proposition 3]).

Theorem 20. Let N be a prime number. Let x1, x2, . . . , xN be as in (35) where all
rj ∈ Q. Suppose that U2−2N(·;ωN) is constant on S1. Then x1, x2, . . . , xN are equally
spaced on a circle centered at the origin.

3.5.2. Constant Generalized Riesz Potentials on R2

Considering more general Riesz potentials, we gave a generalization of Theorem 1 in
[53]. The following theorem was proved in [73, Theorem 2.1].



Theorem 21. Let h ≥ 0. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2

such that for each s = −2,−4, . . . , 2− 2N,

U s,h(x;ωN) =
N∑
j=1

(
|x− xj|2 + h

)−s/2

is independent of the position of x ∈ S1. Then, ωN forms a set of distinct equally spaced
points on a circle centered at 0. Moreover, if |x1| = |x2| = . . . = |xN | = r, then for each
p = 1, 2, . . . , N − 1,

U−2p,h(x;ωN) =
N

2p

p∑
q=0

(
p

q

)2

(2r)2q
(
r2 + 1 + h+

√
((r − 1)2 + h)((r + 1)2 + h)

)p−2q

for all x ∈ S1.

A characterization of sets of N distinct points ωN such that U2−2N,h(·, ωN) is constant
on S1 is the following (see [73, Theorem 2.2]):

Theorem 22. Let h ≥ 0 and ωN = {x1, x2, . . . , xN} ⊂ R2 be a set of N distinct points.
Then, the function

U2−2N,h(x;ωN) =
N∑
j=1

(
|x− xj|2 + h

)N−1

is constant on S1 if and only if

N∑
j=1

Bk,jx
k
j = 0, k = 1, . . . , N − 1, (36)

where
xk := (rk cos(kt), rksin(kt))



if x = (r cos(t), r sin(t)) ∈ R2 and

Bk,j :=
N−k−1∑
q=0

[(
N − 1

q

)(
N − 1

k + q

)
(2|xj|)2q

×
(
|xj|2 + 1 + h+

√
((|xj| − 1)2 + h)((|xj|+ 1)2 + h)

)N−2q−k−1
]
. (37)

As a consequence of this characterization, we obtain the following corollary (see [73,
Corollary 2.2]).

Corollary 3. Let h ≥ 0 and let ωN := {x1, x2, . . . , xN} be a set of N distinct points in
R2, which belong to a circle S1

r ⊂ R2. Assume that

U2−2N,h(x;ωN) =
N∑
j=1

(|x− xj|2 + h)N−1

is constant on S1. Then, {x1, x2, . . . , xN} forms a set of distinct equally spaced points
on S1

r.

Applying Theorem 22 and Corollary 3, we proved Conjecture 2 when N = 3. The
following corollary was proved in [73, Corollary 2.3].

Corollary 4. Let h ≥ 0 and {x1, x2, x3} ⊂ R2 be a set of 3 distinct points. If the function
U−4,h(x, {x1, x2, x3}) is constant on S1, then {x1, x2, x3} forms a set of distinct equally
spaced points on a circle centered at 0.

3.5.3. Polarization Optimality Problems

A complete characterization of all maximal andminimalN -point Riesz s-polarization
configurations of (S1

r;S1
R) when s = −2,−4, . . . , 2−2N is the following (see [65, Theorem



2]):

Theorem 23. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, R > 0, r > 0, and {x1, x2, . . . , xN} ⊆

S1
r. The following statements are equivalent:

(a) {x1, x2, . . . , xN} is a maximalN -point Riesz−2p-polarization configuration of (S1
r; S1

R);

(b) {x1, x2, . . . , xN} is a minimalN -point Riesz−2p-polarization configuration of (S1
r;S1

R);

(c) ∑N
j=1 xj =

∑N
j=1 x

2
j = · · · =

∑N
j=1 x

p
j = 0, where

xk := (rk cos(kt), rksin(kt))

if x = (r cos(t), r sin(t)) ∈ R2

Furthermore,

M−2p
N (S1

r;S1
R) = m−2p

N (S1
r;S1

R)

=
N

2p

p∑
j=0

(
p

j

)2

(2rR)2j
(
r2 +R2 + |r2 −R2|

)p−2j
. (38)

3.5.4. Generalized Polarization Optimality Problems
A complete characterization of all maximal and minimal N -point Riesz (s, h)-

polarization configurations of (S1
r;S1

R) when s = −2,−4, . . . , 2 − 2N and h ≥ 0 is the
following (see [73, Theorem 2]):

Theorem 24. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, R > 0, r > 0, h ≥ 0, and
{x1, x2, . . . , xN} ⊂ S1

r. The following statements are equivalent:

(a) {x1, x2, . . . , xN} is a maximal N -point Riesz (−2p, h)-polarization configuration of
(S1

r;S1
R);



(b) {x1, x2, . . . , xN} is a minimal N -point Riesz (−2p, h)-polarization configuration of
(S1

r;S1
R);

(c) ∑N
j=1 xj =

∑N
j=1 x

2
j = · · · =

∑N
j=1 x

p
j = 0, where xk := (rk cos(kt), rksin(kt)) if

x = (r cos(t), r sin(t)) ∈ R2.

Furthermore,
M−2p,h

N (S1
r;S1

R) = m−2p,h
N (S1

r;S1
R)

=
N

2p

p∑
j=0

(
p

j

)2

(2rR)2j
(
r2 +R2 + h+

√
((r −R)2 + h)(r +R)2 + h)

)p−2j

. (39)
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INTRODUCTION

For a fixed multiset of N points ωN :=
{x1, x2, . . . , xN} in R2 and a given constant
s ∈ R, we define the Riesz potential function
U s(·;ωN ) : R2 −→ [0,∞] as

U s(x;ωN ) :=
N
∑

j=1

|x − x j |−s,

where x ∈R2 and |·| is the 2-dimensional Euclidean
norm in R2. We call U s(·;ωN ) a Riesz s-potential
function of ωN . See Ref. 1 for more information
on Riesz s-potential functions in a d-dimensional
Euclidean space Rd .

In this paper, we consider two problems con-
cerning the Riesz s-potential functions U s(·;ωN ).
The first problem is to prove, in parts, Nikolov
and Rafailov’s conjecture about points in ωN be-
ing equally spaced on some circle when a Riesz s-
potential function is constant. The second problem
is to solve polarization optimality problems when
this Riesz s-potential function is constant.

Let ωN be a fixed set of distinct equally spaced
points on a circle T ⊆R2 and Γ be a circle concentric
to T . In Ref. 2, Nikolov and Rafailov show in
Theorem 1 that U s(x;ωN ) is constant as a function
of x on Γ if and only if s ∈ {0,−2,−4, . . . , 4−2N , 2−

2N}. They also show in Theorem 2 that this gives
a characteristic property of distinct equally spaced
points on a circle. More precisely, given a set ωN
of N distinct points such that U s(x;ωN ) is constant
on a circle Γ for every s ∈ {−2,−4, . . . , 2−2N} (the
constant may depend on s), the points in ωN are
equally spaced on some circle concentric to Γ . In
the same paper, it was conjectured (Conjecture 2)
that only s = 2− 2N should be sufficient. We state
the conjecture below.

Conjecture 1 Given a set of N distinct points ωN :=
{x1, x2, . . . , xN} ⊆ R2 and a circle Γ ⊆ R2 such that

U2−2N (x;ωN ) =
N
∑

j=1

|x − x j |2N−2

is constant as a function of x on Γ . Then ωN forms
a set of distinct equally spaced points on a circle
concentric to Γ .

The conjecture was verified in the case N = 3
(see Ref. 2, Proposition 2). In this paper, we prove
Conjecture 1 in the following cases (after translating
the centre of Γ to the origin):
(i) when all points x1, x2, . . . , xN have the same

norm (Proposition 1);
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(ii) when N = 4 and x1, x2, x3, x4 have an equal
angle distribution (Proposition 2);

(iii) when N is prime and x1, x2, . . . , xN have an
equal angle distribution and rational norms
(Proposition 3).

The above results are based on a characterization of
ωN when U2−2N (·;ωN ) is constant on the unit circle
(Theorem 1).

The next problems considered in this paper
are polarization optimality problems. Let ωN =
{x1, . . . , xN} denote a configuration of N (not nec-
essarily distinct) points in R2. Denote by

S1R := {x ∈ R2 : |x |= R}

the circle centred at the origin of radius R. When
R = 1, we simply use the notation S1. Given s ∈ R,
R> 0, and r > 0, we define polarization constants

M s
N (S

1
r ;S1R) := max

ωN⊆S1r
#ωN=N

min
y∈S1R

U s(y;ωN ), (1)

M0
N (S

1
r ;S1R) := N ,

ms
N (S

1
r ;S1R) := min

ωN⊆S1r
#ωN=N

max
y∈S1R

U s(y;ωN ), (2)

m0
N (S

1
r ;S1R) := N ,

where #ωN denotes the cardinality of the multiset
ωN . We will call ωN a maximal (minimal) N-point
Riesz s-polarization configuration of (S1r ;S1R) if ωN
attains the maximum in (1) (minimum in (2)). We
give a brief history of such polarization optimality
problems below.

Farkas and Révész3 were the first to introduce
two-plate polarization constants in a general sense.
However, all previous results4–6 on polarization op-
timality problems related to Riesz potentials were
considered for the case when R = r = 1. The
maximality of N distinct equally spaced points on
the unit circle for the maximal Riesz s-polarization
problem of (S1;S1) in (1) was proved in Ref. 4 for
s = 2. Erdélyi and Saff1 established this for s =
4. For arbitrary s > 0, this result was proved in
Ref. 5 where they also showed the minimality of N
distinct equally spaced points on the unit circle for
the minimal Riesz s-polarization problem of (S1;S1)
in (2) for −1 ¶ s < 0. Note that minimal N -point
Riesz s-polarization problems of (S1;S1) when s > 0
are not interesting because ms

N (S
1;S1) =∞ for all

s > 0.
Up to the present, there are no results on po-

larization optimality problems in (1) and (2) for

R 6= r. In this paper, we give a characterization of all
maximal and minimal N -point Riesz s-polarization
configurations of (S1r ;S1R) when s = −2,−4, . . . , 2−
2N .

Although the asymptotic properties of polar-
ization constants are not our main interest in this
paper, it is worth mentioning the asymptotic types
of behaviour of M s

N (S
1;S1) as N →∞ 5:

M s
N (S

1;S1)∼



























2ζ(s)
(2π)s

(2s −1)N s, s > 1,

(1/π)N log N , s = 1,

2−s

p
π

Γ
�

1−s
2

�

Γ
�

1− s
2

�N , 0¶ s < 1,

where ζ(s) denotes the classical Riemann zeta func-
tion and aN ∼ bN means that limN→∞ aN/bN = 1.
The reader is referred to Refs. 1, 7, 8 for asymptotic
results of polarization constants and configurations
of general subsets of Rd as N →∞ when s > 0.

CONSTANT RIESZ s -POTENTIAL FUNCTIONS

The Euclidean space R2 and the complex space C
over R have the same dimension and the same
norm. However, the complex space C has a richer
algebraic structure; for example, C is a field. Hence
when we prove all theorems in this and the next
section, any element x ∈ R2 will be replaced by x ∈
C, the 2-dimensional Euclidean norm |·| is replaced
by the modulus inC, and the notation x y is adopted
from the multiplication in C and the notation x/y
is adopted from the division in C. We recall that the
usual dot product in C is defined by

(a1+ a2i) · (b1+ b2i) := a1 b1+ a2 b2.

Now let ωN := {x1, x2, . . . , xN} ⊆ C be a set of
N distinct points. In this section, we will assume
that U2−2N (x;ωN ) =

∑N
j=1|x − x j |2N−2 is constant

(as a function of x) on a circle Γ ⊂C and prove that,
under various conditions, the points x1, x2, . . . , xN
are equally spaced on some circle concentric to
Γ . By translating and scaling the circle Γ , we can
assume without loss of generality that Γ is the unit
circle S1. The following conjecture is equivalent to
Conjecture 1.

Conjecture 2 Given a set of N distinct points ωN :=
{x1, x2, . . . , xN} ⊆ C such that

U2−2N (x;ωN ) =
N
∑

j=1

|x − x j |2N−2
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is constant as a function of x on S1, then ωN forms a
set of distinct equally spaced points on S1R for some R.

We begin with our main theorem which gives
a characterization of ωN when U2−2N (·;ωN ) is con-
stant on the unit circle.

Theorem 1 Let ωN = {x1, x2, . . . , xN} ⊆ C be a set
of N distinct points. Then the function

U2−2N (x;ωN ) =
N
∑

j=1

|x − x j |2N−2

is constant on the circle S1 if and only if

N
∑

j=1

N−k−1
∑

q=0

�

N −1
q

��

N −1
k+ q

�

|x j |2N−2k−2q−2 x k
j

= 0, for all k = 1, . . . , N −1. (3)

Note that (3) gives a system of N −1 equations
in terms of elements in the setωN . The proof of The-
orem 1 requires a technical lemma which involves a
lot of calculations, and so we will postpone it to the
end of this section.

Example 1 Suppose U2−2N (x;ωN ) is constant on
S1. We list the systems of equations (3) that the x j
must satisfy for small values of N below.
(i) Let N = 3. Then x1, x2, x3 must satisfy

3
∑

j=1

x2
j = 0,

3
∑

j=1

(1+ |x j |2)x j = 0.

(ii) Let N = 4. Then x1, x2, x3, x4 must satisfy

4
∑

j=1

x3
j = 0,

4
∑

j=1

(1+ |x j |2)x2
j = 0,

4
∑

j=1

(1+3|x j |2+ |x j |4)x j = 0.

(iii) Let N = 5. Then x1, x2, x3, x4, x5 must satisfy

5
∑

j=1

x4
j = 0,

5
∑

j=1

(1+ |x j |2)x3
j = 0,

5
∑

j=1

(3+8|x j |2+3|x j |4)x2
j = 0,

5
∑

j=1

(1+5|x j |2+ |x j |4)(1+ |x j |2)x j = 0.

Using the characterization given in Theorem 1,
we can verify Conjecture 2 in various cases. Our first
result asserts that Conjecture 2 holds if the points
x1, x2, . . . , xN already lie on the same circle centred
at the origin (i.e., they have the same norm).

Proposition 1 Let ωN = {x1, x2, . . . , xN} ⊆ C be a
set of N distinct non-zero points lying on some circle
centred at the origin. If U2−2N (·;ωN ) is constant on
S1, then x1, x2, . . . , xN are equally spaced.

Proof : It suffices to show that x1, x2, . . . , xN are the
N th roots of some complex number. Suppose |x1|=
|x2|= · · ·= |xN |= R. From (3) we deduce that

N
∑

j=1

x k
j = 0,

for all k = 1,2, . . . , N −1. By Newton’s identities,

ek(x1, x2, . . . , xN ) = 0, k = 1,2, . . . , N −1,

where the ek are elementary symmetric polynomi-
als. Thus x1, x2, . . . , xN are distinct roots of the
polynomial

N
∏

k=1

(X − xk) = X N −µ

for some µ ∈ C. 2
Now we will consider another special case. In-

stead of assuming that all points have the same
norm, we will assume that they have an equal angle
distribution around the origin. More precisely, let
ζ= e2πi/N and, without loss of generality, we assume
that

x1 = r1ζ
1, x2 = r2ζ

2, . . . , xN = rNζ
N (4)

for some positive real numbers r1, r2, . . . , rN . Our
next result proves Conjecture 2 when N = 4 and x1,
x2, x3, x4 have an equal angle distribution.

Proposition 2 Let x1, x2, x3, x4 be as in (4). Sup-
pose that

U−6(x;ωN ) :=
N
∑

j=1

|x − x j |6

is constant as a function of x on S1. Then x1, x2, x3,
x4 are equally spaced on a circle centred at the origin.

Proof : By Proposition 1, it suffices to show that
|x1|= |x2|= |x3|= |x4|. From Example 1, the points
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x1, x2, x3, x4 must satisfy

4
∑

j=1

x3
j =

4
∑

j=1

(1+ |x j |2)x2
j

=
4
∑

j=1

(1+3|x j |2+ |x j |4)x j = 0.

With x j = r jζ
j , the equation

∑4
j=1 x3

j = 0 becomes

r3
1ζ

3+ r3
2ζ

2+ r3
3ζ+ r3

4 = 0.

Let P(X ) = r3
1 X 3 + r3

2 X 2 + r3
3 X + r3

4 ∈ R[X ]. Since
ζ= i, ζ̄= −i are roots of P(X ), we have

P(X ) = C(X 2+1)(X + b) = C(X 3+ bX 2+ X + b),

for some non-zero C ∈ R. Comparing the coeffi-
cients, we have r1 = r3, r2 = r4.

The equation
∑4

j=1(1+ |x j |2)x2
j = 0 becomes

∑4
j=1(1 + r2

j )r
2
j ζ

2 j = 0. Expanding the sum and
using r1 = r3, r2 = r4 we have

2(1+ r2
1 )r

2
1ζ

2+2(1+ r2
2 )r

2
2 = 0.

Since ζ2 =−1 we obtain (1+ r2
1 )r

2
1 = (1+ r2

2 )r
2
2 . Let

t = r2/r1 and a = 1/r2
1 . We have

(a+1) = (a+ t2)t2 =⇒ t4+ at2− (a+1) = 0.

Thus

t2 =
−a±

p
a2+4a+4
2

=
−a± (a+2)

2
.

The only possible case is t2 = 1
2 (−a+ (a+ 2)) = 1.

Since t > 0 we have t = 1. Hence r2 = r1. We have
shown that r1 = r2 = r3 = r4. 2

Actually, if we further assume that all norms are
rational, then Conjecture 2 holds for all prime N .

Proposition 3 Let N be a prime number. Let
x1, x2, . . . , xN be as in (4) where all r j ∈ Q. Sup-
pose that U2−2N (·;ωN ) is constant on S1. Then
x1, x2, . . . , xN are equally spaced on a circle centred
at the origin.

Proof : By Proposition 1, it suffices to show that
|x1| = |x2| = · · · = |xN |. Applying the condition (3)
with k = N −1 gives

∑N
j=1 xN−1

j = 0. Thus

N
∑

j=1

rN−1
j ζ− j =

N
∑

j=1

rN−1
N− j ζ

j = 0.

Let A be a positive integer so that ArN−1
N− j ∈ Z>0

for every j. Then
∑N

j=1(ArN−1
N− j )ζ

k = 0. This is a
vanishing linear combination of 1,ζ, . . . ,ζN−1 with
positive-integer coefficients. Since the minimal
polynomial of ζ is 1+ X + · · ·+ X N−1 (N is prime),
this implies that all coefficients are equal. Thus
ArN−1

1 = ArN−1
2 = · · · = ArN−1

N and hence r1 = r2 =
· · ·= rN . 2

Proof of Theorem 1

The following technical lemma is needed for the
proofs of Theorem 1 and Theorem 2.

Lemma 1 Let N ∈ N and p ∈ {1, 2, . . . , N − 1} be
fixed. If x j := |x j | cos t j + i|x j | sin t j for all j =
1,2, . . . , N, then for all y := cos t + i sin t ∈ S1,

N
∑

j=1

|y − x j |2p

= E0+
p
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt+Ek, j sin kt j sin kt],

(5)

where

E0 =
N
∑

j=1

p
∑

q=0

�

p
q

�2

|x j |2p−2q,

Ek, j = (−1)k2
p−k
∑

q=0

�

p
q

��

p
k+ q

�

|x j |2p−k−2q.

Proof : Let y := cos t + i sin t ∈ S1 and x j :=
|x j | cos t j+i|x j | sin t j for all j = 1,2, . . . , N . A simple
calculation shows that

f j(t) := |y − x j |2p = (|x j |2+1−2|x j | cos(t − t j))
p.

Since A := {1, cos(t− t j), . . . , cos p(t− t j)} forms an
orthogonal system with respect to the inner product

〈 f , g〉 :=

∫ 2π

0

f (t)g(t)dt

and f j ∈ span(A), we have

f j(t) =
p
∑

k=0

Ek, j cos k(t − t j) = E0, j

+
p
∑

k=1

Ek, j(cos kt j cos kt + sin kt j sin kt).
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Now,

N
∑

j=1

|y − x j |2p =
N
∑

j=1

f j(t)

= E0+
p
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt+Ek, j sin kt j sin kt],

where E0 =
∑N

j=1 E0, j . By the orthogonality of the
elements in the set A and the calculation in Lemma 3
in the last section, we have

E0 =
N
∑

j=1

〈 f j , 1〉
2π

=
N
∑

j=1

p
∑

q=0

�

p
q

�2

|x j |2p−2q

and

Ek, j =
〈 f j , cos k(t − t j)〉

π

= (−1)k2
p−k
∑

q=0

�

p
q

��

p
k+ q

�

|x j |2p−k−2q,

for all k ∈ {1,2, . . . , p} and j ∈ {1, 2, . . . , N}. 2
Proof of Theorem 1: For each j = 1,2, . . . , N , set

x j := |x j | cos t j + i|x j | sin t j .

(⇒) By our assumption, f (y) :=
∑N

j=1|y − x j |2N−2

is constant on S1, say f (y) = C on S1. Set

y = cos t + i sin t ∈ S1.

By (5) for all t ∈ [0,2π],

C = f (y) = E0

+
N−1
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt + Ek, j sin kt j sin kt].

(6)

Because the set {1, cos t, sin t, . . . , cos(N −
1)t, sin(N − 1)t} is linearly independent over
R, we deduce

C − E0 = 0

and for all k = 1,2, . . . , N −1,

N
∑

j=1

Ek, j cos kt j = 0 and
N
∑

j=1

Ek, j sin kt j = 0. (7)

Using the formulae of Ek, j from Lemma 1, it follows

from (7) that for all k = 1, 2, . . . , N −1,

0=
N
∑

j=1

Ek, j(cos kt j + i sin kt j) =
N
∑

j=1

Ek, j

|x j |k
x k

j

= (−1)k2
N
∑

j=1

N−k−1
∑

q=0

�

N −1
q

��

N −1
k+ q

�

× |x j |2N−2k−2q−2 x k
j , (8)

which implies (3).
(⇐) Assume that (3) holds. Then we have (8)

and (7). Combining (7) and the second identity in
(6), we have for all y ∈ S1,

N
∑

j=1

|y − x j |2N−2 = E0,

which implies that U2−2N ,h(·;ωN ) is constant on
S1. 2

AN APPLICATION TO POLARIZATION
OPTIMALITY PROBLEMS

We remind the reader that we will consider polar-
ization optimality problems in the complex plane.
A complete characterization of all maximal and
minimal N -point Riesz s-polarization configurations
of (S1r ;S1R) when s = −2,−4, . . . , 2− 2N is given as
follows.

Theorem 2 Let N ∈ N, p ∈ {1,2, . . . , N − 1}, R >
0, r > 0, and {x1, x2, . . . , xN} ⊆ S1r . The following
statements are equivalent:
(a) {x1, x2, . . . , xN} is a maximal N-point Riesz−2p-

polarization configuration of (S1r ;S1R);
(b) {x1, x2, . . . , xN} is a minimal N-point Riesz −2p-

polarization configuration of (S1r ;S1R);
(c)

∑N
j=1 x j =

∑N
j=1 x2

j = · · ·=
∑N

j=1 x p
j = 0.

Furthermore,

M−2p
N (S1r ;S1R) = m−2p

N (S1r ;S1R)

=
N
2p

p
∑

j=0

�

p
j

�2

(2rR)2 j(r2+R2+ |r2−R2|)p−2 j .

(9)

Unlike the case when R= r = 1 and s > 0, opti-
mal configurations for the cases in Theorem 2 may
not be unique up to rotation. For example, when p=
1 and N = 4, our characterization of optimal config-
urations is

∑4
j=1 x j = 0. Hence there are infinitely

many optimal configurations that are not rotations
of one another. The proof of Theorem 2 relies on
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the fact that if ωN is a configuration of N distinct
equally spaced points on S1r , then for each s =
−2,−4, . . . , 2−2N , U s(·,ωN ) is constant on S1R. This
special property allows the problems to have more
than one solution (up to rotation). Furthermore,
our experimental study suggests that for the cases
when s ∈ R2\{0,−2,−4, . . . , 2− 2N}, any maximal
and minimal N -point Riesz s-polarization configu-
ration of (S1r ;S1R) is unique up to rotation, namely,
it is a configuration of distinct equally spaced points
on S1r . We make the following conjecture.

Conjecture 3 Let N ∈ N, s ∈ R\{0,−2,−4, . . . , 2−
2N}, R > 0, r > 0, and {x1, x2, . . . , xN} ⊆ S1r . The
following statements are equivalent:
(a) {x1, x2, . . . , xN} is a maximal N-point Riesz s-

polarization configuration of (S1r ;S1R);
(b) {x1, x2, . . . , xN} is a minimal N-point Riesz s-

polarization configuration of (S1r ;S1R);
(c) {x1, x2, . . . , xN} is a configuration of distinct

equally spaced points on S1r .

Proof of Theorem 2

We need the following lemma.

Lemma 2 Let N ∈ N, p ∈ {1,2, . . . , N − 1}, R > 0,
and r > 0. Then any configuration of N distinct
equally spaced points on S1r is both a maximal and
a minimal N-point Riesz −2p-polarization configura-
tion of (S1r ;S1R).

Proof : LetωN := {x1, x2, . . . , xN} be a configuration
of N distinct equally spaced points on S1r and p ∈
{1,2, . . . , N − 1} be fixed. By Theorem 1 in Ref. 2,
we know that f (x) :=

∑N
j=1|x − x j |2p is constant as

a function of x on S1R, say f (x) = C for all x ∈ S1R.
Thus

max
x∈S1R

N
∑

i=1

|x i − x |2p = C =min
x∈S1R

N
∑

i=1

|x i − x |2p. (10)

Let {y1, y2, . . . , yN} be any N -point configuration on
S1r . To show that ωN is a minimal N -point Riesz
−2p-polarization configuration of (S1r ;S1R), we will
show that

max
x∈S1R

N
∑

i=1

|x i − x |2p ¶max
x∈S1R

N
∑

i=1

|yi − x |2p. (11)

Consider
�

�

�

�

x j −
R

yi/r

�

�

�

�

=

�

�

�

�

x j

yi

�

yi −
R

x j/r

��

�

�

�

=

�

�

�

�

yi −
R

x j/r

�

�

�

�

.

As R/(yi/r) ∈ S1R for all i, we have

NC =
N
∑

i=1

f
�

R
yi/r

�

=
N
∑

i=1

N
∑

j=1

�

�

�

�

x j −
R

yi/r

�

�

�

�

2p

=
N
∑

j=1

N
∑

i=1

�

�

�

�

yi −
R

x j/r

�

�

�

�

2p

. (12)

It follows from (12) that there is j0 ∈ {1, 2, . . . , N}
such that

C ¶
N
∑

i=1

�

�

�

�

yi −
R

x j0/r

�

�

�

�

2p

¶max
x∈S1R

N
∑

i=1

|yi − x |2p.

But C = maxx∈S1R

∑N
i=1|x i − x |2p from (10). Hence

we have (11) as required.
To show that ωN is a maximal N -point Riesz

−2p-polarization configuration of (S1r ;S1R), we will
show that

min
x∈S1R

N
∑

i=1

|yi − x |2p ¶min
x∈S1R

N
∑

i=1

|x i − x |2p. (13)

It follows from (12) that there is j′0 ∈ {1, 2, . . . , N}
such that

min
x∈S1R

N
∑

i=1

|yi − x |2p ¶
N
∑

i=1

�

�

�

�

�

yi −
R

x j′0
/r

�

�

�

�

�

2p

¶ C .

But C = minx∈S1R

∑N
i=1|x i − x |2p from (10). Hence

we have (13) as required. 2
Proof of Theorem 2: Because the proof of (a) ⇔
(c) is similar to the proof of (b)⇔ (c), we will show
only (b) ⇔ (c) and skip the proof of (a) ⇔ (c).
Without loss of generality, we can assume that R= 1.

Let N ∈ N, p ∈ {1,2, . . . , N − 1}, and r > 0
be fixed and {x1, x2, . . . , xN} be any configuration
in S1r . We recall from Lemma 1 that for x j :=
r cos t j + ir sin t j for all j = 1, 2, . . . , N and for all
y := cos t + i sin t ∈ S1,

N
∑

j=1

|y − x j |2p = E0

+
p
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt + Ek, j sin kt j sin kt],

(14)

= E0+
p
∑

k=1

N
∑

j=1

� Ek, j

rk
(yk · x k

j )
�

, (15)
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where

E0 =
N
∑

j=1

p
∑

q=0

�

p
q

�2

r2p−2q,

Ek, j

rk
= (−1)k2

p−k
∑

q=0

�

p
q

��

p
k+ q

�

r2p−2k−2q. (16)

Notice that the constant E0 does not depend on a
configuration on S1r and the constants Ek, j/r

k do
not depend on a configuration on S1r and j. For
convenience for all configurations {x1, x2, . . . , xN} ⊆
S1r , we set

Ek :=
Ek, j

rk
, for all k = 1, 2, . . . , p. (17)

First of all, we will show that

m−2p
N (S1r ;S1) = E0.

Let ω′N := {x ′1, x ′2, . . . , x ′N} be a configuration of
distinct equally spaced points on S1r . Using (15), we
have for all y ∈ S1,

N
∑

j=1

|y − x ′j |
2p = E0+

p
∑

k=1

N
∑

j=1

Ek(y
k · (x ′j)

k)

= E0+
p
∑

k=1

Ek

�

yk ·
N
∑

j=1

(x ′j)
k
�

= E0 (18)

where the last equality follows from the fact that
∑N

j=1(x
′
j)

k = 0 for all k = 1, 2, . . . , p. Since ω′N is
a minimal N -point Riesz −2p-polarization configu-
ration of (S1r ;S1) (by Lemma 2), we obtain

m−2p
N (S1r ;S1) =max

y∈S1
U−2p(y;ω′N ) = E0.

We now prove (c)⇒(b). Assume that ωN =
{x1, x2, . . . , xN} ⊆ S1r such that

∑N
j=1 x k

j = 0 for all
k = 1,2, . . . , p. Applying the same argument as in
(18), we have for all y ∈ S1,

U−2p(y;ωN ) = E0+
p
∑

k=1

Ek

�

yk ·
N
∑

j=1

x k
j

�

= E0,

which implies that ωN is a minimal N -point Riesz
−2p-polarization configuration of (S1r ;S1).

Next, we show (b)⇒(c). Assume that ωN =
{x1, x2, . . . , xN} is a minimal N -point Riesz −2p-
polarization configuration of (S1r ;S1). Then for all
y ∈ S1,

U−2p(y;ωN ) =
N
∑

j=1

|y − x j |2p ¶ m−2p
N (S1r ;S1) = E0.

Then, by (14) and (17) for all t ∈ [0,2π],

E0 ¾ U−2p(y;ωN ) = E0+
p
∑

k=1

(C cos kt +S sin kt).

whereC =
∑N

j=1 Ek cos kt j andS =
∑N

j=1 Ek sin kt j .
Thus for all t ∈ [0, 2π],

0¾
p
∑

k=1

(C cos kt +S sin kt).

Hence for all t ∈ [0,2π],
p
∑

k=1

(C cos kt +S sin kt) = 0.

Because {cos t, sin t, cos2t, sin2t, . . . , cos pt, sin pt}
is a linearly independent set over R for all k =
1,2, . . . , p,

N
∑

j=1

Ek cos kt j =
N
∑

j=1

Ek sin kt j = 0.

Since for all k = 1, 2, . . . , p, Ek 6= 0 ((16)),
N
∑

j=1

cos kt j =
N
∑

j=1

sin kt j = 0, k = 1,2, . . . , p,

which implies that
∑N

j=1 x k
j =

∑N
j=1 rk(cos kt j +

i sin kt j) = 0 for all k = 1, 2, . . . , p.

To compute M−2p
N (S1r ;S1R) and m−2p

N (S1r ;S1R) in
(9), we can use a similar argument in Lemma 1 by
replacing y = R cos t+iR sin t and f j(t) = |y−x j |2p =
(r2+R2−2Rr cos(t−t j))p. Applying the calculations
as in Lemma 4, it is not difficult to check that if ωN
is a configuration of N distinct equally spaced points
on S1r , then for all y ∈ S1R,

U−2p(y;ωN )

=
N
2p

p
∑

j=0

�

p
j

�2

(2rR)2 j(r2+R2+ |r2−R2|)p−2 j .

2

COMPUTATIONS OF INTEGRALS

We collect our computations of all integrals in this
section.

Lemma 3 Let p ∈ N, k ∈ {0, 1, . . . , p}, and z ∈ C.
Then
∫ 2π

0

(z2+1−2z cos t)p cos kt dt

= (−1)k2π
p−k
∑

q=0

�

p
q

��

p
k+ q

�

z2p−k−2q. (19)
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Proof : Let p ∈ N and k ∈ {0,1, . . . , p}. First, we
prove the equality (19) for z ∈ R. Let z ∈ R. Then,
for ζ= eit ,

∫ 2π

0

(z2+1−2z cos t)p cos kt dt

=

∫ 2π

0

(z2+1− z(eit + e−it))p eikt dt

=

∫ 2π

0

(z− eit)p(z− e−it)p eikt dt

=
1
i

∫

S1
(z−ζ)p(z−1/ζ)pζk−1 dζ

= 2πRes
�

(z−ζ)p(zζ−1)p

ζp−k+1
;ζ= 0

�

= (−1)k2π
p−k
∑

q=0

�

p
q

��

p
k+ q

�

z2p−k−2q,

where the first equality follows from the fact that
the last expression is a real number. Notice that the
left-hand side and the right-hand side of (19) are
polynomials as functions of z. Thus both functions
are analytic on C and we have (19) for all z ∈C. 2

Lemma 4 Let p ∈ N and k ∈ {0,1, . . . , p}. For a, b ∈
C,

∫ 2π

0

(a− b cos t)p cos kt dt

=
(−1)kπ

2p−1

p−k
∑

q=0

�

p
q

��

p
k+ q

�

Ca,b,p,q,k, (20)

where Ca,b,p,q,k = b2q+k(a±
p

a2− b2)p−k−2q and the
square root function in (20) can be selected to be both
branches of the complex square root function.

Proof : Clearly, if b = 0, then the equation in (20) is
0= 0. Assume that b ∈ C\{0} and a ∈ C. To reduce
(20) to (19), we consider

(λa−λb cos t)p,

where λ is chosen to satisfy the equations

2z = bλ, z2+1= aλ,

for some z ∈ C. From the above equations,

z =
a±
p

a2− b2

b

and

λ=
2z
b
=

2a±2
p

a2− b2

b2
.

Furthermore, λ 6= 0 because if λ = 0, then z = 0
which implies that b = 0. Hence by Lemma 3,

∫ 2π

0

(a− b cos t)p cos kt dt

=
1
λp

∫ 2π

0

(λa−λb cos t)p cos kt dt

=
1
λp

∫ 2π

0

(z2+1−2z cos t)p cos kt dt

=
(−1)kπ

2p−1

p−k
∑

q=0

�

p
q

��

p
k+ q

�

Ca,b,p,q,k.
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1. INTRODUCTION
Let E be a compact set in the complex plane C such that C \ E is simply connected and E

contains more than one point. There exists a unique exterior conformal mapping Φ from C \ E onto
C \ {w ∈ C : |w| ≤ 1} satisfying Φ(∞) = ∞ and Φ′(∞) > 0. For any ρ > 1, by

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ}
we denote the level curve with respect to E of index ρ and the canonical domain with respect to E
of index ρ, respectively. The Faber polynomials (see [1]) for E are defined by the formulas

Φn(z) :=
1

2πi

ˆ
Γρ

Φn(t)
t − z

dt, z ∈ Dρ, n = 0, 1, 2, . . . . (1)

Let H(E) denote the space of all functions holomorphic in some neighborhood of E. We set

H(E)d := {(F1, F2, . . . , Fd) : Fα ∈ H(E) for all α = 1, 2, . . . , d}
and denote the set of all nonnegative integers by N.

Definition 1. Let F = (F1, F2, . . . , Fd) ∈ H(E)d. Fix a multi-index

m = (m1,m2, . . . ,md) ∈ N
d \ {0},

where 0 is the zero vector in N
d. Let |m| = m1 + m2 + · · · + md. Then, for each

n ≥ max{m1,m2, . . . ,md},

there exist polynomials Qn,m and Pn,m,α, α = 1, 2, . . . , d, such that

deg(Pn,m,α) ≤ n − mα, deg(Qn,m) ≤ |m|, Qn,m �≡ 0,

Qn,mFα − Pn,m,α = a
(α)
n+1,nΦn+1(z) + a

(α)
n+2,nΦn+2(z) + · · · ,

for all α = 1, 2, . . . , d. The vector of rational functions

Rn,m := (Rn,m,1, Rn,m,2, . . . , Rn,m,d) =
(

Pn,m,1

Qn,m
,
Pn,m,2

Qn,m
, . . . ,

Pn,m,d

Qn,m

)

is called the (n,m) (linear) simultaneous Padé–Faber approximant of F.

∗The text was submitted by the author in English.
**E-mail: nattapong.bos@mahidol.ac.th
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In fact, the numbers a
(α)
k,n depend on m, but to simplify notation, we do not indicate this dependence.

It is easy to see that if d = 1, then the linear simultaneous Padé–Faber approximants reduce to the
linear Padé–Faber approximants with a slight modification of the index n (see, e.g., [2] for the definition
of linear Padé–Faber approximants). Moreover, let us mention that, for the case where d = 1, there is
another related construction, called nonlinear Padé–Faber approximants (see [3]). Unlike the classical
ones, these linear and nonlinear Padé–Faber approximants generally lead to different rational functions
(see examples in [3] and [4]). In this paper, we restrict our attention to linear simultaneous Padé–Faber
approximants; therefore, in the sequel, we omit the word “linear” when we refer to them.

For any pair (n,m), a vector of rational functions Rn,m, always exists, but may be nonunique in the
general case. In what follows, we assume that, given (n,m), only one solution is taken.

Now, let us introduce the definition of a pole and its order for a vector of functions.

Definition 2. Let F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions meromorphic in some do-
main D. We say that λ is a pole of F in D of order τ if there exists an index α ∈ {1, 2, . . . , d} such that
λ is a pole of Fα in D of order τ and, for the rest of the indices j �= α, either λ is not a pole of Fj or λ is a
pole of Fj with order less than or equal to τ .

Let F ∈ H(E)d, and let ρ|m|(F) denote the index ρ > 1 of the largest canonical domain Dρ inside
which F has at most |m| poles. Let λ1, λ2, . . . , λq be distinct poles of F in Dρ|m|(F), and let

L :=
(1 + minj=1,2,...,q |Φ(λj)|)

2
.

The set of these poles is denoted by P|m|(F). The normalization of Qn,m used in this paper in terms of
its zeros λn,j is as follows:

Qn,m(z) :=
∏

|Φ(λn,j)|≤L

(z − λn,j)
∏

|Φ(λn,j )|>L

(
1 − z

λn,j

)
. (2)

By QF
|m| we denote the polynomial whose zeros are the poles of F in Dρ|m|(F), counting multiplicities,

normalized as in (2).
Before going into details, we describe the convergence of row sequences of Padé–Faber approximants

corresponding to the simultaneous Padé–Faber approximants in the scalar case (d = 1). For d = 1 we
write

F = F, |m| = m = m ∈ N, P|m|(F) = Pm(F ),

ρ|m|(F) = ρm(F ), Rn,m = Rn,m.

Suetin [2] proved the following analog of Montessus de Ballore’s theorem for Padé–Faber approximants.

Theorem A. Suppose that F ∈ H(E) has poles of total multiplicity exactly m in Dρm(F ).
Then Rn,m is uniquely determined for all sufficiently large n, and the sequence Rn,m converges
uniformly to F inside Dρm(F ) \ Pm(F ) as n → ∞. Moreover, for any compact subset K of
Dρm(F ) \ Pm(F ),

lim sup
n→∞

‖F − Rn,m‖1/n
K ≤ ‖Φ‖K

ρm(F )
, (3)

where ‖ · ‖K denotes the sup-norm on K; if K ⊂ E, then ‖Φ‖K is replaced by 1.

Here and in what follows, the phrase “uniformly inside a domain" means “uniformly on each compact
subset of the domain." The goal of this paper is to extend the above result from the scalar case to the
vector case.

In [5], Graves-Moris and Saff proved a Montessus de Ballore-type theorem for simultaneous Padé
approximants (in the context of Taylor expansions) using the concept of polewise independence of a
vector of functions. We adapt their notion to fit our type of regions.
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Definition 3. Let F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions meromorphic in some canon-
ical domain Dρ and let m = (m1,m2, . . . ,md) ∈ N

d \ {0} be a multi-index. Then the function F is said
to be polewise independent with respect to the multi-index m in Dρ if there do not exist polynomials
v1, v2, . . . , vd, at least one of which is not identically vanishing, that satisfy the following conditions:

(i) deg vα ≤ mα − 1, α = 1, 2, . . . , d, for mα ≥ 1;

(ii) vα ≡ 0 for mα = 0;

(iii)
∑d

α=1(vα ◦ Φ) · Fα ∈ H(Dρ \ E),

where H(Dρ \ E) is the space of all holomorphic functions on Dρ \ E.

Our main result, which extends Theorem A, is as follows.

Theorem 1. Let F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions meromorphic in Dρ|m|(F),

and let m ∈ N
d \ {0} be a fixed multi-index. Suppose that F is polewise independent with respect

to the multi-index m in Dρ|m|(F). Then Rn,m is uniquely determined for all sufficiently large n, and
for each α = 1, 2, . . . , d, the sequence Rn,m,α converges uniformly to Fα inside Dρ|m|(F) \ P|m|(F).
Moreover, for each α = 1, 2, . . . , d and any compact set K ⊂ Dρ|m|(F) \ P|m|(F),

lim sup
n→∞

‖Fα − Rn,m,α‖1/n
K ≤ ‖Φ‖K

ρ|m|(F)
, (4)

where ‖ · ‖K denotes the sup-norm on K; if K ⊂ E, then ‖Φ‖K is replaced by 1. Moreover,

lim sup
n→∞

‖Qn,m − QF
|m|‖1/n ≤

maxλ∈P|m|(F) |Φ(λ)|
ρ|m|(F)

, (5)

where ‖ · ‖ denotes (for example) the norm induced on the space of polynomials of degree at
most |m| by the maximum absolute value of the coefficients.

Since the space of polynomials of degree at most |m| has finite dimension, all of its norms are
equivalent, so that we can take any norm in (5).

This paper is organized as follows. In Sec. 2, we introduce more notation and auxiliary lemmas. The
proof of the main result is given in Sec. 3.

2. NOTATION AND AUXILIARY RESULTS

First, we discuss some properties of Faber polynomial expansions of holomorphic functions, which
play a major role in our proof. The Faber coefficient of G ∈ H(E) with respect to Φn is given by

[G]n :=
1

2πi

ˆ
Γρ

G(t)Φ′(t)
Φn+1(t)

dt,

where ρ ∈ (1, ρ0(G)). The following lemma (see, e.g., [6]) is proved in the same way as similar
statements for Taylor series.

Lemma 1. Let G ∈ H(E). Then

ρ0(G) =
(
lim sup

n→∞
|[G]n|1/n

)−1
.

Moreover, the series
∑∞

n=0[G]nΦn converges to G uniformly inside Dρ0(G).

MATHEMATICAL NOTES Vol. 103 No. 5 2018
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As a consequence of Lemma 1, if F = (F1, F2, . . . , Fd) ∈ H(E)d, then, for each α = 1, 2, . . . , d,

Qn,m(z)Fα(z) − Pn,m,α(z) =
∞∑

k=n+1

[Qn,mFα]kΦk(z), z ∈ Dρ0(Fα), (6)

and Pn,m,α =
∑n−mα

k=0 [Qn,mFα]kΦk is uniquely determined by Qn,m.

Next, let us introduce the concept of convergence in h-content. Let B be a subset of the complex
plane C. By U(B) we denote the class of all coverings of B by at most countably many disks. We set

h(B) := inf
{ ∞∑

j=1

|Uj | : {Uj} ∈ U(B)
}

,

where |Uj | stands for the radius of the disk Uj . The quantity h(B) is called the 1-dimensional
Hausdorff content of the set B. This set function is not a measure, but it is semi-additive and
monotonic.

Definition 4. Let {gn}n∈N be a sequence of complex-valued functions defined on a domain D ⊂ C, and
let g be another complex function defined on D. We say that {gn}n∈N converges in h-content to the
function g on compact subsets of D if, for every compact subset K of D and each ε > 0, we have

lim
n→∞h{z ∈ K : |gn(z) − g(z)| > ε} = 0.

We denote such a convergence by h-limn→∞ gn = g in D.

The next lemma, which is due to Gonchar (see [7, Lemma 1] or [8, Sec. 2, Subsec. 2, b]) allows us to
derive uniform convergence on compact subsets of the region under consideration from convergence in
h-content.

Lemma 2. Suppose that h-limn→∞ gn = g in D. If each of the functions gn is meromorphic in D
and has no more than k < +∞ poles in this domain, then the limit function g is meromorphic
(except on a set of h-content zero) and has no more than k poles in D. Hence, in particular, if g
has a pole of order ν at a point λ ∈ D, then at least ν poles of gn tend to λ as n → ∞.

Now, we discuss upper and lower bounds for normalized Qn,m in (2). We take an arbitrary ε > 0 and
define an open set Jε := Jε(F) as follows. For n ≥ |m|, let Jn,ε denote the (ε/6)|m|n2-neighborhood of
the set of zeros of Qn,m, and let J|m|−1,ε denote the (ε/6)|m|-neighborhood of the set of poles of F in
Dρ|m|(F). We set

Jε =
⋃

n≥|m|−1

Jn,ε.

It easily follows from monotonicity and subadditivity that h(Jε) < ε and Jε1 ⊂ Jε2 for ε1 < ε2. For any
set B ⊂ C, we put B(ε) := B \ Jε. Clearly, if {gn}n∈N converges uniformly to g on K(ε) for every
compact set K ⊂ D and any ε > 0, then h-limn→∞ gn = g in D.

The normalization of Qn,m provides the following useful upper and lower bounds for Qn,m.

Lemma 3. Let K ⊂ C be a compact set, and let ε > 0 be arbitrary. Then there exist constants
C1, C2 > 0 independent of n and such that

‖Qn,m‖K ≤ C1, min
z∈K(ε)

|Qn,m(z)| ≥ C2n
−2|m|, (7)

where the second inequality makes sense when K(ε) is a nonempty set.
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3. PROOF OF THEOREM 1

Proof of Theorem 1. It follows from (6) that, for each α = 1, 2, . . . , d,

Qn,m(z)Fα(z) − Pn,m,α(z) =
∞∑

k=n+1

a
(α)
k,nΦk(z), z ∈ Dρ0(Fα), (8)

where

a
(α)
k,n := [Qn,mFα]k =

1
2πi

ˆ
Γρ

Qn,m(t)Fα(t)Φ′(t)
Φk+1(t)

dt, ρ ∈ (1, ρ0(Fα)).

Let

QF
|m|(z) :=

q∏
j=1

(
1 − z

λj

)τj

,

where λ1, λ2, . . . , λq are distinct poles of F in Dρ|m|(F) and τ1, τ2, . . . , τq are their respective multiplici-
ties. Since F is polewise independent with respect to m in Dρ|m|(F), it follows that the vector function F

has exactly |m| poles in Dρ|m|(F) and
∑q

j=1 τj = |m|. Multiplying (8) by QF
|m| and expanding

QF
|m|Qn,mFα − QF

|m|Pn,m,α ∈ H(Dρ|m|(F))

in the Faber polynomial system {Φν}∞ν=0, we see that, for each α = 1, 2, . . . , d and any z ∈ Dρ|m|(F),

QF
|m|(z)Qn,m(z)Fα(z) − QF

|m|(z)Pn,m,α(z) =
∞∑

k=n+1

a
(α)
k,nQF

|m|(z)Φk(z) =
∞∑

ν=0

b(α)
ν,nΦν(z)

=
n+|m|−mα∑

ν=0

b(α)
ν,nΦν(z) +

∞∑
ν=n+|m|−mα+1

b(α)
ν,nΦν(z). (9)

Note that the constants b
(α)
ν,n can be calculated in the form

b(α)
ν,n :=

∞∑
k=n+1

a
(α)
k,n[QF

|m|Φk]ν , ν = 0, 1, . . . , n + |m| − mα,

b(α)
ν,n := [QF

|m|Qn,mFα]ν =
1

2πi

ˆ
Γρ

QF
|m|(t)Qn,m(t)Fα(t)Φ′(t)

Φν+1(t)
dt, ν ≥ n + |m| − mα + 1, (10)

where ρ ∈ (1, ρ|m|(F)). We want to show that, given any α = 1, 2, . . . , d,

lim sup
n→∞

∥∥∥∥
∞∑

ν=0

b(α)
ν,nΦν

∥∥∥∥
1/n

K

≤ ‖Φ‖K

ρ|m|(F)
(11)

for any compact set K such that E ⊂ K ⊂ Dρ|m|(F). Let K be a fixed compact set such that
E ⊂ K ⊂ Dρ|m|(F). Let ρ1 ∈ (1, ρ|m|(F)) satisfy

K ∪ {λ1, λ2, . . . , λq} ⊂ Dρ1 . (12)

Choose δ > 0 sufficiently small, so that

‖Φ‖K + δ < ρ1 − δ. (13)

We first prove that, for each α = 1, 2, . . . , d,

lim sup
n→∞

∥∥∥∥
∞∑

ν=n+|m|−mα+1

b(α)
ν,nΦν

∥∥∥∥
1/n

K

≤ ‖Φ‖K

ρ|m|(F)
. (14)
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Using the normalization of Qn,m (the first inequality in (7)) and (10) when ρ = ρ1, we see that there
exists an n0 ∈ N such that, for each α = 1, 2, . . . , d,

|b(α)
ν,n| ≤

c1

(ρ1 − δ)ν
, ν ≥ n0, (15)

where c1 does not depend on n (from now on, we will denote constants not depending on n by c2, c3, . . . ).
Using (1), we obtain

‖Φν‖K ≤ c2(‖Φ‖K + δ)ν , ν ≥ 0. (16)

Therefore, by (15) and (16), for n ≥ n0, we have∥∥∥∥
∞∑

ν=n+|m|−mα+1

b(α)
ν,nΦν

∥∥∥∥
K

≤
∞∑

ν=n+|m|−mα+1

|b(α)
ν,n| ‖Φν‖K

≤
∞∑

ν=n+|m|−mα+1

c3

(‖Φ‖K + δ

ρ1 − δ

)ν

≤ c4

(‖Φ‖K + δ

ρ1 − δ

)n

.

Thus, for each α = 1, 2, . . . , d, we have

lim sup
n→∞

∥∥∥∥
∞∑

ν=n+|m|−mα+1

b(α)
ν,nΦν

∥∥∥∥
1/n

K

≤ ‖Φ‖K + δ

ρ1 − δ
.

Letting δ → 0 and ρ1 → ρ|m|(F), we obtain (14), as required.

Secondly, we show that

lim sup
n→∞

∥∥∥∥
n+|m|−mα∑

ν=0

b(α)
ν,nΦν

∥∥∥∥
1/n

K

≤ ‖Φ‖K

ρ|m|(F)
. (17)

Recall that b
(α)
ν,n =

∑∞
k=n+1 a

(α)
k,n[QF

|m|Φk]ν . Therefore, to approximate b
(α)
ν,n , we need to approximate a

(α)
k,n

first. We will adapt the technique used in [2] to approximate a
(α)
k,n. Take ρ1 ∈ (1, ρ|m|(F)) satisfying (12),

as above. Choose ρ2 ∈ (1, ρ0(F)). We have

a
(α)
k,n = [Qn,mFα]k =

1
2πi

ˆ
Γρ2

Qn,m(t)Fα(t)Φ′(t)
Φk+1(t)

dt, α = 1, 2, . . . , d.

We set

γ
(α)
k,n :=

1
2πi

ˆ
Γρ1

Qn,m(t)Fα(t)Φ′(t)
Φk+1(t)

dt, α = 1, 2, . . . , d. (18)

By virtue of our choice of ρ1 and ρ2, for each k ≥ 0 and each α = 1, 2, . . . , d, the polynomial
Qn,mFαΦ′/Φk+1 is meromorphic in

Dρ1 \ Dρ2 = {z ∈ C : ρ2 ≤ |Φ(z)| ≤ ρ1}
and has poles at λ1, λ2, . . . , λq with multiplicities at most τ1, τ2, . . . , τq. Applying Cauchy’s residue
theorem, we obtain

γ
(α)
k,n − a

(α)
k,n =

q∑
j=1

res
(

Qn,mFαΦ′

Φk+1
, λj

)
, α = 1, 2, . . . , d, k ≥ 0. (19)

The limit residue formula gives

res(Qn,mFαΦ′/Φk+1, λj) =
1

(τj − 1)!
lim

z→λj

(
(z − λj)τjQn,m(z)Fα(z)Φ′(z)

Φk+1(z)

)(τj−1)

.
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Leibnitz’s formula allows us to write(
(z − λj)τj Qn,m(z)Fα(z)Φ′(z)

Φk+1(z)

)(τj−1)

=
τj−1∑
t=0

⎛
⎝τj − 1

t

⎞
⎠(

Qn,m(z)Φ′(z)
Φn+1(z)

)(τj−1−t)

((z − λj)τj Fα(z)Φn−k(z))(t).

For j = 1, 2, . . . , q and t = 0, 1, . . . , τj − 1, we set

βn(j, t) :=
1

(τj − 1)!

⎛
⎝τj − 1

t

⎞
⎠ lim

z→λj

(
Qn,m(z)Φ′(z)

Φn+1(z)

)(τj−1−t)

(note that the βn(j, t) do not depend on k and α). Thus, we can rewrite (19) as

γ
(α)
k,n − a

(α)
k,n =

q∑
j=1

τj−1∑
t=0

βn(j, t)((z − λj)τj Fα(z)Φn−k(z))(t)z=λj
, α = 1, 2, . . . , d, k ≥ 0. (20)

By the definition of simultaneous Padé–Faber approximants, we have

a
(α)
k,n = 0, α = 1, 2, . . . , d, k = n − mα + 1, n − mα + 2, . . . , n,

which implies

γ
(α)
k,n =

q∑
j=1

τj−1∑
t=0

βn(j, t)((z − λj)τj Fα(z)Φn−k(z))(t)z=λj
(21)

for all α = 1, 2, . . . , d and k = n − mα + 1, n − mα + 2, . . . , n. We regard (21) as a system of |m|
equations for the |m| unknowns βn(j, t). The determinant of this system is

Δ :=

∣∣∣∣∣∣∣∣∣∣∣∣

[(z − λj)τjFα(z)Φmα−1(z)]z=λj
· · · [(z − λj)τjFα(z)Φmα−1(z)](τj−1)

z=λj

[(z − λj)τjFα(z)Φmα−2(z)]z=λj
· · · [(z − λj)τjFα(z)Φmα−2(z)](τj−1)

z=λj

...
. . .

...

[(z − λj)τjFα(z)]z=λj
· · · [(z − λj)τjFα(z)](τj−1)

z=λj

∣∣∣∣∣∣∣∣∣∣∣∣
j=1,...,q,
α=1,...,d

,

where the subscript means that the indicated columns are successively written for j = 1, 2, . . . , q, and
the rows are repeated for α = 1, 2, . . . , d.

If Δ = 0, then there exists a linear combination of rows giving the zero vector. This means that there
exist polynomials v1(z), v2(z), . . . , vd(z) such that deg vα ≤ mα − 1 and

d∑
α=1

[(z − λj)τjvα(Φ(z))Fα(z)](l)z=λj
= 0, j = 1, 2, . . . , q, l = 0, 1, . . . , τj − 1.

Equivalently,
∑d

α=1 vα(Φ(z))Fα(z) ∈ H(Dρ|m|(F) \ E). This is impossible, because F is polewise
independent with respect to m in Dρ|m|(F). Therefore, Δ �= 0 and |Δ| ≥ c5 > 0.

In order to avoid long expressions, for all w = 1, 2, . . . , d, y = 1, 2, . . . ,mw, j = 1, 2, . . . , q, t =
0, 1, . . . , τj − 1, we set

gw,y :=
( w−1∑

r=0

mr

)
+ y and hj,t :=

( j−1∑
l=0

τl

)
+ t + 1,
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where m0 = τ0 = 0. Applying Cramer’s rule to (21), we obtain

βn(j, t) =
Δn(j, t)

Δ
=

1
Δ

d∑
w=1

mw∑
y=1

γ
(w)
n−mw+y,nC[gw,y, hj,t], (22)

where Δn(j, t) is the determinant obtained from Δ by replacing the hj,tth column by the column
[
γ

(w)
n−mw+1,n γ

(w)
n−mw+2,n . . . γ

(w)
n,n

]T

w=1,2,...,d

and C[g, h] is the determinant of the (g, h)th cofactor matrix of Δn(j, t). Substituting the expression (22)
for βn(j, t) into (20) for α = 1, 2, . . . , d and k ≥ n + 1, we obtain

γ
(α)
k,n − a

(α)
k,n =

1
Δ

q∑
j=1

τj−1∑
t=0

d∑
w=1

mw∑
y=1

γ
(w)
n−mw+y,nC[gw,y, hj,t]((z − λj)τjFα(z)Φn−k(z))(t)z=λj

. (23)

We set B(λ, r) := {z ∈ C : |z − λ| < r}. Let ε > 0 be sufficiently small, so that

{z ∈ C : |z − λj | = ε} ⊂ {z ∈ C : |Φ(z)| > ρ2} for all j = 1, 2, . . . , q,

and let B(λj , ε) ∩ B(λα, ε) = ∅ for all α �= j. Using Cauchy’s integral formula, we obtain

((z − λj)τjFα(z)Φn−k(z))(l)z=λj
=

l!
2πi

ˆ
|z−λj |=ε

(z − λj)τjFα(z)Φn−k(z) dz

(z − λj)l+1
. (24)

We can easily check that there exists a constant c6 such that, for all j = 1, 2, . . . , q, l = 0, 1, . . . , τj − 1,
α = 1, 2, . . . , d, and k ≥ n + 1, we have

|((z − λj)τjFα(z)Φn−k(z))(l)z=λj
| ≤ c6

ρk−n
2

(25)

for sufficiently large n. Similarly, there exists a constant c7 such that, for all j = 1, 2, . . . , q,
l = 0, 1, . . . , τj − 1, α = 1, 2, . . . , d, and k = n − mα + 1, n − mα + 2, . . . , n, we have

|((z − λj)τjFα(z)Φn−k(z))(l)z=λj
| ≤ c7, (26)

for sufficiently large n. It follows from (26) that

|C(g, h)| ≤ c8, g, h = 1, 2, . . . , |m|. (27)

Using (25), (27), and Δ ≥ c5 > 0 and applying (23), we see that

|a(α)
k,n| ≤ |γ(α)

k,n | +
c9

ρk−n
2

d∑
w=1

mw∑
y=1

|γ(w)
n−mw+y,n|, α = 1, 2, . . . , d, k ≥ n + 1. (28)

By the definition of γ
(α)
k,n (see (18)), for all sufficiently large n, we have

|γ(α)
k,n | ≤

c10

(ρ1 − δ)k
, α = 1, 2, . . . , d, k ≥ n − |m| + 1,

where δ is sufficiently small, so that δ satisfies (13) and ρ2 < ρ1 − δ. This and equality (28) imply

|a(α)
k,n| ≤

c11

ρk−n
2 (ρ1 − δ)n

, α = 1, 2, . . . , d, k ≥ n + 1. (29)

Moreover, for all ν ≥ 0 and k ≥ n + 1, we have

|[QF
|m|Φk]ν | =

∣∣∣∣ 1
2πi

ˆ
Γρ2−2δ

QF
|m|(t)Φk(t)Φ′(t)

Φν+1(t)
dt

∣∣∣∣ ≤ c12
(ρ2 − δ)k

(ρ2 − 3δ)ν
, (30)
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where δ is sufficiently small, so that ρ2 − 3δ > 1. Combining (29) and (30), we obtain the following
inequalities for all α = 1, 2, . . . , d:

|b(α)
ν,n| =

∣∣∣∣
∞∑

k=n+1

a
(α)
k,n[QF

|m|Φk]ν

∣∣∣∣ ≤
∞∑

k=n+1

|a(α)
k,n| |[QF

|m|Φk]ν |

≤ c13

(ρ2 − 3δ)ν

(
ρ2

ρ1 − δ

)n ∞∑
k=n+1

(
ρ2 − δ

ρ2

)k

≤ c14

(ρ2 − 3δ)ν

(
ρ2

ρ1 − δ

)n(
ρ2 − δ

ρ2

)n

=
c14

(ρ2 − 3δ)ν

(
ρ2 − δ

ρ1 − δ

)n

.

Now, let us prove (17). Recall that ρ1 and δ were chosen so that (see (12) and (13), respectively)

‖Φ‖K + δ < ρ1 − δ.

