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Abstract

Anaerobic digestion (AD) has been introduced as a promising solution for industrial
wastewater treatment systems, not only for wastewater treatment but also biogas production as
renewable energy. Particularly, latex wastewater containing high concentration of sulfate causes
both inefficient water treatment and methane production. Understanding the microbial
communities driving AD process is a key success for improving the treatment systems.
Metagenomics employs high-throughput technologies to direct sequence genetic materials and
reveal all microbes from a particular environment without cultivation. In this work, we conducted
shotgun metagenomic approach to study microbiome in multi-stage latex wastewater treatment
system. Bioinformatics pipeline for analyzing microbiome from metagenomic data has been
developed providing microbial and functional profiles. The study showed a shift of microbial
profiles from control to the optimal performance reactors. A group of sulfate reducing bacteria
(SRB) was found in our study such as Desulfovibrionaceae, Desulfomicrobiaceae and
Desulfobacteraceae. Diverse families of sulfide oxidizing bacteria (SOB) were discovered, for
example, Spirochaetaceae, Rhodobacteraceae, Campylobacteraceae, Comamonadaceae and
Burkholderiaceae. Acetoclastic methanogens, Methanosaetaceae Methanosarcinaceae, were
prevalently revealed in the system playing an important role in methane production.
Interestingly, one of the discovered SRB, Desulfovibrio vulgaris, was found with higher
abundance in the optimal performance reactor. It is a group of incompletely-oxidizing sulfate
reducer providing acetate as a product, which could be a substrate of methanogens. This project
provides a pipeline and practical guideline for metagenomic analysis as well as insight
information of microbial community in a sulfate-rich wastewater treatment system. The
communities could be further studied and applied for microbial management and manipulation

to increase the stability and efficiency of the anaerobic latex wastewater treatment.

Keywords: Metagenomic analysis, Microbiome, Bioinformatics, Anaerobic digestion, Latex

wastewater treatment, Sulfate-rich wastewater, Sulfate reducing bacteria
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Executive Summary

This research project provides insight scientific knowledge in bioinformatics and
biotechnology applied for anaerobic digestion (AD) for wastewater treatment and biogas
production as a source of renewable energy. Even though several industries are interested in
utilization of the technology, the instability of the system is still an issue. Several factors causing
the problem including sulfate-rich condition in e.g. latex wastewater treatment system. A
research focusing on the problem is needed and a key success is the understanding of microbial
communities driving the AD process. Gaining such knowledge provides better control of the
systems. With the high-throughput technology nowadays, a community of microbes can be
studied though genetic materials without cultivation. The technology is known as metagenomics,
allowing a discovery of massive numbers of microbes. Nevertheless, such data cannot be
analyzed by hand and needed deep specific knowledge to extract information called
bioinformatics. It is important to build a workflow to analyze the data to get informative and
accurate results. Thus, this project serves two main purposes of (1) developing a bioinformatic
pipeline for analyzing metagenomic data, and (2) analyzing microbiome data in latex wastewater
treatment system. For the first purpose, the constructed pipeline facilitates the analysis of
microbial communities through the high-throughput genetic sequences. The pipeline cannot only
be used in this project but also provides a practical guideline for analyzing other communities in
similar or different area of microbiome research. Secondly, the analysis of microbiome in latex
wastewater treatment system provides a high-resolution of microbes inside the system. Several
sulfate reducing bacteria (SRB) and sulfide oxidizing bacteria (SOB) were discovered in the
system. Acetoclastic methanogens were found as main methane producers. Interestingly, one of
detected SRB, Desulfovibrio vulgaris, was found with higher abundance in the high-performance
system compared to control. This is interesting as SRB is usually found as a competitor to
methanogens, microbes producing methane. However, D. vulgaris was found as a group of
incompletely-oxidizing sulfate reducer providing acetate as a product, which could be a substrate
of methanogens instead (mainly Methanosaeta harundinacea in this system). The study suggests
a pair or group of microbial communities living together in the AD system providing good
performance of both sulfate removal and methane production. The discovery could be further
studied and applied in the industry towards environmental friendly treatments and the use of
renewable energy. In addition, the project provides related scientific outputs publicly for research

communities as paper, conference proceedings and presentations (please see appendix).
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Chapter 1

Introduction

1.1 Introduction to the research problem and its significance

Anaerobic digestion (AD) has become a promising solution for wastewater treatment
since it enables both pollution control and generation of renewable energy. It provides
biomaterials degradation by microorganisms in the absence of oxygen. The degradation
processes result formation of biogas (i.e. methane and carbon dioxide), which has been
considered to contribute as sustainable energy. In addition, the AD system consumes low energy
that causes lower cost for the water treatment comparing to other systems that require high energy
such as the aerated lagoon system. The AD systems have been constructed especially for
agricultural and industrial wastewater, which contain high levels of biodegradable materials.
Nevertheless, the operational stability of the AD system is still poor e.g. yielding low biogas
production, which prevents the technique from being widely applied and commercialized.

In addition, wastewater from the latex factories contains high organic, ammonia and
sulfate concentration. With the high sulfate concentration, wastewater treatment systems of latex
factories contain more pollution problems both air and water pollutions, and also system
instabilities according to the toxic of the sulfide producing during the process. Sulfate reducing
bacteria (SRB) is a known group of microbes changing sulfate to sulfide, which is toxic to
environment and microbes in the AD system especially methanogen. In addition, SRB is a
competitor to methanogen as final oxidizers in the AD process. These problems cause low
efficiency of water treatment and biogas production.

