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บทคัดย่อ 
 

การย่อยสลายสารอินทรีย์แบบไร้อากาศถูกแนะนำให้เป็นทางเลือกที่มีความหวังสำหรับระบบบำบัดน้ำ
เสียในอุตสาหกรรม โดยไม่เพียงแต่ใช้สำหรับการบำบัดน้ำเสียแต่สามารถให้ก๊าซชีวภาพสำหรับเป็นพลังงาน
ทางเลือกได้อีกด้วย สำหรับน้ำเสียจากโรงงานยางเป็นน้ำเสียที่มีความเข้มข้นของซัลเฟตสูง เป็นสาเหตุให้การ
บำบัดน้ำเสียและการผลิตก๊าซมีเทนไม่มีประสิทธิภาพ การเข้าใจถึงกลุ่มจุลินทรีย์ซึ่งเป็นตัวขับเคลื่อนการย่อย
สลายสารอินทรีย์แบบไร้อากาศเป็นสิ ่งสำคัญอย่างยิ ่งในการปรับปรุงระบบบำบัดน้ำเสีย การศึกษาแบบ         
เมตาจีโนมิกเป็นการใช้เทคโนโลยีการหาลำดับนิวคลีโอไทด์ในปริมาณมากในการอ่านสารพันธุกรรมของจุลินทรีย์
ในสภาวะแวดล้อมได้โดยตรงโดยไม่ต้องอาศัยการเลี้ยงเชื้อ ในงานวิจัยนี้ ผู้จัดทำได้ใช้เทคนิคแบบเมตาจีโนมิก
ศึกษาจุลินทรีย์ในระบบบำบัดน้ำเสียโรงงานยางแบบ Multi-stage treatment system โดยไปป์ไลน์ทาง        
ชีวสารสนเทศสำหรับการวิเคราะห์ข้อมูลเมตาจีโนมิกได้ถูกพัฒนาขึ้น ซึ่งให้ผลลัพธ์เป็นรูปแบบและการทำงาน
ของกลุ่มจุลินทรีย์ การศึกษาแสดงให้เห็นว่ารูปแบบกลุ่มจุลินทรีย์มีการเปลี่ยนไปในสภาวะที่ระบบมีประสิทธิภาพ
สูงสุดเมื่อเทียบกับสภาวะอ้างอิง โดยการศึกษานี้พบกลุ่มแบคทีเรียรีดิวซ์ซัลเฟต ได้แก่ Desulfovibrionaceae 
Desulfomicrobiaceae และ Desulfobacteraceae และแบคทีเร ียในกลุ ่มซ ัลไฟด์ออกซิไดซ ิงค ์ ได ้แก  ่
Spirochaetaceae Rhodobacteraceae Campylobacteraceae Comamonadaceae แ ล ะ 
Burkholderiaceae เป็นต้น เมทาโนเจนที่ถูกค้นพบในปริมาณมากเป็นชนิดที่เปลี่ยนอะซิเตตให้เป็นมีเทน ได้แก่ 
Methanosaetaceae และ Methanosarcinaceae เป็นที ่น ่าสนใจที ่หนึ ่งในแบคทีเร ียรีด ิวซ์ซ ัลเฟต คือ 
Desulfovibrio vulgaris ถูกพบในปริมาณมากในถังหมักที่ให้ประสิทธิภาพสูง แบคทีเรียนี้เป็นกลุ่มที่ออกซิไดซ์
ซัลเฟตอย่างไม่สมบูรณ์ ทำให้ได้อะซิเตตเป็นผลผลิต ซึ่งเป็นสารอาหารสำหรับเมทาโนเจนในการผลิตก๊าซมีเทน 
โครงการนี้ให้ผลลัพธ์เป็นไปป์ไลน์และแนวทางปฏิบัติสำหรับการวิเคราะห์ข้อมูลเมตาจีโนมิก รวมถึงองค์ความรู้
เชิงลึกของกลุ่มจุลินทรีย์ในระบบบำบัดน้ำเสียที่มีซัลเฟตสูง โดยกลุ่มจุลินทรีย์เหล่านี้สามารถนำไปศึกษาต่อและ
ประยุกต์ใช้สำหรับการจัดการกลุ่มจุลินทรีย์เพื่อเพิ่มเสถียรภาพและประสิทธิภาพของระบบบำบัดน้ำเสียแบบไร้
อากาศจากโรงงานยางได้ 
 
คำสืบค้น: การวิเคราะห์ข้อมูลแบบเมตาจีโนมิก ไมโครไบโอม ชีวสารสนเทศ การย่อยสลายสารอินทรีย์แบบไร้
อากาศ ระบบบำบัดน้ำเสียโรงงานยาง น้ำเสียที่มีซัลเฟตสูง แบคทีเรียรีดิวซ์ซัลเฟต  
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Abstract 

 
Anaerobic digestion (AD) has been introduced as a promising solution for industrial 

wastewater treatment systems, not only for wastewater treatment but also biogas production as 

renewable energy. Particularly, latex wastewater containing high concentration of sulfate causes 

both inefficient water treatment and methane production. Understanding the microbial 

communities driving AD process is a key success for improving the treatment systems. 

Metagenomics employs high-throughput technologies to direct sequence genetic materials and 

reveal all microbes from a particular environment without cultivation. In this work, we conducted 

shotgun metagenomic approach to study microbiome in multi-stage latex wastewater treatment 

system. Bioinformatics pipeline for analyzing microbiome from metagenomic data has been 

developed providing microbial and functional profiles. The study showed a shift of microbial 

profiles from control to the optimal performance reactors. A group of sulfate reducing bacteria 

(SRB) was found in our study such as Desulfovibrionaceae, Desulfomicrobiaceae and 

Desulfobacteraceae. Diverse families of sulfide oxidizing bacteria (SOB) were discovered, for 

example, Spirochaetaceae, Rhodobacteraceae, Campylobacteraceae, Comamonadaceae and 

Burkholderiaceae. Acetoclastic methanogens, Methanosaetaceae Methanosarcinaceae, were 

prevalently revealed in the system playing an important role in methane production. 

Interestingly, one of the discovered SRB, Desulfovibrio vulgaris, was found with higher 

abundance in the optimal performance reactor. It is a group of incompletely-oxidizing sulfate 

reducer providing acetate as a product, which could be a substrate of methanogens. This project 

provides a pipeline and practical guideline for metagenomic analysis as well as insight 

information of microbial community in a sulfate-rich wastewater treatment system. The 

communities could be further studied and applied for microbial management and manipulation 

to increase the stability and efficiency of the anaerobic latex wastewater treatment.  

 

Keywords: Metagenomic analysis, Microbiome, Bioinformatics, Anaerobic digestion, Latex 

wastewater treatment, Sulfate-rich wastewater, Sulfate reducing bacteria 
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Executive Summary 

 
This research project provides insight scientific knowledge in bioinformatics and 

biotechnology applied for anaerobic digestion (AD) for wastewater treatment and biogas 

production as a source of renewable energy. Even though several industries are interested in 

utilization of the technology, the instability of the system is still an issue. Several factors causing 

the problem including sulfate-rich condition in e.g. latex wastewater treatment system. A 

research focusing on the problem is needed and a key success is the understanding of microbial 

communities driving the AD process. Gaining such knowledge provides better control of the 

systems. With the high-throughput technology nowadays, a community of microbes can be 

studied though genetic materials without cultivation. The technology is known as metagenomics, 

allowing a discovery of massive numbers of microbes. Nevertheless, such data cannot be 

analyzed by hand and needed deep specific knowledge to extract information called 

bioinformatics. It is important to build a workflow to analyze the data to get informative and 

accurate results. Thus, this project serves two main purposes of (1) developing a bioinformatic 

pipeline for analyzing metagenomic data, and (2) analyzing microbiome data in latex wastewater 

treatment system. For the first purpose, the constructed pipeline facilitates the analysis of 

microbial communities through the high-throughput genetic sequences. The pipeline cannot only 

be used in this project but also provides a practical guideline for analyzing other communities in 

similar or different area of microbiome research. Secondly, the analysis of microbiome in latex 

wastewater treatment system provides a high-resolution of microbes inside the system. Several 

sulfate reducing bacteria (SRB) and sulfide oxidizing bacteria (SOB) were discovered in the 

system. Acetoclastic methanogens were found as main methane producers. Interestingly, one of 

detected SRB, Desulfovibrio vulgaris, was found with higher abundance in the high-performance 

system compared to control. This is interesting as SRB is usually found as a competitor to 

methanogens, microbes producing methane. However, D. vulgaris was found as a group of 

incompletely-oxidizing sulfate reducer providing acetate as a product, which could be a substrate 

of methanogens instead (mainly Methanosaeta harundinacea in this system). The study suggests 

a pair or group of microbial communities living together in the AD system providing good 

performance of both sulfate removal and methane production. The discovery could be further 

studied and applied in the industry towards environmental friendly treatments and the use of 

renewable energy. In addition, the project provides related scientific outputs publicly for research 

communities as paper, conference proceedings and presentations (please see appendix).   
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Chapter 1 

Introduction 
 

1.1 Introduction to the research problem and its significance 

Anaerobic digestion (AD) has become a promising solution for wastewater treatment 

since it enables both pollution control and generation of renewable energy. It provides 

biomaterials degradation by microorganisms in the absence of oxygen. The degradation 

processes result formation of biogas (i.e. methane and carbon dioxide), which has been 

considered to contribute as sustainable energy. In addition, the AD system consumes low energy 

that causes lower cost for the water treatment comparing to other systems that require high energy 

such as the aerated lagoon system. The AD systems have been constructed especially for 

agricultural and industrial wastewater, which contain high levels of biodegradable materials. 

Nevertheless, the operational stability of the AD system is still poor e.g. yielding low biogas 

production, which prevents the technique from being widely applied and commercialized. 

In addition, wastewater from the latex factories contains high organic, ammonia and 

sulfate concentration. With the high sulfate concentration, wastewater treatment systems of latex 

factories contain more pollution problems both air and water pollutions, and also system 

instabilities according to the toxic of the sulfide producing during the process. Sulfate reducing 

bacteria (SRB) is a known group of microbes changing sulfate to sulfide, which is toxic to 

environment and microbes in the AD system especially methanogen. In addition, SRB is a 

competitor to methanogen as final oxidizers in the AD process. These problems cause low 

efficiency of water treatment and biogas production. 

Understanding the microbial communities and their functions is a key step for microbial 

management in AD wastewater system in order to optimize the system performance and prevent 

system failure. Even though the AD is a well-known technology, the functioning microbiomes 

and their interactions are still not completely understood. This could be because of the 

complexity of the anaerobic microbiome and the high number of uncharacterized 

microorganisms. Discovery of the fundamental knowledge of the microbial communities and 

their behaviors corresponding to environmental changes and process disturbances would lead a 

way to monitor and control microbial community in the AD system. For example, microbial 

indicators can be set for detecting optimal performance of a reactor or warning of process failure. 

Discovery of a microbial community enhancing biogas production could also be applied. The 
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efficient management of the system would lead to a significant improvement of the system 

performance especially in biogas production. 

With the availability of the next generation sequencing (NGS) technology, living cells 

can be studied in molecular levels in a high-throughput manner. The technology provides an 

opportunity to read all genetic materials (i.e. DNA or RNA) in a collection of tons of short 

fragments from living cells, including microbial communities. The later one is known as 

metagenomics, the study of overall DNAs of a particular sample from an environment. The study 

is not limited to microbiomes in wastewater systems. Unlike the conventional microbial 

techniques that are culture-dependent techniques, metagenomics extracts DNAs directly from a 

sample of the study without cultivation. The technique provides more complete picture of 

microorganism structures (diversity and abundance), as so far only a small part of 

microorganisms could be cultivated. In addition, by performing whole-genome shotgun 

sequencing, the technique yields not only the inside structures of microbial communities but also 

information of functional genes in the system. The metagenomics using whole-genome shotgun 

sequencing so far is a powerful tool to study microbial communities, functions and dynamics to 

disturbances. 

With the high amount of sequences that will be read from the metagenomic study (could 

reach to millions of short read sequences), it is too far to interpret the data by hands. There is a 

strong need of bioinformatics, which includes several branches of sciences e.g. statistics, 

computer science, biology, and other related disciplines, to manage and analyze the data. 

Development of a pipeline that is a flow of integrated bioinformatic methods and tools is 

essential. The pipeline will enable the extraction of biological knowledge from the DNA 

community data. 

In order to achieve efficient management of the sulfate-rich wastewater system for 

optimal performance in wastewater treatment and high biogas production, this project will be the 

insight study of microbial community structures, functions and dynamics through metagenomics. 

The project will include the development of a bioinformatic pipeline to analyze the metagenomic 

data for extracting biological information leading better understanding of the anaerobic digestion 

in the industrial latex wastewater system. 
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1.2 Objectives 

1. To develop a bioinformatic pipeline for analyzing metagenomic data of anaerobic 

wastewater treatment systems 

2. To analyze metagenomic data of anaerobic microbiomes in latex wastewater for better 

understanding of the microbial community structures, functions and dynamisms 

 

1.3 Scope of research� 

In this project, the bioinformatic analysis of metagenomic data from sulfate rich 

wastewater system will be performed. The pipeline and analysis is based on high-throughput 

sequencing technology of short reads. The study includes two main steps as following. 

