

บทคัดย่อ

รหัสโครงการ: MRG6080148

ชื่อโครงการ: การออกแบบระบบรองรับหัวอ่านอาร์ดิสก์แบบหลายฟังก์ชันเป้าหมายโดยใช้วิธีการ OMPBIL และวิธีแผ่นพนหลาวยกระดับ

ชื่อนักวิจัย และสถาบัน ผศ.ดร.สุวิน ศลีสองสม วิทยาลัยเชียงราย (สถานที่ทำงานปัจจุบัน สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง)

อีเมล์: suwins2000@yahoo.com; suwin.se@kmitl.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

งานวิจัยนี้มีวัตถุประสงค์สามประการดังนี้ วัตถุประสงค์ที่หนึ่งคือต้องการนำเสนอวิธีการกริดหลายระดับสำหรับการหาโตไปโลยีเหมาะสมสมสุดของโครงสร้าง และขยายการศึกษาไปยังการหาโตไปโลยีเหมาะสมสมสุดแบบหลายฟังก์ชันเป้าหมายที่น่าเชื่อถือ และวัตถุประสงค์สุดท้ายนำเสนองการประยุกต์ใช้วิธีการที่ได้พัฒนาขึ้นกับปัญหาการหาโตไปโลยีเหมาะสมสมสุดของระบบรองรับหัวอ่านอาร์ดิสก์แบบหลายฟังก์ชันเป้าหมายจาก การศึกษาพบว่าการใช้วิธีการกริดหลายระดับร่วมกับการหาโตไปโลยีเหมาะสมสมสุดของโครงสร้างให้ผลดีกว่าเมื่อเทียบกับวิธีการโตไปโลยีเหมาะสมสมสุดที่ใช้กริดระดับเดียว ยิ่งไปกว่านั้นวิธีการที่พัฒนาขึ้นที่เรียกว่าวิธีการหาโตไปโลยีเหมาะสมสมสุดแบบหลายฟังก์ชันเป้าหมายที่น่าเชื่อถือร่วมกับแบบจำลองแบบฟลชี้ยังให้ผลการออกแบบที่มีความปลอดภัยมากกว่าวิธีการดั้งเดิม สุดท้ายผลการประยุกต์ใช้วิธีการ OMPBIL ร่วมกับวิธีการกริดหลายระดับกับปัญหาการสังเคราะห์โครงสร้างเหมาะสมสมสุดของระบบรองรับหัวอ่านอาร์ดิสก์ที่ให้ผลดีเช่นเดียวกัน

คำหลัก : การหาโตไปโลยีเหมาะสมสมสุด, ขั้นตอนวิธีวิวัฒนาการแบบหลายฟังก์ชันเป้าหมาย, วิธีการกริดหลายระดับ, ความน่าเชื่อถือ, ความไม่แน่นอน, ฟลชี้, ระบบรองรับหัวอ่านอาร์ดิสก์

Abstract

Project Code : MRG6080148

Project Title : Multiobjective optimization of a HDD suspension system using opposition-based population-based incremental learning and a Multi-grid approach

Investigator : Asst. Prof. Dr. Suwin Sleesongsom

E-mail Address : suwins2000@yahoo.com; suwin.se@kmitl.ac.th

Project Period : 2 Years

Abstract:

This research has three objectives. Firstly, a multi-grid design approach for optimization of structural topology optimization is proposed. This idea proposed for solving a problem about grid or ground element resolution in structural topology optimization, which can help the designer to choose the best grid resolution at same time with finding the topology optimization. The design processes can be fulfilled by using multiple resolutions of ground elements, which is called a multi-grid approach. Secondly, the propose technique is extended to a multi-objective reliability-based topology optimization (MORBTO) for structural design, which considers uncertain structural parameters based on a fuzzy set model. The new technique is established in the form of multi-objective optimization where the equivalent probabilistic safety index (EPSI) is included as one of the objective functions along with mass, and compliance. This technique can reduce complexity due to a double-loop nest problem used previously due to performing single objective optimization. Finally, the propose approach is used to design a hard disk drive suspension (HDD), which also gives very good results.

Keywords : Topology optimization; multi-objective evolutionary algorithm; multi-grid design approach; reliability; uncertainty; fuzzy set; hard disk drive suspension