Understanding the microbial communities and their functions is a key step for microbial
management in AD wastewater system in order to optimize the system performance and prevent
system failure. Even though the AD is a well-known technology, the functioning microbiomes
and their interactions are still not completely understood. This could be because of the
complexity of the anaerobic microbiome and the high number of uncharacterized
microorganisms. Discovery of the fundamental knowledge of the microbial communities and
their behaviors corresponding to environmental changes and process disturbances would lead a
way to monitor and control microbial community in the AD system. For example, microbial
indicators can be set for detecting optimal performance of a reactor or warning of process failure.

Discovery of a microbial community enhancing biogas production could also be applied. The



efficient management of the system would lead to a significant improvement of the system
performance especially in biogas production.

With the availability of the next generation sequencing (NGS) technology, living cells
can be studied in molecular levels in a high-throughput manner. The technology provides an
opportunity to read all genetic materials (i.e. DNA or RNA) in a collection of tons of short
fragments from living cells, including microbial communities. The later one is known as
metagenomics, the study of overall DNAs of a particular sample from an environment. The study
is not limited to microbiomes in wastewater systems. Unlike the conventional microbial
techniques that are culture-dependent techniques, metagenomics extracts DNAs directly from a
sample of the study without cultivation. The technique provides more complete picture of
microorganism structures (diversity and abundance), as so far only a small part of
microorganisms could be cultivated. In addition, by performing whole-genome shotgun
sequencing, the technique yields not only the inside structures of microbial communities but also
information of functional genes in the system. The metagenomics using whole-genome shotgun
sequencing so far is a powerful tool to study microbial communities, functions and dynamics to
disturbances.

With the high amount of sequences that will be read from the metagenomic study (could
reach to millions of short read sequences), it is too far to interpret the data by hands. There is a
strong need of bioinformatics, which includes several branches of sciences e.g. statistics,
computer science, biology, and other related disciplines, to manage and analyze the data.
Development of a pipeline that is a flow of integrated bioinformatic methods and tools is
essential. The pipeline will enable the extraction of biological knowledge from the DNA
community data.

In order to achieve efficient management of the sulfate-rich wastewater system for
optimal performance in wastewater treatment and high biogas production, this project will be the
insight study of microbial community structures, functions and dynamics through metagenomics.
The project will include the development of a bioinformatic pipeline to analyze the metagenomic
data for extracting biological information leading better understanding of the anaerobic digestion

in the industrial latex wastewater system.



1.2 Objectives

1. To develop a bioinformatic pipeline for analyzing metagenomic data of anaerobic
wastewater treatment systems

2. To analyze metagenomic data of anaerobic microbiomes in latex wastewater for better

understanding of the microbial community structures, functions and dynamisms

1.3 Scope of research
In this project, the bioinformatic analysis of metagenomic data from sulfate rich
wastewater system will be performed. The pipeline and analysis is based on high-throughput
sequencing technology of short reads. The study includes two main steps as following.
1. Development of a bioinformatic pipeline for analyzing metagenomic data from a
wastewater treatment system
1.1 Development of modules for analyzing metagenomic data, which are
taxonomic analysis (reads-based methods), functional analysis and comparative metagenomics
1.2 Development of databases for taxonomic and functional analyses of
metagenomic data from AD systems
1.3 Modules integrations into an analytical pipeline linking to the developed
database for analyzing of metagenomic data
1.4 Use of open source software/tools
2. Metagenomic analysis of anaerobic metagenomes in sulfate rich wastewater system by
conducting the developed bioinformatic pipeline
2.1 Data pre-processing of each metagenomic sample
2.2 Taxonomic analysis of each metagenomic sample
2.3 Functional analysis of each metagenomic sample

2.4 Comparative metagenomics between different samples

1.4 Expected output

1. Bioinformatic pipeline for analyzing metagenomic data of anaerobic wastewater
treatment systems

2. Microbial and functional profiles of microbial communities in the studied latex

wastewater treatment system



1.5 Expected outcome

The understanding of the microbial structures, functions and dynamics at different
bioreactor performance from this study could provide knowledge guiding better microbial
management and monitoring the sulfate-rich wastewater system. For example, abundance of
specific species or functional genes, or microbial diversity patterns could be used to detect the
system at optimal performance or warn before failure. This project could provide a preliminary
study for further studying microbiome responding to different disturbances or factors, helping to

control the communities for obtaining higher efficiency of anaerobic wastewater system.



Chapter 2

Literature review

2.1 Anaerobic digestion and biogas production

Anaerobic digestion (AD) provides biogas as a final product which can be use as rewable
energey. The use of the biogas to replace fossil fuels could reduce generation of greenhouse gases
simultaneously with wastewater treatment. The biogas production occurs by digestion of various
organic compounds which are controlled by diverse microorganisms under the anoxic
environment comprising four main processes of hydrolysis, acidogenesis, acetogenesis and
methanogenesis [1, 2].

A primary step of AD is hydrolysis that complex insoluble polymers are decomposed into
the soluble monomers (e.g amino acids, small molecule sugar and fatty acids) by hydrolytic
enzymes [1]. These enzymes are secreted by specific microorganisms belonging in the class of
Clostridia and Bacilli, for example, Clostridium thermocellum and Enterococcus faecalis which
were reported as cellulose-degrading bacteria [3].