1. Development of a bioinformatic pipeline for analyzing metagenomic data from a 

wastewater treatment system 

  1.1 Development of modules for analyzing metagenomic data, which are 

taxonomic analysis (reads-based methods), functional analysis and comparative metagenomics 

  1.2 Development of databases for taxonomic and functional analyses of 

metagenomic data from AD systems  

1.3 Modules integrations into an analytical pipeline linking to the developed 

database for analyzing of metagenomic data 

  1.4 Use of open source software/tools 

2. Metagenomic analysis of anaerobic metagenomes in sulfate rich wastewater system by 

conducting the developed bioinformatic pipeline  

 2.1 Data pre-processing of each metagenomic sample 

 2.2 Taxonomic analysis of each metagenomic sample 

 2.3 Functional analysis of each metagenomic sample 

 2.4 Comparative metagenomics between different samples  

 

1.4 Expected output 

1. Bioinformatic pipeline for analyzing metagenomic data of anaerobic wastewater 

treatment systems 

2. Microbial and functional profiles of microbial communities in the studied latex 

wastewater treatment system 
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1.5 Expected outcome 

The understanding of the microbial structures, functions and dynamics at different 

bioreactor performance from this study could provide knowledge guiding better microbial 

management and monitoring the sulfate-rich wastewater system. For example, abundance of 

specific species or functional genes, or microbial diversity patterns could be used to detect the 

system at optimal performance or warn before failure. This project could provide a preliminary 

study for further studying microbiome responding to different disturbances or factors, helping to 

control the communities for obtaining higher efficiency of anaerobic wastewater system. 
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Chapter 2 

Literature review 
 

2.1 Anaerobic digestion and biogas production 

Anaerobic digestion (AD) provides biogas as a final product which can be use as rewable 

energey. The use of the biogas to replace fossil fuels could reduce generation of greenhouse gases 

simultaneously with wastewater treatment. The biogas production occurs by digestion of various 

organic compounds which are controlled by diverse microorganisms under the anoxic 

environment comprising four main processes of hydrolysis, acidogenesis, acetogenesis and 

methanogenesis [1, 2]. 

A primary step of AD is hydrolysis that complex insoluble polymers are decomposed into 

the soluble monomers (e.g.  amino acids, small molecule sugar and fatty acids)  by hydrolytic 

enzymes [1].  These enzymes are secreted by specific microorganisms belonging in the class of 

Clostridia and Bacilli, for example, Clostridium thermocellum and Enterococcus faecalis which 

were reported as cellulose-degrading bacteria [3]. 

The second process is acidogenesis. this step is an acid- forming step that fermentative 

microorganisms referred to as acidobacteria playing an important role to convert hydrolysis 

resulting products to acidic intermediates such as volatile fatty acids (VFAs) or alcohols [1]. 

VFAs is a short-chain fatty acids which structure comprises of two- to five-carbon atoms such as 

acetic acid (C2), propionic acid (C3), butyric acid (C4), valeric acid (C5) and others.  The 

representative bacteria of this process were reported as Clastridium acetibutilicum, Clostridium 

perfingens, Enterococcusfaecium, Lactobacillus helveticus and etc [3] .  

Acetogenesis is a conversion step of acidic intermediates produced from hydrolysis and 

acidogenesis processes, to generate acetic acid (C2), CO2 and H2, which are consequently utilized 

by biogas producing microbes [1].  Various anaerobes were reported as key organisms to 

syntrophically produce acetate and H2, for example, Syntrophobacter, Syntrophomonas, etc. 

which are propionate- and butyrate-decomposers [4, 5], respectively. Moreover, acetate could be 

produced by homoacetogenic bacteria or homoacetogen which utilize H2/CO2 as a carbon source 

[6]. An example of the homoacetogen is Acetobacterium sp [7]. 

The final step is methanogenesis, an important process to yield methane and CO2.  The 

biogas producing microbes, also known as methanogens, belong mainly in the archaea domain 

that play a crucial role in methane production.  Methanogens could be categorized into two groups 

of acetoclastic methanogen (AM) and hydrogenotrophic methanogen (HM).  According to the 
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process of methane production, acetate is converted by AM, whereas CO2 and H2 are 

syntrophically converted by HM with contribution of bacterial partner called syntrophs [1]. 

Several AMs have been reported, for instance, Methanosaeta sp.  and Methanosarcina sp.  while 

Methanobactereium sp. , Methanobrevibacter sp. , Methanomicrobium sp.  Methanococcus sp. 

have been reported as HMs [2]. 

 

2.2 Anaerobic digestion in sulfate-rich wastewater system 

Anaerobic digestion is a promising solution for wastewater treatment since it enables 

both pollution control and generation of renewable energy [8]. It provides biomaterials 

degradation by microorganisms in the absence of oxygen. The degradation processes result 

formation of biogas (i.e. methane and carbon dioxide), which has been considered to contribute 

as sustainable energy. In addition, the AD system consumes low energy that causes lower cost 

for the water treatment comparing to other systems that require high energy such as the aerated 

lagoon system. The AD systems have been constructed especially for agricultural and industrial 

wastewater, which contain high levels of biodegradable materials. 

A wide variety of substances have been reported as inhibitors causing anaerobic process 

failure, for example, sulfide, ammonia, light metal ions heavy metals and organics. High 

concentration of the substances could toxic the microbial community and lead to process failure. 

This project will focus mainly on the effects of high concentration of sulfate, which is a common 

constituent of many industrial wastewaters and also latex factories. In anaerobic reactors, the 

sulfate is reduced to sulfide by the sulfate reducing bacteria (SRB). The SRB is a competitor to 

other anaerobic microorganisms including methane producing bacteria (MPB) as they share 

common substrates. Also, the produced sulfide is toxic to the MPB, other anaerobic 

microorganisms, and SRB itself. These factors lead low biogas production, inefficient treatment 

and/or failure of the system. Furthermore, sulfide oxidizing bacteria (SOB) are also often found 

in the system. They oxidize dissolved hydrogen sulfide and other sulfur compounds. 

 

2.3 Next-Generation Sequencing (NGS)  

Sequencing technologies revolutionized the molecular biology and microbiology studies 

in a few decades and have become the most frequently used tool to cultured- independently 

investigate the potential microorganisms [9].  The technology helps to determine the order of 

nucleotide bases (A, T, C, G) of DNA or transcribed RNA sequences.  The instruments and 

materials for sequencing have been developed to decrease the cost and accelerate the speed as a 
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large- scale sequencing.  The NGS technology, which is a platform for high-throughput 

sequencing, has been widely used for genomics and transcriptomics studies.  This sequencing 

technology has many advantages ( e. g.  highly- parallel sequencing, which can perform many 

reactions at the same time)  and chip-scale process (which means all processes can be done on a 

tiny place called “sequencing chip”). The product of sequencing technology also known as “read” 

is short (approximately 50-700 bases), consequently the platform referred to as short-read 

sequencing platform [9]. 

Currently, NGS technologies comprise several platforms such as Illumina, Roche and 

LifeTechnologies.  However, Illumina is well-known, widely and frequently used platform for 

short-read sequencing. The instruments of Illumina platform include NextSeq, MiSeq and HiSeq, 

etc.  Their very performances are run time, the number of maximum output (Gb), resulting-read 

length and the number of reads in parallelized run. For example of Illumina’s instrument, MiSeq 

could generate 132 to 15 Gb of 300x2 paired-end read while HiSeq2500 could generate in wide 

range throughput from 180 up to 500 Gb of the read length 50 to 125 bases paired-end read [10]. 

The application of each instrument based on the purpose of a study, for instance, target-specific 

sequencing, whole-genome sequencing of large genome (human, plat, animal model) or small 

genome (microbe, virus), etc. Moreover, recently technology could generate paired-end sequence 

including forward and reverse reads of each sequencing region performing more accurate than 

single-ended read sequences [9, 11].  

 

2.4 Metagenomic data analysis 

 With the development of NGS technologies, high-throughput DNA sequencing has 

become economically affordable for studying living organisms including sequencing of 

environmental DNA samples that provides metagenomic data [12]. There are two main 

approaches of NGS-based methods to study microbiomes, which are amplicon-based (e.g. 16S 

rRNA) sequencing and shotgun sequencing. Both approaches provide several thousand or even 

millions of short DNA sequences as results, called reads. Lengths of the DNA sequences vary 

according to the technologies capacities. The first approach is a target sequencing method 

requiring specific primers to amplified specific target genes. 16S rRNAs is the most popular 

genes for target sequencing to study microbial diversity and abundance, as it is highly conserved 

sequences over evolutionary time. Another approach is whole-genome shotgun sequencing 

providing short reads of all DNA materials from the studied samples. This method requires DNA 

library construction using ramdom primers. Even through the whole-genome shotgun is more 
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expensive than the 16S rRNAs as more DNA fragments will be sequenced, the approach provides 

more information of functional genes in the studied communities. Since the whole-genome 

shotgun sequencing will be utilized in this project, an overview of the method will be described 

as below. 

 Two main bioinformatic approaches can be utilized for analyzing whole-genome shotgun 

metagenomic data [13]. The methods are depending on whether an assembly process will be 

performed. The assembly process is a process to extend short reads from sequencing technologies 

to longer sequences by recursively finding overlapped regions of the short reads. For the 

assembly-free method, the produced reads will be analyzed directly after the pre-processing 

process to reduce sequencing errors. Each read will be categorized in taxonomy binning process. 

Generally, similarity-based taxonomy assignment is utilized by comparing to references 

databases such as NCBI RefSeq [14], KEGG [15] and EggNOG [16]. Another type of methods 

for taxonomy binning considers sequence compositions, for example, GC content, codon usage 

or frequency of short oligomers (k-mers). Several computational frameworks have been 

developed to perform the taxonomy binning, for instance, MEGAS, PhymmBL, MetaPhlAn, and 

mOTU. Then, the taxonomic abundance and microbiome diversity can be measured. 

For the assembly-based strategy, reads from the same genomes are merged into longer 

sequences called contigs. The functional diversity of the studied microbial communities can be 

quantified from functional annotations of these metagenomic sequences. Two main steps will be 

conducted for the gene annotation process, which are gene prediction and functional annotation. 

For the gene prediction step, the encoding genes will be identified from the assembled contigs. 

Then, functional annotation can be performed after deriving the identified genes. Several 

databases are available for inferring functions e.g. KEGG [15], COG [17], Pfam [18], EggNOG 

[16], MG-RAST [19], and CAMERA [20]. In addition, functional enrichment analysis of the 

pathways in a sample or between samples can be conducted. Comparing metabolic gene 

abundance between samples can also be studied. 
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Chapter 3 

Materials and Methods 

  

The development of bioinformatic pipeline for metagenomic data analysis, followed by 

analytical step of anaerobic microbiomes for better understanding from high sulfate wastewater 

systems were performed. The project was under collaboration with a team at Excellent Center of 

Waste Utilization and Management (ECoWaste), Pilot Plant Development and Training Institute 

(PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, 

Bangkok, Thailand. The DNAs of the microbiomes were extracted from the ECoWaste center, 

and then outsourced for shotgun metagenome sequencing. The metagenomic data were analyzed 

in this project through the developed bioinformatic pipeline. The details of all materials and 

methods are described below. 

 

3.1 Materials 

3.1.1 Metagenomic samples of the studied latex wastewater treatment system 

 The microbiome samples were collected from the AD multi-stage treatment system 

aiming for better performance of sulfate removal and higher methane production. The system 

comprises (1) Acidogenic sulfate reducing reactor; SRB_R, (2) Sulfide oxidizing reactor; 

SOB_R, and (3) Methanogenic reactor; MT_R, which are connected orderly (Figure 3.1). The 

reactors carry three main functions of reducing sulfate, oxidizing sulfide and producing methane, 

respectively. In order to improve the treatment performance of reducing sulfate while still 

maximizing methane production, there will be a recirculation between SRB_R and SOB_R 

reactors. The metagenomic samples for shotgun sequencing were derived from SRB_R and 

SOB_R reactors at the control and recirculation rate of 70%, which is an optimal rate providing 

high sulfate removal and biogas production. The optimal performance was at organic loading 

rate (OLR) 5 kg COD/m3 day, biogas production of 0.234 m3/kg COD, and chemical oxygen 

demand (COD) removal at 83%. The anaerobic sludge was derived from AD wastewater system 

of a concentrated latex factory.  

 In total, four metagenomic samples were sequenced using Illumina MiSeq platform of 

150 bases paired-end reads. The samples were from SRB_R and SOB_R reactors at control stage, 

and SRB_R and SOB_R reactors when performed recirculation rate at 70%. 
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SRB_R  SOB_R       MT_R 

 

Figure 3.1 The design of AD multi-stage treatment system. The system comprises three reactors 

of acidogenic sulfate reducing reactor (SRB_R), Sulfide oxidizing reactor (SOB_R), and 

Methanogenic reactor (MT_R), respectively. 

