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Abstract

Project Code : MRG6080148

Project Title : Multiobjective optimization of a HDD suspension system using opposition-
based population-based incremental learning and a Multi-grid approach

Investigator : Asst. Prof. Dr. Suwin Sleesongsom

E-mail Address : suwins2000@yahoo.com; suwin.se@kmitl.ac.th

Project Period : 2 Years

Abstract:

This research has three objectives. Firstly, a multi-grid design approach for
optimization of structural topology optimization is proposed. This idea proposed for solving
a problem about grid or ground element resolution in structural topology optimization,
which can help the designer to choose the best grid resolution at same time with finding the
topology optimization. The design processes can be fulfilled by using multiple resolutions of
ground elements, which is called a multi-grid approach. Secondly, the propose technique is
extended to a multi-objective reliability-based topology optimization (MORBTO) for
structural design, which considers uncertain structural parameters based on a fuzzy set
model. The new technique is established in the form of multi-objective optimization where
the equivalent possibilistic safety index (EPSI) is included as one of the objective functions
along with mass, and compliance. This technique can reduce complexity due to a double-
loop nest problem used previously due to performing single objective optimization. Finally,
the propose approach is used to design a hard disk drive suspension (HDD), which also gives

very good results.

Keywords : Topology optimization; multi-objective evolutionary algorithm; multi-grid design

approach; reliability; uncertainty; fuzzy set; hard disk drive suspension



Chapter |

Executive Summary

1.1 Rationale of the study

This research has an extension from the previous wok by the authors and Thailand Research Fund
(TRG5780123) to proposed the Opposite-based multiobjective population-based incremental learning
(OMPBIL) and a Multi-grid approach for solving the structural topology optimization problems as a first aim.
The second aim is developed the previous technique by combining a reliability analysis into topology
optimization using a fuzzy set model. The new technique can reduce the complexity in analysis of triple-
loop nest problem of the reliability-based topology. The new technique is established in the form of multi-
objective optimization where the equivalent possibilistic safety index (EPSI) is included as one of the
objective functions along with mass, and compliance. The third aim is an attention to use the method for
design a topological design of a hard disk drive (HDD) suspension. For the first aim causes from the pre-
process stage, when using a ground element approach, is what the best ground element resolution for a
design problem should be. As a result, using several sets of ground segments at the same time when
performing optimization is investigated and it is termed a multi-grid design approach. The propose technique
has an expected to increase the performance in design topology of structures when it combines with the
opposite-based concept. For the second aim, it has been found in multidisciplinary design optimization their
design results are never used in practical due to the uncertainties of mechanical property of the material
that used in the optimization design. The well-known technique that considers a reliability in the design
optimization problem, which is called reliability-based topology optimization (RBTO). In the past is known
that such problem is very complex in analysis due to it is triple-loops nest problem. Then this aim of this
research is to reduce the complication of the double-loop nest problem in RBTO using multi-objective
optimization technique with fuzzy uncertainties. From the fist and the second aim are reason of the third
aim to integrate the propose techniques for designing a topology optimization of a hard disk drive (HDD)
suspension. This problem is a multiobjective optimization problem, which has an objective are the
maximizing the first sway mode natural frequency and minimizing bending stiffness of the suspension. Design
constraints include the first torsion and bending modes frequencies of a structure. Structural analysis is

carried out by using a finite element procedure.



1.2

1.3

Objective of the research

1.2.1 To apply the opposite-based multiobjective population-based incremental
learning in structural design

1.2.2  To propose the new technique in reliability-based topology optimization.

1.2.3  To apply the propose technique in design of a hard disk drive suspension.

Scope of the research

1.3.1  Algorithm will be coded by the MATLAB program.

1.3.2  Structural design cases are coded in two-dimension.

1.3.3  Only a HDD suspension model is coded in three-dimension.

1.3.4  Optimizer is used in this research is in group of multiobjective evolutionary

algorithm (MOEA).



Chapter Il
Topology Optimisation Using MPBILs and Multi-Grid Ground Element

2.1 Introduction

The first question that always arises at pre-process stage, when using a ground element
approach for topology optimization, is: What the best ground element resolution for a design
problem should be? As a result, we investigate using several sets of ground elements when
performing optimization, which we term the multi-grid design approach (MG). The MG
approach is an extension of ground segment strategy, which has been proposed to solve a
truss structural optimization problem [1,2] and morphing wing structural optimization problem
[3].

The second question arises due to an opposition-based concept that could potentially
improve the search performance of the evolutionary algorithm (EA) [4-7]; the multi-objective
population-based incremental learning (MPBIL) was the best optimizer [8]. Additionally, it has
been demonstrated that the opposition-based concept could improve population-based
incremental learning (PBIL) performance for a single objective, which is called the opposition-
based concept PBIL(OPBIL) [9], whereas the multi-objective optimization is called opposite-
based, multi-objective, population-based incremental learning (OMPBIL) [3]. PBIL is categorized
as an estimation distribution algorithm (EDA), which is still in the spotlight of many researchers
due to this kind of algorithm being simple to adapt and apply for a single- and multi-objective
optimization problem [10-13]. From our previous work, OMPBIL with a multi-grid approach has
been used to solve partial topology optimization of morphing aircraft wings, and it promotes
better results than the original multi-objective population-based incremental learning (MPBIL)
with a single grid element. Moreover, the work reveals that the opposition concept could
improve the search performance of MPBIL. The question remains whether the performance of
OMPBIL can benefit from the opposite concept or two learning rates. To make it be clearer,
we compare the performance of OMPBIL and the performance of MPBIL with multi-learning
rate. If the former technique can achieve better results, it means that the opposition concept
significantly improves the performance of MPBIL. Therefore, this question will be addressed in
this study. Furthermore, it has been found [14] that learning rate was the most affective with

search performance of PBIL. Another way to improve the search performance of MPBIL is to



use an adaptive learning rate method [15]. This method is categorized as self-learning

adaptations, so the effectiveness of this technique needs to be addressed in this research.

Therefore, in this chapter, the first objective is to apply the multi-grid approach (MG)
approach to solve structural topology optimization problems, whereas the second objective
is comparative performance of the three variants of MPBIL. The performance improvements
are based on an opposite-based concept, a multi-learning rate, and an adaptive learning rate,
respectively. This research expects to improve the performance of the proposed MPBIL and
MG approaches that lead to the obtaining of better design results than the original MPBIL with
a single grid. The rest of this paper is organized as follows. Section 2.2 promotes the details
of topology with single-ground and multi-ground design approaches for structural topology
optimization. We introduce some novel methods for enhancing the performance of multi-
objective, population-based incremental learning in Section 2.3. The performance index and
statistical testing are given in the same section. Numerical experiments and the design results
are proposed in Section 2.4; moreover, the design results and discussion are in Section 2.5.

Finally, the conclusions of the study are in Section 2.6.
2.2 Topological Designs with Single-and Multi-Ground Design Approaches

2.2.1. Topological Designs with Ground Element Filtering

Topology optimization is one mathematical tool used in the conceptual design stage of
engineering systems for finding the best structural layout from a given design domain.
Topological design can perform using an optimization method and finite element analysis.
This technique is started by defining design domain represented as the discrete structural
members such as panels, truss, and frame as shown in Figure 2.1. The optimization method
can be performed by varying the width or thickness of each element in the design domain
between zero and the maximum value. All elements were discarded, if the element
width/thickness value was zero. Otherwise, the element was retained. With this concept,
optimization of the structural layout and component sizes is performed. Two popular, well
known topological methods are the solid isotropic material with penalization (SIMP) approach
and the homogenization method, which use gradient-based optimizers. Later, an alternative
optimizer is evolutionary algorithms due to the fact they are robust, simple to use, derivative-
free, and free from intermediate pseudo densities [8]. Complicated problems, such as partial

topology, simultaneous topology, shape, and sizing optimization, can be performed within one



optimization run [3,8,16,17] by using such algorithms. In this paper [8], they presented the
comparative performance of multi-objective evolutionary algorithms (MOEAs) for solving
structural topology optimization test problems based on ground element filtering technique.
It has been found that MPBIL is the best optimizer in their study, which outperforms other
MOEAs [8], so MPBIL is the only MOEA selected to improve its search performance in this
research. Furthermore, the ground element filtering technique is also used in this study. The
ground element filtering technique (GEF technique) is a simple numerical scheme that can
apply to all kinds of optimizers, which can prevent the checkerboard pattern problem and at
the same time decrease the number of design variables [8,18,19]. The idea uses two mesh
grids of design domain with different resolutions. The lower resolution grid is provided for
design variables, whereas the higher resolution is used as a finite element grid. The conversion
between two grids relates to threshold value (€) that is defined at the first time before
optimization run. Therefore, this technique has been proved to be an efficient technique to
suppress the checkerboard problem. Next, the details of GEF technique are seen in [8,18,19].
Later, a method for solving checkerboard pattern was presented by Guirguis and Aly [20]. They
proposed that derivative-free level-set method for solving structural topology can solve the
checkerboard problem. This new technique can avoid the main limitations of non-gradient
methods: dependence on the objective value. Moreover, the boundaries of structure are
smooth, but it does not directly depend on the decision variables. A very recent work in multi-
objective topology optimization has been proposed to address the limitations of generating
infeasible structures and expensive computational cost by using the technique called
“graphics processing unit (GPU)” [21]. On the contrary, this technique has been commented
on usefulness in the case of truss-like structures and the solved examples are simple, and
obtained results are sub-optimal solutions [22]. Recent applications of topology optimization
appeared in design of composite molding processes [23]. More recently, applications of
topology optimization appeared in many fields, e.g., composite molding processes [23],
optimal design of piezoelectric [24], phononic crystals design [25] and stator configurations

[26].

2.2.2. Single-and Multi-Grid Ground Elements

The MG approach for topology optimization is an extension of MG strategy, which
proposes to solve a truss structural optimization [1] and morphing wing structures [3]. At the

present, we propose to apply this technique to a structural topology optimization problem.



This technique has an improvement in both using the several ground resolutions. In this
research, a ground structure has four sets of ground elements with different grid resolutions
and the threshold value €. The threshold value € must be specified at the first stage before
performing the optimization run. A special encoding and decoding scheme slightly changes
from the previous work [3], but it is very important to the quality of final result. Especially,
the threshold values are different in each grid resolution to prevent the checkerboard
problem, which can occur in each grid. At the first stage, this scheme starts with defining the
number of elements and the threshold values. The first set of ground elements has
Ny elements, and the threshold value is set to be E1. Therefore, an example of a ground
element set used in this study is the lowest resolution as number of elements N,;;= 48 and
E1= 0.07 as shown in Figure 2.1. The second set has N,; = 75 elements and the threshold
value is €2 = 0.2. Then, the third set has N3; = 108 segments and the threshold value is €3 =
0.3, whereas the last set has the numbers of ground elements and the threshold value isNg;=
147 segments and€4 = 0.35, respectively. As a result, Ng;2N3;2N,; >Ny and E4> €3> €2> €1,
respectively. Therefore, the variables and the threshold values for encoding/decoding scheme
for the MG approach, which is improved from previous algorithm, can be detailed as shown
in Algorithm 2.1. For using this algorithm, the MPBIL and its improved versions perform with
binary design variables, whereas it needs the conversion of binary string to become a real
design vector x before entering into this algorithm. Furthermore, the ground element set with
its € used in this research for multi-objective optimization problem (MOP) MOP1, MOP3 and
MOP4 is shown in Figure 2.1. For the design problem MOP2, the design domain is different
from the other problems. The details of the ground element sets and the threshold values

are presented in Section 4.

Algorithm 2.1. Encoding and decoding scheme for a MG approach.

Initialization: Generate four sets of ground elements and define the threshold value of €
for each set.

Inputx sized (Ng; + 1) x 1.

Output: Thicknesses of ground elements.

Encoding

x1 € [1, 4] is used for selecting a set of ground elements.

X, to Xy, .1 are used for element thicknesses.




Decoding

1: Find n = round(x;) where round(.) is a round-off operator.

2:1fn = 1: x; to Xy _,, are set as Ny, element thicknesses and E=€1.
3:1fn = 2:x;to Xy, 44 are set as Ny element thicknesses and € = €2.
4:1f n = 3: x, to Xy, 44 are set as Ni; element thicknesses and € = €3.

5:1fn = 4: x; to Xy, 44 are set as Ng; element thicknesses and € = €4.

N =48 elements.el=107 N =75 elements,Z=117
11 71
L ] e e e e 1 Hooooooooooooon
< 0 0] ] ) ] e o e
2‘05DDDDDDDDDDDD ;O.SDDDDDDDDDDDDDDD
g Diggogooooogg. g i E R EEEEE
O_DDDD_DDDD_DDDD_ o ] e e e e e e
0 1 2 3 0 1 2 3
nx=12 nx=15
(@ (b)
/1{7/: 108 elements.s3=015 /V4 /= 147 elements.e4=1155
S EEEEEEEEEEEEEEEEE 1
OOO0O0000000CO000000
T 0.5 B000000000 00000000 n 05:
> Vommmmhoohoooooooog. > 9
c T
o 0 0 o 0 i ]
0 1 2 3 0 1 2 3
nx=18 nx=21
(©) (d)

Figure 2.1.A ground elements set for MOP1, MOP3, and MOP4 (a) for n=1, (b) for
n=2, (c) for n=3, and (d) for n = 4.