Moreover, ‖Φν‖K ≤ c2(‖Φ‖K + δ)ν for all ν ≥ 0. Therefore, for each α = 1, 2, . . . , d, we have

∥∥∥∥
n+|m|−mα∑

ν=0

b(α)
ν,nΦν

∥∥∥∥
K

≤
n+|m|−mα∑

ν=0

|b(α)
ν,n| ‖Φν‖K

≤ c15

(
ρ2 − δ

ρ1 − δ

)n n+|m|−mα∑
ν=0

(‖Φ‖K + δ

ρ2 − 3δ

)ν

≤ c15(n + |m| − mα + 1)
(

ρ2 − δ

ρ1 − δ

)n(‖Φ‖K + δ

ρ2 − 3δ

)n+|m|−mα

.

Hence, for each α = 1, 2, . . . , d,

lim sup
n→∞

∥∥∥∥
n+|m|−mα∑

ν=0

b(α)
ν,nΦν

∥∥∥∥
1/n

K

≤
(‖Φ‖K + δ

ρ1 − δ

)(
ρ2 − δ

ρ2 − 3δ

)
.

Letting δ → 0 and ρ1 → ρ|m|(F), we see that, for each α = 1, 2, . . . , d, we have

lim sup
n→∞

∥∥∥∥
n+|m|−mα∑

ν=0

b(α)
ν,nΦν

∥∥∥∥
1/n

K

≤ ‖Φ‖K

ρ|m|(F)
. (31)

Combining (14) and (31), we obtain (11). Therefore, from (9) we have

lim sup
n→∞

‖QF
|m|Qn,mFα − QF

|m|Pn,m,α‖1/n
K ≤ ‖Φ‖K

ρ|m|(F)
, α = 1, 2, . . . , d, (32)

where K is any compact set such that E ⊂ K ⊂ Dρ|m|(F). To show that (32) is true for any compact
subset K of Dρ|m|(F), we let K be any compact subset of Dρ|m|(F). If K ⊂ E, then, clearly, ‖Φ‖K on the
right-hand side of (32) can be replaced by 1. If K ∩ (Dρ|m|(F) \ E) �= ∅, then, for any α = 1, 2, . . . , d,

lim sup
n→∞

‖QF
|m|Qn,mFα − QF

|m|Pn,m,α‖1/n
K

≤ lim sup
n→∞

‖QF
|m|Qn,mFα − QF

|m|Pn,m,α‖1/n
K∪E ≤ ‖Φ‖K∪E

ρ|m|(F)
=

‖Φ‖K

ρ|m|(F)
.

Therefore, (32) holds for any compact set K ⊂ Dρ|m|(F).

Let ε > 0. From the second inequality of (7), we obtain

‖Fα − Rn,m,α‖K(ε) ≤ c16n
2|m|‖QF

|m|Qn,mFα − QF
|m|Pn,m,α‖K , α = 1, 2, . . . , d.
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Using (32), we see that

lim sup
n→∞

‖Fα − Rn,m,α‖1/n
K(ε) ≤

‖Φ‖K

ρ|m|(F)
, α = 1, 2, . . . , d, (33)

for any compact subset K of Dρ|m|(F). This implies that, for each α = 1, 2, . . . , d,

h- lim
n→∞Rn,m,α = Fα

in Dρ|m|(F). By Lemma 2, each pole of F attracts zeros of Qn,m according to its multiplicity. Since
deg Qn,m ≤ |m|, we have deg Qn,m = |m| for sufficiently large n. For such n, Rn,m is unique. In
fact, if this were not the case, we could find an infinite subsequence of indices for which Definition 1
has solutions with deg Qn,m < |m|, which contradicts the above considerations. In what follows, we
consider only such n. Moreover, for sufficiently large n, we have

Qn,m(z) =
|m|∏
k=1

(
1 − z

λn,k

)
and lim

n→∞Qn,m(z) = QF
|m|(z).

Since the set of limit points of the zeros of Qn,m is P|m|(F), the inequality (33) implies (4).

Finally, we prove (5). We first need to show that, for j = 1, 2, . . . , q,

lim sup
n→∞

|(Qn,m)(k)(λj)|1/n ≤ |Φ(λj)|
ρ|m|(F)

, k = 0, 1, . . . , τj − 1. (34)

We argue by induction on k. Let ε > 0 be sufficiently small, so that B(λj , ε) ⊂ Dρ|m|(F) for all

j = 1, 2, . . . , q and the disks B(λj , ε), j = 1, 2, . . . , q, are pairwise disjoint. Let j ∈ {1, 2, . . . , q}. There
exists an α := α(j) ∈ {1, 2, . . . , d} such that λj is a pole of Fα of order τj . As a consequence of (32), we
have

lim sup
n→∞

‖(z − λj)τjFαQn,m − (z − λj)τjPn,m,α‖1/n

B(λj ,ε)
≤

‖Φ‖
B(λj ,ε)

ρ|m|(F)
, (35)

so by Cauchy’s integral formula for the derivative, we obtain

lim sup
n→∞

‖[(z − λj)τjFαQn,m − (z − λj)τjPn,m,α](k)‖1/n

B(λj ,ε)
≤

‖Φ‖
B(λj ,ε)

ρ|m|(F)
(36)

for all k ≥ 0. Letting ε → 0+, we see that inequality (35) implies

lim sup
n→∞

|LjQn,m(λj)|1/n ≤ |Φ(λj)|
ρ|m|(F)

,

where Lj := limz→λj
(z − λj)τj Fα(z) �= 0 (because Fα has a pole of order τj at λj). Therefore,

lim sup
n→∞

|Qn,m(λj)|1/n ≤ |Φ(λj)|
ρ|m|(F)

.

This is the base case. Now, let r ≤ τj − 1 and assume that

lim sup
n→∞

|(Qn,m)(k)(λj)| ≤ |Φ(λj)|
ρ|m|(F)

, k = 0, 1, . . . , r − 1. (37)

Let us show that the above inequality also holds for k = r. Since r < τj , it follows from (36) that

lim sup
n→∞

|[(z − λj)τj FαQn,m](r)(λj)|1/n ≤ |Φ(λj)|
ρ|m|(F)

. (38)
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By Leibnitz’ formula, we have

[(z − λj)τj FαQn,m](r)(λj) =
r∑

l=0

⎛
⎝r

l

⎞
⎠ [(z − λj)τj Fα](l)(λj)(Qn,m)(r−l)(λj).

Therefore, relations (37) and (38) and the fact that Lj �= 0 imply the inequality

lim
n→∞ |(Qn,m)(r)(λj)|1/n ≤ |Φ(λj)|

ρ|m|(F)
,

which completes the induction construction and the proof of (34).
Using Hermite interpolation, it is easy to construct a basis {ej,t}j=1,2,...,q,

t=0,1,...,τj−1
in the space of

polynomials of degree at most |m| − 1 so that

e
(k)
j,t (λ�) = δ�,jδk,t, 1 ≤ � ≤ q, 0 ≤ k ≤ τ� − 1.

We have

Qn,m(z) =
q∑

j=1

τj−1∑
t=0

(Qn,m)(t)(λj)ej,t(z) + CnQF
|m|(z),

where Cn =
∏q

j=1 λ
τj

j /
∏|m|

k=1 λn,k. Using (34), we obtain

lim sup
n→∞

‖Qn,m − CnQF
|m|‖1/n ≤

maxλ∈P|m|(F) |Φ(λ)|
ρ|m|(F)

.

Evaluation at zero yields

lim sup
n→∞

|1 − Cn|1/n ≤
maxλ∈P|m|(F) |Φ(λ)|

ρ|m|(F)
.

This implies (5), which completes the proof.
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1 Introduction
Let E be a compact subset of the complex plane C, such that C \ E is simply connected and E contains more
than one point. By the Riemannmapping theorem, there exists a unique exterior conformal mappingΦ from
C \ E onto C \ {w ∈ C : |w| ≤ 1} satisfying Φ(∞) = ∞ and Φ′(∞) > 0. For any ρ > 1, we denote by

Γρ := {z ∈ C : |Φ(z)| = ρ}, and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

a level curve with respect to E of index ρ and a canonical domain with respect to E of index ρ, respectively. The
Faber polynomials (see [1]) for E are defined by the formulas

Φn(z) :=
1
2πi

∫︁
Γρ

Φn(t)
t − z dt, z ∈ Dρ , n = 0, 1, 2, . . . (1)

(that is, the polynomial parts of the functions Φn). Denote byH(E) the space of all functions holomorphic in
some neighborhood of E. We define

H(E)d := {(F1, F2, . . . , Fd) : Fα ∈ H(E) for all α = 1, 2, . . . , d}

and the set of all nonnegative integers is denoted by N0.

Definition 1. Let F = (F1, F2, . . . , Fd) ∈ H(E)d . Fix a multi-indexm = (m1,m2, . . . , md) ∈ Nd0 \ {0}, where
0 is the zero vector in Nd0 . Set |m| := m1 + m2 + . . . + md . Then, for each n ≥ max{m1,m2, . . . ,md}, there
exist polynomials Qn,m and Pn,m,α , α = 1, 2, . . . , d such that

deg(Pn,m,α) ≤ n − mα , deg(Qn,m) ≤ |m|, Qn,m ≢ 0, (2)

Qn,mFα − Pn,m,α = a(α)n+1,nΦn+1(z) + a
(α)
n+2,nΦn+2(z) + . . . , (3)
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for all α = 1, 2, . . . , d. The vector of rational functions

Rn,m := (Rn,m,1, Rn,m,2, . . . , Rn,m,d) = (Pn,m,1/Qn,m, Pn,m,2/Qn,m, . . . , Pn,m,d/Qn,m)

is called an (n,m) (linear) simultaneous Padé-Faber approximant of F.

In fact, the numbers a(α)k,n depend onm, but to simplify the notation we will not indicate it. Finding a solution
of (2)-(3) reduces to solving a homogeneous system of d(n + 1) linear equations on d(n + 1) + 1 coefficients
of Qn,m and Pn,m,α , α = 1, 2, . . . , d. This is where the word “linear” in Definition 1 comes from. Note that if
d = 1, then (n,m) linear simultaneousPadé-Faber approximants are the classical (n−m,m) linear Padé-Faber
approximants (see, e.g., [2] for the definition of classical linear Padé-Faber approximants). Moreover, for the
case when d = 1, there is another related construction called nonlinear Padé-Faber approximants (see [3]).
Unlike the classical case, these linear and nonlinear Padé-Faber approximants lead, in general, to different
rational functions (see the examples in [3] and [4]).Because in this paperwewill restrict our attention to linear
simultaneous Padé-Faber approximants, in the rest of the paper wewill omit the word “linear” whenwe refer
to them.

Furthermore, if E is the closed unit disk, then the corresponding Faber polynomials areΦn(z) = zn, which
implies that these simultaneous Padé-Faber approximants are exactly simultaneous Padé approximants or
type II Hermite-Padé approximants (see, e.g., [5, 6] for the definition of simultaneous Padé approximants or
type II Hermite-Padé approximants). So, simultaneous Padé-Faber approximation serves as one of the gener-
alizations of type II Hermite-Padé approximation.

For any pair (n,m), a vector of rational functionsRn,m always exists but, in general, it may not be unique.
In what follows, we assume that given (n,m), one solution is taken. Moreover, since Qn,m ≢ 0, we normalize
Qn,m to be a “monic" polynomial.

Because the studies of simultaneous Padé-Faber approximants and simultaneous Padé-orthogonal ap-
proximants are quite similar, we will follow many definitions from [7]. The following is a definition of poles
for a vector of functions.

Definition 2. Let Ω := (Ω1, Ω2, . . . , Ωd) be a system of domains, such that, for each α = 1, 2, . . . , d, Fα
is meromorphic in Ωα . We say that the point λ is a pole of F in Ω of order τ if there exists an index α ∈
{1, 2, . . . , d} such that λ ∈ Ωα and it is a pole of Fα of order τ, and for β ≠ α either λ is a pole of Fβ of order
less than or equal to τ or λ ∉ Ωβ . When Ω = (Ω, Ω, . . . , Ω), we say that λ is a pole of F in Ω.

Let F ∈ H(E)d . Denote by ρ|m|(F) the index ρ > 1 of the largest canonical domain Dρ inside which F has
at most |m| poles. Denote by QF

|m| the monic polynomial whose zeros are the poles of F in Dρ|m|(F) counting
multiplicities. The set of these poles is denoted by P|m|(F).

In [8], the author proved aMontessus deBallore type theorem for simultaneous Padé-Faber approximants
using the following concept of polewise independence of a vector of functions adapted for our type of regions.

Definition 3. Let F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions meromorphic in some canonical
domain Dρ and letm = (m1,m2, . . . ,md) ∈ Nd0 \ {0} be the multi-index. Then the function F is said to be
polewise independent with respect to the multi-index m in Dρ if and only if there do not exist polynomials
v1, v2, . . . , vd at least one of which is non-null, satisfying

(i) deg vα ≤ mα − 1, α = 1, 2, . . . , d, if mα ≥ 1,
(ii) vα ≡ 0 if mα = 0,
(iii)

∑︀d
α=1(vα ∘ Φ) · Fα ∈ H(Dρ \ E),

whereH(Dρ \ E) is the space of all holomorphic functions in Dρ \ E.

Note that if E is the closed unit disk, then Definition 3 is equivalent to the classical definition of polewise
independence (see, e.g., [5, Definition 1.3] or [6, Definition 1] for the classical definition of polewise indepen-
dence).

A Montessus de Ballore type theorem in [8, Theorem 1] is the following:
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Theorem A. Letm ∈ Nd0 \{0} be a fixedmulti-index and F = (F1, F2, . . . , Fd) ∈ H(E)d be a vector of functions
meromorphic in Dρ|m|(F). Suppose that F is polewise independent with respect to the multi-indexm in Dρ|m|(F).
Then, Rn,m is uniquely determined for all sufficiently large n and for each α = 1, 2, . . . , d, Rn,m,α converges
uniformly to Fα on compact subsets of Dρ|m|(F) \P|m|(F).Moreover, for each α = 1, 2, . . . , d and for any compact
set K ⊂ Dρ|m|(F) \ P|m|(F),

lim sup
n→∞

‖Fα − Rn,m,α‖1/nK ≤ ‖Φ‖K
ρ|m|(F)

, (4)

where ‖ · ‖K denotes the sup-norm on K, and if K ⊂ E, then ‖Φ‖K is replaced by 1. Additionally,

lim sup
n→∞

‖Qn,m − QF
|m|‖

1/n ≤
maxλ∈P|m|(F) |Φ(λ)|

ρ|m|(F)
, (5)

where ‖ · ‖ denotes (for example) the norm induced in the space of polynomials of degree at most |m| by the
maximum of the absolute value of the coefficients.

Because the space of polynomials of degree at most |m| has a finite dimension, all of its norms are equivalent
and thereforewe can use any norm in (5). In [8, Theorem 1], the author used a different normalization forQn,m
and QF

|m| to state inequality (5). However, it is not difficult to see that inequality (5) above and the equation
(5) in [8, Theorem 1] are equivalent.

The goal of this paper is to give a new Montessus de Ballore type theorem for simultaneous Padé-Faber
approximants. Importantly, we provide some examples to show that in many cases, the new theorem offers
many advantages over Theorem A. For example, there are many simple examples of vectors of functions that
are not polewise independent yet satisfy our sufficient conditions in the new theorem. Moreover, for some
examples of vectors of functions (where both theorems can be applied), our new estimates for the limits in
(4) and (5) on the new theorem are better.Wewill present these examples and discussions in the next section.

Before stating this new result, we need some more terminology.
Given a vector F = (F1, F2, . . . , Fd) and a multi-indexm = (m1,m2, . . . ,md) ∈ Nd0 \ {0}, we define

Dm(F) := (Dρm1 (F1), Dρm2 (F2), . . . , Dρmd (Fd)).

Denote by QF
m the monic polynomial whose zeros are the poles of F in Dm(F) counting multiplicities. The set

of these poles is denoted by Pm(F). For α = 1, 2, . . . , d, we define Pm,α(F) := Pm(F) ∩ Dρmα (Fα).
For each pole λ of F in this system of domains

Dm(F) = (Dρm1 (F1), Dρm2 (F2), . . . , Dρmd (Fd)),

we associate an index α(λ) ∈ {1, 2, . . . , d} as follows. The index α(λ) verifies that λ ∈ Dρmα(λ) (Fα(λ)) and λ is a
pole of Fα(λ) of the same order as is a pole of F inDm(F). If there are several indices α satisfying this condition,
then we choose the one with the greatest ρmα (Fα).

The following theorem is the main result of this paper.

Theorem 1. Letm ∈ Nd0 \ {0} be a fixed multi-index, F ∈ H(E)d , and Pm(F) := {λ1, λ2, . . . , λq}. Suppose that
the vector of functions F has exactly |m| poles in Dm(F). Then, Rn,m is unique for all n sufficiently large and for
each α = 1, 2, . . . , d, Rn,m,α converges uniformly to Fα on compact subsets of Dρmα (Fα) \ Pm,α(F). Moreover,

lim sup
n→∞

‖Fα − Rn,m,α‖1/nK ≤ ‖Φ‖K
ρmα (Fα)

, α = 1, 2, . . . , d, (6)

where K is any compact subset of Dρmα (Fα) \Pm,α(F) and if K ⊂ E, then ‖Φ‖K is replaced by 1. Additionally, we
obtain

lim sup
n→∞

‖Qn,m − QF
m‖1/n ≤ max

j=1,2,...,q

{︃
|Φ(λj)|

ρmα(λj )
(Fα(λj))

}︃
. (7)
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Note that for d = 1, Theorem 1 reduces to a Montessus de Ballore type theorem for Padé-Faber approximants
[2, Theorem 4]. Moreover, notice that the right hand side of (6) depends on α. Therefore, in many cases, this
new estimate is better than the estimate in (4) (see an example in the next section).

Anoutline of this paper is as follows. Section 2 contains the comparisonbetweenTheoremAandTheorem
1. The proof of Theorem 1 is in Section 3.

2 Comparison between Theorem A and Theorem 1
In this section, let us show that in many cases Theorem 1 offers many advantages over Theorem A.

First of all, let us give some very simple vectors F that are not polewise independent in Dρ|m|(F) but have
exactly |m| poles in Dm(F). Define

E := {z ∈ C : |z| ≤ 1},

G1(z) :=
1

z − 2 + 1
z − 3i , G2(z) :=

1
z − 4 ,

F1(z) :=
1

z − 2 + log(z − 4), F2(z) :=
1

z − 4 ,

and fix the multi-indexm := (1, 1). Let G := (G1, G2) and F := (F1, F2). Obviously, ρ|m|(G) = ρ|m|(F) = 4 and
Dρ|m|(G) = Dρ|m|(F) = {z ∈ C : |z| < 4}. If we set v1 ≡ 0 and v2 ≡ 1, then definitely, v2 is non-null and it is easy
to check that v1 and v2 verify (i), (ii), and (iii) in Definition 3, particularly

v1 · G1 + v2 · G2 = v1 · F1 + v2 · F2 =
1

z − 4 ∈ H(Dρ|m|(F)) = H(Dρ|m|(G)).

This implies that G and F are not polewise independent with respect tom in Dρ|m|(G) = Dρ|m|(F) = {z ∈ C :
|z| < 4}. Therefore, using Theorem A, nothing can be said about the convergences of {Rn,m,1}, {Rn,m,2}, and
{Qn,m} as n →∞ (for both G and F). However, G and F have exactly 2 poles in

Dm(G) = ({z ∈ C : |z| < 3},C),

Dm(F) = ({z ∈ C : |z| < 4},C),

respectively. Now, applying Theorem 1 to F, we can conclude that for any K ⊂ {z ∈ C : |z| < 4} \ {2},

lim sup
n→∞

‖F1 − Rn,m,1‖1/nK ≤ ‖z‖K
4 ,

and for any K ⊂ C \ {4},
lim sup
n→∞

‖F2 − Rn,m,2‖1/nK = 0.

Additionally, the inequality (7) in Theorem 1 for F implies that

lim sup
n→∞

‖QF
m − Qn,m‖1/n ≤ max

{︂
1
2 , 0

}︂
= 1
2 .

Next, let us give an example of a vector F and a multi-indexm to show that the estimates on the rates of
convergences of {Rn,m,α} for α = 1, 2, . . . , d in (6) and {Qn,m} in (7) are better than the ones in (4) and in (5).
Define

E := {z ∈ C : |z| ≤ 1},

F1(z) :=
1

z − 2 + log(z − 4), F2(z) :=
1

z − 3 + log(z − 5),

and fix the multi-index m := (1, 1). Let F := (F1, F2). Clearly, ρ|m|(F) = 4, F is polewise independent in
Dρ|m|(F) and F has exactly 2 poles in

Dm(F) = ({z ∈ C : |z| < 4}, {z ∈ C : |z| < 5}).
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By (4), for any compact set K ⊂ {z ∈ C : |z| < 4} \ {2, 3},

lim sup
n→∞

‖F1 − Rn,m,1‖1/nK ≤ ‖z‖K
4 , (8)

and
lim sup
n→∞

‖F2 − Rn,m,2‖1/nK ≤ ‖z‖K
4 . (9)

Applying (6), for any compact set K ⊂ {z ∈ C : |z| < 4} \ {2},

lim sup
n→∞

‖F1 − Rn,m,1‖1/nK ≤ ‖z‖K
4 , (10)

and for any compact set K ⊂ {z ∈ C : |z| < 5} \ {3},

lim sup
n→∞

‖F2 − Rn,m,2‖1/nK ≤ ‖z‖K
5 . (11)

For this example, the estimates in (8) and (10) for the convergence of {Rn,m,1} are the same and the estimate
in (11) for the convergence of {Rn,m,2} is better than the one in (9). Therefore, for this example, Theorem 1 pro-
vides the better estimates on the rates of convergences of {Rn,m,1} and {Rn,m,2} than Theorem A. Moreover,
from (5) and (7), we have

lim sup
n→∞

‖Qn,m − QF
|m|‖

1/n ≤ 34 (12)

and
lim sup
n→∞

‖Qn,m − QF
m‖1/n ≤ max

{︂
2
4 ,

3
5

}︂
= 1
2 , (13)

respectively. Note that the equations above imply that QF
|m| and Q

F
m are the same. Moreover, the estimate on

the rate of convergence of Qn,m using Theorem 1 is better than the one using Theorem A.

3 Proof of Theorem 1

3.1 Notation and auxiliary results

First of all, we want to discuss the domain of convergence of Faber polynomial expansions of holomor-
phic functions. The Faber coefficient of G ∈ H(E) with respect to Φn is given by

[G]n :=
1
2πi

∫︁
Γρ

G(t)Φ′(t)
Φn+1(t) dt, (14)

where ρ ∈ (1, ρ0(G)). The following lemma (see, e.g., [9]) provides the formula for computing ρ0(G), where
G ∈ H(E), and the domain of convergence of Faber polynomial expansions of holomorphic functions.

Lemma 1. Let G ∈ H(E). Then,

ρ0(G) =
(︂
lim sup
n→∞

|[G]n|1/n
)︂−1

.

Moreover, the series
∑︀∞

n=0[G]nΦn converges to G uniformly on compact subsets of Dρ0(G).

As a consequence of Lemma 1, if F = (F1, F2, . . . , Fd) ∈ H(E)d, then for each α = 1, 2, . . . , d,

Qn,m(z)Fα(z) − Pn,m,α(z) =
∞∑︁

k=n+1
[Qn,mFα]k Φk(z), z ∈ Dρ0(Fα), (15)

and Pn,m,α =
∑︀n−mα

k=0 [Qn,mFα]k Φk is uniquely determined by Qn,m.
The next lemma (see [1, p. 43] or [10, p. 583] for its proof) gives an estimate of Faber polynomials Φn on a

level curve.
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Lemma 2. Let ρ > 1 be fixed. Then, there exists c > 0, such that

‖Φn‖Γρ ≤ cρ
n , n ≥ 0.

The proof of themain theorem is a consequence of convergence in h-content and Gonchar’s lemma defined
as follows. Let B be a subset of the complex plane C. By U(B), we denote the class of all coverings of B by at
most a numerable set of disks. Define

h(B) := inf

⎧⎨⎩
∞∑︁
j=1

|Uj| : {Uj} ∈ U(B)

⎫⎬⎭ ,

where |Uj| stands for the radius of the diskUj . The quantity h(B) is called the 1-dimensional Hausdorff content
of the set B. Note that this set function h is semi-additive and monotonic, but it is not a measure.

Definition 4. Let {gn}n∈N0 be a sequence of complex valued functions defined on a domain Ω ⊂ C and g be
another complex function defined on Ω. We say that {gn}n∈N0 converges in h-content to g on compact subsets
of Ω if for each compact subset K of Ω and for any ε > 0, we have

lim
n→∞

h{z ∈ K : |gn(z) − g(z)| > ε} = 0.

Such a convergence will be denoted by h-limn→∞ gn = g in Ω.

The following is Gonchar’s lemma (see [11, Lemma 1] or [12, §2.2 (b)]) which allows us to derive uniform con-
vergence on compact subsets of the region under consideration.

Lemma 3 (Gonchar’s lemma). Assume that h-limn→∞ gn = g in Ω. If all functions gn are meromorphic in Ω
and have no more than k < +∞ poles in this domain, then the limit function g is (except on a set of h-content
zero) also meromorphic and has no more than k poles in Ω. Hence, in particular, if g has a pole of order ν at the
point λ ∈ Ω, then at least ν poles of gn tend to λ as n →∞.

3.2 Incomplete Padé-Faber approximants

The following is a definition of incomplete Padé-Faber approximants which play a major role in the proof of
the main theorem.

Definition 5. Let F ∈ H(E). Fix m ≥ m*. Let n ≥ m. Then, there exist polynomials Qn,m,m* and Pn,m,m* , such
that

deg(Pn,m,m* ) ≤ n − m*, deg(Qn,m,m* ) ≤ m, Qn,m,m* ≢ 0,

[Qn,m,m*F − Pn,m,m* ]j = 0, j = 0, 1, . . . , n.

The rational function Rn,m,m* = Pn,m,m* /Qn,m,m* is called an (n,m,m*) incomplete Padé-Faber approximant
of F.

Clearly, finding Qn,m,m* is equivalent to solving the following linear equations

[Qn,m,m*F]j = 0, j = n − m* + 1, . . . , n. (16)

Given n ≥ m ≥ m*, Rn,m,m* and Qn,m,m* are not unique, so we choose one candidate. Notice that for each
α = 1, 2, . . . , d, Rn,m,α in Definition 1 is an (n, |m|,mα) incomplete Padé-Faber approximant of Fα .

Now, we want to prove that h-limn→∞ Rn,m,m* = F in Dρm* (F). Let F ∈ H(E). Let λ1, λ2, . . . , λq be the
distinct poles of F in Dρm* (F) and let

L :=
(︂
1 + min

j=1,2,...,q
|Φ(λj)|

)︂
/2 > 1.
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The normalization of Qn,m,m* used in our proofs is the following:

Qn,m,m* (z) :=
∏︁

|Φ(λn,j)|≤L

(z − λn,j)
∏︁

|Φ(λn,j)|>L

(︂
1 − z

λn,j

)︂
. (17)

Firstly, let us discuss some upper and lower estimates on the normalized polynomials Qn,m,m* in (17). Let
ε > 0 and define an open set Jε := Jε(F) as follows. For n ≥ m, let Jn,ε denote the ε/6mn2-neighborhood of the
set of zeros of Qn,m,m* and let Jm−1,ε denote the ε/6m-neighborhood of the set of poles of F in Dρm* (F). Define

Jε :=
⋃︁

n≥m−1
Jn,ε .

By the monotonicity and subadditivity of h, we know that h(Jε) < ε and h(Jε1 ) ≤ h(Jε2 ) for ε1 < ε2. For each
set B ⊂ C, we set B(ε) := B \ Jε . It is easy to check that if {gn}n∈N0 converges uniformly to g on K(ε) for every
compact K ⊂ Dρm* (F) and ε > 0, then h-limn→∞ gn = g in Dρm* (F).

Since the following upper and lower bounds on the estimations of the normalized Qn,m,m* are usedmany
times in our proofs, we keep them in the following lemma.

Lemma 4. Let K ⊂ C be a compact set and ε > 0 be arbitrary. Then, there exist constants C1, C2 > 0 indepen-
dent of n, such that

‖Qn,m,m*‖K ≤ C1 and min
z∈K(ε)

|Qn,m,m* (z)| ≥ C2n−2m , (18)

where the second inequality has a meaning when K(ε) is a non-empty set.

Theorem 2. Let F ∈ H(E) and let m and m* be fixed nonnegative integers, such that m ≥ m*. For each n ≥ m,
let Rn,m,m* be an (n,m,m*) incomplete Padé-Faber approximant of F. Then, for each ε > 0 and every compact
subset K of Dρm* (F),

lim sup
n→∞

‖F − Rn,m,m*‖1/nK(ε) ≤
‖Φ‖K
ρm* (F)

, (19)

where ‖Φ‖K should be replaced by 1 when K ⊂ E. In particular,

h- lim
n→∞

Rn,m,m* = F in Dρm* (F). (20)

Moreover, for each pole λ of order τ of F in Dρm* (F) and every ε > 0, the polynomials Qn,m,m* have at least τ
zeros in the disk {z ∈ C : |z − λ| < ε} for all sufficiently large n.

Proof of Theorem 2. Let QFm* (z) =
∏︀q
j=1(z − λj)

τj be the polynomial whose zeros are all the poles of F in Dρm* (F)
counting multiplicities and set

m̂ := deg(QFm* ). (21)

By the definition of incomplete Padé-Faber approximants and Lemma 1, we have

Qn,m,m* (z)F(z) − Pn,m,m* (z) =
∞∑︁

k=n+1
ak,nΦk(z), z ∈ Dρ0(F), (22)

where
ak,n := [Qn,m,m*F]k

and ak,n = 0 for all k = n − m* + 1, . . . , n. Multiplying equality (22) by QFm* and expanding QFm*Qn,m,m*F −
QFm*Pn,m,m* ∈ H(Dρm* (F)) in terms of the system of Faber polynomials {Φν}∞ν=0, we have for z ∈ Dρm* (F),

QFm* (z)Qn,m,m* (z)F(z) − Q
F
m* (z)Pn,m,m* (z) =

∞∑︁
k=n+1

ak,nQFm* (z)Φk(z) =
∞∑︁
ν=0

bν,nΦν(z)

=
n∑︁
ν=0

bν,nΦν(z) +
∞∑︁

ν=n+1
bν,nΦν(z). (23)
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Note that the constants bν,n can be calculated in two forms:

bν,n :=
∞∑︁

k=n+1
ak,n[QFm*Φk]ν , ν = 0, 1, . . .

and

bν,n :=
{︃
[QFm*Qn,m,m*F − Q

F
m*Pn,m,m* ]ν , if ν = 0, 1, 2, . . . , n

[QFm*Qn,m,m*F]ν , if ν ≥ n + 1.

Using (14) when G = QFm*Qn,m,m*F − Q
F
m*Pn,m,m* , we have for ρ ∈ (1, ρm* (F)),

bν,n :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2πi

∫︁
Γρ

(QFm*Qn,m,m*F − Q
F
m*Pn,m,m* )(z)Φ

′(z)
Φν+1(z) dz, if ν = 0, 1, . . . , n,

1
2πi

∫︁
Γρ

(QFm*Qn,m,m*F)(z)Φ
′(z)

Φν+1(z) dz, if ν ≥ n + 1.
(24)

Let K be a compact subset of Dρm* (F) and set

σ := max{‖Φ‖K , 1} (25)

(σ = 1 when K ⊂ E). We want to show that

lim sup
n→∞

⃦⃦⃦⃦
⃦
∞∑︁
ν=0

bν,nΦν

⃦⃦⃦⃦
⃦
1/n

K

≤ σ
ρm* (F)

. (26)

Let ρ1 ∈ (1, ρm* (F)) be such that
K ∪ {λ1, λ2, . . . , λq} ⊂ Dρ1 . (27)

We first prove that

lim sup
n→∞

⃦⃦⃦⃦
⃦

∞∑︁
ν=n+1

bν,nΦν

⃦⃦⃦⃦
⃦
1/n

K

≤ σ
ρm* (F)

. (28)

Due to the normalization of Qn,m,m* (the upper estimate in (18)), the formula in (24) implies that for ρ1 ∈
(1, ρm* (F)),

|bν,n| ≤

⃒⃒⃒⃒
⃒⃒⃒ 1
2πi

∫︁
Γρ1

(QFm*Qn,m,m*F)(z)Φ
′(z)

Φν+1(z) dz

⃒⃒⃒⃒
⃒⃒⃒ ≤ c1ρν1 , ν ≥ n + 1, (29)

where c1 does not depend on n (from now on, we will denote some constants that do not depend on n by
c2, c3, . . .). Moreover, by Lemma 2, we have

‖Φν‖K ≤ c2σν , ν ≥ 0. (30)

Therefore, by (29) and (30), ⃦⃦⃦⃦
⃦

∞∑︁
ν=n+1

bν,nΦν

⃦⃦⃦⃦
⃦
K

≤
∞∑︁

ν=n+1
|bν,n|‖Φν‖K

≤
∞∑︁

ν=n+1
c3
(︂
σ
ρ1

)︂ν
≤ c4

(︂
σ
ρ1

)︂n
.

Then,

lim sup
n→∞

⃦⃦⃦⃦
⃦

∞∑︁
ν=n+1

bν,nΦν

⃦⃦⃦⃦
⃦
1/n

K

≤ σ
ρ1

.

Letting ρ1 → ρm* (F), we have (28) as we wanted.
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Secondly, we prove that

lim sup
n→∞

⃦⃦⃦⃦
⃦

n∑︁
ν=0

bν,nΦν

⃦⃦⃦⃦
⃦
1/n

K

≤ σ
ρm* (F)

. (31)

Recall that bν,n =
∑︀∞

k=n+1 ak,n[Q
F
m*Φk]ν . Hence, to estimate bν,n , we need to estimate ak,n first. We will use

the technique in [2] to estimate ak,n . Let ρ1 ∈ (1, ρm* (F)) satisfying (27). Choose ρ2 ∈ (1, ρ0(F)). We have

ak,n = [Qn,m,m*F]k =
1
2πi

∫︁
Γρ2

Qn,m,m* (t)F(t)Φ′(t)
Φk+1(t)

dt.

Define
𝛾k,n :=

1
2πi

∫︁
Γρ1

Qn,m,m* (t)F(t)Φ′(t)
Φk+1(t)

dt. (32)

By our choices of ρ1 and ρ2, and for each k ≥ 0, Qn,m,m*FΦ′/Φk+1 is meromorphic in Dρ1 \ Dρ2 = {z ∈ C :
ρ2 ≤ |Φ(z)| ≤ ρ1} and has poles at λ1, λ2, . . . , λq with multiplicities at most τ1, τ2, . . . , τq . Cauchy’s residue
theorem implies that

𝛾k,n − ak,n =
q∑︁
j=1

res(Qn,m,m*FΦ′/Φk+1, λj), k ≥ 0. (33)

Then, it follows from the limit formula for the residue that

res(Qn,m,m*FΦ′/Φk+1, λj) =
1

(τj − 1)!
lim
z→λj

(︂ (z − λj)τjQn,m,m* (z)F(z)Φ′(z)
Φk+1(z)

)︂(τj−1)
.

Leibniz’s formula allows us to write(︂ (z − λj)τjQn,m,m* (z)F(z)Φ′(z)
Φk+1(z)

)︂(τj−1)

=
τj−1∑︁
t=0

(︃
τj − 1
t

)︃(︂Qn,m,m* (z)Φ′(z)(z − λj)τjF(z)
Φn+1(z)

)︂(τj−1−t) (︁
Φn−k(z)

)︁(t)
.

For j = 1, 2, . . . , q and t = 0, 1, . . . , τj − 1, set

βn(j, t) :=
1

(τj − 1)!

(︃
τj − 1
t

)︃
lim
z→λj

(︂Qn,m,m* (z)Φ′(z)(z − λj)τjF(z)
Φn+1(z)

)︂(τj−1−t)

(notice that the βn(j, t) do not depend on k). Therefore, we rewrite (33) as

𝛾k,n − ak,n =
q∑︁
j=1

τj−1∑︁
t=0

βn(j, t)
(︁
Φn−k(z)

)︁(t)
z=λj

, k ≥ 0. (34)

By the definition of incomplete Padé-Faber approximants,

ak,n = 0, k = n − m* + 1, . . . , n,

which implies

𝛾k,n =
q∑︁
j=1

τj−1∑︁
t=0

βn(j, t)
(︁
Φn−k(z)

)︁(t)
z=λj

(35)
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for all k = n − m̂ +1, . . . , n (we recall that m̂ is defined in (21)). Equations (35) can be viewed as a system of m̂
equations on m̂ unknowns βn(j, t) and the corresponding determinant to this system is

∆ :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

(︁
Φm̂−1(z)

)︁
z=λj

(︁
Φm̂−1(z)

)︁′
z=λj

· · ·
(︁
Φm̂−1(z)

)︁(τj−1)
z=λj(︁

Φm̂−2(z)
)︁
z=λj

(︁
Φm̂−2(z)

)︁′
z=λj

· · ·
(︁
Φm̂−2(z)

)︁(τj−1)
z=λj

...
...

...
...

1 0 · · · 0

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
j=1,...,q

,

where the subindex on the determinant means that the indicated group of columns are successively written
for j = 1, 2, . . . , q. It is not difficult to check that

|∆| =
q∏︁
j=1

(τj − 1)!!|Φ′(λj)|τj(τj−1)/2
∏︁

1≤ℓ<k≤q
|Φ(λℓ) − Φ(λk)|τℓτk =: c5 > 0,

where n!! stands for 0!1! · · · n! (use, e.g., [13, Theorem 1] for the calculation of the above equality). Therefore,
the system of equations (35) has a unique solution.

To avoid a long expression, let us define: for all j = 1, 2, . . . , q and t = 0, 1, . . . , τj − 1,

hj,t := (
j−1∑︁
l=0

τl) + t + 1,

where τ0 = 0. Using Cramer’s rule to (35), we have

βn(j, t) =
∆n(j, t)
∆ = 1

∆

m̂∑︁
y=1

𝛾n−m̂+y,nC(y, hj,t), (36)

where ∆n(j, t) is the determinant obtained from ∆ by replacing the hthj,t column with the column

[𝛾n−m̂+1,n 𝛾n−m̂+2,n . . . 𝛾n,n]T

and C(y, h) is the determinant of the (y, h)th cofactor matrix of ∆n(j, t). Replacing βn(j, t) in (34) by the ex-
pression in (36), we obtain for k ≥ n + 1,

𝛾k,n − ak,n =
1
∆

q∑︁
j=1

τj−1∑︁
t=0

m̂∑︁
y=1

𝛾n−m̂+y,nC(y, hj,t)
(︁
Φn−k(z)

)︁(t)
z=λj

. (37)

Define
B(λ, r) := {z ∈ C : |z − λ| < r}.

Let ε > 0 be sufficiently small so that {z ∈ C : |z − λj| = ε} ⊂ {z ∈ C : |Φ(z)| > ρ2} for all j = 1, 2, . . . , q and
B(λj , ε) ∩ B(λk , ε) = ∅ for all k ≠ j. Using Cauchy’s integral formula,(︁

Φn−k(z)
)︁(t)
z=λj

= t!
2πi

∫︁
|z−λj|=ε

Φn−k(z)dz
(z − λj)t+1

. (38)

Clearly, there exists a constant c6 such that for all j = 1, 2, . . . , q, t = 0, 1, . . . , τj − 1, and k ≥ n + 1,⃒⃒⃒⃒(︁
Φn−k(z)

)︁(t)
z=λj

⃒⃒⃒⃒
≤ c6
ρk−n2

, (39)

and there exists a constant c7 such that for all j = 1, 2, . . . , q, t = 0, 1, . . . , τj − 1, and k = n − m̂ + 1, n − m̂ +
2, . . . , n, ⃒⃒⃒⃒(︁

Φn−k(z)
)︁(t)
z=λj

⃒⃒⃒⃒
≤ c7, (40)
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for sufficiently large n. From (40),

|C(y, h)| ≤ c8, y, h = 1, 2, . . . , m̂. (41)

Using (39), (41), and |∆| = c5 > 0, it follows from (37) that

|ak,n| ≤ |𝛾k,n| +
c9
ρk−n2

m̂∑︁
y=1

|𝛾n−m̂+y,n|, k ≥ n + 1. (42)

By the definition of 𝛾k,n (see (32)),

|𝛾k,n| =

⃒⃒⃒⃒
⃒⃒⃒ 1
2πi

∫︁
Γρ1

Qn,m,m* (t)F(t)Φ′(t)
Φk+1(t)

dt

⃒⃒⃒⃒
⃒⃒⃒ ≤ c10

ρk1
,

where we recall that ρ2 < ρ1. This and equality (42) imply

|ak,n| ≤
c11

ρk−n2 ρn1
, k ≥ n + 1. (43)

Moreover, by Lemma 2, we have for all ν ≥ 0 and for all k ≥ n + 1,

|[QFm*Φk]ν| =

⃒⃒⃒⃒
⃒⃒⃒ 1
2πi

∫︁
Γρ2−2δ

QFm* (t)Φk(t)Φ
′(t)

Φν+1(t) dt

⃒⃒⃒⃒
⃒⃒⃒ ≤ c12 (ρ2 − 2δ)k(ρ2 − 2δ)ν

, (44)

where δ > 0 is sufficiently small and ρ2 ∈ (1, ρ0(F)) is chosen so that

σ + δ ≥ ρ2 − 2δ > 1 (45)

(the reason for the first inequality will become clear later). Combining (43) and (44), we have

|bν,n| =

⃒⃒⃒⃒
⃒
∞∑︁

k=n+1
ak,n[QF|m|Φk]ν

⃒⃒⃒⃒
⃒ ≤

∞∑︁
k=n+1

|ak,n||[QF|m|Φk]ν|

≤ c13
(ρ2 − 2δ)ν

(︂
ρ2
ρ1

)︂n ∞∑︁
k=n+1

(︂
ρ2 − 2δ
ρ2

)︂k
≤ c14
(ρ2 − 2δ)ν

(︂
ρ2
ρ1

)︂n (︂ρ2 − 2δ
ρ2

)︂n

= c14
(ρ2 − 2δ)ν

(︂
ρ2 − 2δ
ρ1

)︂n
.

Now, we show (31). Recall that by Lemma 2, we have ‖Φν‖K ≤ c2σν , for all ν ≥ 0. Therefore,⃦⃦⃦⃦
⃦

n∑︁
ν=0

bν,nΦν

⃦⃦⃦⃦
⃦
K

≤
n∑︁
ν=0

|bν,n|‖Φν‖K ≤ c15
(︂
ρ2 − 2δ
ρ1

)︂n n∑︁
ν=0

(︂
σ

ρ2 − 2δ

)︂ν

≤ c15
(︂
ρ2 − 2δ
ρ1

)︂n n∑︁
ν=0

(︂
σ + δ
ρ2 − 2δ

)︂ν
≤ c15(n + 1)

(︂
ρ2 − 2δ
ρ1

)︂n (︂ σ + δ
ρ2 − 2δ

)︂n
,

where the last inequality follows from the first inequality in (45). Hence,

lim sup
n→∞

⃦⃦⃦⃦
⃦

n∑︁
ν=0

bν,nΦν

⃦⃦⃦⃦
⃦
1/n

K

≤
(︂
σ + δ
ρ1

)︂
.

Letting δ → 0+ and ρ1 → ρm* (F),

lim sup
n→∞

⃦⃦⃦⃦
⃦

n∑︁
ν=0

bν,nΦν

⃦⃦⃦⃦
⃦
1/n

K

≤ σ
ρm* (F)

. (46)
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Combining (28) and (46), we have (26). Therefore, from (23), we obtain

lim sup
n→∞

‖QFm*Qn,m,m*F − Q
F
m*Pn,m,m*‖

1/n
K ≤ σ

ρm* (F)
, (47)

where K is any compact subset of Dρm* (F). Applying the second inequality of (18), we have

‖F − Rn,m,m*‖K(ε) ≤ c16n
2m‖QFm*Qn,m,m*F − Q

F
m*Pn,m,m*‖K .

Hence,
lim sup
n→∞

‖F − Rn,m,m*‖1/nK(ε) ≤
σ

ρm* (F)
, (48)

which implies that h-limn→∞ Rn,m,m* = F inDρm* (F). As an immediate consequence of Lemma3, the statement
concerning the asymptotic behavior of some of the zeros of Qn,m,m* is proved.

Next, we study the rate of convergence of some of the zeros of Qn,m,m* to the poles of F in Dρm* (F). Let us
define two indicators related to the asymptotic behavior of the zeros of Qn,m,m* . These two indicators were
first introduced in [12] and were also used in the study of incomplete Padé approximants in [5]. Let

Pn,m,m* := {λn,1, λn,2, . . . , λn,νn}, νn ≤ m, n ≥ m,

be the set of zeros of Qn,m,m* (repeated according to their multiplicities). Define

|z − w|1 := min{1, |z − w|}, z, w ∈ C.

Choose a point a ∈ C. The first indicator is defined by

∆(a) := lim sup
n→∞

νn∏︁
j=1

|λn,j − a|1/n1 = lim sup
n→∞

∏︁
|λn,j−a|<1

|λn,j − a|1/n .

Clearly, 0 ≤ ∆(a) ≤ 1 (if νn = 0, then the product is taken to be 1). The second indicator, a nonnegative integer
𝛾(a), is defined as follows. We suppose that for each n, all points in

Pn,m,m* = {λn,1, λn,2, . . . , λn,νn} (49)

are enumerated in nondecreasing distance to the point a. Define

δj(a) := lim sup
n→∞

|λn,j − a|1/n1 . (50)

These numbers are defined by (50) for j = 1, 2, . . . ,m′, where m′ := lim infn→∞ νn and for j = m′ + 1, . . . , n,
we define δj(a) = 1. We have 0 ≤ δj(a) ≤ 1. If ∆(a) = 1 (in that case all δj(a) = 1), then 𝛾(a) = 0. If ∆(a) < 1,
then for some 𝛾, 1 ≤ 𝛾 ≤ m, we have that δ1(a) ≤ . . . ≤ δ𝛾(a) < 1 and δ𝛾+1(a) = 1 or 𝛾 = m; in this case we
take 𝛾(a) = 𝛾.

Note that ∆(a) < 1⇔ 𝛾(a) ≥ 1 and
∑︀

a∈C 𝛾(a) ≤ m. It is not difficult to check that

∆(a) = lim sup
n→∞

|Qn,m,m* (a)|1/n .

Moreover, we would like to emphasize that ∆(a) and 𝛾(a) depend on our choice of a sequence {Qn,m,m*}n≥m
(recall that for given n ≥ m ≥ m*, Qn,m,m* may not be unique).

Theorem 3. Let F ∈ H(E) and let m and m* be fixed nonnegative integers, such that m ≥ m*. For each n ≥ m,
let Rn,m,m* be an (n,m,m*) incomplete Padé-Faber approximant of F. Let λ be a pole of order τ of F in Dρm* (F).
Then,

∆(λ) ≤ |Φ(λ)|
ρm* (F)

and 𝛾(λ) ≥ τ. (51)

Brought to you by | Mahidol University Salaya Campus
Authenticated

Download Date | 4/18/18 5:28 AM



Simultaneous Padé-Faber approximants | 57

Proof of Theorem 3. Let λ be a pole of order τ of F in Dρm* (F). Fix ε > 0 arbitrarily small. Let r > 0 be sufficiently
small so that B(λ, r) ⊂ Dρm* (F) contains no other pole of F and

T(λ, r) := {z ∈ C : |z − λ| = r} ⊂ Dρm* (F) \ Jε (52)

(this is possible because ε > 0 is arbitrarily small and h(Jε) < ε). By Theorem 2, Qn,m,m* have at least τ zeros
in B(λ, r) for all n sufficiently large. Since r is arbitrarily small, each pole of F in Dρm* (F) attracts at least as
many zeros of Qn,m,m* as its order. Let λn,1, λn,2, . . . , λn,𝛾n be the zeros of Qn,m,m* in B(λ, r) indexed in non-
deceasing distance from λ, i.e.,

|λ − λn,1| ≤ |λ − λn,2| ≤ . . . ≤ |λ − λn,𝛾n |.

Indeed, for all sufficiently large n, τ ≤ 𝛾n ≤ m. From now, we will only consider such n’s. Set

Qn,λ(z) :=
𝛾n∏︁
j=1

(z − λn,j).

Let η > 0 be sufficiently small so that
‖Φ‖T(λ,r)
ρm* (F)

+ η < 1.

Using (48) and (52), we obtain

‖F − Rn,m,m*‖T(λ,r) ≤ c1
(︂
‖Φ‖T(λ,r)
ρm* (F)

+ η
)︂n

, (53)

for n sufficiently large.
Let q(z)/(z − λ)τ be the principal part of the function F at the point λ and qn/Qn,λ be the sum of the

principal parts of Rn,m,m* corresponding to its poles in B(λ, r). Note that deg(q) < τ, q(λ) ≠ 0, and deg(qn) <
𝛾n . It is known that the norm of the holomorphic component of a meromorphic function may be bounded in
terms of the norm of the function and the number of poles (see [14, Theorem 1]). Therefore, using (53), we
have ⃦⃦⃦⃦

q(z)
(z − λ)τ −

qn(z)
Qn,λ(z)

⃦⃦⃦⃦
T(λ,r)

≤ c2
(︂
‖Φ‖T(λ,r)
ρm* (F)

+ η
)︂n

,

for sufficiently large n. Multiplying the function in the norm by (z − λ)τQn,λ and applying the maximum
principal, we obtain

‖q(z)Qn,λ(z) − (z − λ)τqn(z)‖B(λ,r) ≤ c3
(︂
‖Φ‖T(λ,r)
ρm* (F)

+ η
)︂n

, (54)

for sufficiently large n. By (54), and the fact that q(λ) ≠ 0,

∆(λ) = lim sup
n→∞

|Qn,m,m* (λ)|1/n = lim sup
n→∞

|Qn,λ(λ)|1/n

≤ lim sup
n→∞

‖q(z)Qn,λ(z) − (z − λ)τqn(z)‖1/nB(λ,r)
≤
‖Φ‖T(λ,r)
ρm* (F)

+ η.

Letting η, ε, r → 0+, we have proved that

∆(λ) ≤ |Φ(λ)|
ρm* (F)

.

Now, we will verify that 𝛾(λ) ≥ τ. Because ∆(λ) < 1, we have δ1(λ) < 1. Proceeding by induction, we let

δ1(λ) ≤ δ2(λ) . . . ≤ δk(λ) < 1 and k < τ.

We need to prove that δk+1(λ) < 1. Note that deg(qQn,λ − (z − λ)τqn) < 2m. We differentiate the polynomial
inside the norm in (54) k times. Consequently, by Cauchy’s integral formula, its k-th derivative satisfies an
inequality like (54). Substituting z = λ in the corresponding inequality, we have⃒⃒⃒⃒

⃒⃒⃒
⎛⎝q(z) 𝛾n∏︁

j=1
(z − λn,j)

⎞⎠(k)

(λ)

⃒⃒⃒⃒
⃒⃒⃒ ≤ c4(︂‖Φ‖T(λ,r)

ρm* (F)
+ η
)︂n

. (55)
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Furthermore, it is easy to check that
(︁
q(z)

∏︀𝛾n
j=1(z − λn,j)

)︁(k)
z=λ

is different from k!q(λ)
∏︀𝛾n
j=k+1(λ−λn,j) by a group

of terms, each of which has one of the terms (λ − λn,j), j ∈ {1, 2, . . . , k}, as a factor (the modulus of the
products of the other factors are bounded at λ). Since we assumed that δj(λ) < 1 for j = 1, 2, . . . , k, we obtain

lim sup
n→∞

𝛾n∏︁
j=k+1

|λn,j − λ|1/n < 1,

which implies δk+1(λ) = lim supn→∞ |λ − λn,k+1|1/n < 1. Therefore, 𝛾(λ) ≥ τ. The proof is complete.

Theorem 4. Let F ∈ H(E) and λ be a pole of order τ of F in Dρm* (F). Suppose that lim infn→∞ |λ − λn,τ+1| > 0.
Then,

δ1(λ) ≤ δ2(λ) ≤ . . . ≤ δτ(λ) ≤
(︂

|Φ(λ)|
ρm* (F)

)︂1/τ
. (56)

Particularly, δ1(λ) = δ2(λ) = . . . δτ(λ) =
(︀
|Φ(λ)|/ρm* (F)

)︀1/τ if and only if ∆(λ) = |Φ(λ)|/ρm* (F).

Proof of Theorem 4. In the proof of this theorem, we use the same notation defined in the proof of Theorem
3. By our assumption, we assume that

Qn,λ(z) =
τ∏︁
j=1

(z − λn,j).

Recall that deg(q) < τ and q(λ) ≠ 0. Substituting z with λ in (54), we have

|Qn,λ(λ)| ≤ c1
(︂
‖Φ‖T(λ,r)
ρm* (F)

+ η
)︂n

,

which implies

lim sup
n→∞

|Qn,λ(λ)|1/n ≤
‖Φ‖T(λ,r)
ρm* (F)

.

Using the Leibniz’s formula, we obtain

(︀
qQn,λ

)︀(k) (λ) = q(λ)Q(k)
n,λ(λ) +

k−1∑︁
j=0

(︃
k
j

)︃
q(k−j)(λ)Q(j)

n,λ(λ).

Applying the equality above and (55), by induction,

lim sup
n→∞

|Q(k)
n,λ(λ)|

1/n ≤
‖Φ‖T(λ,r)
ρm* (F)

, k = 0, 1, . . . , τ − 1. (57)

Combining the inequalities above and the following expression

Qn,λ(z) = (z − λ)τ +
τ−1∑︁
k=0

Q(k)
n,λ(λ)
k! (z − λ)k , (58)

we have
lim sup
n→∞

‖(z − λ)τ − Qn,λ(z)‖1/nB(λ,r)
≤
‖Φ‖T(λ,r)
ρm* (F)

.

If we substitute z with λn,τ in the inequality above, then

lim sup
n→∞

|λn,τ − λ|1/n ≤
(︂
‖Φ‖T(λ,r)
ρm* (F)

)︂1/τ
.

Letting r → 0+, we obtain

δτ(λ) ≤
(︂

|Φ(λ)|
ρm* (F)

)︂1/τ
,

which implies (56).
Furthermore, by Theorem 3, ∆(λ) ≤ |Φ(λ)|/ρm* (F) always holds and the last equivalent conditions follow

from (56), which we just proved.
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3.3 Proof of Theorem 1

Let F = (F1, F2, . . . , Fd) ∈ H(E)d and fixm = (m1,m2, . . . ,md) ∈ Nd0 \ {0}. Let λ1, λ2, . . . , λq be the distinct
poles of F in Dm(F) and set

L :=
(︂
1 + min

j=1,2,...,q
|Φ(λj)|

)︂
/2 > 1.

Recall that the set of these poles is denoted by Pm(F). Let Q̃n,m be the polynomial Qn,m normalized as in (17),
namely

Q̃n,m(z) :=
∏︁

|Φ(λn,j)|≤L

(z − λn,j)
∏︁

|Φ(λn,j)|>L

(︂
1 − z

λn,j

)︂
.

From now on, ∆ and 𝛾 are defined as in Section 3.2 taking Pn,m,m* in (49) to be the collection of zeros of the
denominator Q̃n,m. Clearly,

∆(a) = lim sup
n→∞

|Q̃n,m(a)|1/n .

Combining Theorems 2 and 3, we have the following.

Corollary 1. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and let m = (m1,m2, . . . ,md) ∈ Nd0 \ {0}. For any α =
1, 2, . . . , d,

h- lim
n→∞

Rn,m,α = Fα in Dρmα (Fα) (59)

and if λ is a pole of order τ of Fα in Dρmα (Fα), then

∆(λ) ≤ |Φ(λ)|
ρmα (Fα)

and 𝛾(λ) ≥ τ.

Proof of Corollary 1. Let α ∈ {1, 2, . . . , d} be fixed. Recall that Rn,m,α is an (n, |m|,mα) incomplete Padé-
Faber approximant of Fα. Applying (20) in Theorem 2, we have (59). Let λ be a pole of order τ of Fα in Dρmα (Fα).
Since Q̃n,m satisfies

[Q̃n,mFα]j = 0, , j = n − mα + 1, . . . , n,

(see the equations (16)), Q̃n,m is the same as Qn,|m|,mα of Fα (up to a multiplication by some bounded con-
stant). Using (51), we have

∆(λ) = lim sup
n→∞

|Q̃n,m(λ)|1/n = lim sup
n→∞

|Qn,|m|,mα (λ)|
1/n ≤ |Φ(λ)|

ρmα (Fα)
.

Moreover, it is easy to see that 𝛾(λ) ≥ τ.

Now, we are ready to prove Theorem 1 which is the main theorem.

Proof of Theorem 1. Let λ be a pole of F in Dm(F) and τ be its order. So, λ is a pole of order τ of Fα(λ) in
Dρmα(λ) (Fα(λ)). By Corollary 1, we have 𝛾(λ) ≥ τ. Because this holds for any other pole of F in Dm(F) and
deg(Qn,m) ≤ |m|, we have deg(Qn,m) = |m| for sufficiently large n, 𝛾(λ) = τ, and

lim
n→∞

‖QF
m − Qn,m‖ = 0. (60)

This means that Rn,m is uniquely determined for all sufficiently large n. In fact, if this was not the case, we
could find a sequence of Qn,m with degQn,m < |m|, which contradicts (60).

Let r > 0 be sufficiently small so that B(λ, r) contains no other pole of F. Let λn,1, λn,2, . . . , λn,𝛾n be the
zeros of Qn,m in B(λ, r) indexed in increasing distance from λ, i.e.,

|λ − λn,1| ≤ |λ − λn,2| ≤ . . . ≤ |λ − λn,𝛾n |.
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Note that 𝛾n ≥ τ and lim infn→∞ |λ − λn,τ+1| > 0, so we can use the arguments employed in Theorem 4. In
particular, (57) and (58) imply that

lim sup
n→∞

‖(z − λ)τ − Qn,λ(z)‖1/n ≤
|Φ(λ)|

ρmα(λ)(Fα(λ))
, (61)

where

Qn,λ(z) :=
τ∏︁
j=1

(z − λn,j).

Because inequality (61) is true for each of the poles of F in Dm(F),

lim sup
n→∞

‖(z − λj)τj − Qn,λj‖
1/n ≤

|Φ(λj)|
ρmα(λj )

(Fα(λj))
, j = 1, . . . , q, (62)

where τj is the order of λj as a pole of F in Dm(F).
Therefore,

(QF
m − Qn,m)(z) = QF

m(z) −
(QF

mQn,λ1 )(z)
(z − λ1)τ1

+
(QF

mQn,λ1 )(z)
(z − λ1)τ1

− . . .

+
(QF

mQn,λ1 . . . Qn,λq−1 )(z)
(z − λ1)τ1 . . . (z − λq−1)τq−1

− Qn,m(z).

Hence, ⃒⃒⃒
QF
m − Qn,m

⃒⃒⃒
(z) ≤

q∑︁
j=1

⃒⃒⃒⃒
⃒ (Q

F
mQn,λ1 . . . Qn,λj−1 )(z)

(z − λ1)τ1 . . . (z − λj)τj
[(z − λj)τj − Qn,λj (z)]

⃒⃒⃒⃒
⃒ .

Since

lim
n→∞

(QF
mQn,λ1 . . . Qn,λj−1 )(z)

(z − λ1)τ1 . . . (z − λj)τj
= QF

m(z)
(z − λj)τj

, j = 1, 2, . . . , q,

uniformly on compact subsets of C and (62), we obtain the inequality (7).
Finally, let α ∈ {1, 2, . . . , d} and let K be a compact subset of Dρmα (Fα) \ Pn,α(F). Using (60), if ε > 0

is sufficiently small, then K(ε) = K. By (19) applied to a sequence of incomplete Padé-Faber approximants
Rn,m,α , we obtain (6). This completes the proof.
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Abstract. Starting from the orthogonal and Faber polynomial expansions
of a function F , we study the asymptotic behaviors of two generalized Padé ap-
proximations (orthogonal Padé approximation and Padé–Faber approximation).
We obtain both direct and inverse results relating the convergence of the poles of
these approximants and the singularities of F . Thereby, we obtain analogues of
theorems by A. A. Gonchar and S. P. Suetin.

1. Introduction

Padé approximation theory contains two types of results, namely direct
and inverse types. In the direct type results, we draw conclusions about
the asymptotic behavior of the approximants and their poles from the an-
alytic properties and location of singularities of the approximated function.
In the inverse type results, the information is given in terms of the asymp-
totic behavior of the approximating functions from which the analyticity and
location of the singularities of the approximated function can be deduced.

Let us recall the definition of classical Padé approximants and state some
known direct and inverse type results on row sequences of classical Padé
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approximants related to our study in this paper. In the whole paper, N
stands for the set of all positive integers and N0 := N ∪ {0}.

Definition 1.1. Let f(z) =
∑∞

k=0 fkz
k be a formal power series. Fix

(n,m) ∈ N0 × N0. Then, there exist polynomials P and Q such that

deg(P ) ≤ n, deg(Q) ≤ m, Q �≡ 0,

and

(Qf − P )(z) = O(zn+m+1), as z → 0.