The second process is acidogenesis. this step is an acid-forming step that fermentative
microorganisms referred to as acidobacteria playing an important role to convert hydrolysis
resulting products to acidic intermediates such as volatile fatty acids (VFAs) or alcohols [1].
VFAs is a short-chain fatty acids which structure comprises of two- to five-carbon atoms such as
acetic acid (C,), propionic acid (C;), butyric acid (C4), valeric acid (Cs) and others. The
representative bacteria of this process were reported as Clastridium acetibutilicum, Clostridium
perfingens, Enterococcusfaecium, Lactobacillus helveticus and etc [3] .

Acetogenesis is a conversion step of acidic intermediates produced from hydrolysis and
acidogenesis processes, to generate acetic acid (Cy), CO; and H,, which are consequently utilized
by biogas producing microbes [1]. Various anaerobes were reported as key organisms to
syntrophically produce acetate and H,, for example, Syntrophobacter, Syntrophomonas, etc.
which are propionate- and butyrate-decomposers [4, 5], respectively. Moreover, acetate could be
produced by homoacetogenic bacteria or homoacetogen which utilize H,/CO, as a carbon source
[61. An example of the homoacetogen is Acetobacterium sp [7].

The final step is methanogenesis, an important process to yield methane and CO,. The
biogas producing microbes, also known as methanogens, belong mainly in the archaeca domain
that play a crucial role in methane production. Methanogens could be categorized into two groups

of acetoclastic methanogen (AM) and hydrogenotrophic methanogen (HM). According to the



process of methane production, acetate is converted by AM, whereas CO, and H, are
syntrophically converted by HM with contribution of bacterial partner called syntrophs [1].
Several AMs have been reported, for instance, Methanosaeta sp. and Methanosarcina sp. while
Methanobactereium sp., Methanobrevibacter sp., Methanomicrobium sp. Methanococcus sp.

have been reported as HMs [2].

2.2 Anaerobic digestion in sulfate-rich wastewater system

Anaerobic digestion is a promising solution for wastewater treatment since it enables
both pollution control and generation of renewable energy [8]. It provides biomaterials
degradation by microorganisms in the absence of oxygen. The degradation processes result
formation of biogas (i.e. methane and carbon dioxide), which has been considered to contribute
as sustainable energy. In addition, the AD system consumes low energy that causes lower cost
for the water treatment comparing to other systems that require high energy such as the aerated
lagoon system. The AD systems have been constructed especially for agricultural and industrial
wastewater, which contain high levels of biodegradable materials.

A wide variety of substances have been reported as inhibitors causing anaerobic process
failure, for example, sulfide, ammonia, light metal ions heavy metals and organics. High
concentration of the substances could toxic the microbial community and lead to process failure.
This project will focus mainly on the effects of high concentration of sulfate, which is a common
constituent of many industrial wastewaters and also latex factories. In anaerobic reactors, the
sulfate is reduced to sulfide by the sulfate reducing bacteria (SRB). The SRB is a competitor to
other anaerobic microorganisms including methane producing bacteria (MPB) as they share
common substrates. Also, the produced sulfide is toxic to the MPB, other anaerobic
microorganisms, and SRB itself. These factors lead low biogas production, inefficient treatment
and/or failure of the system. Furthermore, sulfide oxidizing bacteria (SOB) are also often found

in the system. They oxidize dissolved hydrogen sulfide and other sulfur compounds.

2.3 Next-Generation Sequencing (NGS)

Sequencing technologies revolutionized the molecular biology and microbiology studies
in a few decades and have become the most frequently used tool to cultured-independently
investigate the potential microorganisms [9]. The technology helps to determine the order of
nucleotide bases (A, T, C, G) of DNA or transcribed RNA sequences. The instruments and

materials for sequencing have been developed to decrease the cost and accelerate the speed as a



large- scale sequencing. The NGS technology, which is a platform for high-throughput
sequencing, has been widely used for genomics and transcriptomics studies. This sequencing
technology has many advantages (e.g highly-parallel sequencing, which can perform many
reactions at the same time) and chip-scale process (which means all processes can be done on a
tiny place called “sequencing chip”). The product of sequencing technology also known as “read”
is short (approximately 50-700 bases), consequently the platform referred to as short-read
sequencing platform [9].

Currently, NGS technologies comprise several platforms such as Illumina, Roche and
LifeTechnologies. However, Illumina is well-known, widely and frequently used platform for
short-read sequencing. The instruments of I1lumina platform include NextSeq, MiSeq and HiSeq,
etc. Their very performances are run time, the number of maximum output (Gb), resulting-read
length and the number of reads in parallelized run. For example of Illumina’s instrument, MiSeq
could generate 132 to 15 Gb of 300x2 paired-end read while HiSeq2500 could generate in wide
range throughput from 180 up to 500 Gb of the read length 50 to 125 bases paired-end read [10].
The application of each instrument based on the purpose of a study, for instance, target-specific
sequencing, whole-genome sequencing of large genome (human, plat, animal model) or small
genome (microbe, virus), etc. Moreover, recently technology could generate paired-end sequence
including forward and reverse reads of each sequencing region performing more accurate than

single-ended read sequences [9, 11].