 

3.1.2 Software for metagenomic analysis 

 A list of tools or software was integrated to develop a pipeline for metagenomic data 

analysis (Table 3.1). These are open-source software which are freely available. Each tool has 

its own function of data analysis. In addition, a list of databases was collected for each step of 

analyses as shown in Table 3.2. 
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 Table 3.1 A list of the software used for the developed metagenomic pipeline. 
 

Method Software/tools References 

Data pre-processing 

Quality checking/visualization FastQC [21] 

Trimming out low-quality bases and 

adapter removal 

Trimmomatic [22] 

   

Taxonomic analysis 

Taxonomic classification  Centrifuge [23] 

Taxonomic profile visualization Krona, R, RAM package [24], [25], [26] 
   

Functional analysis 

Sequences assembly IDBA-UD, BLAST [27], [28] 

Gene prediction Prodigal [29] 

Functional assignment eggNOG-Mapper [30] 

Reads mapping Bowtie [31] 

Pathway visualization KEGG Mapper [32] 
   

Others   

Parsing data files Python, R [33], [25] 

Normalization R [25] 

Statistic calculation Python, R, Shell script [33], [25]  

 

 

Table 3.2 A list of the databases for metagenomic analysis. 
 

Method Database name References 

Taxonomic analysis RefSeq [14] 

Functional analysis EggNOG, KEGG  [16], [34] 

Interpretation MiDAS [35] 
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3.2 Methods 

 In order to analyze metagenomic data of sulfate rich wastewater, the bioinformatic 

pipeline for analyzing metagenomic data was firstly developed, and then utilized in an analytical 

step of the anaerobic microbiomes. 

 

3.2.1 Development a bioinformatic pipeline for analyzing metagenomic data of anaerobic 

wastewater treatment systems 

 Bioinformatic pipeline for analyzing metagenomic data was developed, focusing for 

microbiomes from AD wastewater systems. The pipeline development can be divided into six 

main steps (Figure 3.2), which are (1) pipeline design, (2) modules development, (3) modules 

integration, (4) database development, (5) pipeline testing, and (6) pipeline deployment.  

 

 
 

Figure 3.2 An overview of bioinformatic pipeline development for analyzing metagenomic data. 

 

From the first step of pipeline development, the pipeline structure for metagenomic data 

analysis will be designed by dividing into analytical modules. Here the pipeline was designed 

for shotgun sequencing data (mainly for Illumina or short reads platform). The analysis of the 

metagenomic data can be separated into four main parts, which are data pre-processing, 

taxonomy analysis, functional analysis, and followed by comparative metagenomics. After 

developing each module, the tested modules were integrated into flowing pipeline. In parallel, 

the database for analyzing metagenomic data emphasizing on anaerobic microbial was 

constructed. After combining the integrated modules and the developed database, the pipeline 

was tested for deployment and used for next step analysis of latex wastewater samples. 
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3.2.1.1 Modules development and integration 

 For the development of each module (data pre-processing, taxonomic analysis, functional 

analysis, and comparative metagenomics), the existing bioinformatic tools were chosen based on 

their efficiency or accuracy of analyses, requirement of computational power, time consuming 

and ease of use (Table 3.1). The selection was based on literature review and in-house evaluation 

[36]. In addition, the synchronization of the tools in the pipeline was also considered. The 

selected tools/scripts/software were installed and finally tested. The flows of the pipeline were 

mainly implemented using Python, R programming and shell scripts. 

 

3.2.1.2 Databases development  

 Each step of the metagenomic analysis requires external databases for analyzing the 

derived DNA sequences, mainly to identify the taxonomy or function of the studied samples (in 

taxonomic or functional analysis, respectively). The studied DNAs from metagenomic data can 

compared to find most similar sequences in publicly available databases for inferring taxonomy 

and functions (Table 3.2). As these databases have different data formats and were separately 

available from various sources, databases integration was then performed by downloading in the 

local storage (hard drive) and linking to the implemented module in order to facilitate the 

analysis. For taxonomic database, the database was required to be costumed and synchronized 

to the selected tool, Centrifuge [23]. 

 

3.2.2 Metagenomic analysis of anaerobic microbiomes in sulfate rich wastewater system  

 The developed bioinformatic pipeline from the previous step was utilized for the 

metagenomic data analysis of anaerobic microbiomes in sulfate rich wastewater system derived 

from ECoWaste center as described above. Metagenomic data at different conditions will be 

analyzed, which are from SRB_R and SOB_R reactors at control stage and optimal recirculation 

rate, respectively. The metagenomic data analysis was performed through the following steps 

(see an overall workflow in Figure 4.1). 

 1. Data pre-processing. The raw sequences data (FASTQ format) were evaluated and 

visualized using FastQC program [21]. Low-base-quality (Q < 30) and adapter were trimmed 

using Trimmomatic [22]. After trimming, sequences with length < 36 base pairs were removed. 

All sequences passing the filtering criteria were then used for downstream analyses. 

2. Taxonomic analysis. The pre-processed read sequences were classified for their 

microbial taxonomy using Centrifuge [23] and the custom in-house database containing 

complete genomes of bacteria, archaea, fungi and virus derived from RefSeq database [14]. 
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Relative abundance of the identified microbes were calculated and normalized using scaling 

method [37]. Microbes with >=1% relative abundance in at least one sample were displayed in 

taxonomic profiles.  

 3. Functional analysis. For each sample, the pre-processed short reads were assembled 

into contigs using IDBA-UD [27]. The in-house Python script was then used to merge contigs 

between samples (Overlapped sequences > 200 base pairs and identity of overlapped region is > 

98% using standalone BLASTN [28]) making reference sequences of all samples. Based on the 

assembled sequences, gene prediction were performed using Prodigal software [29]. The 

functional genes were annotated using eggNOG-Mapper [30] and EggNOG database [16]. All 

gene abundances were normalized using Reads Per Kilobase of gene, per Million mapped reads 

(RPKM) method. Gene with RPKM value >=1 was used for further analyses. 

 4. Comparative metagenomics between samples of different reactors and different stages. 

Taxonomic and functional data of all samples were compared using the normalized abundance 

values. The comparisons were aimed to reveal dynamisms of microbial communities 

corresponding to the reactor types and stages. For functional results, a pair of samples were 

compared to find differential abundance genes and visualize in functional pathways using KEGG 

Mapper [32]. MiDAS database, Global Database of Microbes in Wastewater Treatment Systems 

and Anaerobic Digesters [35], was used as a reference and interpretation for microbes detected 

in wastewater treatment system.  
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Chapter 4 

Results and Discussion 
 

 In this project, a bioinformatic pipeline for analyzing metagenomic data of anaerobic 

wastewater treatment systems was developed. The pipeline was based on the input of high-

throughput short read technology, comprising four main analytic modules of data pre-processing, 

taxonomy analysis, functional analysis, and comparative metagenomics. The developed pipeline 

was then applied to analyze shotgun metagenomic data of microbial communities in latex 

wastewater treatment system, which contain high sulfate concentration. Microbial profiles and 

their functions including the dynamisms between reactor types (SRB and SOB reactors from AD 

multi-stage treatment system) and running stages (control and optimal conditions) were revealed. 

The results provide insight information of anaerobic microbes which could be further studied 

and applied for enhancing biogas production in sulfate-rich wastewater treatment systems.  

 

4.1 Bioinformatic pipeline for analyzing metagenomic data of anaerobic wastewater 

treatment systems 

The developed pipeline comprises four main analytic modules of data pre-processing, 

taxonomy analysis, functional analysis, and comparative metagenomics. The overall workflow 

is shown in Figure 4.1 and the tools or software used in the integrated pipeline were listed as 

mentioned in Table 3.1 (Section 3.1.2). Databases used for metagenomic analysis were also 

integrated into the pipeline (Table 3.2). The data pre-processing was firstly needed to be 

performed for quality control of derived sequences. This step helps to alleviate technical errors 

from sequencing or sampling processes. After the pre-processing step, the taxonomic and 

functional analyses can be performed. The taxonomic analysis will enable studies of diversity 

and abundance of the microbiomes of interest. The functional analysis provides discovery of 

functional genes of microbiomes and their metabolic abilities. Finally, the comparative 

metagenomics can be performed for comparing microbial communities and their functions 

between samples. This step reveals dynamic of microbiomes in different conditions. Details of 

each step with its utilized databases are elucidated below. 

 

4.1.1 Data pre-processing module 

A data pre-processing module is a crucial step for quality control of the derived raw 

sequences (FASTQ format) by evaluating technical errors from sequencing process. In this 
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pipeline, FastQC [21] software is employed. Low-quality bases and adapters from the sequencing 

process will be trimmed from the read sequences using Trimmomatic [22]. The cut-off base 

quality score is usually at quality score >= 20 (99% base call accuracy). However, quality score 

>=30 (99.9% base call accuracy) is recommended if the derived raw sequences contain high-

quality bases. Higher stringency criteria provide better accuracy of downstream analyses of 

taxonomic classification and functional annotation. 

 

4.1.2 Taxonomic analysis module 

Taxonomic analysis reveals diversity and abundance of studied microbiome samples. The 

processed reads from the data pre-processing step will be used as an input of this step. The input 

reads will be classified and assigned the taxonomy using Centrifuge [23] by comparing with the 

taxonomic database. Tools for taxonomic classification were evaluated in term of detected 

microbial richness and diversity [36]. Centrifuge showed accurate numbers of richness and well-

correlated diversity to the mock dataset. Even through the tool could give some numbers of 

detected artifact sequences, it facilitates better in term of time consuming and required executing 

memories. In this pipeline, a custom database containing complete genomes of bacteria, archaea, 

fungi and virus derived from RefSeq database [14] was constructed and formatted for using with 

the Centrifuge software. The selected genomes in the databases reflect organisms found in 

wastewater treatment systems. Relative abundance, a ratio of read counts of a particular 

taxonomy and total reads of a sample, can then be calculated after classification and normalized 

using scaling method [37]. The normalized values provide comparable abundance between 

samples. Krona [24] can be used for interactive display of a taxonomic profile.  

 

4.1.3 Functional analysis module 

Functional analysis provides a discovery of functional genes of microbiomes and their 

metabolic abilities. The module takes the input read as pre-processed reads from the data pre-

processing step. As read inputs for this pipeline are from short read technology (approximately 

100-300 base pairs), it is important to do the sequence assembly before finding functional genes. 

IDBA-UD [27], which was developed to the specific characteristic of metagenomic data, was 

selected for assembling reads of each sample. After deriving assembled reads or referred to as 

contigs, these contigs were then merged between samples in order to make reference contigs for 

further analyses. The merging process were based on BLASTN with overlapped region between 

two sequences > 100 base pairs and sequence identity > 98%. We did not perform polled reads 

assembly among all samples because it would lead more misassembled contigs between similar  
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Figure 4.1 An overall of a pipeline for shotgun metagenomic analysis of microbiome from 

anaerobic wastewater treatment systems. The pipeline was developed as four main integrated 

modules of data pre-processing, taxonomy analysis, functional analysis, and comparative 

metagenomics. The databases for taxonomic profiling, functional analysis and interpretation 

were constructed. AD: Anaerobic digestion; DB: Database. 

 

reads in different samples. The gene regions can then be detected. Here well-known gene 

prediction tool, Prodigal [29], was utilized. To calculate gene abundance, reads mapped to the 

predicted genes will be counted using Bowtie tool [31]. For functional annotations of the 

predicted genes, eggNOG-Mapper [30] was chosen with EggNOG database [16]. The database 
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contains functional categories including KEGG Orthology (KO), which can be visualized by 

KEGG Mapper [32]. RPKM method, Reads Per Kilobase of gene per Million mapped reads, was 

chosen for normalization of gene abundances as it also considers the gene length. Genes with 

bigger size have higher chance to get more fragments sequenced. 

 

4.1.4 Comparative metagenomics module 

Comparative metagenomics can be performed for comparing microbial communities 

between samples for both taxonomic diversity and functional profiles. The step lead to 

understanding of the dynamic of microbiomes in different conditions/samples. In order to 

compare the data between samples, normalized abundance values are needed. This is because 

the total reads of each sample are not the same. Comparing the abundance using read counts 

directly would be unfair e.g. compare the abundance between samples with low and high 

numbers of total reads. Differential abundance genes between two samples can be identified. 

KEGG Mapper [32] could be used to visualize genes present in a specific pathway. In addition, 

MiDAS database [35] can be used as a reference  of microbe collections in wastewater treatment 

systems. This is a specific database attempting to collect microbes in wastewater treatment 

systems from different countries around the world. However, the database still incorporates data 

from a limited number of countries. 