The rational function Rn,m := P/Q is called the (n,m) classical Padé ap-

proximant of f.

It is well-known that for any (n,m) ∈ N0 × N0, Rn,m always exists and
is unique. For a given pair (n,m) ∈ N0 × N0, we write

(1) Rn,m =
Pn,m

Qn,m
,

where Qn,m is the monic polynomial that has no common zero with Pn,m.
Let f(z) =

∑∞
k=0 fkz

k be a formal power series. Denote by R0(f) the
radius of the largest disk centered at the origin to which f can be extended
analytically and by Rm(f) the radius of the largest disk centered at the
origin to which f can be extended so that f has at most m poles counting
multiplicities. Basically, R0(f) is the radius of convergence of f and Rm(f)
is the radius of m-meromorphy of f . Set

B(a,R) := {z ∈ C : |z − a| < R}.

Let us define two indicators of the asymptotic behavior of the zeros of
Qn,m. Fix m ∈ N. Let

Pn,m := {λn,1, λn,2, . . . , λn,mn
}, mn ≤ m, n ∈ N0,

denote the collection of zeros of Qn,m (repeated according to their multiplic-
ity). Define

|z − w|1 := min{1, |z − w|}, z, w ∈ C.

Fix λ ∈ C. The first indicator is defined by

∆(λ) := lim sup
n→∞

mn
∏

j=1

|λn,j − λ|
1/n
1 = lim sup

n→∞

∏

|λn,j−λ|<1

|λn,j − λ|1/n.
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Clearly, 0 ≤ ∆(λ) ≤ 1 (when mn = 0 or |λn,j −λ| ≥ 1 for all j = 1, 2, . . . ,mn,
the product is taken to be 1). The second indicator, a nonnegative integer
σ(λ), is defined as follows. We suppose that for each n, the points in

(2) Pn,m = {λn,1, λn,2, . . . , λn,mn
}

are enumerated in nondecreasing distance to the point λ. We set

(3) δj(λ) := lim sup
n→∞

|λn,j − λ|
1/n
1 .

These numbers are defined by (3) for j = 1, 2, . . . ,m′, m′ = lim infn→∞mn;
for j = m′ + 1, . . . , n, we define δj(λ) = 1. We have 0 ≤ δj(λ) ≤ 1. If
∆(λ) = 1 (in that case all δj(λ) = 1), then σ(λ) = 0. If ∆(λ) < 1, then for
some ν, 1 ≤ ν ≤ m, we have that δ1(λ) ≤ · · · ≤ δν(λ) < 1 and δν+1(λ) = 1
or ν = m; in this case we take σ(λ) = ν.

The first theorem proved by Gonchar [7, Theorem 1] serves as both direct
and inverse type results.

Gonchar’s Theorem. Let f(z) =
∑∞

k=0 fkz
k be a formal power series,

m ∈ N, and let λ �= 0 be a given point in C. The following statements are

equivalent :
(a) λ ∈ B(0, Rm(f)) and f has a pole at λ.
(b) ∆(λ) < 1 (or equivalently σ(λ) ≥ 1).
If either (a) or (b) holds, then

∆(λ) =
|λ|

Rm(f)
and σ(λ) = ν,

where ν is the order of the pole at λ.

The direct part of this theorem refers to the statement: if f has a pole
at λ ∈ B(0, Rm(f)) of order ν, then

∆(λ) ≤
|λ|

Rm(f)
and σ(λ) ≥ ν.

On the other hand, the inverse result in this theorem is the statement:
if ∆(λ) < 1, then f has a pole at λ ∈ B(0, Rm(f)),

Rm(f) ≥
|λ|

∆(λ)
, and ν ≥ σ(λ),

where ν is the order of the pole at λ.
In the same paper, Gonchar conjectured the following:
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Gonchar’s Conjecture. Fix m ∈ N. Let f(z) =
∑∞

k=0 fkz
k be a for-

mal power series and let Qn,m be the denominator of the (n,m) classical

Padé approximant of f . Assume that

lim
n→∞

λn = λ �= 0,

where λn is a zero of Qn,m. Then this series defines a function which is
holomorphic at z = 0, Rm−1(f) ≥ |λ|, and λ is a singularity of f .

Note that Gonchar’s conjecture has not yet been proved. Some progress
was made by Vavilov, López, Prokhorov, and Suetin (see [12–14]). In the
final form, the following weaker version of Gonchar’s conjecture was proved
by Suetin [11].

Suetin’s Theorem. Assume that the formal power series

f(z) =

∞
∑

k=0

fkz
k

has coefficients such that for fixed m ∈ N and sufficiently large n ∈ N the
approximants Rn,m have precisely m finite poles λn,1, . . . , λn,m, which are

convergent :

lim
n→∞

λn,j = λj �= 0, j = 1, . . . ,m.

Then
(i) the power series defines a holomorphic function f in the disk B(0,Rmin),

where Rmin := min1≤j≤m |λj |;
(ii) Rm−1(f) = max1≤j≤m |λj |;
(iii) all the points λ1, . . . , λm are singularities of f , the ones lying in the

disk B(0, Rm−1(f)) are poles, and f has no other poles in this disk.

When m = 1, Gonchar’s conjecture and Suetin’s theorem reduce to the
classical Fabry ratio theorem. However, since Suetin’s theorem has the as-
sumptions that for sufficiently large n ∈ N, Rn,m have preciselym finite poles
and all m poles of Rn,m are convergent, Suetin’s theorem is much weaker
than Gonchar’s conjecture.

The aim of this paper is to prove the analogues of a direct part of Gon-
char’s theorem and Suetin’s theorem for two generalized Padé approxima-
tions to polynomial expansions introduced in [3] and [4]. The proofs of ana-
logues of Suetin’s theorem for these two generalized Padé approximations are
heavily relying on an extension of Poincaré’s theorem on recurrence relations
developed by Buslaev in [5].

The first approximation is called orthogonal Padé approximation defined
as follows. Let E be an infinite compact subset of the complex plane C
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such that C \ E is simply connected. Denote by K the collection of these
compact sets. Let µ be a finite positive Borel measure with infinite support
supp(µ) contained in E. We write µ ∈ M(E) and define the associated inner
product,

�g, h�µ :=

∫

g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let

pn(z) := κnz
n + · · · , κn > 0, n = 0, 1, 2, . . . ,

be the orthonormal polynomial of degree n with respect to µ with positive
leading coefficient; that is, �pn, pm�µ = δn,m. Denote by H(E) the space of
all functions holomorphic in some neighborhood of E.

Definition 1.2. Let E ∈ K, F ∈ H(E), and µ ∈ M(E). Fix (n,m) ∈
N× N. Then, there exists a polynomial Qµ

n,m such that deg(Qµ
n,m) ≤ m,

Qµ
n,m �≡ 0, and

(4) �zkQµ
n,mF, pn�µ = 0, k = 0, 1, . . . ,m− 1.

Define the corresponding polynomial

P µ
n,m(z) :=

n−1
∑

j=0

�Qµ
n,mF, pj�µpj(z).

The rational function

Rµ
n,m :=

P µ
n,m

Qµ
n,m

is called an (n,m) orthogonal Padé approximant of F with respect to µ.

Finding Qµ
n,m in (4) is equivalent to solving a homogeneous system of

m linear equations on m+ 1 unknowns. Therefore, for any pair (n,m) ∈
N× N, a polynomial Qµ

n,m always exists but it may not be unique. It is not
difficult to check, however, that the condition

Λµ
n,m(F ) :=

∣

∣

∣

∣

∣

∣

∣

∣

�F, pn�µ �zF, pn�µ · · · �zm−1F, pn�µ
�zF, pn�µ �z2F, pn�µ · · · �zmF, pn�µ

...
...

...
...

�zm−1F, pn�µ �zmF, pn�µ · · · �z2m−2F, pn�µ

∣

∣

∣

∣

∣

∣

∣

∣

�= 0(5)

and the condition that every solution of (4) has degQµ
n,m = m are equivalent.

In turn, they imply the uniqueness of Rµ
n,m. Since Qµ

n,m �≡ 0, we normalize
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it to be a “monic” polynomial. We call Qµ
n,m a denominator of an (n,m)

orthogonal Padé approximant of F with respect to µ.
The second approximation is related to Faber polynomials defined as

follows. Let E ∈ K and Φ be the exterior conformal mapping from C \ E
onto {w ∈ C : |w| > 1} satisfying Φ(∞) = ∞ and Φ′(∞) > 0. For each ρ > 1,
we introduce

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

as the level curve of index ρ and the canonical domain of index ρ, respec-
tively. Let F ∈ H(E). Denote by ρ0(F ) the index ρ of the largest canonical
domain Dρ to which F can be extended as a holomorphic function and by
ρm(F ) the index of the largest canonical domain Dρ to which F can be
extended so that F has at most m poles counting multiplicities.

The Faber polynomial of E ∈ K of degree n is defined by the formula

(6) Φn(z) :=
1

2πi

∫

Γρ

Φn(t)

t− z
dt, z ∈ Dρ, n = 0, 1, 2, . . . .

It equals the polynomial part of the Laurent expansion of Φn at infinity. The
n-th Faber coefficient of F ∈ H(E) with respect to Φn is given by

[F ]n :=
1

2πi

∫

Γρ

F (t)Φ′(t)

Φn+1(t)
dt,

where ρ ∈ (1, ρ0(F )).

Definition 1.3. Let E ∈ K and F ∈ H(E). Fix (n,m) ∈ N×N. Then,
there exists a polynomial QE

n,m such that deg(QE
n,m) ≤ m,QE

n,m �≡ 0, and

(7) [zkQE
n,mF ]n = 0, k = 0, 1, . . . ,m− 1.

Define the corresponding polynomial

PE
n,m(z) :=

n−1
∑

j=0

[QE
n,mF ]jpj(z).

The rational function

RE
n,m :=

PE
n,m

QE
n,m

is called an (n,m) Padé–Faber approximant of F with respect to E.
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Similarly, for any pair (n,m) ∈ N× N, a polynomial QE
n,m always exists

but it may not be unique. Moreover, the condition

ΛE
n,m(F ) :=

∣

∣

∣

∣

∣

∣

∣

∣

[F ]n [zF ]n · · · [zm−1F ]n
[zF ]n [z2F ]n · · · [zmF ]n

...
...

...
...

[zm−1F ]n [zmF ]n · · · [z2m−2F ]n

∣

∣

∣

∣

∣

∣

∣

∣

�= 0(8)

and the condition that every solution of (7) has degQE
n,m = m are equivalent.

In turn, they imply the uniqueness of RE
n,m. Since QE

n,m �≡ 0, we normalize

it to be a “monic” polynomial. We call QE
n,m a denominator of an (n,m)

Padé–Faber approximant of F with respect to E.
We would like to emphasize that the approximations in Definitions 1.2

and 1.3 are different from Padé-orthogonal approximation in [1,2] and Padé–
Faber approximation in [10] which are natural ways of extending the notion
of classical Padé approximation. Moreover, the approximations in Defini-
tions 1.2 and 1.3 were first introduced and studied in [3] and [4], respec-
tively. Before stating the main results in [3] and [4], we need to define some
classes of measures which are subsets of M(E). We say that µ ∈ Reg1(E)
when

(9) lim
n→∞

|pn(z)|
1/n = |Φ(z)|,

uniformly on compact subsets of C \ E. Let us introduce the second kind
function

sn(z) :=

∫

pn(ζ)

z − ζ
dµ(ζ), z ∈ C \ supp(µ).

The measure µ ∈ Reg2(E) if and only if

(10) lim
n→∞

|sn(z)|
1/n = |Φ(z)|−1,

uniformly on compact subsets of C \E. The classes Reg1(E) and Reg2(E)
are more or less the same in some cases (see the details in [3, Section 1]). In
particular, if E is convex, then Reg1(E) = Reg2(E) and these two classes
coincide with the regular class in the usual sense (see [8, Definition 3.1.2] for
the definition of the regular class in the usual sense). Define

Reg1,2(E) := Reg1(E) ∩Reg2(E).

We say that µ ∈ Regm
1,2(E) if it is in Reg1,2(E) and there exists a positive

constant c such that
κn−m

κn
≥ c, n ≥ n0.
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Combining [3] and [4], the authors proved the following result.

Theorem A 1. Let F ∈ H(E), m ∈ N be fixed, and µ ∈ Regm
1,2(E). De-

note by P(F,m) the set of all poles of F in Dρm(F ) and QF
m the monic polyno-

mial whose zeros are these poles counting multiplicities. Then, the following
assertions are equivalent :

(a) F has exactly m poles in Dρm(F ).

(b) The polynomials Qµ
n,m for F are uniquely determined for all suffi-

ciently large n, and there exists a polynomial Q̃m of degree m such that

lim sup
n→∞

�Qµ
n,m − Q̃m�1/n = θ̃ < 1.

(c) The polynomials QE
n,m for F are uniquely determined for all suffi-

ciently large n, and there exists a polynomial Q̂m of degree m such that

lim sup
n→∞

�QE
n,m − Q̂m�1/n = θ̂ < 1.

The norm � · � in (b) and (c) denotes (for example) the norm induced in
the space of polynomials of degree at most m by the maximum of the absolute
value of the coefficients. Moreover, if one of the assertions (a), (b), or (c)

takes place, then Q̃m = Q̂m = QF
m,

θ̃ = θ̂ = max
{ |Φ(ξ)|

ρm(F )
: ξ ∈ P(F,m)

}

,

and for any compact subset K of Dρm(F ) \ P(F,m),

lim sup
n→∞

�Rµ
n,m − F�

1/n
K ≤

�Φ�K
ρm(F )

and lim sup
n→∞

�RE
n,m − F�

1/n
K ≤

�Φ�K
ρm(F )

,

where � ·�K denotes the sup-norm on K and if K ⊂ E, then �Φ�K is replaced
by 1.

In the current paper, we continue studying the relation between the con-
vergences of zeros of Qµ

n,m and QE
n,m (when m is fixed and n → ∞) and the

singularities of F ∈ H(E).
An outline of this paper is as follows. The main results in this paper are

stated in Section 2. The proofs of the main results are in Section 3.

2. Main results

2.1. Direct type results. Theorems 2.1 and 2.3 stated below are the
analogues of the direct part of Gonchar’s theorem for orthogonal Padé ap-
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proximants and Padé–Faber approximants, respectively. Note that the nota-
tions ∆, σ, and δj in Theorem 2.1 and Corollary 2.2 are defined as Section 1
taking

Pn,m := {ξ̃n,1, ξ̃n,2, . . . , ξ̃n,mn
}, mn ≤ m, n ∈ N,

to be the collection of zeros of Qµ
n,m.

Theorem 2.1. Let E ∈ K, F ∈ H(E), and µ ∈ Reg2(E). Fix m ∈ N.
If F has a pole of order ν at ξ in Dρm(F ), then

∆(ξ) ≤
|Φ(ξ)|

ρm(F )
and σ(ξ) ≥ ν.

The following corollary concerns the numbers δj(ξ), j = 1, . . . , ν, where
ξ is a pole of F in Dρm(F ) and ν is an order of ξ.

Corollary 2.2. Let E ∈ K, F ∈ H(E), µ ∈ Reg2(E), and ξ be a pole

of F in Dρm(F ) of order ν. Assume that lim infn→∞ |ξ − ξ̃n,ν+1| > 0, where

{ξ̃n,1, ξ̃n,2, . . . , ξ̃n,mn
} are enumerated in nondecreasing distance to the point ξ.

Then,

(11) δ1(ξ) ≤ δ2(ξ) ≤ · · · ≤ δν(ξ) ≤
( |Φ(ξ)|

ρm(F )

)1/ν
.

In particular, δ1(ξ) = δ2(ξ) = . . . = δν(ξ) = (|Φ(ξ)|/ρm(F ))1/ν if and only if
∆(ξ) = |Φ(ξ)|/ρm(F ).

For Theorem 2.3 and Corollary 2.4, the notations ∆, σ, and δj are de-
fined as Section 1 taking

Pn,m := {ξ̂n,1, ξ̂n,2, . . . , ξ̂n,mn
}, mn ≤ m, n ∈ N,

to be the collection of zeros of QE
n,m. We also obtain similar results to The-

orem 2.1 and Corollary 2.2 for Padé–Faber approximants.

Theorem 2.3. Let E ∈ K and F ∈ H(E). Fix m ∈ N. If F has a pole

of order ν at ξ in Dρm(F ), then

∆(ξ) ≤
|Φ(ξ)|

ρm(F )
and σ(ξ) ≥ ν.

Corollary 2.4. Let E ∈ K, F ∈ H(E), and ξ be a pole of F in Dρm(F )

of order ν. Assume that

lim inf
n→∞

|ξ − ξ̂n,ν+1| > 0,
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where {ξ̂n,1, ξ̂n,2, . . . , ξ̂n,mn
} are enumerated in nondecreasing distance to the

point ξ. Then,

δ1(ξ) ≤ δ2(ξ) ≤ · · · ≤ δν(ξ) ≤
( |Φ(ξ)|

ρm(F )

)1/ν
.

In particular, δ1(ξ) = δ2(ξ) = . . . = δν(ξ) = (|Φ(ξ)|/ρm(F ))1/ν if and only if
∆(ξ) = |Φ(ξ)|/ρm(F ).

2.2. Inverse type results. We obtain inverse type results (Theorems
2.5 and 2.6) analogous to Suetin’s theorem for orthogonal Padé approximants
and Padé–Faber approximants, respectively. In the results for orthogonal
Padé approximants, we need to restrict ourselves to a smaller collection of
compact sets E and a smaller collection of measures µ defined as follows.
Denote by K1 the collection of all sets E ∈ K that E is such that the inverse
function Ψ = Φ−1 can be extended continuously to C \ {w ∈ C : |w| < 1}.
We say that Szegő or strong asymptotics takes place, and write µ ∈ S(E), if

(12) lim
n→∞

pn(z)

cnΦn(z)
= S(z) and lim

n→∞

cn
cn+1

= 1,

where the first limit in (12) is assumed to hold uniformly on compact subsets
of C \ E, the cn’s are positive constants, and S(z) is some holomorphic and
non-vanishing function on C \E. It is not difficult to check that (12) ⇒ (9).

Theorem 2.5. Let E ∈ K1, F ∈ H(E), and µ ∈ S(E). Fix m ∈ N. If
for all n sufficiently large, Qµ

n,m (for F ) has precisely m zeros and the zeros
of Qµ

n,m have limits ξ1, . . . , ξm, as n → ∞, then
(i) F is holomorphic in Dρmin

, where ρmin := min1≤j≤m |Φ(ξj)|;
(ii) ρm−1(F ) = max1≤j≤m |Φ(ξj)|;
(iii) ξ1, . . . , ξm are singularities of F ; those lying in Dρm−1(F ) are poles

(counting multiplicities), and F has no other poles in Dρm−1(F ).

Theorem 2.6. Let E ∈ K and F ∈ H(E). Fix m ∈ N. If for all n suffi-
ciently large, QE

n,m (for F ) has precisely m zeros and the zeros of QE
n,m have

limits ξ1, . . . , ξm, as n → ∞, then
(i) F is holomorphic in Dρmin

, where ρmin := min1≤j≤m |Φ(ξj)|;
(ii) ρm−1(F ) = max1≤j≤m |Φ(ξj)|;
(iii) ξ1, . . . , ξm are singularities of F ; those lying in Dρm−1(F ) are poles

(counting multiplicities), and F has no other poles in Dρm−1(F ).

Applying Suetin’s theorem, Theorems 2.5 and 2.6 are direct consequences
of Theorems 2.7 and 2.8, respectively.

Theorem 2.7. Let E ∈ K1, F ∈ H(E) and µ ∈ S(E). Define f(w) :=
F (Ψ(w)). Let R > 1 be such that f ∈ H({w ∈ C : 1 < |w| < R}). Denote by
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∑∞

k=−∞ fkw
k the Laurent series of f in the annulus {w ∈ C : 1 < |w| < R}

and by f̂(w) :=
∑∞

k=0 fkw
k the regular part of f . For each fixed m ≥ 1, the

following conditions are equivalent :

(a) The zeros of Qn,m for f̂ have finite limits λ1, . . . , λm, as n → ∞.
(b) The zeros of Qµ

n,m for F have finite limits ξ1, . . . , ξm, as n → ∞.
Under appropriate enumeration of the sub-indices, the values λj and ξj ,

j = 1, . . . ,m, are related by the formula Φ(ξj) = λj for all j = 1, . . . ,m.

Theorem 2.8. Let E ∈ K and F ∈ H(E). Define f(w) := F (Ψ(w)). Let
R > 1 be such that f ∈ H({w ∈ C : 1 < |w| < R}). Denote by

∑∞
k=−∞ fkw

k

the Laurent series of f in the annulus {w ∈ C : 1 < |w| < R} and by f̂(w) :=
∑∞

k=0 fkw
k the regular part of f . For each fixed m ≥ 1, the following condi-

tions are equivalent :
(a) The zeros of Qn,m for f̂ have finite limits λ1, . . . , λm, as n → ∞.
(b) The zeros of QE

n,m for F have finite limits ξ1, . . . , ξm, as n → ∞.
Under appropriate enumeration of the sub-indices, the values λj and ξj ,

j = 1, . . . ,m, are related by the formula Φ(ξj) = λj for all j = 1, . . . ,m.

Remark 2.9. Under the assumptions on Thereom 2.7, the condition (b)
in Theorem 2.7 is equivalent to the condition (b) in Theorem 2.8.

3. Proofs of main results

3.1. Proofs of direct type results. We begin this section by defin-
ing some more notation and stating some needed lemmas.

3.1.1. Auxiliary Lemmas. For a given compact set E ∈ K, the n-th
Fourier coefficient of F ∈ H(E) with respect to pn is given by

�F �n := �F, pn�µ =

∫

F (z)pn(z) dµ(z).

Using Cauchy’s integral formula and Fubini’s theorem, it is easy to check
the following relation used frequently in this paper.

Lemma 3.1. Let E ∈ K, F ∈ H(E), n ∈ N0, and ρ ∈ (1, ρ0(F )). Then,

(13) �F �n =
1

2πi

∫

Γρ

F (w)sn(w) dw.

The next lemma (see [6, p. 583] or [9, p. 43] for its proof) gives an esti-
mate of Faber polynomials Φn (defined in (6)) on a level curve.

Lemma 3.2. Let E ∈ K and ρ > 1 be fixed. Then, there exists c > 0 such
that

(14) �Φn�Γρ
≤ cρn, n ∈ N0.
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3.1.2. Proofs of the direct type results.

Proof of Theorem 2.1. For each n ∈ N, let qµn,m be the polynomial
Qµ

n,m normalized so that

(15)

m
∑

k=0

|αn,k| = 1, qµn,m(z) =

m
∑

k=0

αn,kz
k.

This normalization implies that the polynomials qµn,m are uniformly bounded
on each compact subset of C.

First of all, we wish to show that for each pole ξ of order ν of F in
Dρm(F ),

(16) lim sup
n→∞

|(qµn,m)
(j)(ξ)|1/n ≤

|Φ(ξ)|

ρm(F )
, j = 0, 1, . . . , ν − 1.

Denote by Qm the monic polynomial whose zeros are all the poles of F in
Dρm(F ). Define

Gℓ(z) :=
Qm(z)F (z)

(z − ξ)ℓ
, ℓ = 1, 2, . . . , ν.

Now, we consider a function G1. Notice that G1 is holomorphic on a
neighborhood of D|Φ(ξ)| except for a simple pole at z = ξ. Define

H1(z) := (z − ξ)G1(z) and a(1)n,n := �qµn,mG1�n.

By the definition of Qµ
n,m, since deg(Qm/(z − ξ)) < m, it is easy to check

that a
(1)
n,n = 0. Moreover, using (13), we have

a(1)n,n = �qµn,mG1�n =
1

2πi

∫

Γρ1

qµn,m(z)G1(z)sn(z) dz,

where 1 < ρ1 < |Φ(ξ)|. Define

τ (1)n,n :=
1

2πi

∫

Γρ2

qµn,m(z)G1(z)sn(z) dz,

where |Φ(ξ)| < ρ2 < ρm(F ). The function qµn,mG1sn is meromorphic on
Dρ2

\Dρ1
= {z ∈ C : ρ1 ≤ |Φ(z)| ≤ ρ2} and has a pole at ξ of order at most 1.

Applying Cauchy’s residue theorem to the function qµn,mG1sn, we have

1

2πi

∫

Γρ2

qµn,m(t)G1(t)sn(t) dt(17)

Acta Mathematica Hungarica

N. BOSUWAN202



Acta Mathematica Hungarica 157, 2019

ROW SEQUENCES OF GENERALIZED PADÉ APPROXIMANTS 13

−
1

2πi

∫

Γρ1

qµn,m(t)G1(t)sn(t) dt = res(qµn,mG1sn, ξ).

The limit formula for the residue of qµn,mG1sn at ξ is

res(qµn,mG1sn, ξ) = lim
z→ξ

(z − ξ)qµn,m(z)G1(z)sn(z) = H1(ξ)q
µ
n,m(ξ)sn(ξ).

We can rewrite (17) as

τ (1)n,n = τ (1)n,n − a(1)n,n = H1(ξ)q
µ
n,m(ξ)sn(ξ)

(recall that a
(1)
n,n = 0) which implies

(18) qµn,m(ξ) =
τ
(1)
n,n

H1(ξ)sn(ξ)
.

Choose δ > 0 sufficiently small so that

(19) ρ2 := ρm(F )− δ > |Φ(ξ)| and |Φ(ξ)| − δ > 1.

Using (10), there exist n0 ∈ N and c1 > 0, c2 > 0 such that

(20)
c1

(ρ+ δ)n
≤ �sn�Γρ

≤
c2

(ρ− δ)n
, n ≥ n0,

where c1 and c2 do not depend on n (from now on, c3, c4, . . . denote con-
stants that do not depend on n). From (20), we have

(21) |τ (1)n,n| =

∣

∣

∣

∣

1

2πi

∫

Γρ2

qµn,m(z)G1(z)sn(z) dz

∣

∣

∣

∣

≤
c3

(ρ2 − δ)n

and

(22) |sn(ξ)| ≥
c1

(|Φ(ξ)|+ δ)n
.

Combining (21) and (22), it follows from (18) that

(23) |qµn,m(ξ)| ≤ c4

( |Φ(ξ)|+ δ

ρ2 − δ

)n
.

which means that

lim sup
n→∞

|qµn,m(ξ)|1/n ≤
|Φ(ξ)|+ δ

ρ2 − δ
.
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Letting δ → 0, we obtain ρ2 → ρm(F ) and

lim sup
n→∞

|qµn,m(ξ)|1/n ≤
|Φ(ξ)|

ρm(F )
.

Now we employ induction. Suppose that

(24) lim sup
n→∞

|(qµn,m)(j)(ξ)|1/n ≤
|Φ(ξ)|

ρm(F )
, j = 0, 1, . . . , ℓ− 2,

with ℓ ≤ ν, and let us prove that the formula (24) holds for j = ℓ− 1. Con-
sider a function Gℓ that is holomorphic on a neighborhood of D|Φ(ξ)| except
for a pole of order ℓ at z = ξ. Set

Hℓ(z) := (x− ξ)ℓGℓ(z) and a(ℓ)n,n := �qµn,mGℓ�n.

By the definition of Qµ
n,m, since deg(Qm/(z − ξ)ℓ) < m, it is easy to check

that a
(ℓ)
n,n = 0. Using (13), we have

a(ℓ)n,n = �qµn,mGℓ�n =
1

2πi

∫

Γρ1

qµn,m(z)Gℓ(z)sn(z) dz,

where 1 < ρ1 < |Φ(ξ)|. Define

τ (ℓ)n,n :=
1

2πi

∫

Γρ2

qµn,m(z)Gℓ(z)sn(z) dz,

where |Φ(ξ)| < ρ2 < ρm(F ). The function qµn,mGℓsn is meromorphic on
Dρ2

\Dρ1
= {z ∈ C : ρ1 ≤ |Φ(z)| ≤ ρ2} and has a pole at ξ of order at most ℓ.

Applying Cauchy’s residue theorem to the function qµn,mGℓsn, we have

τ (ℓ)n,n − a(ℓ)n,n =
1

2πi

∫

Γρ2

qµn,m(t)Gℓ(t)sn(t) dt(25)

−
1

2πi

∫

Γρ1

qµn,m(t)Gℓ(t)sn(t) dt = res(qµn,mGℓsn, ξ).

The limit formula for the residue of qµn,mGℓsn at ξ is

res(qµn,mGℓsn, ξ) =
1

(ℓ− 1)!
lim
z→ξ

((z − ξ)ℓGℓ(z)sn(z)q
µ
n,m(z))(ℓ−1)(26)

=
1

(ℓ− 1)!

ℓ−1
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,m)

(t)(ξ),
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where the last equality follows from Leibniz’s formula. Since a
(ℓ)
n,n = 0, the

equation (25) becomes

(ℓ− 1)! τ (ℓ)n,n =
ℓ−2
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,m)

(t)(ξ)

+Hℓ(ξ)sn(ξ)(q
µ
n,m)

(ℓ−1)(ξ),

which implies that
(27)

(qµn,m)(ℓ−1)(ξ) =
(ℓ− 1)! τ

(ℓ)
n,n

Hℓ(ξ)sn(ξ)
−

ℓ−2
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,m)(t)(ξ)

Hℓ(ξ)sn(ξ)
.

Choosing δ > 0 and ρ2 as in (19) and applying (20), we have

(28) |τ (ℓ)n,n| =

∣

∣

∣

∣

1

2πi

∫

Γρ2

qµn,m(z)Gℓ(z)sn(z) dz

∣

∣

∣

∣

≤
c5

(ρ2 − δ)n

and for all t = 0, 1, . . . , ℓ− 2,
(29)

|(Hℓsn)
(ℓ−1−t)(ξ)| =

∣

∣

∣

∣

(ℓ− 1− t)!

2πi

∫

|z−ξ|=ε

Hℓ(z)sn(z)

(z − ξ)ℓ−t
dz

∣

∣

∣

∣

≤
c6

(|Φ(ξ)| − δ)n
,

where {z ∈ C : |z − ξ| = ε} ⊂ {z ∈ C : |Φ(z)| > |Φ(ξ)| − δ}. Combining (22),
(24), (28), and (29), it follows from (27) that

lim sup
n→∞

∣

∣(qµn,m)
(ℓ−1)(ξ)

∣

∣

1/n
(30)

= lim sup
n→∞

∣

∣

∣

∣

(ℓ− 1)!τ
(ℓ)
n,n

Hℓ(ξ)sn(ξ)
−

ℓ−2
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,m)(t)(ξ)

Hℓ(ξ)sn(ξ)

∣

∣

∣

∣

1/n

≤ max

{

|Φ(ξ)|+ δ

ρ2 − δ
,
( |Φ(ξ)|+ δ

|Φ(ξ)| − δ

)( |Φ(ξ)|

ρm(F )

)

}

.

Letting δ → 0, we have ρ2 → ρm(F ) and from (30), we obtain

lim sup
n→∞

∣

∣(qµn,m)
(ℓ−1)(ξ)

∣

∣

1/n
≤

|Φ(ξ)|

ρm(F )
.

This completes the induction proof.
Next, we want to show that

(31) lim
n→∞

ξ̃n,j = ξ, j = 1, 2, . . . , ν,
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i.e., there exist at least ν zeros of Qµ
n,m converge to ξ. By the normalization

of qµn,m (see (15)), it suffices to show that for any subsequence of indices Ω
such that

lim
n∈Ω

qµn,m = qΩ ,

qΩ is a non-null polynomial with a zero of order at least ν at ξ. Due to
the normalization of qµn,m, qΩ �≡ 0. Computing Taylor’s expansion of qµn,m
around ξ, we obtain

qµn,m(z) =
m
∑

k=0

(qµn,m)(k)(ξ)

k!
(z − ξ)k.

Applying (16) and the Weierstrass approximation theorem for derivatives,
we have

qΩ(z) = lim
n∈Ω

qµn,m(z) = lim
n∈Ω

m
∑

k=0

(qµn,m)(k)(ξ)

k!
(z−ξ)k =

m
∑

k=ν

(qΩ)
(k)(ξ)

k!
(z−ξ)k,

which implies what we wanted.
Let ε > 0 be sufficiently small so that B(ξ, 2ε) contains no other poles

of F in Dρm(F ) except ξ. Let ξ̃n,1, . . . , ξ̃n,σn
be the zeros of qµn,m contained

in B(ξ, 2ε). By (31), we have ν ≤ σn ≤ m for all sufficiently large n. In the
sequel, we only consider such values of n. Set

Q̃n(z) :=

σn
∏

j=1

(z − ξ̃n,j).

It is easy to check that the functions Q̃n/q
µ
n,m are holomorphic in B(ξ,2ε)

and uniformly bounded on any compact subset of B(ξ, 2ε), in particular on

B(ξ, ε). Therefore, by Cauchy’s integral formula, for any j = 0, 1, . . . , ν − 1,

the sequence (Q̃n/q
µ
n,m)(j) is uniformly bounded on B(ξ, ε). Using Leibniz’s

formula and the inequalities in (16), we obtain

lim sup
n→∞

|Q̃(j)
n (ξ)|1/n = lim sup

n→∞

∣

∣

∣

∣

(

qµn,m
Q̃n

qµn,m

)(j)

(ξ)

∣

∣

∣

∣

1/n

(32)

= lim sup
n→∞

∣

∣

∣

∣

j
∑

k=0

(

j

k

)

(qµn,m)(k)(ξ)
( Q̃n

qµn,m

)(j−k)
(ξ)

∣

∣

∣

∣

1/n

≤
|Φ(ξ)|

ρm(F )
< 1,

for each j = 0, . . . , ν − 1.
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Finally, we want to show that

(33) ∆(ξ) ≤
|Φ(ξ)|

ρm(F )
and σ(ξ) ≥ ν.

Using (32) for j = 0 and the ordering imposed on the indexing of zeros of
Qµ

n,m, it follows that

∆(ξ) = lim sup
n→∞

|Qµ
n,m(ξ)|

1/n
1 = lim sup

n→∞
|Q̃n(ξ)|

1/n ≤
|Φ(ξ)|

ρm(F )
< 1

and lim supn→∞ |ξ − ξ̃n,1|
1/n < 1 so that σ(ξ) ≥ 1. Assume that for each

j = 1, . . . , k, where k ≤ ν − 1,

(34) lim sup
n→∞

|ξ − ξ̃n,j|
1/n < 1,

and let us show that it is also true for k + 1. Consider Q̃
(k)
n (ξ). Notice that

one of the terms thus obtained is
∏σn

j=k+1(ξ− ξ̃n,j) and each one of the other

terms contains at least one factor of the form (ξ− ξ̃n,j) for some j = 1, . . . , k.
Combining (32) for j = k and (34), it follows that

lim sup
n→∞

∣

∣

∣

∣

σn
∏

j=k+1

(ξ − ξ̃n,j)

∣

∣

∣

∣

1/n

< 1,

and due to the ordering of the indices, we get

lim sup
n→∞

|ξ − ξ̃n,k+1|
1/n < 1.

Therefore, σ(ξ) ≥ ν. �

Proof of Corollary 2.2. Let us use the same notation defined in
the proof of Theorem 2.1. By our assumption, we can assume that

Q̃n(z) =
ν
∏

j=1

(z − ξn,j).

Recall that for each j = 0, 1, . . . , ν,

lim sup
n→∞

|Q̃(j)
n (ξ)|1/n ≤

|Φ(ξ)|

ρm(F )
.
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Combining these inequalities and the expression,

Q̃n(z) = (z − ξ)ν +
ν−1
∑

k=0

Q̃
(k)
n (ξ)

k!
(z − ξ)k,

we have

lim sup
n→∞

∥

∥(z − ξ)ν − Q̃n(z)
∥

∥

1/n

B(ξ,2ε)
≤

|Φ(ξ)|

ρm(F )
.

In particular, if we replace z by ξn,ν , then

δν(ξ) = lim sup
n→∞

|ξn,ν − ξ|1/n ≤

(

|Φ(ξ)|

ρm(F )

)1/ν

.

This clearly implies (11).
Moreover, by Theorem 2.1, ∆(ξ) ≤ |Φ(ξ)|/ρm(F ) is always true and the

last statement readily follows. �

Proof of Theorem 2.3. Since the structure of the proof of Theorem
2.3 is similar to that of Theorem 2.1, we will skip some steps. For each
n ∈ N, let qEn,m be the polynomial QE

n,m normalized so that

(35)
m
∑

k=0

|αn,k| = 1, qEn,m(z) =
m
∑

k=0

αn,kz
k.

The polynomials qEn,m are uniformly bounded on each compact subset of C.
First of all, we show that for each pole ξ of order ν of F in Dρm(F ),

(36) lim sup
n→∞

|(qEn,m)
(j)(ξ)|1/n ≤

|Φ(ξ)|

ρm(F )
, j = 0, 1, . . . , ν − 1.

Denote by Qm the monic polynomial whose zeros are all the poles of F in
Dρm(F ). Fix ℓ ∈ {1, . . . , ν}. Define

Gℓ(z) :=
Qm(z)F (z)

(z − ξ)ℓ
, ℓ = 1, 2, . . . , ν

Set

Hℓ(z) := (x− ξ)ℓGℓ(z) and a(ℓ)n,n := [qEn,mGℓ]n.

By the definition of QE
n,m, it follows that a

(ℓ)
n,n = 0. Therefore,

a(ℓ)n,n = [qEn,mGℓ]n =
1

2πi

∫

Γρ1

qEn,m(z)Gℓ(z)Φ
′(z)

Φn+1(z)
dz = 0,
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where 1 < ρ1 < |Φ(ξ)|. Set

τ (ℓ)n,n :=
1

2πi

∫

Γρ2

qEn,m(z)Gℓ(z)Φ
′(z)

Φn+1(z)
dz,

where |Φ(ξ)| < ρ2 < ρm(F ). Using Cauchy’s residue theorem on the function
(qEn,mGℓΦ

′)/Φn+1, we obtain

τ (ℓ)n,n = τ (ℓ)n,n − a(ℓ)n,n(37)

=
1

2πi

∫

Γρ2

qEn,m(t)Gℓ(t)Φ
′(t)

Φn+1(t)
dt−

1

2πi

∫

Γρ1

qEn,m(t)Gℓ(t)Φ
′(t)

Φn+1(t)
dt

= res((qEn,mGℓΦ
′)/Φn+1, ξ).

Arguing as in (26),

res((qEn,mGℓΦ
′)/Φn+1, ξ)

=
1

(ℓ− 1)!

ℓ−1
∑

t=0

(

ℓ− 1

t

)(

HℓΦ
′

Φn+1

)(ℓ−1−t)

(ξ)(qEn,m)
(t)(ξ).

The above equality and the relation (37) imply

(qEn,m)
(ℓ−1)(ξ) =

(ℓ− 1)!τ
(ℓ)
n,nΦn+1(ξ)

Hℓ(ξ)Φ′(ξ)
(38)

−
ℓ−2
∑

t=0

(

ℓ− 1

t

)

(HℓΦ
′

Φn+1

)(ℓ−1−t)
(ξ)

Φn+1(ξ)(qEn,m)
(t)(ξ)

Hℓ(ξ)Φ′(ξ)
,

where the sum is empty when ℓ = 1.
Choose δ > 0 small enough so that

(39) ρ2 := ρm(F )− δ > |Φ(ξ)|.

We have

(40) |τ (ℓ)n,n| =

∣

∣

∣

∣

1

2πi

∫

Γρ2

qEn,m(z)Gℓ(z)Φ
′(z)

Φn+1(z)
dz

∣

∣

∣

∣

≤
c1
ρn2

.

If ℓ = 1, combinging (38) and (40), we obtain

|qEn,m(ξ)| ≤ c2

( |Φ(ξ)|

ρ2

)n
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which implies that

lim sup
n→∞

|qEn,m(ξ)|1/n ≤
|Φ(ξ)|

ρ2
.

Letting δ → 0, (36) readily follows for j = 0. For the remaining values of j,
we use induction.

Suppose that (36) is true for j = 0, . . . , ℓ− 2, 2 ≤ ℓ ≤ τ and let us prove
that it is also valid for j = ℓ− 1. Choosing δ > 0 as in (39) and applying
Cauchy’s integral formula as in (29), we obtain for t = 0, 1, . . . , ℓ− 2,

(41)

∣

∣

∣

∣

∣

(

HℓΦ
′

Φn+1

)(ℓ−1−t)

(ξ)

∣

∣

∣

∣

∣

≤
c3

(|Φ(ξ)| − δ)n
.

Combining the induction hypothesis, (38), (40), and (41), we have

lim sup
n→∞

∣

∣(qEn,m)(ℓ−1)(ξ)
∣

∣

1/n
= lim sup

n→∞

∣

∣

∣

∣

(ℓ− 1)! τ
(ℓ)
n,nΦn+1(ξ)

Hℓ(ξ)Φ′(ξ)
(42)

−
ℓ−2
∑

t=0

(

ℓ− 1

t

)

(HℓΦ
′

Φn+1

)(ℓ−1−t)
(ξ)

Φn+1(ξ)(qEn,m)
(t)(ξ)

Hℓ(ξ)Φ′(ξ)

∣

∣

∣

∣

1/n

≤ max

{

|Φ(ξ)|

ρ2
,
( |Φ(ξ)|

|Φ(ξ)| − δ

)( |Φ(ξ)|

ρm(F )

)

}

.

Letting δ → 0, we have ρ2 → ρm(F ) and from (42), we obtain

lim sup
n→∞

∣

∣

∣
(qEn,m)

(ℓ−1)(ξ)
∣

∣

∣

1/n
≤

|Φ(ξ)|

ρm(F )
,

which completes the induction.
Arguing as in the proofs of (31) and (33) by replacing qµn,m by qEn,m, Qµ

n,m

by QE
n,m, and

{

ξ̃n,1, ξ̃n,2, . . . , ξ̃n,σn

}

by
{

ξ̂n,1, ξ̂n,2, . . . , ξ̂n,σn

}

,

we have

lim
n→∞

ξ̂n,j = ξ, j = 1, 2, . . . , ν

and

∆(ξ) ≤
|Φ(ξ)|

ρm(F )
and σ(ξ) ≥ ν,

as we wanted. �
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3.2. Proofs of the inverse type results. We keep all needed lem-
mas used in the proofs of the inverse type results in Section 3.2.1.

3.2.1. Auxiliary Lemmas. We begin by stating two lemmas due to
Buslaev (see [5, Theorems 5–6]). These results constitute the main tools
for proving our inverse type results. We make use of the following notation.
Let f(w) =

∑∞
k=−∞ fkw

k be a Laurent series. We denote the regular part

of f(w) by f̂(w) :=
∑∞

k=0 fkw
k. Define the closed annulus

Tδ,m(f) :=
{

w ∈ C : e−δR0(f̂) ≤ |w| ≤ eδRm−1(f̂)
}

,

where m ∈ N and δ ≥ 0. We will use (·)n to denote the coefficient of wn in
the Laurent series expansion of the function in the parentheses. Set

U := C \ B(0, 1).

Lemma 3.3 (Buslaev [5]). Let m ∈ N, δ > 0, and let f(w) =
∑∞

n=−∞ fnw
n

be a Laurent series such that

0 < R0(f̂) ≤ Rm−1(f̂) < ∞, and lim sup
n→∞

|f−n|
1/n ≤ R0(f̂).

Assume further that

(43) lim
n→∞

(fαnηn,j)nR
n
m−1(f̂)e

δn = 0, j = 0, . . . ,m− 1,

where the functions αn, ηn,j ∈ H(Tδ,m(f)) have the limits

α(w) := lim
n→∞

αn(w) �≡ 0, ηj(w) := lim
n→∞

ηn,j(w) = ηj(w), j = 0, . . . ,m− 1,

uniformly on Tδ,m(f), η(w) is a univalent function in Tδ,m(f), and α(w) has
at most m zeros in the annulus T0,m(f). Then the function α(w) has pre-

cisely m zeros λ1, . . . , λm in T0,m(f) and limn→∞ λn,j = λj , where the λn,j ,

j = 1, . . . ,m, are poles of the classical approximants Rn,m of f̂ . Moreover,
for any functions Kn,1, . . . ,Kn,m, Ln,1, . . . , Ln,m ∈ H(Tν,m(f)), ν > 0, that

converge to K1, . . . , Km, L1, . . . , Lm uniformly on Tν,m(f),
(44)

lim
n→∞

det[(fKn,iLn,j)n]i,j=1,...,m

det[fn−i−j]i,j=0,...,m−1
=

det[Kr(λs)]s,r=1,...,m det[Lr(λs)]s,r=1,...,m

W 2(λ1, . . . , λm)
,

where W (λ1, . . . , λm) = det[λr−1
s ]s,r=1,...,m is the Vandermonde determinant

of the numbers λ1, . . . , λm (for multiple zeros the right-hand side of (44) is

defined by continuity).
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Lemma 3.4 (Buslaev [5]). Let m ∈ N, σ > 1, and f(w) =
∑∞

n=−∞ fnw
n

be a holomorphic function in the annulus {1 < |w| < σ}. Assume further

that

(45) (fαnηn,j)n = 0, j = 0, . . . ,m− 1, n ≥ n0,

hold, where αn(w) and w−jηn,j(w) are holomorphic functions in U , the limits

α(w) := lim
n→∞

αn(w) �≡ 0, ηj(w) := lim
n→∞

ηn,j(w) = ηj(w), j = 0, . . . ,m− 1,

exist uniformly on each compact subset of U \ {∞}, the function α(w) has

at most m zeros in U \ {∞}, and η(w) is a univalent function in U such that

η(∞) = ∞. Then, only one of the following assertions takes place:

(i) f̂(w) is a rational function with at most m− 1 poles;
(ii) α(w) has precisely m zeros λ1, . . . , λm in U \ {∞}, these zeros are

singularities of f(w), with an appropriate ordering |λ1| = R0(f̂), . . . , |λm| =

Rm−1(f̂), and the limits limn→∞ λn,j = λj exist, where the λn,j , j = 1, . . . ,m,

are the poles of the classical Padé approximants Rn,m of f̂ .

Define

hn(w) := cnw
n+1sn(Ψ(w))Ψ′(w), w ∈ U.

Properties of hn are stated the following lemma (see [1, Lemma 4.3] for its
proof).

Lemma 3.5. Let E ∈ K1. Then, the functions hn(w) are holomorphic

in U . Moreover, if µ ∈ S(E), then the sequence hn(w) converges to some

non-vanishing function h(w) uniformly on each compact subset of U .

Note that the restriction condition that E ∈ K1 is used to prove this
lemma (see [1, Lemma 3.1 and Lemma 4.3] for more details).

3.2.2. Proofs of Theorems 2.7 and 2.8.

Proof of Theorem 2.7. First of all, we prove that (b) implies (a)
using Lemma 3.4. We assume that the zeros of Qµ

n,m(z) have limits ξ1, . . . ,
ξm, as n → ∞. For w ∈ U , we define

αn(w) := w−mh(w)Qµ
n+m,m(Ψ(w)),

ηn,j(w) :=
cn+mΨ

j(w)wn+m+1sn+m(Ψ(w))Ψ′(w)

h(w)
, j = 0, . . . ,m− 1.
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The functions αn(w) and w−jηn,j(w) = w−jΨj(w)hn+m(w)/h(w), j = 1, . . .,
m− 1, are holomorphic in U , and

α(w) := lim
n→∞

αn(w) = w−mh(w)
m
∏

j=1

(Ψ(w)− ξj),

ηj(w) := lim
n→∞

ηn,j(w) = Ψj(w), j = 0, 1, . . . ,m− 1,

uniformly on each compact subset of U \ {∞}. Since h(w) is never zero in U ,
α(w) has at most m zeros in U \ {∞}. Set

γr := {w ∈ C : |w| = r}.

By Cauchy’s integral formula, Fubini’s theorem, and the definition of Qµ
n,m,

we have, for ε > 0 sufficiently small so that F (z) is analytic on D1+ε, and
for j = 0, . . . ,m − 1,

(fαnηn,j)n =
cn+m

2πi

∫

γ1+ε

Ψj(w)F (Ψ(w))Qµ
n+m,m(Ψ(w))sn+m(Ψ(w))Ψ′(w) dw

=
cn+m

2πi

∫

Γ1+ε

tjF (t)Qµ
n+m,m(t)sn+m(t) dt

=
cn+m

2πi

∫

Γ1+ε

tjF (t)Qµ
n+m,m(t)

∫

pn+m(z)

t− z
dµ(z) dt

= cn+m

∫

1

2πi

∫

Γ1+ε

tjF (t)Qµ
n+m,m(t)

t− z
dtpn+m(z) dµ(z)

= cn+m

∫

zjF (z)Qµ
n+m,m(z)pn+m(z) dµ(z) = 0.

Therefore, the assumptions of Lemma 3.4 are satisfied. If the regular part of
f(w) is a rational function with at most m− 1 poles, then F (z) is a rational
function with at most m− 1 poles which implies that Λµ

n,m(F ) = 0 for n suf-
ficiently large. This is impossible because deg(Qµ

n,m) = m, for n sufficiently
large. Therefore, by Lemma 3.4, α(w) has precisely m zeros λ1, . . . , λm in
U \ {∞} and the limits of the poles of the classical Padé approximants Rn,m

of f̂ are λ1, . . . , λm, as n → ∞. This implies (a).
Now, we prove that (a) implies (b) using Lemma 3.3. Assume that the

zeros of Qn,m (where f̂ is the approximated function) have limits λ1, . . . ,
λm, as n → ∞. Define, for w ∈ U,

α̃n(w) := w−mQn,m(w),(46)
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η̃n,j(w) := wj , j = 0, . . . ,m− 1.(47)

Then,

α̃(w) := lim
n→∞

α̃n(z) = w−m
m
∏

j=1

(w − λj),

η̃j(w) = wj , j = 0, . . . ,m− 1,

uniformly on each compact subset of U \ {∞}. By the definition of Qn,m(w),
it follows that, for ε > 0 sufficiently small so that f(w) is holomorphic on
γ1+ε and for n sufficiently large,

(fα̃nη̃n,j)n = (f̂ α̃nη̃n,j)n =
1

2πi

∫

γ1+ε

f̂(w)Qn,m(w)

wm−j+n+1
dw = 0, j = 0, . . . ,m− 1.

We can easily check the rest of the conditions required in Lemma 3.3 for
α̃n(w) and η̃n,j(w), so we can apply the equality (44) in Lemma 3.3.

Next, set

(48) Q̃n,m(z) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cn�F, pn�µ cn�zF, pn�µ · · · cn�z
mF, pn�µ

cn�zF, pn�µ cn�z
2F, pn�µ · · · cn�z

m+1F, pn�µ
...

... · · ·
...

cn�z
m−1F, pn�µ cn�z

mF, pn�µ · · · cn�z
2m−1F, pn�µ

1 z · · · zm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that the polynomials Q̃n,m(z) satisfy

(49) �zkQ̃n,mF, pn�µ = 0, k = 0, . . . ,m− 1,

and if we show that Λµ
n,m(F ) �= 0 (the leading coefficient of Q̃n,m(z)/cmn ),

which will be verified at the end of this proof, then Qµ
n,m(z) is unique and

Qµ
n,m(z) =

Q̃n,m(z)

Λµ
n,m(F )cmn

.

Using Cauchy’s integral formula and Fubini’s theorem, for ε > 0 sufficiently
small so that F (z) is holomorphic on D1+ε, for ℓ = 0,1, . . . , 2m− 1, we have

cn�z
ℓF, pn�µ = cn

∫

1

2πi

∫

Γ1+ε

ζℓF (ζ)

ζ − z
dζpn(z) dµ(z)

=
cn
2πi

∫

Γ1+ε

ζℓF (ζ)

∫

pn(z)

ζ − z
dµ(z) dζ =

cn
2πi

∫

Γ1+ε

ζℓF (ζ)sn(ζ) dζ
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=
cn
2πi

∫

γ1+ε

Ψℓ(w)f(w)sn(Ψ(w))Ψ′(w) dw = (fhnΨ
ℓ)n.

Computing the determinant in (48) by expanding along the last row and
applying the previous formula, we obtain

(50) Q̃n,m(z) =
m
∑

k=0

(−1)m+kzk det[(fKn,tLn,r)n]t=1,...,m, r=1,...,k,k+2,...,m+1,

where

Kn,t(w) := Ψt−1(w)hn(w), t = 1, . . . ,m,

Ln,r(w) := Ψr−1(w), r = 1, . . . ,m+ 1.

Moreover, all the functionsKn,t(w) and Ln,r(w), are holomorphic in U \ {∞},
and

Kt(w) := lim
n→∞

Kn,t(w) = Ψt−1(w)h(w), t = 1, . . . ,m,

Lr(w) := Ψr−1(w), r = 1, . . . ,m+ 1,

uniformly on each compact subset of U \ {∞}. By Lemma 3.3 and (50), we
have that λ1, . . . , λm ∈ T0,m(f) and

lim
n→∞

Q̃n,m(z)

det[fn−i−j]i,j=0,1,...,m−1
(51)

= lim
n→∞

m
∑

k=0

(−1)m+kzk
det[(fKn,tLn,r)n]t=1,...,m, r=1,...,k,k+2,...,m+1

det[fn−i−j]i,j=0,1,...,m−1

=
m
∑

k=0

(−1)m+kzk
det[Kr(λt)]t,r=1,...,m det[Lr(λt)]t=1,...,m, r=1,...,k,k+2,...,m+1

W 2(λ1, λ2, . . . , λm)

=
det[Kr(λt)]r,t=1,2,...,m

W 2(λ1, λ2, . . . , λm)

∣

∣

∣

∣

∣

∣

∣

∣

1 Ψ(λ1) · · · Ψm(λ1)
...

...
...

...
1 Ψ(λm) · · · Ψm(λm)
1 z · · · zm

∣

∣

∣

∣

∣

∣

∣

∣

=
m
∏

t=1

h(λt)
∏

1≤i<j≤m

(

Ψ(λj)−Ψ(λi)

λj − λi

)2

zm + . . . ,

where W (λ1, λ2, . . . , λm) = det[λr−1
t ]t,r=1,...,m is the Vandermonde determi-

nant of the numbers λ1, . . . , λm. Since the degree of the polynomial in the
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last expression is m, the degree of Q̃n,m(z) is m for all n sufficiently large.

Thus Λµ
n,m(F ) �= 0 and Qµ

n,m(z) = Q̃n,m(z)/(Λµ
n,m(F )cmn ). Moreover, the ze-

ros of the polynomial in the second last equality are ξ1, . . . , ξm, so the zeros
of Q̃n,m(z) (and Qµ

n,m(z)) converge to ξ1, . . . , ξm, as n → ∞. �

Proof of Theorem 2.8. First of all, we prove that (b) implies (a)
using Lemma 3.4. We assume that the zeros of QE

n,m(z) have limits ξ1, . . . ,
ξm, as n → ∞. For w ∈ U , we define

αn(w) := w−mQE
n+m,m(Ψ(w)), ηn,j(w) := Ψj(w), j = 0, . . . ,m− 1.

The functions αn(w) and w−jηn,j(w) = w−jΨj(w), j = 1, . . . ,m− 1, are
holomorphic in U , and

α(w) := lim
n→∞

αn(w) = w−m
m
∏

j=1

(Ψ(w)− ξj),

ηj(w) := lim
n→∞

ηn,j(w) = Ψj(w), j = 0, 1, . . . ,m− 1,

uniformly on each compact subset of U \ {∞}. Then, α(w) has at most m
zeros in U \ {∞}. By the definition of QE

n,m, we have, for ε > 0 sufficiently

small so that F (z) is analytic on D1+ε, and for j = 0, . . . ,m− 1,

(fαnηn,j)n =
1

2πi

∫

γ1+ε

Ψj(w)F (Ψ(w))QE
n+m,m(Ψ(w))

wn+m+1
dw

=
1

2πi

∫

Γ1+ε

tjF (t)QE
n+m,m(t)Φ

′(t)

Φn+m+1(t)
dt = [zjFQE

n+m,m]n+m = 0,

where we recall that γr := {w ∈ C : |w| = r}. Therefore, the assumptions of
Lemma 3.4 are satisfied. If the regular part of f(w) is a rational function
with at most m− 1 poles, then F (z) is a rational function with at most
m− 1 poles which implies that ΛE

n,m(F ) = 0 for n sufficiently large. This

is impossible because deg(QE
n,m) = m, for n sufficiently large. Therefore, by

Lemma 3.4, α(w) has precisely m zeros λ1, . . . , λm in U \ {∞} and the

limits of the poles of the classical Padé approximants Rn,m of f̂ are λ1, . . . ,
λm, as n → ∞. This implies (a).

Now, we prove that (a) implies (b) using Lemma 3.3. Assume that the

zeros of Qn,m (where f̂ is the approximated function) have limits λ1, . . . ,
λm, as n → ∞. Define α̃n(w) and η̃n,j(w), j = 0, . . . ,m− 1, as in (46) and
(47), respectively. Applying exactly the same argument, we can check the
conditions required in Lemma 3.3 for α̃n(w) and η̃n,j(w), so we can apply
the equality (44) in Lemma 3.3.
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Now, set

(52) Q̃n,m(z) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[F ]n [zF ]n · · · [zmF ]n
[zF ]n [z2F ]n · · · [zm+1F ]n

...
... · · ·

...
[zm−1F ]n [zmF ]n · · · [z2m−1F ]n

1 z · · · zm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that the polynomials Q̃n,m(z) satisfy

(53) [zkQ̃n,mF ]n = 0, k = 0, . . . ,m− 1,

and if we show that ΛE
n,m(F ) �= 0 (the leading coefficient of Q̃n,m(z)), which

will be verified at the end of this proof, then QE
n,m(z) is unique and

QE
n,m(z) =

Q̃n,m(z)

ΛE
n,m(F )

.

For ε > 0 sufficiently small so that F (z) is holomorphic on D1+ε, for ℓ =
0, 1, . . . , 2m− 1, we have

[zℓF ]n =
1

2πi

∫

Γ1+ε

tℓF (t)Φ′(t)

Φn+1(t)
dt =

1

2πi

∫

γ1+ε

Ψℓ(w)f(w)

wn+1
dw = (Ψℓf)n.

Computing the determinant in (52) by expanding along the last row and
applying the previous formula, we obtain

(54) Q̃n,m(z) =
m
∑

k=0

(−1)m+kzk det
[

(fKn,tLn,r)n
]

t=1,...,m, r=1,...,k,k+2,...,m+1
,

where

Kn,t(w) := Ψt−1(w), t = 1, . . . ,m,

Ln,r(w) := Ψr−1(w), r = 1, . . . ,m+ 1.

Clearly, all the functions Kn,t(w) and Ln,r(w), are holomorphic in U \ {∞},
and

Kt(w) := Ψt−1(w), t = 1, . . . ,m,

Lr(w) := Ψr−1(w), r = 1, . . . ,m+ 1,
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for all w ∈ U \ {∞}. Applying Lemma 3.3 and (54), we have that λ1, . . . , λm

∈ T0,m(f) and the same line of reasoning used to derive (51) implies that

lim
n→∞

Q̃n,m(z)

det[fn−i−j]i,j=0,1,...,m−1

=
W (Ψ(λ1),Ψ(λ2), . . . ,Ψ(λm))

W 2(λ1, λ2, . . . , λm)

∣

∣

∣

∣

∣

∣

∣

∣

1 Ψ(λ1) · · · Ψm(λ1)
...

...
...

...
1 Ψ(λm) · · · Ψm(λm)
1 z · · · zm

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤m

(Ψ(λj)−Ψ(λi)

λj − λi

)2
zm + · · · .

Since the degree of the polynomial in the last expression is m, the de-
gree of Q̃n,m(z) is m for all n sufficiently large. Thus ΛE

n,m(F ) �= 0 and

QE
n,m(z) = Q̃n,m(z)/ΛE

n,m(F ). Moreover, the zeros of the polynomial in the

second equality are ξ1, . . . , ξm, so the zeros of Q̃n,m(z) (and QE
n,m(z)) con-

verge to ξ1, . . . , ξm, as n → ∞. �

Acknowledgement. I wish to express my gratitude toward the anony-
mous referee for careful reading, helpful comments, and suggestions leading
to improvements of this work. I also want to thank Prof. Guillermo López
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[1] N. Bosuwan, G. López Lagomasino and E. B. Saff, Determining singularities using
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Math. Sb., 200 (2009), 39–106.

[6] J. H. Curtiss, Faber polynomials and the Faber series, Amer. Math. Monthly , 78

(1971), 577–596.
[7] A. A. Gonchar, Poles of rows of the Padé table and meromorphic continuation of
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1 Introduction

Let E be a compact subset of the complex plane C such that C \ E is simply
connected and E contains more than one point. It is convenient to assume that
0 ∈ E and this can be done, if necessary, without loss of generality making a
change of variables. By the Riemann mapping theorem, there exists a unique
exterior conformal mapping Φ from C \ E onto C \ {w ∈ C : |w| ≤ 1} satisfying
Φ(∞) = ∞ and Φ′(∞) > 0. For any ρ > 1, we define

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

as the level curve of index ρ and the canonical domain of index ρ, respectively.
We denote by ρ0(F ) the index ρ > 1 of the largest canonical domain Dρ to which
F can be extended as a holomorphic function, and by ρm(F ) the index ρ > 1 of
the largest canonical domain Dρ to which F can be extended as a meromorphic
function with at most m poles (counting multiplicities). We denote by

Dρ∞(F ) :=

∞∪
m=0

Dρm(F )

the maximum canonical domain in which F can be continued to a meromorphic
function.