2.4 Metagenomic data analysis

With the development of NGS technologies, high-throughput DNA sequencing has
become economically affordable for studying living organisms including sequencing of
environmental DNA samples that provides metagenomic data [12]. There are two main
approaches of NGS-based methods to study microbiomes, which are amplicon-based (e.g. 16S
rRNA) sequencing and shotgun sequencing. Both approaches provide several thousand or even
millions of short DNA sequences as results, called reads. Lengths of the DNA sequences vary
according to the technologies capacities. The first approach is a target sequencing method
requiring specific primers to amplified specific target genes. 16S rRNAs is the most popular
genes for target sequencing to study microbial diversity and abundance, as it is highly conserved
sequences over evolutionary time. Another approach is whole-genome shotgun sequencing
providing short reads of all DNA materials from the studied samples. This method requires DNA

library construction using ramdom primers. Even through the whole-genome shotgun is more



expensive than the 16S rRNAs as more DNA fragments will be sequenced, the approach provides
more information of functional genes in the studied communities. Since the whole-genome
shotgun sequencing will be utilized in this project, an overview of the method will be described
as below.

Two main bioinformatic approaches can be utilized for analyzing whole-genome shotgun
metagenomic data [13]. The methods are depending on whether an assembly process will be
performed. The assembly process is a process to extend short reads from sequencing technologies
to longer sequences by recursively finding overlapped regions of the short reads. For the
assembly-free method, the produced reads will be analyzed directly after the pre-processing
process to reduce sequencing errors. Each read will be categorized in taxonomy binning process.
Generally, similarity-based taxonomy assignment is utilized by comparing to references
databases such as NCBI RefSeq [14], KEGG [15] and EggNOG [16]. Another type of methods
for taxonomy binning considers sequence compositions, for example, GC content, codon usage
or frequency of short oligomers (k-mers). Several computational frameworks have been
developed to perform the taxonomy binning, for instance, MEGAS, PhymmBL, MetaPhlAn, and
mOTU. Then, the taxonomic abundance and microbiome diversity can be measured.

For the assembly-based strategy, reads from the same genomes are merged into longer
sequences called contigs. The functional diversity of the studied microbial communities can be
quantified from functional annotations of these metagenomic sequences. Two main steps will be
conducted for the gene annotation process, which are gene prediction and functional annotation.
For the gene prediction step, the encoding genes will be identified from the assembled contigs.
Then, functional annotation can be performed after deriving the identified genes. Several
databases are available for inferring functions e.g. KEGG [15], COG [17], Pfam [18], EggNOG
[16], MG-RAST [19], and CAMERA [20]. In addition, functional enrichment analysis of the
pathways in a sample or between samples can be conducted. Comparing metabolic gene

abundance between samples can also be studied.



Chapter 3
Materials and Methods

The development of bioinformatic pipeline for metagenomic data analysis, followed by
analytical step of anaerobic microbiomes for better understanding from high sulfate wastewater
systems were performed. The project was under collaboration with a team at Excellent Center of
Waste Utilization and Management (ECoWaste), Pilot Plant Development and Training Institute
(PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien,
Bangkok, Thailand. The DNAs of the microbiomes were extracted from the ECoWaste center,
and then outsourced for shotgun metagenome sequencing. The metagenomic data were analyzed
in this project through the developed bioinformatic pipeline. The details of all materials and

methods are described below.

3.1 Materials
3.1.1 Metagenomic samples of the studied latex wastewater treatment system

The microbiome samples were collected from the AD multi-stage treatment system
aiming for better performance of sulfate removal and higher methane production. The system
comprises (1) Acidogenic sulfate reducing reactor; SRB R, (2) Sulfide oxidizing reactor;
SOB_R, and (3) Methanogenic reactor; MT R, which are connected orderly (Figure 3.1). The
reactors carry three main functions of reducing sulfate, oxidizing sulfide and producing methane,
respectively. In order to improve the treatment performance of reducing sulfate while still
maximizing methane production, there will be a recirculation between SRB R and SOB_R
reactors. The metagenomic samples for shotgun sequencing were derived from SRB R and
SOB_R reactors at the control and recirculation rate of 70%, which is an optimal rate providing
high sulfate removal and biogas production. The optimal performance was at organic loading
rate (OLR) 5 kg COD/m’ day, biogas production of 0.234 m’/kg COD, and chemical oxygen
demand (COD) removal at 83%. The anaerobic sludge was derived from AD wastewater system
of a concentrated latex factory.

In total, four metagenomic samples were sequenced using Illumina MiSeq platform of
150 bases paired-end reads. The samples were from SRB_R and SOB_R reactors at control stage,

and SRB_R and SOB_R reactors when performed recirculation rate at 70%.
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Figure 3.1 The design of AD multi-stage treatment system. The system comprises three reactors
of acidogenic sulfate reducing reactor (SRB_R), Sulfide oxidizing reactor (SOB_R), and
Methanogenic reactor (MT_R), respectively.

3.1.2 Software for metagenomic analysis

A list of tools or software was integrated to develop a pipeline for metagenomic data
analysis (Table 3.1). These are open-source software which are freely available. Each tool has
its own function of data analysis. In addition, a list of databases was collected for each step of

analyses as shown in Table 3.2.



Table 3.1 A list of the software used for the developed metagenomic pipeline.