2.3. Performance Enhancements of Multi-Objective, Population-Based Incremental
Learning

This section briefly details the concept of MPBIL and its three variants.

2.3.1. Multi-Objective, Population-Based Incremental learning

MPBIL is an extension of PBIL for solving a multi-objective optimization problem. This
problem has more than one objective function, which promotes several solutions for this kind
of problem, and it is called a Pareto solution set or a Pareto frontier. Rather than using a single

probability vector, several probability vectors are used, so it is called a probability matrix. The
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matrix is used to maintain diversity of a binary population. At an initial step, the probability
matrix has elements full of “0.5”. Each row of the probability matrix or probability vector is

updated by Hebb’s rule [27]as follows
new old
R~ =R (A-LR)+b;L; (1)

in which Lz is a PBIL learning rate, a small value usually recommends for the conventional
operating [28], and b; is the mean value of jth column of several binary solutions randomly
selected from a current Pareto front. It is also useful to apply a mutation to probability matrix

at some predefined probability as
P™ =P (1-ms) + rand(0or1) - ms 2)

in which ms is mutation shift, and the default value is usually 0.2. For more details of MPBIL

procedure, see [3].

2.3.2. Opposite-Based MPBIL

OMPBIL has been developed as an improved version of MPBIL [3]. Due to L affecting
MPBIL performance, the issue is how to select a proper value of Ly for a general problem. It is
expected to accelerate the convergence rate to find solution, as well as provide population
diversity. Our previous work proposed the opposition-based concept embedded into MPBIL,
which is an efficient technique that can upgrade MPBIL’s performance. Therefore, the outline of
OMPBIL algorithm includes the opposition-based concept, which is not included in this paper.

More details can be found in [3].

2.3.3. Multi-Learning Rate

The second approach to enhance the performance of MPBIL is the use of multi-learning
rate. This question arises from the previous method, when it is using two learning rates that
are of an opposite quantity. The question remains whether the performance of OMPBIL can
benefit from the opposite concept or by using two learning rates. MPBIL with multi-learning
rate (MPBILMLR) is proposed to solve topological optimization and to compare with the
opposition-based concept. This algorithm differs from the traditional MPBIL by using three
learning rates (Lz=0.25, 0.5, 0.75). The procedure of MPBILMLR algorithm is slightly different
from OMPBIL. Therefore, the procedure of MPBIL with multi-learning rate algorithm is shown

in Algorithm 2.2.
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Algorithm 2.2. MPBIL with multi-learning rate.

Initialization Probability matrix P= [0.5],., Probability matrix Pi= [0.5] \.» Where i = 1, ...,
M = 3, external Pareto archive Pareto= {}.
1: Generate a binary population B from P.
2: Decode the binary population to be x,., and find the objective values f .
3: Update Paretoby replacing it with non-dominated solutions of union set Pareto U x.
4: If the number of members in Paretoexceeds the predefined archive size N4, remove
some of them by using an archiving technique.
5:If the termination criterion is fulfilled, stop the procedure. Otherwise, go to step 6:
6: Update P and create a binary population
6.1: Set a binary population B = {}.
6.2: For i= 1 to /M.
6.2.1: Select ny binary solutions from Paretorandomly.
6.2.2: Use Lg = 0.25, 0.5, 0.75, for each k = 1, ..., M. (For this research M = 3)
6.2.3: Update the ith row of P by using (1).
6.2.4: Generate the ith row of probability matrix Pi using (2) and each Lg,.
6.2.5: Generate rand € [0,1] a uniform random number.
6.2.6: If rand < the predefined mutation probability, update the ith row of P1, P2
andP3using similar equation in [3].
6.2.7: Generate binary subpopulations SB1, SB2 and SB3 from the ith row of P1, P2
and P3, respectively.
6.2.8: Set B = BUSB1USB2USB3
6.3: Next /.
7: Go to step 2.

2.3.4. Adaptive Learning Rate

The last method for MPBIL performance enhancement is using an adaptive learning rate,
which proposes to modify the learning rate during the entire process [28]. A small value of
learning rate is usually recommended for conventional PBIL to keep the algorithm reliable,
but it usually causes low convergence rate. To balance the reliability and speed of

convergence in all iterations, the learning rate needs to adapt. A model of adaptive learning
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rate has been proposed by Yang et al. [15] that satisfies the previous conditions. That model
is shown as follows
L =L ) (3)
R — “RO +(LRM - LRO)e

in which S/ is the successive iterations with improvements in the objective function in the
most recent NT iterations. Lgy and Lgy are the minimum and maximum learning rates that the
designer defines before an optimization run. The learning rate depends on the ratio of SI/NT.
Additionally, the high value of this ratio means that it is possible to locate better solutions
using its current probability matrix, and consequently the learning rate should be small. In
contrast, a low value of this ratio means the current probability matrix which is insufficiency,
so the learning rate should be increased. Moreover, the outline of multi-objective, population-
based incremental learning with adaptive learning rate (MPBILADLR) is slightly different from
the traditional MPBIL, which uses Equation (3) to replace the original equation for finding L.

This algorithm is shown as follow.

Algorithm 2.3.MPBIL with adaptive learning rate.

Initialization probability matrix P= [0.5],.», external Pareto archive Pareto= {}.
1: Generate a binary population Bfrom P.
2: Decode the binary population to be X, and find the objective values f .
3: Update Paretoby replacing it with non-dominated solutions of union set ParetoUx.
4: If the number of members in Paretoexceeds the predefined archive size N,, remove
some of them by using an archiving technique.
5:If the termination criterion is fulfilled, stop the procedure. Otherwise, go to step 6:
6: Update P.
6.1: Fori=1to L.
6.1.1: Select nqy binary solutions from Paretorandomly.
6.1.2: Generate Lz using (3).
6.1.3: Update the ith row of Pby using (1).
6.1.4: Generate rand € [0,1] a uniform random number.
6.1.5: If rand <the predefined mutation probability, update the ith row of Pusing
similar equation in [3].
6.2: Next /.
7: Go to step 1.
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2.3.5. The Performance Index and Non-Parametric Statistical Test

MPBIL and its enhanced versions are classified as MOEAs, while the obtained results are
classified as approximate Pareto optimal frontiers. In comparing the searching performance of
MOEAs, the methods are employed to solve design optimization problems with equivalent
total number of function of evaluations for number of attempts. The approximate Pareto
frontiers obtained from various MOEAs are then compared using a performance indicator,
which is called a hyper-volume (HV) [29] indicator. This indicator represents the hyper-area
above a Pareto frontier for bi-objective optimization problem as shown in Figure 2.2, whereas
it is called hyper-volume for three objective functions and more. Therefore, HV sums up all
discrete areas v;or volumes of hyper-areas or hyper-volumes with respect to a given referent
point, respectively.

A technique for comparing the performance of each MOEA in this research is a non-
parametric statistical test, which is called the Friedman test. This technique has been used by
Sleesongsom and Bureerat [30] for studying the performance of meta-heuristics (MHs) in solving
the four-bar linkage path generation problems. The Friedman test is suitable for comparing more
classifiers over multiple data sets.

J2p
R

\ D R= Reference point
| o

v, calitinn

‘\L o Non-dominated

Approximated Pareto Frontier

True Pareto fronti

1

v

Figure 2.2. Hypervolume sums up all areas covered by the non-dominated solutions

and a reference point.
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2.4. Numerical Experiment

As mention earlier, the purpose of this research is to study the comparative performance
of original MPBIL and its three variants with (WMG) and without the MG (WOMG) approach.
Four design problems are used for testing performance of the proposed methods. The original
MPBIL and three performance enhancements of MPBIL (OMPBIL, MPBILMLR, and MPBILADLR)
are employed to solve multi-objective topology optimization problems that have been
detailed in the previous section. Each algorithm is used to solve an optimization problem for
25 runs to measure its performance and consistency. For all design problems, all the
algorithms are used with a population size of 35 and an iteration number of 400 whereas the
external Pareto archive size is set to be 35 Non-dominated solutions obtained, so at the last
iteration approximates the Pareto solutions. Therefore, four multi-objective problems are used
for testing performance of MPBIL and performance enhancements of MPBIL, which has been
proposed to study the comparative performance of some established multi-objective
evolutionary algorithms (MOEAs) [8].The problems are structural topology optimization

problem. The design problems are as follows:

MOP1: The topolosgical design domain and loads are shown in Figure 2.3a. The structure is
made of material with Young’s modulus £ =200x10° N/m?, Poisson’s ratio V = 0.3, and tensile

yield strength 0,; = 200 x 10° N/m?. The multi-objective design problem is set to minimize

structural compliance and normalized mass as:

minic, 1 G)
Ve

subject to
¢ < 5Cmin
0.2<r<0.8
pP; € {0.0001, 1}

where pis the value of ith design variable; P; is the thickness of i th finite element; m is the

structural mass; r =m(@)/m(P") is the normalized mass or ratio of structural mass to maximum
mass; ¢ is the structural compliance; and cqi,= c(P"). The first constraint is added to prevent
topologies with a low global stiffness (or highly compliant structures) being included in the

Pareto archive. The bound constraints are set as 0;,€{0.0001, 1}. The parameter € is set 0.3
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and [0.08, 0.1, 0.25, 0.3]” for all MPBILs with WOMG and WMG design approach, respectively.
The number of elements for single grid is set as highest resolution. A set of MG elements is
use for this problem and show in Figure 2.1. The mean hypervolumes of the fronts of MOP1

for all optimization runs are given in Table 2.1, where the referent point for computing

hypervolumes is set to be {2.5 kNm, 2.5/

MOP2: The second design problem promotes three objective functions, where the design
domain and load illustrate in Figure 2.3b. The structure makes up the same material as MOP1.

The multi-objective design problem can be written as:

min{cl, c2, 1} (6)
P

subject to
cl < 5C1,mm
c2 < 5C2,mm

02<r<038

p:€ {0.0001, 1}

where ¢, is the structural compliance due to the first load case and ¢, is the structural
compliance due to the second load case, Cimin = Ci(PY), and Comin = C(PY). A number of
ground elements set, which uses in this study is [48,63,108,130], while the number of element
for single ¢rid is set as the highest resolution. The threshold parameter € is set to be 0.35 and
[0.07, 0.2, 0.3, 0.35]” for all MPBILs with WOMG and WMG approach, respectively. There are
different from other problem due to the difference of design domain. The mean hypervolumes
of the fronts of MOP2 for all optimization runs are given in Table 2.1, in which the referent

point for computing the hypervolumes is set to be {1.5 kNm, 1.5 kNm, 1.5
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Figure 2.3. Structural design domains:(a) design domain of MOP1 & MOP3, (b) design
domain of MOP2, (c) design domain of MOP 4 [8].

MOP3: The design problem has the same design conditions as set for MOP1 with the exception

of the range of design variables. Addition constraints are o2 < Oyt and P;€ {0.000001m,

0.01m}, in which o2

max

is the maximum value of Von Mises stress (equivalent stress) on the
ground elements. A set of MG elements is shown in Figure 2.1, and the number of elements
for single grid is set as the highest resolution. In addition, the threshold parameter € is set to
be 0.3 and [0.08, 0.1, 0.25, 0.3]" for all MPBILs with WOMG and WMG design approach,
respectively. The mean hypervolumes of the fronts of MOP3 for all optimization runs are given
in Table 2.1, in which the reference point for computing the hypervolumes is set to be {3.5

kNm, 3.5}7.

MOP4: The design conditions of MOP4 are similar to MOP3, except in this design problem the
top row finite elements are not assigned as design variables (unchanged) as displayed in Figure
2.3¢, and the first objective of this problem changes to maximizing the first mode eigenvalue
of structure (A,). Note that all of design problems use a membrane finite element formulation
for structural analysis. The number of ground elements and the parameter € of MOP4 are
similar to MOP3. The mean hypervolumes of the fronts of MOP4 for all optimization runs are
given in Table 2.1, in which the referent point for computing the hypervolumes is set to be

{1.0 rad?/s2, 2.0}7.
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2.5. Design Results

The comparative performance of original MPBIL and the performance enhancements of
MPBILs with MG and without MG approach for solving the design problems of MOP1-4 are
given in Table 2.1, which compare based on HV indicator. It should be noted that all of the
approximate Pareto fronts of the four design problems obtained from using the proposed
MPBILs are normalized before calculating HV, as shown in Table 2.1. The highest mean of HV
for each design problem is highlichted with grey color. The table shows OMPBIL promotes
almost the best results for MOP1-4 except in case MOP4-WMG. Therefore, it is believed that
the performance of OMPBIL is better result than the original MPBIL and their enhancements.
In this study, the Friedman test and the Tukey-Kramer test are used for a statistical test to
prove the significance of proposed algorithm. These tools are built-in functions in
MATLAB/Octave. From our testing, the Friedman test gives OMPBIL has 1st rank, whereas the
second rank is MPBIL at p-value (0.0002) <0L(0.05) as shown in Table 2.2. It can be summarized
that OMPBIL is the best performing algorithm for solving problem case MOP1-4. For multiple
comparisons, we used the Tukey-Kramer test. The mean column ranks of OMPBIL are
significantly different from MPBILMLR. The second best optimizer is MPBIL, whereas the third
best is MPBILADLR. In addition, the worst optimizer for this design case is MPBILMLR. No
questionable opposition concept is beneficial to improving the performance of MPBIL.