The Faber polynomial of E of degree n is defined by the formula

Φn(z) :=
1

2πi

∫
Γρ

Φn(t)

t− z
dt, z ∈ Dρ, n = 0, 1, 2, . . . .

Denote by H(E) the space of all functions holomorphic in some neighborhood of
E. The n-th Faber coefficient of F ∈ H(E) with respect to Φn is given by

[F ]n :=
1

2πi

∫
Γρ

F (t)Φ′(t)

Φn+1(t)
dt,

where 1 < ρ < ρ0(F ). Denote by N the set of all positive integers. Set N0 :=
N ∪ {0}.

The definition of Padé-Faber approximants (first introduced in [1]) is stated
below.

Definition 1.1. Let F ∈ H(E) and (n,m) ∈ N × N be fixed. Then, there exist
polynomials qEn,m, pEn,m,k, k = 0, 1, . . . ,m− 1 such that

deg(pEn,m,k) ≤ n− 1, deg(qEn,m) ≤ m, qEn,m ̸≡ 0, (1.1)

[zkqEn,mF − pEn,m,k]j = 0, j = 0, 1, 2, . . . , n. (1.2)

For each k = 0, 1, . . . ,m− 1, the rational function

RE
n,m,k :=

pEn,m,k

qEn,m

is called an (n,m, k) Padé-Faber approximant of F .
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To solve for ordered pairs (pEn,m,k, q
E
n,m), we need to find nm+m+1 unknown

coefficients in (1.1) from nm+m linear equations in (1.2). Then, RE
n,m,k always ex-

ist but they may not be unique. Moreover, since qEn,m ̸≡ 0, we normalize it to have
leading coefficient equal to 1. Note that the definition of Padé-Faber approximants
in Definition 1.1 is totally different from the definition of “classical” Padé-Faber
approximants (see, e.g. [2]). Since this new definition of Padé-Faber approximants
was recently introduced, there are only two publications [1, 3] studying this ap-
proximation. In [1], Bosuwan and López gave necessary and sufficient conditions
for the convergence with geometric rate of {qEn,m}n∈N (when m is fixed), namely,
proving the analogue of the Montessus de Ballore-Gonchar theorem for Padé-Faber
approximants on row sequences (see [1, Corollary 1.6]). Later, Bosuwan [3] further
studied the convergence of zeros of {qEn,m}n∈N (when m is fixed). These two results

show that the zeros of {qEn,m}n∈N can be used to detect the location of the poles
of the approximated function F ∈ H(E).

Next, let us introduce a concept of convergence in Hausdorff content. Let B
be a subset of the complex plane C. By U(B), we denote the class of all coverings
of B by at most a numerable set of disks. Let β > 0 and set

hβ(B) := inf


∞∑
j=1

|Uj |β : {Uj} ∈ U(B)

 ,

where |Uj | stands for the radius of the disk Uj . The quantity hβ(B) is called the
β-dimensional Hausdorff content of the set B. This set function is not a measure
but it is subadditive and monotonic. Clearly, if B is a disk, then hβ(B) = |B|β .

Definition 1.2. Let {gn}n∈N be a sequence of complex valued functions defined
on a domain D ⊂ C and g be another complex function defined on D. We say that
{gn}n∈N converges in β-dimensional Hausdorff content to the function g inside D
if for every compact subset K of D and for each ε > 0, we have

lim
n→∞

hβ{z ∈ K : |gn(z)− g(z)| > ε} = 0.

Such a convergence will be denoted by hβ-limn→∞ gn = g in D.

The objective of this paper is to investigate a convergence in Hausdorff con-
tent of the sequences of Padé-Faber approximants RE

n,mn,k
as n → ∞ when the

sequences {mn}n∈N satisfy

lim
n→∞

mn lnn

n
= 0. (1.3)

This type of sequences of indices {(n,mn)}n∈N when {mn}n∈N satisfy the limit
(1.3) was first considered by Gonchar [4] for Padé (α, β)-approximants. In the
current paper, we prove many results analogous to those in the paper by Gonchar
(see Theorem 2, Corollary 1, and Corollary 2 in [4]). As a consequence of our
main theorem in this paper, we give an alternative proof of a Montessus de Ballore
type theorem for row sequences of Padé-Faber approximants which was originally



Convergence in Hausdorff Content of Padé-Faber Approximants 275

proved in [1]. Note that the normalization of qEn,m introduced in the next section
is different from the one in [1].

An outline of the paper is as follows. In section 2, we state the main theorem
and its corollaries. All auxiliary lemmas are in section 3. Section 4 is devoted to
the proofs of all results in section 2.

2 Main Results

An analogue of Theorem 2 in [4] is the following theorem. This theorem
constitutes our main result.

Theorem 2.1. Let ρ > 1, F ∈ H(E) be meromorphic in Dρ. Assume that

m∗ := lim inf
n→∞

mn ≥ dk (2.1)

and

lim
n→∞

mn lnn

n
= 0, (2.2)

where k is a fixed number in {0, 1, . . . ,m∗−1} and dk denotes the number of poles
of zkF in Dρ. Then, for any β > 0, each sequence {RE

n,mn,k
}n∈N converges in

β-dimensional Hausdorff content to zkF inside Dρ as n → ∞.

One of the consequences of Theorem 2.1 is a Montessus de Ballore type theorem
for Padé-Faber approximants stated below.

Corollary 2.2. Let k ∈ {0, 1, . . . ,m− 1} be fixed. Suppose that zkF ∈ H(E) has
poles of total multiplicity exactly m in Dρm(zkF ) at the (not necessarily distinct)

points λ1, λ2, . . . , λm. Then, RE
n,m,k is uniquely determined for all sufficiently large

n and the sequence {RE
n,m,k}n∈N converges uniformly to zkF inside Dρm(zkF ) \

{λ1, λ2, . . . , λm} as n → ∞. Moreover, for any compact subset K of Dρm(zkF ) \
{λ1, λ2, . . . , λm},

lim sup
n→∞

∥zkF −RE
n,m,k∥

1/n
K ≤ ∥Φ∥K

ρm(zkF )
,

where ∥ · ∥K denotes the sup-norm on K and if K ⊂ E, then ∥Φ∥K is replaced by
1.

Here and in what follows, the phrase “uniformly inside a domain” means “uni-
formly on each compact subset of the domain”.

The following corollary is an analogue of Corollary 2 in [4].

Corollary 2.3. Let k ∈ N0 be fixed and F ∈ H(E). Denote by Dρ∞(zkF ) the max-

imal canonical domain in which zkF can be continued to a meromorphic function.
Assume that

lim
n→∞

mn = ∞ and lim
n→∞

mn lnn

n
= 0.

Then, for any β > 0, each sequence {RE
n,mn,k

}n∈N converges in β-dimensional

Hausdorff content to zkF inside Dρ∞(zkF ) as n → ∞.
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3 Notation and Auxiliary Results

For each n ∈ N, let QE
n,mn

be the polynomial qEn,mn
normalized in terms of its

zeros λn,j so that

QE
n,mn

(z) :=
∏

|λn,j |≤1

(z − λn,j)
∏

|λn,j |>1

(
1− z

λn,j

)
(3.1)

and for all k = 0, 1, . . . ,mn − 1,

RE
n,mn,k =

pEn,mn,k

qEn,mn

=
PE
n,mn,k

QE
n,mn

.

Now, we discuss some upper and lower estimates on the normalized QE
n,mn

in (3.1). Let ε > 0, d ∈ N, k ∈ N0, and F ∈ H(E) be fixed. Suppose that
the poles of zkF in Dρd(zkF ) are λ1, λ2, . . . , λd′ (they are not necessarily distinct

and d′ ≤ d) and the zeros of QE
n,mn

for F are λn,1, λn,2, . . . , λn,lmn
(they are not

necessarily distinct and lmn
≤ mn). We would like to emphasize that since 0 ∈ E,

for any k ∈ N0, Dρd(zkF ) = Dρd(F ) and λ1, λ2, . . . , λd′ are exactly all the poles of

F in Dρd(F ). We cover each pole of zkF in Dρd(zkF ) with an open disk of radius

(ε/(6d))1/β and denote by Jβ
0,ε(F, d) the union of these disks. For each n ∈ N, we

cover each zero of QE
n,mn

with an open disk of radius (ε/(6mnn
2))1/β and denote

by Jβ
n,ε(F ) the union of these disks. Set for each ℓ ∈ N,

Jβ
ε (F, d; ℓ) := Jβ

0,ε(F, d)
∪( ∞∪

n=ℓ

Jβ
n,ε(F )

)
(3.2)

and

Jβ
ε (F, d) := Jβ

ε (F, d; 1).

Using the monotonicity and subadditivity of hβ , we have

hβ(J
β
ε (F, d)) ≤ hβ(J

β
0,ε(F, d)) +

∞∑
n=1

hβ(J
β
n,ε(F ))

≤ ε

6
+

∞∑
n=1

ε

6n2
= ε

(
1

6
+

π2

62

)
< ε.

Note that Jβ
ε1(F, d) ⊂ Jβ

ε2(F, d) for ε1 < ε2. For any set B ⊂ Dρd(zkF ), we put

B(ε) := B \Jβ
ε (F, d). Clearly, if {gn}n∈N converges uniformly to g on K(ε) for any

compact K ⊂ Dρd(F ) and ε > 0, then hβ-limn→∞ gn = g in Dρd(zkF ).

The normalization of QE
n,mn

provides the following useful upper and lower

bounds on the estimation of QE
n,mn

.
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Lemma 3.1. Fix k ∈ N0 and d ∈ N. Let F ∈ H(E), K ⊂ Dρd(zkF ) be a compact
set, ε > 0 be fixed, and ℓ ∈ N be fixed. Suppose that

lim inf
n→∞

mn ≥ d′,

where d′ is the total multiplicity of poles of zkF in Dρd(zkF ), and

lim
n→∞

mn lnn

n
= 0.

Then, there exist constants C1 > 0 and C2 > 0 independent of n such that for all
sufficiently large n,

∥QE
n,mn

∥K ≤ Cmn
1 , (3.3)

where ∥ · ∥K is the sup-norm on K and

min
z∈K\Jβ

ε (F,d;ℓ)
|QE

n,mn
(z)| ≥ (C2mnn

2)−2mn/β , (3.4)

where the above inequality is meaningful when K \ Jβ
ε (F, d; ℓ) is a nonempty set.

Proof of Lemma 3.1. Without loss of generality, we assume that K is a nonempty
compact subset of Dρd(zkF ). Moreover, it is easy to check that if K = {0}, the
inequalities (3.3) and (3.4) hold. Then, we can assume further that K ̸= {0} and
set M := ∥z∥K > 0. Therefore, there exists S ∈ N such that SM > 1. From the
normalization of QE

n,mn
,

∥QE
n,mn

∥K = max
z∈K

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

|λn,j |>1

(
1− z

λn,j

)∣∣∣∣∣∣ ≤ (M + 1)mn

and for z ∈ K \ Jβ
ε (F, d; ℓ) and n ≥ ℓ,

|QE
n,mn

(z)| =

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

|λn,j |>1

(
1− z

λn,j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

1<|λn,j |≤SM

(
1− z

λn,j

) ∏
|λn,j |>SM

(
1− z

λn,j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

|λn,j |≤1

(z − λn,j)
∏

1<|λn,j |≤SM

(
λn,j − z

λn,j

) ∏
|λn,j |>SM

(
1− z

λn,j

)∣∣∣∣∣∣
≥

∏
|λn,j |≤1

(
ε

6mnn2

)1/β ∏
1<|λn,j |≤SM

[(
ε

6mnn2

)1/β
1

SM

] ∏
|λn,j |>SM

(
1− 1

S

)
.

(3.5)



278 Thai J. Math. (Special Issue, 2019)/ W. Chonlapap and N. Bosuwan

Since (ε/(6mnn
2))1/β → 0 as n → ∞, it is easy to see that for n sufficiently large,(

1− 1

S

)
≥
(

ε

6mnn2

)1/β

and
1

SM
≥
(

ε

6mnn2

)1/β

.

Therefore, there exists a constant C2 > 0 such that the expression in (3.5) is
greater than (C2mnn

2)−(2mn/β). This completes the proof.

Next, the following lemma (see, e.g., [5]) concerns the formula for computing
ρ0(F ) and the domain of convergence of Faber polynomial expansions of holomor-
phic functions.

Lemma 3.2. Let F ∈ H(E). Then,

ρ0(F ) =

(
lim sup
n→∞

|[F ]n|1/n
)−1

.

Moreover, the series
∑∞

n=0[F ]nΦn converges to F uniformly inside Dρ0(F ).

As a consequence of Lemma 3.2 and Definition 1.1, if F ∈ H(E), then for any
k = 0, 1, . . . ,mn,

zkQE
n,mn

(z)F (z)− PE
n,mn,k(z) =

∞∑
ℓ=n+1

[zkQE
n,mn

F ]ℓ Φℓ(z), z ∈ Dρ0(zkF ),

(3.6)

and PE
n,mn,k

=
∑n−1

ℓ=0 [z
kQE

n,mn
F ]ℓ Φℓ are uniquely determined by QE

n,mn
.

The next lemma (see [6, p. 43] or [7, p. 583] for its proof) gives an estimate
of Faber polynomials Φn on a level curve.

Lemma 3.3. Let ρ > 1 be fixed. Then, there exists c > 0 such that

∥Φn∥Γρ ≤ cρn, n ≥ 0. (3.7)

Indeed, by the maximum modulus principle, the inequalities in (3.7) can be
replaced by the inequalities

∥Φn∥Dρ
≤ cρn, n ≥ 0, (3.8)

which are used frequently in this paper.
The following lemma is about the uniqueness of QE

n,m (and qEn,m).

Lemma 3.4. Let (n,m) ∈ N×N be fixed. Assume that for all qEn,m in Definition

1.1, deg(qEn,m) = m. Then, qEn,m is unique.

Proof of Lemma 3.4. Let (n,m) ∈ N×N be fixed. From (1.1) and (1.2) in Defini-
tion 1.1, it is easy to check that a polynomial cmzm+cm−1z

m−1+ . . .+c0 is qEn,m if
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and only if cmzm+cm−1z
m−1+. . .+c0 is monic and the constants cm, cm−1, . . . , c0

must satisfy the following equation
[zmF ]n [zm−1F ]n . . . [F ]n

[zm+1F ]n [zmF ]n . . . [zF ]n
...

... . . .
...

[z2m−1F ]n [z2m−2F ]n . . . [zm−1F ]n




cm
cm−1

...
c0

 =


0
0
...
0

 . (3.9)

For contradiction, let us suppose that there are distinct polynomials q̂ = zm+
ĉm−1z

m−1 + ĉm−2z
m−2 + . . .+ ĉ0 and q̃ = zm + c̃m−1z

m−1 + c̃m−2z
m−2 + . . .+ c̃0

satisfying (3.9). Let q̌ be the polynomial q̂ − q̃ normalized to be monic. Clearly,
deg(q̌) < m and q̌ ̸≡ 0 is a monic polynomial where all coefficients satisfying
(3.9). Therefore, q̌ is qEn,m. This contradicts with the assumption that for all qEn,m,

deg(qEn,m) = m.

The final lemma proved by Gonchar (see [4, Lemma 1]) allows us to derive
uniform convergence on compact subsets of the region under consideration from
convergence in h1-content under appropriate assumptions.

Lemma 3.5. Suppose that h1-limn→∞ gn = g in D. Then the following assertions
hold true:

(i) If the functions gn, n ∈ N, are holomorphic in D, then the sequence {gn}n∈N
converges uniformly inside D and g is holomorphic in D.

(ii) If each of the functions gn is meromorphic in D and has no more than
k < +∞ poles in this domain, then the limit function g is also meromorphic
and has no more than k poles in D.

(iii) If each function gn is meromorphic and has no more than k < +∞ poles
in D and the function g is meromorphic and has exactly k poles in D,
then all gn, n ≥ N, also have k poles in D; the poles of gn tend to the poles
λ1, λ2, . . . , λk of g (taking account of their orders) and the sequence {gn}n∈N
tends to g uniformly inside the domain D′ = D \ {λ1, λ2, . . . , λk}.

4 Proofs of main results

Proof of Theorem 2.1. Let k ∈ {0, 1, . . . ,m∗ − 1} be fixed and d be the number
of poles of zkF (counting multiplicities) in Dρ (particularly, in Dρd(zkF )). For

j = 1, 2, . . . , γ, let αj be a distinct pole of zkF in Dρd(zkF ), and τj be the order of
αj . Note that since 0 ∈ E, Dρd(zkF ) = Dρd(F ) and α1, α2, . . . , αγ are all the poles
of F in Dρd(F ) with orders τ1, τ2, . . . , τγ , respectively.

In the first step, we want to show that for each j = 1, 2, . . . , γ,

lim sup
n→∞

|(QE
n,mn

)(u)(αj)|1/n ≤ |Φ(αj)|
ρd(F )

, (4.1)
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where u = 0, 1, . . . , τj − 1. This can be done by induction. Let j ∈ {1, 2, . . . , γ} be
fixed. Define

ωd(z) :=

γ∏
j=1

(z − αj)
τj ,

where d =
∑γ

j=1 τj ,

Gℓ(z) :=
ωd(z)F (z)

(z − αj)ℓ
, and Hℓ(z) := (z − αj)

ℓGℓ(z),

where ℓ = 1, 2, . . . , τj . Note that Hℓ(αj) ̸= 0 for all ℓ = 1, 2, . . . , τj . By Definition
1.1, since deg(ωd/(z − αj)

ℓ) = d− ℓ ≤ mn − 1, it is not difficult to check that

a(ℓ)n,n := [GℓQ
E
n,mn

]n =
1

2πi

∫
Γρ1

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz = 0, (4.2)

where 1 < ρ1 < |Φ(αj)|. Define

τ (ℓ)n,n :=
1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz,

where |Φ(αj)| < ρ2 < ρd(F ).
Because G1Q

E
n,mn

Φ′/Φn+1 is meromorphic on {z ∈ C : ρ1 ≤ |z| ≤ ρ2} and
has a pole at αj of order at most 1, it follows from Cauchy’s Residue theorem to
G1Q

E
n,mn

Φ′/Φn+1 at αj that

1

2πi

∫
Γρ2

G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz − 1

2πi

∫
Γρ1

G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

= res
(
G1Q

E
n,mn

Φ′/Φn+1, αj

)
= lim

z→αj

(z − αj)G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)

=
H1(αj)Q

E
n,mn

(αj)Φ
′(αj)

Φn+1(αj)
. (4.3)

From (4.2) and (4.3), we have

1

2πi

∫
Γρ2

G1(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz =

H1(αj)Q
E
n,mn

(αj)Φ
′(αj)

Φn+1(αj)
, (4.4)

and by Lemma 3.1, we know that for all ℓ = 1, 2, . . . , τj ,∣∣∣∣∣ 1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

∣∣∣∣∣ ≤ c1c
mn

ρn2
, (4.5)
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where the numbers c and c1 do not depend on n (from now on, we will denote
some constants that do not depend on n by c2, c3, c4, . . .). By (4.4) and (4.5), we
obtain

|QE
n,mn

(αj)| ≤
c2c

mn |Φ(αj)|n

ρn2
.

Letting ρ2 → ρd(F ), it is easy to check that

lim sup
n→∞

|QE
n,mn

(αj)|1/n ≤ |Φ(αj)|
ρd(F )

.

Next, we suppose that the inequality (4.1) is true for u = 0, 1, . . . , ℓ−2, where
ℓ = 2, 3, . . . , τj , and we will show that the inequality (4.1) holds for ℓ − 1. Since
GℓQ

E
n,mn

Φ′/Φn+1 is meromorphic on {z ∈ C : ρ1 ≤ |z| ≤ ρ2} and has poles at αj

of order at most ℓ, it follows from Cauchy’s Residue theorem to GℓQ
E
n,mn

Φ′/Φn+1

at αj that

τ (ℓ)n,n − a(ℓ)n,n =
1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz − 1

2πi

∫
Γρ1

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

= res
(
GℓQ

E
n,mn

Φ′/Φn+1, αj

)
=

1

(ℓ− 1)!
lim

z→αj

(
(z − αj)

ℓGℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)

)(ℓ−1)

.

Using (4.2) and the Leibniz formula, we have

τ (ℓ)n,n =
1

(ℓ− 1)!

ℓ−1∑
t=0

(
ℓ− 1

t

)(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)(Q
E
n,mn

)(t)(αj).

Consequently,

(QE
n,mn

)(ℓ−1)(αj) =(ℓ− 1)!τ (ℓ)n,n

(
Φn+1

HℓΦ′

)
(αj)

−
ℓ−2∑
t=0

(
ℓ− 1

t

)(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)(Q
E
n,mn

)(t)(αj)

(
Φn+1

HℓΦ′

)
(αj).

(4.6)

Let δ > 0 such that ρ2 := ρd(F )− δ > |Φ(αj)|. Moreover, by (4.5),

|τ (ℓ)n,n| =

∣∣∣∣∣ 1

2πi

∫
Γρ2

Gℓ(z)Q
E
n,mn

(z)Φ′(z)

Φn+1(z)
dz

∣∣∣∣∣ ≤ c1c
mn

ρn2
, (4.7)

and by Cauchy’s integral formula, for all t = 0, 1, . . . , ℓ− 2,∣∣∣∣∣
(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)

∣∣∣∣∣ =
∣∣∣∣∣ (ℓ− 1− t)!

2πi

∫
|z−αj |=ε

Hℓ(z)Φ
′(z)

(z − αj)ℓ−tΦn+1(z)
dz

∣∣∣∣∣
≤ c2

(|Φ(αj)| − δ)n
, (4.8)
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where {z ∈ C : |z − αj | = ε} ⊂ {z ∈ C : |Φ(z)| > |Φ(αj)| − δ}. From (4.7) and
(4.8), the equality (4.6) implies that

lim sup
n→∞

|(QE
n,mn

)(ℓ−1)(αj)|1/n

= lim sup
n→∞

∣∣∣∣(ℓ− 1)!τ (ℓ)n,n

(
Φn+1

HℓΦ′

)
(αj)

−
ℓ−2∑
t=0

(
ℓ− 1

t

)(
HℓΦ

′

Φn+1

)(ℓ−1−t)

(αj)(Q
E
n,mn

)(t)(αj)

(
Φn+1

HℓΦ′

)
(αj)

∣∣∣∣∣
1/n

≤ max

{
|Φ(αj)|

ρ2
,

(
|Φ(αj)|
ρd(F )

)(
|Φ(αj)|

|Φ(αj)| − δ

)}
.

Letting δ → 0, we obtain the inequality

lim sup
n→∞

|(QE
n,mn

)(ℓ−1)(αj)|1/n ≤ |Φ(αj)|
ρd(F )

.

Therefore, we have the inequality (4.1) for all u = 0, 1, . . . , τj − 1.
From (3.6), we obtain

zkQE
n,mn

F − PE
n,mn,k =

∞∑
ℓ=n+1

a
(k)
ℓ,nΦℓ, (4.9)

where
a
(k)
ℓ,n := [zkQE

n,mn
F ]ℓ.

Multiplying the equation (4.9) by ωd and expanding the result in terms of Faber
polynomial expansion, we have

zkωdQ
E
n,mn

F − ωdP
E
n,mn,k =

∞∑
ℓ=n+1

a
(k)
ℓ,nωdΦℓ =

∞∑
ν=0

b(k)ν,nΦν

=

n+d∑
ν=0

b(k)ν,nΦν +

∞∑
ν=n+d+1

b(k)ν,nΦν , (4.10)

where b
(k)
ν,n :=

∑∞
ℓ=n+1 a

(k)
ℓ,n[ωdΦℓ]ν or b

(k)
ν,n := [zkωdQ

E
n,mn

F − ωdP
E
n,mn,k

]ν .
Let K be a compact subset of Dρd(zkF ) and set

σ := max{||Φ||K , 1}

(σ = 1 when K ⊂ E). Next, we will estimate
∑∞

ν=n+d+1 |b
(k)
ν,n||Φν(z)| on Dσ.

Since deg(ωdP
E
n,mn,k

) < d+ n, for all ν ≥ n+ d+ 1,

b(k)ν,n := [zkωdQ
E
n,mn

F − ωdP
E
n,mn,k]ν = [zkωdQ

E
n,mn

F ]ν
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=
1

2πi

∫
Γρ2

zkωd(z)Q
E
n,mn

(z)F (z)Φ′(z)

Φν+1(z)
dz,

where σ < ρ2 < ρd(z
kF ). From Lemma 3.1, for sufficiently large n, it is easy to

see that

|b(k)ν,n| ≤
c3c

mn

ρν2
. (4.11)

By (3.8) and (4.11), we get∥∥∥∥∥
∞∑

ν=n+d+1

|b(k)ν,n||Φν |

∥∥∥∥∥
Dσ

≤
∞∑

ν=n+d+1

(
c3c

mn

ρν2

)
(c4σ

ν) = c5c
mn

(
σ

ρ2

)n

. (4.12)

Consequently, as ρ2 → ρd(z
kF ), we have

lim sup
n→∞

wwwww
∞∑

ν=n+d+1

|b(k)ν,n||Φν |

wwwww
1/n

Dσ

≤ σ

ρd(zkF )
. (4.13)

Now, we find the estimate of
∑n+d

ν=0 |b
(k)
ν,n||Φν(z)| on Dσ. By Definition 1.1, we

know

a
(k)
ℓ,n :=

1

2πi

∫
Γρ1

zkQE
n,mn

(z)F (z)Φ′(z)

Φℓ+1(z)
dz,

where 1 < ρ1 < ρ0(z
kF ), and we define

τ
(k)
ℓ,n :=

1

2πi

∫
Γρ2

zkQE
n,mn

(z)F (z)Φ′(z)

Φℓ+1(z)
dz, (4.14)

where ρd−1(z
kF ) < ρ2 < ρd(z

kF ). Because zkQE
n,mn

FΦ′/Φℓ+1 is meromorphic
on {z ∈ C : ρ1 ≤ |z| ≤ ρ2} and has poles at α1, α2, . . . , αd of orders at most
τ1, τ2. . . . , τd, respectively, it follows from Cauchy’s Residue theorem that

τ
(k)
ℓ,n − a

(k)
ℓ,n =

γ∑
j=1

res

(
zkQE

n,mn
(z)F (z)Φ′(z)

Φℓ+1(z)
, αj

)

=

γ∑
j=1

1

(τj − 1)!
lim

z→αj

(
(z − αj)

τjzkQE
n,mn

(z)F (z)Φ′(z)

Φℓ+1(z)

)(τj−1)

=

γ∑
j=1

1

(τj − 1)!

τj−1∑
u=0

(
τj − 1

u

)(
(z − αj)

τjzkFΦ′

Φℓ+1

)(τj−1−u)

(αj)(Q
E
n,mn

)(u)(αj).

(4.15)
Let δ > 0. By computations similar to (4.7) and (4.8), we have

|τ (k)ℓ,n | ≤
c6c

mn

ρℓ2
(4.16)
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and ∣∣∣∣∣
(
(z − αj)

τjzkFΦ′

Φℓ+1

)(τj−1−u)

(αj)

∣∣∣∣∣ ≤ c7
(|Φ(αj)| − δ)ℓ

. (4.17)

Moreover, the inequalities (4.1) imply that for all u = 0, 1, . . . , τj − 1,

|(QE
n,mn

)(u)(αj)| ≤ c8

(
|Φ(αj)|+ δ

ρd(zkF ) + δ

)n

(4.18)

(recall that Dρd(zkF ) = Dρd(F )). From (4.15), (4.16), (4.17), and (4.18), we obtain

|a(k)ℓ,n| ≤|τ (k)ℓ,n |

+

∣∣∣∣∣∣
γ∑

j=1

1

(τj − 1)!

τj−1∑
u=0

(
τj − 1

u

)(
(z − αj)

τjzkFΦ′

Φℓ+1

)(τj−1−u)

(αj)(Q
E
n,mn

)(u)(αj)

∣∣∣∣∣∣
≤c6c

mn

ρℓ2
+

c9
(ρd(zkF ) + δ)n

γ∑
j=1

(|Φ(αj)|+ δ)n

(|Φ(αj)| − δ)ℓ
.

Next, we estimate |[ωdΦℓ]ν |. Suppose that δ > 0 is sufficiently small so that
ρ1 − δ > 1. Then, by (3.7),

|[ωdΦℓ]ν | =

∣∣∣∣∣ 1

2πi

∫
Γρ1−δ

ωd(z)Φℓ(z)Φ
′(z)

Φν+1(z)
dz

∣∣∣∣∣ ≤ c10(ρ1 − δ)ℓ

(ρ1 − δ)ν
.

Consequently, we get

|b(k)ν,n| ≤
∞∑

ℓ=n+1

|a(k)ℓ,n||[ωdΦℓ]ν |

≤
∞∑

ℓ=n+1

c6c
mn

ρℓ2
+

c9
(ρd(zkF ) + δ)n

γ∑
j=1

(|Φ(αj)|+ δ)n

(|Φ(αj)| − δ)ℓ

(c10(ρ1 − δ)ℓ

(ρ1 − δ)ν

)

=
c11c

mn

(ρ1 − δ)ν

(
ρ1 − δ

ρ2

)n

+
c12(ρ1 − δ)n

(ρd(zkF ) + δ)n(ρ1 − δ)ν

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n

.

(4.19)

Applying (3.8) and (4.19), we have

n+d∑
ν=0

|b(k)ν,n|∥Φν∥Dσ

≤

c13c
mn

(
ρ1 − δ

ρ2

)n

+
c14(ρ1 − δ)n

(ρd(zkF ) + δ)n

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n
 n+d∑

ν=0

(
σ

(ρ1 − δ)

)ν
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≤

c13c
mn

(
ρ1 − δ

ρ2

)n

+
c14(ρ1 − δ)n

(ρd(zkF ) + δ)n

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n
 n+d∑

ν=0

σν

≤

c13c
mn

(
ρ1 − δ

ρ2

)n

+
c14(ρ1 − δ)n

(ρd(zkF ) + δ)n

γ∑
j=1

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)n
 (n+ d+ 1)σn+d.

(4.20)
This implies that

lim sup
n→∞

wwwww
n+d∑
ν=0

|b(k)ν,n||Φν |

wwwww
1/n

Dσ

≤ max

{
σ(ρ1 − δ)

ρ2
,

σ(ρ1 − δ)

ρd(zkF ) + δ
max

j=1,...,γ

(
|Φ(αj)|+ δ

|Φ(αj)| − δ

)}
.

Letting δ → 0, ρ1 → 1+, and ρ2 → ρd(z
kF ), we have

lim sup
n→∞

wwwww
n+d∑
ν=0

|b(k)ν,n||Φν |

wwwww
1/n

Dσ

≤ σ

ρd(zkF )
. (4.21)

Finally, by (3.4), (4.10), (4.13) and (4.21), we obtain for sufficiently large ℓ,

lim sup
n→∞

wwzkF −RE
n,mn,k

ww1/n

Dσ\Jβ
ε (F,d;ℓ)

≤ lim sup
n→∞

wwwww
n+d∑
ν=0

b
(k)
ν,nΦν

wdQE
n,mn

+

∞∑
ν=n+d+1

b
(k)
ν,nΦν

wdQE
n,mn

wwwww
1/n

Dσ\Jβ
ε (F,d;ℓ)

,

≤ σ

ρd(zkF )
· lim sup

n→∞

 1

min
z∈K\Jβ

ε (F,d;ℓ)
|QE

n,mn
(z)|


1/n

≤ σ

ρd(zkF )
· lim sup

n→∞
(c15mnn

2)
2mn
nβ =

σ

ρd(zkF )
, (4.22)

where c15 > 0 and the last equality follows from the limit condition (2.2). There-
fore, for any β > 0, hβ-limn→∞ RE

n,mn,k
= zkF in Dρd(zkF ). Since Dρ ⊂ Dρd(zkF ),

hβ-limn→∞ RE
n,mn,k

= zkF in Dρ.

Proof of Corollary 2.2. Let k ∈ {0, 1, . . . ,m − 1} be fixed. By the assumption of
Corollary 2.2, we have mn = m. Then, the conditions (2.1) and (2.2) in Theorem
2.1 are obtained. By Theorem 2.1, we get h1-limn→∞ RE

n,mn,k
= zkF in Dρd(zkF ).

Applying (iii) in Lemma 3.5, we get that each pole of zkF in Dρm(zkF ) attracts as

many zeros of QE
n,m as its order. Therefore, since zkF has m poles in Dρm(zkF ),

degQE
n,m = m for all sufficiently large n. Applying Lemma 3.4, QE

n,m is unique for
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all such n. From the discussion below (3.6), since PE
n,m,k is uniquely determined

by QE
n,m, RE

n,m,k is also unique for all such n.
LetK ⊂ Dρd(zkF )\{λ1, λ2, . . . , λm} be a compact set. Choose σ := max{∥Φ∥K , 1}.

Since all points λ1, λ2, . . . , λm attract all zeros of QE
n,m, for sufficiently small ϵ > 0

and large ℓ,

K ⊂ Dσ \ Jβ
ϵ (F, d : ℓ).

By the inequality (4.22), we have

lim sup
n→∞

wwzkF −RE
n,m,k

ww1/n

K
≤ lim sup

n→∞

wwzkF −RE
n,m,k

ww1/n

Dσ\Jβ
ϵ (F,d;ℓ)

≤ σ

ρd(zkF )
.

This implies that the sequence {RE
n,m,k}n∈N converges uniformly to zkF inside

Dρm(zkF ) \ {λ1, λ2, . . . , λm} as n → ∞. The proof is completed.

Proof of Corollary 2.3. LetK be a compact subset ofDρ∞(zkF ), and let ε > 0, β >
0, and k ∈ N0 be fixed. Then, since K is compact, K ⊂ Dρd(zkF ) for some d ∈ N.
Clearly, limn→∞ mn ≥ d. Applying Theorem 2.1, because hβ-limn→∞ RE

n,mn,k
=

zkF in Dρd(zkF ),

lim
n→∞

hβ{z ∈ K : |RE
n,mn,k(z)− zkF (z)| > ε} = 0.

This completes the proof.
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quences of simultaneous Padé-Faber approximants, Mediterr. J. Math. To
appear.

[2] S. P. Suetin, On the convergence of rational approximations to polynomial
expansions in domains of meromorphy of a given function, Math. USSR Sb.
34 (3) (1978) 367-381.

[3] N. Bosuwan, Direct and inverse results on row sequences of generalized
Padé approximants to polynomial expansions, Acta Math. Hungar. (2018)
https://doi.org/10.1007/s10474-018-0878-8.



Convergence in Hausdorff Content of Padé-Faber Approximants 287
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Abstract. Given a vector function F = (F1, . . . , Fd), analytic on a neigh-
borhood of some compact subset E of the complex plane with simply
connected complement, we define a sequence of vector rational functions
with common denominator in terms of the expansions of the components
Fk, k = 1, . . . , d, with respect to the sequence of Faber polynomials asso-
ciated with E. Such sequences of vector rational functions are analogous
to row sequences of type II Hermite–Padé approximation. We give nec-
essary and sufficient conditions for the convergence with geometric rate
of the common denominators of the sequence of vector rational functions
so constructed. The exact rate of convergence of these denominators is
provided and the rate of convergence of the approximants is estimated.
It is shown that the common denominators of the approximants detect
the poles of the system of functions “closest” to E and their order.
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1. Introduction

Throughout the paper, E denotes a compact subset of the complex plane C,
which does not reduce to one point, such that C\E is simply connected. There
exists a unique conformal representation Φ from C\E onto the complement
of the unit circle, such that Φ(∞) = ∞ and Φ′(∞) > 0. It is well known
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was supported by research Grant MTM2015-65888-C4-2-P from Ministerio de Economı́a,
Industria y Competitividad.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-019-1307-0&domain=pdf
http://orcid.org/0000-0002-9137-9188


   36 Page 2 of 21 N. Bosuwan and G. López Lagomasino MJOM

that Φ′(∞) = 1/cap(E), where cap(E) is the logarithmic capacity of E. The
Faber polynomial of E of degree n is defined as the polynomial part of the
Laurent expansion of Φn at infinity.

Faber polynomials have been a subject of major interest in complex
analysis due to their close connection with conformal mappings and the log-
arithmic capacity. Their general properties and use in the approximation of
functions analytic on a neighborhood of E are well covered in [13]. For com-
pact sets with special configurations (m-cusped hypocycloid, starlike sets,
circular lunes‘, and arcs), they are known and numerical methods for their
computation have been proposed (see [12]). For recent results on their as-
ymptotic behavior, see also [1,10].

The object of this paper is to prove a Montessus de Ballore–Gonchar
type theorem for simultaneous Padé–Faber approximants analogous to the
one obtained in [7] in the context of Hermite–Padé approximation. Such re-
sults, motivated in [9], include a direct part where convergence of the approx-
imants and their poles is derived provided that the functions being approxi-
mated have convenient analytic properties, and an inverse statement in which,
starting out from the asymptotic properties of the poles of the approximants,
some important analytic properties of the functions being approximated are
determined. For scalar functions, several approximating models have been
explored which, in one way or another, extend the notion of Padé approxi-
mation; for example, see [5,9,14]. In the introduction of [5,7,11], you can find
an account on the history of the problem. In [4], we studied a similar problem
when the approximants are built on the basis of orthogonal expansions. Here,
we expand in terms of Faber polynomials which, as mentioned above, are well
known for a wide range of compact sets.

Let us clarify what we understand as a pole of a vector function and its
order.

Definition 1.1. Let Ω := (Ω1,Ω2, . . . ,Ωd) be a system of domains, such that,
for each α = 1, 2, . . . , d, Fα is meromorphic in Ωα. We say that the point
λ is a pole of F := (F1, F2, . . . , Fd) in Ω of order τ if there exists an index
α ∈ {1, 2, . . . , d}, such that λ ∈ Ωα and it is a pole of Fα of order τ, and for
β �= α, either λ is a pole of Fβ of order less than or equal to τ or λ �∈ Ωβ .
When Ω = (Ω,Ω, . . . ,Ω), we say that λ is a pole of F in Ω.

Let E be a compact subset as described above and Φ the associated
conformal map. For each ρ > 1, we define

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

as the level curve of index ρ and the canonical domain of index ρ, respectively.
Denote by H(E) the space of all functions holomorphic in some neighborhood
of E and

H(E)d := {(F1, F2, . . . , Fd) : Fα ∈ H(E) for all α = 1, 2, . . . , d}.

Let F ∈ H(E)d. Denote by ρ0(F) the index ρ of the largest canonical
domain Dρ to which all Fα, α = 1, . . . , d, can be extended as holomorphic
functions and by ρm(F) the index ρ of the largest canonical domain Dρ to
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which all Fα, α = 1, . . . , d can be extended, so that F has at most m poles
counting multiplicities.

From the definition given above, it is easy to see that the Faber polyno-
mial of E of degree n is given by the formula:

Φn(z) =
1

2πi

∫
Γρ

Φn(t)
t − z

dt, z ∈ Dρ, n = 0, 1, 2, . . . . (1.1)

Notice that

Φn(z) = (z/cap(E))n + lower degree terms. (1.2)

The nth Faber coefficient of G ∈ H(E) with respect to Φn is given by the
following:

[G]n :=
1

2πi

∫
Γρ

G(t)Φ′(t)
Φn+1(t)

d,

where ρ ∈ (1, ρ0(G)) and ρ0(G) denotes the index of the largest canonical
region to which G can be extended as a holomorphic function. For an account
on Faber polynomials and its properties, see [13]. In particular, it is well
known that

lim
n→∞ |Φn(z)|1/n = |Φ(z)|, (1.3)

uniformly on compact subsets of C\E.
Let us introduce simultaneous Padé–Faber approximants.

Definition 1.2. Let F = (F1, . . . , Fd) ∈ H(E)d. Fix m = (m1, . . . ,md) ∈ N
d

and n ∈ N. Set |m| := m1 + m2 + · · · + md. Then, there exist polynomials
Qn,m, Pn,m,k,α, such that

deg Pn,m,k,α ≤ n − 1, deg(Qn,m) ≤ |m|, Qn,m �≡ 0, (1.4)

[Qn,mzkFα − Pn,m,k,α]j = 0, j = 0, 1, . . . , n (1.5)

for all k = 0, 1, . . . , mα − 1 and α = 1, 2, . . . , d. The vector of rational func-
tions

Rn,m := (Rn,m,1, . . . , Rn,m,d) = (Pn,m,0,1/Qn,m, . . . , Pn,m,0,d/Qn,m)

is called an (n,m) simultaneous Padé–Faber approximant of F.

Clearly:

[Qn,mzkFα]n = 0, α = 1, . . . , d, k = 0, 1, . . . ,mα − 1. (1.6)

Since Qn,m �≡ 0, we normalize it with leading coefficient equal 1. We call Qn,m

the denominator of the (n,m) simultaneous Padé–Faber approximant of F.
We would like to emphasize that the solutions of the homogeneous linear

system of |m| Eq. (1.6) on the |m|+1 unknown coefficients of Qn,m determine
the possible denominators of the Padé–Faber approximants. Once a Qn,m is
given, for each k = 0, 1, . . . , mα − 1 and α = 1, 2, . . . , d, the polynomial
Pn,m,k,α is uniquely determined. However, the linear system (1.6) can have
linearly independent solutions which may give rise to distinct Padé–Faber
approximants for a given n and m. This effect is well known already in
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the context of Hermite–Padé approximation (but does not occur in Padé
approximation).

Finding a solution of (1.4)–(1.5) reduces to solving a homogeneous sys-
tem of (n + 1)|m| linear equations on (n + 1)|m| + 1 coefficients of Qn,m and
Pn,m,k,α. Therefore, for any pair (n,m) ∈ N × N

d, a vector of rational func-
tions Rn,m always exists. As already mentioned, it may not be unique. For
each n, we choose one solution. The definition of simultaneous Padé–Faber
approximants employed here differs from the one used in [2] which may seem
more natural, but has serious inconveniences for proving inverse-type results.

Notice that (1.5) implies that linear combinations of the functions zkFα,
0 ≤ k < mα, α = 1, . . . , d also verify (1.5) (with the same Qn,m and conve-
nient polynomial P, deg P < n). This motivates the concept of system pole.
System poles may not coincide with the poles of the individual functions Fα

(see examples in [7]).

Definition 1.3. Given F = (F1, . . . , Fd) ∈ H(E)d and m = (m1, . . . ,md) ∈ N
d,

we say that ξ ∈ C is a system pole of order τ of F with respect to m if τ is
the largest positive integer, such that, for each t = 1, 2, . . . , τ, there exists at
least one polynomial combination of the form:

d∑
α=1

vαFα, deg(vα) < mα, α = 1, 2, . . . , d, (1.7)

which is holomorphic in a neighborhood of D|Φ(ξ)| except for a pole at z = ξ
of exact order t.

To each system pole ξ of F with respect to m, we associate several
characteristic values. Let τ be the order of ξ as a system pole of F. For
each t = 1, . . . , τ, denote by ρξ,t(F,m) the largest of all the numbers ρt(G)
(the index of the largest canonical domain containing at most t poles of G),
where G is a polynomial combination of type (1.7) that is holomorphic in a
neighborhood of D|Φ(ξ)| except for a pole at z = ξ of order t. There is only
a finite number of such possible values, so the maximum is indeed attained.
Then, we define the following:

ρξ,t(F,m) := min
k=1,...,t

ρξ,k(F,m),

ρξ(F,m) := ρξ,τ (F,m) = min
k=1,...,τ

ρξ,k(F,m).

Fix α ∈ {1, . . . , d}. Let Dα(F,m) be the largest canonical domain in
which all the poles of Fα are system poles of F with respect to m, their order
as poles of Fα does not exceed their order as system poles, and Fα has no
other singularity. By ρα(F,m), we denote the index of this canonical domain.
Let ξ1, . . . , ξN be the poles of Fα in Dα(F,m). For each j = 1, . . . , N, let
τ̂j be the order of ξj as a pole of Fα and τj its order as a system pole. By
assumption, τ̂j ≤ τj . Set

ρ∗
α(F,m) := min

{
ρα(F,m), min

j=1,...,N
ρξj ,τ̂j

(F,m)
}

,
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and let D∗
α(F,m) be the canonical domain with this index. For convenience,

in the sequel, we assume that 0 ∈ E (E is the set where all the functions Fα

are holomorphic); consequently, for a fixed α if we were to define an analogous
quantity for zkFα, we would obtain the same number ρ∗

α(F,m) independently
of k.

By QF
m, we denote the monic polynomial whose zeros are the system

poles of F with respect to m taking into account their order. The set of
distinct zeros of QF

m is denoted by P(F,m).
We are ready to state the direct result.

Theorem 1.4. Let F = (F1, . . . , Fd) ∈ H(E)d and let m ∈ N
d be a fixed multi-

index. Suppose that F has exactly |m| system poles with respect to m counting
multiplicities. Then, for all sufficiently large n, the polynomials Qn,m and the
approximants Rn,m,α are uniquely determined:

lim sup
n→∞

‖Qn,m − QF
m‖1/n = max

{ |Φ(ξ)|
ρξ(F,m)

: ξ ∈ P(F,m)
}

, (1.8)

where ‖ · ‖ denotes the coefficient norm in the space of polynomials. For any
α = 1, . . . , d, k = 1, . . . ,mα − 1, and any compact subset K of D∗

α(F,m)\
P(F,m):

lim sup
n→∞

∥∥∥∥Pn,m,k,α

Qn,m
− zkFα

∥∥∥∥
1/n

K

≤ ‖Φ‖K

ρ∗
α(F,m)

, (1.9)

where ‖ · ‖K denotes the sup-norm on K. If K ⊂ E, ‖Φ‖K is replaced by 1.

In the inverse direction, we have the following.

Theorem 1.5. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and m ∈ N
d be a fixed

multi-index. Suppose that the polynomials Qn,m are uniquely determined for
all sufficiently large n and there exists a polynomial Q|m| of degree |m|, such
that

lim sup
n→∞

‖Qn,m − Q|m|‖1/n = θ < 1.

Then, F has exactly |m| system poles with respect to m counting multiplicities
and Q|m| = QF

m.

An immediate consequence of Theorems 1.4 and 1.5 is the following
corollary which is the analog of the Montessus de Ballore–Gonchar theorem
for simultaneous Padé–Faber approximation.

Corollary 1.6. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and m ∈ N
d be a fixed

multi-index. Then, the following assertions are equivalent:
(a) F has exactly |m| system poles with respect to m counting multiplicities.
(b) The polynomials Qn,m of F are uniquely determined for all sufficiently

large n and there exists a polynomial Q|m| of degree |m|, such that

lim sup
n→∞

‖Qn,m − Q|m|‖1/n = θ < 1.

Consequently, if either (a) or (b) takes place, then Q|m| = QF
m, and (1.8)–(1.9)

hold.
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The outline of this paper is as follows. Section 2 contains the proof of
Theorem 1.4. The proof of Theorem 1.5 is in Sect. 3.

2. Proof of Theorem 1.4

2.1. Auxiliary Lemmas

The following lemma (see [13]) is obtained using (1.3) the same way as similar
statements are proved for Taylor series.

Lemma 2.1. Let G ∈ H(E). Then:

ρ0(G) =
(

lim sup
n→∞

|[G]n|1/n

)−1

. (2.1)

Moreover,
∑∞

n=0[G]nΦn(z) converges to G(z) uniformly inside Dρ0(G).

Here and in what follows, the phrase “uniformly inside a domain” means
“uniformly on each compact subset of the domain”.

As a consequence of Lemma 2.1, if F = (F1, F2, . . . , Fd) ∈ H(E)d, then
for each α = 1, 2, . . . , d and k = 0, 1, . . . ,mα − 1 fixed:

zkQn,m(z)Fα(z) − Pn,m,k,α(z) =
∞∑

�=n+1

[zkQn,mFα]�Φ�(z), z ∈ Dρ0(Fα),

(2.2)

and Pn,m,k,α =
∑n−1

�=0 [zkQn,mFα]�Φ� is uniquely determined by Qn,m.
The next lemma (see [8, p. 583] or [13, p. 43] for its proof) gives an

estimate of Faber polynomials Φn on a level curve.

Lemma 2.2. Let ρ > 1 be fixed. Then, there exists c > 0, such that

‖Φn‖Γρ
≤ cρn, n ≥ 0. (2.3)

2.2. Proof of Theorem 1.4

Proof of Theorem 1.4. For each n ∈ N, let qn,m be the polynomial Qn,m nor-
malized, so that

qn,m(z) =
|m|∑
k=0

λn,kzk,

|m|∑
k=0

|λn,k| = 1. (2.4)

With this normalization, the polynomials qn,m are uniformly bounded on each
compact subset of C.

Let ξ be a system pole of order τ of F with respect to m. We show that

lim sup
n→∞

|q(j)
n,m(ξ)|1/n ≤ |Φ(ξ)|

ρξ,j+1(F,m)
, j = 0, 1, . . . , τ − 1. (2.5)

Fix 
 ∈ {1, . . . , τ}. Consider a polynomial combination of G� of the type
(1.7) that is holomorphic in a neighborhood of D|Φ(ξ)| except for a pole of
order 
 at z = ξ and verifies that ρ�(G�) = ρξ,�(F,m). Then, we have the
following:
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G� =
d∑

α=1

vα,�Fα, deg vα,� < mα, α = 1, 2, . . . , d.

Set

H�(z) := (x − ξ)�G�(z) and a(�)
n,n := [qn,mG�]n.

By the definition of Qn,m, it follows that a
(�)
n,n = 0. Therefore:

a(�)
n,n = [qn,mG�]n =

1
2πi

∫
Γρ1

qn,m(z)G�(z)Φ′(z)
Φn+1(z)

dz = 0,

where 1 < ρ1 < |Φ(ξ)|. Set

τ (�)
n,n :=

1
2πi

∫
Γρ2

qn,m(z)G�(z)Φ′(z)
Φn+1(z)

dz,

where |Φ(ξ)| < ρ2 < ρξ,�(F,m). Using Cauchy’s residue theorem on the
function (qn,mG�Φ′)/Φn+1, we obtain the following:

τ (�)
n,n = τ (�)

n,n − a(�)
n,n =

1
2πi

∫
Γρ2

qn,m(t)G�(t)Φ′(t)
Φn+1(t)

dt

− 1
2πi

∫
Γρ1

qn,m(t)G�(t)Φ′(t)
Φn+1(t)

dt

= res((qn,mG�Φ′)/Φn+1, ξ). (2.6)

Now:

res((qn,mG�Φ′)/Φn+1, ξ) =
1

(
 − 1)!
lim
z→ξ

(
(z − ξ)�G�(z)Φ′(z)qn,m(z)

Φn+1(z)

)(�−1)

=
1

(
 − 1)!

�−1∑
t=0

(

 − 1

t

) (
H�Φ′

Φn+1

)(�−1−t)

(ξ)q(t)
n,m(ξ).

(2.7)

Consequently:

(
 − 1)!τ (�)
n,n =

(
H�(ξ)Φ′(ξ)
Φn+1(ξ)

)
q(�−1)
n,m (ξ)

+
�−2∑
t=0

(

 − 1

t

) (
H�Φ′

Φn+1

)(�−1−t)

(ξ)q(t)
n,m(ξ),

where the sum is empty when 
 = 1. Therefore:

q(�−1)
n,m (ξ) =

(
 − 1)!τ (�)
n,nΦn+1(ξ)

H�(ξ)Φ′(ξ)

−
�−2∑
t=0

(

 − 1

t

) (
H�Φ′

Φn+1

)(�−1−t)

(ξ)
Φn+1(ξ)q(t)

n,m(ξ)
H�(ξ)Φ′(ξ)

. (2.8)

Choose δ > 0 small enough, so that

ρ2 := ρξ,�(F,m) − δ > |Φ(ξ)|. (2.9)
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We have

|τ (�)
n,n| =

∣∣∣∣∣
1

2πi

∫
Γρ2

qn,m(z)G�(z)Φ′(z)
Φn+1(z)

dz

∣∣∣∣∣ ≤ c1

ρn
2

. (2.10)

If 
 = 1, from (2.8) to (2.10), we obtain

|qn,m(ξ)| ≤ c2

( |Φ(ξ)|
ρ2

)n

,

which implies that

lim sup
n→∞

|qn,m(ξ)|1/n ≤ |Φ(ξ)|
ρ2

.

Letting δ → 0, (2.5) readily follows for j = 0. For the remaining values of j,
we use induction.

Suppose that (2.5) is true for j = 0, . . . , 
 − 2, 2 ≤ 
 ≤ τ and let us
prove that it is also valid for j = 
 − 1. Choosing δ > 0 as in (2.9), for
t = 0, 1, . . . , 
 − 2, we obtain the following:∣∣∣∣∣

(
H�Φ′

Φn+1

)(�−1−t)

(ξ)

∣∣∣∣∣ =

∣∣∣∣∣
(
 − 1 − t)!

2πi

∫
|z−ξ|=ε

H�(z)Φ′(z)
(z − ξ)�−tΦn+1(z)

dz

∣∣∣∣∣
≤ c3

(|Φ(ξ)| − δ)n
, (2.11)

where {z ∈ C : |z − ξ| = ε} ⊂ {z ∈ C : |Φ(z)| > |Φ(ξ)| − δ}. Combining the
induction hypothesis, (2.8), (2.10), and (2.11), it follows from (2.8) that:

lim sup
n→∞

∣∣∣(qn,m)(�−1)(ξ)
∣∣∣1/n

= lim sup
n→∞

∣∣∣∣∣
(
 − 1)!τ (�)

n,nΦn+1(ξ)
H�(ξ)Φ′(ξ)

−
�−2∑
t=0

(

 − 1

t

) (
H�Φ′

Φn+1

)(�−1−t)

(ξ)
Φn+1(ξ)(qn,m)(t)(ξ)

H�(ξ)Φ′(ξ)

∣∣∣∣∣
1/n

≤ max
{ |Φ(ξ)|

ρ2
,

( |Φ(ξ)|
|Φ(ξ)| − δ

) ( |Φ(ξ)|
ρξ,�−1(F,m)

)}
. (2.12)

Letting δ → 0, we have ρ2 → ρξ,�(F,m) and from (2.12), we obtain the
following:

lim sup
n→∞

∣∣∣(qn,m)(�−1)(ξ)
∣∣∣1/n

≤ max
{ |Φ(ξ)|

ρξ,�(F,m)
,

|Φ(ξ)|
ρξ,�−1(F,m)

}
≤ |Φ(ξ)|

ρξ,�(F,m)
,

which completes the induction.
Let ξ1, . . . , ξw be the distinct system poles of F and let τj be the order

of ξj as a system pole, j = 1, . . . , w. By assumption, τ1 + · · · + τw = |m|. We
have proved that, for j = 1, . . . , w and t = 0, 1, . . . , τj − 1:

lim sup
n→∞

|q(t)
n,m(ξj)|1/n ≤ |Φ(ξj)|

ρξj ,t+1(F,m)
≤ |Φ(ξj)|

ρξj
(F,m)

. (2.13)
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Let Lj,t, j = 1, . . . , w, t = 0, 1, . . . , τj − 1, be the basis of polynomials of
degree ≤ |m| − 1 defined by the interpolation conditions:

L
(s)
j,t (ξk) = δj,kδt,s, k = 1, . . . , w, s = 0, . . . , τk − 1.

Then

qn,m − λn,|m|QF
m =

w∑
j=1

τj−1∑
t=0

q(t)
n,m(ξj)Lj,t,

where λn,|m| is the leading coefficient of qn,m. From (2.13), it follows that

lim sup
n→∞

‖qn,m − λn,|m|QF
m‖1/n

K ≤ max
{ |Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}

for every compact set K ⊂ C. In finite-dimensional spaces, all norms are
equivalent; therefore:

lim sup
n→∞

‖qn,m − λn,|m|QF
m‖1/n ≤ max

{ |Φ(ξ)|
ρξ(F,m)

: ξ ∈ P(F,m)
}

. (2.14)

In turn, this implies that

lim inf
n→∞ |λn,|m|| > 0, (2.15)

since, otherwise, for a subsequence of indices Λ, we would have limn∈Λ ‖qn,m‖
= 0 which contradicts the normalization imposed on the polynomials Qn,m

(see (2.4)). Combining (2.14) and (2.15), we get (1.8) with ≤ in place of =.
Now, we know that deg Qn,m = |m|, n ≥ n0, since these polynomials

converge to a polynomial of degree |m|. In turn, this implies that Qn,m is
uniquely determined for all sufficiently large n, because the difference of any
two distinct monic polynomials satisfying Definition 1.2 with the same degree
produces a new solution of degree strictly less than |m|, but we have proved
that any solution must have degree |m| for all sufficiently large n. Definition
1.2 implies that Pn,m,0,α is determined uniquely through Qn,m; consequently,
Rn,m,α is uniquely determined for all large enough n.

Now, we prove the equality in (1.8). To the contrary, suppose that

lim sup
n→∞

‖Qn,m − QF
m‖1/n = θ < max

{ |Φ(ξ)|
ρξ(F,m)

: ξ ∈ P(F,m)
}

. (2.16)

Let ζ be a system pole of F, such that

|Φ(ζ)|
ρζ(F,m)

= max
{ |Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}
.

Clearly, the inequality (2.16) implies that ρζ(F,m) < ∞.
Choose a polynomial combination

G =
d∑

α=1

vαFα, deg vα < mα, α = 1, 2, . . . , d, (2.17)
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that is holomorphic in a neighborhood of D|Φ(ζ)| except for a pole of order s

at z = ζ with ρs(G) = ρζ(F,m). Notice that QF
mG must have a singularity

on the boundary of Dρs
(G) which implies that

lim sup
n→∞

|[QF
mG]n|1/n =

1
ρζ(F,m)

. (2.18)

In fact, if QF
mG had no singularity on the boundary of Dρs

(G), then all
singularities of G on the boundary of Dρs

(G) would be at most poles and
their order as poles of G would be smaller than their order as system poles of
F. In this case, we could find a different polynomial combination G1 of type
(2.17) for which ρs(G1) > ρs(G) = ρζ(F,m) which contradicts the definition
of ρζ(F,m). Therefore, QF

mG has a singularity on the boundary of Dρs
(G)

and the equality (2.18) holds.
Choose 1 < ρ < |Φ(ζ)|. Then, by the definition of Qn,m, (2.16), and

(2.18):
1

ρζ(F,m)
= lim sup

n→∞
|[QF

mG]n|1/n = lim sup
n→∞

|[QF
mG − Qn,mG]n|1/n

= lim sup
n→∞

∣∣∣∣∣
1

2πi

∫
Γρ

(QF
m − Qn,m)(z)G(z)Φ′(z)

Φn+1(z)
dz

∣∣∣∣∣
1/n

≤ θ

ρ
.

Letting ρ → |Φ(ζ)| in the above inequality, we obtain the contradiction:

1
ρζ(F,m)

≤ θ

|Φ(ζ)| <
|Φ(ζ)|/ρζ(F,m)

|Φ(ζ)| =
1

ρζ(F,m)
.

Let us prove the inequality (1.9). Let α ∈ {1, . . . , d} and k ∈ {0, 1, . . . ,

mα − 1} be fixed and let ξ̃1, . . . , ξ̃N be the poles of zkFα in Dα(F,m). For
each j = 1, . . . , N, let τ̂j be the order of ξ̃j as a pole of zkFα and τ̃j its order
as a system pole of F. Recall that, by assumption, τ̂j ≤ τ̃j . From Eq. (2.2),
we have the following:

Qn,mzkFα − Pn,m,k,α =
∞∑

�=n+1

a�,nΦ�.

Multiplying the above equality by ω(z) :=
∏N

j=1(z − ξ̃j)τ̂j and expanding the
result in terms of the Faber polynomial expansion, we obtain the following:

ωQn,mzkFα − ωPn,m,k,α =
∞∑

�=n+1

a�,nωΦ�

=
∞∑

ν=0

bν,nΦν =
n+|m|∑
ν=0

bν,nΦν +
∞∑

ν=n+|m|+1

bν,nΦν . (2.19)

Let K be a compact subset of D∗
α(F,m)\P(F,m) and set

σ := max{‖Φ‖K , 1} (2.20)

(σ = 1 when K ⊂ E). Choose δ > 0 so small that

ρ2 := ρ∗
α(F,m) − δ > σ. (2.21)
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Let us estimate
∑∞

ν=n+|m|+1 |bν,n||Φν | on Dσ. For ν ≥ n + |m| + 1 :

bν,n := [ωQn,mzkFα − ωPn,m,k,α]ν = [ωQn,mzkFα]ν

=
1

2πi

∫
Γρ2

zkω(z)Qn,m(z)Fα(z)Φ′(z)
Φν+1(z)

dz,

where 1 < ρ2 < ρ∗
α(F,m). By a computation similar to (2.10), we obtain the

following:

|bν,n| ≤ c4

ρν
2

. (2.22)

Combining (2.21), (2.22), and Lemma 2.2, we have, for z ∈ Dσ :
∞∑

ν=n+|m|+1

|bν,n||Φν(z)| ≤ c5

∞∑
ν=n+|m|+1

(
σ

ρ2

)ν

= c6

(
σ

ρ2

)n

,

which implies that

lim sup
n→∞

∥∥∥∥∥∥
∞∑

ν=n+|m|+1

|bν,n||Φν |
∥∥∥∥∥∥

1/n

Dσ

≤ σ

ρ2
.