Method Software/tools References

Data pre-processing

Quality checking/visualization FastQC [21]
Trimming out low-quality bases and  Trimmomatic [22]
adapter removal

Taxonomic analysis
Taxonomic classification Centrifuge [23]

Taxonomic profile visualization Krona, R, RAM package [24], [25], [26]

Functional analysis

Sequences assembly IDBA-UD, BLAST [27], [28]
Gene prediction Prodigal [29]
Functional assignment eggNOG-Mapper [30]
Reads mapping Bowtie [31]
Pathway visualization KEGG Mapper [32]
Others

Parsing data files Python, R [33], [25]
Normalization R [25]
Statistic calculation Python, R, Shell script [33], [25]

Table 3.2 A list of the databases for metagenomic analysis.

Method Database name References
Taxonomic analysis RefSeq [14]
Functional analysis EggNOG, KEGG [16], [34]

Interpretation MiDAS [35]
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3.2 Methods
In order to analyze metagenomic data of sulfate rich wastewater, the bioinformatic
pipeline for analyzing metagenomic data was firstly developed, and then utilized in an analytical

step of the anaerobic microbiomes.

3.2.1 Development a bioinformatic pipeline for analyzing metagenomic data of anaerobic
wastewater treatment systems

Bioinformatic pipeline for analyzing metagenomic data was developed, focusing for
microbiomes from AD wastewater systems. The pipeline development can be divided into six
main steps (Figure 3.2), which are (1) pipeline design, (2) modules development, (3) modules

integration, (4) database development, (5) pipeline testing, and (6) pipeline deployment.

Pipeline Design

O\

Modules development > Database development

A

N

Modules integration

~

Pipeline testing

Y

Pipeline deployment

Figure 3.2 An overview of bioinformatic pipeline development for analyzing metagenomic data.

From the first step of pipeline development, the pipeline structure for metagenomic data
analysis will be designed by dividing into analytical modules. Here the pipeline was designed
for shotgun sequencing data (mainly for Illumina or short reads platform). The analysis of the
metagenomic data can be separated into four main parts, which are data pre-processing,
taxonomy analysis, functional analysis, and followed by comparative metagenomics. After
developing each module, the tested modules were integrated into flowing pipeline. In parallel,
the database for analyzing metagenomic data emphasizing on anaerobic microbial was
constructed. After combining the integrated modules and the developed database, the pipeline

was tested for deployment and used for next step analysis of latex wastewater samples.
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3.2.1.1 Modules development and integration

For the development of each module (data pre-processing, taxonomic analysis, functional
analysis, and comparative metagenomics), the existing bioinformatic tools were chosen based on
their efficiency or accuracy of analyses, requirement of computational power, time consuming
and ease of use (Table 3.1). The selection was based on literature review and in-house evaluation
[36]. In addition, the synchronization of the tools in the pipeline was also considered. The
selected tools/scripts/software were installed and finally tested. The flows of the pipeline were

mainly implemented using Python, R programming and shell scripts.

3.2.1.2 Databases development

Each step of the metagenomic analysis requires external databases for analyzing the
derived DNA sequences, mainly to identify the taxonomy or function of the studied samples (in
taxonomic or functional analysis, respectively). The studied DNAs from metagenomic data can
compared to find most similar sequences in publicly available databases for inferring taxonomy
and functions (Table 3.2). As these databases have different data formats and were separately
available from various sources, databases integration was then performed by downloading in the
local storage (hard drive) and linking to the implemented module in order to facilitate the
analysis. For taxonomic database, the database was required to be costumed and synchronized

to the selected tool, Centrifuge [23].

3.2.2 Metagenomic analysis of anaerobic microbiomes in sulfate rich wastewater system

The developed bioinformatic pipeline from the previous step was utilized for the
metagenomic data analysis of anaerobic microbiomes in sulfate rich wastewater system derived
from ECoWaste center as described above. Metagenomic data at different conditions will be
analyzed, which are from SRB_R and SOB_R reactors at control stage and optimal recirculation
rate, respectively. The metagenomic data analysis was performed through the following steps
(see an overall workflow in Figure 4.1).

1. Data pre-processing. The raw sequences data (FASTQ format) were evaluated and
visualized using FastQC program [21]. Low-base-quality (Q < 30) and adapter were trimmed
using Trimmomatic [22]. After trimming, sequences with length < 36 base pairs were removed.
All sequences passing the filtering criteria were then used for downstream analyses.

2. Taxonomic analysis. The pre-processed read sequences were classified for their
microbial taxonomy using Centrifuge [23] and the custom in-house database containing

complete genomes of bacteria, archaea, fungi and virus derived from RefSeq database [14].
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Relative abundance of the identified microbes were calculated and normalized using scaling
method [37]. Microbes with >=1% relative abundance in at least one sample were displayed in
taxonomic profiles.

3. Functional analysis. For each sample, the pre-processed short reads were assembled
into contigs using IDBA-UD [27]. The in-house Python script was then used to merge contigs
between samples (Overlapped sequences > 200 base pairs and identity of overlapped region is >
98% using standalone BLASTN [28]) making reference sequences of all samples. Based on the
assembled sequences, gene prediction were performed using Prodigal software [29]. The
functional genes were annotated using eggNOG-Mapper [30] and EggNOG database [16]. All
gene abundances were normalized using Reads Per Kilobase of gene, per Million mapped reads
(RPKM) method. Gene with RPKM value >=1 was used for further analyses.