The average HV for all optimizers of each problem with MG and WOMG approach is
shown in Table 2.3, which is summed along each column from Table 2.1. This table shows
that the design problems with MG approach give higher HV than the design problem without
MG approach in all design problems. Friedman test of average result in Table 2.3 can prove
that the design problem with MG technique significantly outperforms WOMG technique at p-
value (0.0455) <0(0.05). Furthermore, the best HVs of all cases give higher hypervolume
than the previous work by [8] in all design cases, so OMPBIL with MG can improve the design

results.
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Table 2.1. Performance comparison based on hypervolume(HV)?.

MOP1 MOP2 MOP3 MOP4

WMG  WOMG WMG WOMG WMG WOMG WMG WOMG

MPBIL 0.8553 0.8255 0.7255 0.6420 0.7951 0.7229 0.7195 0.6219
OMPBIL ~ 0.8556 0.8426 0.7259 0.6430 0.7968 0.7438 0.6723 0.6403
MPBILMLR  0.8115 0.7739 0.7212 0.6285 0.7016 0.5976 0.6167 0.5651
MPBILADLR 0.8543 0.8371 0.7240 0.6385 0.7954 0.7407 0.6404 0.6292

YWMG , with multi-grid approach; WOMG, without multi-grid approach; MPBIL, multi-objective population-based
incremental learning; OMPBIL, opposite-based, multi-objective, population-based incremental learning; MPBILMLR ,
MPBIL with multi-learning rate;MPBILADLR, multi-objective, population-based incremental learning with adaptive

learning rate.

Table 2.2. Average ranking and p-value of MPBIL, and enhanced performance of

MPBIL achieved by Friedman test.

Average Ranking of Each Algorithm
Friedman p-Value

MPBIL  OMPBIL  MPBILMLR  MPBILADLR

2.6250 3.8750 1 2.5000
(2) (1) (4)

0.0002

Table 2.3. Performance comparison of each MOP with and without MG for all

algorithms.

Average Hypervolume

Design Problems

WMG WOMG
MOP1 0.8442 0.8198
MOP2 0.7242 0.6380
MOP3 0.7722 0.7013

MOP4 0.6622 0.6141
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Average Ranking

(p-value = 0.0455)
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Figure 2.4. Topologies of MOP1:(a) OMPBIL with multi-grid, and (b) MPBIL without
multi-grid.

Figures 2.4-2.7 shows some optimum topologies. The topologies in all figures are
captioned with (a), which obtains from the best run of OMPBIL with multi-grid when solving
each MOP with various r values. All figures are captioned with (b); they display the optimum
topologies that are obtained from optimizing the design problem MOP1-4 with various r values
by using MPBIL without multi-grid. These topologies are represented by the same technique
from the previous work [8]. This shows that the topologies from OMPBIL with MG are better
than the MPBIL technique without MG, and they can compare with the previous work using

binary population-based incremental learning (BPBIL) and optimality criteria method (OCM)
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technique [8]. The optimum topologies are mostly from the ground elements with medium
(MOP1 and MOP2) and low (MOP3, MOP4) resolutions. Therefore, the topology with the highest
resolution is lower than the previous work by [8]. The lower resolution means lower
computational time consumption. The use of highest ground element resolution is not the
best selection for all design problems. However, in practice, a designer never knows which
resolution is the most suitable for design problem, and employing the multi-grid approach is

an advantage.
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Figure 2.5.Topologies of MOP2:(a) OMPBIL with multi-grid, and (b) MPBIL without
multi-grid.
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Figure 2.7. Topologies of MOP4:(a)OMPBIL with multi-grid, and (b) MPBIL without
multi-grid.

2.6. Conclusions

The purposes of this work are the demonstration of the performance comparison of an
original MPBIL and their performance enhancement, and the MG approach for multi-objective
structural topology optimization problems, respectively. Among the performance
enhancements of MPBIL, OMPBIL outperforms other techniques. It promotes the opposition-
based concept, which can improve the search performance of MPBIL. The use of MPBILs in
combination with the MG approach is well capable of solving multi-objective structural
topology optimization. The resulting topologies obtained from using OMPBIL are close to those

obtained from the classical gradient-based approach. The new design strategy is a procedure
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for structural topology optimization, which uses multiple ground element resolutions, so the
MG approach is more efficient than using single-resolution ground elements in the sense that
the suitable grid resolution is automatically detected and used in one optimization run. These
conclusions are very similar those obtained in our previous work [3]. In addition, the use of
the MG approach combined with ground element filtering for alleviating checkerboards is
effective. In future work, the proposed method is extended to solve topology optimization

with uncertainty.



Chapter llI
Multi-objective Reliability-based Topology Optimization of Structures Using

a Fuzzy Set Model

3.1 Introduction

Design processes for derivative-free topology optimization has been developed [20, 31] though
it is still far from using in reality. The design process always depends on material properties,
external loading and other conditions. If uncertainties of such parameters take place, obtained
deterministic optimum design results may be less reliable [32]. To address such a problem,
there are two main strategies to account for uncertainties in topology optimization, robust
topology optimization (RTO) [33] and reliability-based topology optimization (RBTO) [34]. The
first technique is to optimize the expectation and variability of system performance with
respect to uncertainties simultaneously, through which the robustness of system performance
can be improved, while the second is concerned with failure probability constraints when
optimizing the system performance, through which reliable optimization design can be
achieved. Both methods are based on probabilistic [35] or non-probabilistic models [32, 36,
38]. The first model is the most popular due to its progress, but this technique requires
precision on the statistical distribution of uncertainties. A good distribution of uncertainties
usually leads to large amount of objective information, which spends more time costly in a
practical conceptual design stage. In opposition to the first model, it is called non-probabilistic
models where some well-known techniques of this type are anti-optimization [36] and a fuzzy
set method [38]. In practical reliability-based design, there is both random uncertainty and
fuzzy uncertainty [39, 40]. The fuzzy set model is an alternative technique due to it provides
moderate conservative results. It is the best choice to collect the uncertainties into RBTO by
using a level set to soft separation between the members and non-members of the set. It
makes the model get an acceptable solution. However, disadvantage of the present RBTO is
still complexity in analysis due to the combination of fuzzy set into the topology optimization
problem is a triple-loop nest problem including the double loop nest in finding possibilistic
safety index (PSI) and topology optimization. Later, it has been solved by using the target
performance-based design approach resulting the triple loop being reduced to the double-

loop nested problem [32, 41]. The target performance-based approach changes the PSI into
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the target performance of the i-th constraint where it is called the equivalent possibilistic
safety index (EPSI) by minimizing the constraint at some level cut. This technique can add an

experience of the expert opinion to select the level cut or membership level into RBTO.

The aim of this research is to reduce the complication of the double-loop nest

problem in RBTO using multi-objective optimization technique with fuzzy uncertainties.

3.2. Topology optimization

The topology optimization is a mathematical problem, which aims to seek the optimal structural layout
within a pre-specified design domain. The single-objective or multiobjective topology optimization problem

can be expressed as

Min f; (P) i=1,., M (1)

Subject to
§P) =0 j=12,.,N

0 <p'<p <p“

where i = 1 is for single objective design, i > 1 is for a multiobjective problem, and P is the thickness of

finite elements ranged between the lower limit (0') and the upper limit (9Y). For the topology optimization
problem in this work, the constraint is expressed in a different form from a traditional optimization problem

so as to make it more compatible with the derivation of a possibility safety index in the next section.

3.3. Fuzzy set and formulation of MORBTO

The fuzzy set theory becomes popular for optimization desien of structures because its capability can
describe uncertainties with helping by expert opinions. The fuzzy set can be used for describing uncertain
parameters and extended to the possibility concept as detailed in [34, 41]. For a fuzzy variable with a

membership function U(a), the corresponding fuzzy set model can be expressed as
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N = {(a,u@) | a €EQ, Wa) E [0,1]} (2)

where QQ is universal set, a is fuzzy variable. Each fuzzy variable a can be decomposed into a series of
interval variables by using fuzzy set in accordance with degree of membership.
To construct the possibility of safety index, Ol-cut is used in this research (O € [0,1]) while a is in the

interval a®€ [a®, a*™. The possibility that the fuzzy variable a is greater than s crisp number can be

expressed as Pos(a > s), so

Poga > s) =supu(z) (3)

Z>S

where “sup” is the supremum.

From (3) and inequality constraint in (1) can write as

Pogg;(p,a) <0) =supu;(2) @)

z<0

The topology optimization problem can be rearranged to be a RBTO problem based on the possibility

safety index and the fuzzy set model:

Min f; (@) i=1,.M (5)

Subject to
Pos(g(p,a)< 0) < 4™ j=12,., N

0 <p'<p <p“

Leta = (ay, ay, ..., @) be fuzzy variables, 7" is an allowable possibility index, 77 is a possibilistic safety

index, and g(0,a) becomes fuzzy rather than crisp. In comparing an inequality constraint in (1) and (5) where

the equations are respectively represented the deterministic topology optimization and the RBTO,



27

respectively, the constraint in the traditional problem is used to control the value of limit-state function to
strictly higher than zero while the constraint in RBTO is used to control the possibility safety index value that
is lower than zero and 74"

The possibility safety index can be applied to the topology optimization problem, which incorporates

with the fuzzy set method to deal with the uncertainties as shown;

Min {f; (@), 72"} i=1,...M 6)

Subject to
75"= max((Pos(g(pa)< )< 1) j=12,., N

0 <p'<p <p“

New multi-objective reliability topology optimization problem is established in the possibility context.

To evaluate new objective function, the possibility safety index is derived in (4) and Figure 3.1, it is found:
(1) if g 2 0, then Pos(g(0,a)< 0) = 0; (2) if 6°<0<"g/", then Pos(g(P,a) < 0) = €, where g% = 0; (3) if g'<
0, then Pos(gj(p,a)S 0) = 1. Eq. (4) can rewrite as Eq. (7).

Its original shape is a trapezoidal, which is called a trapezoidal-shaped fuzzy set. The trapezoidal shape
can degenerate its form to other shapes, such as, a triangular shape [41]. In this research, we still use the

original form as shown in Figure 3.1 and the membership function of constraint function can be formulated

in the following equation.

ualpa

(gj-ol 0) 0 gilp.a)

Figure 3.1. Membership function (g(p0,a))
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0 g’ =0
Pos (g(Pa)< 0) = 1@, , where g7 <0< g7 -
- g <0

The solution of this equation can be calculated if ¢ and g'is known. If g7 < 0, we can obtain that
Pos(g(pa) < 0) = 0 or 1, and the solution procedure can be terminated; else if ¢<0<"g, the equation
gj'a = 0 should be solved, and its solution O will be the value of Pos(g(p,a) < 0). Theoretically, the bi-
section method uses to compute the value of Pos(g(0,a) <0), a procedure can be summarized as:

Step1: Initialization - let O1,° = 0, OL,° = 1, and specify the termination value as € = 1 x 10%;

Step2: lteration 1 - Calculate g}"f and gj"’g, and if gj’“lo >0 or g}“g < 0 holds, we can obtain

+ad)l2

Pos(g(0,a)< 0) = 0 or 1 and terminate the iterative procedure. Otherwise, to calculate gj"“f and go to
step 3.
Step3: Iteration k (k >1) - if

k-1

k-1 k-1 . e ok kel
g, xg, "2 ?50holds, then let af =(af '+as™)/2and af =of*; if g; xg; 4 " 7>1

holds, then let af =(ef " +as™)/2 and of =af ™. Go to step 4.

Stepd: Termination - calculate the absolute value|a§‘1—a1k‘1|, and if the termination condition

s — a7 < € holds, stop the iterative procedure, and estimate Pos(g(p,a) < 0) by Pos(g(p,a) < 0) =
(af T +a3 )12, otherwise, return to step 3 and continue the procedure till the termination condition
|a§’1—a1k’1|s € is met.

For solving the multi-objective topology optimization problem in (6) is triple-loop nested problem, which
is computational burden. The problem can be reduced to the double-loop problem by using the target
performance-based approach [41] that has been proved the equivalent of the original failure possibility and

the new one is described as follows.

Pos(g(0, a)< 0) < 7™ = min(g(p, a™) = 0 8)
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wherej=12,., N, and min(gj(p,anﬁ) is called the target performance of the constraint.

The equivalent of the previous topology optimization problem (6) can be changed to

Min {f (), EPSI} (9)

Subject to
EPSl=max(g(0,a™) = 0, W5 E€[0,1],j = 1,2,.., N

0 <p'<p <p’
where EPSI is equivalent possibilistic safety index or target performance.