 

4.2 Microbial communities in the latex wastewater treatment system 

The developed pipeline was applied to analyze the shotgun metagenomic data of 

microbial communities in latex wastewater treatment system containing high sulfate 

concentration. In this project, the samples were derived from AD multi-stage wastewater 

treatment system aiming to improve performance of sulfate removal and higher methane 

production. The system was designed as three consecutive reactors of acidogenic sulfate 

reducing reactor (SRB_R), Sulfide oxidizing reactor (SOB_R), and Methanogenic reactor 

(MT_R), respectively (More details in section 3.1.1). The samples were from SRB_R and 

SOB_R reactors at control (referred to as SRB_C, SOB_C) and optimal recirculation rate (70%) 

between the two reactors (referred to as SRB70, SOB70), respectively. The results of the 

metagenomic data pre-processing, taxonomic analysis and functional analysis including the 

community comparisons between samples are shown and discussed below. 
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4.2.1 Raw and pre-processed metagenomic data 

 The metagenomic raw data were retrieved from Illumina short read sequencing platform 

of original paired-end sequence length of 150 base pairs. After quality control or data pre-

processing step, about 10% of original sequences were removed. The rest of the sequences were 

then utilized for downstream analyses. Statistic of the analyzing sequences of the studied samples 

were shown in Table 4.1  

 

Table 4.1 Statistic of metagenomic sequences of the studied samples  
 

Sample Number of raw 

sequences 

Number of pre-

processed sequences 

Sequence 

length 

% GC 

content 

SRB_C 23,419,540 21,648,077 (92.44%) 36-150 49 

SRB70 20,554,231 18,416,920 (89.60%) 36-150 45 

SOB_C 23,339,401 21,063,247 (90.25%) 36-150 48 

SOB70 23,323,966 21,085,072 (90.40%) 36-150 46 

 

4.2.2 Taxonomic profiles of the microbial communities in the latex wastewater treatment 

system 

 

4.2.2.1 A large number of unknown microbes detected 

The high-quality reads were then classified for taxonomy to identify microbial profiles 

of the samples. The numbers of taxonomic assignable sequences are shown in Table 4.2 varying 

between 18.29-28.27% of the total pre-processed sequences. The results show high numbers of 

unknown organisms in the samples. The situation is often found in environmental samples, 

showing a need for more complete database to provide better information of the analytic 

environment. In the last decade, high-throughput sequencing technologies have been utilized to 

study microbial community allowing detection of microbes without cultivation. A large number 

of organisms are detected though the technologies. This propagates more information to study 

microbial communities. 
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4.2.2.2 Microbial community profiles of microbes from the sulfate-rich wastewater 

treatment system 

 Based on the taxonomic assignable sequences, microbial profiles of the samples from 

latex wastewater treatment system (AD multi-stage) with high concentration of sulfate were 

drawn. The microbial profiles at different taxonomic levels are displayed in Figure 4.2-4.3. 

 Three domains of microorganisms were detected which are bacteria, archaea and virus 

(Figure 4.2A). Bacteria is the most abundance organism (88.47 – 94.95%) in this experiment 

followed by archaea and virus (<1% relative abundance). At a phylum level (Figure 4.2B), 

Proteobacteria (30.01 – 42.98%), Firmicutes (14.80 – 46.08%), Bacteroidetes (7.09 – 14.03%) 

and Actinobacteria (7.25 – 8.72%) were found as the top four abundance bacteria having >1% 

relative abundance in all samples, respectively. Euryarchaeota was found as the most abundance 

archaea (5.01 – 11.68%), which is a phylum of methanogens. The revealed proportions of 

archaea are corresponding to the reactor performances. At the optimal recirculation rate of 70% 

between two reactors of SRB_R and SOB_R, the reactor performances of methane production 

were higher than at control stage (no recirculation between the reactors). In addition, the archaea 

proportions were higher in SRB_R than SOB_R reactors at the same stage. This is due to high 

concentration of sulfate and resulting sulfide of the digestion which are toxic to methanogens.   

 Several SRB and SOB were detected in the studied system, which corresponds to the 

condition of latex wastewater containing high concentration of sulfate. Figure 4.3 shows 

microbial profiles at family and species levels, respectively. For example, Desulfovibrionaceae, 

Desulfomicrobiaceae and Desulfobacteraceae were found as dominant SRB at a family level. 

Desulfovibrionaceae were found with higher relative abundance at control stage (4.24% and 

3.29% in SRB_C and SOB_C, respectively) than optimal recirculation stage (2.91% and 1.96% 

in SRB70 and SOB70, respectively). On the other hands, Desulfomicrobiaceae (0.42%, 0.65%, 

0.44% and 1.04% in SRB_C, SRB70, SOB_C and SOB70, respectively) and Desulfobacteraceae 

(0.24%, 2.36%, 0.43% and 1.01% in SRB_C, SRB70, SOB_C and SOB70, respectively) showed 

higher abundance at the optimal recirculation rate stage. In addition, the relative abundances 

were slightly higher in SOB_R than SRB_R reactors, which are opposite from 

Desulfovibrionaceae. 

 Diverse families of SOB were revealed, for instance, Spirochaetaceae, 

Rhodobacteraceae, Campylobacteraceae, Comamonadaceae and Burkholderiaceae. These 

microbes were found with relatively abundance compared to SRB and methanogens. 
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Table 4.2 Numbers of taxonomic assignable sequences of the studied samples.  
 

Sample Total mapped sequences 

(Percent from total) 

Number of assignable sequences at each taxonomic level 

Domain Phylum Class Order Family Genus Species 

SRB_C 6,119,494 (28.27%) 5,945,362 5,783,182 5,630,388 5,590,430 5,541,880 5,499,317 5,149,475 

SRB70 3,267,881 (17.74%) 3,099,606 2,966,066 2,847,267 2,831,923 2,795,582 2,748,313 2,561,354 

SOB_C 4,539,445 (21.60%) 4,326,255 4,157,784 3,977,561 3,935,180 3,886,434 3,851,109 3,578,262 

SOB70 3,857,484 (18.29%) 3,649,342 3,484,982 3,325,620 3,294,018 3,246,529 3,182,599 2,945,186 
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A         B 

      
 

Figure 4.2 Microbial community profiles showing diversities of microbes from latex wastewater treatment system at (A) domain and (B) 

phylum levels, respectively. At phylum level, microbes with >=1% relative abundance are shown. The samples are from sulfate reducing (SRB) 

and Sulfide oxidizing (SOB) reactors at control (C) and recirculation rate of 70% (70) stages. 
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A             B 

   
Figure 4.3 Microbial community profiles showing diversities of microbes (>=1% relative abundance) from latex wastewater treatment system at 

(A) family and species (B) levels, respectively. The samples are from sulfate reducing (SRB) and Sulfide oxidizing (SOB) reactors at control (C) 

and recirculation rate of 70% (70) stages. 
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 Methanosaetaceae (4.20 – 7.76%) and Methanosarcinaceae (0.48 – 3.09%) were found 

as prevalent families of methanogens. These are acetoclastic methanogens utilizing acetate as 

substrate to produce methane. The resulting abundances show consistency to the results at the 

phylum level (Figure 4.2B) that are higher in the optimal recirculation stage than no circulation 

stage and higher in SOB_R reactor than SRB_R reactor. 

 At a species level, Megasphaera elsdenii was revealed as the most prevalent bacteria and 

highly present at the control stages (25.95% and 6.94% in SRB_R and SOB_R reactors, 

respectively). It has been reported as lactate degrader to propionate, butyrate and acetate [REF], 

which could be substrates for SRB and methanogens. Methanosaeta harundinacea was the most 

dominant methanogen in the treatment system. Interestingly, Desulfovibrio vulgaris and 

Desulfococcus multivorans were found as dominant SRB. These two microbes were found with 

higher relative abundance at the optimal condition of wastewater treatment. The discovery 

suggests SRB that can utilize sulfate in wastewater and could work together with methanogens. 

D. vulgaris is a group of incompletely-oxidizing sulfate reducer providing acetate as a product 

[38], which could be a substrate of methanogens. Further study of these bacteria could be a 

recommendation. 

 

4.2.2.3 Dissimilarity of microbial profiles between different reactor types and performance 

stages 

 Figure 4.4 shows dissimilarity of microbial profiles between different reactor types 

(SRB: Sulfate reducing reactor; SOB: Sulfide oxidizing reactor) and performance stages 

(C:Control; 70: Optimal recirculation rate at 70%). The microbiome profiles at the optimal 

recirculation rate (SRB70 and SOB70) show the most similar profiles than others. This could be 

because of the recirculation between the two reactors, which make the microbes mixed together. 

In addition, the profiles at different stages reflect different performance of the treatment system. 

The microbial profiles of the optimal condition could be preferred than the control stage. The 

sample of SRB_R reactor at control stage provided the most distinct profile compared to others. 

This would be mainly because of the Megasphaera elsdenii which has very high abundance than 

other species (25.95% in SRB_C). Nevertheless, this bacterium was dramatically decreased in 

the SOB_R reactor at the same condition (6.94%), and found with low abundance at the optimal 

stage (0.10% and 0.06% in SRB70 and SOB70, respectively). It could be possible that M. elsdenii 

degrades some products which could be substrates for SRB that completing with methanogens. 

Further study would give more insight information.  
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Figure 4.4 A heatmap showing dissimilarity of microbial profiles between different reactor 

types (SRB: Sulfate reducing reactor; SOB: Sulfide oxidizing reactor) and performance stages 

(C:Control; 70: Optimal recirculation rate at 70%). Top 25 abundance microbes at a species 

level are shown. 

 

4.2.3 Functional profiles of microbial communities in the latex wastewater treatment 

system 

  

4.2.3.1 Numbers of functional genes predicted in the latex wastewater treatment system 

For functional analysis, gene predictions were firstly performed based on assembled 

reference contigs of all samples. The numbers of predicted open reading frames or genes in each 

sample are shown in Figure 4.5. 305665 genes are found in all studied samples. Some genes are 

uniquely found in each sample with the numbers of 12320, 15156, 14770 and 14666 in SRB_C, 

SRB70, SOB_C and SOB_70, respectively.
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Figure 4.5 A Venn diagram showing numbers of functional genes predicted from microbial 

communities in the latex wastewater treatment system.  
 

 

4.2.3.2 Functional genes of microbiome in the latex wastewater treatment system 

 All detected genes were then annotated for functions. Only genes having RPKM >1 were 

considered. Genes in the same functional pathway were grouped and displayed in Figure 4.6 and 

Table 4.3. In this experiment, abundance of functional genes of the microbiome in each sample 

are slightly different. Pathways of metabolite and short-chain fatty acid degradation and are 

among the top 20 pathways as well as methane metabolism. These pathways are important in 

AD process and biogas production. 
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Figure 4.6 Top 20 abundance functional pathways found in the microbiome from the latex wastewater treatment system.  
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Table 4.3 Top 20 abundance functional pathways of microbiome from the latex wastewater 

treatment system. Sum RPKM of genes in each detected pathway are shown as abundance. 

 

Functional pathway Sum abundance (RPKM) 

SRB_C SRB70 SOB_C SOB70 

ABC_transporters 35624 34340.7 28890.8 28488.3 

Ribosome 22557.9 21874.3 23947.2 22538.2 

Two-component_system 26262 19582.8 23502.7 21140 

Purine_metabolism 19479.3 18915.3 19644.7 18955.7 

Quorum_sensing 16110.4 16334.3 14439.6 14276.1 

Amino_sugar_and_nucleotide_sugar_metabolism 15367.3 14669.7 15199.1 14511.2 

Pyrimidine_metabolism 14463 14466.6 14623.9 13836.3 

Glycolysis_Gluconeogenesis 14335.2 13811.3 13346.4 12698.4 

Pyruvate_metabolism 13491.4 12489.2 12752.3 12474.2 

Methane_metabolism 12093.1 11028.5 12680.1 11306.7 

Carbon_fixation_pathways_in_prokaryotes 11288.9 11562.1 12273.3 11971.9 

Cysteine_and_methionine_metabolism 11157.8 10314.8 10517.2 9865.45 

Glycine_serine_and_threonine_metabolism 11009.7 10521.4 10378.5 9782.25 

Oxidative_phosphorylation 9499.01 9218.56 11033.1 10782.1 

Butanoate_metabolism 10059.3 9768.28 9273.37 8879.25 

Aminoacyl-tRNA_biosynthesis 9349.05 9118.35 9781.63 9488.34 

Glyoxylate_and_dicarboxylate_metabolism 9613.77 9124.54 9242.96 9067.73 

Peptidoglycan_biosynthesis 9616.94 8862.03 8689.5 8289.89 

Propanoate_metabolism 8559.09 8613.5 8278.47 8511.09 

Citrate_cycle_(TCA_cycle) 7995.43 8373.18 8628.18 8563.41 

 

Differential abundance genes between each pair of samples were calculated in order to 

compare differences of microbial functions in each reactor. For example, differential abundance 

genes in methane metabolism pathway between SRB_C and SRB70 were displayed in Figure 

4.7. Most of the genes discovered in this pathway are found with higher abundance in SRB70 

(represented in blue color in Figure 4.6) which is corresponding to the better performance of the 

SRB70 sample of methane production. 
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Figure 4.7 Differential abundance genes in methane metabolism pathway between SRB_C and 

SRB70 samples. Genes with higher abundance in SRB70 were labeled in blue. On the other 

hands, genes labeled in red have higher abundance in SRB_C sample. The white box is gene that 

cannot be found in any sample. 
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Chapter 5 

Conclusion and suggestions 
 

5.1 Conclusion 

 This project conducted the study of microbial communities in latex wastewaster 

treatment system through the technique called metagenomomics. The study yielded high-

resolution of the microbes in the system without cultivation, which is a key information to 

improve the AD treatment system and enhance methane production. Firstly, in order to perform 

the metagenomic analysis, the bioinformatic pipeline was developed providing informative and 

accurate of microbial communities for both profiles (richness and abundance), and functions 

(what microbes can do). The pipeline is not limited to only project, but could also be applied to 

other studies of metagenomic data. This would be a practical guideline for biologists or other 

scientists to analyze metagenomic data. Secondly, the developed pipeline was applied to study 

the microbiome in a multi-stage treatment system of latex wastewater. Here we reported several 

of SRB in the system, often found in sulfate-rich wastewater, such as Desulfovibrionaceae, 

Desulfomicrobiaceae and Desulfobacteraceae. A list of SOB were also found such as 

Spirochaetaceae, Rhodobacteraceae, Campylobacteraceae, Comamonadaceae and 

Burkholderiaceae. Methanosaetaceae Methanosarcinaceae were found as prevalent acetoclastic 

methanogens utilizing acetate to methane. Interestingly, one of the discovered SRB, 

Desulfovibrio vulgaris, was found with higher abundance in the optimal performance reactor. It 

is a group of incompletely-oxidizing sulfate reducer providing acetate as a product, which could 

be a substrate of methanogens. The communities could be further studied and utilized for 

microbial management to increase the stability and efficiency of the anaerobic sulfate-rich 

wastewater treatment. 