4. Comparative metagenomics between samples of different reactors and different stages.
Taxonomic and functional data of all samples were compared using the normalized abundance
values. The comparisons were aimed to reveal dynamisms of microbial communities
corresponding to the reactor types and stages. For functional results, a pair of samples were
compared to find differential abundance genes and visualize in functional pathways using KEGG
Mapper [32]. MiDAS database, Global Database of Microbes in Wastewater Treatment Systems
and Anaerobic Digesters [35], was used as a reference and interpretation for microbes detected

in wastewater treatment system.
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Chapter 4

Results and Discussion

In this project, a bioinformatic pipeline for analyzing metagenomic data of anaerobic
wastewater treatment systems was developed. The pipeline was based on the input of high-
throughput short read technology, comprising four main analytic modules of data pre-processing,
taxonomy analysis, functional analysis, and comparative metagenomics. The developed pipeline
was then applied to analyze shotgun metagenomic data of microbial communities in latex
wastewater treatment system, which contain high sulfate concentration. Microbial profiles and
their functions including the dynamisms between reactor types (SRB and SOB reactors from AD
multi-stage treatment system) and running stages (control and optimal conditions) were revealed.
The results provide insight information of anaerobic microbes which could be further studied

and applied for enhancing biogas production in sulfate-rich wastewater treatment systems.

4.1 Bioinformatic pipeline for analyzing metagenomic data of anaerobic wastewater
treatment systems

The developed pipeline comprises four main analytic modules of data pre-processing,
taxonomy analysis, functional analysis, and comparative metagenomics. The overall workflow
is shown in Figure 4.1 and the tools or software used in the integrated pipeline were listed as
mentioned in Table 3.1 (Section 3.1.2). Databases used for metagenomic analysis were also
integrated into the pipeline (Table 3.2). The data pre-processing was firstly needed to be
performed for quality control of derived sequences. This step helps to alleviate technical errors
from sequencing or sampling processes. After the pre-processing step, the taxonomic and
functional analyses can be performed. The taxonomic analysis will enable studies of diversity
and abundance of the microbiomes of interest. The functional analysis provides discovery of
functional genes of microbiomes and their metabolic abilities. Finally, the comparative
metagenomics can be performed for comparing microbial communities and their functions
between samples. This step reveals dynamic of microbiomes in different conditions. Details of

each step with its utilized databases are elucidated below.

4.1.1 Data pre-processing module
A data pre-processing module is a crucial step for quality control of the derived raw

sequences (FASTQ format) by evaluating technical errors from sequencing process. In this
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pipeline, FastQC [21] software is employed. Low-quality bases and adapters from the sequencing
process will be trimmed from the read sequences using Trimmomatic [22]. The cut-off base
quality score 1s usually at quality score >= 20 (99% base call accuracy). However, quality score
>=30 (99.9% base call accuracy) is recommended if the derived raw sequences contain high-
quality bases. Higher stringency criteria provide better accuracy of downstream analyses of

taxonomic classification and functional annotation.

4.1.2 Taxonomic analysis module

Taxonomic analysis reveals diversity and abundance of studied microbiome samples. The
processed reads from the data pre-processing step will be used as an input of this step. The input
reads will be classified and assigned the taxonomy using Centrifuge [23] by comparing with the
taxonomic database. Tools for taxonomic classification were evaluated in term of detected
microbial richness and diversity [36]. Centrifuge showed accurate numbers of richness and well-
correlated diversity to the mock dataset. Even through the tool could give some numbers of
detected artifact sequences, it facilitates better in term of time consuming and required executing
memories. In this pipeline, a custom database containing complete genomes of bacteria, archaea,
fungi and virus derived from RefSeq database [14] was constructed and formatted for using with
the Centrifuge software. The selected genomes in the databases reflect organisms found in
wastewater treatment systems. Relative abundance, a ratio of read counts of a particular
taxonomy and total reads of a sample, can then be calculated after classification and normalized
using scaling method [37]. The normalized values provide comparable abundance between

samples. Krona [24] can be used for interactive display of a taxonomic profile.

4.1.3 Functional analysis module

Functional analysis provides a discovery of functional genes of microbiomes and their
metabolic abilities. The module takes the input read as pre-processed reads from the data pre-
processing step. As read inputs for this pipeline are from short read technology (approximately
100-300 base pairs), it is important to do the sequence assembly before finding functional genes.
IDBA-UD [27], which was developed to the specific characteristic of metagenomic data, was
selected for assembling reads of each sample. After deriving assembled reads or referred to as
contigs, these contigs were then merged between samples in order to make reference contigs for
further analyses. The merging process were based on BLASTN with overlapped region between
two sequences > 100 base pairs and sequence identity > 98%. We did not perform polled reads

assembly among all samples because it would lead more misassembled contigs between similar
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Shotgun metagenomic reads

.

Pre-processed reads
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| Calculate and normalize relative abundance | i Contigs i
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Figure 4.1 An overall of a pipeline for shotgun metagenomic analysis of microbiome from
anaerobic wastewater treatment systems. The pipeline was developed as four main integrated
modules of data pre-processing, taxonomy analysis, functional analysis, and comparative
metagenomics. The databases for taxonomic profiling, functional analysis and interpretation

were constructed. AD: Anaerobic digestion; DB: Database.

reads in different samples. The gene regions can then be detected. Here well-known gene
prediction tool, Prodigal [29], was utilized. To calculate gene abundance, reads mapped to the
predicted genes will be counted using Bowtie tool [31]. For functional annotations of the

predicted genes, eggNOG-Mapper [30] was chosen with EggNOG database [16]. The database
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contains functional categories including KEGG Orthology (KO), which can be visualized by
KEGG Mapper [32]. RPKM method, Reads Per Kilobase of gene per Million mapped reads, was
chosen for normalization of gene abundances as it also considers the gene length. Genes with

bigger size have higher chance to get more fragments sequenced.