3.4. Design Examples

Two design examples demonstrate the proposed technique with the objective functions being volume
fraction (r) or mass ratio and compliance (c). The objectives are conflicted as reducing mass affects to reduce
the strength of structure. The difficulty of our objective is to find minimum mass ratio and compliance at
the same time. The multi-objective optimization problem can be formulated and termed MOP1 and MOP2.
The second problem (MOP2) is MOP1 with a stress constraint being added.

MOP1:

min {c,r} (10)
P

Subject to

5Cmin- €2 0

0.8=2r=02

P:€E {0.0001m, 1m}

MOP2:

min {c,r} (11)
P
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Subject to
5Cmin_ cz 0
08=2r=>0.2
OO ® 2 0

P;€ {0.000001m, 0.01m}

where p,GEF is the value of ith design variable; p; is the thickness of ith finite element; m is the structural

mass; r=m(P)/m(P") is the normalized mass or ratio of structural mass to maximum mass; c is the structural

compliance; and ¢qp= C(P"). Opac™ is the maximum value of Von Mises stress of the ground element. The
last constraint in the design problem is bound constraints.
The traditional RBTO combined with the fuzzy set model can be formulated as in Eq. (5). It can be

expressed as follows.

min {c,r} (12)
o)

Subject to

Pos(g(p,a)< 0) < 7" €[0,1] j = 1,2,.., 3
9:=5Cmin-Cc2 0

9,=0.8 21> 0.2

95=0+O a2 0 for MOP2

P;€ {0.0001m, 1m} for MOP1

P;€ {0.000001m, 0.01m} for MOP2

The proposed MORBTO incorporates the fuzzy set model from the previous section into the topology

optimization to deal with the uncertainties in real situation can be formulated as:



31

rrgiErllc{c,r,EPSI} (13)
P

Subject to

EPSI= max(g(p,a™) = 0, 5 E[0,1],j = 1,2,..., 3
9,=5Cin-c2 0

9,=0.8 21 >0.2

95=0y-O a2 0 for MOP2

P;€ {0.0001m, 1m} for MOP1

P;€ {0.000001m, 0.01m} for MOP2

where EPS| is the equivalent possibilistic safety index, x are 0, and Tty = PSI and a is vector of fuzzy
variable (E, V, and F).

Opposite-based multiobjective population-based incremental leaming (OMPBIL) is used for solving the
optimization problem in this research due to its good performance as demonstrated in our previous study
[20]. The improvement used the opposition-based concept embedded into MPBIL, which is found that it
can uperade MPBIL’s performance. The parameter of the optimiser is set according to our previous study
and the details of OMPBIL can see in [20]. The population size is 35, the total number of iterations is 600,
and the external Pareto archive size is 35. The learning rate (LR) is generated randomly in the interval [0.4,

0.6]. The mutation probability and mutation shift are 0.1 and 0.2, respectively.

3m F

A 4

Design domain 1m

e T

Figure. 3.2. Structural design domains
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The topological design domain and loads are shown in Figure 3.2. The uncertainties are Young’s modulus E,
Poisson’s ratio V, and load F, which is assumed to be fuzzy variables. The membership function of the
variables is triangular shaped with values are E = (190, 200, 210) x10° N/m? 'V = (0.25, 0.3, 0.35), and F =
(0.9, 1, 1.5) kN. The mechanical property is not considered to be fuzzy variable, which is the tensile yield
strength Oy, = 200 x 10° N/m?. The traditional triple-loop nest multi-objective topology optimization problem
is set to minimize structural compliance and normalized mass as shown in Eq. (12), while the proposed
technique is presented in Eq. (13). The first constraint in every problem is added to prevent topologies with
low global stiffness (or highly compliant structures) is included in the Pareto archive. The external force is
applied at the right upper corner of the design domain. The traditional problem is used for comparing the
time consuming with newly proposed technique.

The adaptation of a topology technique used in accomplishing the problems is from our previous
proposed technique in [31], which is called the multi-grid ground element technique (MG). The proposed
technique has been proved to be an efficient technique when combining with the OMPBIL. The Encoding
and decoding scheme for the MG approach with PSI and fuzzy variables is needed as shown in the following

algorithm 1.

Algorithm 1. Encoding and decoding scheme for a MG approach with PSI and fuzzy variables

Initialization: Generate four sets of ground elements and define the threshold value of € for

each set.

Inputx sized (Ng; + 6) x 1.

Output: Thicknesses of ground elements.

Encoding

x1 € [1, 4] is used for selecting a set of ground elements.
X,= PSl is defined by the designer

x3=is used for fuzzy variable F
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Xq=is used for fuzzy variable E

xs=is used for fuzzy variable V

Xs 10 Xy, s are used for element thicknesses.

Decoding

1: Find n = round(x,) where round(.) is a round-off operator.

2:1f n = 1: xs to Xy, ,6 are set as Ny, element thicknesses and €=€1.
3:1fn = 2: xg to Xy, are setas Ny element thicknesses and € = €2.
4:1fn = 3: xg to Xy, .6 are set as Ni; element thicknesses and € = €3.

5:1f n = 4: xs toxy, 46 are set as Ng; element thicknesses and € = €4.

The flow diagram of MORBTO is shown in Figure 3.3.
AUl computations are conducted using MATLAB and a personal computer with specifications being Intel(R)

Core™ 5-3210M CPU @ 2.5 GHz, 4.00 RAM, and 64-bit Windows 10 operating system.

3.5. Design Results

The optimal topologies obtained from using the proposed MORBTO for MOP1 and MOP2 are shown in
Figures 5 and 7, respectively. As a comparison, the optimal topology design obtained from the deterministic
topology optimization for MOP1 and MOP2 is also presented in Figures 3.4 and 3.6, respectively. Some
selected optimal topology designs obtained from Figures 3.4 and 3.5 are shown in Figures 3.8(a) and 3.8(b),
respectively. From comparison, the optimal topologies obtained from the deterministic topology
optimization also present in Figures 3.8(a) and 3.9(a). It can see in Figures 3.8(b) and 3.9(b) that the result
from MORBTO is under the EPSI yields optimal topology design different from those yielded by the
deterministic topology optimization (Figures 3.8(a) and 3.9(a)).

This can conclude that the proposed MORBTO approach presents a strategy that generate
safer topology designs satisfying different failure possibility requirements, which causes

topology changing follows the failure possibility change. As well as the proposed MORBTO
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yields optimal topology designs clearly that is different from the deterministic topology
optimization

indicating that the fuzzy uncertainties remarkably influence the topology design. Furthermore, the time
consumption comparison between the traditional triple-loop nest problem and the proposed technique for
all cases are shown in Table 3.1. The results show that the time spent by the proposed technique is lower
than the triple-loop nest problem in all the failure possibility constraints. It can be clearly stated that the

proposed technique can reduce the complexity of the traditional technique.

Generate
population

Fuzzy
variables:

A 4

.| Encoding and decoding scheme

A
min {f; (p),EPSI}
Py

i=1,..,M

Subject to

EPSI=max(gj(p,a”" ) 2 0, mse[0,1], j=
1,2,..., N

0 <p/<p <p“

Optimum?

lyes

STOP

no

Figure 3.3. The flow diagram of MORBTO.
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Figure 3.4.The deterministic optimal topology design of MOP1 under failure possibility
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Figure 3.5. The optimal topology design of MOP1 under failure possibility constraint T0q=

0.001 with various r.
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Figure 3.6. The deterministic optimal topology design of MOP2 under failure possibility

constraint TCg= 1 with various r.
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Figure 3.7. The optimal topology design of MOP2 under failure possibility constraint Tlg=

0.001 with various r.
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Figure 3.8. The selected optimal topologies of MOP1 (a) Tt = 1 (b) 75 = 0.001.
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Figure 3.9. The selected optimal topologies of MOP2 (a) Tt = 1, (b) Tt = 0.001.

Table 3.1. The time consuming of RBTO and MORBTO for MOP1 and MOP2

MOP1 RBTO MORBTO

7 1 0001 1 0001

Time consuming
5143.0 5168.7 966.1 973.3

(s)
MOP2 RBTO MORBTO
7T 1 0001 1 0001

Time consuming
67558 9265.6 10939 1141.7
(s)
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3.6. Conclusions and Discussions

The optimum structure from topology optimization problem may be less realisable due to inevitable
uncertainties from various sources, thus, these uncertainties should take into account in design. A satisfactory
desien should take these uncertainties into consideration. This paper proposes new MORBTO approach which
uses the fuzzy set model to describe the uncertainties. This technique can be applied for the multi-objective
topology optimization problem, which has conflicting objectives. The proposed MORBTO is formulated as a
problem of minimizing mass, compliance and equivalent possibilistic safety index with constraints being
accomplished in the possibility context. Furthermore, this paper proposes to deal with the complex reliability
of the structure using fuzzy that it is usually a double-looped problem by using multi-objective optimization
reducing to single-loop optimization. The performance of the proposed technique is studied by two
numerical examples. From the numerical results, it is shown that the proposed MORBTO can generate
conservative optimal topology designs with various values of EPSIs, which is different from those obtained
from the previous RBTO. These results indicate that the proposed MORBTO is an effective tool to deal with
the uncertain topology optimization with considering the expert opinion. Furthermore, the proposed
technique can reduce the complexity of the traditional technique and reducing time consumption in solving
the optimization problem.

For future study, the reliability-based topology optimization approach will extend to handle

uncertainties that take place in design of an aircraft structure.



Chapter 4
Topological Design of a Hard Disk Drive suspension Using OMPBIL

4.1 Introduction

A hard disk drive (HDD) suspension is a cantilever beam extended from an E-block to a
sliding head of the HDD, which is used to protect the harmful vibration from the sliding head
[42]. The suspension is one kind of compliance mechanism, which limits its motion by means
of structural flexibility. It needs sufficiently low vertical bending stiffness, while the air bearing
to suspension stiffness ratio is maintained at the proper range [43]. To project the off-tract
phenomena and increase the servo bandwidth, the in-plane dynamic stiffness should be as
high as possible [42- 43]. These reasons cause the conflict design objectives that we need to
minimize in both the suspension vertical stiffness and maximize the natural frequencies
associated with the sway and torsion modes [43].

The previous suspension system composes of three main components i.e. baseplate, load
beam and gimbal (flexure), later it is added with a hinge to the system as shown in figure 1.
The hinge is introduced to enable pitching and rolling movement of the load beam. The load
beam is often stiffened by adding to its edges a couple of stiffeners, usually called rails [1].
The baseplate is an attachment of the E-block part. The sliding head is attached at the tip of
the beam by a spherical joint called a dimmer that enables the head to move without a
severe contact between itself and the platter’s flexible shape. The complex of the system
and conflict of objectives is caused the design of HDD suspension is more difficult problem.
In the past, a trial-and-error approach is used in design of HDD suspension. However, it has
been found recently that the topology optimization [31] and HDD suspension design [44] are
more efficient approach. Some research work of topology optimization for HDD suspension
design has been made [42-43, 44-47]. The most objective of the design problems are the
maximization of sway or torsion mode natural frequencies whereas the mass and vertical
stiffness are constrained [43]. The optimizer has been proved is an efficient technique for
solving topology optimization problem without finding gradient of the objective is in group of

evolutionary algorithms. Only one technique that the author proposes to solve this problem
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is called the opposite-based multi-objective population-based incremental learning (OMPBIL)

[31, 48-50].

ﬁep';{éwww

Fig. 4.1. Component of HDD suspension

The objective of this paper proposes a multiobjective evolutionary approach to deal with
HDD suspension design. The design problem is expected to find a set of optimum suspension
topologies, which is maximization of the first sway mode frequency and minimization of the
suspension bending stiffness using OMPBIL optimizer. Design constrains include the first torsion

and bending modes frequencies of a structure.

4.2 Hard disk suspension design

The recent design of HDD suspension is incorporated of topological optimization and finite
element analysis [42-43, 44-46]. The final structure achieved by topology optimization
technique is said to be the best structural layout accorded with a predefined objective
function and design constraints. For a general process of structural topology design is added
voids and unchangeable areas to the system, which has been defined the predefined design
domain, boundary conditions and applied loads. In practical design process, the design domain
is discretized into a few finite elements that called ground elements. Topological design
variables are formed from the thicknesses of the elements. The elements with nearly zero
thicknesses represent holes or voids on the structure whereas other elements indicate the

existence of the structural material.
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The well-known and the most efficient method for topology optimization is the solid
isotropic material with penalization (SIMP) [19]. This technique is the gradient-based optimizers
that well established in consistency of finding solution. The contrary behavior to the previous
technique is called evolutionary algorithms (EAs) is questionable due to their low convergence
rate and completely lack in consistency. The lacks have been the attention of many
researchers to propose several attempts to enhance the searching performance of EAs for
structural topological design [19]. The efficient numerical scheme to increase the performance
of EAs is called the ground element filtering technique (GEF technique). This technique can
solve the checkerboard pattern problem and decreases design variables by using two
difference mesh grids resolution rather than a single grid one [19]. The lower resolution is used
for a design variable, while the higher resolution is used for finite element grid. The results
obtained from this technique can upgraded the EAs topologies is comparable with the
gradient-based counterparts. Later, this technique has been extended to multi-grid ground
elements technique. This technique can increase the performance of previous technique by
increasing the number of grid resolution set [31]. Using EAs for topological design with
acceptable searching performance is attractive especial for the multi-objective optimization
problems due to the capability in finding Pareto solution set in one optimization run. The
multiobjective evolutionary algorithms (MOEAs) require no function derivative, the methods
can deal with almost all kinds of optimum design problem.