Letting δ → 0, we have ρ2 → ρ∗
α(F,m) and

lim sup
n→∞

∥∥∥∥∥∥
∞∑

ν=n+|m|+1

|bν,n||Φν |
∥∥∥∥∥∥

1/n

Dσ

≤ σ

ρ∗
α(F,m)

. (2.23)

Now, we wish to estimate
∑n+|m|

ν=0 |bν,n||Φν | on Dσ. Notice that

bν,n =
∞∑

�=n+1

a�,n[ωΦ�]ν .

Therefore, we need to estimate both |a�,n| and |[ωΦ�]ν |.
First, we work on |a�,n|. Combining (2.13) and (2.15), it follows that,

for the system poles ξ1, . . . , ξw of F, if τj is the order (as a system pole) of
ξj , then

lim sup
n→∞

|Q(u)
n,m(ξj)|1/n ≤ |Φ(ξj)|

ρξj ,u+1(F,m)
, u = 0, 1, . . . , τj − 1. (2.24)

We have

a�,n = [Qn,mzkFα]� =
1

2πi

∫
Γρ1

Qn,m(z)zkFα(z)Φ′(z)
Φ�+1(z)

dz,

where 1 < ρ1 < ρ0(zkFα) and define

τ�,n :=
1

2πi

∫
Γρ2

Qn,m(z)zkFα(z)Φ′(z)
Φ�+1(z)

dz,
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where max{|Φ(ξ̃j)| : j = 1, . . . , N} < ρ2 < ρ∗
α(F,m). Arguing as in (2.6) and

(2.7), we obtain the following:

τ�,n − a�,n =
N∑

j=1

res(Qn,mzkFαΦ′/Φ�+1, ξ̃j)

=
N∑

j=1

1
(τ̂j − 1)!

×
τ̂j−1∑
u=0

(
τ̂j − 1

u

) (
(z − ξ̃j)τ̂j zkFαΦ′

Φ�+1

)(τ̂j−1−u)

(ξ̃j)Q(u)
n,m(ξ̃j).

(2.25)

Notice that (z − ξ̃j)τ̂j zkFα is holomorphic at ξ̃j . Let δ > 0 be such that

|Φ(ξ̃j)| − 2δ > 1, j = 1, . . . , N.

Computations similar to (2.10) and (2.11) give us

|τ�,n| ≤ c7

ρ�
2

and

∣∣∣∣∣∣
(

(z − ξ̃j)τ̂j zkFαΦ′

Φ�+1

)(τ̂j−1−u)

(ξ̃j)

∣∣∣∣∣∣ ≤ c8

(|Φ(ξ̃j)| − δ)�
, (2.26)

respectively. Take ε > 0. From (2.24), it follows that for all j = 1, . . . , N,

|Q(u)
n,m(ξ̃j)| ≤ c9

(
|Φ(ξ̃j)| + ε

ρξ̃j ,τ̂j
(F,m) + ε

)n

.

Using (2.25), (2.26) and the previous inequalities, we obtain

|a�,n| ≤ |τ�,n|

+
N∑

j=1

τ̂j−1∑
u=0

1
(τ̂j − 1)!

(
τ̂j − 1

u

) ∣∣∣∣∣∣
(

(z − ξ̃j)τ̂j zkFαΦ′

Φ�+1

)(τ̂j−1−u)

(ξ̃j)

∣∣∣∣∣∣
×

∣∣∣Q(u)
n,m(ξ̃j)

∣∣∣

≤ c7

ρ�
2

+ c10

N∑
j=1

(|Φ(ξ̃j)| + ε)n

(ρξ̃j ,τ̂j
(F,m) + ε)n(|Φ(ξ̃j)| − δ)�

≤ c7

ρ�
2

+
c10

(ρ∗
α(F,m) + ε)n

N∑
j=1

(|Φ(ξ̃j)| + ε)n

(|Φ(ξ̃j)| − δ)�
.

(2.27)

Next, we estimate |[ωΦ�]ν |. We can assume that ρ1 − δ > 1. By Lemma
2.2:

|[ωΦ�]ν | ≤
∣∣∣∣∣

1
2πi

∫
Γρ1−δ

ω(z)Φ�(z)Φ′(z)
Φν+1(z)

dz

∣∣∣∣∣ ≤ c11
(ρ1 − δ)�

(ρ1 − δ)ν
. (2.28)
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By (2.27) and (2.28), we have the following:

|bν,n| ≤
∞∑

�=n+1

|a�,n||[ωΦ�]ν |

≤ c12

(ρ1 − δ)ν

(
ρ1 − δ

ρ2

)n

+
c13(ρ1 − δ)n

(ρ∗
α(F,m) + ε)n(ρ1 − δ)ν

N∑
j=1

(
|Φ(ξ̃j)| + ε

|Φ(ξ̃j)| − δ

)n

. (2.29)

Combining (2.29) and Lemma 2.2, for z ∈ Dσ, we obtain the following:
n+|m|∑
ν=0

|bν,n||Φν(z)|

≤
⎛
⎝c14

(
ρ1 − δ

ρ2

)n

+
c15(ρ1 − δ)n

(ρ∗
α(F,m) + ε)n

N∑
j=1

(
|Φ(ξ̃j)| + ε

|Φ(ξ̃j)| − δ

)n
⎞
⎠

×
n+|m|∑
ν=0

(
σ

ρ1 − δ

)ν

≤
⎛
⎝c14

(
ρ1 − δ

ρ2

)n

+
c15(ρ1 − δ)n

(ρ∗
α(F,m) + ε)n

N∑
j=1

(
|Φ(ξ̃j)| + ε

|Φ(ξ̃j)| − δ

)n
⎞
⎠

×(n + |m| + 1)σn+|m|.

This implies that

lim sup
n→∞

∥∥∥∥∥∥
n+|m|∑
ν=0

|bν,n||Φν |
∥∥∥∥∥∥

1/n

Dσ

≤ max

{
σ(ρ1 − δ)

ρ2
,

σ(ρ1 − δ)
ρ∗

α(F,m) + ε
max

j=1,...,N

(
|Φ(ξ̃j)| + ε

|Φ(ξ̃j)| − δ

)}
.

Letting ε, δ → 0, and ρ1 → 1, we have ρ2 → ρ∗
α(F,m) and we obtain the

following:

lim sup
n→∞

∥∥∥∥∥∥
n+|m|∑
ν=0

|bν,n||Φν |
∥∥∥∥∥∥

1/n

Dσ

≤ σ

ρ∗
α(F,m)

. (2.30)

Using (1.8), (2.19), (2.23), and (2.30), we obtain (1.9) and the proof is com-
plete. �
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3. Proof of Theorem 1.5

3.1. Incomplete Padé–Faber Approximation

Let us introduce the notion of incomplete Padé–Faber approximation. Similar
concepts proved to be effective in the study of Hermite–Padé approximation
and orthogonal Hermite–Padé approximation (see [4,6]).

Definition 3.1. Let F ∈ H(E). Fix m ≥ m∗ ≥ 1 and n ∈ N. Then, there exist
polynomials Qn,m,m∗ and Pn,m,m∗,k, k = 0, 1, . . . ,m∗ − 1, such that

deg(Pn,m,m∗,k) ≤ n − 1, deg(Qn,m,m∗) ≤ m, Qn,m,m∗ �≡ 0.

[Qn,m,m∗zkF − Pn,m,m∗,k]j = 0, j = 0, 1, . . . , n.

The rational function Rn,m,m∗ := Pn,m,m∗,0/Qn,m,m∗ is called an (n,m,m∗)
incomplete Padé–Faber approximant of F .

Clearly:

[zkQn,m,m∗F ]n = 0, k = 0, 1, . . . ,m∗ − 1,

and Qn,m,m∗ may not be unique. For each m ≥ m∗ ≥ 1 and n ∈ N, we
choose one candidate of Qn,m,m∗ . Since Qn,m,m∗ �≡ 0, we normalize it to
have leading coefficient equal to 1. We call Qn,m,m∗ a denominator of an
(n,m,m∗) incomplete Padé–Faber approximant of F . Notice that, for each
α = 1, . . . , d, Qn,m [from (1.6)] is a denominator of an (n, |m|,mα) incomplete
Padé–Faber approximant of Fα.

Let Dρm∗ (F ) be the largest canonical region in which F can be extended
as a meromorphic function having at most m∗ poles and ρm∗(F ) be the index
of this region.

Lemma 3.2. Let F ∈ H(E). Fix m ≥ m∗ ≥ 1. Suppose that there exists a
polynomial Qm of degree m, such that

lim
n→∞ Qn,m,m∗ = Qm. (3.1)

Then, ρ0(QmF ) ≥ ρm∗(F ).

Proof. Let qn,m,m∗ be the polynomial Qn,m,m∗ normalized, so that

qn,m,m∗(z) =
m∑

k=0

λn,kzk,

m∑
k=0

|λn,k| = 1. (3.2)

Let ξ be a pole of order τ of F in Dρm∗ (F ). Modifying conveniently the proof
of (2.5), one can show that

lim sup
n→∞

|q(j)
n,m,m∗(ξ)|1/n ≤ |Φ(ξ)|

ρm∗(F )
, j = 0, 1, . . . , τ − 1. (3.3)

Since the sequence of polynomials Qn,m,m∗ converges to Qm, (3.3) entails
that ζ is a zero of Qm of multiplicity at least τ . Being this the case for each
pole of F in Dρm∗ (F ), the thesis readily follows. �

The following technical lemma, whose proof may be found in [3, Lemma
3], is used for proving Lemma 3.4.
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Lemma 3.3. If a sequence of complex numbers {AN}N∈N has the following
properties:

(i) limN→∞ |AN |1/N = 0;
(ii) there exists N0 ∈ N and C > 0, such that |AN | ≤ C

∑∞
k=N+1 |Ak|, for

all N ≥ N0,
then there exists N1 ∈ N, such that AN = 0 for all N ≥ N1.

Lemma 3.4 below is the cornerstone for the proof of Theorem 1.5.

Lemma 3.4. Let F ∈ H(E). Fix m ≥ m∗ ≥ 1. Suppose that F is not a rational
function with at most m∗−1 poles and there exists a polynomial Qm of degree
m, such that

lim sup
n→∞

‖Qn,m,m∗ − Qm‖1/n = θ < 1. (3.4)

Then, the poles of F in Dρm∗ (F ) are zeros of Qm counting multiplicities and
either F has exactly m∗ poles in Dρm∗ (F ) or ρ0(QmF ) > ρm∗(F ).

Proof. From Lemma 3.2, we know that the poles of F in Dρm∗ (F ) are ze-
ros of Qm counting multiplicities and ρ0(QmF ) ≥ ρm∗(F ). Assume that
ρ0(QmF ) = ρm∗(F ). Let us show that F has exactly m∗ poles in Dρm∗ (F ).
To the contrary, suppose that F has in Dρm∗ (F ) at most m∗ − 1 poles. Then,
there exists a polynomial qm∗ with deg qm∗ < m∗, such that

ρ0(qm∗F ) = ρm∗(F ) = ρ0(Qmqm∗F ).

Since deg qm∗ < m∗, by the definition of Qn,m,m∗ , [Qn,m,m∗qm∗F ]n = 0. Take
1 < ρ < ρm∗(F ). Then, by Lemma 2.1:

1
ρm∗(F )

= lim sup
n→∞

|[Qmqm∗F ]n|1/n

= lim sup
n→∞

|[Qmqm∗F − Qn,m,m∗qm∗F ]n|1/n

= lim sup
n→∞

∣∣∣∣∣
1

2πi

∫
Γρ

(Qm − Qn,m,m∗)(z)qm∗(z)F (z)Φ′(z)
Φn+1(z)

dz

∣∣∣∣∣
1/n

.

From the equation above, using (3.4), it is easy to show that

1
ρm∗(F )

≤ θ

ρm∗(F )
,

which is possible only if ρm∗(F ) = ρ0(qm∗F ) = ∞. Let us show that this is
not so.

From (3.4), without loss of generality, we can assume that deg Qn,m,m∗ =
m. Set

qm∗(z)F (z) =
∞∑

k=0

akΦk(z)

and

Qn,m,m∗(z) =
m∑

j=0

bn,jz
j ,
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where bn,m = 1. From (3.4), we have the following:

sup{|bn,j | : 0 ≤ j ≤ m, n ∈ N} ≤ c1. (3.5)

Since [Qn,m,m∗qm∗F ]n = 0, [zjΦk]n = 0 whenever deg(zjΦk) < n and
[zmΦn−m]n = capm(E) (see (1.2)), we obtain the following:

0 = [Qn,m,m∗qm∗F ]n =
∞∑

k=0

m∑
j=0

akbn,j [zjΦk]n

=
∞∑

k=n−m

m∑
j=0

akbn,j [zjΦk]n

= capm(E)an−m +
∞∑

k=n−m+1

m∑
j=0

akbn,j [zjΦk]n. (3.6)

Take ρ > 1. Using Lemma 2.2, for j = 0, 1, . . . ,m, and k ≥ n − m + 1, we
obtain the following:

[|zjΦk]n| =

∣∣∣∣∣
1

2πi

∫
Γρ

zjΦk(z)Φ′(z)
Φn+1(z)

dz

∣∣∣∣∣ ≤ c2
ρk

ρn
. (3.7)

Combining (3.5), (3.6), and (3.7), it follows that

|an−m|ρn−m ≤ c3

∞∑
k=n−m+1

|ak|ρk. (3.8)

Taking n − m = N and |ak|ρk = Ak, (3.8) is (ii) of Lemma 3.3 and we also
have (i), because

lim
N→∞

|AN |1/n = lim
N→∞

(|aN |ρN )1/N = ρ/ρ0(qm∗F ) = 0.

Consequently, there exists N1 ∈ N, such that aN = 0 for all N ≥ N1. Thus,
qm∗F is a polynomial and F is a rational function with at most m∗ − 1 poles
contradicting the assumption that F is not a rational function with at most
m∗ − 1 poles. Therefore, F has exactly m∗ poles in Dρm∗ (F ) as we wanted to
prove. �

3.2. Proof of Theorem 1.5

Before proving the main result, let us point out several important ingredients.
Given a system of functions F ∈ H(E)d and a multi-index m ∈ N

d,
the space generated through polynomial combinations of the form (1.7) has
dimension ≤ |m|. Therefore, F can have at most |m| system poles with
respect to m counting multiplicities, since the functions which determine the
system poles and their order are of the form (1.7) and they are obviously
linearly independent. For more details, see [7, Lemma 3.5].

The concept of polynomial independence of a vector of functions was
introduced in [7] and is also useful in this context.

Definition 3.5. A vector F = (F1, . . . , Fd) ∈ H(E)d is said to be polynomially
independent with respect to m = (m1, . . . ,md) ∈ N

d if there do not exist
polynomials p1, . . . , pd, at least one of which is non-null, such that
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(i) deg pα < mα, α = 1, . . . , d;
(ii)

∑d
α=1 pαFα is a polynomial.

According to the assumptions of Theorem 1.5, for all n ≥ n0, the polyno-
mial Qn,m is unique and deg Qn,m = |m|. This implies that F is polynomially
independent with respect to m for, otherwise, it is easy to see that for all
sufficiently large n, we can construct (n,m) simultaneous Padé–Faber ap-
proximants of F with deg Qn,m < |m| (see [7, Lemma 3.2]). Notice that if F
is polynomially independent with respect to m, then, for each α = 1, . . . , d,
Fα is not a rational function with at most mα − 1 poles. As we pointed out
in Sect. 3.1, for each α = 1, . . . , d, Qn,m is a denominator of an (n, |m|,mα)
incomplete Padé–Faber approximant of Fα. Consequently, the assumptions
of Theorem 1.5 allow us to make use of Lemma 3.4 in its proof.

Finally, one can reduce the proof of Theorem 1.5 to the case when the
multi-index m has all its components equal to 1. Indeed, given F ∈ H(E)d

and m ∈ N
d, define

F := (F1, . . . , z
m1−1F1, F2, . . . , z

md−1Fd) = (f1, f2, . . . , f|m|) (3.9)

and

m := (1, 1, . . . , 1) (3.10)

with |m| = |m|. The following assertions are easy to verify:
(i) the systems of equations that define Qn,m for F and m, and Qn,m for F

and m are the same.
(ii) F is polynomially independent with respect to m if and only if F is

polynomially independent with respect to m.
(iii) the poles and system poles of (F,m) and (F,m), as well as their orders,

coincide.
(iv) ρm(F) = ρm(F), for all m ∈ N ∪ {0}.

Proof of Theorem 1.5. As shown above, without loss of generality, we can
restrict our attention to the analysis of (F,m) defined in (3.9) and (3.10).
Notice that (1.7) reduces to taking linear combinations of the components of
F. We also have that Qn,m = Qn,m and F is polynomially independent with
respect to m.

The arguments used in the proof follow closely those employed in prov-
ing the inverse part of [7, Theorem 1.4];

Choose β = 1, . . . , |m|. From Lemma 3.4, either Dρ1(fβ) contains ex-
actly one pole of fβ and it is a zero of Q|m|, or ρ0(Q|m|fβ) > ρ1(fβ). Hence,
Dρ0(F) �= C and the zeros of Q|m| contain all the poles of fβ on the boundary
of Dρ0(fβ) counting their order. Moreover, the function fβ cannot have on
the boundary of Dρ0(fβ) singularities other than poles. Thus, the poles of F
on the boundary of Dρ0(F) are zeros of Q|m| counting multiplicities and the
boundary contains no other singularity but poles. Let us call them candidate
system poles of F and denote them by a1, . . . , an1 taking into account their
order. They constitute a first layer of candidate system poles of F.

Since deg Q|m| = |m|, n1 ≤ |m|. If n1 = |m|, we are done finding candi-
date system poles. Let us assume that n1 < |m| and let us find coefficients
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c1, . . . , c|m|, such that
∑|m|

β=1 cβfβ is holomorphic in a neighborhood of Dρ0(F).
For this purpose, we solve a homogeneous system of n1 linear equations with
|m| unknowns. In fact, if z = a is a candidate system pole of F with multi-
plicity τ, we obtain τ equations choosing the coefficients cβ , so that

∫
|w−a|=δ

(w − a)k

⎛
⎝

|m|∑
β=1

cβfβ(w)

⎞
⎠ dw = 0, k = 0, . . . , τ − 1. (3.11)

We write the equations for each distinct candidate system pole on the bound-
ary of Dρ0(F). This homogeneous system of linear equations has at least |m|−
n1 linearly independent solutions, which we denote by c1j , j = 1, . . . , |m|−n∗

1,
where n∗

1 ≤ n1 denotes the rank of the system of equations.
Let

c1j := (c1
j,1, . . . , c

1
j,|m|), j = 1, . . . , |m| − n∗

1.

Define the (|m| − n∗
1) × |m| dimensional matrix:

C1 :=

⎛
⎜⎝

c11
...

c1|m|−n∗
1

⎞
⎟⎠ .

Define the vector g1 of |m| − n∗
1 functions given by the following:

gt
1 := C1F

t
= (g1,1, . . . , g1,|m|−n∗

1
)t,

where At denotes the transpose of the matrix A. Since all the rows of C1 are
non-null and F is polynomially independent with respect to m, none of the
functions g1,j =

∑|m|
β=1 c1

j,βfβ , j = 1, . . . , |m| − n∗
1, are polynomials.

Consider the canonical domain:

Dρ0(g1)
=

|m|−n∗
1⋂

j=1

Dρ0(g1,j).

Clearly, Dρ0(F) is a proper subset of Dρ0(g1)
and [Qn,mg1,j ]n = 0 for all j =

1, . . . , |m|−n∗
1. Therefore, for each j = 1, . . . , |m|−n∗

1, Qn,m is a denominator
of an (n, |m|, 1) incomplete Padé–Faber approximant of g1,j . Since the g1,j

are not polynomials, by Lemma 3.4 with m∗ = 1, for each j = 1, . . . , |m|−n∗
1,

either Dρ1(g1,j) contains exactly one pole of g1,j and it is a zero of Q|m|, or
ρ0(Q|m|g1,j) > ρ1(g1,j). In particular, Dρ0(g1)

�= C and all the singularities
of g1 on the boundary of Dρ0(g1)

are poles which are zeros of Q|m| counting
their order. They form the next layer of candidate system poles of F.

Denote by an1+1, . . . , an1+n2 these new candidate system poles. Again,
if n1 + n2 = |m|, we are done. Otherwise, n2 < |m| − n1 ≤ |m| − n∗

1, and we
repeat the same process eliminating the n2 poles an1+1, . . . , an1+n2 . We have
|m| − n∗

1 functions which are holomorphic in Dρ0(g1)
and meromorphic in a

neighborhood of Dρ0(g1)
. The corresponding homogeneous system of linear

equations, similar to (3.11), has at least |m| − n∗
1 − n2 linearly independent
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solutions c2j , j = 1, . . . , |m| − n∗
1 − n∗

2, where n∗
2 ≤ n2 is the rank of the new

system. Let

c2j := (c2
j,1, . . . , c

2
j,|m|−n∗

1
), j = 1, . . . , |m| − n∗

1 − n∗
2.

Define the (|m| − n∗
1 − n∗

2) × (|m| − n∗
1) dimensional matrix:

C2 :=

⎛
⎜⎝

c21
...

c2|m|−n∗
1−n∗

2

⎞
⎟⎠ .

Define the vector g2 with |m| − n∗
1 − n∗

2 functions given by the following:

gt
2 := C2gt

1 = C2C1F
t
= (g2,1, . . . , g2,|m|−n∗

1−n∗
2
)t.

As C1 and C2 have full rank, so does C2C1. Therefore, the rows of C2C1 are
linearly independent; in particular, they are non-null. Thus, all the compo-
nent functions of g2 are not polynomials, due to the polynomial independence
of F with respect to m, and we can apply again Lemma 3.4. The proof is com-
pleted using finite induction.

On each layer of system poles, 1 ≤ nk ≤ |m|. Therefore, in a finite
number of steps, say that N − 1, their sum equals |m|. Consequently, the
number of candidate system poles of F in some canonical region, counting
multiplicities, is exactly equal to |m| and they are precisely the zeros of Q|m|
as we wanted to prove.

Summarizing, in N − 1 steps, we have produced N layers of candidate
system poles. Each layer contains nk candidates, k = 1, . . . , N. At the same
time, on each step k, k = 1, . . . , N − 1, we have solved a linear system of nk

equations, of rank n∗
k, with |m|−n∗

1 −· · ·−n∗
k, n∗

k ≤ nk, linearly independent
solutions. We find ourselves on the Nth layer with nN candidate system poles.

Let us try to eliminate the poles on the last layer. For that purpose,
define the corresponding homogeneous system of linear equations as in (3.11),
and we get

nN = |m| − n1 − · · · − nN−1 ≤ |m| − n∗
1 − · · · − n∗

N−1 =: nN

equations with nN unknowns. For each candidate system pole a of multiplicity
τ on the Nth layer, we impose the equations:

∫
|w−a|=δ

(w − a)k

⎛
⎝ nN∑

β=1

cβgN−1,β(w)

⎞
⎠ dw = 0, k = 0, . . . , τ − 1,

(3.12)

where δ is sufficiently small and the gN−1,β , β = 1, . . . , nN , are the functions
associated with the linearly independent solutions produced on step N − 1.

Let n∗
N be the rank of this last homogeneous system of linear equations.

Assume that n∗
k < nk for some k ∈ {1, . . . , N}. Then, the rank of the last

system of equations is strictly less than the number of unknowns, namely
n∗

N < nN . Repeating the same process, there exists a vector of functions

gN := (gN,1, . . . , gN,|m|−n∗
1−···−n∗

N
),
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such that none of gN,β is a polynomial because of the polynomial indepen-
dence of F with respect to m. Applying Lemma 3.4, each gN,β has on the
boundary of its canonical domain of analyticity a pole which is a zero of
Q|m|. However, this is impossible, because all the zeros of Q|m| are strictly
contained in a smaller domain. Consequently, nk = n∗

k, k = 1, . . . , N.
We conclude that all the N homogeneous systems of linear equations

that we have solved have full rank. This implies that if, in any one of those N
systems of equations, we equate one equation to 1 instead of zero [see (3.11)
or (3.12)], the corresponding nonhomogeneous system of linear equations has
a solution. By the definition of a system pole, this implies that each candidate
system pole is, indeed, a system pole of order at least equal to its multiplicity
as zero of Q|m|. However, F can have at most |m| system poles with respect
to m; therefore, all the candidate system poles are system poles, and their
order coincides with the multiplicity of that point as a zero of Q|m|. This also
means that Q|m| = QF

m. We have completed the proof. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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of functions. Sb. Math. 43, 527–546 (1981)

[10] Mina-Diaz, E.: On the asymptotic behavior of Faber polynomials for domains
with piecewise analytic boundary. Constr. Approx. 29, 421–448 (2009)

[11] Graves-Morris, P.R., Saff, E.B.: A de Montessus Theorem for Vector-Valued
Rational Interpolants. Lecture Notes in Mathematics, vol. 1105, pp. 227–242.
Springer, Berlin (1984)



MJOM Direct and Inverse Results for Simultaneous Page 21 of 21    36 

[12] Papamichael, N., Soares, M.J., Stylianopoulos, N.S.: A numerical method for
the computation of Faber polynomials for starlike domains. IMA J. Numer.
Anal. 13, 182–193 (1993)

[13] Suetin, P.K.: Series of Faber Polynomials. Gordon and Breach, Amsterdam
(1998)

[14] Suetin, S.P.: On the convergence of rational approximations to polynomial
expansions in domains of meromorphy of a given function. Math USSR Sb. 34,
367–381 (1978)

Nattapong Bosuwan
Department of Mathematics, Faculty of Science
Mahidol University
Rama VI Road, Ratchathewi District
Bangkok 10400
Thailand
e-mail: nattapong.bos@mahidol.ac.th

and

Centre of Excellence in Mathematics, CHE
Si Ayutthaya Road
Bangkok 10400
Thailand
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1 Statement of the main result.

We shall consider a general interpolation scheme for constructing vector ratio-
nal approximations to a given vector of analytic functions which generalizes
the construction of the classical Hermite-Padé approximants.

Let E be a bounded continuum with connected complement in the complex
plane C. By H(E) we denote the space of all functions holomorphic in some
neighborhood of E. Set

H(E)d := {(f1, . . . , fd) : fj ∈ H(E), j = 1, . . . , d}.

Let α ⊂ E be a table of points; more precisely, α = {αn,k}, k = 1, . . . , n,
n = 1, 2, . . .. We propose the following definition.

Definition 1.1 Let f ∈ H(E)d. Fix a multi-index m = (m1, . . . ,md) ∈ Nd
and n ∈ N. Set |m| = m1 + · · · + md. Then, there exist polynomials Qn,m,
Pn,m,k, k = 1, . . . , d such that

(i) degPn,m,k ≤ n−mk, degQn,m ≤ |m|, Qn,m 6≡ 0,
(ii) (Qn,mfk − Pn,m,k)/an+1 ∈ H(E),

where an(z) =
∏n
k=1(z − αn,k). The vector rational function

Rn,m = (Rn,m,1, . . . , Rn,m,d) = (Pn,m,1, . . . , Pn,m,d)/Qn,m

is called a multipoint Hermite-Padé (MHP) approximant of f with respect to
m and α.

This vector rational approximation, in general, is not uniquely determined.
Hereafter, we assume that given (n,m), one particular solution is taken. With-
out loss of generality we can assume that Qn,m is a monic polynomial that has
no common zero simultaneously with all Pn,m,k. In all what follows m remains
fixed and {Rn,m}n∈N is called a row sequence of MHP of f with respect to m.

Multipoint Hermite-Padé approximation reduces to classical Hermite-Padé
approximation when E is a disk about the origin and an(z) = zn. There are
not many papers dealing with the convergence properties of row sequences of
Hermite-Padé approximation. The first significant contribution in this direc-
tion is due to Graves-Morris and Saff in [9], where an analogue of the Montes-
sus de Ballore theorem [10] was proved. In that paper, the authors studied the
classical case and stated a result for multipoint interpolation. They assume
that the system of approximated functions is, so called, polewise independent.
More recently, the authors of [4] and [5] managed to weaken the assumption of
polewise independence obtaining sharp estimates of the rate of convergence,
improving the region of convergence, and giving an analogue of Gonchar’s
converse statement to the Montessus de Ballore theorem for row sequences of
Padé approximants (see Remark in [6], also [7] and [8]). Here, we generalize
the results in [5] to MHP approximants. Extensions in other directions using
expansions in orthogonal and Faber polynomials of the vector function to pro-
duce the vector rational approximants of f were provided in [1,2]. For other
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approaches to the study of row sequences of vector rational approximation see
[11] and [12].

In the study of the convergence of general interpolation schemes, it is com-
mon to impose on the table of interpolation nodes various restrictions which
determine the asymptotic behavior of the sequence of polynomials an. Let Φ
be a holomorphic univalent function mapping the complement of E onto the
exterior of the closed unit disk with Φ(∞) = ∞ and Φ′(∞) > 0. It is well
known that there exist tables of points α satisfying the condition

lim
n→∞

|an(z)|1/n = c|Φ(z)|, (1.1)

or the stronger condition

lim
n→∞

an(z)/cnΦn(z) = G(z) 6= 0, (1.2)

uniformly on compact subsets of C\E, where c denotes some positive constant,
see [13, Chapters 8-9]. For each ρ > 1, we introduce

Γρ := {z ∈ C : |Φ(z)| = ρ}, and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ}

as the level curve of index ρ and the canonical domain of index ρ, respectively.
Let ρ0(f) be equal to the index ρ of the largest canonical domain Dρ to which
all fk, k = 1, . . . , d can be extended as holomorphic functions simultaneously.

Gonchar proved the following analogue of the Cauchy-Hadamard formula
for f ∈ H(E) and interpolation tables satisfying (1.2):

ρ0(f) =

(
c · lim sup

n→∞

∣∣∣∣∫
Γ

f(t)

an+1(t)
dt

∣∣∣∣1/n
)−1

, (1.3)

where Γ is a contour encircling E and lying in the domain of holomorphy of
f. This formula is a special case of [3, Corollary 3]. (We point out that (1.3)
is displayed as formula (17) in [3], but with the typo that c is missing.)

Definition 1.2 Given f = (f1, . . . , fd) ∈ H(E)d and m = (m1, . . . ,md) ∈ Nd
we say that ξ ∈ C is a system pole of order τ of (f ,m) if τ is the largest positive
integer such that for each s = 1, . . . , τ there exists at least one polynomial
combination of the form

d∑
k=1

pkfk, deg pk < mk, k = 1, . . . , d, (1.4)

which is analytic in a neighborhood of D|Φ(ξ)| except for a pole at z = ξ of
exact order s.

The concept of system pole depends not only on the system of functions f
but also on the multi-index m. For example, poles of the individual functions
fk need not be system poles of (f ,m) and system poles need not be poles of
any of the functions fk (see examples in [5]). It is easy to see that system
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poles also depend on α, or more precisely on the geometry of the associated
canonical regions. However, since m and α will remain fixed, occasionally we
may simply refer to system poles of f .

Let τ be the order of ξ as a system pole of f . For each s = 1, . . . , τ , let
ρξ,s(f ,m) denote the largest of all the numbers ρs(g) (the index of the largest
canonical domain containing at most s poles of g), where g is a polynomial
combination of type (1.4) that is holomorphic on a neighborhood of D|Φ(ξ)|
except for a pole at z = ξ of order s. Then, we define

Rξ,s(f ,m) := min
k=1,...,s

ρξ,k(f ,m),

and
Rξ(f ,m) := Rξ,τ (f ,m) = min

k=1,...,τ
ρξ,k(f ,m).

Fix k = {1, . . . , d}. Let Dk(f ,m) be the largest canonical domain in which
all the poles of fk are system poles of f with respect to m, their order as
poles of fk does not exceed their order as system poles, and fk has no other
singularity. By Rk(f ,m), we denote the index of this canonical domain. Let
ξ1, . . . , ξN be the poles of fk in Dk(f ,m). For each j = 1, . . . , N , let τ̂j be the
order of ξj as pole of fk and τj be its order as a system pole. By assumption,
τ̂j ≤ τj . Set

R∗k(f ,m) := min

{
Rk(f ,m), min

j=1,...,N
Rξj ,τ̂j (f ,m)

}
and let D∗k(f ,m) be the canonical domain with this index.

By Qf
m we denote the monic polynomial whose zeros are the system poles

of f with respect to m taking account of their order. The set of distinct zeros
of Qf

m is denoted by Pf
m.

The following theorem constitutes our main result.

Theorem 1.3 Suppose (1.2) takes place. Let f ∈ H(E)d and fix a multi-index
m ∈ Nd. Then, the next two assertions are equivalent:

(a) f has exactly |m| system poles with respect to m counting multiplicities.
(b) For all sufficiently large n, the denominators Qn,m of multipoint Hermite-

Padé approximants of f are uniquely determined and there exists a polyno-
mial Qm of degree |m| such that

lim sup
n→∞

‖Qn,m −Qm‖1/n = θ < 1, (1.5)

where ‖ · ‖ denotes the coefficient norm in the space of polynomials of degree
≤ |m|. Moreover, if either (a) or (b) takes place, then Qm ≡ Qf

m,

θ = max

{
|Φ(ξ)|

Rξ(f ,m)
: ξ ∈ Pf

m

}
, (1.6)

and for any compact subset K of D∗k(f ,m) \ Pf
m,

lim sup
n→∞

‖Rn,m,k − fk‖1/nK ≤ ‖Φ‖K
R∗k(f ,m)

, (1.7)

where ‖ · ‖K denotes the sup-norm on K. If K ⊂ E, ‖Φ‖K is replaced by 1.
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2 Direct statements

2.1 An auxiliary result

For each n ≥ |m|, let qn,m be the polynomial Qn,m normalized so that

|m|∑
k=0

|λn,k| = 1, qn,m(z) =

|m|∑
k=0

λn,kz
k. (2.1)

This normalization implies that the polynomials qn,m are uniformly bounded
on each compact subset of C.

Lemma 2.1 Let f ∈ H(E)d and fix a multi-index m ∈ Nd. Assume that (1.2)
takes place and ξ is a system pole of order τ of f with respect to m. Then

lim sup
n→∞

|q(s)n,m(ξ)|1/n ≤ |Φ(ξ)|
Rξ,s+1(f ,m)

, s = 0, . . . , τ − 1. (2.2)

Proof. Consider a polynomial combination g1 of type (1.4) that is analytic
on a neighborhood of D|Φ(ξ)| except for a simple pole z = ξ and verifies that
ρ1(g1) = Rξ,1(f ,m)(= ρξ,1(f ,m)). Then, we have

g1 =

d∑
k=1

pk,1fk, deg pk,1 < mk, k = 1, . . . , d.

Define h1(z) = (z − ξ)g1(z). The function

qn,m(z)h1(z)

an+1(z)
− z − ξ
an+1(z)

d∑
k=1

pk,1(z)Pn,m,k(z)

is analytic on Dρ1(g1). Take 1 < ρ < ρ1(g1), and set Γρ = {z ∈ C : |Φ(z)| = ρ}.

Set Pn,1(z) =
d∑
k=1

pk,1(z)Pn,m,k(z). Since deg(z − ξ)Pn,1(z) ≤ n, we have

1

2πi

∫
Γρ

(t− ξ)Pn,1(t)

(t− z)an+1(t)
dt = 0.

Using Hermite’s interpolation formula (see [13]), we obtain

qn,m(z)h1(z)− (z − ξ)
d∑
k=1

pk,1Pn,m,k(z) =
1

2πi

∫
Γρ

an+1(z)

an+1(t)

qn,m(t)h1(t)

t− z
dt,

for all z with |Φ(z)| < ρ. In particular, taking z = ξ in the above formula, we
arrive at

qn,m(ξ)h1(ξ) =
1

2πi

∫
Γρ

an+1(ξ)

an+1(t)

qn,m(t)h1(t)

t− ξ
dt. (2.3)
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Then, taking account of (1.2), it easily follows that

lim sup
n→∞

|qn,m(ξ)h1(ξ)|1/n ≤ |Φ(ξ)|
ρ

.

Using that h1(ξ) 6= 0 and making ρ tend to ρ1(g1), we obtain

lim sup
n→∞

|qn,m(ξ)|1/n ≤ |Φ(ξ)|
Rξ,1(f ,m)

< 1.

Now, we employ induction. Suppose that

lim sup
n→∞

|q(j)n,m(ξ)|1/n ≤ |Φ(ξ)|
Rξ,j+1(f ,m)

, j = 0, 1, . . . , s− 2, (2.4)

where s ≤ τ . Let us prove that formula (2.4) holds for j = s − 1. This will
imply (2.2).

Consider a polynomial combination gs of type (1.4) that is analytic on a
neighborhood of D|Φ(ξ)| except for a pole of order s at z = ξ and verifies that
ρs(gs) = Rξ,s(f ,m). Then,

gs =

d∑
k=1

pk,sfk, deg pk,s < mk, k = 1, . . . , d.

Set hs(z) = (z − ξ)sgs(z). The function

qn,m(z)hs(z)

an+1(z)(z − ξ)s−1
− z − ξ
an+1(z)

d∑
k=1

pk,s(z)Pn,m,k(z)

is analytic on Dρs(gs)\{ξ}. Set Pn,s =
d∑
k=1

pk,sPn,m,k. Fix an arbitrary compact

set K ⊂ Dρs(gs) \ {ξ}. Take δ > 0 sufficiently small so that {z ∈ C : |z − ξ| ≤
δ} ∩ K = ∅ and 1 < ρ < ρs(gs). Using Hermite’s interpolation formula, for all
z ∈ K, we have

qn,m(z)hs(z)

(z − ξ)s−1
− (z − ξ)Pn,s(z) = In(z)− Jn(z), (2.5)

where

In(z) =
1

2πi

∫
Γρ

an+1(z)

an+1(t)

qn,m(t)hs(t)

(t− ξ)s−1(t− z)
dt

and

Jn(z) =
1

2πi

∫
|t−ξ|=δ

an+1(z)

an+1(t)

qn,m(t)hs(t)

(t− ξ)s−1(t− z)
dt.

The first integral In is estimated as in (2.3) to obtain

lim sup
n→∞

‖In‖1/nK ≤ ‖Φ‖K
ρs(gs)

. (2.6)
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For Jn, as deg qn,m ≤ |m| write

qn,m(t) =

|m|∑
j=0

q
(j)
n,m(ξ)

j!
(t− ξ)j .

Then

Jn(z) =

s−2∑
j=0

1

2πi

∫
|t−ξ|=δ

an+1(z)

an+1(t)

hs(t)

(t− ξ)s−1−j
q
(j)
n,m(ξ)

j!(t− z)
dt. (2.7)

Using the induction hypothesis (2.4), from (2.7) it easily follows that

lim sup
n→∞

‖Jn‖1/nK ≤ ‖Φ‖K
|Φ(ξ)|

|Φ(ξ)|
Rξ,s−1(f ,m)

=
‖Φ‖K

Rξ,s−1(f ,m)
. (2.8)

Now, (2.5), (2.6), and (2.8) give

lim sup
n→∞

‖qn,mhs − (z − ξ)sPn,s‖1/nK ≤ ‖Φ‖K
Rξ,s(f ,m)

. (2.9)

As the function inside the norm in (2.9) is analytic in Dρl(gl), from the
maximum principle it follows that (2.9) also holds for any compact set K ⊂
Dρl(gl). Using Cauchy’s integral formula, from (2.9) we also obtain that

lim sup
n→∞

‖(qn,mhs − (z − ξ)sPn,s)(s−1)‖1/nK ≤ ‖Φ‖K
Rξ,s(f ,m)

. (2.10)

Taking z = ξ in (2.10), we have

lim sup
n→∞

|(qn,mhs)(s−1)(ξ)|1/n ≤
|Φ(ξ)|

Rξ,s(f ,m)
.

Using the Leibniz formula for higher derivatives of a product of two functions,
the induction hypothesis (2.4), and that hs(ξ) 6= 0, it follows that

lim sup
n→∞

|q(s−1)n,m (ξ)|1/n ≤ |Φ(ξ)|
Rξ,s(f ,m)

.

This completes the induction and the proof. �

2.2 Proof of (a)⇒ (b)

Let {ξ1, . . . , ξp} be the distinct system poles of f with respect to m, and let τj
be the order of ξj as a system pole, j = 1, . . . , p. By assumption, τ1+ · · ·+τp =
|m|. We have proved that, for j = 1, . . . , p and s = 0, 1, . . . , τj − 1,

lim sup
n→∞

|q(s)n,m(ξj)|1/n ≤
|Φ(ξj)|

Rξj ,s+1(f ,m)
≤ |Φ(ξj)|
Rξj (f ,m)

, (2.11)
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where Rξj (f ,m) := Rξj ,τj (f ,m). Using the Hermite interpolation, it is easy to
construct a basis {`j,s}, 1 ≤ j ≤ p, 0 ≤ s ≤ τj − 1, in the space of polynomials
of degree at most |m| − 1 satisfying

`
(k)
j,s (ξi) = δi,jδk,s, 1 ≤ i ≤ p, 0 ≤ k ≤ τi − 1.

Then,

qn,m(z) =

p∑
j=1

τj−1∑
s=0

q(s)n,m(ξj)`j,s(z) + λn,|m|Q
f
m. (2.12)

Using (2.11) and (2.12), we have for any compact set K ⊂ C,

lim sup
n→∞

‖qn,m − λn,|m|Qf
m‖

1/n
K ≤ θ, (2.13)

where

θ = max

{
|Φ(ξ)|

Rξ(f ,m)
: ξ ∈ Pf

m

}
< 1. (2.14)

Now, necessarily

lim inf
n→∞

|λn,|m|| > 0. (2.15)

Indeed, if there is a subsequence of indices Λ ⊂ N such that limn∈Λ |λn,|m|| =
0, then from (2.14), as the polynomials qn,m converge, we would have that
limn∈Λ qn,m = 0 which contradicts (2.1). Since

qn,m = λn,|m|Qn,m,

from (2.13) and (2.15) it follows that

lim sup
n→∞

‖Qn,m −Qf
m‖

1/n
K ≤ θ. (2.16)

In finite dimensional spaces all norms are equivalent; therefore, (2.16) is also
true with the coefficient norm which means that (1.5) is satisfied with the
equality replaced by the inequality ≤.

In particular, for all sufficiently large n necessarily degQn,m = |m|. The
difference of any two distinct monic polynomials satisfying Definition 1.1 with
the same degree produces a new solution of degree strictly less than |m|, but
we have proved that any solution must have degree |m| for all sufficiently large
n. So, the polynomial Qn,m is uniquely determined for all sufficiently large n.

Now, we prove the equality in (1.5). To the contrary, suppose that

lim sup
n→∞

‖Qn,m −Qf
m‖1/n < max

{
|Φ(ξ)|

Rξ(f ,m)
: ξ ∈ Pf

m

}
. (2.17)

Let ζ be a system pole of f such that

|Φ(ζ)|
Rζ(f ,m)

= max

{
|Φ(ξ)|

Rξ(f ,m)
: ξ ∈ Pf

m

}
. (2.18)
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Clearly, the inequality (2.17) implies that Rζ(f ,m) <∞.

Choose a polynomial combination

g =

d∑
k=1

pkfk, deg pk < mk, k = 1, . . . , d, (2.19)

that is holomorphic on a neighborhood of D|Φ(ζ)| except for a pole of some or-

der l at z = ζ with ρl(g) = Rζ(f ,m). Notice that Qf
mg must have a singularity

on the boundary of Dρl(g) which implies

1

Rζ(f ,m)
= c · lim sup

n→∞

∣∣∣∣∣
∫
Γρ

Qf
m(t)g(t)

an+1(t)
dt

∣∣∣∣∣
1/n

. (2.20)

In fact, if Qf
mg had no singularity on the boundary of Dρl(g), then all singular-

ities of g on the boundary of Dρl(g) would be at most poles and their order as
poles of g would be smaller than their order as system poles of f . In this case,
we could find a different polynomial combination g1 of type (2.19) for which
ρl(g1) > ρl(g) = Rζ(f ,m) which contradicts the definition of Rζ(f ,m). There-
fore, Qf

mg has a singularity on the the boundary of Dρl(g) and the equality
(2.20) holds.

Now, (
Qn,m(z)g(z)−

d∑
k=1

pk(z)Pn,m,k(z)

)
/an+1(z)

is holomorphic in Dρl(g) and deg
∑d
k=1 pkPn,m,k < n; therefore, from Cauchy’s

integral theorem we have that

0 =

∫
Γρ

Qn,m(z)g(z)−
∑d
k=1 pk(z)Pn,m,k(z)

an+1(z)
dz =

∫
Γρ

Qn,m(z)g(z)

an+1(z)
dz,

(2.21)
where 1 < ρ < |Φ(ζ)|. Combining (2.20) and (2.21), we get

1

Rζ(f ,m)
= c · lim sup

n→∞

∣∣∣∣∣
∫
Γρ

g(t)

an+1(t)

(
Qf

m(t)−Qn,m(t)
)
dt

∣∣∣∣∣
1/n

. (2.22)

This equality is impossible because from (1.2), (2.17), and (2.18) it follows
that (2.22) is strictly less than 1/Rζ(f ,m). This proves the equality in (1.5)
as well as (1.6).

If ξ is any one of the system poles of f and τ its order, from (2.11) and
(2.15), we have

max
j=0...,l

lim sup
n→∞

|Q(j)
n,m(ξ)|1/n ≤ |Φ(ξ)|

Rξ,l+1(f ,m)
, l = 0, 1, . . . , τ − 1. (2.23)
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Now we are ready to prove (1.7). Let us fix k ∈ {1, . . . , d}. Let K be a compact
subset contained in D∗k(f ,m) \ Pf

m. Take δ > 0 sufficiently small so that

1 < ρ := R∗k(f ,m)− δ, K ⊂ Dρ,

Nk⋃
j=1

{z ∈ C : |z − ξj | ≤ δ} ⊂ Dρ \ K,

where ξ1, . . . , ξNk are the poles of fk in D∗k(f ,m). Set

Cj := {z ∈ C : |z − ξj | = δ}.

Let Γρ,δ be the positively oriented curve determined by Γρ and those circles
Cj . On account of Definition 1.1, using Hermite’s formula, we have

(Qn,mfk − Pn,m,k)(z) =
1

2πi

∫
Γρ,δ

an+1(z)

an+1(t)

(Qn,mfk)(t)

t− z
dt. (2.24)

From (1.2) it readily follows that for all z ∈ K,

lim sup
n→∞

∣∣∣∣∣ 1

2πi

∫
Γρ

an+1(z)

an+1(t)

(Qn,mfk)(t)

t− z
dt

∣∣∣∣∣
1/n

≤ ‖Φ‖K
R∗k(f ,m)

. (2.25)

Let τ̂j be the order of ξj as pole of fk. Using the expansion

Qn,m(t) =

|m|∑
l=0

Q
(l)
n,m(ξj)

l!
(t− ξj)l,

for the circle Cj we have

1

2πi

∫
Cj

an+1(z)

an+1(t)

(Qn,mfk)(t)

t− z
dt

=

τ̂j−1∑
l=0

1

2πi

∫
Cj

an+1(z)

an+1(t)

(t− ξj)τ̂jfk(t)

(t− ξj)τ̂j−l
Q

(l)
n,m(ξj)

l!(t− z)
dt (2.26)

because the function under the integral sign is analytic inside Cj for τ̂j ≤ l ≤
|m|. Now, (1.2) and (2.23) allow us to deduce from (2.26) that for all z ∈ K,

lim sup
n→∞

∣∣∣∣∣ 1

2πi

∫
Cj

an+1(z)

an+1(t)

(Qn,mfk)(t)

t− z
dt

∣∣∣∣∣
1/n

≤ ‖Φ‖K
|Φ(ξj)|

|Φ(ξj)|
Rξj ,τ̂j (f ,m)

. (2.27)

Finally, (2.24), (2.25), and (2.27) give (1.7). �
A slight variation of the arguments employed above allows us to deduce

the following corollary of independent interest.
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Corollary 2.2 Let f ∈ H(E)d and fix a multi-index m ∈ Nd. Suppose that
(1.2) takes place and f has exactly |m| system poles with respect to m. Then,
for every system pole ξ of f ,

max
j=0...,l

lim sup
n→∞

|Q(j)
n,m(ξ)|1/n =

|Φ(ξ)|
Rξ,l+1(f ,m)

, l = 0, 1, . . . , τ − 1. (2.28)

where τ is the order of ξ.

Proof. If (2.28) fails, due to (2.23), there is a system pole ξ of f of order τ
such that for some l, 0 ≤ l < τ

max
j=0...,l

lim sup
n→∞

|Q(j)
n,m(ξ)|1/n < |Φ(ξ)|

Rξ,l+1(f ,m)
. (2.29)

Now, we argue by contradiction as in the proof of the equality in (1.5).
Choose a polynomial combination g as in (2.19) that is analytic on a neigh-

borhood of D|Φ(ξ)| except for a pole of order s(≤ l + 1) at z = ξ with

ρs(g) = Rξ,l+1(f ,m). Set Qf
m = Qm. Take δ > 0 sufficiently small and

1 < ρ < ρs(g). Let Γρ,δ be the positively oriented curve determined by Γρ
and {t ∈ C : |t− ξ| = δ}. Arguing as in (2.20), it follows from (1.3) that

1

ρs(g)
= c · lim sup

n→∞

∣∣∣∣∣
∫
Γρ,δ

Qm(t)g(t)

an+1(t)
dt

∣∣∣∣∣
1/n

. (2.30)

The function

Hn(z)

an+1(z)
=

Qn,m(z)g(z)−
d∑
k=1

pk(z)Pn,m,k(z)

an+1(z)

is analytic in Dρs(g) \ {ξ} and∫
Γρ,δ

Hn(t)

an+1(t)
dt = 0.

Set Pn :=
d∑
k=1

pkPn,m,k and h := (t− ξ)sg. Obviously,

Qmg = (Qm −Qn,m)g + Pn +Hn,

and since degPn ≤ n− 1, we obtain∫
Γρ,δ

Qm(t)g(t)

an+1(t)
dt =

∫
Γρ,δ

[Qm −Qn,m](t)h(t)

(t− ξ)san+1(t)
dt

=

∫
Γρ

[Qm −Qn,m](t)h(t)

(t− ξ)san+1(t)
dt−

|m|∑
j=0

∫
|t−ξ|=δ

[Q
(j)
m −Q(j)

n,m](ξ)h(t)

j!(t− ξ)s−jan+1(t)
dt

=

∫
Γρ

[Qm −Qn,m](t)h(t)

(t− ξ)san+1(t)
dt+

s−1∑
j=0

∫
|t−ξ|=δ

Q
(j)
n,m(ξ)h(t)

j!(t− ξ)s−jan+1(t)
dt.
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Estimating these integrals, using (1.2), (1.5), and the assumption (2.29), it is
easy to deduce that

c · lim sup
n→∞

∣∣∣∣∣
∫
Γρ,δ

Qm(t)g(t)

an+1(t)
dt

∣∣∣∣∣
1/n

<
1

ρs(g)

which contradicts (2.30). Therefore, (2.29) cannot occur and there is equality
in (2.28). �

Remark 2.1 We wish to underline that for the proof of the previous results,
excluding the equality in (1.5) and (2.28), it would have been sufficient to
assume that the table of points verifies (1.1) instead of (1.2). The condition
(1.2) has only been used in order to have the Cauchy-Hadamard type formula
(1.3). For the inverse type statement (b)⇒ (a) the stronger assumption (1.2)
is much more substantial.

3 Inverse statements

3.1 Some auxiliary results

Let

f(z) =

∞∑
n=0

fnz
n (3.1)

be a power series convergent in some neighborhood of the point z = 0 whose
radius of convergence we denote by R0(f). According to the Cauchy-Hadamard

formula R0(f) =
(
lim supn→∞ |fn|1/n

)−1
.

The following theorem was proved by V.I. Buslaev in [3, Supplement of
Theorem 2].

Buslaev’s Theorem. Suppose that the power series (3.1) is not a polynomial,
R0(f) =∞, and

αn,0fn + αn,−1fn+1 + · · · = 0 (n = 1, 2, . . . ) (3.2)

where the αn(z) =
∑∞
p=0 αn,−pz

−p (n = 1, 2, . . . ) are holomorphic and con-
verge to α(z) in the exterior of some disk as n→∞. Then α(∞) = 0, and the
coefficients {fn} of the series (3.1) satisfy

εn,0fn + · · ·+ εn,−N+1fn+N−1 + fn+N = 0, lim
n→∞

εn,p = εp,

for p = 0,−1, . . . ,−N + 1, N being the multiplicity of the zero of α at z =∞.

This result will be useful in the next section to prove Lemma 3.2.
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3.2 Incomplete multipoint Padé approximants

Let us introduce the notion of incomplete multipoint Padé approximants. A
similar concept turned out to be effective in the study of Hermite-Padé ap-
proximation in [4] and [5] for proving results of inverse type.

Definition 3.1 Let f ∈ H(E). Fix m ≥ m∗ ≥ 1 and n ≥ m. We say that the
rational function Rn,m is an incomplete multipoint Padé approximant of type
(n,m,m∗) corresponding to f if Rn,m is the quotient of any two polynomials
Pn,m, Qn,m that verify

(i) degPn,m ≤ n−m∗, degQn,m ≤ m, Qn,m 6≡ 0,

(ii)
Qn,mf − Pn,m

an+1
∈ H(E),

where an(z) =
∏n
k=1(z − αn,k).

SinceQn,m 6≡ 0, we normalize it to be monic. We callQn,m the denominator
of the corresponding (n,m,m∗) incomplete multipoint Padé approximant of
f . Notice that for k = 1, . . . , d, Qn,m, given in Definition 1.1, is a denominator
of an (n, |m|,mk) incomplete multipoint Padé approximant of fk.

In this section, we will study the relation between the convergence of Qn,m
and some analytic properties of f .

Lemma 3.2 Let f ∈ H(E) and fix m ≥ m∗ ≥ 1. Suppose that f is not a
rational function with at most m∗ − 1 poles and there exists a polynomial Qm
of degree m such that

lim sup
n→∞

‖Qn,m −Qm‖1/n ≤ θ < 1. (3.3)

Then, either f has exactly m∗ poles in Dρm∗ (f) or ρ0(Qmf) > ρm∗(f), where
ρm∗(f) is the index of the largest canonical region to which f can be extended
as a meromorphic function with at most m∗ poles counting multiplicities.

Proof. Let {ξ1, . . . , ξω} be the distinct poles of f in Dρm∗ (f) and τ1, . . . , τω
be their orders, respectively. Consequently,

ω∑
j=1

τj ≤ m∗.

Modifying conveniently the proof of (2.2), one can show that for j = 1, . . . , ω

lim sup
n→∞

|Q(ν)
n,m(ξj)|1/n ≤

|Φ(ξj)|
ρm∗(f)

< 1, ν = 0, 1, . . . , τj − 1. (3.4)

Since the sequence of polynomials Qn,m converges to Qm, (3.4) entails that ξj
is a zero of Qm of multiplicity at least τj . Being this the case, we have

ρ0(Qmf) ≥ ρm∗(f).



14 N. Bosuwan et al.

Suppose that ρ0(Qmf) = ρm∗(f). To conclude the proof, let us show that
in this situation f has exactly m∗ poles in Dρm∗ (f). To the contrary, suppose
that f has in Dρm∗ (f) at most m∗ − 1 poles. Then, there exists a polynomial
degQm∗ < m∗ such that

ρ0(Qm∗f) = ρm∗(f) = ρ0(QmQm∗f).

It follows from Definition 3.1 that

Qm∗(Qn,mf − Pn,m)

an+1
∈ H(E).

Then ∫
Γρ

Qm∗(z)(Qn,mf − Pn,m)(z)

an+1(z)
dz = 0,

where 1 < ρ < ρm∗(f). Since each one of the n + 1 zeros of the polynomial
an+1 lies on E and deg(Qm∗Pn,m) ≤ n− 1, it follows that∫

Γρ

Qm∗(z)Pn,m(z)

an+1(z)
dz = 0.

Therefore, ∫
Γρ

Qm∗(z)Qn,m(z)f(z)

an+1(z)
dz = 0. (3.5)

Then, by (1.3),

1

ρm∗(f)
=

1

ρ0(QmQm∗f)
= c · lim sup

n→∞

∣∣∣∣∣
∫
Γρ

(QmQm∗f)(t)

an+1(t)
dt

∣∣∣∣∣
1/n

= c · lim sup
n→∞

∣∣∣∣∣
∫
Γρ

(Qm∗f)(t)

an+1(t)
(Qn,m −Qm) (t)dt

∣∣∣∣∣
1/n

.

Using (1.2) and (3.3) to estimate the last integral, it readily follows that

1

ρm∗(f)
≤ θ

ρm∗(f)
, θ < 1,

which implies that ρm∗(f) =∞. Now, let us show that this is not possible.
Take F (w) := Qm∗(Ψ(w))f(Ψ(w)), where Ψ = Φ−1. Let γ be a contour

encircling {w ∈ C : |w| = 1} lying in the domain of holomorphy of F . Using
(3.5), we obtain

0 =

∫
γ

F (w)Qn,m(Ψ(w))

an+1(Ψ(w))
Ψ ′(w)dw =

∫
γ

F (w)
Qn,m(Ψ(w))

wm
wn+1

an+1(Ψ(w))
Ψ ′(w)

dw

wn+1−m
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Setting

αn(w) =
Qn,m(Ψ(w))

wm
(cw)n+1

an+1(Ψ(w))
Ψ ′(w),

the previous equality means that the equality in (3.2) holds. The functions
αn (n = 1, 2, . . . ) are holomorphic in the exterior of the unit disk (including
w =∞) and, due to (1.2) and (3.3), converge as n→∞ to

α(w) = Ψ ′(w)
Qm(Ψ(w))

wmG(Ψ(w))
=

∞∑
p=0

α−pw
−p, α0 = α(∞) 6= 0.

Let
∑∞
n=−∞ Fnw

n be the Laurent expansion of the function F outside the
unit circle, i.e:

F (w) =

∞∑
n=−∞

Fnw
n = F1(w) + F2(w),

where F1(w) =
∑∞
n=0 Fnw

n. Then, R0(F1) =∞ and (3.2) holds (for all suffi-
ciently large n) replacing F with F1. According to Buslaev’s Theorem and the
fact that α(∞) 6= 0, we get that F1 must be a polynomial. Consequently, F
is either analytic or has a pole at ∞. In turn this implies that Qm∗f is either
analytic or has a pole at ∞. However, Qm∗f is an entire function because it
is holomorphic in C since R0(Qm∗f) = ∞. Therefore, Qm∗f is a polynomial,
or what is the same f is a rational function with at most m∗− 1 poles against
our hypothesis on f . This contradiction implies that the assumption that f
had in Dρm∗ (f) at most m∗ − 1 poles is impossible. So the number of poles on
f in Dρm∗ (f) must equal m∗. �

3.3 Polynomial independence

Let us introduce the concept of polynomial independence of a vector of func-
tions.

Definition 3.3 A vector f = (f1, . . . , fd) ∈ H(E)d is said to be polynomially
independent with respect to m = (m1, . . . ,md) ∈ Nd if there do not exist
polynomials p1, . . . , pd, at least one of which is non-null, such that

(i) deg pk < mk, k = 1, . . . , d,

(ii)
∑d
k=1 pkfk is a polynomial.

In particular, polynomial independence implies that for each k = 1, . . . , d,
fk is not a rational function with at most mk − 1 poles.

Lemma 3.4 Let f ∈ H(E)d and fix a multi-index m ∈ Nd. Suppose that for
all n ≥ n0, the polynomial Qn,m is unique and degQn,m = |m|. Then the
system f is polynomially independent with respect to m.
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Proof. Except for a small detail, the proof coincides with that of [5, Lemma
3.2]. Given f := (f1, . . . , fd) ∈ H(E)d and m := (m1, . . . ,md) ∈ Nd, we
consider the associated system

f := (f1, . . . , z
m1−1f1, f2, . . . , z

md−1fd) = (f1, . . . , f |m|).

We also define an associated multi-index m := (1, . . . , 1) with |m| = |m|. The
systems f and f share most properties. In particular, poles and system poles
of (f .m) and (f ,m) coincide and f is polynomially independent with respect
to m if and only if f is polynomially independent with respect to m. Passing
to (f ,m) if necessary and relabeling the functions, we can assume without loss
of generality that m = (1, . . . , 1) and d = |m|.