4.1.4 Comparative metagenomics module

Comparative metagenomics can be performed for comparing microbial communities
between samples for both taxonomic diversity and functional profiles. The step lead to
understanding of the dynamic of microbiomes in different conditions/samples. In order to
compare the data between samples, normalized abundance values are needed. This is because
the total reads of each sample are not the same. Comparing the abundance using read counts
directly would be unfair e.g. compare the abundance between samples with low and high
numbers of total reads. Differential abundance genes between two samples can be identified.
KEGG Mapper [32] could be used to visualize genes present in a specific pathway. In addition,
MiDAS database [35] can be used as a reference of microbe collections in wastewater treatment
systems. This is a specific database attempting to collect microbes in wastewater treatment
systems from different countries around the world. However, the database still incorporates data

from a limited number of countries.

4.2 Microbial communities in the latex wastewater treatment system

The developed pipeline was applied to analyze the shotgun metagenomic data of
microbial communities in latex wastewater treatment system containing high sulfate
concentration. In this project, the samples were derived from AD multi-stage wastewater
treatment system aiming to improve performance of sulfate removal and higher methane
production. The system was designed as three consecutive reactors of acidogenic sulfate
reducing reactor (SRB_R), Sulfide oxidizing reactor (SOB_R), and Methanogenic reactor
(MT_R), respectively (More details in section 3.1.1). The samples were from SRB R and
SOB_R reactors at control (referred to as SRB_C, SOB_C) and optimal recirculation rate (70%)
between the two reactors (referred to as SRB70, SOB70), respectively. The results of the
metagenomic data pre-processing, taxonomic analysis and functional analysis including the

community comparisons between samples are shown and discussed below.
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4.2.1 Raw and pre-processed metagenomic data

The metagenomic raw data were retrieved from Illumina short read sequencing platform
of original paired-end sequence length of 150 base pairs. After quality control or data pre-
processing step, about 10% of original sequences were removed. The rest of the sequences were
then utilized for downstream analyses. Statistic of the analyzing sequences of the studied samples

were shown in Table 4.1

Table 4.1 Statistic of metagenomic sequences of the studied samples

Sample Number of raw Number of pre- Sequence % GC
sequences processed sequences length content
SRB C 23,419,540 21,648,077 (92.44%) 36-150 49
SRB70 20,554,231 18,416,920 (89.60%) 36-150 45
SOB C 23,339,401 21,063,247 (90.25%) 36-150 48
SOB70 23,323,966 21,085,072 (90.40%) 36-150 46

4.2.2 Taxonomic profiles of the microbial communities in the latex wastewater treatment

system

4.2.2.1 A large number of unknown microbes detected

The high-quality reads were then classified for taxonomy to identify microbial profiles
of the samples. The numbers of taxonomic assignable sequences are shown in Table 4.2 varying
between 18.29-28.27% of the total pre-processed sequences. The results show high numbers of
unknown organisms in the samples. The situation is often found in environmental samples,
showing a need for more complete database to provide better information of the analytic
environment. In the last decade, high-throughput sequencing technologies have been utilized to
study microbial community allowing detection of microbes without cultivation. A large number
of organisms are detected though the technologies. This propagates more information to study

microbial communities.
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4.2.2.2 Microbial community profiles of microbes from the sulfate-rich wastewater
treatment system

Based on the taxonomic assignable sequences, microbial profiles of the samples from
latex wastewater treatment system (AD multi-stage) with high concentration of sulfate were
drawn. The microbial profiles at different taxonomic levels are displayed in Figure 4.2-4.3.

Three domains of microorganisms were detected which are bacteria, archaea and virus
(Figure 4.2A). Bacteria is the most abundance organism (88.47 — 94.95%) in this experiment
followed by archaea and virus (<1% relative abundance). At a phylum level (Figure 4.2B),
Proteobacteria (30.01 — 42.98%), Firmicutes (14.80 — 46.08%), Bacteroidetes (7.09 — 14.03%)
and Actinobacteria (7.25 — 8.72%) were found as the top four abundance bacteria having >1%
relative abundance in all samples, respectively. Euryarchaeota was found as the most abundance
archaea (5.01 — 11.68%), which is a phylum of methanogens. The revealed proportions of
archaea are corresponding to the reactor performances. At the optimal recirculation rate of 70%
between two reactors of SRB R and SOB_R, the reactor performances of methane production
were higher than at control stage (no recirculation between the reactors). In addition, the archaea
proportions were higher in SRB_R than SOB_R reactors at the same stage. This is due to high
concentration of sulfate and resulting sulfide of the digestion which are toxic to methanogens.