 

5.2 Suggestions for further studies 

 1. Metatranscriptomics could be performed to reveal functional expressions in the studied 

system. In this study, metagenomic analysis was performed. The technique allows to study 

microbial community profiles and functions through DNA materials. This provides the 

information of capacities of possible functions in the system. However, active genes could be 

different and revealed through the study of RNA, called metagranscripotimcs. The study could 

reflect functions that truly active in the system. 
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 2. Further studies of some discovered microoganisms and their interactions could be 

performed to provide deeper information to improve the wastewater treatment systems. A group 

of dominant microbes in the high-performance system would be as of interest leading the 

microbiome engineering or manipulation for enhancing methane production. 
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Abstract: Anaerobic digestion (AD) has been used for wastewater treatment and production of
renewable energy or biogas. Propionate accumulation is one of the important problems leading
to an unstable system and low methane production. Revealing propionate-degrading microbiome
is necessary to gain a better knowledge for alleviation of the problem. Herein, we systematically
investigated the propionate-degrading cultures enriched from various anaerobic sludge sources of
agro-industrial wastewater treatment plants using 16S rRNA gene sequencing. Di↵erent microbial
profiles were shown even though the methanogenic activities of all cultures were similar. Interestingly,
non-classical propionate-degrading key players Smithella, Syntrophomonas, and Methanosaeta were
observed as common prevalent taxa in our enriched cultures. Moreover, di↵erent hydrogenotrophic
methanogens were found specifically to the di↵erent sludge sources. The enriched culture of
high salinity sludge showed a distinct microbial profile compared to the others, containing mainly
Thermovirga, Anaerolinaceae, Methanosaeta, Syntrophobactor, and Methanospirillum. Our microbiome
analysis revealed di↵erent propionate-degrading community profiles via mainly the Smithella pathway
and o↵ers inside information for microbiome manipulation in AD systems to increase biogas
production corresponding to their specific microbial communities.

Keywords: 16S rRNA gene-based sequencing; agro-industrial sludge; anaerobic digestion;
microbiome; propionate-degrading cultures
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1. Introduction

Biogas is an alternative fuel that can be produced by wastewater treatment under the absence of
oxygen, called anaerobic digestion (AD). This process consists of various complex organic degrading
sub-processes which are driven by microbial communities [1,2]. Even though the AD system has been
considered as a promising solution for wastewater treatment and biogas production, the operational
stability in several systems is still poor and yields low biogas production. Various factors have been
reported as AD inhibitors causing system instability, such as volatile fatty acids (VFAs), long-chain
fatty acids (LCFAs), toxic chemical substances, etc. [3,4]. Many studies have been set up to determine
optimal process parameters for gaining high biogas production [5–8].

The anaerobic digestion process entails four steps: hydrolysis, acidogenesis, acetogenesis, and
methanogenesis [9]. During hydrolysis, lipids, proteins, polysaccharides, and soluble organic matter
are all degraded, with the final products being further treated through acidogenesis to yield volatile fatty
acids (VFAs). The acidogenesis step is followed by acetogenesis, during which the VFAs are digested
by acetogenic microorganisms producing a smaller molecule, acetate. The last step is methanogenesis,
in which methane is generated. This process involves microorganisms called methanogens, which
can be categorized into two groups according to their substrates. Acetoclastic methanogens (AMs)
use acetate, while hydrogenotrophic methanogens (HMs) use H2/CO2 as substrates [10]. Through
these AD steps, VFA accumulation often occurs because of the rapid degradation from the acidogenic
process and thermodynamically unfavorable degradation [11].

The accumulation of propionic acid, one of the VFAs, has been reported as one of the important
reasons for low methane production, as its propagation in the system decreases pH and subsequently
inhibits methanogenic activity [6,12]. Enriched cultures of propionic-degrading microorganisms for
bioaugmentation have been introduced as a solution to alleviate the acid accumulation, resulting
in a more stable system and higher biogas productivity [13–16]. The technique is the practice of
adding a particular microbial culture, which can be grown by using specific substrate as a carbon
and energy source, to the unstable AD system for enhancing or boosting process performance. This
relies on the fact that the propionate-degrading microbes are a key factor for the improvement of
stability and e�ciency of anaerobic treatment. Understanding the structure and microbial dynamism
of the propionic-degrading communities, including mainly propionate degraders and methanogens, is
required to better control and manage the microorganisms for reliability of the treatment systems.

A number of propionate-degrading microbes have been reported, with two main pathways of
methylmalonyl Co-A (MMC) and dismutation. The MMC pathway was observed with Syntrophobacter
sp. and Pelotomaculum sp. [17,18], and was mostly reported as a route of classical propionate
degradation in AD. The overall reaction is: Propionate� + 3H2O! Acetate- + HCO3

� + H+ + 3H2;
DG� = 76.1 kJ/mol [19]. Methanospirillum sp. has been found as the main HM, required to maintain
H2 partial pressure for syntrophic activities with Syntrophobacter sp. [20–22]. On the other hand, the
dismutation pathway was found with Smithella propionica which dismutates propionate to acetate and
a butyrate through a six-carbon intermediate molecule. The overall equation is: 2Propionate� + 2H2O
! 3Acetate- +H+ + 2H2; DG� = 48.4 kJ/mol [23–25], giving more acetate and less hydrogen per one
mole propionate compared to the MMC pathway. The Smithella was found as syntrophic-oxidizing
bacteria with a number of HMs such as Methanospirillum sp. [26] and Methanoculleus sp. [27]. However,
we believe that all related microbes of the processes have not been completely revealed.

Next-generation sequencing (NGS) technologies have been developed, generating a large amount
of genetic sequences allowing culture-independent study of living organisms [28–30]. This provides
a big advantage to understanding microbial communities as beforehand only a few percent of
microorganisms could be studied by cultivation in laboratories. The 16S rRNA gene is a commonly
used marker to identify microorganisms from a particular environment using NGS. It has also
been applied to explore the AD systems for both lab-scale and full-scale digesters [31,32]. Several
microorganisms in the AD process were revealed through NGS-based techniques in di↵erent digester
conditions [33,34]. To our knowledge, a small number of propionate-degrading community studies
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have been reported [35,36]. Variation of the communities as a whole system from di↵erent wastewater
sources have still not been completely revealed. There is a need to extend the investigation of the
microorganisms in propionate-degrading microbial communities, providing insight for microbial
monitoring and manipulation to control the system stability and prevent failure.

Here, we observed anaerobic propionate-degrading communities via the enriched cultures
inoculated from di↵erent sources of agro-industrial wastewater treatment plants. The microbiome
profiles were investigated using a 16S rRNA-based sequencing approach. Firstly, we investigated the
shift of microbiome profiles from inoculum to enrichment stages for revealing propionate-degrading
communities. Then, we identified common and unique propionate-degrading microbes among the
di↵erent sludge sources. We discuss this and conclude with the possible propionate-degrading
communities and pathways specific to the original sludge sources.

2. Materials and Methods

2.1. Microorganisms and Enrichment Process

The propionate-degrading cultures used in this study were enriched from di↵erent anaerobic
sludge sources. The anaerobic sludge was obtained from six full-scale wastewater treatment plants in
Thailand, which treated domestic wastewater (Domestic), fruit juice-processing wastewater (FruitJuice),
palm oil mill e✏uent (PalmOil), starch-processing wastewater (Starch), pig manure waste (PigManure),
and seafood-processing wastewater (Seafood). Ten g/L from each sludge was inoculated in a 2-liter
reactor-equipped gas counter and mixer at room temperature. To enrich the propionate-degrading
cultures, all reactors were fed daily with sodium propionate as the sole carbon source. All reactors were
operated for 7 months to increase the organic loading rate (OLR) to 3.0 g chemical oxygen demand
(COD)/L/d and the hydraulic retention time (HRT) to 5 days. During the enrichment process, all
reactors were evaluated by measuring pH, total volatile acid (TVA), alkalinity, COD reduction, and
methane production to control the reactor performance. All enriched cultures were measured for
specific methanogenic activity (SMA), using acetic acid as a substrate, with three replications. When
operating at propionate loading rate of 3.0 g COD/L/d, the performance of all reactors and the activities
of all enriched cultures are shown in Table 1.

Table 1. Performance of six reactors operating at propionate loading rate of 3.0 g COD/L/d and microbial
activities of enriched propionate-degrading cultures.

Anaerobic Sludge from Various
Anaerobic Wastewater Treatment

Plants

Reactor Performance Specific Methanogenic
Activity (SMA) (g COD/g

VSS/d)pH TVA/Alkalinity COD
Reduction (%)

Biogas Composition (%)

%CH4 %CO2

Domestic 7.50 0.30 86.5 60.0 35.5 0.22 ± 0.016

FruitJuice 7.50 0.30 85.0 62.5 34.0 0.17 ± 0.011

PalmOil 7.49 0.30 86.5 75.0 22.0 0.20 ± 0.009

Starch 7.56 0.25 90.0 73.5 23.5 0.22 ± 0.007

PigManure 7.57 0.27 89.0 75.5 21.0 0.28 ± 0.003

Seafood 7.52 0.35 80.0 80.0 17.5 0.14 ± 0.015

Remark: 1 mole propionate gives 1.75 mole methane and 1.25 mole carbon dioxide [37]. TVA: total volatile acid,
COD: chemical oxygen demand.

2.2. Sample Collection and Molecular Analysis

To investigate the microbial communities of the anaerobic sludges obtained from the six full-scale
anaerobic digesters (called inoculum) and from the enrichment process (called enriched cultures),
DNA from all samples was extracted using DNeasy PowerSoil Kit. The extracted DNA was
sequenced with TruSeq PCR-Free library following the manufacturer’s protocol designed for the V3-V4
hypervariable region of the 16S rRNA gene. The universal primers, 319F-CCTAYGGGRBGCASCAG and
806-GGACTACNNGGGTATCTAAT, were utilized. The sequencing was based on the Illumina HiSeq
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platform generating 250 bases paired-end reads. The obtained 16S rRNA gene-based sequencing data
have been deposited at European Nucleotide Archive (ENA) under the accession number ERP113548.

2.3. Microbiome Analysis Based on the 16S rRNA Gene Sequences

The microbiome analysis of the enriched propionate-degrading culture was performed using
Mothur software (version 1.39.5) [38] including the processes of data preprocessing, operational
taxonomic units (OTUs) clustering, taxonomic assignment, and microbial diversity analysis. For the
data preprocessing step, sequencing adapter sequences were removed and then paired-end reads were
merged into contiguous sequences or contigs. Low-quality sequences which contained ambiguous
bases (N), undesired length, o↵-target amplicon, or � 8-base homopolymer length were discarded. The
derived sequences were denoised using a Precluster algorithm to reduce single-base sequencing errors.
The UCHIME algorithm [39] was used to remove chimeric sequences. The qualified sequences were
then utilized for downstream analyses. The de novo OTU clustering was performed using 97% sequence
similarity to identify the OTUs. Singletons (OTUs having only one sequence among all samples) were
considered as sequencing errors and discarded. SILVA database version 132 [40] was utilized for
taxonomic assignment of each OTU. Alpha diversity was measured to estimate sequencing coverage
and microbial richness using Good’s coverage and Chao1 indices, respectively. To make comparable
microbial profiles, sequence abundances were normalized by a scaling technique based on the number
of smallest total sequences among studied samples. OTUs with greater than 1% relative abundance
across all samples were displayed in the microbial profiles. For beta-diversity analyses, Bray–Curtis
dissimilarities among samples were measured for community comparison and used to visualize
the principal coordinate analysis (PCoA) and heatmap. The visualization was performed using R
version 3.6.1 (ggplot2 [41] and pheatmap [42] packages). Significant di↵erences of the community
profiles were estimated by analysis of similarity (ANOSIM) [43]. Dominant OTUs with greater than 1%
relative abundance of each sample were retrieved for the identification of major common and unique
organisms in propionate-degrading communities among di↵erent sludge sources. OTUs found in at
least three out of five samples (excluding the Seafood sample) were reported as common OTUs in
propionate-degrading communities.