Suppose that there exist constants ck, k = 1, . . . , d, not all zero, such that∑d
k=1 ckfk is a polynomial. Without loss of generality, we can assume that

c1 6= 0. Then,

f1 = p−
d∑
k=2

ckfk,

where p is a polynomial of degree N .
On the other hand, for each n ≥ d − 1, there exist polynomials Qn, Pn,k,

k = 2, . . . , d, such that for all k = 2, . . . , d,

- degPn,k ≤ n− 1, degQn ≤ d− 1, Qn 6≡ 0,

-
Qnfk − Pn,k

an+1
∈ H(E).

Therefore,

Qn

(
p−

∑d
k=2 ckfk

)
−
(
Qnp−

∑d
k=2 ckPn,k

)
an+1

∈ H(E)

and, for n ≥ d + N , the polynomial Pn,1 = Qnp −
∑d
k=2 ckPn,k verifies

degPn,1 ≤ n − 1. Thus, for all n sufficiently large, the polynomials Pn,k,
k = 1, . . . , d satisfy Definition 1.1 with respect to f and m. Naturally, Qn
gives rise to a polynomial Qn,m with degQn,m < d = |m| against our assump-
tion on Qn,m. �

The following corollary is a straightforward consequence of Lemma 3.2.

Corollary 3.5 Let f ∈ H(E)d and fix a multi-index m ∈ Nd. Assume that f
is polynomially independent with respect to m and there exists a polynomial
Qm of degree |m| such that

lim sup
n→∞

‖Qn,m −Qm‖1/n ≤ θ < 1.

Then for each k = 1, . . . , d, either fk has exactly mk poles in Dρmk (fk)
or

ρ0(Qmfk) > ρmk(fk).

An elementary dimensional analysis leads to the following property of sys-
tem poles (for details see [5, Lemma 3.5]).
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Lemma 3.6 Let f ∈ H(E)d and m ∈ Nd. Then, f can have at most |m|
system poles with respect to m (counting their order). Moreover, if the system
f has exactly |m| system poles with respect to m and ξ is a system pole of
order τ , then for all s > τ there can be no polynomial combination of the form
(1.4) holomorphic in a neighborhood of D|Φ(ξ)| except for a pole at z = ξ of
exact order s.

3.4 Proof (b)⇒ (a)

The auxiliary results that we have established in this section allow us to adapt
the proof used in [5] to obtain the inverse statement of [5, Theorem 1.4]. One
simply has to follow step by step the arguments employed there and substitute
the use of [5, Lemma 3.2] by Lemma 3.4, [5, Corollary 3.4] by Corollary 3.5,
and [5, Lemma 3.5] by Lemma 3.6. The details are left to the reader.
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1 Introduction

In this paper, we study convergences of four generalizations of the construction of type II Hermite-Padé ap-
proximants. The first approximation is called simultaneous Padé-orthogonal approximation defined as follows.
Let 𝐸 be an infinite compact subset of the complex plane C such that C∖𝐸 is simply connected. Denote by 𝒦
the collection of these compact sets. Let 𝜇 be a finite positive Borel measure with an infinite support supp(𝜇)
contained in 𝐸. We write 𝜇 ∈ ℳ(𝐸) and define the associated inner product

⟨𝑔, ℎ⟩𝜇 :=

∫︁
𝑔(𝜁)ℎ(𝜁)𝑑𝜇(𝜁), 𝑔, ℎ ∈ 𝐿2(𝜇).

Let
𝑝𝑛(𝑧) := 𝜅𝑛𝑧

𝑛 + · · · , 𝜅𝑛 > 0, 𝑛 = 0, 1, 2, . . . ,

be the orthonormal polynomial of degree 𝑛 with respect to 𝜇 with positive leading coefficient; that is
⟨𝑝𝑛, 𝑝𝑚⟩𝜇 = 𝛿𝑛,𝑚. Define

ℋ(𝐸)𝑑 := {(𝐹1, 𝐹2, . . . , 𝐹𝑑) : 𝐹𝛼 ∈ ℋ(𝐸) for all 𝛼 = 1, 2, . . . , 𝑑},

where ℋ(𝐸) is the space of all functions holomorphic in some neighborhood of 𝐸.

Definition 1.1. Let 𝐸 ∈ 𝒦, F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑 and 𝜇 ∈ ℳ(𝐸). Fix a multi-index m =

(𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑
0 ∖ {0} where 0 is the zero vector in N𝑑

0. Set |m| := 𝑚1 + 𝑚2 + · · ·𝑚𝑑. Then, for
each 𝑛 ≥ max{𝑚1,𝑚2, . . . ,𝑚𝑑}, there exist polynomials 𝑞𝜇𝑛,m, 𝑝𝜇𝑛,m,𝛼, 𝛼 = 1, 2, . . . , 𝑑, such that

deg(𝑝𝜇𝑛,m,𝛼) ≤ 𝑛−𝑚𝛼, deg(𝑞𝜇𝑛,m) ≤ |m|, 𝑞𝜇𝑛,m ̸≡ 0,
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⟨𝑞𝜇𝑛,m𝐹𝛼 − 𝑝𝜇𝑛,m,𝛼, 𝑝𝑗⟩𝜇 = 0, 𝑗 = 0, 1, . . . , 𝑛.

The vector of rational functions

R𝜇
𝑛,m = (𝑅𝜇

𝑛,m,1, 𝑅
𝜇
𝑛,m,2, . . . , 𝑅

𝜇
𝑛,m,𝑑)

:= (𝑝𝜇𝑛,m,1/𝑞
𝜇
𝑛,m, 𝑝𝜇𝑛,m,2/𝑞

𝜇
𝑛,m, . . . , 𝑝𝜇𝑛,m,𝑑/𝑞

𝜇
𝑛,m)

is called an (𝑛,m) simultaneous Padé-orthogonal approximant of F with respect to 𝜇.

Finding 𝑞𝜇𝑛,m is equivalent to solving a system of |m| homogeneous linear equations on |m| + 1 unknown.
Moreover, for each 𝛼 = 1, 2, . . . , 𝑑, 𝑝𝜇𝑛,m,𝛼 is uniquely determined by 𝑞𝜇𝑛,m. Therefore, for any pair (𝑛,m), a
vector of rational functions R𝜇

𝑛,m always exists but may not be unique.
The concept of simultaneous Padé-orthogonal approximation was first introduced by Cocoq and López in

[6]. In their paper, those simultaneous Padé-orthogonal approximants are called simultaneous Fourier-Padé
approximants and the set 𝐸 is the closed unit disk {𝑧 ∈ C : |𝑧| ≤ 1}. Their definition was extended to a general
compact set 𝐸 ∈ 𝒦 with some restricted conditions in [1]. In [1] and [6], the authors proved convergences of
row sequences of simultaneous Padé-orthogonal approximants, namely analogues of Montessus de Ballore’s
theorem.

Now, we introduce a definition of poles for a vector of functions.

Definition 1.2. Let Ω := (Ω1,Ω2, . . . ,Ω𝑑) be a system of domains such that for each 𝛼 = 1, 2, . . . , 𝑑, 𝐹𝛼

is meromorphic in Ω𝛼. We say that the point 𝜆 is a pole of F in Ω of order 𝜏 if there exists an index
𝛼 ∈ {1, 2, . . . , 𝑑} such that 𝜆 ∈ Ω𝛼 and it is a pole of 𝐹𝛼 of order 𝜏 , and for 𝛽 ̸= 𝛼 either 𝜆 is a pole of 𝐹𝛽 of
order less than or equal to 𝜏 or 𝜆 /∈ Ω𝛽 . When Ω := (Ω,Ω, . . . ,Ω), we say that 𝜆 is a pole of F in Ω.

The second approximation is based on Faber polynomials defined as follows. Let 𝐸 ∈ 𝒦 and Φ be the exterior
conformal mapping from C ∖ 𝐸 onto C ∖ {𝑤 ∈ C : |𝑤| ≤ 1} satisfying Φ(∞) = ∞ and Φ′(∞) > 0. For each
𝜌 > 1, we define a level curve with respect to 𝐸 of index 𝜌 and a canonical domain with respect to 𝐸 of index
𝜌 by

Γ𝜌 := {𝑧 ∈ C : |Φ(𝑧)| = 𝜌} and 𝐷𝜌 := 𝐸 ∪ {𝑧 ∈ C : |Φ(𝑧)| < 𝜌},

respectively. Let F ∈ ℋ(𝐸)𝑑. Denote by 𝜌|m|(F) the index 𝜌 > 1 of the largest canonical domain 𝐷𝜌 to which
F has at most |m| poles. The Faber polynomial of degree 𝑛 for 𝐸 is defined by the formula

Φ𝑛(𝑧) :=
1

2𝜋𝑖

∫︁
Γ𝜌

Φ𝑛(𝑡)

𝑡− 𝑧
𝑑𝑡, 𝑧 ∈ 𝐷𝜌, 𝑛 = 0, 1, 2, . . . (1)

and the Faber coefficient of 𝐹 ∈ ℋ(𝐸) with respect to Φ𝑛 is given by

[𝐹 ]𝑛 :=
1

2𝜋𝑖

∫︁
Γ𝜌

𝐹 (𝑡)Φ′(𝑡)

Φ𝑛+1(𝑡)
𝑑𝑡, (2)

where 𝜌 ∈ (1, 𝜌0(𝐹 )).

Definition 1.3. Let 𝐸 ∈ 𝒦 and F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑. Fix a multi-index m = (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈
N𝑑
0 ∖ {0}. Set |m| := 𝑚1 + 𝑚2 + · · ·𝑚𝑑. Then, for each 𝑛 ≥ max{𝑚1,𝑚2, . . . ,𝑚𝑑}, there exist polynomials

𝑞𝐸𝑛,m, 𝑝𝐸𝑛,m,𝛼, 𝛼 = 1, 2, . . . , 𝑑, such that

deg(𝑝𝐸𝑛,m,𝛼) ≤ 𝑛−𝑚𝛼, deg(𝑞𝐸𝑛,m) ≤ |m|, 𝑞𝐸𝑛,m ̸≡ 0,

[𝑞𝐸𝑛,m𝐹𝛼 − 𝑝𝐸𝑛,m,𝛼]𝑗 = 0, 𝑗 = 0, 1, . . . , 𝑛.

The vector of rational functions

R𝐸
𝑛,m = (𝑅𝐸

𝑛,m,1, 𝑅
𝐸
𝑛,m,2, . . . , 𝑅

𝐸
𝑛,m,𝑑)

:= (𝑝𝐸𝑛,m,1/𝑞
𝐸
𝑛,m, 𝑝𝐸𝑛,m,2/𝑞

𝐸
𝑛,m, . . . , 𝑝𝐸𝑛,m,𝑑/𝑞

𝐸
𝑛,m)

is called an (𝑛,m) simultaneous Padé-Faber approximant of F corresponding to 𝐸.
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Note that for any pair (𝑛,m), a vector of rational R𝐸
𝑛,m always exists but may not be unique. In [2] and

[4], the concept of simultaneous Padé-Faber approximants was introduced and analogues of Montessus de
Ballore’s theorem for simultaneous Padé-Faber approximants were proved.

The third approximation is called orthogonal Hermite-Padé approximation defined as follows.

Definition 1.4. Let 𝐸 ∈ 𝒦, F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑, and 𝜇 ∈ ℳ(𝐸). Fix m = (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑

and 𝑛 ∈ N. Set |m| := 𝑚1 +𝑚2 + · · ·𝑚𝑑. Then, there exists a polynomial ̃︀𝑞𝜇𝑛,m such that deg(̃︀𝑞𝜇𝑛,m) ≤ |m|,̃︀𝑞𝜇𝑛,m ̸≡ 0, and
⟨𝑧𝑘̃︀𝑞𝜇𝑛,m𝐹𝛼, 𝑝𝑛⟩𝜇 = 0, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 = 0, 1, . . . ,𝑚𝛼 − 1.

Define the corresponding polynomials

̃︀𝑝𝜇𝑛,m,𝛼(𝑧) =

𝑛−1∑︁
𝑗=0

⟨̃︀𝑞𝜇𝑛,m𝐹𝛼, 𝑝𝑗⟩𝜇𝑝𝑗(𝑧), 𝛼 = 1, 2, . . . , 𝑑.

The vector of rational functions

̃︀R𝜇
𝑛,m = ( ̃︀𝑅𝜇

𝑛,m,1,
̃︀𝑅𝜇
𝑛,m,2, . . . ,

̃︀𝑅𝜇
𝑛,m,𝑑)

:= (̃︀𝑝𝜇𝑛,m,1/̃︀𝑞𝜇𝑛,m, ̃︀𝑝𝜇𝑛,m,2/̃︀𝑞𝜇𝑛,m, . . . , ̃︀𝑝𝜇𝑛,m,𝑑/̃︀𝑞𝜇𝑛,m)

is called an (𝑛,m) orthogonal Hermite-Padé approximant of F with respect to 𝜇.

A vector of rational functions ̃︀R𝜇
𝑛,m always exists but may not be unique.

The last approximation is Hermite-Padé-Faber approximation defined as follows.

Definition 1.5. Let 𝐸 ∈ 𝒦 and F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑. Fix m = (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑 and 𝑛 ∈ N.
Set |m| := 𝑚1 + 𝑚2 + · · ·𝑚𝑑. Then, there exists a polynomial ̃︀𝑞𝐸𝑛,m such that deg(̃︀𝑞𝐸𝑛,m) ≤ |m|, ̃︀𝑞𝐸𝑛,m ̸≡ 0,
and

[𝑧𝑘̃︀𝑞𝐸𝑛,m𝐹𝛼]𝑛 = 0, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 = 0, 1, . . . ,𝑚𝛼 − 1.

Define the corresponding polynomials

̃︀𝑝𝐸𝑛,m,𝛼(𝑧) =

𝑛−1∑︁
𝑗=0

[̃︀𝑞𝐸𝑛,m𝐹𝛼]𝑗Φ𝑗(𝑧), , 𝛼 = 1, 2, . . . , 𝑑.

The vector of rational functions

̃︀R𝐸
𝑛,m = ( ̃︀𝑅𝐸

𝑛,m,1, ̃︀𝑅𝐸
𝑛,m,2, . . . , ̃︀𝑅𝐸

𝑛,m,𝑑)

:= (̃︀𝑝𝐸𝑛,m,1/̃︀𝑞𝐸𝑛,m, ̃︀𝑝𝐸𝑛,m,2/̃︀𝑞𝐸𝑛,m, . . . , ̃︀𝑝𝐸𝑛,m,𝑑/̃︀𝑞𝐸𝑛,m)

is called an (𝑛,m) Hermite-Padé-Faber approximant of F corresponding to 𝐸.

Again, a vector of rational functions ̃︀R𝐸
𝑛,m always exists but may not be unique. The definitions of orthogonal

Hermite-Padé approximants and Hermite-Padé-Faber approximants were recently introduced in [3] and [5].
In those papers, analogues of a Montessus de Ballore-Gonchar type theorem for both approximations were
proved.

Next, let us introduce the concept of convergence in Hausdorff content. Let 𝐵 be a subset of the complex
plane C. By 𝒰(𝐵), we denote the class of all coverings of 𝐵 by at most a numerable set of disks. Let 𝛽 > 0

and set

ℎ𝛽(𝐵) := inf

⎧⎨⎩
∞∑︁
𝑗=1

|𝑈𝑗 |𝛽 : {𝑈𝑗} ∈ 𝒰(𝐵)

⎫⎬⎭ ,

where |𝑈𝑗 | is the radius of the disk 𝑈𝑗 . This notation ℎ𝛽(𝐵) is called the 𝛽-dimensional Hausdorff content of
the set 𝐵.



4 M. Wajasat and N. Bosuwan, Convergences in Hausdorff content of generalized Padé approximants to polynomial expansions

Definition 1.6. Let {𝑔𝑛}𝑛∈N be a sequence of complex valued functions defined on a domain 𝐷 ⊂ C and 𝑔

another complex function defined on 𝐷. We say that {𝑔𝑛}𝑛∈N converges in 𝛽-dimensional Hausdorff content
to the function 𝑔 inside 𝐷 if for every compact subset 𝐾 of 𝐷 and for each 𝜖 > 0, we have

lim
𝑛→∞

ℎ𝛽{𝑧 ∈ 𝐾 : |𝑔𝑛(𝑧)− 𝑔(𝑧)| > 𝜖} = 0.

Such a convergence will be denoted by ℎ𝛽 − lim𝑛→∞ 𝑔𝑛 = 𝑔 in 𝐷.

The objective of this paper is to prove convergences in Hausdorff content of those four generalizations when
the sequences of indices {(𝑛,m𝑛)}𝑛∈N satisfy

lim
𝑛→∞

|m𝑛| ln𝑛
𝑛

= 0. (3)

This type of sequences of indices {(𝑛,𝑚𝑛)}𝑛∈N satisfying the limit (3) was first considered by Gonchar [7]
for Padé (𝛼, 𝛽)-approximants. In the current paper, we prove results analogous to Theorem 2 in [7] for four
generalizations of Hermite-Padé approximants. As consequences of our main theorems, we give alternate proofs
of the Montessus de Ballore type theorem for those generalizations.

The outline of this paper is as follows. Section 2 contains our main results. We collect needed auxiliary
lemmas in Section 3. Section 4 is dedicated to the proofs of all results in Section 2.

2 Main Results

Before we state our results about the convergence of simultaneous Padé-orthogonal approximants, we need to
define a class of measures and some more notation first. A class of measure that we are interested in the results
of simultaneous Padé-orthogonal approximants is ℛ(𝐸) ⊂ ℳ(𝐸). We write 𝜇 ∈ ℛ(𝐸) when the corresponding
sequence of orthonormal polynomials has 𝑟𝑎𝑡𝑖𝑜 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑠; that is

lim
𝑛→∞

𝑝𝑛(𝑧)

𝑝𝑛+1(𝑧)
=

1

Φ(𝑧)
,

uniformly on each compact subset of C ∖𝐸. Moreover, we restrict ourselves to a smaller collection of compact
sets 𝐸 defined as follows. Denote by 𝒦1 the collection of all sets 𝐸 ∈ 𝒦 such that the inverse function of Φ
can be extended continuously to C ∖ {𝑤 ∈ C : |𝑤| < 1}.

The definition of polewise independence is given below.

Definition 2.1. Let 𝐸 ∈ 𝒦, 𝜌 > 1, F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑 be a vector functions of meromorphic
in 𝐷𝜌. Then F is said to be polewise independent with respect to m in 𝐷𝜌 if and only if there do not exist
polynomials 𝑣1, 𝑣2, . . . , 𝑣𝑑 at least one of which is non-null, satisfying
1. deg 𝑣𝛼 ≤ 𝑚𝛼 − 1, 𝛼 = 1, . . . , 𝑑, if 𝑚𝛼 ≥ 1,
2. 𝑣𝛼 ≡ 0 if 𝑚𝛼 = 0,

3.
∑︀𝑑

𝛼=1(𝑣𝛼 ∘ Φ) · 𝐹𝛼 ∈ ℋ(𝐷𝜌 ∖ 𝐸),

where ℋ(𝐷𝜌 ∖ 𝐸) is the space of all holomorphic functions in 𝐷𝜌 ∖ 𝐸.

The following theorem is our main result on simultaneous Padé-orthogonal approximants which is an analogue
of Theorem 2 in [7].

Theorem 2.2. Let 𝐸 ∈ 𝒦1, F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑, and 𝜇 ∈ ℛ(𝐸). Suppose that F is polewise
independent with respect to the multi-index m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑

0 ∖ {0} in 𝐷𝜌|m|(F) and the sequence
{m𝑛} := {(𝑚𝑛,1,𝑚𝑛,2, . . . ,𝑚𝑛,𝑑)} satisfies the following conditions

lim inf
𝑛→∞

𝑚𝑛,𝑗 ≥ 𝑚𝑗 , 𝑗 = 1, 2, . . . , 𝑑
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and
lim

𝑛→∞
|m𝑛| ln𝑛

𝑛
= 0.

Then for fixed numbers 𝛽 > 0 and 𝛼 = 1, 2, . . . , 𝑑, each sequence {𝑅𝜇
𝑛,m𝑛,𝛼}𝑛∈N converges in 𝛽-dimentional

Hausdorff content to 𝐹𝛼 inside 𝐷𝜌|m|(F) as 𝑛 → ∞.

As a consequence of Theorem 2.2, we also prove a Montessus de Ballore type theorem for simultaneous
Padé-orthogonal approximants stated below.

Corollary 2.3. Let 𝐸 ∈ 𝒦1, F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑, and 𝜇 ∈ ℛ(𝐸). Suppose that F is polewise
independent with respect to the multi-index m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑

0 ∖ {0} in 𝐷𝜌|m|(F) and has distinct
poles at 𝜆1, 𝜆2, . . . , 𝜆𝑞 in 𝐷𝜌|m|(F). Then, {R𝜇

𝑛,m}𝑛∈N is uniquely determined for all sufficiently large 𝑛 and
for each 𝛼 = 1, 2, . . . , 𝑑, {𝑅𝜇

𝑛,m,𝛼}𝑛∈N converges uniformly to 𝐹𝛼 on each compact subset of 𝐷𝜌|m|(F) ∖
{𝜆1, 𝜆2, . . . , 𝜆𝑞} as 𝑛 → ∞. Moreover, for each 𝛼 = 1, 2, . . . , 𝑑 and for any compact subset 𝐾 of 𝐷𝜌|m|(F) ∖
{𝜆1, 𝜆2, . . . , 𝜆𝑞},

lim sup
𝑛→

‖𝐹𝛼 −𝑅𝜇
𝑛,m,𝛼‖

1/𝑛
𝐾 ≤ ‖Φ‖𝐾

𝜌|m|(F)
,

where ‖ · ‖𝐾 denotes the sup-norm on 𝐾 and if 𝐾 ⊂ 𝐸; then ‖Φ‖𝐾 is replaced by 1.

Similar results for simultaneous Padé-Faber approximants are stated below.

Theorem 2.4. Let 𝐸 ∈ 𝒦 and F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑. Suppose that F is polewise independent
with respect to the multi-index m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑

0 ∖ {0} in 𝐷𝜌|m|(F) and the sequence {m𝑛} :=

{(𝑚𝑛,1,𝑚𝑛,2, . . . ,𝑚𝑛,𝑑)} satisfies the following conditions

lim inf
𝑛→∞

𝑚𝑛,𝑗 ≥ 𝑚𝑗 , 𝑗 = 1, 2, . . . , 𝑑

and
lim

𝑛→∞
|m𝑛| ln𝑛

𝑛
= 0.

Then, for fixed numbers 𝛽 > 0 and 𝛼 = 1, 2, . . . , 𝑑, each sequence {𝑅𝐸
𝑛,m𝑛,𝛼}𝑛∈N converges in 𝛽-dimentional

Hausdorff content to 𝐹𝛼 inside 𝐷𝜌|m|(F) as 𝑛 → ∞.

Corollary 2.5. Let 𝐸 ∈ 𝒦 and F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑. Suppose that F is polewise independent
with respect to the multi-index m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑

0 ∖ {0} in 𝐷𝜌|m|(F) and has distinct poles at

𝜆1, 𝜆2, . . . , 𝜆𝑞 in 𝐷𝜌|m|(F). Then, {R𝐸
𝑛,m}𝑛∈N is uniquely determined for all sufficiently large 𝑛 and for each

𝛼 = 1, 2, . . . , 𝑑, {𝑅𝐸
𝑛,m,𝛼}𝑛∈N converges uniformly to 𝐹𝛼 on each compact subset of 𝐷𝜌|m|(F) ∖{𝜆1, 𝜆2, . . . , 𝜆𝑞}

as 𝑛 → ∞. Moreover, for each 𝛼 = 1, 2, . . . , 𝑑 and for any compact subset 𝐾 of 𝐷𝜌|m|(F) ∖ {𝜆1, 𝜆2, . . . , 𝜆𝑞},

lim sup
𝑛→

‖𝐹𝛼 −𝑅𝐸
𝑛,m,𝛼‖

1/𝑛
𝐾 ≤ ‖Φ‖𝐾

𝜌|m|(F)
. (4)

Before stating the similar results for orthogonal Hermite-Padé approximants, we need to define the class of
measures Reg1,2(𝐸). We say that 𝜇 ∈ Reg1,2(𝐸) if and only if

lim
𝑛→∞

|𝑝𝑛(𝑧)|1/𝑛 = |Φ(𝑧)|

and
lim

𝑛→∞
|𝑠𝑛(𝑧)|1/𝑛 =

1

|Φ(𝑧)|
uniformly on each compact subset of C ∖ 𝐸. Note that the above second type function 𝑠𝑛 is defined as the
following:

𝑠𝑛(𝑧) :=

∫︁
𝑝𝑛(𝜁)

𝑧 − 𝜁
𝑑𝜇(𝜁), 𝑧 ∈ C ∖ supp(𝜇).

Moreover, we need a definition of system pole and characteristic values.
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Definition 2.6. Let F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑 and m = (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑. We say that 𝜉 is a
system pole of order 𝜏 of F with respect to m if 𝜏 is the largest positive integer such that for each 𝑡 = 1, 2, .., 𝜏 ,
there exists at least one polynomial combination of the form

𝑑∑︁
𝛼=1

𝑣𝛼𝐹𝛼, deg 𝑣𝛼 < 𝑚𝛼, 𝛼 = 1, 2, . . . , 𝑑, (5)

which is holomorphic on a neighborhood of 𝐷|Φ(𝜉)| except for a pole at 𝑧 = 𝜉 of exact order 𝑡.

Let 𝜏 be the order of 𝜉 as a system pole of F. For each 𝑡 = 1, 2, . . . , 𝜏 , denote by 𝜌𝜉,𝑡(F,m) the largest of all
the numbers 𝜌𝑡(𝐺) (the index of the largest canonical domain containing at most 𝑡 poles of 𝐺), where 𝐺 is
a polynomial combination of type (5) that is holomorphic on a neighborhood of 𝐷|Φ(𝜉)| except for a pole at
𝑧 = 𝜉 of order 𝑡. Then, we define

𝜌𝜉,𝑡(F,m) := min
𝑘=1,...,𝑡

𝜌𝜉,𝑘(F,m),

𝜌𝜉(F,m) := 𝜌𝜉,𝜏 (F,m) = min
𝑡=1,...,𝜏

𝜌𝜉,𝑡(F,m).

Fix 𝛼 ∈ {1, 2, . . . , 𝑑}. Let 𝐷𝛼(F,m) be the largest canonical domain in which all the poles of 𝐹𝛼 are system
poles of F with respect to m, their order as poles of 𝐹𝛼 does not exceed their order as system poles, and 𝐹𝛼

has no other singularity. By 𝜌𝛼(F,m), we denote the index of this canonical domain. Let 𝜉1, 𝜉2, . . . , 𝜉𝑁 be
the poles of 𝐹𝛼 in 𝐷𝛼(F,m). For each 𝑗 = 1, 2, . . . , 𝑁, let 𝜏𝑗 be the order of 𝜉𝑗 as pole of 𝐹𝛼 and 𝜏𝑗 its order
as a system pole. By assumption, 𝜏𝑗 ≤ 𝜏𝑗 . Set

𝜌*
𝛼(F,m) := min{𝜌𝛼(F,m), min

𝑗=1,...,𝑁
𝜌𝜉𝑗 ,𝜏𝑗 (F,m)}

and let 𝐷*
𝛼(F,m) be the canonical domain with this index.

Theorem 2.7. Let 𝐸 ∈ 𝒦, F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑, and 𝜇 ∈ Reg1,2(𝐸). Suppose that F has exactly
|m| system poles with respect to m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑 and the sequence {m𝑛} := {(𝑚𝑛,1,𝑚𝑛,2, . . . ,𝑚𝑛,𝑑)}
satisfies the following conditions

lim inf
𝑛→∞

𝑚𝑛,𝑗 ≥ 𝑚𝑗 , 𝑗 = 1, 2, . . . , 𝑑

and
lim

𝑛→∞
|m𝑛| ln𝑛

𝑛
= 0.

Then, for fixed numbers 𝛽 > 0 and 𝛼 = 1, 2, . . . , 𝑑, each sequence { ̃︀𝑅𝜇
𝑛,m𝑛,𝛼}𝑛∈N converges in 𝛽-dimentional

Hausdorff content to 𝐹𝛼 inside 𝐷*
𝛼(F,m) as 𝑛 → ∞.

Corollary 2.8. Let 𝐸 ∈ 𝒦, F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑, and 𝜇 ∈ Reg1,2(𝐸). Suppose that F has exactly
|m| system poles with respect to m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑 and the distinct system poles of F with respect
to m are 𝜉1, 𝜉2, . . . , 𝜉𝑞. Then, {̃︀R𝜇

𝑛,m}𝑛∈N is uniquely determined for all sufficiently large 𝑛 and for any
𝛼 = 1, 2, . . . , 𝑑, { ̃︀𝑅𝜇

𝑛,m,𝛼}𝑛∈N converges uniformly to 𝐹𝛼 on each compact subset of 𝐷*
𝛼(F,m)∖{𝜉1, 𝜉2, . . . , 𝜉𝑞}

as 𝑛 → ∞. Moreover, for any compact subset 𝐾 of 𝐷*
𝛼(F,m) ∖ {𝜉1, 𝜉2, . . . , 𝜉𝑞} and for any 𝛼 = 1, 2, . . . , 𝑑,

lim sup
𝑛→

‖𝐹𝛼 − 𝑅̃𝜇
𝑛,m,𝛼‖

1/𝑛
𝐾 ≤ ‖Φ‖𝐾

𝜌*
𝛼(F,m)

. (6)

With the same arguments used to prove Theorem 2.7 and Corollary 2.8, we prove

Theorem 2.9. Let 𝐸 ∈ 𝒦 and F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑. Suppose that F has exactly |m| system poles
with respect to m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑 and the sequence {m𝑛} := {(𝑚𝑛,1,𝑚𝑛,2, . . . ,𝑚𝑛,𝑑)} satisfies the
following conditions

lim inf
𝑛→∞

𝑚𝑛,𝑗 ≥ 𝑚𝑗 , 𝑗 = 1, 2, . . . , 𝑑

and
lim

𝑛→∞
|m𝑛| ln𝑛

𝑛
= 0.
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Then, for fixed numbers 𝛽 > 0 and 𝛼 = 1, 2, . . . , 𝑑, each sequence { ̃︀𝑅𝐸
𝑛,m𝑛,𝛼}𝑛∈N converges in 𝛽-dimentional

Hausdorff content to 𝐹𝛼 inside 𝐷*
𝛼(F,m) as 𝑛 → ∞.

Corollary 2.10. Let 𝐸 ∈ 𝒦 and F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑. Suppose that F has exactly |m| system
poles with respect to m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑 and the distinct system poles of F with respect to m are

𝜉1, 𝜉2, . . . , 𝜉𝑞. Then, {̃︀R𝐸
𝑛,m}𝑛∈N is uniquely determined for all sufficiently large 𝑛 and for any 𝛼 = 1, 2, . . . , 𝑑,

{ ̃︀𝑅𝐸
𝑛,m,𝛼}𝑛∈N converges uniformly to 𝐹𝛼 on each compact subset of 𝐷*

𝛼(F,m) ∖ {𝜉1, 𝜉2, . . . , 𝜉𝑞} as 𝑛 → ∞.
Moreover, for any compact subset 𝐾 of 𝐷*

𝛼(F,m) ∖ {𝜉1, 𝜉2, . . . , 𝜉𝑞} and for any 𝛼 = 1, 2, . . . , 𝑑,

lim sup
𝑛→

‖𝐹𝛼 − 𝑅̃𝐸
𝑛,m,𝛼‖

1/𝑛
𝐾 ≤ ‖Φ‖𝐾

𝜌*
𝛼(F,m)

.

3 Auxiliary Lemmas

In this section we keep all needed notations and lemmas. Let 𝐸 ∈ 𝒦 and 𝜇 ∈ ℳ(𝐸). We define the 𝑛-th
Fourier coefficient of 𝐺 ∈ ℋ(𝐸) with respect to 𝑝𝑛 by

⟨𝐺⟩𝑛 := ⟨𝐺, 𝑝𝑛⟩𝜇 =

∫︁
𝐺(𝑧)𝑝𝑛(𝑧)𝑑𝜇(𝑧).

We say that 𝜇 ∈ Reg1(𝐸) ⊂ ℳ(𝐸) when

lim
𝑛→∞

|𝑝𝑛(𝑧)|1/𝑛 = |Φ(𝑧)|, (7)

uniformly on each compact subset of C ∖ 𝐸. The following two lemmas (see [3, Lemma 2.1]) concern the
formulas for computing 𝜌0(𝐺) and the domain of convergence of orthogonal and Faber polynomial expansions
of holomorphic functions.

Lemma 3.1. Let 𝐸 ∈ 𝒦, 𝐺 ∈ ℋ(𝐸) and 𝜇 ∈ Reg1(𝐸). Then,

𝜌0(𝐺) =

(︂
lim sup

𝑛→∞
|⟨𝐺⟩𝑛|1/𝑛

)︂−1

.

Moreover, the series
∑︀∞

𝑛=0⟨𝐺⟩𝑛𝑝𝑛(𝑧) converges to 𝐺(𝑧) uniformly on each compact subset of 𝐷𝜌0(𝐺).

Lemma 3.2. Let 𝐸 ∈ 𝒦 and 𝐺 ∈ ℋ(𝐸). Then,

𝜌0(𝐺) =

(︂
lim sup

𝑛→∞
|[𝐺]𝑛|1/𝑛

)︂−1

.

Moreover, the series
∑︀∞

𝑛=0[𝐺]𝑛Φ𝑛(𝑧) converges to 𝐺(𝑧) uniformly on each compact subset of 𝐷𝜌0(𝐺).

Recall that the second type function 𝑠𝑛 by

𝑠𝑛(𝑧) :=

∫︁
𝑝𝑛(𝜁)

𝑧 − 𝜁
𝑑𝜇(𝜁) 𝑧 ∈ C\supp(𝜇).

The next lemma (see [8, Lemma 3.1]) is the asymptotic relation between the orthogonal polynomials 𝑝𝑛 and
the second type functions 𝑠𝑛.

Lemma 3.3. Let 𝐸 ∈ 𝒦1. If 𝜇 ∈ ℛ(𝐸), then

lim
𝑛→∞

𝑝𝑛(𝑧)𝑠𝑛(𝑧) =
Φ′(𝑧)
Φ(𝑧)

,

uniformly on each compact subset of C∖𝐸. Consequently, for any compact set 𝐾 ⊂ C∖𝐸, there exists 𝑛0 ∈ N
such that 𝑠𝑛(𝑧) ̸= 0 for all 𝑧 ∈ 𝐾 and 𝑛 ≥ 𝑛0.
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Using Cauchy’s integral formula and Fubini’s theorem, one can easily check the following:

Lemma 3.4. Let 𝐸 ∈ 𝒦, 𝐺 ∈ ℋ(𝐸), 𝑘 ∈ N0, and 𝜌 ∈ (1, 𝜌0(𝐺)). Then,

⟨𝐺⟩𝑘 =
1

2𝜋𝑖

∫︁
Γ𝜌

𝐺(𝑤)𝑠𝑘(𝑤)𝑑𝑤. (8)

The following lemma (see [10], p. 43] or [11], p. 583] for its proof) gives an estimate of Faber polynomials on
on a level curve.

Lemma 3.5. Let 𝜌 > 1 be fixed. Then, there exists 𝑐 > 0 such that

‖Φ𝑛‖Γ𝜌
≤ 𝑐𝜌𝑛, 𝑛 ≥ 0. (9)

Indeed, by the maximum modulus principle, the inequalities (9) can be replaced by the inequalities

‖Φ𝑛‖𝐷𝜌
≤ 𝑐𝜌𝑛, 𝑛 ≥ 0. (10)

The following lemma is about the uniqueness of the common denominators of generalized Hermite-Padé
approximants to polynomial expansions.

Lemma 3.6. Let (𝑛,m) be a fixed index. Then the following assertions hold:
(a) If for all 𝑞𝜇𝑛,m in Definition 1.1, deg 𝑞𝜇𝑛,m = |m|, then 𝑞𝜇𝑛,m is unique.
(b) If for all 𝑞𝐸𝑛,m in Definition 1.3, deg 𝑞𝐸𝑛,m = |m|, then 𝑞𝐸𝑛,m is unique.
(c) If for all ̃︀𝑞𝜇𝑛,m in Definition 1.4, deg ̃︀𝑞𝜇𝑛,m = |m|, then ̃︀𝑞𝜇𝑛,m is unique.
(d) If for all ̃︀𝑞𝐸𝑛,m in Definition 1.5, deg ̃︀𝑞𝐸𝑛,m = |m|, then ̃︀𝑞𝐸𝑛,m is unique.

The following lemma (see [1, Lemma 2.2]) provides the relation between the polewise independence of a vector
of functions and the determinant Δ stated below.

Lemma 3.7. Let 𝐸 ∈ 𝒦, and F = (𝐹1, 𝐹2, . . . , 𝐹𝑑) ∈ ℋ(𝐸)𝑑 be a vector of functions in 𝐷𝜌|m|(F) and

m := (𝑚1,𝑚2, . . . ,𝑚𝑑) ∈ N𝑑
0 ∖ {0} be a fixed multi-index. Suppose that F has exactly |𝑚| poles in 𝐷𝜌|m|(F),

𝜆1, 𝜆2, . . . , 𝜆𝑞 are distinct poles of F in 𝐷𝜌|m|(F), and 𝜏1, 𝜏2, . . . , 𝜏𝑞 are their multiplicities, respectively. Define

Δ :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑚𝛼−1

)︁
(𝜆𝑗) · · ·

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑚𝛼−1

)︁(𝜏𝑗−1)
(𝜆𝑗)(︁

(𝑧 − 𝜆𝑗)
𝜏𝑗𝐹𝛼Φ

𝑚𝛼−2
)︁
(𝜆𝑗) · · ·

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑚𝛼−2

)︁(𝜏𝑗−1)
(𝜆𝑗)

...
...

...(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
)︀
(𝜆𝑗) · · ·

(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
)︀(𝜏𝑗−1)

(𝜆𝑗)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑗=1,2,...,𝑞, 𝛼=1,2,...,𝑑

,

where the subindex on the determinant means that the indicated group of columns are successively written for
𝑗 = 1, 2, . . . , 𝑞 and the rows repeated for 𝛼 = 1, 2, . . . , 𝑑. Then, F is polewise independent with respect to the
multi-index |m| in 𝐷𝜌m(F) if and only if Δ ̸= 0.

The final lemma proved by Gonchar (see [7, Lemma 1]) allows us to derive uniform convergence on compact
subsets of the region under consideration from convergence in ℎ1-content under appropriate assumptions.

Lemma 3.8. Suppose that ℎ1 − lim𝑛→∞ 𝑔𝑛 = 𝑔 in 𝐷. Then, if each function 𝑔𝑛 is meromorphic and has
no more than 𝑘 < +∞ poles in 𝐷 and the function 𝑔 is meromorphic and has exactly 𝑘 poles in 𝐷, then
all 𝑔𝑛, 𝑛 ≥ 𝑁, also have 𝑘 poles in 𝐷; the poles of 𝑔𝑛 tend to the poles 𝜆1, 𝜆2, . . . , 𝜆𝑘 of 𝑔 (taking account
of their orders) and the sequence {𝑔𝑛}𝑛∈N tends to 𝑔 uniformly on each compact subset of the domain 𝐷′ =

𝐷 ∖ {𝜆1, 𝜆2, . . . , 𝜆𝑘}.
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4 Proofs of Main Results

Proof of Theorem 2.2. For each 𝑛 ≥ 0, we normalize the polynomials 𝑞𝜇𝑛,m𝑛
in terms of its zeros 𝜆𝑛,𝑗 such

that

𝑄𝜇
𝑛,m𝑛

(𝑧) :=
∏︁

|𝜆𝑛,𝑗 |≤1

(𝑧 − 𝜆𝑛,𝑗)
∏︁

|𝜆𝑛,𝑗 |>1

(︂
1− 𝑧

𝜆𝑛,𝑗

)︂
(11)

and for each 𝛼 = 1, 2, . . . , 𝑑,

𝑅𝜇
𝑛,m𝑛,𝛼 =

𝑝𝜇𝑛,m𝑛,𝛼

𝑞𝜇𝑛,m𝑛

=
𝑃𝜇
𝑛,m𝑛,𝛼

𝑄𝜇
𝑛,m𝑛

.

With this normalization, we can estimate upper and lower bounds on the normalized 𝑄𝜇
𝑛,m𝑛

. Let 𝜀 > 0 be fixed.
Suppose that the poles of F in 𝐷𝜌|m|(F) are 𝜆1, 𝜆2, . . . , 𝜆𝑞 and the zeros of 𝑄𝜇

𝑛,m𝑛
are 𝜆𝑛,1, 𝜆𝑛,2, . . . , 𝜆𝑛,𝑙m𝑛

(they are not necessary distinct and 𝑙m𝑛 ≤ |m𝑛|). We cover each pole of F in 𝐷𝜌|m|(F) with an open disk of
radius (𝜀/(6|m|))1/𝛽 and denote by 𝐽𝛽

−1,𝜀(F,m) the union of these disks. For each 𝑛 ≥ 0, we cover each zero

of 𝑄𝜇
𝑛,m𝑛

with an open disk of radius (𝜀/(6|m𝑛|(𝑛+1)2))1/𝛽 and denote by 𝐽𝛽
𝑛,𝜀(F) the union of these disks.

Set for each 𝑘 ≥ 0,

𝐽𝛽
𝜀 (F,m; 𝑘) := 𝐽𝛽

−1,𝜀(F,m)
⋃︁⎛⎝ ∞⋃︁

𝑛=𝑘

𝐽𝛽
𝑛,𝜀(F)

⎞⎠ and 𝐽𝛽
𝜀 (F,m) := 𝐽𝛽

𝜀 (F,m; 0).

By using the monotonicity and subadditivity of ℎ𝛽 , it easy to check that ℎ𝛽(𝐽
𝛽
𝜀 (F,m)) < 𝜀 and 𝐽𝛽

𝜀1(F,m) ⊂
𝐽𝛽
𝜀2(F,m) for 𝜀1 < 𝜀2. For any set 𝐵 ⊂ 𝐷𝜌|m|(F), we put 𝐵(𝜀) := 𝐵 ∖ 𝐽𝛽

𝜀 (F,m). Clearly that if {𝑔𝑛}𝑛∈N
converges uniformly to 𝑔 on 𝐾(𝜀) for any compact subset 𝐾 ⊂ 𝐷𝜌|m|(F) and 𝜀 > 0, then ℎ𝛽 − lim𝑛→∞ 𝑔𝑛 = 𝑔

in 𝐷𝜌|m|(F).
Due to the normalization in (11), for any compact subset 𝐾 ⊂ 𝐷𝜌|m|(F) and for any 𝜀 > 0, there exist

positive constant 𝐶1 > 0 and 𝐶2 > 0 independent of 𝑛 such that for all sufficiently large 𝑛,⃦⃦
𝑄𝜇

𝑛,m𝑛

⃦⃦
𝐾

≤ 𝐶
|m𝑛|
1 , (12)

and
min

𝑧∈𝐾∖𝐽𝛽
𝜀 (F,m;𝑘)

|𝑄𝜇
𝑛,m𝑛

(𝑧)| ≥ (𝐶2|m𝑛|(𝑛+ 1)2)−2|m𝑛|/𝛽 . (13)

By the assumption of 𝜇, it follows that

lim
𝑛→∞

𝑝𝑛(𝑧)

𝑝𝑛+𝑙(𝑧)
=

1

Φ(𝑧)𝑙
, 𝑙 = 0, 1, 2, . . . , (14)

uniformly on each compact subset of C∖𝐸 which implies that 𝜇 ∈ Reg1(𝐸). Then from (14) and Lemma 3.3,
we obtain

lim
𝑛→∞

𝑠𝑛+𝑙(𝑧)

𝑠𝑛(𝑧)
= lim

𝑛→∞
𝑝𝑛(𝑧)

𝑝𝑛+𝑙(𝑧)

𝑝𝑛+𝑙(𝑧)𝑠𝑛+𝑙(𝑧)

𝑝𝑛(𝑧)𝑠𝑛(𝑧)
=

1

Φ(𝑧)𝑙
Φ(𝑧)′/Φ(𝑧)
Φ(𝑧)′/Φ(𝑧)

=
1

Φ(𝑧)𝑙
, (15)

uniformly on each compact subset of C ∖ 𝐸. Moreover, it follows from (14) and (15) that

lim
𝑛→∞

|𝑝𝑛(𝑧)|1/𝑛 = |Φ(𝑧)|, (16)

and
lim

𝑛→∞
|𝑠𝑛(𝑧)|1/𝑛 =

1

|Φ(𝑧)| , (17)

uniformly on each compact subset of C ∖ 𝐸, respectively.
Let

𝑄F
|m|(𝑧) :=

𝑞∏︁
𝑗=1

(︀
𝑧 − 𝜆𝑗

)︀𝜏𝑗 ,
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where 𝜆1, 𝜆2, . . . , 𝜆𝑞 are distinct poles of F in 𝐷𝜌|m|(F). From the definition of simultaneous Padé-orthogonal
approximants and Lemma 3.1, we have

𝑄𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− 𝑃𝜇
𝑛,m𝑛,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝑎
(𝛼)
𝑘,𝑛𝑝𝑘(𝑧), 𝑧 ∈ 𝐷𝜌0(𝐹𝛼), (18)

where
𝑎
(𝛼)
𝑘,𝑛

:= ⟨𝑄𝜇
𝑛,m𝑛

𝐹𝛼⟩𝑘, 𝑘 = 0, 1, 2, . . . ,

and 𝑎
(𝛼)
𝑘,𝑛 = 0, for all 𝑘 = 𝑛 − 𝑚𝑛,𝛼 + 1, 𝑛 − 𝑚𝑛,𝛼 + 2, . . . , 𝑛. Since F is polewise independent with respect

to m in 𝐷𝜌|m|(𝐹 ), F has exactly |m| poles in 𝐷𝜌|m|(F) and
∑︀𝑞

𝑗=1 𝜏𝑗 = |m|. Multiplying (18) by 𝑄F
|m| and

expanding the result in terms of the orthogonal system {𝑝𝜈}∞𝜈=0 such that for 𝑧 ∈ 𝐷𝜌|m|(F),

𝑄F
|m|(𝑧)𝑄

𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)−𝑄F
|m|(𝑧)𝑃

𝜇
𝑛,m𝑛,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝑄F
|m|(𝑧)𝑎

(𝛼)
𝑘,𝑛𝑝𝑘(𝑧)

=

∞∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛𝑝𝜈(𝑧) =

𝑛+|m𝑛|−𝑚𝑛,𝛼∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛𝑝𝜈(𝑧) +

∞∑︁
𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1

𝑏
(𝛼)
𝜈,𝑛𝑝𝜈(𝑧). (19)

Let 𝐾 be a compact subset of 𝐷𝜌|m|(F) and set

𝜎 := max{‖Φ‖𝐾 , 1} (20)

(𝜎 = 1 when 𝐾 ⊂ 𝐸). Choose 𝛿 > 0 sufficiently small such that

𝜌1 := 𝜌|m|(F)− 𝛿 > 𝜌|m|−1(F), 𝜌1 − 𝛿 > 1, and
𝜎 + 𝛿

𝜌1 − 𝛿
< 1. (21)

First, we approximate
∑︀∞

𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1 |𝑏
(𝛼)
𝜈,𝑛||𝑝𝜈(𝑧)| on 𝐷𝜎. Due to the normalization of 𝑄𝜇

𝑛,m𝑛
(the

upper estimate in (12)) and Lemma 3.4, it follows that for 𝜈 ≥ 𝑛+ |m𝑛| −𝑚𝑛,𝛼 + 1,

|𝑏(𝛼)𝜈,𝑛| = |⟨𝑄F
|m|𝑄

𝜇
𝑛,m𝑛

𝐹𝛼 −𝑄F
|m|𝑃

𝜇
𝑛,m𝑛,𝛼⟩𝜈 | = |⟨𝑄F

|m|𝑄
𝜇
𝑛,m𝑛

𝐹𝛼⟩𝜈 |

=

⃒⃒⃒⃒
⃒⃒⃒⃒ 1

2𝜋𝑖

∫︁
Γ𝜌1

𝑄F
|m|(𝑧)𝑄

𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)𝑠𝑣(𝑧)𝑑𝑧

⃒⃒⃒⃒
⃒⃒⃒⃒ ≤ 𝑐1𝐶

|m𝑛|
1 ‖𝑠𝜈‖Γ𝜌1

,
(22)

where the constant 𝑐1 does not depend on 𝑛 (from now on, we will denote some constants that do not depend
on 𝑛 by 𝑐2, 𝑐3, . . .). By using (17), there exists 𝑛0 ∈ N such that

‖𝑠𝜈‖Γ𝜌1
≤ 𝑐2

(𝜌1 − 𝛿)𝜈
, 𝜈 ≥ 𝑛0 (23)

Moreover, from (16), it follows from maximum modulus principle that

‖𝑝𝜈‖𝐷𝜎
≤ 𝑐3(𝜎 + 𝛿)𝜈 , 𝜈 ≥ 0. (24)

Therefore, by (22), (23), and (24), for 𝑛1 > 𝑛0,

∞∑︁
𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)| ≤
∞∑︁

𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1

𝑐4𝐶
|m𝑛|
1

(︂
𝜎 + 𝛿

𝜌1 − 𝛿

)︂𝜈

≤ 𝑐5𝐶
|m𝑛|
1

(︂
𝜎 + 𝛿

𝜌1 − 𝛿

)︂𝑛

, 𝑧 ∈ 𝐷𝜎.

(25)
Next, we approximate

∑︀𝑛+|m𝑛|−𝑚𝑛,𝛼

𝜈=0 |𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)| on 𝐷𝜎. To approximate |𝑏(𝛼)𝜈,𝑛|, we need to approximate
|𝑎(𝛼)𝑘,𝑛| first. Let 𝜌2 ∈ (1, 𝜌0(F)). Using Lemma 3.4 when 𝐺 = 𝑄𝜇

𝑛,m𝑛
𝐹𝛼, we have

𝑎
(𝛼)
𝑘,𝑛 = ⟨𝑄𝜇

𝑛,m𝑛
𝐹𝛼⟩𝑘 =

1

2𝜋𝑖

∫︁
Γ𝜌2

𝑄𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)𝑠𝑘(𝑧)𝑑𝑧.
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Define
𝛾
(𝛼)
𝑘,𝑛

:=
1

2𝜋𝑖

∫︁
Γ𝜌1

𝑄𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)𝑠𝑘(𝑧)𝑑𝑧.

Notice that for each 𝑘 ≥ 0, 𝑄𝜇
𝑛,m𝑛

𝐹𝛼 is meromorphic on 𝐷𝜌1 ∖𝐷𝜌2 and has poles at 𝜆1, 𝜆2, . . . , 𝜆𝑞 with
multiplicities at most 𝜏1, 𝜏2, . . . , 𝜏𝑞, respectively. Applying Cauchy’s residue theorem, we obtain

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

𝑞∑︁
𝑗=1

Res(𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘, 𝜆𝑗). (26)

Recall that the limit formula for the residue of 𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘 at 𝜆𝑗 is

Res(𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘, 𝜆𝑗) =
1

(𝜏𝑗 − 1)!
lim

𝑧→𝜆𝑗

(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘
)︀(𝜏𝑗−1)

(𝑧).

By using Leibniz’s rule and the fact that for 𝑛 sufficiently large 𝑠𝑛(𝑧) ̸= 0 for 𝑧 ∈ C ∖𝐸 (see Lemma 3.3), we
can transform the expression under the limit sign as follow

((𝑧 − 𝜆𝑗)
𝜏𝑗𝑄𝜇

𝑛,m𝑛
𝐹𝛼𝑠𝑘)

(𝜏𝑗−1)(𝑧) =

𝜏𝑗−1∑︁
𝑡=0

(︃
𝜏𝑗 − 1

𝑡

)︃
(𝑄𝜇

𝑛,m𝑛
𝑠𝑛)

(𝜏𝑗−1−𝑡)(𝑧)

(︂
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑘
𝑠𝑛

)︂(𝑡)

(𝑧).

For 𝑗 = 1, 2, . . . , 𝑞, and 𝑡 = 0, 1, . . . , 𝜏𝑗 − 1, set

𝛽𝑛(𝑗, 𝑡) :=
1

(𝜏𝑗 − 1)!

(︃
𝜏𝑗 − 1

𝑡

)︃
lim

𝑧→𝜆𝑗

(𝑄𝜇
𝑛,m𝑛

𝑠𝑛)
(𝜏𝑗−1−𝑡)(𝑧)

(notice that 𝛽𝑛(𝑗, 𝑡) do not depend on 𝑘 and 𝛼). Thus, we can rewrite (26) as

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝛽𝑛(𝑗, 𝑡)

(︂
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑘
𝑠𝑛

)︂(𝑡)

(𝜆𝑗). (27)

Since 𝑎
(𝛼)
𝑘,𝑛 = 0 for 𝛼 = 1, 2, . . . , 𝑑, 𝑘 = 𝑛 − 𝑚𝑛,𝛼 + 1, 𝑛 − 𝑚𝑛,𝛼 + 2, . . . , 𝑛, it follows from (27) and the

assumption that 𝑚𝑛,𝛼 ≥ 𝑚𝛼,

𝛾
(𝛼)
𝑘,𝑛 =

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝛽𝑛(𝑗, 𝑡)

(︂
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑘
𝑠𝑛

)︂(𝑡)

(𝜆𝑗), 𝛼 = 1, 2, . . . , 𝑑, 𝑘 = 𝑛−𝑚𝛼+1, 𝑛−𝑚𝛼+2, . . . , 𝑛. (28)

Now, we consider (28) as a system of |m| equations on the |m| unknowns 𝛽𝑛(𝑗, 𝑡) and the determinant Δ𝑛

corresponding this system is⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑛−𝑚𝛼+1

𝑠𝑛

)︁
(𝜆𝑗) · · ·

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑛−𝑚𝛼+1

𝑠𝑛

)︁(𝜏𝑗−1)
(𝜆𝑗)(︁

(𝑧 − 𝜆𝑗)
𝜏𝑗𝐹𝛼

𝑠𝑛−𝑚𝛼+2

𝑠𝑛

)︁
(𝜆𝑗) · · ·

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑛−𝑚𝛼+2

𝑠𝑛

)︁(𝜏𝑗−1)
(𝜆𝑗)

...
...

...(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑛
𝑠𝑛

)︁
(𝜆𝑗) · · ·

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑛
𝑠𝑛

)︁(𝜏𝑗−1)
(𝜆𝑗)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑗=1,2,...,𝑞, 𝛼=1,2,...,𝑑

.

where the subindex on the determinant means that the indicated group of columns are successively written
for 𝑗 = 1, 2, . . . , 𝑞 and the rows repeated for 𝛼 = 1, 2, . . . , 𝑑. Using (15), we have

lim
𝑛→∞

Δ𝑛 = Δ :=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑚𝛼−1

)︁
(𝜆𝑗) · · ·

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑚𝛼−1

)︁(𝜏𝑗−1)
(𝜆𝑗)(︁

(𝑧 − 𝜆𝑗)
𝜏𝑗𝐹𝛼Φ

𝑚𝛼−2
)︁
(𝜆𝑗) · · ·

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑚𝛼−2

)︁(𝜏𝑗−1)
(𝜆𝑗)

...
...

...(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
)︀
(𝜆𝑗) · · ·

(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
)︀(𝜏𝑗−1)

(𝜆𝑗)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑗=1,2,...,𝑞, 𝛼=1,2,...,𝑑

.
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Since F is polewise independent with respect to m in 𝐷𝜌|m|(F), it follows from Lemma 3.7 that Δ ̸= 0 and
|Δ𝑛| ≥ 𝑐6 > 0 for all sufficiently large 𝑛. From now on, we will only consider such 𝑛’s.

To avoid long expressions, we define for all 𝑤 = 1, 2, . . . , 𝑑, 𝑦 = 1, 2, . . . ,𝑚𝑤, 𝑗 = 1, 2, . . . , 𝑞, and 𝑡 =

0, 1, . . . , 𝜏𝑗 − 1,

𝑔𝑤,𝑦 :=

⎛⎝𝑤−1∑︁
𝑟=0

𝑚𝑟

⎞⎠+ 𝑦 and ℎ𝑗,𝑡 :=

⎛⎝𝑗−1∑︁
𝑙=0

𝜏𝑙

⎞⎠+ 𝑡+ 1,

where 𝑚0 = 𝜏0 = 0. Applying Cramer’s rule to (28), we have

𝛽𝑛(𝑗, 𝑡) =
Δ𝑛(𝑗, 𝑡)

Δ𝑛
=

1

Δ𝑛

𝑑∑︁
𝑤=1

𝑚𝑤∑︁
𝑦=1

𝛾
(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛𝐶𝑛[𝑔𝑤,𝑦, ℎ𝑗,𝑡],

where Δ𝑛(𝑗, 𝑡) is the determinant obtained from Δ𝑛 by replacing ℎth
𝑗,𝑡 column with the column

[𝛾
(𝑤)
𝑛−𝑚𝑤+1,𝑛 + 𝛾

(𝑤)
𝑛−𝑚𝑤+2,𝑛, · · · , 𝛾

(𝑤)
𝑛,𝑛 ]

𝑇
𝑤=1,2,...,𝑑

and 𝐶𝑛[𝑔, ℎ] is the determinant of the (𝑔, ℎ)th cofacter matrix of Δ𝑛(𝑗, 𝑡). Substituting 𝛽𝑛(𝑗, 𝑡) in (27), we
obtain for 𝛼 = 1, 2, . . . , 𝑑 and 𝑘 ≥ 𝑛+ 1,

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

1

Δ𝑛

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝑑∑︁
𝑤=1

𝑚𝑤∑︁
𝑦=1

𝛾
(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛𝐶𝑛[𝑔𝑤,𝑦, ℎ𝑗,𝑡]

(︂
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑘
𝑠𝑛

)︂(𝑡)

(𝜆𝑗)

=
1

Δ𝑛

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝑑∑︁
𝑤=1

𝑚𝑤∑︁
𝑦=1

𝛾
(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛𝐶𝑛[𝑔𝑤,𝑦, ℎ𝑗,𝑡]

𝑡∑︁
𝑢=0

(︃
𝑡

𝑢

)︃(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
)︀(𝑡−𝑢)

(𝜆𝑗)

(︂
𝑠𝑘
𝑠𝑛

)︂(𝑢)

(𝜆𝑗)

=
1

Δ𝑛

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝑑∑︁
𝑤=1

𝑚𝑤∑︁
𝑦=1

𝑡∑︁
𝑢=0

(︃
𝑡

𝑢

)︃
𝛾
(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛𝐶𝑛[𝑔𝑤,𝑦, ℎ𝑗,𝑡]

(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
)︀(𝑡−𝑢)

(𝜆𝑗)

(︂
𝑠𝑘
𝑠𝑛

)︂(𝑢)

(𝜆𝑗). (29)

where the second identity follows from the Leibniz formula.
Define

B(𝜆, 𝑟) := {𝑧 ∈ C : |𝑧 − 𝜆| < 𝑟}.

Let ε > 0 be sufficiently small such that {𝑧 ∈ C : |𝑧 − 𝜆𝑗 | < ε} ⊂ {𝑧 ∈ C : |Φ(𝑧)| > 𝜌2} for all 𝑗 = 1, 2, . . . , 𝑞

and B(𝜆𝑗 , ε) ∩ B(𝜆𝑘, ε) = ∅ for all 𝑘 ̸= 𝑗. Using Cauchy’s integral formula, we obtain(︂
𝑠𝑘
𝑠𝑛

)︂(ℓ)

(𝜆𝑗) =
ℓ!