Multiobjective Population-Based Incremental Learning PBIL (MPBIL) is one kind of the
estimation of distribution algorithm (EDA) that has been proved is one of efficient technique
for solving practical problem in comparative performance testing of single and multi-objective
design optimization problems [51]. The MPBIL has been proved can increase its performance
by adding the opposite concept to the learning rule that governs the updating process. This
technique is called the opposite-based multi-objective population-based incremental learning
(OMPBIL) [48-50]. This technique is choose for solving the HDD suspension design problem.
The details of OMPBIL, see [48-50].
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4.3 HDD suspension design optimisation problem and OMPBIL

4.3.1 Optimisation problem

The multi-objective optimization problem is assigned to maximize the first sway mode
frequency and minimize the suspension bending stiffness is shown as:

Minimize: Kgs & max: Mqy (1)

subject to
Mz > 3.5 kHz
;7 > 8.0 kHz

where Kjsis a bending stiffness, M5, is the first frequency of sway mode, 5 is the first

frequency of bending mode, M7 is the first frequency of torsion mode.

the fixed edge along the hole

1 thickness
mm >
Base plate D /008 mm
€sj E/ 7
thickness @ gn dOmal- 4 mm
0.12 mm n l
4 mm 10 mm

Figure. 4.2. The initial suspension design domain

The suspension system is modeled by one piece includes the baseplate, hinge, and load
beam as shown in Figure 4.2. The design domain shape is a rectangular plate (14x4 mm) with
thickness is 0.08 mm. The base plate (4x4x0.12 mm) with a hole radius is 1.333 mm, which
has fixed constraint along the edge of the hole. At the right-hand side of the plate is a
placement of a femto slider. During the optimization process the baseplate is unchangeable
area due to it is an attachment of the slider. The material properties of the suspension are
the Young’s modulus of 193x109 N/m?, 0.3 Poisson’s ratio, and 8030 ke/m?> density.

The design topology of the suspension is performed with the ground element filtering
technique (GEF) [8] to reduce the number of design variables, and alleviate checkerboard
patterns in topologies. The design domain is meshed with 50x20 shell elements, while the
GEF is meshed with 25x10 elements. The lower and upper bounds of the shell element

thickness is interval 0.00008 mm and 0.08 mm, respectively.
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The optimizer uses for solving this problem in Eqg. (1) is OMPBIL. The number of iterations
is 250 and the population size of 50. Each elements thickness in the design domain represent
with binary, which have the values of “1” if it is set to have 0.08 mm element thickness, in

contrast the values is “0” if it is 0.00008 mm element thickness.

4.4 Design Results

The best approximate Pareto fronts of the design problem (1) obtained from using OMPBIL
is displayed in Figure 4.3. The HDD suspension topologies corresponding to the selected
solutions in Figure 4.3 are illustrated in Figure 4.4. It is shown that various suspension layouts
are obtained within one optimization run. All optimum topology fulfils with the design
constraints, the designer can choose it later. A selected topology of the HDD suspension is

shown in Figure 4.5 for looking the detail inside.

Approximate Pareto Front
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Frequency of Sway mode (kHz)

w
o
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» Bending stiffnesssiN/m)

Figure 4.3. The best non-dominated Pareto front
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Figure 4.4. Selected suspension accord with the Pareto front

15.BS: 58.8 N/m, SMF: 35.25 kHz

Figure 4.5. Selected suspension accord with the Pareto front

4.5 Conclusions

From the design results it can be said that the opposite-based multiobjective
population-based incremental learning is a powerful optimizer in design of a HDD suspension
system. By the present technique, the topology of HDD suspension can be achieved within
one optimization run. The present study is only preliminary study of the HDD suspension
design, which still needs the advance technique in chapter 2 (multi-grid ground elements
technique) and the MORBTO in chapter 3 in case of considering of the uncertainties in the
design formulate. The future work will be considered such techniques in design of the HDD

suspension.



Chapter V

Conclusions and Future work

This research has 3 aims are developed the technique for topology optimization of
structures with/without reliability analysis, and HDD suspension design. The first purposes of
this work are the demonstration of the performance comparison of an original MPBIL and their
performance enhancement, and the MG approach for multi-objective structural topology
optimization problems, respectively. Among the performance enhancements of MPBIL,
OMPBIL outperforms other techniques. It promotes the opposition-based concept, which can
improve the search performance of MPBIL. The use of MPBILs in combination with the MG
approach is well capable of solving multi-objective structural topology optimization. The
resulting topologies obtained from using OMPBIL are close to those obtained from the classical
gradient-based approach. The new design strategy is a procedure for structural topology
optimization, which uses multiple ground element resolutions, so the MG approach is more
efficient than using single-resolution ground elements in the sense that the suitable g¢rid
resolution is automatically detected and used in one optimization run. In addition, the use of
the MG approach combined with ground element filtering for alleviating checkerboards is
effective. In future work, the proposed method is extended to solve topology optimization
with uncertainty.

The second aim is to consider uncertainties into topology design. A satisfactory design
should take these uncertainties into consideration. The new MORBTO approach is proposed,
which uses the fuzzy set model to describe the uncertainties. This technique can be applied
for the multi-objective topology optimization problem, which has conflicting objectives. The
proposed MORBTO is formulated as a problem of minimizing mass, compliance and equivalent
possibilistic safety index with constraints being accomplished in the possibility context.
Furthermore, this research proposes to deal with the complex reliability of the structure using
fuzzy that it is usually a double-looped problem by using multi-objective optimization
reducing to single-loop optimization. The performance of the proposed technique is studied
by two numerical examples. From the numerical results, it is shown that the proposed
MORBTO can generate conservative optimal topology designs with various values of EPSIs,

which is different from those obtained from the previous RBTO. These results indicate that
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the proposed MORBTO is an effective tool to deal with the uncertain topology optimization
with considering the expert opinion. Furthermore, the proposed technique can reduce the
complexity of the traditional technique and reducing time consumption in solving the
optimization problem. For future study, the reliability-based topology optimization approach

will extend to handle uncertainties that take place in design of HDD suspension.

The third aim is said is an only preliminary study of the HDD suspension design, which still
needs the advance technique in chapter 2 (multi-grid ground elements technique) and the
MORBTO in chapter 3 in case of considering of the uncertainties in the design formulate. From
the design results it can be said that the opposite-based multiobjective population-based
incremental learning is a powerful optimizer in design of a HDD suspension system. By the
present technique, the topology of HDD suspension can be achieved within one optimization

run. The future work will be considered such techniques in design of the HDD suspension.
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Abstract: This paper aims to study the comparative performance of original multi-objective
population-based incremental learning (MPBIL) and three improvements of MPBIL. The first
improvement of original MPBIL is an opposite-based concept, whereas the second and third
method enhance the performance of MPBIL using the multi and adaptive learning rate, respectively.
Four classic multi-objective structural topology optimization problems are used for testing the
performance. Furthermore, these topology optimization problems are improved by the method of
multiple resolutions of ground elements, which is called a multi-grid approach (MG). Multi-objective
design problems with MG design variables are then posed and tackled by the traditional MPBIL and
its improved variants. The results show that using MPBIL with opposite-based concept and MG
approach can outperform other MPBIL versions.

Keywords: topology optimization; multi-objective optimization; opposite-based evolutionary
algorithm; population-based incremental learning; adaptive learning rate

1. Introduction

The first question that always arises at pre-process stage, when using a ground element approach
for topology optimization, is:What the best ground element resolution for a design problem should
be? As a result, we investigate using several sets of ground elements when performing optimization,
which we term the multi-grid design approach (MG). The MG approach is an extension of ground
segment strategy, which has been proposed to solve a truss structural optimization problem [1,2] and
morphing wing structural optimization problem [3].

The second question arises due to an opposition-based concept that could potentially improve
the search performance of the evolutionary algorithm (EA) [4-7]; the multi-objective population-based
incremental learning (MPBIL) was the best optimizer [8]. Additionally, it has been demonstrated
that the opposition-based concept could improve population-based incremental learning (PBIL)
performance for a single objective, which is called the opposition-based concept PBIL(OPBIL) [9],
whereas the multi-objective optimization is called opposite-based, multi-objective, population-based
incremental learning (OMPBIL) [3]. PBIL is categorized as an estimation distribution algorithm (EDA),
which is still in the spotlight of many researchers due to this kind of algorithm being simple to adapt
and apply for a single- and multi-objective optimization problem [10-13]. From our previous work,
OMPBIL with a multi-grid approach has been used to solve partial topology optimization of morphing
aircraft wings, and it promotes better results than the original multi-objective population-based
incremental learning (MPBIL) with a single grid element. Moreover, the work reveals that the
opposition concept could improve the search performance of MPBIL. The question remains whether
the performance of OMPBIL can benefit from the opposite concept or two learning rates. To make it be
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clearer, we compare the performance of OMPBIL and the performance of MPBIL with multi-learning
rate. If the former technique can achieve better results, it means that the opposition concept
significantly improves the performance of MPBIL. Therefore, this question will be addressed in
this study. Furthermore, it has been found [14] that learning rate was the most affective with search
performance of PBIL. Another way to improve the search performance of MPBIL is to use an adaptive
learning rate method [15]. This method is categorized as self-learning adaptations, so the effectiveness
of this technique needs to be addressed in this research.

Therefore, in this paper, the first objective is to apply the multi-grid approach (MG) approach
to solve structural topology optimisation problems, whereas the second objective is comparative
performance of the three variants of MPBIL. The performance improvements are based on
an opposite-based concept, a multi-learning rate, and an adaptive learning rate, respectively.
This research expects to improve the performance of the proposed MPBIL and MG approaches that
lead to the obtaining of better design results than the original MPBIL with a single grid. The rest of
this paper is organized as follows. Section 2 promotes the details of topology with single-ground
and multi-ground design approaches for structural topology optimization. We introduce some novel
methods for enhancing the performance of multi-objective, population-based incremental learning
in Section 3. The performance index and statistical testing are given in the same section. Numerical
experiments and the design results are proposed in Section 4; moreover, the design results and
discussion are in Section 5. Finally, the conclusions of the study are in Section 6.

2. Topological Designs with Single-and Multi-Ground Design Approaches

2.1. Topological Designs with Ground Element Filtering

Topology optimization is one mathematical tool used in the conceptual design stage of engineering
systems for finding the best structural layout from a given design domain. Topological design can
perform using an optimization method and finite element analysis. This technique is started by defining
design domain represented as the discrete structural members such as panels, truss, and frame as
shown in Figure 1. The optimization method can be performed by varying the width or thickness of
each element in the design domain between zero and the maximum value. All elements were discarded,
if the element width/thickness value was zero. Otherwise, the element was retained. With this concept,
optimization of the structural layout and component sizes is performed. Two popular, well known
topological methods are the solid isotropic material with penalization (SIMP) approach and the
homogenization method, which use gradient-based optimizers. Later, an alternative optimizer is
evolutionary algorithms due to the fact they are robust, simple to use, derivative-free, and free from
intermediate pseudo densities [8]. Complicated problems, such as partial topology, simultaneous
topology, shape, and sizing optimization, can be performed within one optimization run [3,8,16,17] by
using such algorithms. In this paper [8], they presented the comparative performance of multi-objective
evolutionary algorithms (MOEAs) for solving structural topology optimization test problems based
on ground element filtering technique. It has been found that MPBIL is the best optimizer in their
study, which outperforms other MOEAs [8], so MPBIL is the only MOEA selected to improve its
search performance in this research. Furthermore, the ground element filtering technique is also
used in this study. The ground element filtering technique (GEF technique) is a simple numerical
scheme that can apply to all kinds of optimizers, which can prevent the checkerboard pattern problem
and at the same time decrease the number of design variables [8,18,19]. The idea uses two mesh
grids of design domain with different resolutions. The lower resolution grid is provided for design
variables, whereas the higher resolution is used as a finite element grid. The conversion between
two grids relates to threshold value (¢) that is defined at the first time before optimization run.
Therefore, this technique has been proved to be an efficient technique to suppress the checkerboard
problem. Next, the details of GEF technique are seen in [8,18,19]. Later, a method for solving
checkerboard pattern was presented by Guirguis and Aly [20]. They proposed that derivative-free
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level-set method for solving structural topology can solve the checkerboard problem. This new
technique can avoid the main limitations of non-gradient methods: dependence on the objective value.
Moreover, the boundaries of structure are smooth, but it does not directly depend on the decision
variables. A very recent work in multi-objective topology optimization has been proposed to address
the limitations of generating infeasible structures and expensive computational cost by using the
technique called “graphics processing unit (GPU)” [21]. On the contrary, this technique has been
commented on usefulness in the case of truss-like structures and the solved examples are simple, and
obtained results are sub-optimal solutions [22]. Recent applications of topology optimization appeared
in design of composite molding processes [23]. More recently, applications of topology optimization
appeared in many fields, e.g., composite molding processes [23], optimal design of piezoelectric [24],
phononic crystals design [25] and stator configurations [26].
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Figure 1. A ground elements set for MOP1, MOP3, and MOP4 (a) for n = 1; (b) for n = 2; (¢) for n = 3,
and (d) for n = 4.