3. Results

3.1. A Shift of Microbiome Profiles from Inoculums to Enriched Propionate-Degrading Cultures

Microbial communities of sludge inoculums obtained from di↵erent full-scale anaerobic
wastewater treatment systems and their corresponding propionate-degrading cultures were identified
using 16S rRNA gene sequencing. Richness of all samples estimated by Chao1 index vary from 1495.17
to 2811.46 taxa, showing a lower number of enriched cultures than inoculums (Table S1). The similarities
of microbial community profiles between the inoculums and enriched propionate-degrading cultures
are illustrated via a PCoA plot (Figure 1). Both inoculums and enriched cultures show trends of more
similar microbial profiles at the same stages than the same sludge sources, except the Seafood sludge
(Tables S2 and S3). The microbial profiles of inoculums are significantly di↵erent from the enriched
cultures (p = 0.04). Figure 2 displays overall taxonomic profiles of all samples with their relative
abundance. Nine out of 57 phyla are prevalent, having greater than 1% relative abundance across all
samples (Figure 2A). Euryarchaeota, Proteobacteria, Firmicutes, Chloroflexi, and Synergistetes are
found as the top five most abundant phyla. These phyla are dominant in both inoculum and enriched
cultures, but their proportions are di↵erent in each sample. Figure 2B shows the assigned microbial
community profiles at the genus level. The overall profiles and dissimilarity measures suggest a
shift from inoculum to enriched stages. Methanosaeta is a dominant archaeon in all samples of both
inoculums and enriched cultures (5.43%–38.72%), but with higher proportion in the enriched cultures.
Smithella, one of the most abundant bacteria, increased their relative abundance in the enriched samples
(0.51%–9.16% in the inoculums and 0.61%–26.09% in the enriched cultures). Peptoclostridium show
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high proportion in the inoculums (0.98%–13.16%) but very less in the enriched cultures (0.06%–0.67%),
whereas Syntrophomonas have low abundance in the inoculums (0.2%–3.03%) but are mostly prevalent
in the enriched cultures (0.22%–18.91%). Particularly, the phylum Synergistetes represents high
proportion in the Seafood sludge, distinguishing from other samples in both stages (43.76% and 36.10%
at inoculum and enriched culture, respectively). These mainly belong to the genus of Thermovirga
(1.23% in the inoculum and 23.37% in the enriched culture). In addition, Syntrophobactor and Syner-01
show high abundance in the enriched sample from the Seafood sludge (8.47% and 6.73%, respectively).

Figure 1. Principal Coordinate Analysis (PCoA) plot showing dissimilar microbial profiles of inoculums
and enriched propionate-degrading cultures using the Bray–Curtis measure. Each dot represents an
individual anaerobic digestion (AD) sample. Shapes represent stages of the samples: triangles for
inoculums and circles for enriched cultures. The colors represent samples from di↵erent anaerobic
sludge sources.

3.2. Microbiome Profiles of Propionate-Degrading Cultures Enriched from Di↵erent Inoculum Sources

Among the enriched cultures, common and distinct patterns of microbial profiles between di↵erent
inoculum sources were revealed at the OTU resolution. Figure 3 shows a heatmap of dominant OTUs
(greater than 1% relative abundance across all enriched samples) labeled at genus level with their
relative abundance. The result reveals 52 dominant OTUs among the propionate-degrading cultures
enriched from di↵erent inoculum sources from a total of 87 OTUs from both stages (Table S4). The
enriched cultures of Domestic and FruitJuice show closet profiles among the six enriched cultures,
followed by a pair of PigManure and Starch. Methanosaeta (OTU00003) and Syntrophomonas (OTU00011
and OTU00012) are commonly dominant in the enriched cultures of Domestic and FruitJuice. The
Seafood sample showed the most distinguished profile compared to others. Methanosaeta (OTU00001)
and Smithella (OTU00002) occurred with high abundance in all of the enriched cultures except the
Seafood sample (5.86%–38.38% and 2.79%–23.77%, respectively). Thermovirga (OTU00007, 22.91%)
is remarkable as a unique OTU dominant in the enriched culture from the Seafood sludge. In
addition, Syntrophobacter (OTU00016, 8.13%), Desulfobacteraceae (OTU00040, 3.66%), Methanospirillum
(OTU00025, 2.71%), and Methanosaeta (OTU00041, 2.37%) are also shown with higher abundance in the
Seafood sample compared to others. Several unculturable dominant taxa of the class Anaerolineae were
observed, for example, OTU00004 (18.62%) in the Seafood, OTU00009 (8.18%) and OTU00028 (1.75%)
in the Starch, OTU00014 (7.14%) and OTU00046 (2.3%) in the PalmOil, and OTU00053 (1.34%) in the
PigManure samples.
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Figure 2. Microbial community profiles showing relative abundance of microbes derived from di↵erent
anaerobic sludge sources at inoculum and propionate-enriched culture stages, respectively. (A) At the
phylum level, 19 taxa are dominant (�1% relative abundance) from the total of 57 assignable phyla.
(B) At the genus level, 15 dominants of 875 assignable genera are shown.
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Figure 3. A heatmap shows microbial profiles of the propionate-degrading cultures enriched from
di↵erent sources. 52 dominant OTUs are presented with their relative abundance. The dendrogram
between samples (rows) and OTUs (columns) are drawn based on Bray–Curtis dissimilarity. The OTUs
are assigned their taxonomic information at the genus level. The gradient color represents relative
abundance of observed OTUs in each sample from low to high as light yellow to red, respectively.

3.3. Common and Unique Microorganisms in Propionate-Degrading Cultures Enriched from Di↵erent
Inoculum Sources

We investigated common and unique microorganisms in the propionate-degrading communities
among di↵erent inoculum sources (Table 2 and Table S5, respectively). Due to the very distinct resulting
taxonomic profile of the enriched culture from the Seafood culture compared to other enriched cultures
(p = 0.018; Table S3), the analysis was performed without the Seafood sample. Table 2 displays common
microbes detected among the enriched propionate-degrading cultures (relative abundance greater
than 1% in each sample). Methanosaeta (OTU00001) and Smithella (OTU00002) appeared as common
microbes among all enriched cultures. Syntrophomonas is also a common genus in all cultures but with
di↵erent OTUs (OTU00011, OTU00012, and OTU00022). The Methanosaeta (OTU00001) was discovered
as a main AM. Another Methanosaeta (OTU00003) was also found in all enriched cultures except for the
Starch sample. Interestingly, di↵erent genera of HMs were discovered in each inoculum source (Table 3).
For example, Methanoregula was found dominantly in the enriched culture of the Domestic (1.20%) and
PigManure (2.77%) samples, Methanobacterium was found in the FruitJuice sample (6.07%), Methanolinea
was found in the Starch sample (4.97%), and Methanoculleus was found in the PalmOil sample (1.54%).
The genus Syner-01 belonging to the family Synergistaceae (OTU00006) appears commonly in the
enriched cultures of the Domestic, PalmOil and PigManure samples. Furthermore, OTUs of the family
Anaerolineaceae (OTU00004, OTU00014, and OTU00046) were revealed dominantly in only the enriched
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culture of the PalmOil sample. Some OTUs were found uniquely in each enriched culture but belong
to the same genus of common OTUs such as Syntrophomonas in the Domestic sample, etc. (Table S5).

Table 2. A list of common propionate-degrading taxa enriched from di↵erent anaerobic agro-industrial
sludge sources.

OTUs Taxonomic Lineage
Propionate-Enriched Culture

Domestic FruitJuice PalmOil PigManure Starch

OTU00001
Archaea; Euryarchaeota; Methanomicrobia;

Methanosarcinales; Methanosaetaceae;
Methanosaeta

3 3 3 3 3

OTU00002
Bacteria; Proteobacteria;

Deltaproteobacteria; Syntrophobacterales;
Syntrophaceae; Smithella

3 3 3 3 3

OTU00003
Archaea; Euryarchaeota; Methanomicrobia;

Methanosarcinales; Methanosaeta;
Methanosaeta

3 3 3 3

OTU00006 Bacteria; Synergistetes; Synergistia;
Synergistales; Synergistaceae; Syner-01 3 3 3

OTU00011
Bacteria; Firmicutes; Clostridia;

Clostridiales; Syntrophomonadaceae;
Syntrophomonas

3 3 3

OTU00012
Bacteria; Firmicutes; Cloastridia;

Clostridiales; Syntrophomonadaceae;
Syntrophomonas

3 3 3 3

OTU00022
Bacteria; Firmicutes; Clostridia;

Clostridiales; Syntrophomonadaceae;
Syntrophomonas

3 3 3 3

Table 3. A list of unique hydrogenotrophic methanogens in propionate-degrading cultures enriched
from anaerobic agro-industrial sludge sources.

OTU
Hydrogenotrophic Methanogen

Observed Sample
Family Genus

OTU00061 Methanoregulaceae Methanoregula Domestic
OTU00023 Methanobacteriaceae Methanobacterium FruitJuice
OTU00105 Methanobacteriaceae Methanobacterium FruitJuice
OTU00100 Methanomicrobiaceae Methanoculleus PalmOil
OTU00036 Methanoregulaceae Metanoregula PigManure
OTU00097 Methanoregulaceae Metanoregula PigManure
OTU00015 Methanoregulaceae Methanolinea Starch

3.4. Several Uncultured Microbes Found in the Propionate-Degrading Cultures Using the Culture-Independent
Amplicon-Based Sequencing Approach

By performing the 16S rRNA gene sequencing, overall microbial communities of the samples
have been revealed without the limitation of cultivation. In our study, the majority of the OTUs could
be assigned their taxonomy as well-characterized microbes existing in the public databases (Table S1).
However, 8.01% of the identified OTUs were classified as the dominant uncultured microbes at the
genus level. These taxa are poorly defined in the available database and annotated as uncultured
microbes in di↵erent taxonomic levels. Several uncultured microbes were detached in the enriched
propionate-degrading communities (Table S6). For example, Desulfobacteraceae family was found in
the enriched culture of the Seafood sample (1.66%). The class of Anaerolineceae was found with the
highest number of OTUs in all the sludge samples, and dominant in several sludge sources such as
Seafood, Starch, PalmOil, and PigManure (18.62%, 9.94%, 9.54%, and 1.34%, respectively). In addition,
the Seafood samples contain high percent abundance of uncultured microbes in both the inoculums
(39.29%) and the enriched cultures (22.89%) (Table S7).
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4. Discussion

4.1. The Schematic Propionate-Degrading Pathway in the Enriched Cultures for Methane Production

With the limited carbon source of only propionate in the enriched cultures, microbial diversities in
the samples were lower than in the inoculum sludges (Table S1). The discovered microbial community
profiles and their degradation processes could be a↵ected by the single carbon source feeding.
Excluding the Seafood sample, our experiment revealed very small percentages of Syntrophobacter
(<0.5%), which was previously proven as a propionate-degrading bacterium and found in most
of the propionate-degrading communities along with HMs [22,35,44,45]. Interestingly, Smithella
was found to be the dominant propionate-degrading bacterium [26] in our experiment, instead of
the regular Syntrophobacter. There might be two main reasons for the presence of Smithella in the
enriched cultures: (1) the nature of the original sludge containing a higher number of Smithella than
Syntrophobacter (Figure 2; Table S4) and (2) Syntrophobacter prefers to grow with propionate and sulfate
in the medium [23], which corresponds to our experiment that fed the medium without adding sulfate.
The results suggest that the main reaction of the propionate degradation (Figure 4 and Table S8)
is through Smithella, which can produce acetate and butyrate via a six-carbon intermediate, called
the dismutation pathway [23–25]. The total reactions produced more acetate molecules compared
to the classical pathway which belongs to Syntrophobacter and Pelotomaculum [23]. Following this
theoretical perspective, we observed a higher abundance of Methanosaeta, which produces methane
by acetate degradation, in the enriched samples [46]. Furthermore, Syntrophomonas was observed
in several enriched samples. It was reported as a butyrate utilizer to produce acetate for AMs in
the AD system [47]. Therefore, our studies suggest multi-trophic interaction of Smithella that can
degrade propionate directly to acetate and convert propionate to butyrate, which is a substrate
for Syntrophomonas (Figure 4). Consequently, Methanosaeta utilizes the resulting acetate from both
organisms to produce methane and functions as a key AM in the enriched cultures.