2𝜋𝑖

∫︁
|𝑧−𝜆𝑗 |=ε

𝑠𝑘(𝑧)

𝑠𝑛(𝑧)(𝑧 − 𝜆𝑗)ℓ+1
𝑑𝑧. (30)

Applying (15) and (30), we can see that there exists a constant 𝑐7 such that for sufficiently large 𝑛,⃒⃒⃒⃒
⃒
(︂
𝑠𝑘
𝑠𝑛

)︂(ℓ)

(𝜆𝑗)

⃒⃒⃒⃒
⃒ ≤ 𝑐7

𝜌𝑘−𝑛
2

, 𝑗 = 1, 2, . . . , 𝑞, ℓ = 0, 1, . . . , 𝜏𝑗 − 1, 𝑘 ≥ 𝑛+ 1. (31)

Moreover, by using Cauchy’s integral formula as before, there exist constant 𝑐8 and 𝑐9 such that for all
𝛼 = 1, 2, . . . , 𝑑, 𝑘 = 𝑛−𝑚𝛼 + 1, 𝑛−𝑚𝛼 + 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑞, and ℓ = 0, 1, . . . , 𝜏𝑗 − 1,⃒⃒⃒⃒

⃒
(︂
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
𝑠𝑘
𝑠𝑛

)︂(ℓ)

(𝜆𝑗)

⃒⃒⃒⃒
⃒ ≤ 𝑐8 (32)

for sufficiently large 𝑛 and ⃒⃒⃒(︀
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼
)︀(ℓ)

(𝜆𝑗)
⃒⃒⃒
≤ 𝑐9. (33)

From (32),
|𝐶𝑛(𝑔, ℎ)| ≤ 𝑐10, 𝑔, ℎ = 1, 2, . . . , |m|. (34)
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Using (31), (33), (34), and |Δ𝑛| ≥ 𝑐11 > 0, it follows from (29) that

|𝑎(𝛼)𝑘,𝑛| ≤ |𝛾(𝛼)𝑘,𝑛|+
𝑐11

𝜌𝑘−𝑛
2

𝑑∑︁
𝑤=1

𝑚𝑤∑︁
𝑦=1

|𝛾(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛|, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 ≥ 𝑛+ 1. (35)

By the definition of 𝛾(𝛼)𝑘,𝑛 and (17), for all sufficiently large 𝑛, we obtain

|𝛾(𝛼)𝑘,𝑛| ≤
𝑐12𝐶

|m𝑛|
1

(𝜌1 − 𝛿)𝑘
, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 ≥ 𝑛− |m|+ 1. (36)

This implies that

|𝑎(𝛼)𝑘,𝑛| ≤
𝑐13𝐶

|m𝑛|
1

𝜌𝑘−𝑛
2 (𝜌1 − 𝛿)𝑛

, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 ≥ 𝑛+ 1. (37)

Recall that 𝑏
(𝛼)
𝜈,𝑛 =

∑︀∞
𝑘=𝑛+1 𝑎

(𝛼)
𝑘,𝑛⟨𝑄

F
|m|𝑝𝑘⟩𝜈 . By Cauchy-Schwarz inequality and the orthonormality of

{𝑝𝑘}, we have for all 𝜈 > 0,

|⟨𝑄F
|m|𝑝𝑘⟩𝜈 | = |⟨𝑄F

|m|𝑝𝑘, 𝑝𝜈⟩𝜇| ≤
⃦⃦⃦
𝑄F

|m|

⃦⃦⃦
𝐸
⟨𝑝𝑘, 𝑝𝑘⟩

1/2
𝜇 ⟨𝑝𝜈 , 𝑝𝜈⟩1/2𝜇 ≤

⃦⃦⃦
𝑄F

|m|

⃦⃦⃦
𝐸

≤ 𝑐14. (38)

Then,

|𝑏(𝛼)𝜈,𝑛| ≤
∞∑︁

𝑘=𝑛+1

|𝑎(𝛼)𝑘,𝑛||⟨𝑄
F
|m|𝑝𝑘⟩𝜈 | ≤

𝑐15𝐶
|m𝑛|
1

(𝜌1 − 𝛿)𝑛
, 𝛼 = 1, 2, . . . , 𝑑.

Therefore, for each 𝛼 = 1, 2, . . . , 𝑑 and sufficiently large 𝑛,

𝑛+|m𝑛|−𝑚𝑛,𝛼∑︁
𝜈=0

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)| ≤
𝑛+|m𝑛|−𝑚𝑛,𝛼∑︁

𝜈=0

𝑐15𝐶
|m𝑛|
1

(𝜎 + 𝛿)𝜈

(𝜌1 − 𝛿)𝑛

≤ 𝑐15(𝑛+ |m𝑛| −𝑚𝑛,𝛼 + 1)𝐶
|m𝑛|
1

(︂
𝜎 + 𝛿

𝜌1 − 𝛿

)︂𝑛

(39)

where 𝐶1 := 𝐶1(𝜎 + 𝛿) and 𝑧 ∈ 𝐷𝜎.
Combining (25) and (39), it follows from (19) that for each 𝑘 ≥ 𝑛2,

|𝑄F
|m|(𝑧)𝑄

𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− 𝑃𝜇
𝑛,m𝑛,𝛼(𝑧)| ≤ 𝑐16𝐶

|m𝑛|
1 𝜃𝑛, 𝛼 = 1, 2, . . . , 𝑑, 𝑧 ∈ 𝐷𝜎, 𝑛 ≥ 𝑘, (40)

where 𝜃 is an arbitrary constant which satisfies

𝜎 + 𝛿

𝜌1 − 𝛿
< 𝜃 < 1.

Let 𝛽 > 0 and 𝜀 > 0 be fixed. By the definition of 𝐽𝛽
𝜀 (𝐹,m; 𝑘) and (13), the inequality (40) implies that for

each 𝑘 ≥ 𝑛2,

|𝐹𝛼(𝑧)−𝑅𝜇
𝑛,m𝑛,𝛼(𝑧)| ≤

𝑐16𝐶
|m𝑛|
1 𝜃𝑛

|𝑄F
|m|(𝑧)𝑄

𝜇
𝑛,m𝑛

(𝑧)|
≤ 𝑐16𝐶

|m𝑛|
1 𝜃𝑛

(︂
6|m|
𝜀

)︂|m|/𝛽
(𝐶2|m𝑛|(𝑛+ 1)2)2|m𝑛|/𝛽 ,

for all 𝑧 ∈ 𝐷𝜎 ∖ 𝐽𝛽
𝜀 (𝐹,m; 𝑘) and 𝑛 sufficiently large. Then, for each 𝑘 ≥ 𝑛2,

⃦⃦
𝐹𝛼 −𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦1/𝑛
𝐷𝜎∖𝐽𝛽

𝜀 (𝐹,m;𝑘)
≤

(︃
𝑐16

(︂
6|m|
𝜀

)︂|m|/𝛽
)︃1/𝑛

𝜃(𝐶
1/2
1 𝐶

1/𝛽
2 |m𝑛|1/𝛽(𝑛+ 1)2/𝛽)2|m𝑛|/𝑛

≤ 𝑐
1/𝑛
17 𝜃𝑒(𝑐18+

3
𝛽 log(𝑛+1))(2|m𝑛|/𝑛),

for sufficiently large 𝑛, which implies that for each 𝑘 ≥ 𝑛2,

lim sup
𝑛→∞

⃦⃦
𝐹𝛼 −𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦1/𝑛
𝐷𝜎∖𝐽𝛽

𝜀 (𝐹,m;𝑘)
≤ 𝜃.
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Letting 𝛿 → 0 and 𝜌1 → 𝜌|m|(F), we have for each 𝑘 ≥ 𝑛2,

𝜎

𝜌|m|(F)
< 𝜃 < 1.

Since 𝜃 is arbitrary, we let 𝜃 → 𝜎/𝜌|m|(F), then for 𝑘 ≥ 𝑛2,

lim sup
𝑛→∞

⃦⃦
𝐹𝛼 −𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦1/𝑛
𝐾(𝜀)

≤ lim sup
𝑛→∞

⃦⃦
𝐹𝛼 −𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦1/𝑛
𝐷𝜎(𝜀)

≤ lim sup
𝑛→∞

⃦⃦
𝐹𝛼 −𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦1/𝑛
𝐷𝜎∖𝐽𝛽

𝜀 (𝐹,m;𝑘)
≤ 𝜎

𝜌|m|(F)
< 1. (41)

This implies that for any 𝛽 > 0 and 𝛼 = 1, 2, . . . , 𝑑, each sequence {𝑅𝜇
𝑛,m𝑛,𝛼}𝑛∈N converges in 𝛽-dimentional

Hausdorff content to 𝐹𝛼 inside 𝐷𝜌|m|(F), as 𝑛 → ∞.

Proof of Corollary 2.3. By the assumption of Corollary 2.3, m𝑛 = m. Then, the conditions in Theorem 2.2
are obtained. By Theorem 2.2, we get ℎ1 − lim𝑛→∞ 𝑅𝜇

𝑛,m𝑛,𝛼 = 𝐹𝛼 in 𝐷𝜌|m|(F). Applying Lemma 3.8, each
pole of 𝐹𝛼 in 𝐷𝜌|m|(F) attracts as many zeros of 𝑄𝜇

𝑛,m as its order. Therefore, since F has |m| poles in
𝐷𝜌|m|(F), deg𝑄

𝜇
𝑛,m = |m| for all sufficiently large 𝑛. By Lemma 3.6, for such 𝑛, 𝑄𝜇

𝑛,m is unique. This implies
that for sufficiently large 𝑛, R𝜇

𝑛,m is unique.
Let 𝐾 ⊂ 𝐷𝜌|m|(F) ∖ {𝜆1, 𝜆2, . . . , 𝜆𝑞} be a compact set. Choose 𝜎 := max{‖Φ‖𝐾 , 1}. Since all points

𝜆1, 𝜆2, . . . , 𝜆𝑞 attract all zeros of 𝑄𝜇
𝑛,m, for sufficiently small 𝜀 > 0 and for sufficiently large 𝑘,

𝐾 ∈ 𝐷𝜎 ∖ 𝐽𝛽
𝜀 (F,m, 𝑘).

By the inequality (41),

lim sup
𝑛→∞

⃦⃦
𝐹𝛼 −𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦1/𝑛
𝐾

≤ lim sup
𝑛→∞

⃦⃦
𝐹𝛼 −𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦1/𝑛
𝐷𝜎∖𝐽𝛽

𝜀 (F,m;𝑘)
≤ 𝜎

𝜌|m|(F)
. (42)

This implies that the sequence {𝑅𝜇
𝑛,m,𝛼}𝑛∈N converges uniformly to 𝐹𝛼 on each compact subset of 𝐷𝜌|m|(F) ∖

{𝜆1, 𝜆2, . . . , 𝜆𝑞} as 𝑛 → ∞. This completes the proof.

Proof of Theorem 2.4. Let 𝑄𝐸
𝑛,m𝑛

be the polynomial 𝑞𝐸𝑛,m𝑛
normalized as in (11) and we have for all 𝛼 =

1, 2, . . . , 𝑑,

𝑅𝐸
𝑛,m𝑛,𝛼 =

𝑝𝐸𝑛,m𝑛,𝛼

𝑞𝐸𝑛,m𝑛

=
𝑃𝐸
𝑛,m𝑛,𝛼

𝑄𝐸
𝑛,m𝑛

.

Note that the notations 𝐽𝛽
𝜀 (F,m; 𝑘) and 𝐵(𝜀) are defined as in the proof of Theorem 2.2 replacing 𝑄𝜇

𝑛,m𝑛
by

𝑄𝐸
𝑛,m𝑛

. Then, for any compact subset 𝐾 ⊂ 𝐷𝜌|m|(F) and for any 𝜀 > 0, there exist positive constants 𝐶1 > 0

and 𝐶2 > 0 independent of 𝑛 such that for all sufficiently large 𝑛,⃦⃦⃦
𝑄𝐸

𝑛,m𝑛

⃦⃦⃦
𝐾

≤ 𝐶
|m𝑛|
1 , (43)

and
min

𝑧∈𝐾∖𝐽𝛽
𝜀 (F,m;𝑘)

|𝑄𝐸
𝑛,m𝑛

(𝑧)| ≥ (𝐶2|m𝑛|(𝑛+ 1)2)−2|m𝑛|/𝛽 . (44)

Let

𝑄F
|m|(𝑧) :=

𝑞∏︁
𝑗=1

(︀
𝑧 − 𝜆𝑗

)︀𝜏𝑗 ,
where 𝜆1, 𝜆2, . . . , 𝜆𝑑 are distinct poles of F in 𝐷𝜌|m|(F). From the definition of simultaneous Padé-Faber
approximants and Lemma 3.2, we have,

𝑄𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− 𝑃𝐸
𝑛,m𝑛,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝑎
(𝛼)
𝑘,𝑛Φ𝑘(𝑧), 𝑧 ∈ 𝐷𝜌0(𝐹𝛼), (45)

where
𝑎
(𝛼)
𝑘,𝑛

:= [𝑄𝐸
𝑛,m𝑛

𝐹𝛼]𝑘, 𝑘 = 0, 1, 2, . . . ,
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and 𝑎
(𝛼)
𝑘,𝑛 = 0, for all 𝑘 = 𝑛 − 𝑚𝑛,𝛼 + 1, 𝑛 − 𝑚𝑛,𝛼 + 2, . . . , 𝑛. Since F is polewise independent with respect

to m in 𝐷𝜌|m|(𝐹 ), F has exactly |m| poles in 𝐷𝜌|m|(F) and
∑︀𝑞

𝑗=1 𝜏𝑗 = |m|. Multiplying (45) by 𝑄F
|m| and

expanding the result in terms of the Faber polynomial system {Φ𝜈}∞𝜈=0 such that for 𝑧 ∈ 𝐷𝜌|m|(F),

𝑄F
|m|(𝑧)𝑄

𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)−𝑄F
|m|(𝑧)𝑃

𝐸
𝑛,m𝑛,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝑄F
|m|(𝑧)𝑎

(𝛼)
𝑘,𝑛Φ𝑘(𝑧)

=

∞∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛Φ𝜈(𝑧) =

𝑛+|m𝑛|−𝑚𝑛,𝛼∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛Φ𝜈(𝑧) +

∞∑︁
𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1

𝑏
(𝛼)
𝜈,𝑛Φ𝜈(𝑧). (46)

Let 𝐾 be a compact subset of 𝐷𝜌|m|(F) and set

𝜎 := max{‖Φ‖𝐾 , 1} (47)

(𝜎 = 1 when 𝐾 ⊂ 𝐸). Choose 𝛿 > 0 sufficiently small such that

𝜌1 := 𝜌|m|(F)− 𝛿 > 𝜌|m|−1(F), and
𝜎 + 𝛿

𝜌1 − 𝛿
< 1. (48)

First, we approximate
∑︀∞

𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1 |𝑏
(𝛼)
𝜈,𝑛||Φ𝜈(𝑧)| on 𝐷𝜎. With the similar computation as (22),

it follows from (2), (9), and (43) that for 𝜈 ≥ 𝑛+ |m𝑛| −𝑚𝑛,𝛼 + 1,

|𝑏(𝛼)𝜈,𝑛| ≤
𝑐1𝐶

|m𝑛|
1

𝜌𝜈1
. (49)

Therefore, by (10) and (49),

∞∑︁
𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1

|𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)| ≤
∞∑︁

𝜈=𝑛+|m𝑛|−𝑚𝑛,𝛼+1

𝑐2𝐶
|m𝑛|
1

(︂
𝜎

𝜌1

)︂𝜈

≤ 𝑐3𝐶
|m𝑛|
1

(︂
𝜎

𝜌1

)︂𝑛

, 𝑧 ∈ 𝐷𝜎. (50)

Next, we approximate
∑︀𝑛+|m𝑛|−𝑚𝑛,𝛼

𝜈=0 |𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)| on 𝐷𝜎. Again, we begin by approximating |𝑎(𝛼)𝑘,𝑛|.
Choose 𝜌2 ∈ (1, 𝜌0(F)), we have

𝑎
(𝛼)
𝑘,𝑛 = [𝑄𝐸

𝑛,m𝑛
𝐹𝛼]𝑘 =

1

2𝜋𝑖

∫︁
Γ𝜌2

𝑄𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)Φ
′(𝑧)

Φ𝑘+1(𝑧)
𝑑𝑧.

Define

𝛾
(𝛼)
𝑘,𝑛

:=
1

2𝜋𝑖

∫︁
Γ𝜌1

𝑄𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)Φ
′(𝑧)

Φ𝑘+1(𝑧)
𝑑𝑧.

Arguing as (26), we obtain

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

𝑞∑︁
𝑗=1

Res(𝑄𝐸
𝑛,m𝑛

𝐹𝛼Φ
′/Φ𝑘+1, 𝜆𝑗). (51)

Recall that the limit formula for the residue of 𝑄𝐸
𝑛,m𝑛

𝐹𝛼Φ
′/Φ𝑘+1 at 𝜆𝑗 is

Res(𝑄𝐸
𝑛,m𝑛

𝐹𝛼Φ
′/Φ𝑘+1, 𝜆𝑗) =

1

(𝜏𝑗 − 1)!
lim

𝑧→𝜆𝑗

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝑄𝐸
𝑛,m𝑛

𝐹𝛼Φ
′/Φ𝑘+1

)︁(𝜏𝑗−1)
(𝑧).

Leibniz’s formula allows us to write(︂
(𝑧 − 𝜆𝑗)

𝜏𝑗𝑄𝐸
𝑛,m𝑛

𝐹𝛼
Φ′

Φ𝑘+1

)︂(𝜏𝑗−1)

(𝑧) =

𝜏𝑗−1∑︁
𝑡=0

(︃
𝜏𝑗 − 1

𝑡

)︃(︂
𝑄𝐸

𝑛,m𝑛

Φ′

Φ𝑛+1

)︂(𝜏𝑗−1−𝑡)

(𝑧)
(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑛−𝑘

)︁(𝑡)
(𝑧).
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For 𝑗 = 1, 2, . . . , 𝑞, and 𝑡 = 0, 1, . . . , 𝜏𝑗 − 1, set

𝛽𝑛(𝑗, 𝑡) :=
1

(𝜏𝑗 − 1)!

(︃
𝜏𝑗 − 1

𝑡

)︃
lim

𝑧→𝜆𝑗

(︂
𝑄𝐸

𝑛,m𝑛

Φ′

Φ𝑛+1

)︂(𝜏𝑗−1−𝑡)

(𝑧)

(notice that 𝛽𝑛(𝑗, 𝑡) do not depend on 𝑘 and 𝛼). Then, we can rewrite (51) as

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝛽𝑛(𝑗, 𝑡)
(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑛−𝑘

)︁(𝑡)
(𝜆𝑗). (52)

Since 𝑎
(𝛼)
𝑘,𝑛 = 0 for 𝛼 = 1, 2, . . . , 𝑑, 𝑘 = 𝑛−𝑚𝑛,𝛼+1, 𝑛−𝑚𝑛,𝛼+2, . . . , 𝑛 and the assumption that 𝑚𝑛,𝛼 ≥ 𝑚𝛼,

we have

𝛾
(𝛼)
𝑘,𝑛 =

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝛽𝑛(𝑗, 𝑡)
(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑛−𝑘

)︁(𝑡)
(𝜆𝑗), 𝛼 = 1, 2, . . . , 𝑑, 𝑘 = 𝑛−𝑚𝛼+1, 𝑛−𝑚𝛼+2, . . . , 𝑛. (53)

Now, we use the same technique as for simultaneous Padé-orthogonal approximants to find 𝛽𝑛(𝑗, 𝑡) by
replacing 𝑠𝑘/𝑠𝑛 with Φ𝑛−𝑘 in (28). Consider (53) as a system of |m| equations on the |m| unknowns 𝛽𝑛(𝑗, 𝑡),
it follows that for 𝛼 = 1, 2, . . . , 𝑑 and 𝑘 ≥ 𝑛+ 1,

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

1

Δ𝑛

𝑞∑︁
𝑗=1

𝜏𝑗−1∑︁
𝑡=0

𝑑∑︁
𝑤=1

𝑚𝑤∑︁
𝑦=1

𝛾
(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛𝐶𝑛[𝑔𝑤,𝑦, ℎ𝑗,𝑡]

(︁
(𝑧 − 𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑛−𝑘

)︁(𝑡)
(𝜆𝑗), (54)

where Δ𝑛, 𝛾(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛, and 𝐶𝑛[𝑔𝑤,𝑦, ℎ𝑗,𝑡] are defined in the same way as for simultaneous Padé-orthogonal

approximants.
Arguing as (30) and (31) by replacing 𝑠𝑘/𝑠𝑛 with (𝑧−𝜆𝑗)

𝜏𝑗𝐹𝛼Φ
𝑛−𝑘, (32) by replacing 𝑠𝑘/𝑠𝑛 with Φ𝑛−𝑘,

(34) and (35) , we have for sufficiently large 𝑛, 𝛼 = 1, 2, . . . , 𝑑,

|𝑎(𝛼)𝑘,𝑛| ≤ |𝛾(𝛼)𝑘,𝑛|+
𝑐4

𝜌𝑘−𝑛
2

𝑑∑︁
𝑤=1

𝑚𝑤∑︁
𝑦=1

|𝛾(𝑤)
𝑛−𝑚𝑤+𝑦,𝑛|, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 ≥ 𝑛+ 1.

By the definition of 𝛾(𝛼)𝑘,𝑛, for all sufficiently large 𝑛, we obtain

|𝛾(𝛼)𝑘,𝑛| ≤
𝑐5𝐶

|m𝑛|
1

𝜌𝑘1
, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 ≥ 𝑛− |m|+ 1.

This implies that

|𝑎(𝛼)𝑘,𝑛| ≤
𝑐6𝐶

|m𝑛|
1

𝜌𝑘−𝑛
2 𝜌𝑛1

, 𝛼 = 1, 2, . . . , 𝑑, 𝑘 ≥ 𝑛+ 1. (55)

Now, we estimate |[𝑄F
|m|Φ𝑘]𝜈 |. Suppose that 𝛿 > 0 is sufficiently small such that 𝜌2 − 𝛿 > 1. then,

|[𝑄F
|m|Φ𝑘]𝜈 | =

⃒⃒⃒⃒
⃒⃒⃒⃒ 1

2𝜋𝑖

∫︁
Γ𝜌2−𝛿

𝑄F
|m|(𝑧)Φ𝑘(𝑧)Φ

′(𝑧)

Φ𝜈+1(𝑧)
𝑑𝑧

⃒⃒⃒⃒
⃒⃒⃒⃒ ≤ 𝑐7

(𝜌2 − 𝛿)𝑘

(𝜌2 − 𝛿)𝜈
. (56)

Consequently, we get

|𝑏(𝛼)𝜈,𝑛| ≤
∞∑︁

𝑘=𝑛+1

|𝑎(𝛼)𝑘,𝑛||[𝑄
F
|m|Φ𝑘]𝜈 | ≤

𝑐8𝐶
|m𝑛|
1

(𝜌2 − 𝛿)𝜈

(︂
𝜌2
𝜌1

)︂𝑛 ∞∑︁
𝑘=𝑛+1

(︂
𝜌2 − 𝛿

𝜌2

)︂𝑘

≤
𝑐9𝐶

|m𝑛|
1

(𝜌2 − 𝛿)𝜈

(︂
𝜌2 − 𝛿

𝜌1

)︂𝑛

.

Therefore, for each 𝛼 = 1, 2, . . . , 𝑑 and sufficiently large 𝑛,

𝑛+|m𝑛|−𝑚𝑛,𝛼∑︁
𝜈=0

|𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)| ≤ 𝑐10𝐶
|m𝑛|
1

(︂
𝜌2 − 𝛿

𝜌1

)︂𝑛 𝑛+|m𝑛|−𝑚𝑛,𝛼∑︁
𝜈=0

(︂
𝜎

𝜌2 − 𝛿

)︂𝜈
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≤ 𝑐15(𝑛+ |m𝑛| −𝑚𝑛,𝛼 + 1)𝐶
|m𝑛|
1

(︂
𝜌2 − 𝛿

𝜌1

)︂𝑛(︂
𝜎

𝜌2 − 𝛿

)︂𝑛+|m𝑛|−𝑚𝑛,𝛼

(57)

where 𝑧 ∈ 𝐷𝜎.
Combining (50) and (57), it follows from (46) that for each 𝑘 ≥ 𝑛2,

|𝑄F
|m|(𝑧)𝑄

𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− 𝑃𝐸
𝑛,m𝑛,𝛼(𝑧)| ≤ 𝑐11𝐶

|m𝑛|
1 𝜃𝑛, 𝛼 = 1, 2, . . . , 𝑑, 𝑧 ∈ 𝐷𝜎, 𝑛 ≥ 𝑘, (58)

where 𝜃 is an arbitrary constant which satisfies

𝜎

𝜌1
< 𝜃 < 1.

Repeating the lines of reasoning used after (40) in the proof of Theorem 2.2, we arrive

lim sup
𝑛→∞

⃦⃦⃦
𝐹𝛼 −𝑅𝐸

𝑛,m𝑛,𝛼

⃦⃦⃦1/𝑛
𝐾(𝜀)

≤ 𝜎

𝜌|m|(F)
< 1.

This implies that for any 𝛽 > 0 and 𝛼 = 1, 2, . . . , 𝑑, each sequence {𝑅𝐸
𝑛,m𝑛,𝛼}𝑛∈N converges in 𝛽-dimentional

Hausdorff content to 𝐹𝛼 inside 𝐷𝜌|m|(F), as 𝑛 → ∞.

Proof of Corollary 2.5. Arguing as the proof of Corollary 2.3 and replacing 𝑅𝜇
𝑛,m𝑛,𝛼 with 𝑅𝐸

𝑛,m𝑛,𝛼, we have
(4).

Proof of Theorem 2.7. For each 𝑛 ∈ N, we normalize the polynomial ̃︀𝑞𝜇𝑛,m𝑛
in terms of its zeros 𝜆𝑛,𝑗 so that

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧) :=
∏︁

|𝜆𝑛,𝑗 |≤1

(𝑧 − 𝜆𝑛,𝑗)
∏︁

|𝜆𝑛,𝑗 |>1

(︂
1− 𝑧

𝜆𝑛,𝑗

)︂
(59)

and for each 𝛼 = 1, 2, . . . , 𝑑, ̃︀𝑅𝜇
𝑛,m𝑛,𝛼 =

̃︀𝑝𝜇𝑛,m𝑛,𝛼̃︀𝑞𝜇𝑛,m𝑛

=
̃︀𝑃𝜇
𝑛,m𝑛,𝛼̃︀𝑄𝜇
𝑛,m𝑛

.

With this normalization, we can estimate upper and lower bounds on the normalized ̃︀𝑄𝜇
𝑛,m𝑛

. Let 𝜀 > 0 and
𝛼 be fixed. Suppose that the poles of 𝐹𝛼 in 𝐷*

𝛼(F,m) are 𝜆1, 𝜆2, . . . , 𝜆𝑑′ when 𝑑′ ≤ |m| and the zeros of̃︀𝑄𝜇
𝑛,m𝑛

are 𝜆𝑛,1, 𝜆𝑛,2, . . . , 𝜆𝑛,𝑙m𝑛
(they are not necessary distinct and 𝑙m𝑛 ≤ |m𝑛|). We cover each pole of 𝐹𝛼

in 𝐷*
𝛼(F,m) with an open disk of radius (𝜀/(6|m|))1/𝛽 and denote by 𝐽𝛽

0,𝜀(𝐹𝛼,m) the union of these disks.

For each 𝑛 ≥ 1, we cover each zero of ̃︀𝑄𝜇
𝑛,m𝑛

with an open disk of radius (𝜀/(6|m𝑛|(𝑛)2))1/𝛽 and denote by
𝐽𝛽
𝑛,𝜀(F) the union of these disks. Set for each 𝑘 ∈ N,

𝐽𝛽
𝜀 (𝐹𝛼,m; 𝑘) := 𝐽𝛽

0,𝜀(𝐹𝛼,m)
⋃︁⎛⎝ ∞⋃︁

𝑛=𝑘

𝐽𝛽
𝑛,𝜀(F)

⎞⎠
and

𝐽𝛽
𝜀 (𝐹𝛼,m) := 𝐽𝛽

𝜀 (𝐹𝛼,m; 1).

By using the monotonicity and subadditivity of ℎ𝛽 , it easy to check that ℎ𝛽(𝐽
𝛽
𝜀 (𝐹𝛼,m)) < 𝜀 and 𝐽𝛽

𝜀1(𝐹𝛼,m) ⊂
𝐽𝛽
𝜀2(𝐹𝛼,m) for 𝜀1 < 𝜀2. For any set 𝐵 ⊂ 𝐷*

𝛼(F,m), we put 𝐵(𝜀) := 𝐵 ∖ 𝐽𝛽
𝜀 (𝐹𝛼,m). Clearly that if {𝑔𝑛}𝑛∈N

converges uniformly to 𝑔 on 𝐾(𝜀) for any compact subset 𝐾 ⊂ 𝐷*
𝛼(F,m) and 𝜀 > 0, then ℎ𝛽− lim𝑛→∞ 𝑔𝑛 = 𝑔

in 𝐷*
𝛼(F,m).
Note that for any compact subset 𝐾 ⊂ 𝐷*

𝛼(F,m) and for any 𝜀 > 0, there exist positive constants 𝐶1 > 0

and 𝐶2 > 0 independent of 𝑛 such that for all sufficiently large 𝑛,⃦⃦⃦ ̃︀𝑄𝜇
𝑛,m𝑛

⃦⃦⃦
𝐾

≤ 𝐶
|m𝑛|
1 , (60)

and
min

𝑧∈𝐾∖𝐽𝛽
𝜀 (𝐹𝛼,m;𝑘)

| ̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)| ≥ (𝐶2|m𝑛|𝑛2)−2|m𝑛|/𝛽 . (61)
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Let 𝜉 be a system pole of order 𝜏 of F with respect to m. We begin the proof by showing that

lim sup
𝑛→∞

|(𝑄̃𝜇
𝑛,m𝑛

)(𝑗)(𝜉)|1/𝑛 ≤ |Φ(𝜉)|
𝜌𝜉,𝑗+1(F,m)

, 𝑗 = 0, 1, . . . , 𝜏 − 1.

Consider polynomial combination 𝐺1 of type (5) that is holomorphic on a neighborhood of 𝐷|Φ(𝜉)| except for
a simple pole at 𝑧 = 𝜉 and verifies that 𝜌1(𝐺1) = 𝜌𝜉,1(F,m)(= 𝜌𝜉,1(F,m)). Then, we have

𝐺1 =

𝑑∑︁
𝛼=1

𝑣𝛼,1𝐹𝛼, deg 𝑣𝛼,1 < 𝑚𝛼, 𝛼 = 1, 2, . . . , 𝑑.

Define
𝐻1(𝑧) := (𝑧 − 𝜉)𝐺1(𝑧) and 𝑎

(1)
𝑛,𝑛 := ⟨ ̃︀𝑄𝜇

𝑛,mn
𝐺1⟩𝑛.

By the definition of ̃︀𝑄𝜇
𝑛,m𝑛

, it follows that 𝑎
(1)
𝑛,𝑛 = 0. Then, we have

𝑎
(1)
𝑛,𝑛 = ⟨ ̃︀𝑄𝜇

𝑛,m𝑛
𝐺1⟩𝑛 =

1

2𝜋𝑖

∫︁
Γ𝜌1

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐺1(𝑧)𝑠𝑛(𝑧)𝑑𝑧 = 0,

where 1 < 𝜌1 < |Φ(𝜉)|. Set

𝛾
(1)
𝑛,𝑛 :=

1

2𝜋𝑖

∫︁
Γ𝜌2

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐺1(𝑧)𝑠𝑛(𝑧)𝑑𝑧,

where |Φ(𝜉)| < 𝜌2 < 𝜌𝜉,1(F,m). Arguing as in (26), we have

1

2𝜋𝑖

∫︁
Γ𝜌2

̃︀𝑄𝜇
𝑛,m𝑛

(𝑡)𝐺1(𝑡)𝑠𝑛(𝑡)𝑑𝑡−
1

2𝜋𝑖

∫︁
Γ𝜌1

̃︀𝑄𝜇
𝑛,m𝑛

(𝑡)𝐺1(𝑡)𝑠𝑛(𝑡)𝑑𝑡

= Res( ̃︀𝑄𝜇
𝑛,m𝑛

𝐺1𝑠𝑛, 𝜉) = lim
𝑧→𝜉

(𝑧 − 𝜉) ̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐺1(𝑧)𝑠𝑛(𝑧) = 𝐻1(𝜉) ̃︀𝑄𝜇
𝑛,m𝑛

(𝜉)𝑠𝑛(𝜉).

(62)

Then, we can rewrite (62) as

𝛾
(1)
𝑛,𝑛 = 𝛾

(1)
𝑛,𝑛 − 𝑎

(1)
𝑛,𝑛 = 𝐻1(𝜉) ̃︀𝑄𝜇

𝑛,m𝑛
(𝜉)𝑠𝑛(𝜉).

Since 𝑎
(1)
𝑛,𝑛 = 0, it follows that

̃︀𝑄𝜇
𝑛,m𝑛

(𝜉) =
𝛾
(1)
𝑛,𝑛

𝐻1(𝜉)𝑠𝑛(𝜉)
. (63)

Choose 𝛿 > 0 so small such that

𝜌2 := 𝜌𝜉,1(F,m)− 𝛿 > |Φ(𝜉)|, |Φ(𝜉)| − 𝛿 > 1, and
|Φ(𝜉)|+ 𝛿

𝜌2 − 𝛿
< 1.

By using (??), there exists 𝑛0 ∈ N and 𝑐2 > 0, 𝑐3 > 0 such that

𝑐1
(𝜌+ 𝛿)𝑛

≤‖𝑠𝑛‖Γ𝜌
≤ 𝑐2

(𝜌− 𝛿)𝑛
, 𝑛 ≥ 𝑛0. (64)

Then, from the definition of 𝛾(1)𝑛,𝑛 and (64), we have

|𝛾(1)𝑛,𝑛| ≤
𝑐3𝐶

|m𝑛|
1

(𝜌2 − 𝛿)𝑛
and |𝑠𝑛(𝜉)| ≥

𝑐1
|(Φ(𝜉)|+ 𝛿)𝑛

. (65)

By (65), it follows from (63) that

| ̃︀𝑄𝜇
𝑛,m𝑛

(𝜉)| ≤ 𝑐4𝐶
|m𝑛|
1

(︂
|Φ(𝜉)|+ 𝛿

𝜌2 − 𝛿

)︂𝑛

.

Letting 𝛿 → 0, we obtain 𝜌2 → 𝜌𝜉,1(F,m) and

lim sup
𝑛→∞

| ̃︀𝑄𝜇
𝑛,m𝑛

(𝜉)|1/𝑛 ≤ |Φ(𝜉)|
𝜌𝜉,1(F,m)

.
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Now we employ induction. Suppose that

lim sup
𝑛→∞

|( ̃︀𝑄𝜇
𝑛,m𝑛

)(𝑗)(𝜉)|1/𝑛 ≤ |Φ(𝜉)|
𝜌𝜉,𝑗+1(F,m)

, 𝑗 = 0, 1, . . . , ℓ− 2, and ℓ ≤ 𝜏. (66)

We will show that (66) holds for 𝑗 = ℓ − 1. Consider a polynomial combination 𝐺ℓ of type (5) that is
holomorphic on a neighborhood of 𝐷|Φ(𝜉)| except for a pole of order ℓ at 𝑧 = 𝜉 and verifies that 𝜌ℓ(𝐺ℓ) =

𝜌𝜉,ℓ(F,m). Then, we have

𝐺ℓ =

𝑑∑︁
𝛼=ℓ

𝑣𝛼,ℓ𝐹𝛼, deg 𝑣𝛼,ℓ < 𝑚𝛼, 𝛼 = 1, 2, . . . , 𝑑.

Define
𝐻ℓ(𝑧) := (𝑧 − 𝜉)ℓ𝐺ℓ(𝑧) and 𝑎

(ℓ)
𝑛,𝑛 := ⟨ ̃︀𝑄𝜇

𝑛,m𝑛
𝐺ℓ⟩𝑛.

By the definition of ̃︀𝑄𝜇
𝑛,m𝑛

, it follows that 𝑎
(ℓ)
𝑛,𝑛 = 0. Consider

𝑎
(ℓ)
𝑛,𝑛 = [ ̃︀𝑄𝜇

𝑛,m𝑛
𝐺ℓ]𝑛 =

1

2𝜋𝑖

∫︁
Γ𝜌1

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐺ℓ(𝑧)𝑠𝑛(𝑧)𝑑𝑧 = 0,

where 1 < 𝜌1 < |Φ(𝜉)|. Set

𝜏
(ℓ)
𝑛,𝑛 :=

1

2𝜋𝑖

∫︁
Γ𝜌2

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐺ℓ(𝑧)𝑠𝑛(𝑧)𝑑𝑧,

where |Φ(𝜉)| < 𝜌2 < 𝜌𝜉,ℓ(F,m). Again, arguing as in (26), we have

1

2𝜋𝑖

∫︁
Γ𝜌6

̃︀𝑄𝜇
𝑛,m𝑛

(𝑡)𝐺ℓ(𝑡)𝑠𝑛(𝑡)𝑑𝑡−
1

2𝜋𝑖

∫︁
Γ𝜌5

̃︀𝑄𝜇
𝑛,m𝑛

(𝑡)𝐺ℓ(𝑡)𝑠𝑛(𝑡)𝑑𝑡

= Res( ̃︀𝑄𝜇
𝑛,m𝑛

𝐺ℓ𝑠𝑛, 𝜉) =
1

(ℓ− 1)!

ℓ−1∑︁
𝑡=0

(︃
ℓ− 1

𝑡

)︃
(𝐻ℓ𝑠𝑛)

(ℓ−1−𝑡)(𝜉)( ̃︀𝑄𝜇
𝑛,m𝑛

)(𝑡)(𝜉).

(67)

Since 𝑎
(ℓ)
𝑛,𝑛 = 0, equation (67) become

(ℓ− 1)!𝜏
(ℓ)
𝑛,𝑛 =

ℓ−2∑︁
𝑡=0

(︃
ℓ− 1

𝑡

)︃
(𝐻ℓ𝑠𝑛)

(ℓ−1−𝑡)(𝜉)( ̃︀𝑄𝜇
𝑛,m𝑛

)(𝑡)(𝜉) +𝐻ℓ(𝜉)𝑠𝑛(𝜉)( ̃︀𝑄𝜇
𝑛,m𝑛

)(ℓ−1)(𝜉),

which implies that

( ̃︀𝑄𝜇
𝑛,m𝑛

)(ℓ−1)(𝜉) =
(ℓ− 1)!𝜏

(ℓ)
𝑛,𝑛

𝐻ℓ(𝜉)𝑠𝑛(𝜉)
−

ℓ−2∑︁
𝑡=0

(︃
ℓ− 1

𝑡

)︃
(𝐻ℓ𝑠𝑛)

(ℓ−1−𝑡)(𝜉)( ̃︀𝑄𝜇
𝑛,m𝑛

)(𝑡)(𝜉)

𝐻ℓ(𝜉)𝑠𝑛(𝜉)
. (68)

Choose 𝛿 > 0 so small such that

𝜌2 := 𝜌𝜉,ℓ(F,m)− 𝛿 > |Φ(𝜉)|, |Φ(𝜉)| − 𝛿 > 1, and
|Φ(𝜉)|+ 𝛿

𝜌2 − 𝛿
< 1.

Arguing as (65), we have

|𝛾(ℓ)𝑛,𝑛| ≤
𝑐5𝐶

|mn|
1

(𝜌2 − 𝛿)𝑛
, and |𝑠𝑛(𝜉)| ≥

𝑐1
(|Φ(𝜉)|+ 𝛿)𝑛

, (69)

and for all 𝑡 = 0, 1, 2, . . . , ℓ− 2,

|(𝐻ℓ𝑠𝑛)
(ℓ−1−𝑡)(𝜉)| =

⃒⃒⃒⃒
⃒⃒⃒⃒ (ℓ− 1− 𝑡)!

2𝜋𝑖

∫︁
|𝑧−𝜉|=𝜀

𝐻ℓ(𝑧)𝑠𝑛(𝑧)

(𝑧 − 𝜉)ℓ−𝑡
𝑑𝑧

⃒⃒⃒⃒
⃒⃒⃒⃒ ≤ 𝑐6

(|Φ(𝜉)| − 𝛿2)𝑛
, (70)
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where {𝑧 ∈ C : |𝑧−𝜉| = 𝜀} ⊂ {𝑧 ∈ C : |Φ(𝑧)| > |Φ(𝜉)|−𝛿}. Moreover, by (66), we have for all 𝑗 = 0, 2, . . . , ℓ−2,

|( ̃︀𝑄𝜇
𝑛,m𝑛

)(𝑗)(𝜉)| ≤ 𝑐7

(︃
|Φ(𝜉)|

𝜌𝜉,𝑗+1(F,m)

)︃𝑛

≤ 𝑐7

(︃
|Φ(𝜉)|

𝜌𝜉,ℓ−1(F,m)

)︃𝑛

. (71)

Combining (69), (70), and (71), it follows from (68) that

|( ̃︀𝑄𝜇
𝑛,m𝑛

)(ℓ−1)(𝜉)| =

⃒⃒⃒⃒
⃒⃒ (ℓ− 1)!𝜏

(ℓ)
𝑛,𝑛

𝐻ℓ(𝜉)𝑠𝑛(𝜉)
−

ℓ−2∑︁
𝑡=0

(︃
ℓ− 1

𝑡

)︃
(𝐻ℓ𝑠𝑛)

(ℓ−1−𝑡)(𝜉)( ̃︀𝑄𝜇
𝑛,m𝑛

)(𝑡)(𝜉)

𝐻ℓ(𝜉)𝑠𝑛(𝜉)

⃒⃒⃒⃒
⃒⃒

≤ 𝑐8𝐶
|mn|
1

(︂
|Φ(𝜉)|+ 𝛿

𝜌2 − 𝛿

)︂𝑛

+ 𝑐9

(︂
|Φ(𝜉)|+ 𝛿

|Φ(𝜉)| − 𝛿

)︂𝑛
(︃

|Φ(𝜉)|
𝜌𝜉,ℓ−1(F,m)

)︃𝑛

,

(72)

which implies that

lim sup
𝑛→∞

|( ̃︀𝑄𝜇
𝑛,m𝑛

)(ℓ−1)(𝜉)|1/𝑛≤ max

⎧⎨⎩ |Φ(𝜉)|+ 𝛿

𝜌2 − 𝛿
,

(︂
|Φ(𝜉)|+ 𝛿

|Φ(𝜉)| − 𝛿

)︂(︃
|Φ(𝜉)|

𝜌𝜉,ℓ−1(F,m)

)︃⎫⎬⎭.

Letting 𝛿 → 0, we obtain 𝜌2 → 𝜌𝜉,ℓ(F,m) and

lim sup
𝑛→∞

|( ̃︀𝑄𝜇
𝑛,m𝑛

)(ℓ−1)(𝜉)|1/𝑛≤ max

⎧⎨⎩ |Φ(𝜉)|
𝜌𝜉,ℓ(F,m)

,

(︃
|Φ(𝜉)|

𝜌𝜉,ℓ−1(F,m)

)︃⎫⎬⎭
≤ |Φ(𝜉)|

𝜌𝜉,ℓ(F,m)
,

which completes the induction proof.
Let 𝜉1, 𝜉2, . . . , 𝜉𝑤 be the distinct system poles of F with respect to m, and let 𝜏𝑗 be the order of 𝜉𝑗 as a

system pole, 𝑗 = 1, 2, . . . , 𝑤. By the assumption that
∑︀𝑤

𝑗=1 𝜏𝑗 = |m|, we have proved that, for 𝑗 = 1, 2, . . . , 𝑤

and 𝑡 = 0, 1, . . . , 𝜏𝑗 − 1,

lim sup
𝑛→∞

|( ̃︀𝑄𝜇
𝑛,m𝑛

)(𝑡)(𝜉𝑗)|1/𝑛 ≤
|Φ(𝜉𝑗)|

𝜌𝜉𝑗 ,𝑡+1(F,m)
≤

|Φ(𝜉𝑗)|
𝜌𝜉𝑗 (F,m)

. (73)

Let 𝛼 ∈ {1, 2, . . . , 𝑑} be fixed and let {𝜉1, . . . , 𝜉𝑁} be the poles of 𝐹𝛼 in 𝐷*
𝛼(F,m). For each 𝑗 = 1, 2, . . . , 𝑁 ,

let 𝜏𝑗 be the order of 𝜉𝑗 as a pole of 𝐹𝛼 and 𝜏𝑗 its order as a system pole. Choose 𝜌1 ∈ (1, 𝜌0(𝐹𝛼)). Consider

𝑎
(𝛼)
𝑘,𝑛 = ⟨ ̃︀𝑄𝜇

𝑛,m𝑛
𝐹𝛼⟩𝑘 =

1

2𝜋𝑖

∫︁
Γ𝜌1

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)𝑠𝑘(𝑧)𝑑𝑧.

Define
𝛾
(𝛼)
𝑘,𝑛

:=
1

2𝜋𝑖

∫︁
Γ𝜌2

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)𝑠𝑘(𝑧)𝑑𝑧,

where 𝜌2 ∈ (1,𝜌*
𝛼(F,m)). Arguing as in (26), we have

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

𝑁∑︁
𝑗=1

Res( ̃︀𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘, 𝜉𝑗). (74)

Recall that the limit formula for the residue of 𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘 at 𝜉𝑗 is

Res( ̃︀𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘, 𝜉𝑗) =
1

(𝜏𝑗 − 1)!
lim
𝑧→𝜉𝑗

(︁
(𝑧 − 𝜉𝑗)

𝜏𝑗 ̃︀𝑄𝜇
𝑛,m𝑛

𝐹𝛼𝑠𝑘

)︁(𝜏𝑗−1)
(𝑧)

=
1

(𝜏𝑗 − 1)!

𝜏𝑗−1∑︁
𝑡=0

(︃
𝜏𝑗 − 1

𝑡

)︃
((𝑧 − 𝜉𝑗)

𝜏𝑗𝐹𝛼𝑠𝑘)
(𝜏𝑗−1−𝑡)(𝜉𝑗)( ̃︀𝑄𝜇

𝑛,m𝑛
)(𝑡)(𝜉𝑗).

(75)
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Let 𝛿 > 0 be such that 𝜌2 − 𝛿 > 1 and |Φ(𝜉𝑗)| − 𝛿 > 1. Arguing as (65) and the computation similar as (70),

|𝛾(𝛼)𝑘,𝑛| ≤
𝑐10𝐶

|m𝑛|
1

(𝜌2 − 𝛿)𝑘
and |((𝑧 − 𝜉𝑗)

𝜏𝑗𝐹𝛼𝑠𝑘)
(𝜏𝑗−1−𝑡)(𝜉𝑗)| ≤

𝑐11

(|Φ(𝜉𝑗)| − 𝛿)𝑘
, (76)

respectively. By (75) and (76), it follows from (74) that

|𝑎𝛼𝑘,𝑛| ≤
𝑐10𝐶

|mn|
1

(𝜌2 − 𝛿)𝑘
+ 𝑐12

𝑁∑︁
𝑗=1

|Φ(𝜉𝑗)|𝑛

(𝜌𝜉𝑗
(F,m)𝑛(|Φ(𝜉𝑗)| − 𝛿)𝑘

≤
𝑐10𝐶

|mn|
1

(𝜌2 − 𝛿)𝑘
+

𝑐12
(𝜌*

𝛼(F,m))𝑛

𝑁∑︁
𝑗=1

|Φ(𝜉𝑗)|𝑛

(|Φ(𝜉𝑗)| − 𝛿)𝑘
. (77)

Let

𝜔(𝑧) :=

𝑁∏︁
𝑗=1

(︁
𝑧 − 𝜉𝑗

)︁𝜏𝑗
.

From the definition of orthogonal Hermite-Padé approximants and Lemma (3.1), we have,

̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− ̃︀𝑃𝜇
𝑛,m,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝑎
(𝛼)
𝑘,𝑛𝑝𝑘, 𝑧 ∈ 𝐷𝜌0(𝐹𝛼), (78)

where
𝑎
(𝛼)
𝑘,𝑛

:= ⟨ ̃︀𝑄𝜇
𝑛,m𝑛

𝐹𝛼⟩𝑘, 𝑘 = 0, 1, 2, . . . .

Multiplying (94) by 𝜔 and expanding the result in terms of the orthogonal system {𝑝𝜈}∞𝜈=0 such that for
𝑧 ∈ 𝐷𝛼(F,m),

𝜔(𝑧) ̃︀𝑄𝜇
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− 𝜔(𝑧) ̃︀𝑃𝜇
𝑛,m𝑛,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝜔(𝑧)𝑎
(𝛼)
𝑘,𝑛𝑝𝑘(𝑧)

=

∞∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛𝑝𝜈(𝑧) =

𝑛+|m𝑛|∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛𝑝𝜈(𝑧) +

∞∑︁
𝜈=𝑛+|m𝑛|+1

𝑏
(𝛼)
𝜈,𝑛𝑝𝜈(𝑧). (79)

Let 𝐾 be a compact subset of 𝐷*
𝛼(F,m) and set

𝜎 := max{‖Φ‖𝐾 , 1} (80)

(𝜎 = 1 when 𝐾 ⊂ 𝐸). Choose 𝛿 > 0 sufficiently small such that

𝜌2 := 𝜌*
𝛼(F,m)− 𝛿, 𝜌*

𝛼(F,m)− 2𝛿 > 1, and
𝜎 + 𝛿

𝜌2 − 𝛿
< 1 (81)

First, we approximate
∑︀∞

𝜈=𝑛+|m𝑛|+1 |𝑏
(𝛼)
𝜈,𝑛||𝑝𝜈(𝑧)| on 𝐷𝜎. Auguring as in (22)-(25), we have

∞∑︁
𝜈=𝑛+|m𝑛|+1

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)| ≤ 𝑐13𝐶
|m𝑛|
1

(︂
𝜎 + 𝛿

𝜌2 − 𝛿

)︂𝑛

, 𝑧 ∈ 𝐷𝜎. (82)

Letting 𝛿 → 0, we have 𝜌1 → 𝜌*
𝛼(F,m), then

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦⃦⃦ ∞∑︁
𝜈=𝑛+|m𝑛|+1

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)|

⃦⃦⃦⃦
⃦⃦⃦
1/𝑛

𝐷𝜎

≤ 𝜎

𝜌*
𝛼(F,m)

. (83)

Next, we approximate
∑︀𝑛+|m𝑛|

𝜈=0 |𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)| on 𝐷𝜎. By using the same technique as (38) and inequality
(93), we have

|𝑏(𝛼)𝜈,𝑛| ≤
∞∑︁

𝑘=𝑛+1

|𝑎(𝛼)𝑘,𝑛||⟨𝑄
F
|m|𝑝𝑘⟩𝜈 | ≤

𝑐14𝐶
|m𝑛|
1

(𝜌2 − 𝛿)𝑛
+

𝑐15
(𝜌*

𝛼(F,m))𝑛

𝑁∑︁
𝑗=1

|Φ(𝜆𝑗)|𝑛

(|Φ(𝜆𝑗)| − 𝛿)𝑛
. (84)
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Therefore, for 𝑧 ∈ 𝐷𝜎,

𝑛+|m𝑛|∑︁
𝜈=0

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)| ≤ 𝑐16(𝑛+|m𝑛|+1)(𝜎+𝛿)𝑛+|m𝑛|

⎛⎝ 𝐶
|m𝑛|
1

(𝜌2 − 𝛿)𝑛
+

1

(𝜌*
𝛼(F,m))𝑛

𝑞∑︁
𝑗=1

|Φ(𝜆𝑗)|𝑛

(|Φ(𝜆𝑗)| − 𝛿)𝑛

⎞⎠ , (85)

which implies that

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦⃦𝑛+|m𝑛|∑︁

𝜈=0

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)|

⃦⃦⃦⃦
⃦⃦
1/𝑛

𝐷𝜎

≤ max

{︃(︂
𝜎 + 𝛿

𝜌2 − 𝛿

)︂
,

(𝜎 + 𝛿)

𝜌*
𝛼(F,m)

max
𝑗=1,2,...,𝑞

|Φ(𝜆𝑗)|
(|Φ(𝜆𝑗)| − 𝛿)

}︃
.

Letting 𝛿 → 0, we obtain

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦⃦𝑛+|m𝑛|∑︁

𝜈=0

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)|

⃦⃦⃦⃦
⃦⃦
1/𝑛

𝐷𝜎

≤ 𝜎

𝜌*
𝛼(F,m)

. (86)

By (61), (99) and (102), it follows from (94) that for sufficiently large 𝑘,

lim sup
𝑛→∞

⃦⃦⃦
𝐹𝛼 − ̃︀𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦⃦1/𝑛
𝐾(𝜀)

≤ lim sup
𝑛→∞

⃦⃦⃦
𝐹𝛼 − ̃︀𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦⃦1/𝑛
𝐷𝜎

≤ lim sup
𝑛→∞

⃦⃦⃦
𝐹𝛼 − ̃︀𝑅𝜇

𝑛,m𝑛,𝛼

⃦⃦⃦1/𝑛
𝐷𝜎∖𝐽𝛽

𝜀 (𝐹,|m|;𝑘)

≤ lim sup
𝑛→∞

⃦⃦⃦⃦
⃦⃦⃦𝑛+|m𝑛|∑︁

𝜈=0

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)|
𝜔(𝑧) ̃︀𝑄𝜇

𝑛,m𝑛
(𝑧)

+

∞∑︁
𝜈=𝑛+|m𝑛|+1

|𝑏(𝛼)𝜈,𝑛||𝑝𝜈(𝑧)|
𝜔(𝑧) ̃︀𝑄𝜇

𝑛,m𝑛
(𝑧)

⃦⃦⃦⃦
⃦⃦⃦
1/𝑛

𝐾(𝜀)

≤ 𝜎

𝜌*
𝛼(F,m)

lim sup
𝑛→∞

⎛⎜⎜⎝ 1

min
𝑧∈𝐾∖𝐽𝛽

𝜀 (𝐹𝛼,m;𝑘)
| ̃︀𝑄𝜇

𝑛,m𝑛
(𝑧)|

⎞⎟⎟⎠
1/𝑛

≤ 𝜎

𝜌*
𝛼(F,m)

lim sup
𝑛→∞

(𝐶2|m𝑛|𝑛2)
2|m𝑛|

𝑛𝛽 =
𝜎

𝜌*
𝛼(F,m)

.

(87)
This implies that for any 𝛽 > 0 and 𝛼 = 1, 2, . . . , 𝑑, each sequence { ̃︀𝑅𝐸

𝑛,m𝑛,𝛼}𝑛∈N converges in 𝛽-dimentional
Hausdorff content to 𝐹𝛼 inside 𝐷*

𝛼(F,m) as 𝑛 → ∞.

Proof of Corollary 2.5. Let 𝜉1, 𝜉2, . . . , 𝜉𝑞 be the distinct system poles of F with respect to m, and let 𝜏𝑗 be
the order of 𝜉𝑗 as a system pole, 𝑗 = 1, 2, . . . , 𝑞. By the assumption that

∑︀𝑞
𝑗=1 𝜏𝑗 = |m|, we have proved that,

for 𝑗 = 1, 2, . . . , 𝑞 and 𝑡 = 0, 1, . . . , 𝜏𝑗 − 1,

lim sup
𝑛→∞

|( ̃︀𝑄𝜇
𝑛,m)(𝑡)(𝜉𝑗)|1/𝑛 ≤

|Φ(𝜉𝑗)|
𝜌𝜉𝑗 ,𝑡+1(F,m)

≤
|Φ(𝜉𝑗)|

𝜌𝜉𝑗 (F,m)
. (88)

The above inequalities imply that

lim sup
𝑛→∞

‖ ̃︀𝑄𝜇
𝑛,m −𝑄F

m‖1/𝑛 ≤ max
𝑗=1,2,...,𝑞

|Φ(𝜉𝑗)|
𝜌𝜉𝑗 (F,m)

,

where 𝑄F
m denotes the monic polynomial whose zeros are the system poles of F with respect m and ‖ · ‖

is any norm in the space of polynomials of degree at most |m|. This implies that for all 𝑛 sufficiently large,
deg ̃︀𝑄𝜇

𝑛,m = |m|. By Lemma 3.6, for such 𝑛’s, ̃︀𝑄𝜇
𝑛,m is unique and ̃︀R𝜇

𝑛,m is unique.
Using the same lines of reasoning as in the proof of (42), we have (6).

Proof of Theorem 2.9. For each 𝛼 = 1, 2, . . . , 𝑑, we normalize 𝑞𝐸𝑛,m𝑛
in the same way as orthogonal Hermite-

Padé approximants (see (59)) such that

𝑅𝐸
𝑛,m𝑛,𝛼 =

𝑝𝐸𝑛,m𝑛,𝛼

𝑞𝐸𝑛,m𝑛

=
𝑃𝐸
𝑛,m𝑛,𝛼

𝑄𝐸
𝑛,m𝑛

.
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Note that the notations 𝐽𝛽
𝜀 (𝐹𝛼,m; 𝑘) and 𝐵(𝜀) are defined as in the proofs of Theorem 2.7. Then, for any

compact subset 𝐾 ⊂ 𝐷*
𝛼(F,m) and for any 𝜀 > 0, there exist positive constant 𝐶1 > 0 and 𝐶2 > 0 independent

of 𝑛 such that for all sufficiently large 𝑛, ⃦⃦⃦ ̃︀𝑄𝐸
𝑛,m𝑛

⃦⃦⃦
𝐾

≤ 𝐶
|m𝑛|
1 , (89)

and
min

𝑧∈𝐾∖𝐽𝛽
𝜀 (𝐹𝛼,m;𝑘)

| ̃︀𝑄𝐸
𝑛,m𝑛

(𝑧)| ≥ (𝐶2|m𝑛|𝑛2)−2|m𝑛|/𝛽 . (90)

Let 𝜉1, 𝜉2, . . . , 𝜉𝑤 be the distinct system poles of F with respect to m, and let 𝜏𝑗 be the order of 𝜉𝑗 as
a system pole, 𝑗 = 1, 2, . . . , 𝑤. With the same idea as for orthogonal Hermite-Padé approximants, it is not
difficult to check that for 𝑗 = 1, 2, . . . , 𝑤 and 𝑡 = 0, 1, . . . , 𝜏𝑗 − 1,

lim sup
𝑛→∞

|( ̃︀𝑄𝐸
𝑛,m𝑛

)(𝑡)(𝜉𝑗)|1/𝑛 ≤
|Φ(𝜉𝑗)|

𝜌𝜉𝑗 (F,m)
. (91)

Let 𝛼 ∈ {1, 2, . . . , 𝑑} be fixed and let {𝜉1, . . . , 𝜉𝑁} be the poles of 𝐹𝛼 in 𝐷*
𝛼(F,m). For each 𝑗 = 1, 2, . . . , 𝑁 ,

let 𝜏𝑗 be the order of 𝜉𝑗 as a pole of 𝐹𝛼 and 𝜏𝑗 its order as a system pole. Choose 𝜌1 ∈ (1, 𝜌0(𝐹𝛼)). Consider

𝑎
(𝛼)
𝑘,𝑛 = [ ̃︀𝑄𝐸

𝑛,m𝑛
𝐹𝛼]𝑘 =

1

2𝜋𝑖

∫︁
Γ𝜌1

̃︀𝑄𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)Φ
′(𝑧)

Φ𝑘+1(𝑧)
𝑑𝑧.

Define

𝛾
(𝛼)
𝑘,𝑛

:=
1

2𝜋𝑖

∫︁
Γ𝜌2

̃︀𝑄𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)Φ
′(𝑧)

Φ𝑘+1(𝑧)
𝑑𝑧,

where 𝜌2 ∈ (1,𝜌*
𝛼(F,m)). Arguing as in (26), we have

𝛾
(𝛼)
𝑘,𝑛 − 𝑎

(𝛼)
𝑘,𝑛 =

𝑞∑︁
𝑗=1

Res( ̃︀𝑄𝐸
𝑛,m𝑛

𝐹𝛼Φ
′/Φ𝑘+1, 𝜉𝑗).

=

𝑁∑︁
𝑗=1

1

(𝜏𝑗 − 1)!

𝜏𝑗−1∑︁
𝑡=0

(︃
𝜏𝑗 − 1

𝑡

)︃(︃
(𝑧 − 𝜉𝑗)

𝜏𝑗𝐹𝛼Φ
′

Φ𝑘+1

)︃(𝜏𝑗−1−𝑡)

(𝜉𝑗)( ̃︀𝑄𝐸
𝑛,m𝑛

)(𝑡)(𝜉𝑗).

Arguing as (65) and the computation similar as (70),

|𝛾(𝛼)𝑘,𝑛| ≤
𝑐1𝐶

|m𝑛|
1

𝜌𝑘2
and

⃒⃒⃒⃒
⃒⃒
(︃
(𝑧 − 𝜉𝑗)

𝜏𝑗𝐹𝛼Φ
′

Φ𝑘+1

)︃(𝜏𝑗−1−𝑡)

(𝜉𝑗)

⃒⃒⃒⃒
⃒⃒ ≤ 𝑐2

(|Φ(𝜉𝑗)| − 𝛿)𝑘
, (92)

respectively. By (92), it follows that

|𝑎𝛼𝑘,𝑛| ≤
𝑐1𝐶

|mn|
1

𝜌𝑘2
+ 𝑐3

𝑁∑︁
𝑗=1

|Φ(𝜉𝑗)|𝑛

𝜌𝜉𝑗
(F,m)𝑛(|Φ(𝜉𝑗)| − 𝛿)𝑘

≤
𝑐1𝐶

|mn|
1

𝜌𝑘2
+

𝑐3
(𝜌*

𝛼(F,m)𝑛

𝑁∑︁
𝑗=1

|Φ(𝜉𝑗)|𝑛

(|Φ(𝜉𝑗)| − 𝛿)𝑘
. (93)

Let

𝜔(𝑧) :=

𝑁∏︁
𝑗=1

(︁
𝑧 − 𝜉𝑗

)︁𝜏𝑗
.