2.2. Single-and Multi-Grid Ground Elements

The MG approach for topology optimization is an extension of MG strategy, which proposes to
solve a truss structural optimization [1] and morphing wing structures [3]. At the present, we propose
to apply this technique to a structural topology optimization problem. This technique has an
improvement in both using the several ground resolutions. In this research, a ground structure has
four sets of ground elements with different grid resolutions and the threshold value ¢. The threshold
value € must be specified at the first stage before performing the optimization run. A special encoding
and decoding scheme slightly changes from the previous work [3], but it is very important to the
quality of final result. Especially, the threshold values are different in each grid resolution to prevent
the checkerboard problem, which can occur in each grid. At the first stage, this scheme starts with
defining the number of elements and the threshold values. The first set of ground elements has N1;
elements, and the threshold value is set to be 1. Therefore, an example of a ground element set
used in this study is the lowest resolution as number of elements N1; = 48 and €1 = 0.07 as shown in
Figure 1. The second set has Np; = 75 elements and the threshold value is €2 = 0.2. Then, the third
set has N3; = 108 segments and the threshold value is €3 = 0.3, whereas the last set has the numbers
of ground elements and the threshold value is Ny = 147 segments and &4 = 0.35, respectively. As a
result, Ng; > N33 > Np; > Nqj and e4 > €3 > €2 > €1, respectively. Therefore, the variables and the
threshold values for encoding/decoding scheme for the MG approach, which is improved from
previous algorithm, can be detailed as shown in Algorithm 1. For using this algorithm, the MPBIL and
its improved versions perform with binary design variables, whereas it needs the conversion of binary
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string to become a real design vector x before entering into this algorithm. Furthermore, the ground
element set with its € used in this research for multi-objective optimization problem (MOP) MOP1,
MOP3 and MOP4 is shown in Figure 1. For the design problem MOP2, the design domain is different
from the other problems. The details of the ground element sets and the threshold values are presented
in Section 4.

Algorithm 1. Encoding and decoding scheme for a MG approach.

Initialization: Generate four sets of ground elements and define the threshold value of ¢ for each set.
Inputx sized (Nyg1 +1) x 1.
Output: Thicknesses of ground elements.

Encoding

x1 € [1, 4] is used for selecting a set of ground elements.

X to xn,,+1 are used for element thicknesses.

Decoding

1: Find n = round(x1) where round(.) is a round-off operator.

2: If n = 1: xp to x;,,+1 are set as Nqj element thicknesses and ¢ = 1.
3: If n = 2: xp to xn;,, 41 are set as Npj element thicknesses and ¢ = €2.
4: If n = 3: xp to x,, 41 are set as N3; element thicknesses and & = &3.
5: If n = 4: x to x;,, +1 are set as Nyj element thicknesses and ¢ = e4.

3. Performance Enhancements of Multi-Objective, Population-Based Incremental Learning

This section briefly details the concept of MPBIL and its three variants.

3.1. Multi-Objective, Population-Based Incremental Learning

MPBIL is an extension of PBIL for solving a multi-objective optimization problem. This problem
has more than one objective function, which promotes several solutions for this kind of problem, and
it is called a Pareto solution set or a Pareto frontier. Rather than using a single probability vector,
several probability vectors are used, so it is called a probability matrix. The matrix is used to maintain
diversity of a binary population. At an initial step, the probability matrix has elements full of “0.5”.
Each row of the probability matrix or probability vector is updated by Hebb’s rule [27] as follows

PV = PP4(1 - LR) + bjLg )

in which Lg is a PBIL learning rate, a small value usually recommends for the conventional
operating [28], and b; is the mean value of jth column of several binary solutions randomly selected
from a current Pareto front. It is also useful to apply a mutation to probability matrix at some predefined
probability as

Pf;‘zw = Pi‘}ld(l —ms) +rand(0or1) - ms (2)

in which ms is mutation shift, and the default value is usually 0.2. For more details of MPBIL procedure,
see [3].

3.2. Opposite-Based MPBIL

OMPBIL has been developed as an improved version of MPBIL [3]. Due to Ly affecting MPBIL
performance, the issue is how to select a proper value of Ly for a general problem. It is expected to
accelerate the convergence rate to find solution, as well as provide population diversity. Our previous
work proposed the opposition-based concept embedded into MPBIL, which is an efficient technique
that can upgrade MPBIL’s performance. Therefore, the outline of OMPBIL algorithm includes the
opposition-based concept, which is not included in this paper. More details can be found in [3].
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3.3. Multi-Learning Rate

The second approach to enhance the performance of MPBIL is the use of multi-learning rate.
This question arises from the previous method, when it is using two learning rates that are of an
opposite quantity. The question remains whether the performance of OMPBIL can benefit from
the opposite concept or by using two learning rates. MPBIL with multi-learning rate (MPBILMLR)
is proposed to solve topological optimization and to compare with the opposition-based concept.
This algorithm differs from the traditional MPBIL by using three learning rates (Lg = 0.25, 0.5, 0.75).
The procedure of MPBILMLR algorithm is slightly different from OMPBIL. Therefore, the procedure
of MPBIL with multi-learning rate algorithm is shown in Algorithm 2.

Algorithm 2. MPBIL with multi-learning rate.

Initialization Probability matrix P = [0.5];x 5, Probability matrix Pi = [0.5]; /\x ;p Wherei=1,... , M =3,
external Pareto archive Pareto = {}.
1: Generate a binary population B from P.
2: Decode the binary population to be x;; x Np and find the objective values f;; x Np-
3: Update Pareto by replacing it with non-dominated solutions of union set Pareto U x.
4: If the number of members in Pareto exceeds the predefined archive size N4, remove some of them by using
an archiving technique.
5: If the termination criterion is fulfilled, stop the procedure. Otherwise, go to step 6:
6: Update P and create a binary population
6.1: Set a binary population B = {}.
6.2: Fori=1tol/M.
6.2.1: Select ny binary solutions from Pareto randomly.
6.2.2: Use Lgy = 0.25,0.5,0.75, foreach k=1, ... , M. (For this research M = 3)
6.2.3: Update the ith row of P by using (1).
6.2.4: Generate the ith row of probability matrix Pi using (2) and each Lgy.
6.2.5: Generate rand € [0, 1] a uniform random number.
6.2.6: If rand < the predefined mutation probability, update the ith row of P1, P2 and P3 using similar
equation in [3].
6.2.7: Generate binary subpopulations SB1, SB2 and SB3 from the ith row of P1, P2 and P3, respectively.
6.2.8: Set B = BUSB1USB2USB3
6.3: Next i.
7: Go to step 2.

3.4. Adaptive Learning Rate

The last method for MPBIL performance enhancement is using an adaptive learning rate, which
proposes to modifythe learning rate during the entire process [28]. A small value of learning rate is
usually recommended for conventional PBIL to keep the algorithm reliable, but it usually causes low
convergence rate. To balance the reliability and speed of convergence in all iterations, the learning rate
needs to adapt. A model of adaptive learning rate has been proposed by Yang et al. [15] that satisfies
the previous conditions. That model is shown as follows

i)

Lr = Lro + (Lrp — Lro)e™ (AT 3)

in which SI is the successive iterations with improvements in the objective function in the most recent
NT iterations. Lgy and Lrys are the minimum and maximum learning rates that the designer defines
before an optimization run. The learning rate depends on the ratio of SI/NT. Additionally, the high
value of this ratio means that it is possible to locate better solutions using its current probability matrix,
and consequently the learning rate should be small. In contrast, a low value of this ratio means the
current probability matrix which is insufficiency, so the learning rate should be increased. Moreover,
the outline of multi-objective, population-based incremental learning with adaptive learning rate
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(MPBILADLR) is slightly different from the traditional MPBIL, which uses Equation (3) to replace the
original equation for finding Lg. This algorithm is shown as follow.

Algorithm 3. MPBIL with adaptive learning rate.

Initialization probability matrix P = [0.5];x ,,5, external Pareto archive Pareto = {}.
1: Generate a binary population B from P.
2: Decode the binary population to be x;; x np and find the objective values £, x np.
3: Update Pareto by replacing it with non-dominated solutions of union set ParetoUx.
4: If the number of members in Pareto exceeds the predefined archive size N4, remove some of them by using
an archiving technique.
5: If the termination criterion is fulfilled, stop the procedure. Otherwise, go to step 6:
6: Update P.
6.1: Fori=1tol.
6.1.1: Select ng binary solutions from Pareto randomly.
6.1.2: Generate L using (3).
6.1.3: Update the ith row of P by using (1).
6.1.4: Generate rand € [0, 1] a uniform random number.
6.1.5: If rand <the predefined mutation probability, update the ith row of P using similar equation in [3].
6.2: Next i.
7: Go to step 1.

3.5. The Performance Index and Non-Parametric Statistical Test

MPBIL and its enhanced versions are classified as MOEAs, while the obtained results are
classified as approximate Pareto optimal frontiers. In comparing the searching performance of MOEAs,
the methods are employed to solve design optimization problems with equivalent total number of
function of evaluations for number of attempts. The approximate Pareto frontiers obtained from
various MOEAs are then compared using a performance indicator, which is called a hyper-volume
(HV) [29] indicator. This indicator represents the hyper-area above a Pareto frontier for bi-objective
optimization problem as shown in Figure 2, whereas it is called hyper-volume for three objective
functions and more. Therefore, HV sums up all discrete areas v; or volumes of hyper-areas or
hyper-volumes with respect to a given referent point, respectively.

A technique for comparing the performance of each MOEA in this research is a non-parametric
statistical test, which is called the Friedman test. This technique has been used by Sleesongsom and
Bureerat [30] for studying the performance of meta-heuristics (MHs) in solving the four-bar linkage
path generation problems. The Friedman test is suitable for comparing more classifiers over multiple
data sets.
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Figure 2. Hyper volume sums up all areas covered by the non-dominated solutions and a reference point.
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4. Numerical Experiment

As mention earlier, the purpose of this research is to study the comparative performance of original
MPBIL and its three variants with (WMG) and without the MG (WOMG) approach. Four design
problems are used for testing performance of the proposed methods. The original MPBIL and three
performance enhancements of MPBIL (OMPBIL, MPBILMLR, and MPBILADLR) are employed to
solve multi-objective topology optimisation problems that have been detailed in the previous section.
Each algorithm is used to solve an optimisation problem for 25 runs to measure its performance and
consistency. For all design problems, all the algorithms are used with a population size of 35 and an
iteration number of 400 whereas the external Pareto archive size is set to be 35 Non-dominated solutions
obtained, so at the last iteration approximates the Pareto solutions. Therefore, four multi-objective
problems are used for testing performance of MPBIL and performance enhancements of MPBIL,
which has been proposed to study the comparative performance of some established multi-objective
evolutionary algorithms (MOEAs) [8]. The problems are structural topology optimisation problem.
The design problems are as follows:

MOP1: The topological design domain and loads are shown in Figure 3a. The structure is made of
material with Young’s modulus E = 200 x 10 N/m?, Poisson’s ratio v = 0.3, and tensile yield strength
oyt =200 x 10 N/m?. The multi-objective design problem is set to minimize structural compliance
and normalized mass as:

;r&rpl{c, r} (5)
subject to

€ < 5Cmin

02<r<038
p; € {0.0001, 1}

where p;CFF is the value of ith design variable; p; is the thickness of ith finite element; m is the structural
mass; ¥ =m(p)/m(p") is the normalized mass or ratio of structural mass to maximum mass; c is the
structural compliance; and cpin = c(p*). The first constraint is added to prevent topologies with a low
global stiffness (or highly compliant structures) being included in the Pareto archive. The bound
constraints are set as p; € {0.0001, 1}. The parameter ¢ is set 0.3 and [0.08, 0.1, 0.25, 0.3]” for all MPBILs
with WOMG and WMG design approach, respectively. The number of element for single grid is set
as highest resolution. A set of MG elements is use for this problem and show in Figure 1. The mean
hypervolumes of the fronts of MOP1 for all optimisation runs are given in Table 1, where the referent
point for computing hypervolumes is set to be {2.5 kNm, 2.5}.

MOP2: The second design problem promotes three objective functions, where the design domain and
load illustrate in Figure 3b. The structure makes up the same material as MOP1. The multi-objective
design problem can be written as:

;Ié}sll}{cl, c2, r} (6)

subject to
c1 < 5¢1,min
€2 < 5¢2,min
02<r<08
pi € {0.0001, 1}

where c; is the structural compliance due to the first load case and c; is the structural compliance
due to the second load case, ¢1min = c1(p"), and ¢y min = c2(p"). A number of ground elements set,
which uses in this study is [48,63,108,130], while the number of element for single grid is set as the
highest resolution. The threshold parameter ¢ is set to be 0.35 and [0.07, 0.2, 0.3, 0.35]T for all MPBILs
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with WOMG and WMG approach, respectively. There are different from other problem due to the
difference of design domain. The mean hypervolumes of the fronts of MOP2 for all optimization runs
are given in Table 1, in whichthe referent point for computing the hypervolumes is set to be {1.5 kNm,
1.5 kNm, 1.5}.