Figure 4. Schematic pathway of methane production based on propionate-degrading cultures enriched
from di↵erent anaerobic sludge sources excluding the Seafood sample. Colors represent pathways
of propionate degradation to methane production; red: methylmalonyl-CoA (MMC) pathway, blue:
dismutation pathway, gray: acetoclastic pathway, and yellow: hydrogenotrophic pathway. Microbial
taxa found in our study were drawn along the pathways with their percent relative abundance.
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4.2. Di↵erent Taxa of Hydrogenotrophic Methanogens Found Specifically to Di↵erent Sludge Sources

While a single genus of AM was found as dominant taxa in all enriched samples, various genera
of HMs were found particular to di↵erent sludge sources (Table 3 and Figure 4). In this study,
Methanobacterium, Methanoculleus, and Methanolinea, were found in the FruitJuice, PalmOil, and Starch
samples, respectively. Di↵erent OTUs of Methanoregula were found in the Domestic and PigManure
samples. All of these HMs were reported in various mesophilic environments [48,49], and some of them,
e.g., Methanolinea and Methanoculleus, were isolated from propionate-enrichment cultures as prevalent
methanogen [50,51]. Although relatively smaller amounts of these HMs compared to AMs have been
observed, they could also play a role in our systems for methane production by conversion of CO2/H2.
These small amounts could also result from less H2 produced from the dismutation pathway compared
to the MMC pathway (Table S8). The observed HMs could refer to the syntrophic contribution of
propionate degradation with Smithella [23]. Several types of HMs resulting from di↵erent wastewater
treatment sludges suggest possible various pairs of syntrophic propionate oxidation and methane
production between Smithella and HMs. The information of specific microbial taxa or communities of
propionate degradation could be used as a guideline for microbial management, leading to e�cient
biogas production.

4.3. Unique Microbial Community in the Propionate-Degrading Culture Enriched from Seafood Sludge

The Seafood sludge revealed statistically distinct microbial profiles compared to the other
sludges from di↵erent wastewater sources (Figure 2 and Table S3). Thermovirga and Anaerolineaceae
uncultured groups a�liating to phylum Synergistetes and Chloroflexi, respectively, were found
as prevalent organisms in the enriched propionate-degrading culture. Thermovirga were reported
as amino acid degrading bacteria and were found dominantly in high salinity environments [52].
This is consistent with the condition of the Seafood sample, that originally contained high salinity.
Anaerolineaceae were found in the AD system relating to granular formation and maintenance [53].
Both Thermovirga and Anaerolineaceae have been revealed dominantly with Methanosaeta in several
AD experiments [54–56], suggesting that these microbes would play an important role in propionate
degradation and biogas production pathways. Syntrophobacter and Methanospirillum were found as
syntrophic propionate-oxidizing bacteria and H2-utilizing methanogen, respectively [22,35]. These
microbes have relatively higher abundance in the Seafood sample compared to the other five samples,
suggesting an observation of the classical MMC pathway instead of our main discovered Smithella
pathway (Figure 4). Furthermore, the Seafood sample showed the highest HM:AM ratio compared to
other samples (Table S9). This corresponds to the result of a higher percent methane production but less
SMA, indicating AM activities of utilizing acetates as substrates, compared to other samples (Table 1).
The result suggested that the HMs would play more of a role in this sample as the MMC pathway
provides more H2 than the dismutation pathway (Table S8). The result showed that the Seafood sample
has a unique profile and could be further investigated for the enrichment of methanogenic propionate
degradation in a saline environment.

4.4. Overall Microbial Profiles of Propionate-Degrading Cultures and Unculturable Microbes Revealed Through
Amplicon-Based Sequencing

The utilization of NGS allows the study of microbes taken directly from the samples without
cultivation, showing all existing microbes with their abundance in the studied sample. Beforehand, a
small number of known microbes has been studied, limited by cultivation [22,26,57]. Since microbes
live as a community, this high-resolution technique provides a great opportunity to derive an overall
picture of a microbial community and provides more insights to understand the dynamism of the
studied consortium. In this study, a set of propionate-degrading communities was revealed according
to their original sludge sources. Many OTUs of the class Anaerolineae were empirically revealed as
predominant uncultured microbes in the enriched propionate-degrading cultures (Table S6). This
microbe has been discovered dominantly in several AD systems [56]. In addition, Mcllroy S.J. et al. [56]
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reported a member of Anaerolineae co-located with Methanosaeta spp., which was discovered in our
study as major archaea. The function of the Anaerolineae and its synergistic relationship to Methanosaeta
could be worth further investigation. The information from high-throughput sequencing provided a
whole microbial community leading to better understanding of the control and management of the AD
systems, as the microorganisms work together in the process.

5. Conclusions

The microbiome of the propionate-degrading communities enriched from di↵erent inoculum
sources was investigated using 16S rRNA gene sequencing analysis. Interestingly, we found Smithella as
the dominant propionate-degrading bacteria in most of the studied samples, suggesting the dismutation
pathway of propionate degradation instead of the classical MMC pathway. The experiment supported
a key role of Smithella and Syntrophomonas that implied a multi-trophic interaction of these two
microorganisms to convert propionate to acetate and butyrate, and butyrate to acetate, respectively.
A major abundance of Methanosaeta was observed as a main methanogen using acetate, while
dominant HMs were found specific to di↵erent inoculum sources. The Seafood sludge sample shows
a distinctive microbial profile containing Thermovirga, Anaerolinaceae, and Methanosaeta as dominant
taxa, as well as Syntrophobacter and Methanospirillum which are mostly reported as regular syntrophic
propionate-degrading culture through the MMC pathway. The highest HM:AM ratio was found
in the Seafood sample, which corresponds to the MMC pathway producing more hydrogen that is
utilized by HMs than the Smithella pathway. On the other hand, the relative abundances of AMs in
the samples with the dismutation pathway were higher than in the Seafood sample, as more acetates
are produced from that pathway. Furthermore, several uncultured bacteria of the class Anaerolinea
were revealed in the enriched cultures. Our study shows that digesters with comparable performance
and methane production could contain di↵erent communities of propionate-degrading microbes
corresponding to their original sludge sources. The result suggests that inside information of specific
propionate-degrading communities could be further applied to microbial monitoring and manipulation
of wastewater treatment systems to increase biogas production.
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ABSTRACT
The advent of next-generation sequence technology has opened a new door for studying microbial community called 
metagenomics. The whole genome shotgun metagenomic approach provides a potential to analyze all genomic content 
in a particular environment and reveal microbiota components and their functions. The technique has been widely 
applied in several area such as soil, water, air, plant, animal and human. So far, the results of metagenomic studies 
strongly depend on the chosen computational analysis methods and parameters, which yield different microbial and 
functional profiles, and consequently affect the downstream interpretation. Despite the performance of available tools 
for shotgun metagenomic data have been compared, these reports mainly focused on run time, database size and/or 
taxonomic classification accuracy based on a fraction of reads classified. Nevertheless, the investigation in term of 
detected microbial richness and diversity has not explicitly been reported, which are the main results of a microbiome 
study. Here, widely used metagenomic tools including Centrifuge, Kraken, MEGAN and MetaPhlAn2 are examined 
for their performance of taxonomic classification. Not only considering the sequencing reads whether they are 
accurately classified but the resulting microbial richness and diversity are also investigated. To evaluate the tools, we 
generated mock communities combining mock and shuffled input metagenomic reads. We report performance evalua-
tion of commonly used metagenomic tools with their different resulting microbial profiles. The study could provide a 
guideline for choosing a metagenomic tool for more accurate reported taxonomic profiles.

KEYWORDS
Metagenomics, Taxonomic classification, Whole metagenome shotgun, Microbial richness, Microbial diversity
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ABSTRACT  

Metagenomics has become popular to study microbial communities in wastewater treatment 

for manipulating pollution control and biogas production. The technique allows broad study of 

microbial communities without culturing by directly sequencing genetic materials from an environment 

sample using next-generation sequencing (NGS) technology. The 16s rRNA gene-based metagenomic 

analysis is a commonly used method for identifying bacteria and archaea in studied samples by 

sequencing targeted hypervariable regions on their 16s rRNA genes. A choice of a selected 

hypervariable region and its primers has been shown as an important factor for detecting microbes. 

Recent studies show that different hypervariable regions could capture different community profiles 

depending on types of samples and microbial compositions. Nevertheless, there is no specific report for 

the study of microbial communities in wastewater treatment. Here we performed bioinformatics 

analysis to evaluate sensitivity of commonly used primers in activated sludge and anaerobic digestion 

studies. The results show that overall of the studied primers could capture 85-99% of all bacteria and 

archaea based on the studied 16s rRNA gene database of activated sludge and anaerobic digesters. From 

our study, V4 and V4-V5 primers provide better resolution to detect the microorganisms than V3-V4 

primers especially those in the phyla Euryarchaeota, Thaumarchaeota and Woesearchaeota. Moreover, 

target size of each hypervariable region are reported, which are useful information for filtering amplified 

targeted regions in metagenomic analysis. This study could be introduced as a guideline for selecting 

optimal hypervariable regions for 16s rRNA gene-based metagenomics in wastewater treatment 

systems. 
 

KEYWORDS: 16s rRNA gene, Activated sludge, Anaerobic digestion, Hypervariable region, 

Metagenomics 
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INTRODUCTION  

Microbes live as a community and survive in various sources of wastewater such as food waste 

(Hagen et al., 2017; He et al., 2017), manure slurry (Lin et al., 2016), mining (Ma et al., 2015), and 

residence (He et al., 2017). In wastewater treatment systems, microbes are key players for pollution 

control by degrading from complex organic polymers into small molecules. In anaerobic digestion 

systems, the degradation processes result formation of biogas (i.e. methane and carbon dioxide), which 

has been considered to contribute as sustainable energy. The systems have been studied not only for 

treating water but also produce biogas as alternative fuel source (Doloman, Soboh, Walters, Sims, & 

Miller, 2017). To control and manage the wastewater treatment system, microbial management is 

essential and understanding the microbial communities is a key step. Nevertheless, a clear picture of 

the complex communities and their behaviors has not been characterized. The studies to understand the 

communities are still going on (Doloman et al., 2017; Kouzuma et al., 2017; Tian, Zhang, & Yang, 

2018). 

With the availability of the next generation sequencing (NGS) technology, living cells can be 

studied in molecular levels in a high-throughput manner. Recently, metagenomic technique has been 

introduced to study microbial communities by sequencing genetic materials from a particular 

environment. Unlike the conventional microbial techniques that are culture-dependent techniques, 

metagenomics extracts DNAs directly from a sample of the study without cultivation. The technique 

provides overall pictures of microorganism and has been more applied to study microorganisms 

including in wastewater treatment systems (Doloman et al., 2017; He et al., 2017; Lin et al., 2016; Tian 

et al., 2018). 
The 16s rRNA gene-based metagenomic analysis is one of commonly used methods for 

identifying microbial communities in studied samples by sequencing targeted hypervariable regions on 

their 16s rRNA genes. These gene encodes small subunit of ribosomal with approximate lengths of 

1,500 bp. (Jo, Kennedy, & Kong, 2016), containing conserved and nine hypervariable regions (V1-V9) 

regions which are specific to each organisms (B. Yang, Wang, & Qian, 2016). From this reasons, 

selected hypervariable regions of 16s rRNA genes were used extensively in varieties of taxonomic 

investigation based on Illumina sequencing platform (Guo, Ju, Cai, & Zhang, 2013). With the popular 

Illumina sequencing, high-throughput sequences could be produced at a time but the derived sequences 

are relatively short (about 100-300 base pairs). Thus, one or consecutive two hypervariable regions is 

selected to study microorganism to represent the studied microbes. Sets of commonly used primers from 

Illumina and some modified primers are specified to various hypervariable regions of 16s rRNA genes 

such as V3-V4 (Doloman et al., 2017; S. Yang et al., 2017), V4 (Kouzuma et al., 2017; Lin et al., 2016) 

and V4-V5 (Mei, Narihiro, Nobu, & Liu, 2016). Those targeted hypervariable regions has been reported 

to provide sufficient results for investigating microorganisms in metagenomic studies. After 
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sequencing, the targeted sequences are clustered into OTUs (Operational Taxonomic Units) and 

annotated their taxonomy by searching for similarity to the existing sequences in available databases 

(Doloman et al., 2017) such as Microbial Database for Activated Sludge (MiDAS) (McIlroy et al., 

2017), Silva (Quast et al., 2012), Greengenes (DeSantis et al., 2006), and Ribosomal Database Project 

(RDP) (Cole et al., 2013). 