From the definition of Hermite-Padé-Faber approximants and Lemma (3.2), we have,

̃︀𝑄𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− ̃︀𝑃𝐸
𝑛,m,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝑎
(𝛼)
𝑘,𝑛Φ𝑘, 𝑧 ∈ 𝐷𝜌0(𝐹𝛼). (94)
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Multiplying (94) by 𝜔 and expanding the result in terms of Faber polynomial system {Φ𝜈}∞𝜈=0 such that for
𝑧 ∈ 𝐷𝛼(F,m),

𝜔(𝑧) ̃︀𝑄𝐸
𝑛,m𝑛

(𝑧)𝐹𝛼(𝑧)− 𝜔(𝑧) ̃︀𝑃𝐸
𝑛,m𝑛,𝛼(𝑧) =

∞∑︁
𝑘=𝑛+1

𝜔(𝑧)𝑎
(𝛼)
𝑘,𝑛Φ𝑘(𝑧)

=

∞∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛Φ𝜈(𝑧) =

𝑛+|m𝑛|∑︁
𝜈=0

𝑏
(𝛼)
𝜈,𝑛Φ𝜈(𝑧) +

∞∑︁
𝜈=𝑛+|m𝑛|+1

𝑏
(𝛼)
𝜈,𝑛Φ𝜈(𝑧). (95)

Let 𝐾 be a compact subset of 𝐷*
𝛼(F,m) and set

𝜎 := max{‖Φ‖𝐾 , 1} (96)

(𝜎 = 1 when 𝐾 ⊂ 𝐸). Choose 𝛿 > 0 sufficiently small such that

𝜌2 := 𝜌*
𝛼(F,m)− 𝛿 > 𝜎. (97)

First, we approximate
∑︀∞

𝜈=𝑛+|m𝑛|+1 |𝑏
(𝛼)
𝜈,𝑛||Φ𝜈(𝑧)| on 𝐷𝜎. Auguring as in (22)-(25), we have

∞∑︁
𝜈=𝑛+|m𝑛|+1

|𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)| ≤ 𝑐4𝐶
|m𝑛|
1

(︂
𝜎

𝜌2

)︂𝑛

, 𝑧 ∈ 𝐷𝜎. (98)

Letting 𝛿 → 0, we have 𝜌2 → 𝜌*
𝛼(F,m), then

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦⃦⃦ ∞∑︁
𝜈=𝑛+|m𝑛|+1

|𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)|

⃦⃦⃦⃦
⃦⃦⃦
1/𝑛

𝐷𝜎

≤ 𝜎

𝜌*
𝛼(F,m)

. (99)

Next, we approximate
∑︀𝑛+|m𝑛|

𝜈=0 |𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)| on 𝐷𝜎. Suppose that 𝛿 > 0 is sufficiently small such that
𝜌1 − 𝛿 > 1. Arguing as (56), we have

|[𝜔Φ𝑘]𝜈 | ≤ 𝑐5
(𝜌1 − 𝛿)𝑘

(𝜌1 − 𝛿)𝜈
.

Thus,

|𝑏(𝛼)𝜈,𝑛| ≤
∞∑︁

𝑘=𝑛+1

|𝑎(𝛼)𝑘,𝑛||[𝜔Φ𝑘]𝜈 | ≤
𝑐6𝐶

|mn|
1

𝜌𝑛2

(𝜌1 − 𝛿)𝑛

(𝜌1 − 𝛿)𝜈
+

𝑐7
𝜌*
𝛼(F,m)𝑛

𝑁∑︁
𝑗=1

|Φ(𝜉𝑗)|𝑛

(|Φ(𝜉𝑗)| − 𝛿)𝑛
(𝜌1 − 𝛿)𝑛

(𝜌1 − 𝛿)𝜈
. (100)

Therefore, for 𝑧 ∈ 𝐷𝜎,

𝑛+|m𝑛|∑︁
𝜈=0

|𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)| ≤ 𝑐8(𝑛+ |m𝑛|+ 1)𝜎𝑛+|m𝑛|

⎛⎝𝑐9𝐶
|m𝑛|
1 (𝜌1 − 𝛿)𝑛

𝜌𝑛2
+

𝑐10(𝜌1 − 𝛿)𝑛

𝜌*
𝛼(F,m)𝑛

𝑁∑︁
𝑗=1

|Φ(𝜉𝑗)|𝑛

(|Φ(𝜉𝑗)| − 𝛿)𝑛

⎞⎠ ,

(101)
which implies that

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦⃦𝑛+|m𝑛|∑︁

𝜈=0

|𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)|

⃦⃦⃦⃦
⃦⃦
1/𝑛

𝐷𝜎

≤ max

{︃(︂
𝜎(𝜌1 − 𝛿)

𝜌2

)︂
,
𝜎(𝜌1 − 𝛿)

𝜌*
𝛼(F,m)

max
𝑗=1,2,...,𝑁

|Φ(𝜉𝑗)|
(|Φ(𝜉𝑗)| − 𝛿)

}︃
.

Letting 𝛿 → 0, 𝜌1 → 1+ and 𝜌2 → 𝜌*
𝛼(F,m), we obtain

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦⃦𝑛+|m𝑛|∑︁

𝜈=0

|𝑏(𝛼)𝜈,𝑛||Φ𝜈(𝑧)|

⃦⃦⃦⃦
⃦⃦
1/𝑛

𝐷𝜎

≤ 𝜎

𝜌*
𝛼(F,m)

. (102)

Arguing as for orthogonal Hermite-Padé approximants, we are done.

Proof of Corollary 2.10. The proof of this corollary is identical to the one of Corollary 2.8.
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1 Introduction

For a fixed multiset of N points ωN := {x1, x2, . . . , xN} ⊂ R2, a given
constant s ∈ R, and a given constant h ≥ 0, we define the potential function
Us,h(·;ωN ) : R2 → [0,∞] as the following:

Us,h(x;ωN ) :=

N∑
j=1

(
|x− xj |2 + h

)−s/2
, (1.1)

where x ∈ R2 and | · | is the 2-dimensional Euclidean norm in R2. In this paper, we
call Us,h(·, ωN ) a Riesz (s, h)-potential function of ωN . The geometric interpreta-
tion of the function Us,h(·;ωN ) is as follows. Let us consider two parallel planes in
R3: one is R2 × {0} and the other is R2 × {

√
h}. Basically, the potential function

Us,h(x, ωN ) is the Riesz s-potential function in the 3-dimensional Euclidean space
R3 of ω′N ⊂ R2 × {0} at x′ ∈ R2 × {

√
h}, where the projection from R2 × {0} to

R2 of ω′N is ωN and the projection from R2 × {
√
h} to R2 of x′ is x. Moreover,

if h = 0, then Us,h(·;ωN ) is the Riesz s-potential function in the 2-dimensional
Euclidean space R2 of ωN . We refer the reader to [2, 3, 4, 5] for more information
on Riesz s-potential functions in a d-dimensional Euclidean space Rd.

Now, let ωN be a fixed set of distinct equally spaced points on a circle T ⊂ R2,
Γ be a circle concentric to T, and h ≥ 0 be fixed. In [1, Theorem 1], Nikolov
and Rafailov showed that fs(x) := Us,h(x;ωN ) is constant as a function of x
on Γ if and only if s = 0,−2,−4, . . . , 4 − 2N, or 2 − 2N. Furthermore, for s ∈
R \ {0,−2,−4, . . . , 2− 2N}, they located extremum points of Us,h(·;ωN ) on Γ in
[1, Theorem 1].

In the same paper, they also proved the following inverse type result (see [1,
Theorem 2]) of what proceeds.

Theorem A. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2 and
a circle Γ ⊂ R2 such that for each s = −2,−4, . . . , 2− 2N,

Us,0(x;ωN ) =

N∑
j=1

|x− xj |−s

is independent of the position of x ∈ Γ. Then, ωN forms a set of distinct equally
spaced points on a circle concentric to Γ.

Moreover, they proposed the following conjecture (see [1, Conjecture 1]):

Conjecture B. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2

and a circle Γ ⊂ R2 such that

U2−2N,0(x;ωN ) =

N∑
j=1

|x− xj |2N−2

is constant as a function of x on Γ. Then, ωN forms a set of distinct equally spaced
points on a circle concentric to Γ.
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Translating and scaling the circle Γ in the above conjecture, it is easy to check
that Conjecture B is equivalent to the following conjecture.

Conjecture C. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2

such that

U2−2N,0(x;ωN ) =

N∑
j=1

|x− xj |2N−2

is constant as a function of x on the unit circle. Then, ωN forms a set of distinct
equally spaced points on a circle centered at 0.

In order to simplify further considerations, we shall study Conjecture C. This
conjecture for the case when N = 2 is trivial. The proof of this conjecture when
N = 3 is in [1, Proposition 2]. The one for the case when x1, x2, . . . xN have the
same norm is in [6, Proposition 1]. In the same paper, the authors also proved this
conjecture for the case when N is prime and x1, x2, . . . , xN have an equal angle
distribution and rational norms (see [6, Proposition 2]).

In this paper, we extend Theorem A to more general potential functions defined
in (1.1). Moreover, the extension of Conjecture C is proposed (see Conjecture 2.1 in
Section 2). A characterization of sets of N distinct points ωN that U2−2N,h(·, ωN )
is constant on some circle in R2 is given. Using this characterization, we prove
some special cases of this new extended conjecture.

The next problems considered in this paper are polarization optimality prob-
lems corresponding to the potential functions defined in (1.1). Let ωN = {x1, . . . , xN}
denote a configuration of N (not necessarily distinct) points in R2. Denote by

S1R := {x ∈ R2 : |x| = R}

the circle centered at 0 of radius R in R2. When R = 1, we simply use the notation
S1. Given s ∈ R, h ≥ 0, R > 0, and r > 0, we define polarization constants

Ms,h
N (S1r;S1R) := max

ωN⊂S1r
#ωN=N

min
y∈S1R

Us,h(y;ωN ), M0,h
N (S1r;S1R) := N, (1.2)

ms,h
N (S1r;S1R) := min

ωN⊂S1r
#ωN=N

max
y∈S1R

Us,h(y;ωN ), m0,h
N (S1r;S1R) := N, (1.3)

where #ωN stands for the cardinality of the multiset ωN . We will call ωN a max-
imal (minimal) N -point Riesz (s, h)-polarization configuration of (S1r;S1R) if ωN
attains the maximum in (1.2) (minimum in (1.3)). We give a brief history of such
polarization optimality problems below.

The idea of two-plate polarization constants was introduced by Farkas and
Révész [7] in general sense. However, almost all previous results on polarization
optimality problems related to Riesz potentials [2, 3, 4, 5, 8, 9] were considered
for the case when R = r = 1 and h = 0. The maximality of N distinct equally
spaced points on the unit circle for the maximal Riesz (s, 0)-polarization problem
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of (S1;S1) in (1.2) when s > 0 was proved by Hardin, Kendall, and Saff [5] (see
also [4] and [8] for the history of this problem). In [5], they also showed the
minimality of N distinct equally spaced points on the unit circle for the minimal
Riesz (s, 0)-polarization problem of (S1;S1) in (1.3) for −1 ≤ s < 0. Recently,
a characterization of all maximal and minimal N -point Riesz (s, 0)-polarization
configurations of (S1r;S1R) when s = −2,−4, . . . , 2− 2N was given in [6, Theorem
2]. One of the aims of this paper is to provide a characterization analogous to
Theorem 2 in [6] for the case when h > 0.

We would like call the reader’s attention to papers [2, 3, 4, 5] that contain
asymptotic results of polarization constants and configurations of subsets of Rd as
N →∞ when s > 0 and h = 0.

An outline of this paper is as follows. In Section 2, we state the extension of
Theorem A to more general potential functions in (1.1) and give an extension of
Conjecture C. Some special cases of this new conjecture are considered. In Section
3, we state our results on polarization optimality problems. Section 4 and Section
5 are devoted to the proofs of all results in Section 2 and Section 3, respectively.
Finally, we perform our auxiliary computations in Section 6.

2 Constant Riesz (s, h)-potential functions

The first theorem is a generalization of Theorem A.

Theorem 2.1. Let h ≥ 0. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂
R2 such that for each s = −2,−4, . . . , 2− 2N,

Us,h(x;ωN ) =

N∑
j=1

(
|x− xj |2 + h

)−s/2
is independent of the position of x ∈ S1. Then, ωN forms a set of distinct equally
spaced points on a circle centered at 0. Moreover, if |x1| = |x2| = . . . = |xN | = r,
then for each p = 1, 2, . . . , N − 1,

U−2p,h(x;ωN ) =
N

2p

p∑
q=0

(
p

q

)2

(2r)2q
(
r2 + 1 + h+

√
((r − 1)2 + h)((r + 1)2 + h)

)p−2q
for all x ∈ S1.

This theorem brings us to the following conjecture which generalizes Conjec-
ture C.

Conjecture 2.1. Let h ≥ 0. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂
R2 such that

U2−2N,h(x;ωN ) =

N∑
j=1

(
|x− xj |2 + h

)N−1
is constant as a function of x on S1. Then, {x1, x2, . . . , xN} forms a set of distinct
equally spaced points on a circle centered at 0.
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A characterization of sets of N distinct points ωN such that U2−2N,h(·, ωN ) is
constant on S1 is the following:

Theorem 2.2. Let h ≥ 0 and ωN = {x1, x2, . . . , xN} ⊂ R2 be a set of N distinct
points. Then, the function

U2−2N,h(x;ωN ) =

N∑
j=1

(
|x− xj |2 + h

)N−1
is constant on S1 if and only if

N∑
j=1

Bk,jx
k
j = 0, k = 1, . . . , N − 1, (2.1)

where

xk := (rk cos(kt), rksin(kt))

if x = (r cos(t), r sin(t)) ∈ R2 and

Bk,j :=

N−k−1∑
q=0

[(
N − 1

q

)(
N − 1

k + q

)
(2|xj |)2q

×
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)((|xj |+ 1)2 + h)

)N−2q−k−1 ]
. (2.2)

As a consequence of this characterization, we obtain the following corollary.

Corollary 2.2. Let h ≥ 0 and let ωN := {x1, x2, . . . , xN} be a set of N distinct
points in R2, which belong to a circle S1r ⊂ R2. Assume that

U2−2N,h(x;ωN ) =

N∑
j=1

(|x− xj |2 + h)N−1

is constant on S1. Then, {x1, x2, . . . , xN} forms a set of distinct equally spaced
points on S1r.

Applying Theorem 2.2 and Corollary 2.2, we prove Conjecture 2.1 when N = 3.

Corollary 2.3. Let h ≥ 0 and {x1, x2, x3} ⊂ R2 be a set of 3 distinct points. If
the function U−4,h(x, {x1, x2, x3}) is constant on S1, then {x1, x2, x3} forms a set
of distinct equally spaced points on a circle centered at 0.
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3 Polarization optimality problems

A complete characterization of all maximal and minimal N -point Riesz (s, h)-
polarization configurations of (S1r;S1R) when s = −2,−4, . . . , 2− 2N and h ≥ 0 is
the following:

Theorem 3.1. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, R > 0, r > 0, h ≥ 0, and
{x1, x2, . . . , xN} ⊂ S1r. The following statements are equivalent:

(a) {x1, x2, . . . , xN} is a maximal N -point Riesz (−2p, h)-polarization configu-
ration of (S1r;S1R);

(b) {x1, x2, . . . , xN} is a minimal N -point Riesz (−2p, h)-polarization configu-
ration of (S1r;S1R);

(c)
∑N
j=1 xj =

∑N
j=1 x

2
j = · · · =

∑N
j=1 x

p
j = 0, where xk := (rk cos(kt), rksin(kt))

if x = (r cos(t), r sin(t)) ∈ R2.

Furthermore,

M−2p,hN (S1r;S1R) = m−2p,hN (S1r;S1R)

=
N

2p

p∑
j=0

(
p

j

)2

(2rR)2j
(
r2 +R2 + h+

√
((r −R)2 + h)(r +R)2 + h)

)p−2j
.

(3.1)

4 Proof of Section 2

The Euclidean space R2 and the complex space C have the same dimension and
the same norm. However, the complex space C has a richer algebraic structure,
for example, C is a field. Therefore, when we prove all results in Section 2 and
3, any element x ∈ R2 will be replaced by x ∈ C, the 2-dimensional Euclidean
norm | · | is replaced by the modulus in C, and the notation xy is adopted from
the multiplication in C and the notation x/y is adopted from the division in C.
We recall that the usual dot product in C is defined by

(a1 + a2i) · (b1 + b2i) := a1b1 + a2b2.

Lemma 4.1. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, and h ≥ 0. If xj := |xj | cos tj +
i|xj | sin tj for all j = 1, 2, . . . , N, then for all y := cos t+ i sin t ∈ S1,

N∑
j=1

(|y − xj |2 + h)p = E
(p)
0 +

p∑
k=1

N∑
j=1

E
(p)
k,j cos(ktj − kt), (4.1)

N∑
j=1

(|y − xj |2 + h)p = E
(p)
0 +

p∑
k=1

N∑
j=1

E
(p)
k,j

|xj |k
(
yk · xkj

)
, (4.2)
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where

E
(p)
0 :=

1

2p

N∑
j=1

p∑
q=0

(
p

q

)2

(2|xj |)2q
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)(|xj |+ 1)2 + h)

)p−2q
(4.3)

and for all k = 1, 2, . . . , p and j = 1, 2, . . . , N,

E
(p)
k,j :=

(−1)k

2p−1

p−k∑
q=0

[(
p

q

)(
p

k + q

)
(2|xj |)2q+k

×
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)((|xj |+ 1)2 + h)

)p−k−2q ]
. (4.4)

Proof of Lemma 4.1. Let y := cos t + i sin t and xj := |xj | cos tj + i|xj | sin tj for
all j = 1, 2, . . . , N. A simple calculation shows that

fj(t) := (|y − xj |2 + h)p = (|xj |2 + 1 + h− 2|xj | cos(t− tj))p.

We know that
A := {1, cos(t− tj), . . . , cos(p(t− tj))}

forms an orthogonal set with respect to the inner product

〈f, g〉 :=

∫ 2π

0

f(t)g(t)dt.

Moreover,

fj ∈ span{1, cos(t− tj), cos2(t− tj), . . . , cosp(t− tj)}

= span {1, cos(t− tj), . . . , cos(p(t− tj))} .

Therefore,

fj(t) =

p∑
k=0

E
(p)
k,j cos(ktj − kt).

This implies that

N∑
j=1

(|y − xj |2 + h)p =

N∑
j=1

fj(t) = E
(p)
0 +

p∑
k=1

N∑
j=1

E
(p)
k,j cos(ktj − kt),

where E
(p)
0 :=

∑N
j=1E

(p)
0,j . By the orthogonality of the set A and the calculation

in Lemma 6.2 (see Appendix), we have

E
(p)
0 :=

N∑
j=1

〈fj , 1〉
2π
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=
1

2p

N∑
j=1

p∑
q=0

(
p

q

)2

(2|xj |)2q
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)(|xj |+ 1)2 + h)

)p−2q
and

E
(p)
k,j =

〈fj , cos k(t− tj)〉
π

=
(−1)k

2p−1

p−k∑
q=0

[(
p

q

)(
p

k + q

)
(2|xj |)2q+k

×
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)((|xj |+ 1)2 + h)

)p−k−2q ]
,

for all k ∈ {0, 1, . . . , p} and j ∈ {1, . . . , N}. Moreover, it is clear that the equations
(4.1) and (4.2).

Proof of Theorem 2.1. Suppose that there exist constants Cp, p = 1, 2, . . . , N − 1,
such that

U−2p,h(x;ωN ) = Cp, x ∈ S1, p = 1, 2, . . . , N − 1,

where ωN = {x1, x2, . . . , xN}. If x = cos t+ i sin t and xj := |xj | cos tj + i|xj | sin tj ,
then by (4.1), for each p = 1, 2, . . . , N − 1, we have for all t ∈ [0, 2π],

Cp = E
(p)
0 +

p∑
k=1

N∑
j=1

[
E

(p)
k,j cos(ktj) cos(kt) + E

(p)
k,j sin(ktj) sin(kt)

]
and

0 = (E
(p)
0 −Cp)+

p∑
k=1

 N∑
j=1

E
(p)
k,j cos(ktj)

 cos(kt) +

 N∑
j=1

E
(p)
k,j sin(ktj)

 sin(kt)

 .
Since {1, cos(t), sin(t), cos(2t), sin(2t), . . . , cos(pt), sin(pt)} is linearly independent
over R, for all p = 1, 2, . . . , N − 1,

Cp = E
(p)
0 , (4.5)

N∑
j=1

E
(p)
p,j cos(ktj) = 0 and

N∑
j=1

E
(p)
p,j sin(ktj) = 0. (4.6)

Using (4.4), we can compute

E
(p)
p,j =

(−1)p

2p−1
(2|xj |)p. (4.7)

Combining (4.6) and (4.7), we have for all p = 1, 2, . . . , N − 1,

0 =

N∑
j=1

(−1)p

2p−1
(2|xj |)p(cos(ptj) + i sin(ptj)) = (−1)p2

N∑
j=1

xpj
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which implies that
∑N
j=1 x

p
j = 0 for all p = 1, 2, . . . , N − 1. Using Newton’s iden-

tities, we have

ep(x1, x2, . . . , xN ) = 0, p = 1, 2, . . . , N − 1.

Then,
N∏
j=1

(x− xj) = xN + (−1)N
N∏
j=1

xj .

Hence, |x1| = |x2| = . . . = |xN | = r for some r > 0 and {x1, x2, . . . , xN} forms a
set of distinct equally spaced points on S1r. In turn, the equality (4.5) implies that
for all x ∈ S1 and for all p = 1, 2, . . . , N − 1,

U−2p,h(x;ωN ) = Cp = E
(p)
0

=
N

2p

p∑
q=0

(
p

q

)2

(2r)2q
(
r2 + 1 + h+

√
((r − 1)2 + h)((r + 1)2 + h)

)p−2q
.

Proof of Theorem 2.2. Set

xj := |xj | cos(tj) + i|xj | sin(tj)

for all j = 1, 2, . . . , N.
(⇒) By our assumption, we assume that f(y) :=

∑N
j=1(|y − xj |2 + h)N−1 is

constant on S1, say f(y) = C on S1. Set y = cos t + i sin t ∈ S1. By (4.1), for all
t ∈ [0, 2π],

C = f(y) =

N∑
j=1

(|y − xj |2 + h)N−1

= E
(N−1)
0 +

N−1∑
k=1

N∑
j=1

[
E

(N−1)
k,j cos(ktj) cos(kt) + E

(N−1)
k,j sin(ktj) sin(kt)

]

= E
(N−1)
0 +

N−1∑
k=1

 N∑
j=1

E
(N−1)
k,j cos(ktj)

 cos(kt) +

 N∑
j=1

E
(N−1)
k,j sin(ktj)

 sin(kt)

 .
(4.8)

Because {1, cos(t), sin(t), cos(2t), sin(2t), . . . , cos((N−1)t), sin((N−1)t)} is linearly
independent over R,

C − E(N−1)
0 = 0

and for all k = 1, 2, . . . , N − 1,

N∑
j=1

E
(N−1)
k,j cos(ktj) = 0 and

N∑
j=1

E
(N−1)
k,j sin(ktj) = 0. (4.9)
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Then, for all k = 1, 2, . . . , N − 1,

0 =

N∑
j=1

E
(N−1)
k,j (cos(ktj) + i sin(ktj)) =

N∑
j=1

E
(N−1)
k,j

|xj |k
xkj . (4.10)

Using the calculation in (4.4), it is not difficult to check that the equations (4.10)
imply the equations (2.1).

(⇐) Assume that the equations (2.1) hold true. Then,

N∑
j=1

E
(N−1)
k,j

|xj |k
xkj = 0, k = 1, . . . , N − 1.

From (4.10), we have (4.9). Combining the relations (4.9) and the identity (4.8),
we have for all y ∈ S1,

N∑
j=1

(|y − xj |2 + h)N−1 = E
(N−1)
0 ,

which implies that U2−2N,h(·;ωN ) is constant on S1. This completes the proof.

Proof of Corollary 2.2. Assume that {x1, x2, . . . , xN} ⊂ S1r. It is easy to check
that the constants Bk,j 6= 0 do not depend on j. Therefore, by the system of

equations (2.1),
∑N
j=1 x

k
j = 0 for all k = 1, 2, . . . , N−1. Using Newton’s identities,

we have

ek(x1, x2, . . . , xN ) = 0, k = 1, 2, . . . , N − 1.

Then,
N∏
j=1

(x− xj) = xN + (−1)N
N∏
j=1

xj .

Hence, |x1| = |x2| = . . . = |xN | = r and {x1, x2, . . . , xN} forms a set of distinct
equally spaced points on S1r.

Proof of Corollary 2.3. Using Theorem 2.2, we have

x21 + x22 + x23 = 0, (4.11)

E(|x1|)x1 + E(|x2|)x2 + E(|x3|)x3 = 0, (4.12)

where

E(x) :=

(
x2 + 1 + h+

√
((x− 1)2 + h)((x+ 1)2 + h)

)2
+ 4x2(

x2 + 1 + h+
√

((x− 1)2 + h)((x+ 1)2 + h)
) .
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Without loss of generality, we can assume that |x1| ≥ |x2| ≥ |x3|. Moreover, it
is easy to check that E(x) is a positive increasing function on [0,∞). Therefore,
E(|x1|) ≥ E(|x2|) ≥ E(|x3|) > 0. From (4.12), we have

E(|x3|)x3 = −E(|x1|)x1 − E(|x2|)x2

and

E(|x3|)x3 = −E(|x1|)x1 − E(|x2|)x2,

which imply that

|x3|2E(|x3|)2 = |x1|2E(|x1|)2+|x2|2E(|x2|)2+E(|x1|)E(|x2|)(x1x2+x2x1). (4.13)

Note that since |x1| ≥ |x2| ≥ |x3| and x1, x2, x3 are distinct,

x1x2 + x2x1 ∈ (−∞, 0). (4.14)

From (4.11), we have

x23 = −x21 − x22 and x3
2 = −x12 − x22,

which imply that

|x3|4 = |x1|4 + |x2|4 +x21x2
2 +x22x1

2 = |x1|4 + |x2|4− 2|x1|2|x2|2 + (x1x2 +x2x1)2.

Therefore,

(x1x2 + x2x1)2 = |x3|4 − (|x1|2 − |x2|2)2.

By (4.14),

(x1x2 + x2x1) = −
√
|x3|4 − (|x1|2 − |x2|2)2

From (4.13), we obtain

|x3|2E(|x3|)2+E(|x1|)E(|x2|)
√
|x3|4 − (|x1|2 − |x2|2)2 = |x1|2E(|x1|)2+|x2|2E(|x2|)2.

Since

E(|x1|)E(|x2|)
√
|x3|4 − (|x1|2 − |x2|2)2 ≤ |x1|2E(|x1|)2

and

|x3|2E(|x3|)2 ≤ |x2|2E(|x2|)2,√
|x3|4 − (|x1|2 − |x2|2)2 = |x1|2,

which implies |x1| = |x2| = |x3|. Applying Corollary 2.2, {x1, x2, x3} forms a set
of distinct equally spaced points on a circle cantered at 0.
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5 Proof of Section 3

Recall that for the proofs in this section, we also consider our problems in the
complex plane (see our discussion at the beginning of Section 4).

Lemma 5.1. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, R > 0, r > 0, and h ≥ 0. Then,
any configuration of N distinct equally spaced points on S1r is both maximal and
minimal N -point Riesz (−2p, h)-polarization configuration of (S1r;S1R).

Proof of Lemma 5.1. Let ωN := {x1, . . . , xN} be a configuration of N distinct
equally spaced points on S1r, p ∈ {1, 2, . . . , N − 1} be fixed, and h ≥ 0 be fixed.

By [1, Theorem 1], we know that f(x) :=
∑N
j=1(|x − xj |2 + h)p is constant as a

function of x on S1R, say f(x) ≡ C for all x ∈ S1R.
Let {y1, . . . , yN} be any N -point configuration on S1r. Clearly, yj/r, xj/r ∈ S1

for all j = 1, 2, . . . , N. Then,

NC =

N∑
i=1

f

(
R

yi/r

)
=

N∑
i=1

N∑
j=1

(∣∣∣∣xj − R

yi/r

∣∣∣∣2 + h

)p

=

N∑
i=1

N∑
j=1

(∣∣∣∣xj/ryi/r

∣∣∣∣2 ∣∣∣∣yi − R

xj/r

∣∣∣∣2 + h

)p
=

N∑
i=1

N∑
j=1

(∣∣∣∣yi − R

xj/r

∣∣∣∣2 + h

)p

=

N∑
j=1

N∑
i=1

(∣∣∣∣yi − R

xj/r

∣∣∣∣2 + h

)p
.

Therefore, there exist j0, j
′
0 ∈ {1, 2, . . . , N} such that

N∑
i=1

(∣∣∣∣yi − R

xj0/r

∣∣∣∣2 + h

)p
≥ C and

N∑
i=1

(∣∣∣∣yi − R

xj′0/r

∣∣∣∣2 + h

)p
≤ C.

Then, we have

max
x∈S1R

N∑
i=1

(
|yi − x|2 + h

)p ≥ C = max
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
and

min
x∈S1R

N∑
i=1

(
|yi − x|2 + h

)p ≤ C = min
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
which imply

max
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
= m−2p,hN (S1r;S1R)

and

min
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
= M−2p,hN (S1r;S1R),
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respectively. Therefore, ωN is both maximal and minimal N -point Riesz (−2p, h)-
polarization configuration of (S1r;S1R).

Proof of Theorem 3.1. Because the proof of (a) ⇔ (c) is similar to the proof of
(b)⇔ (c), we will show only (b)⇔ (c) and skip the proof of (a)⇔ (c). Moreover,
without loss of generality, we can assume that R = 1.

Let N ∈ N, p ∈ {1, 2, . . . , N −1}, r > 0, and h ≥ 0 be fixed. Notice that for all

configurations {x1, x2, . . . , xN} ⊂ S1r, the constants E
(p)
0 and E

(p)
k,j in (4.3) and (4.4)

depend only on k. For convenience, for all configurations {x1, x2, . . . , xN} ⊂ S1r,
we set

E := E
(p)
0 and Ek :=

E
(p)
k,j

rk
, k = 1, 2, . . . , p.

First of all, we show that

m−2p,hN (S1r;S1) = E. (5.1)

Let ω′N := {x′1, x′2, . . . , x′N} be a configuration of distinct equally spaced points on
S1r. Using (4.2), we have for all y ∈ S1,

N∑
j=1

(|y − x′j |2 + h)p = E +

p∑
k=1

N∑
j=1

Ek(yk · (x′j)k) = E +

p∑
k=1

Ek(yk ·
N∑
j=1

(x′j)
k) = E

(5.2)

where the last equality follows from the fact that
∑N
j=1(x′j)

k = 0 for all k =
1, 2, . . . , N − 1. By Lemma 5.1, since ω′N is a minimal N -point Riesz (−2p, h)-
polarization configuration of (S1r;S1),

m−2p,hN (S1r;S1) = max
y∈S1

U−2p,h(y;ω′N ) = E (5.3)

as we wanted.
Now, we prove (c)⇒(b). Assume that ωN = {x1, x2, . . . , xN} ⊂ S1r and∑N

j=1 x
k
j = 0 for all k = 1, 2, . . . , p. Applying the same argument as in (5.2),

we have for all y ∈ S1,

U−2p,h(y;ωN ) = E +

p∑
k=1

Ek(yk ·
N∑
j=1

xkj ) = E,

which implies that ωN is a minimal N -point Riesz (−2p, h)-polarization configu-
ration of (S1r;S1).

Next, we show (b)⇒(c). Assume that ωN := {x1, x2, . . . , xN} is a minimal
N -point Riesz (−2p, h)-polarization configuration of (S1r;S1). Then, for all y ∈ S1,

U−2p,h(y;ωN ) =

N∑
j=1

(|y − xj |2 + h)p ≤ m−2p,hN (S1r;S1) = E.
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Set y = cos(t) + i sin(t) ∈ S1 and xj = r cos(tj) + ir sin(tj) ∈ S1r for all j =
1, 2, . . . , N. Hence, by (4.1), for all t ∈ [0, 2π],

E ≥ U−2p,h(y;ωN ) = E+

p∑
k=1

[ N∑
j=1

Ek
rk

cos(ktj)

 cos(kt)+

 N∑
j=1

Ek
rk

sin(ktj)

 sin(kt)

]
.

Then, for all t ∈ [0, 2π],

0 ≥
p∑
k=1

[ N∑
j=1

Ek
rk

cos(ktj)

 cos(kt) +

 N∑
j=1

Ek
rk

sin(ktj)

 sin(kt)

]
.

It is not difficult to check that for all t ∈ [0, 2π],

p∑
k=1

[ N∑
j=1

Ek
rk

cos(ktj)

 cos(kt) +

 N∑
j=1

Ek
rk

sin(ktj)

 sin(kt)

]
= 0.

Because {cos(t), sin(t), cos(2t), sin(2t), . . . , cos(pt), sin(pt)} is linearly independent
over R, for all k = 1, 2, . . . , p,

N∑
j=1

Ek
rk

cos(ktj) =

N∑
j=1

Ek
rk

sin(ktj) = 0.

Since for all k = 1, 2, . . . , p, Ek 6= 0 (see the formula in (4.4)),

N∑
j=1

cos(ktj) =

N∑
j=1

sin(ktj) = 0, k = 1, 2, . . . , p,

which imply that
∑N
j=1 x

k
j = 0 for all k = 1, 2, . . . , p. Moreover, from (4.3), we

have
M−2p,hN (S1r;S1) = m−2p,hN (S1r;S1)

= E =
N

2p

p∑
j=0

(
p

j

)2

(2r)2j
(
r2 + 1 + h+

√
((r − 1)2 + h)(r + 1)2 + h)

)p−2j
.

To compute M−2p,hN (S1r;S1R) = m−2p,hN (S1r;S1R) in (9), we can use a similar
argument as in the proof of Lemma 4.1 by replacing y = R cos t + iR sin t and
fj(t) := (|y − xj |2 + h)p = (R2

j + R2 + h − 2RjR cos(t − tj))
p. Applying the

calculations as in Lemma 6.2, it is not difficult to check that if ωN is a configuration
of N distinct equally spaced points on S1r, then for all y ∈ S1R,

U−2p,h(y;ωN )

=
N

2p

p∑
j=0

(
p

j

)2

(2rR)2j
(
r2 +R2 + h+

√
((r −R)2 + h)(r +R)2 + h)

)p−2j
.
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6 Appendix

We collect our computations of all integrals in this section.

Lemma 6.1. Let p ∈ N, k ∈ {0, 1, . . . , p}, and z ∈ C. Then,∫ 2π

0

(z2 + 1− 2z cos(t))p cos(kt)dt = (−1)k2π

p−k∑
q=0

(
p

q

)(
p

k + q

)
z2p−k−2q. (6.1)

Proof of Lemma 6.1. Let p ∈ N and k ∈ {1, . . . , p}. First, we prove the equality
(6.1) for z ∈ R. Let z ∈ R. Then, for ζ = eit,∫ 2π

0

(z2 + 1− 2z cos(t))p cos(kt)dt =

∫ 2π

0

(z2 + 1− z(eit + e−it))peiktdt

=

∫ 2π

0

(z − eit)p(z − e−it)peiktdt =
1

i

∫
S1

(z − ζ)p(z − 1/ζ)pζk−1dζ

= 2π · res

(
(z − ζ)p(zζ − 1)p

ζp−k+1
; 0

)
= (−1)k2π

p−k∑
q=0

(
p

q

)(
p

k + q

)
z2p−k−2q,

where the first equality follows from the fact that the last expression is a real
number. Notice that the left-hand side and the right-hand side of the equation
(6.1) are polynomials as functions of z. Then, both functions are analytic on C
and we have the equation (6.1) for all z ∈ C.

Lemma 6.2. Let p ∈ N and k ∈ {0, 1, . . . , p}. For a, b ∈ C,∫ 2π

0

(a−b cos(t))p cos(kt)dt =
(−1)kπ

2p−1

p−k∑
q=0

(
p

q

)(
p

k + q

)
b2q+k

(
a±

√
a2 − b2

)p−k−2q
,

(6.2)
where the square root function in (6.2) can be selected to be both branches of the
complex square root function.

Proof of Lemma 6.2. Clearly, if b = 0, then the equation in (6.2) is 0 = 0. Assume
that b ∈ C \ {0} and a ∈ C. To reduce the equation (6.2) to the equation (6.1), we
consider

(λa− λb cos(t))p,

where λ is chosen to satisfy the equations

2z = bλ and z2 + 1 = aλ,

for some z ∈ C. From above equations,

z =
a±
√
a2 − b2
b

and λ =
2a± 2

√
a2 − b2

b2
.
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Moreover, λ 6= 0 because if λ = 0, then z = 0 which implies that b = 0. Therefore,
by Lemma 6.1,∫ 2π

0

(a− b cos(t))p cos(kt)dt =
1

λp

∫ 2π

0

(λa− λb cos(t))p cos(kt)dt

=
1

λp

∫ 2π

0

(z2 + 1− 2z cos(t))p cos(kt)dt

=
(−1)kπ

2p−1

p−k∑
q=0

(
p

q

)(
p

k + q

)
b2q+k

(
a±

√
a2 − b2

)p−k−2q
.
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Abstract

Given a function F holomorphic on a neighborhood of some compact subset of the
complex plane, we prove that if zeros of denominators of generalized Padé approximants
(orthogonal Padé approximants and Padé-Faber approximants) for some row sequence
remain uniformly bounded away from ∞, then either F is a polynomial or F has a
singularity in the complex plane. The proofs of our main results rely, on the one hand,
on difference equations where their coefficients relate to the coefficients of denominators
of these generalized Padé approximants and, on the other hand, on an interesting
property of Fourier and Faber coefficients of an entire function.

Keywords: Padé approximation, Orthogonal polynomials, Faber polynomials, Dif-
ference equations, Inverse results.

Mathematics Subject Classification: 30E10, 41A21, 41A27.

1 Introduction

Currently, Padé approximation theory emphasizes inverse-type problems where we
want to describe the analytic properties of the approximated function from the knowl-
edge of the asymptotic behavior of poles of the approximating functions. Moreover,
the theory of higher order recurrence relations (difference equations) plays very im-
portant roles in solving recent inverse-type problems (see, e.g., [1, 3, 4, 5, 8]). The
object of the present paper is to investigate the relation between the boundedness

∗Corresponding author.
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of zeros of denominators of orthogonal Padé approximants and Padé-Faber approxi-
mants on row sequences and an analyticity of the approximated function. Our results
in this paper are considered as inverse-type results.

In order to state a known result related to our study, we need to remind the reader
the definition of classical Padé approximants. In what follows, N := {1, 2, 3, . . .},
N0 := N ∪ {0}, and Pn is the set of all polynomials of degree at most n.

The concept of (classical) Padé approximants generalizes the idea of Taylor poly-
nomials to rational approximants. Given a formal Taylor series at the origin

F (z) =
∞∑
k=0

fkz
k,

for any integers n,m ≥ 0, we can find polynomials Pn,m ∈ Pn and polynomials
Qn,m ∈ Pm, Qn,m 6≡ 0, such that

(Qn,mF − Pn,m)(z) = O(zn+m+1), as z → 0.

The rational function

Rn,m :=
Pn,m
Qn,m

is uniquely defined and is called the (n,m) classical Padé approximant of F . Here,
Qn,m is nomalized so that Qn,m(0) = 1 and it does not share zeros with Pn,m. In
order to find Qn,m(z) = 1 +

∑m
j=1 qn,jz

j, one has to solve for all k = n+ 1, . . . , n+m,

fk + qn,1fk−1 + . . .+ qn,mfk−m = 0.

Indeed, the above recurrence relation has very strong connection to inverse-type prob-
lems (see e.g., [5, Propositions 1-3 and Theorems 4-6] and [8, Section 1.1]). In par-
ticular, a generalization of the Poincaré theorem for recurrence relations developing
in [5] provides a bridge connecting an inverse result for classical Padé approximation
in [11] and the ones for several generalized Padé approximations in [1, 3, 5].

Given a formal power series F (z) =
∑∞

k=0 fkz
k, we denote by R0(F ) the radius of

the largest disk centered at 0 to which F can be extended holomorphically. Basically,
R0(F ) is the same as the radius of convergence of F. In this paper, we are interested
in proving analogues of the following theorem (see [8, Theorem 1.1] or [6, Corollary
2.4]) for orthogonal Padé approximants and Padé-Faber approximants.

Theorem A. Let m ∈ N be fixed and let Pn be the set of all zeros of Qn,m. Suppose
that the cardinality of Pn is at least 1 for all n sufficiently large,

sup
N≥m

inf
n≥N
{|ζ| : ζ ∈ Pn} > 0,

2



and
inf
N≥m

sup
n≥N
{|ζ| : ζ ∈ Pn} <∞.

Then, F is a polynomial or 0 < R0(F ) <∞.

In other words, if F is not a polynomial and the poles of Rn,m stay far from
the origin and bounded for all n sufficiently large, then 0 < R0(F ) < ∞. Up to my
knowledge, this result is the first one of this sort. Moreover, the sequence (Rn,m)n≥n0 ,
where m remains fixed, is called the mth row sequence.

Now, let us define four generalized Padé approximations. Let E be a bounded
continuum with connected complement containing infinitely many points. From
now on, the set E will verify the above condition. Let µ be a finite positive Borel
measure with infinite support supp(µ) contained in E. We write µ ∈M(E) and the
corresponding inner product is defined by

〈g, h〉µ :=

∫
g(z)h(z)dµ(z), g, h ∈ L2(µ).

Using this inner product, one can generate a unique sequence of orthonormal poly-
nomials

(pn)n≥0 := (κnz
n + · · · )n≥0

with positive leading coefficients κn > 0. By H(E), we denote the space of all func-
tions holomorphic in some neighborhood of E. The first two definitions are gener-
alized Padé approximants constructed from the sequence of orthogonal polynomials
(pn)n≥0.

Definition 1.1. Let F ∈ H(E) and µ ∈ M(E). For any integers n,m ≥ 0, there
exists Qµ

n,m ∈ Pm such that Qµ
n,m 6≡ 0 and 〈Qµ

n,mF, pn+k〉µ = 0 for all k = 1, . . . ,m.
The associated rational function

Rµ
n,m :=

∑n
j=0〈Qµ

n,mF, pj〉µpj
Qµ
n,m

is called an (n,m) classical orthogonal Padé approximant of F with respect to µ.

Definition 1.2. Let F ∈ H(E) and µ ∈ M(E). For any integers n ≥ 0 and m ≥ 1,
there exists Q̃µ

n,m ∈ Pm such that Q̃µ
n,m 6≡ 0 and 〈zkQ̃µ

n,mF, pn+1〉µ = 0 for all k =
0, . . . ,m− 1. The associated rational function

R̃µ
n,m :=

∑n
j=0〈Q̃µ

n,mF, pj〉µpj
Q̃µ
n,m

is called an (n,m) new orthogonal Padé approximant of F with respect to µ.
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Let Φ the unique Riemann mapping function from C \ E to the exterior of the
closed unit disk verifying Φ(∞) =∞, Φ′(∞) > 0. For each ρ > 1, the level curve of
index ρ and the canonical domain of index ρ are defined by

Γρ := {z ∈ C : |Φ(z)| = ρ} and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},

respectively. Given F ∈ H(E), we denote by ρ0(F ) the largest index ρ of Dρ to
which F can be extended as a holomorphic function.

The Faber polynomial of E of degree n is

Φn(z) :=
1

2πi

∫
Γρ

Φn(t)

t− z
dt, z ∈ Dρ, n = 0, 1, 2, . . . .

One can check that

Φn(z) = (z/cap(E))n + lower degree terms,

where cap(E) is the logarithmic capacity of the set E. The n-th Faber coefficient of
F ∈ H(E) with respect to Φn is defined by the formula

[F ]n :=
1

2πi

∫
Γρ

F (t)Φ′(t)

Φn+1(t)
dt,

where ρ ∈ (1, ρ0(F )).
The next two definitions are definitions of generalized Padé approximants con-

structed from the sequence of Faber polynomials (Φn)n≥0.

Definition 1.3. Let F ∈ H(E). For any integers n,m ≥ 0, there exists QE
n,m ∈ Pm

such that QE
n,m 6≡ 0 and [QE

n,mF ]n+k = 0 for all k = 1, . . . ,m. The associated rational
function

RE
n,m :=

∑n
j=0[QE

n,mF ]jΦj

QE
n,m

is called an (n,m) classical Padé-Faber approximant of F with respect to E.

Definition 1.4. Let F ∈ H(E). For any integers n ≥ 0 and m ≥ 1, there exists
Q̃E
n,m ∈ Pm such that Q̃E

n,m 6≡ 0 and [zkQ̃E
n,mF ]n+1 = 0 for all k = 0, . . . ,m − 1. The

associated rational function

R̃E
n,m :=

∑n
j=0[Q̃E

n,mF ]jΦj

Q̃E
n,m

is called an (n,m) new Padé-Faber approximant of F with respect to E.

4



In order to find Qµ
n,m, Q̃

µ
n,m, Q

E
n,m, or Q̃E

n,m in Definitions 1.1-1.4, one has to solve
for m + 1 unknowns from a system of m homogeneous linear equations. Therefore,
for any integers n ≥ 0 and m ≥ 1, polynomials Qµ

n,m, Q̃
µ
n,m, Q

E
n,m, and Q̃E

n,m always

exist but they may not be unique. Since Qµ
n,m, Q̃

µ
n,m, Q

E
n,m, and Q̃E

n,m are not the zero
function, we normalize them to be “monic” polynomials. Unlike the classical Padé
approximants, for any integers n ≥ 0 and m ≥ 1, Rµ

n,m, R̃
µ
n,m, R

E
n,m, and R̃E

n,m may

not be unique. The rational functions Rµ
n,m and RE

n,m are natural extensions of Rn,m

and were introduced by Maehly [9] in 1960. The rational functions R̃µ
n,m and R̃E

n,m

were recently introduced (in the vector forms) in order to solve some inverse-type
problems about detecting poles of a vector of functions nearest the set E (see [2, 4]
for more details). Note that in general, the approximations in Definitions 1.1 and
1.3 are not the same as the ones in Definitions 1.2 and 1.4, respectively.

An outline of this paper is as follows. In Section 2, we state analogues of Theorem
A which are our main results. We keep all lemmas in Section 3. The proofs of the
main results are in Section 4.

2 Main Results

Before stating the main results, we need to define two subclasses of M(E). The
measure µ ∈ Reg1(E) if and only if

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (1)

uniformly on each compact subset of C \ E. This is the minimum requirement to
have the limit formula for ρ0(F ) and the convergence of the orthogonal polynomial
expansion in Lemma 3.1 in Section 3. Moreover, the class Reg1(E) is exactly the
regular class in [10, Definition 3.1.2] when E is convex. The measure µ ∈ Reg∗1(E)
when µ ∈ Reg1(E) and

κn−1

κn
≥ c, n ≥ n0, (2)

for some c > 0 and n0 ∈ N.
The main results of this paper are the following.

Theorem 2.1. Let F ∈ H(E) and µ ∈ Reg∗1. Fix m ∈ N and denote by Pµn the set
of all zeros of a polynomial Qµ

n,m. Assume that the cardinality of Pµn is at least 1 for
all n sufficiently large and

inf
N≥m

sup
n≥N
{|ζ| : ζ ∈ Pµn} <∞. (3)

Then, either F is a polynomial or ρ0(F ) <∞.
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Theorem 2.2. Let F ∈ H(E). Fix m ∈ N and denote by PEn the set of all zeros of a
polynomial QE

n,m. Assume that the cardinality of PEn is at least 1 for all n sufficiently
large and

inf
N≥m

sup
n≥N
{|ζ| : ζ ∈ PEn } <∞. (4)

Then, either F is a polynomial or ρ0(F ) <∞.
Theorem 2.3. Let F ∈ H(E) and µ ∈ Reg∗1. Fix m ∈ N and denote by P̃µn the set
of all zeros of a polynomial Q̃µ

n,m. Assume that the cardinality of P̃µn is at least 1 for
all n sufficiently large and

inf
N≥m

sup
n≥N
{|ζ| : ζ ∈ P̃µn} <∞. (5)

Then, either F is a polynomial or ρ0(F ) <∞.
Theorem 2.4. Let F ∈ H(E). Fix m ∈ N and denote by P̃En the set of all zeros of a
polynomial Q̃E

n,m. Assume that the cardinality of P̃En is at least 1 for all n sufficiently
large and

inf
N≥m

sup
n≥N
{|ζ| : ζ ∈ P̃En } <∞. (6)

Then, either F is a polynomial or ρ0(F ) <∞.
Note that we are not interested in proving ρ0(F ) > 1 because this is a direct

consequence of F ∈ H(E).

3 Auxiliary Lemmas

Recall that the n-th Fourier coefficient of F ∈ H(E) corresponding to pn is defined
as follows

〈F 〉n := 〈F, pn〉µ =

∫
F (z)pn(z)dµ(z).

The first lemma (see, e.g., [2, Lemma 2.1.] and [12] for its proof) concerns the
convergences of orthogonal and Faber polynomial expansions.

Lemma 3.1. Let F ∈ H(E) and µ ∈ Reg1(E). Then,

ρ0(F ) =

(
lim sup
n→∞

|〈F 〉n|1/n
)−1

=

(
lim sup
n→∞

|[F ]n|1/n
)−1

and

lim
n→∞

n∑
k=0

〈F 〉kpk(z) = lim
n→∞

n∑
k=0

[F ]kΦk(z) = F (z),

uniformly on each compact subset of Dρ0(F ).
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An estimation of ‖Φn‖Γρ is given in the succeeding lemma (see [7, p. 583] or [12,
p. 43]).

Lemma 3.2. Fix ρ > 1. Then, there exists c > 0 such that for all n ∈ N0,

‖Φn‖Γρ ≤ cρn.

An interesting property of Fourier and Faber coefficients of an entire function
which serves as the cornerstone for the proofs of our main results is the following.

Lemma 3.3. Let µ ∈ Reg1(E). If G is an entire function and G satisfies one of the
following properties:

(i) |〈G〉n| ≤ c
∑∞

k=n+1 |〈G〉k|, for all n ≥ n0 and for some constant c > 0;

(ii) |[G]n| ≤ c
∑∞

k=n+1 |[G]k|, for all n ≥ n0 and for some constant c > 0,

then G is a polynomial.

Proof of Lemma 3.3. We will prove only the statement concerning Fourier coeffi-
cients of G. By Lemma 3.1, since G is an entire function,

lim
n→∞

|〈G〉n|1/n =
1

ρ0(G)
= 0,

which implies that

|〈G〉n| <
(

1

c+ 2

)n
(7)

for all n ≥ n1. By the assumption,

|〈G〉n| ≤ c
∞∑

k=n+1

|〈G〉k|, (8)

for all n ≥ n0. Claim that for each n ≥ max{n0, n1},

|〈G〉n| ≤
(

c

c+ 1

)`(
1

c+ 2

)n
, (9)

for all ` ∈ N0. We prove the above statement by mathematical induction on `. The
case when ` = 0 is from (7). Now, we suppose that (9) holds for ` and show that (9)
holds for `+ 1. By (7), (8), and (9), for each n ≥ max{n0, n1},

|〈G〉n| ≤ c

∞∑
k=n+1

|〈G〉k| ≤ c

∞∑
k=n+1

(
c

c+ 1

)`(
1

c+ 2

)k
=

(
c

c+ 1

)`+1(
1

c+ 2

)n
,
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which implies that (9) holds for ` + 1 This completes the mathematical induction
proof. Next, letting ` → ∞ in (9), we have for each n ≥ max{n0, n1}, 〈G〉n = 0.
Therefore, G is a polynomial.

Simple properties of 〈·〉m and [·]m used frequently in the proofs of the main results
are in

Lemma 3.4. Let F ∈ H(E) and µ ∈M(E). Then,

[Φn]m = 〈pn〉m =

{
1 if n = m

0 if n 6= m.

4 Proofs of Main Results

Proof of Theorem 2.1. Let

Qµ
n,m(z) :=

mn∏
k=1

(z − ζn,k) =
mn∑
j=0

qn,jz
j

and

F (z) :=
∞∑
ν=0

〈F 〉νpν(z).

Note that mn ≥ 1 for all n sufficiently large and qn,mn = 1. We will show that if (3)
holds and F is an entire function, then F is a polynomial.

From the definition of Qµ
n,m, we have for all k = 1, . . . ,m,

0 = 〈Qµ
n,mF 〉n+k =

mn∑
j=0

∞∑
ν=0

〈F 〉νqn,j〈zjpν〉n+k =
mn∑
j=0

∞∑
ν=n+k−j

〈F 〉νqn,j〈zjpν〉n+k

=
∞∑

ν=n+k−mn

〈F 〉ν〈zmnpν〉n+k +
mn−1∑
j=0

∞∑
ν=n+k−j

〈F 〉νqn,j〈zjpν〉n+k

=
κn+k−mn
κn+k

〈F 〉n+k−mn+
∞∑

ν=n+k−mn+1

〈F 〉ν〈zmnpν〉n+k+
mn−1∑
j=0

∞∑
ν=n+k−j

qn,j〈F 〉ν〈zjpν〉n+k.

(10)
Using the Vieta formulas, since

inf
N≥m

sup
n≥N
{|ζ| : ζ ∈ Pµn} <∞,

8



there exists c1 > 0 such that

sup{|qn,j| : 0 ≤ j ≤ mn, n ≥ n0} ≤ c1. (11)

From the Cauchy-Schwarz inequality and the orthonormality of pν , for all n, ν, k ∈ N0

and j = 0, . . . ,m, there exists c2 > 0 such that

|〈zjpν〉n+k| = |〈zjpν , pn+k〉µ| ≤ c2. (12)

Because µ ∈ Reg∗1, there exists c3 > 0 such that

κn+k−mn
κn+k

≥ c3, n ≥ n0, (13)

where c3 does not depend on k and mn. Combining (11), (12), and (13), it is easy to
check that (10) imply that for all k = 1, . . . ,m, and for all n ≥ n0,

|〈F 〉n+k−mn| ≤ c4

∞∑
ν=n+k−mn+1

|〈F 〉ν |,

where c4 is a positive constant that does not depend on n, k and mn. For each n ≥ n0,
we choose k = mn in the previous inequality and we obtain for all n ≥ n0,

|〈F 〉n| ≤ c4

∞∑
ν=n+1

|〈F 〉ν |.

Applying Lemma 3.3, F is a polynomial.

Proof of Theorem 2.2. Let

QE
n,m(z) :=

mn∏
k=1

(z − ζn,k) =
mn∑
j=0

qn,jz
j

and

F (z) :=
∞∑
ν=0

[F ]νΦν(z).

Note that mn ≥ 1 for all n sufficiently large and qn,mn = 1. We will follow the same
plan by proving that if (4) holds and F is an entire function, then F is a polynomial.

The analogous arguments used to derive (10) implies that for all k = 1, . . . ,m,

0 = (cap(E))mn [F ]n+k−mn+

9



∞∑
ν=n+k−mn+1

[F ]ν [z
mnΦν ]n+k +

mn−1∑
j=0

∞∑
ν=n+k−j

qn,j[F ]ν [z
jΦν ]n+k. (14)

Moreover, there exists c1 > 0 such that

sup{|qn,j| : 0 ≤ j ≤ mn, n ≥ n0} ≤ c1. (15)

Take ρ > 1. Using Lemma 3.2, for j = 0, 1, . . . ,m, k = 1, . . . ,m, and n, ν ∈ N0, we
obtain

[|zjΦν ]n+k| =

∣∣∣∣∣ 1

2πi

∫
Γρ

zjΦν(z)Φ′(z)

Φn+k+1(z)
dz

∣∣∣∣∣ ≤ c2
ρν

ρn
. (16)

Combining (14), (15), and (16), it is easy to check that for all k = 1, . . . ,m, and for
all n ≥ n0,

|[F ]n+k−mn|ρn ≤ c3

∞∑
ν=n+k−mn+1

|[F ]ν |ρν ,

where c3 is a positive constant that does not depend on n, k and mn. For each n ≥ n0,
we choose k = mn in the previous inequality and we obtain for all n ≥ n0,

|[F ]n|ρn ≤ c3

∞∑
ν=n+1

|[F ]ν |ρν . (17)

Using Lemma 3.3 by setting

G =
∞∑
n=0

([F ]nρ
n)Φn,

since (17) is

|[G]n| ≤ c3

∞∑
ν=n+1

|[G]ν |

and
lim
n→∞

|[G]n|1/n =
ρ

ρ0(F )
= 0

(which means G is an entire function), G is a polynomial. Consequently, F is a
polynomial.

Proof of Theorem 2.3. Let

Q̃µ
n,m(z) :=

mn∏
k=1

(z − ζn,k) =
mn∑
j=0

qn,jz
j

10



and

F (z) :=
∞∑
ν=0

〈F 〉νpν(z).

Note that mn ≥ 1 for all n sufficiently large and qn,mn = 1. Our plan is to prove that
F is a polynomial under the assumptions that (5) holds and F is an entire function.

From the definition of Q̃µ
n,m, we have for all k = 0, . . . ,m− 1,

0 = 〈zkQ̃µ
n,mF 〉n+1 =

mn∑
j=0

∞∑
ν=0

〈F 〉νqn,j〈zk+jpν〉n+1 =
mn∑
j=0

∞∑
ν=n+1−k−j

〈F 〉νqn,j〈zk+jpν〉n+1

=
∞∑

ν=n+1−k−mn

〈F 〉ν〈zk+mnpν〉n+1 +
mn−1∑
j=0

∞∑
ν=n+1−k−j

〈F 〉νqn,j〈zk+jpν〉n+1

=
κn+1−k−mn
κn+1

〈F 〉n+1−k−mn +
∞∑

ν=n−k−mn+2

〈F 〉ν〈zk+mnpν〉n+1

+
mn−1∑
j=0

∞∑
ν=n+1−k−j

〈F 〉νqn,j〈zk+jpν〉n+1. (18)

Applying exactly the same arguments as in (11), (12), and (13), there exists
c1 > 0 such that

sup{|qn,j| : 0 ≤ j ≤ mn, n ≥ n0} ≤ c1, (19)

there exists c2 > 0 such that for all k = 0, . . . ,m− 1, j = 0, . . . ,m, and n, ν ∈ N0,

|〈zk+jpν〉n+1| = |〈zjpν , pn+k〉µ| ≤ c2, (20)

there exists c3 > 0 such that for all k = 0, . . . ,m− 1, mn = 1, . . . ,m, and n ≥ n0,

κn+1−k−mn
κn+1

≥ c3. (21)

Using (18), (19), (20), and (21), we have for all k = 0, . . . ,m− 1 and n ≥ n0,

|〈F 〉n−k−mn+1| ≤ c4

∞∑
ν=n−k−mn+2

|〈F 〉ν |.

For each n ≥ n0, we choose k = m −mn in the previous inequality and we obtain
for all n ≥ n0,

|〈F 〉n−m+1| ≤ c4

∞∑
ν=n−m+2

|〈F 〉ν |.
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Setting N = n−m+ 1, we have

|〈F 〉N | ≤ c4

∞∑
ν=N+1

|〈F 〉ν |, N ≥ N0.

By Lemma 3.3, F is a polynomial.

Proof of Theorem 2.4. Let

Q̃E
n,m(z) :=

mn∏
k=1

(z − ζn,k) =
mn∑
j=0

qn,jz
j

and

F (z) :=
∞∑
ν=0

[F ]νΦν(z).

Note that mn ≥ 1 for all n sufficiently large and qn,mn = 1. Following the same
plan by assuming that (6) holds and F is an entire function, we show that F is a
polynomial.

The analogous arguments used to derive (18) implies that for all k = 0, . . . ,m−1,

0 = (cap(E))mm+k[F ]n+1−k−mn +
∞∑

ν=n−k−mn+2

[F ]ν [z
k+mnΦν ]n+1

+
mn−1∑
j=0

∞∑
ν=n+1−k−j

[F ]νqn,j[z
k+jΦν ]n+1. (22)

Moreover, there exists c1 > 0 such that

sup{|qn,j| : 0 ≤ j ≤ mn, n ≥ n0} ≤ c1. (23)

Take ρ > 1. Using Lemma 3.2, we obtain for all j = 0, 1, . . . ,m, k = 0, . . . ,m − 1,
and n, ν ∈ N0,

[|zk+jΦν ]n+1| =

∣∣∣∣∣ 1

2πi

∫
Γρ

zk+jΦν(z)Φ′(z)

Φn+2(z)
dz

∣∣∣∣∣ ≤ c2
ρν

ρn
. (24)

By (22), (23), and (24), we have for all k = 0, . . . ,m− 1 and n ≥ n0,

|[F ]n+1−k−mn|ρn−m+1 ≤ c3

∞∑
ν=n−k−mn+2

[F ]νρ
ν .
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For each n ≥ n0, we choose k = m −mn in the previous inequality and we obtain
for all n ≥ n0,

|[F ]n−m+1|ρn−m+1 ≤ c3

∞∑
ν=n−m+2

|[F ]ν |.

Setting N = n−m+ 1 and

G =
∞∑
n=0

([F ]nρ
n)Φn,

we have

|[G]N | ≤ c3

∞∑
ν=N+1

|[G]ν |, N ≥ N0.

By Lemma 3.3, the above inequalities and

lim
N→∞

|[G]N |1/N =
ρ

ρ0(F )
= 0

(G is an entire function) imply that G is a polynomial. Therefore, F is a polynomial.

5 Conclusion

We prove that if zeros of denominators of four generalized Padé approximations
based on orthogonal and Faber polynomials stay uniformly bounded away from ∞,
then either the approximated function is a polynomial or it has a singularity in the
complex plane.
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[4] Bosuwan, N., López Lagomasino, G.: Direct and inverse results on row sequences
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