1st load
40 cm

; 3 P p
4 = }1 kN 200N

7\

. . . . 2nd load
Design domain [l m 30 cm Design domain ey
v 200N

()

1 Design domain
1

to be maintained

(©

Figure 3. Structural design domains: (a) design domain of MOP1 & MOP3; (b) design domain of
MOP2; (c) design domain of MOP 4. Reproduce with permission from [8], Taylor & Francis, 2011.

MOP3: The design problem has the same design conditions as set for MOP1 with the exception of
the range of design variables. Addition constraints are ool < oyt and p;€ {0.000001 m, 0.01 m}, in
which ooy, is the maximum value of Von Mises stress (equivalent stress) on the ground elements.
A set of MG elements is shown in Figure 1, and the number of elements for single grid is set as the
highest resolution. In addition, the threshold parameter ¢ is set to be 0.3 and [0.08, 0.1, 0.25, 0.3]7 for all
MPBILs with WOMG and WMG design approach, respectively. The mean hypervolumes of the fronts
of MOPS3 for all optimization runs are given in Table 1, in which the reference point for computing the
hypervolumes is set to be {3.5 kNm, 3.5}7.

MOP4: The design conditions of MOP4 are similar to MOP3, except in this design problem the top row
finite elements are not assigned as design variables (unchanged) as displayed in Figure 3¢, and the first
objective of this problem changes to maximizing the first mode eigenvalue of structure (A1). Note that
all of design problems use a membrane finite element formulation for structural analysis. The number
of ground elements and the parameter ¢ of MOP4 are similar to MOP3. The mean hypervolumes of the
fronts of MOP4 for all optimization runs are given in Table 1, in which the referent point for computing
the hypervolumes is set to be {1.0 rad?/s%,2.0)T.

Table 1. Performance comparison based on hypervolume (HV) .

MOP1 MOP2 MOP3 MOP4
WMG WOMG WMG WOMG WMG WOMG WMG WOMG
MPBIL 0.8553 0.8255 0.7255 0.6420 0.7951 0.7229 0.7195 0.6219
OMPBIL 0.8556 0.8426 0.7259 0.6430 0.7968 0.7438 0.6723 0.6403

MPBILMLR 0.8115 0.7739 0.7212 0.6285 0.7016 0.5976 0.6167 0.5651
MPBILADLR 0.8543 0.8371 0.7240 0.6385 0.7954 0.7407 0.6404 0.6292

1 WMG, with multi-grid approach; WOMG, without multi-grid approach; MPBIL, multi-objective population-based
incremental learning; OMPBIL, opposite-based, multi-objective, population-based incremental learning; MPBIL
MLR, MPBIL with multi-learning rate; MPBIL ADLR, multi-objective, population-based incremental learning with
adaptive learning rate.

5. Design Results

The comparative performance of original MPBIL and the performance enhancements of MPBILs
with MG and without MG approach for solving the design problems of MOP1—4 are given in Table 1,
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which compare based on HV indicator. It should be noted that all of the approximate Pareto fronts of
the four design problems obtained from using the proposed MPBILs are normalized before calculating
HYV, as shown in Table 1. The highest mean of HV for each design problem is highlighted with
grey color. The table shows OMPBIL promotes almost the best results for MOP1-4 except in case
MOP4-WMG. Therefore, it is believed that the performance of OMPBIL is better result than the original
MPBIL and their enhancements. In this study, the Friedman test and the Tukey-Kramer test are used
for a statistical test to prove the significance of proposed algorithm. These tools are built-in functions in
MATLAB/Octave. From our testing, the Friedman test gives OMPBIL has 1st rank, whereas the second
rank is MPBIL at p-value (0.0002) < «(0.05) as shown in Table 2. It can be summarized that OMPBIL is
the best performing algorithm for solving problem case MOP1-4. For multiple comparisons, we used
the Tukey-Kramer test. The mean column ranks of OMPBIL are significantly different from MPBILMLR.
The second best optimizer is MPBIL, whereas the third best is MPBILADLR. In addition, the worst
optimizer for this design case is MPBILMLR. No questionable opposition concept is beneficial to
improving the performance of MPBIL.

Table 2. Average ranking and p-value of MPBIL, and enhanced performance of MPBIL achieved by
Friedman test.

Average Ranking of Each AlgorithmFriedman
MPBIL OMPBIL MPBILMLR MPBILADLR

2.6250 3.8750 1 2.5000
(2) 1) (4) )

p-Value

0.0002

The average HV for all optimizers of each problem with MG and WOMG approach is shown in
Table 3, which is summed along each column from Table 1. This table shows that the design problems
with MG approach give higher HV than the design problem without MG approach in all design
problems. Friedman test of average result in Table 3 can prove that the design problem with MG
technique significantly outperforms WOMG technique at p-value (0.0455) < x(0.05). Furthermore,
the best HVs of all cases give higher hypervolume than the previous work by [8] in all design cases,
so OMPBIL with MG can improve the design results.

Table 3. Performance comparison of each MOP with and without MG for all algorithms.

Design Problems Average Hypervolume

WMG WOMG
MOP1 0.8442 0.8198
MOP2 0.7242 0.6380
MOP3 0.7722 0.7013
MOP4 0.6622 0.6141
Average Ranking (p-value = 0.0455) 2 (1) 1(2)

Figures 4-7 shows some optimum topologies. The topologies in all figures are captioned with (a),
which obtains from the best run of OMPBIL with multi-grid when solving each MOP with various r
values. All figures are captioned with (b); they display the optimum topologies that are obtained from
optimizing the design problem MOP1-4 with various r values by using MPBIL without multi-grid.
These topologies are represented by the same technique from the previous work [8]. This shows that
the topologies from OMPBIL with MG are better than the MPBIL technique without MG, and they
can compare with the previous work using binary population-based incremental learning (BPBIL)
and optimality criteria method (OCM) technique [8]. The optimum topologies are mostly from the
ground elements with medium (MOP1 and MOP2) and low (MOP3, MOP4) resolutions. Therefore,
the topology with the highest resolution is lower than the previous work by [8]. The lower resolution
means lower computational time consumption. The use of highest ground element resolution is not the
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best selection for all design problems. However, in practice, a designer never knows which resolution
is the most suitable for design problem, and employing the multi-grid approach is an advantage.
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Figure 4. Topologies of MOP1: (a) OMPBIL with multi-grid; and (b) MPBIL without multi-grid.
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Figure 5. Topologies of MOP2: (a) OMPBIL with multi-grid; and (b) MPBIL without multi-grid.
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The purposes of this work are the demonstration of the performance comparison of an original
MPBIL and their performance enhancement, and the MG approach for multi-objective structural
topology optimization problems, respectively. Among the performance enhancements of MPBIL,
OMPBIL outperforms other techniques. It promotes the opposition-based concept, which can improve
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the search performance of MPBIL. The use of MPBILs in combination with the MG approach is well
capable of solving multi-objective structural topology optimization. The resulting topologies obtained
from using OMPBIL are close to those obtained from the classical gradient-based approach. The new
design strategy is a procedure for structural topology optimization, which uses multiple ground
element resolutions, so the MG approach is more efficient than using single-resolution ground elements
in the sense that the suitable grid resolution is automatically detected and used in one optimization
run. These conclusions are very similar those obtained in our previous work [3]. In addition, the use
of the MG approach combined with ground element filtering for alleviating checkerboards is effective.
In future work, the proposed method is extended to solve topology optimization with uncertainty.
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Abstract This research proposes a multi-objective reliability-based topology optimization
(MORBTO) for structural design, which considers uncertain structural parameters based on a
fuzzy set model. The new technique is established in the form of multi-objective optimization
where the equivalent possibilistic safety index (EPSI) is included as one of the objective func-
tions along with mass, and compliance. This technique can reduce complexity due to a double-
loop nest problem used previously due to performing single objective optimization. The present
technique can accomplish within one optimization run using a multi-objective approach. Two
design examples are used to demonstrate the present technique, which have the objectives as
structural mass and compliance with the constraint of structural strength. The results show the
proposed technique is effective and simple compared to previous techniques.

1. Introduction

Design processes for derivative-free topology optimization has been developed [1, 2]
though it is still far from using in reality. The design process always depends on material
properties, external loading and other conditions. If uncertainties of such parameters take
place, obtained deterministic optimum design results may be less reliable [3]. To address
such a problem, there are two main strategies to account for uncertainties in topology
optimization, robust topology optimization (RTO) [4] and reliability-based topology
optimization (RBTO) [5]. The first technique is to optimize the expectation and variabil-
ity of system performance with respect to uncertainties simultaneously, through which
the robustness of system performance can be improved, while the second is concerned
with failure probability constraints when optimizing the system performance, through
which reliable optimization design can be achieved. Both methods are based on probabil-
istic [6] or non-probabilistic models [3, 7, 9]. The first model is the most popular due to
its progress, but this technique requires precision on the statistical distribution of uncer-
tainties. A good distribution of uncertainties usually leads to large amount of objective

information, which spends more time costly in a practical conceptual design stage.
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In opposition to the first model, it is called non-probabilistic
models where some well-known techniques of this type are
anti-optimization [7] and a fuzzy set method [9]. The fuzzy set
model is an alternative technique due to it gives moderate con-
servative results. It is the best choice to collect the uncertain-
ties into RBTO by using a level set to soft separation between
the members and non-members of the set. It makes the model
get an acceptable solution. However, disadvantage of the pre-
sent RBTO is still complexity in analysis due to the combination
of fuzzy set into the topology optimization problem is a triple-
loop nest problem including the double loop nest in finding
possibilistic safety index (PSI) and topology optimization. Later,
it has been solved by using the target performance-based de-
sign approach resulting the triple loop being reduced to the
double-loop nested problem [3, 10]. The target performance-
based approach changes the PSI into the target performance
of the i-th constraint where it is called the equivalent possibilis-
tic safety index (EPSI) by minimizing the constraint at some
level cut. This technique can add an experience of the expert
opinion to select the level cut or membership level into RBTO.
The aim of this research is to reduce the complication of the
double-loop nest problem in RBTO using multi-objective opti-
mization technique with fuzzy uncertainties.

The rest of this paper is organised as follows; Topology op-
timization is presented in Section 2. Fuzzy set and MORBTO
are proposed in Section 3. The numerical examples are given
in Section 4. The conclusions of this study are detailed in Sec-
tion 5, respectively.

2. Topology optimization

The topology optimization is a mathematical problem, which
aims to seek the optimal structural layout within a pre-specified
design domain. The single-objective or multiobjective topology
optimization problem can be expressed as

Minfi(p) i=1,..,M )
Subject to

g=0 j=12..,N

0 <p'<p <p*

where i = 1 is for single objective design, i > 1 is for a
multiobjective problem, and p is the thickness of finite
elements ranged between the lower limit (p') and the up-
per limit (p). For the topology optimization problem in
this work, the constraint is expressed in a different form

from a traditional optimization problem so as to make it

more compatible with the derivation of a possibility safe-

ty index in the next section.

3. Fuzzy set and formulation of MORBTO

The fuzzy set theory becomes popular for optimization de-
sign of structures because its capability can describe uncer-
tainties with helping by expert opinions. The fuzzy set can be
used for describing uncertain parameters and extended to the
possibility concept as detailed in [5, 10]. For a fuzzy variable
with a membership function u(a), the corresponding fuzzy set
model can be expressed as

A={(au(@)|aeQ, u@)el01]} )

where Q is universal set, a is fuzzy variable. Each fuzzy vari-
able a can be decomposed into a series of interval variables by
using fuzzy set in accordance with degree of membership.

To construct the possibility of safety index, a-cut is used in
this research (a € [0,1]) while a is in the interval a“e [a®, a™].
The possibility that the fuzzy variable a is greater than s crisp
number can be expressed as Pos(a = s), so

Pos(a > s) = sup u(z) (3

Z>8

where “sup” is the supremum.
From (3) and inequality constraint in (1) can write as

Pos(g (p,a) <0) =Sulgﬂ,-(2) Q)

The topology optimization problem can be rearranged to be
a RBTO problem based on the possibility safety index and the
fuzzy set model:

Minfi (p) i=1,.,.M )
Subject to

Pos(gi(p.a)< 0) < ™ j=12,.,N

0 <p'<p <p*

Leta = (ay, ay, ..., a) be fuzzy variables, 7™ is an allowa-

ble possibility index, = is a possibilistic safety index, and
gi(p,a) becomes fuzzy rather than crisp. In comparing an ine-
quality constraint in (1) and (5) where the equations are re-
spectively represented the deterministic topology optimization
and the RBTO, respectively, the constraint in the traditional
problem is used to control the value of limit-state function to
strictly higher than zero while the constraint in RBTO is used to
control the possibility safety index value that is lower than zero
and ™,




The possibility safety index can be applied to the topology
optimization problem, which incorporates with the fuzzy set
method to deal with the uncertainties as shown;

Min {fi (p), z™}i=1,...M (6)
Subject to

"= max((Pos(gi(p.a)< 0))<1) j=12,..,N

0 <p'<p <p"

New multi-objective reliability topology optimization problem
is established in the possibility context.