Even though metagenomic studies have been increasing, a choice of a selected hypervariable 

region and its primers is still remained as a question since it has been shown as an important factor for 

deriving community profiles. Several recent studies show that different hypervariable regions could 

capture different community profiles depending on types of samples and microbial compositions 

(Graspeuntner, Loeper, Künzel, Baines, & Rupp, 2018; B. Yang et al., 2016). For example, 

hypervariable region V3-V4 has been shown to capture most of bacterial and archaeal profiles in 

activated sludge  studies (Cai, Ye, Tong, Lok, & Zhang, 2013; Guo et al., 2013) and vaginal microbiome 

study (Graspeuntner et al., 2018). Another report showed that hypervariable region V4-V6 is suitable 

for microbial taxonomy identification in general condition by computational analysis (B. Yang et al., 

2016). Moreover, one study showed that the reliable of hypervariable region V4 could represent general 

taxonomy of microbes better than using whole sequence of 16s rRNA gene (B. Yang et al., 2016). 

Nevertheless, there is no systematic investigation for detecting microbial profiles using different 

targeted hypervariable regions in wastewater treatment, particularly activated sludge and anaerobic 

digestion. There is a need of a guideline for selecting a hypervariable region to perform the 

metagenomic analysis. 

Here we performed bioinformatics analysis to evaluate sensitivity of selected universal primers 

in wastewater treatment systems using Microbial Database for Activated Sludge (MiDAS) (McIlroy et 

al., 2017; McIlroy et al., 2015), an integrated collection of microbial sequences in activated sludge and 

anaerobic digesters. Comparative genomics analysis has been performed in order to investigate 

sensitivities of the selected universal primers to capture the desired targeted regions and annotate the 

studied microbes. Moreover, we also report the target lengths of each hypervariable region among 

microorganisms by commonly used primers in metagenomic studies, which are useful information for 

filtering desired sizes of the amplified targeted regions. We report the results of hypervariable regions 

assessment, which could be suggested as a guideline for selecting a hypervariable region for 16s rRNA 

gene-based metagenomics in wastewater treatment systems.  

 

MATERIALS AND METHODS  
1. The investigated 16s rRNA genes and metagenomic primer sequences 

 In order to investigate 16s rRNA gene of microorganisms in activated sludge and anaerobic 

digesters, the data were retrieved from MiDAS (http://www.midasfieldguide.org/en/download/). 
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MiDAS is a huge collection of curated taxonomy of 16s rRNA genes specifically to activated sludge 

and anaerobic digesters. The database integrates 16s rRNA genes from SILVA database, a 

comprehensive ribosomal RNA sequences, and Danish wastewater treatment plants. It comprises 

21,483 archaea and 453,045 bacteria. Four commonly used primers targeting hypervariable regions 

were selected based on the most reliable regions for representing 16s rRNA gene (B. Yang et al., 2016). 

These primers are universal primers in metagenomic studies based on Illumina platform and used in 

various environments including wastewater. This study includes two pairs of V3-V4, one pair of V4, 

and one pair of V4-V5. Information of the primers are shown in Table 1.  
 

Table 1 The information of commonly used primers for 16s rRNA genes-based metagenomic analysis. 

Hypervariable 

regions 

Primer 

name 
Primer sequences Source 

V4 
515F 5’-GTGCCAGCMGCCGCGGTAA-3’ (Kouzuma et al., 2017; Lin 

et al., 2016) 806R 5’-GGACTACHVGGGTWTCTAAT-3’ 

V3-V4 (1) 
341F 5’-CTAYGGGRBGCASCAG-3’ 

(S. Yang et al., 2017) 
806R 5’-GGACTACNNGGGTATCTAAT-3’ 

V3-V4 (2) 
338F 5’-ACTCCTACGGGAGGCAGC-3’ 

(Doloman et al., 2017) 
785R 5’-TACNVGGGTATCTAATCC-3’ 

V4-V5 
515F 5’-GTGCCAGCMGCCGCGGTAA-3’ 

(Mei et al., 2016) 
909R 5’-CCCCGYCAATTCMTTTRAGT-3’ 

 

2. Hypervariable regions assessment for 16S rRNA gene-based metagenomic analysis 

 In this study, we investigated sensitivities of the selected primers targeting different 

hypervariable regions of 16s rRNA genes of microorganisms in wastewater treatment systems. The 

studied primers were mapped to the reference 16s rRNA genes from the MiDAS database by 

bioinformatics approaches. The primer sequences were aligned to the 16s rRNA genes database using 

Clustal Omega version 1.2.4 (Sievers et al., 2011) with default parameters. This is to determine whether 

the primers could amplify the desired target regions. From the alignment results, the targeted 

hypervariable regions, or the regions between the forward and reverse primers, were extracted by our 

in-house python scripts. In our analysis, the reported candidate target lengths were determined using 

the criteria that a particular position contains equal or greater than 100 detected sequences. 
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RESULTS AND DISCUSSION  

1. Using different hypervariable regions can overall detect microbes in activated sludge and 

anaerobic digestion systems similarly 

We first investigated how the metagenomic primers for different hypervariable regions (Table 

1) can capture the targeted sequences of the microbial communities in wastewater treatment systems. 

By our computational analysis, the results show that 85 – 99% of 16s rRNA genes can be captured 

within the candidate target sizes based on the analyzed primers (Figure 1). Larger proportions of 

bacteria sequences can be detected by the studied primers compared to archaea as the greater proportion 

of the bacteria domain in the database. From the analytic results, the primers of V4 and V4-V5 

hypervariable regions provide better resolutions to detect archaea and bacteria compared to V3-V4.  

Even through the primer positions of two analyzing V3-V4 regions are very similar, numbers of 

captured sequences are different. The results suggest that a selection of hypervariable regions could 

slightly reflect the numbers of detected microbes, and different primers of the same hypervariable region 

could detect microbial communities differently (Nikolaki & Tsiamis, 2013; Youssef et al., 2009). 

 
Figure 1 Proportions of captured 16s rRNA genes using different hypervariable region primers. The 
analyzed 16s rRNA genes are based on MiDAS database containing microbes related to wastewater 
treatment systems with total numbers of 21,483 archaea and 453,045 bacteria.  
 

2. Target sizes of the studied hypervariable regions are varying among archaea and bacteria 

Table 2 and Figure 2 show ranges of candidate target sizes detected by the studied primers. The target 

sizes captured by V4 and V4-V5 primers are slightly shifted between archaea and bacteria. However, 

the candidate target sizes by V3-V4 primers are not in an overlapped range. The results indicate different 

target sizes between archaea and bacteria and give a notification for filtering desired targeted sequences 

in metagenomic analysis. For example, Mothur (Schloss et al., 2009) requires users to specify the target 

length of interest. Having such information would provide more accurate results of the analysis. 

Furthermore, we found that both primers of V3-V4 provide the same candidate target sizes. Comparing 
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to E. coli, the identified candidate target sizes from V4 and V4-V5 primers were slightly smaller than 

E. coli depending on the binding positions of primers (Table 2). On the other hand, the candidate target 

sizes from V3-V4 primers cover V3-V4 region of E. coli (Table 2) (B. Yang et al., 2016). From the 

analytic results, the prediction show the reliable of candidate target sizes. 

Table 2 Candidate target sizes of the studied hypervariable regions of archaea and bacteria and E. coli’s 

target size. 

Hypervariable 

regions 

Domain E. coli 

(B. Yang et al., 2016) Archaea  Bacteria 

V4 252 - 256 bp.  243 - 266  bp. 259 bp. 

V3-V4 (1) 382 - 393  bp.  397 - 443  bp. 440 bp. 

V3-V4 (2) 382 - 393  bp.  397 - 443  bp. 440 bp. 

V4-V5 377 – 383  bp.  363 – 393  bp. 398 bp. 

 
Figure 2 Distribution of target sizes of different hypervariable region primers, V4 (A), V3-V4 (B-C), 
and V4-V5 (D). X-axis represents a target length and Y-axis represents a number of detected 16s 
rRNA genes using the primers. The black and orange lines represent the domain of archaea and 
bacteria, respectively. 
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3. Some microbial organisms in activated sludge and anaerobic digestion studies could be 
detected with different resolution among different hypervariable regions 

We assessed sensitivities for capturing microbes using different hypervariable region primers 

for 16s rRNA genes-based metagenomic analysis. All captured 16s rRNA genes with candidate target 

length were assigned their taxonomy according to MiDAS database. Taxonomic annotations of the 

captured archaea and bacteria using different hypervariable regions are shown in Figure 3 and Figure 

4, respectively. The top detected archaea (Figure 3A, 3C) and bacteria (Figure 4A, 4C) are very similar 

among different utilized primers in both phylum and genus levels. In addition, the abundances of each 

detected organisms are slightly different. By considering the abundances of the detected phylum in 

archaea, the phylum of Thaumarchaeota is the one that can be captured less using both V3-V4 primers. 

Interestingly, the abundances of Thaumarchaeota and Miscellaneous Crenarchaeotic Group are 

different between V3-V4 (1) and V3-V4 (2) even though the same hypervariable regions are utilized. 

This suggests that different primers used in a particular variable region could also provide different 

resolution of microbes detected. 

Figure 3B and Figure 3D show the numbers of archaea that could not be captured by the studied 

primers in phylum and genus levels, respectively. From our analysis, V3-V4 primers could not capture 

many of three archaeal phyla including Euryarchaeota (6.6% and 9.2% of total Euryarchaeota for V3-

V4(1) and V3-V4(2), respectively), Thaumarchaeota (14.2% and 23.2% of total Thaumarchaeota), and 

Woesearchaeota (DHVEG-6) (39.7% and 42.8% of total Woesearchaeota) more than other primers 

(Figure3B). This should be noted especially if the phylum is in the studied samples or under a specific 

interest. For instance, Euryarchaeota include methanogens which play an important role for producing 

methane. The organism has been focused in anaerobic wastewater treatment systems for enhancing 

biogas production (Doloman et al., 2017). In bacteria domain, several Proteobacteria (0.54% - 0.74% 

of total Proteobacteria for all studied primers), Firmicutes (0.46% - 0.58% of total Firmicutes), 

Actinobacteria (0.32% - 0.52% of total Actinobacteria) and Planctomycetes (0.86% - 7.79% of total 

Planctomycetes) could not be captured. Interestingly, Planctomycetes phylum could not be captured by 

V3-V4 primers for about 4-10 times comparing to other primers (Figure 4B). At the genus level, the 

less captured bacteria include unknown, uncultured, and Bacillus (Figure 4D). Many of unknown and 

uncultured genus in archaea and bacteria were not detected by the selected primers (Figure 3D and 

Figure 4D). This suggests current commonly used primers could still not capture some non-informative 

microorganisms pointing out a limitation to study novel microorganisms in metagenomics. 
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Figure 3 Abundance of top 10 archaeal microorganisms that could be captured (left) and could not be 

captured (right) using different hypervariable primers at phylum (A-B) and genus (C-D) levels, 

respectively.  

 

 
Figure 4 Abundance of Top10 bacterial microorganisms that could be captured (left) and could not be 

captured (right) using different hypervariable primers at phylum (A-B) and genus (C-D) levels, 

respectively. 

 

CONCLUSION 

From our analysis, different hypervariable region primers for 16s rRNA genes-based metagenomics 

could capture the majority of the microorganisms in wastewater treatment systems based on MiDAS 

database. V4 and V4-V5 primers provide better resolution to detect the microorganisms than V3-V4 

primers. Some microbes could be captured less using V3-V4 primers than V4 and V4-V5. Moreover, 

candidate target sizes of each analytic primers are reported showing slightly different ranges of target 
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size of archaea and bacteria domains. This study could serve as a guideline for selecting hypervariable 

primers for 16s rRNA genes-based metagenomics in wastewater treatment systems. In addition, the 

identified candidate target size could be provided as background information to filter the desired target 

size for more accurate metagenomic analysis.  
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ABSTRACT  

In the last decades, microbiome research has been growing rapidly as a consequence of dramatic 

improvement of next-generation sequencing technologies (NGS). The study, called metagenomics, 

allows us to study microbial communities by sequencing all genetic materials from a particular 

environment without culturing microorganisms in a laboratory. As a huge volume of such data has been 

produced and still increasing, several databases have been developed to collect and manage 

metagenomic samples including raw sequences, metadata and some processed results. These well-

known databases include Sequence Read Archive (SRA), The European Nucleotide Archive (ENA), 

DNA Data Bank of Japan (DDBJ), and EBI metagenomics (or MGnify). Even though, these databases 

are claimed to be linked and exchanging the data, they still have different formats of metadata and data 

could be found in each database using different keywords of the sample properties. An integrated 

database that could synchronize all metagenomic data would facilitate scientists to search for datasets 

of interest without going through different databases. In this work, we construct a platform for 

compressive non-redundant metagenomic database and web-application called SBI Metagenomics 

(http://metagenomics.sbi.kmutt.ac.th). The platform integrates metagenomic data from the mentioned 

available repositories and provides a powerful access to the data via user-friendly web application for 

searching, visualizing and comparing metagenomic data associated with interested metadata. The 

platform would be useful for researchers who are interested in a particular filed of metagenomics and 

would like to revise existing data or compare to their own data to the available data. 
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