To evaluate new objective function, the possibility safety in-
dex is derived in (4) and Fig. 1, it is found: (1) if gi°® = 0, then
Pos(gi(p,a)< 0) = 0; (2) if gi°<0<g?, then Pos(gi(p,a) < 0) = «,
where gi* = 0; (3) if gj'< 0, then Pos(gj(p,a)< 0) = 1. Eq. (4) can
rewrite as Eq. (7).

Its original shape is a trapezoidal, which is called a trapezoi-
dal-shaped fuzzy set. The trapezoidal shape can degenerate
its form to other shapes, such as, a triangular shape [10]. In
this research, we still use the original form as shown in Fig.1
and the membership function of constraint function can be
formulated in the following equation.

(9°.0) 0

Fig. 1. Membership function (gi(p,a))

-0
0 g; =0

a, , where g}o <0<g}1 @)
1

Pos (gi(p,a)< 0) =
gj <0

The solution of this equation can be calculated if gi° and gjis
known. If gi® < 0, we can obtain that Pos(gj(p,a) <0) =0 or 1,
and the solution procedure can be terminated; else if g°<0<g;
! the equation gi* = 0 should be solved, and its solution a. will
be the value of Pos(gj(p,a) < 0). Theoretically, the bi-section
method uses to compute the value of Pos(gj(e,a) < 0), a proce-
dure can be summarized as:

Stepl: Initialization — let 01® = 0, o2” = 1, and specify the ter-
mination value as & = 1 x 107,

0 0
Step2: Iteration 1 — Calculate g;“* and g;*¢ , and if

gj’“10 20or gj’“g < 0 holds, we can obtain Pos(gj(p,a)<0) =0

or 1 and terminate the iterative procedure. Otherwise, to calcu-
~(@+ad)/2
j

Step3: Iteration k (k 21) — if

late g and go to step 3.

k-1

_ okl k-l
9, xg“ "2 %50  holds, then let
af = (g +ak™)12  and af =af™ ; if
k1 ok, k-l
9, xg;“0 "= 51  holds, then let

as =(ef k™12 and of =t

Step4: Termination -

. Go to step 4.

calculate the absolute val-

ue |a§’l—a1k’l| , and if the termination condition
|a§’1—alk’1| < ¢ holds, stop the iterative procedure, and esti-

mate Pos(gj(p,a) < 0) by Pos(gi(p.a) < 0) = (o +ak™)/2;

otherwise, return to step 3 and continue the procedure till the

k-1

termination condition |a'§‘1—a1 |s ¢ is met.

For solving the multi-objective topology optimization problem
in (6) is triple-loop nested problem, which is computational
burden. The problem can be reduced to the double-loop prob-
lem by using the target performance-based approach [10] that
has been proved the equivalent of the original failure possibility
and the new one is described as follows.

Pos(gi(p, 2)< 0) < ™ ~ min(gi(p, a)) 2 0 ®)

where j = 1,2,..., N, and min(gj(o,a™) is called the target
performance of the constraint.

The equivalent of the previous topology optimization prob-
lem (6) can be changed to

Min {f (p), EPSI} 9)
Subject to

EPSI=max(gi(p,a™)) 2 0, mj[0,1], j= 1,2,..., N

0 <p'<p <p"

where EPSI is equivalent possibilistic safety index or target
performance.

4. Design Examples

Two design examples demonstrate the proposed technique
with the objective functions being volume fraction (r) or mass
ratio and compliance (c). The objectives are conflicted as re-
ducing mass affects to reduce the strength of structure. The
difficulty of our objective is to find minimum mass ratio and
compliance at the same time. The multi-objective optimization
problem can be formulated and termed MOP1 and MOP2. The
second problem (MOP2) is MOP1 with a stress constraint be-
ing added.
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MOP1.:
min {e.r} (10)

Subject to
5Cmin- ¢ 0
0.8>r>0.2

pie {0.0001m, 1m}

MOP2:
/r)ryEnF {e,r} (11)

Subject to
Scmin' c> 0
0.8>r>0.2
Gyt'Gmaxeqv >0

pie £0.000001m, 0.01m}

where p®F is the value of ith design variable; pi is the thick-
ness of ith finite element; m is the structural mass;
r =m(p)/m(p") is the normalized mass or ratio of structural
mass to maximum mass; c is the structural compliance; and
Cmin= C(p"). omax*¥ is the maximum value of Von Mises stress of
the ground element. The last constraint in the design problem
is bound constraints.

The traditional RBTO combined with the fuzzy set model can
be formulated as in Eq. (5). It can be expressed as follows.

min {c,r} (12)
o)

Subject to
Pos(gj(p,a)< 0) < m™*e[0,1] j=1,2,.., 3
01=5Cmin- ¢= 0
g2=0.8>r>0.2
03=GCyt-Omax"” > 0 for MOP2
pie {0.0001m, Im} for MOP1

pie £0.000001m, 0.01m} for MOP2

The proposed MORBTO incorporates the fuzzy set model from
the previous section into the topology optimization to deal with
the uncertainties in real situation can be formulated as:

BgiEnF {c,r,EPSI} (13)

Subject to
EPSI= max(gj(p,a™)) > 0, mi<[0,1], j = 1,2,..., 3

01=5Cmin- ¢= 0

0.=0.8>r>0.2

0s=0yt-oma’" = 0 for MOP2

pie {0.0001m, 1m} for MOP1

pie {0.000001m, 0.01m} for MOP2

where EPSI is the equivalent possibilistic safety index, x are
AP, and g = PSI and a is vector of fuzzy variable (E, v, and
F).

Opposite-based multiobjective population-based incremental
learning (OMPBIL) is used for solving the optimization problem
in this research due to its good performance as demonstrated
in our previous study [2]. The improvement used the opposi-
tion-based concept embedded into MPBIL, which is found that
it can upgrade MPBIL’s performance. The parameter of the
optimiser is set according to our previous study and the details
of OMPBIL can see in [2]. The population size is 35, the total
number of iterations is 600, and the external Pareto archive
size is 35. The learning rate (LR) is generated randomly in the
interval [0.4, 0.6]. The mutation probability and mutation shift
are 0.1 and 0.2, respectively.

3m E

A
A 4

Design domain 1m

T T

"

Fig. 2. Structural design domains

The topological design domain and loads are shown in Fig. 2.
The uncertainties are Young's modulus E, Poisson’s ratio v,
and load F, which is assumed to be fuzzy variables. The mem-
bership function of the variables is triangular shaped with val-
ues are E = (190, 200, 210) x10° N/m?, v = (0.25, 0.3, 0.35),
and F = (0.9, 1, 1.5) kN. The mechanical property is not con-
sidered to be fuzzy variable, which is the tensile yield strength
oy = 200 x 10° N/m% The traditional triple-loop nest multi-
objective topology optimization problem is set to minimize
structural compliance and normalized mass as shown in Eq.
(12), while the proposed technique is presented in Eq. (13).
The first constraint in every problem is added to prevent topol-
ogies with low global stiffness (or highly compliant structures) is
included in the Pareto archive. The external force is applied at
the right upper corner of the design domain. The traditional
problem is used for comparing the time consuming with newly
proposed technique.

The adaptation of a topology technique used in accomplish-
ing the problems is from our previous proposed technique in [1],
which is called the multi-grid ground element technique (MG).
The proposed technique has been proved to be an efficient




technique when combining with the OMPBIL. The Encoding
and decoding scheme for the MG approach with PSI and fuzzy
variables is needed as shown in the following algorithm 1.

Algorithm 1. Encoding and decoding scheme for a MG
approach with PSI and fuzzy variables

Initialization: Generate four sets of ground elements and
define the threshold value of ¢ for each set.

Inputx sized (N1 + 6) x 1.

Output: Thicknesses of ground elements.

Encoding

x1€ [1, 4] is used for selecting a set of ground elements.
X2=PSl is defined by the designer

X3=is used for fuzzy variable F

X4=is used for fuzzy variable E

xs=is used for fuzzy variable v

Xst0 Xy, ,q@re used for element thicknesses.

Decoding
1: Find n = round(x,) where round(.) is a round-off opera-
tor.

2:1fn=1:xt0Xy, ¢ aresetas Ni; element thicknesses
and e=¢l.
3:1fn=2:xto Xy ¢ aresetas N element thicknesses

and e = £2.
4:1fn=3:xt0 Xy, ¢ aresetas Na element thicknesses

and ¢ = €3.
5:1f n = 4: X to Xy, ¢ are set as Nay element thicknesses

and ¢ = 4.

The flow diagram of MORBTO is shown in Fig. 3.

All computations are conducted using MATLAB and a per-
sonal computer with specifications being Intel(R) Core™ i5-
3210M CPU @ 2.5 GHz, 4.00 RAM, and 64-bit Windows 10
operating system.

5. Design Results

The optimal topologies obtained from using the proposed
MORBTO for MOP1 and MOP2 are shown in Figs. 5 and 7,
respectively. As a comparison, the optimal topology design
obtained from the deterministic topology optimization for MOP1
and MOP2 is also presented in Figs. 4 and 6, respectively.
Some selected optimal topology designs obtained from Figs. 4
and 5 are shown in Figs. 8(a) and 8(b), respectively. From
comparison, the optimal topologies obtained from the deter-
ministic topology optimization also present in Figs. 8(a) and
9(a). It can see in Figs. 8(b) and 9(b) that the result from
MORBTO is under the EPSI yields optimal topology design
different from those yielded by the deterministic topology opti-
mization (Figs. 8(a) and 9(a)).

This can conclude that the proposed MORBTO approach
presents a strategy that generate safer topology designs satis-
fying different failure possibility requirements, which causes

topology changing follows the failure possibility change. As well
as the proposed MORBTO yields optimal topology designs
clearly that is different from the deterministic topology optimiza-
tion, indicating that the fuzzy uncertainties remarkably influence
the topology design. Furthermore, the time consumption com-
parison between the traditional triple-loop nest problem and the
proposed technique for all cases are shown in Table 1. The
results show that the time spent by the proposed technique is
lower than the triple-loop nest problem in all the failure possibil-
ity constraints. It can be clearly stated that the proposed tech-
nique can reduce the complexity of the traditional technique.

Generate population

Fuzzy variables:
E,Fv

A 4

Encoding and decoding scheme

A 4

A 4

min  {fi (p).EPSI} i=1,...M

GEF
P 7T i

Subject to
EPSI=max(gj(p,a™)) > 0, mic[0,1],
i=1,2,.,N
0 <p'<p <p*

Optimum?

lyes

STOP

no

Fig. 3 The flow diagram of MORBTO.
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Fig. 4.The deterministic optimal topology design of MOP1 under failure possibility constraint wg= 1with various r.
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Fig. 5. The optimal topology design of MOP1 under failure possibility constraint 5= 0.001 with various r.
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Fig. 8. The selected optimal topologies of MOP1 (a)
nrj = 1 (b) mg = 0.001.
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Fig. 9. The selected optimal topologies of MOP2 (a)
nsi = 1, (b) ms = 0.001.

Table 1. The time consuming of RBTO and MORBTO
for MOP1 and MOP2

MOP1 RBTO MORBTO

73 1 0.001 1 0.001

Time consuming

51430 5168.7 966.1 9733

©)
MOP2 RBTO MORBTO
m 1 0.001 1 0.001

Time consuming

©)

67558 92656 1093.9 11417

6. Conclusions and Discussions

The optimum structure from topology optimization prob-
lem may be less realisable due to inevitable uncertainties
from various sources, thus, these uncertainties should take
into account in design. A satisfactory design should take
these uncertainties into consideration. This paper proposes
new MORBTO approach which uses the fuzzy set model to
describe the uncertainties. This technique can be applied for
the multi-objective topology optimization problem, which has
conflicting objectives. The proposed MORBTO is formulated
as a problem of minimizing mass, compliance and equiva-
lent possibilistic safety index with constraints being accom-
plished in the possibility context. Furthermore, this paper
proposes to deal with the complex reliability of the structure

using fuzzy that it is usually a double-looped problem by
using multi-objective optimization reducing to single-loop
optimization. The performance of the proposed technique is
studied by two numerical examples. From the numerical
results, it is shown that the proposed MORBTO can gener-
ate conservative optimal topology designs with various val-
ues of EPSIs, which is different from those obtained from the
pvious RBTO. These results indicate that the proposed
MORBTO is an effective tool to deal with the uncertain to-
pology optimization with considering the expert opinion.
Furthermore, the proposed technique can reduce the com-
plexity of the traditional technique and reducing time con-
sumption in solving the optimization problem.

For future study, the reliability-based topology optimiza-
tion approach will extend to handle uncertainties that take
place in design of an aircraft structure.
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