Several SRB and SOB were detected in the studied system, which corresponds to the
condition of latex wastewater containing high concentration of sulfate. Figure 4.3 shows
microbial profiles at family and species levels, respectively. For example, Desulfovibrionaceae,
Desulfomicrobiaceae and Desulfobacteraceae were found as dominant SRB at a family level.
Desulfovibrionaceae were found with higher relative abundance at control stage (4.24% and
3.29% in SRB_C and SOB_C, respectively) than optimal recirculation stage (2.91% and 1.96%
in SRB70 and SOB70, respectively). On the other hands, Desulfomicrobiaceae (0.42%, 0.65%,
0.44% and 1.04% in SRB_C, SRB70, SOB_C and SOB70, respectively) and Desulfobacteraceae
(0.24%, 2.36%, 0.43% and 1.01% in SRB_C, SRB70, SOB_C and SOB70, respectively) showed
higher abundance at the optimal recirculation rate stage. In addition, the relative abundances
were slightly higher in SOB R than SRB R reactors, which are opposite from
Desulfovibrionaceae.

Diverse families of SOB were revealed, for instance, Spirochaetaceae,
Rhodobacteraceae, Campylobacteraceae, Comamonadaceae and Burkholderiaceae. These

microbes were found with relatively abundance compared to SRB and methanogens.
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Sample  Total mapped sequences Number of assignable sequences at each taxonomic level

(Percent from total) Domain Phylum Class Order Family Genus Species
SRB C 6,119,494 (28.27%) 5,945,362 5,783,182 5,630,388 5,590,430 5,541,880 5,499,317 5,149,475
SRB70 3,267,881 (17.74%) 3,099,606 2,966,066 2,847,267 2,831,923 2,795,582 2,748,313 2,561,354
SOB C 4,539,445 (21.60%) 4,326,255 4,157,784 3,977,561 3,935,180 3,886,434 3,851,109 3,578,262
SOB70 3,857,484 (18.29%) 3,649,342 3,484,982 3,325,620 3,294,018 3,246,529 3,182,599 2,945,186
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Figure 4.2 Microbial community profiles showing diversities of microbes from latex wastewater treatment system at (A) domain and (B)
phylum levels, respectively. At phylum level, microbes with >=1% relative abundance are shown. The samples are from sulfate reducing (SRB)

and Sulfide oxidizing (SOB) reactors at control (C) and recirculation rate of 70% (70) stages.
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Figure 4.3 Microbial community profiles showing diversities of microbes (>=1% relative abundance) from latex wastewater treatment system at

(A) family and species (B) levels, respectively. The samples are from sulfate reducing (SRB) and Sulfide oxidizing (SOB) reactors at control (C)

and recirculation rate of 70% (70) stages.
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Methanosaetaceae (4.20 — 7.76%) and Methanosarcinaceae (0.48 — 3.09%) were found
as prevalent families of methanogens. These are acetoclastic methanogens utilizing acetate as
substrate to produce methane. The resulting abundances show consistency to the results at the
phylum level (Figure 4.2B) that are higher in the optimal recirculation stage than no circulation
stage and higher in SOB_R reactor than SRB_R reactor.

Ata species level, Megasphaera elsdenii was revealed as the most prevalent bacteria and
highly present at the control stages (25.95% and 6.94% in SRB_R and SOB R reactors,
respectively). It has been reported as lactate degrader to propionate, butyrate and acetate [REF],
which could be substrates for SRB and methanogens. Methanosaeta harundinacea was the most
dominant methanogen in the treatment system. Interestingly, Desulfovibrio vulgaris and
Desulfococcus multivorans were found as dominant SRB. These two microbes were found with
higher relative abundance at the optimal condition of wastewater treatment. The discovery
suggests SRB that can utilize sulfate in wastewater and could work together with methanogens.
D. vulgaris is a group of incompletely-oxidizing sulfate reducer providing acetate as a product
[38], which could be a substrate of methanogens. Further study of these bacteria could be a

recommendation.

4.2.2.3 Dissimilarity of microbial profiles between different reactor types and performance
stages

Figure 4.4 shows dissimilarity of microbial profiles between different reactor types
(SRB: Sulfate reducing reactor; SOB: Sulfide oxidizing reactor) and performance stages
(C:Control; 70: Optimal recirculation rate at 70%). The microbiome profiles at the optimal
recirculation rate (SRB70 and SOB70) show the most similar profiles than others. This could be
because of the recirculation between the two reactors, which make the microbes mixed together.
In addition, the profiles at different stages reflect different performance of the treatment system.
The microbial profiles of the optimal condition could be preferred than the control stage. The
sample of SRB_R reactor at control stage provided the most distinct profile compared to others.
This would be mainly because of the Megasphaera elsdenii which has very high abundance than
other species (25.95% in SRB_C). Nevertheless, this bacterium was dramatically decreased in
the SOB_R reactor at the same condition (6.94%), and found with low abundance at the optimal
stage (0.10% and 0.06% in SRB70 and SOB70, respectively). It could be possible that M. elsdenii
degrades some products which could be substrates for SRB that completing with methanogens.

Further study would give more insight information.



25

0.0 0.2 0.4 0.6 0.8
| 1 | |
e
— SOB70
— SOB_C
SRB_C
R EEEEEEEEEREE EEEEEEEEEEEE
< c =2 3 < c e e =
5B 8§90 >335 38 ¥ 0SS E, o888 T2 358
Um«iLw‘_ggoza.gmgmngnEm5>wo
T";n..E_g?BEQE$2>EBWIEQ§>;Q®3_‘Q‘EE
6 2ELS I ISY 9 JEESES 2D TE 3 X5 8E
o= 528 a8 1og8go =925 455838 4
T35 EL@BCSEZESESET A IESELTEEY 98
‘“@-Cw'm‘w‘w-é00‘°%®E.§@%h\mgeenE5
SE 2888882k c8 88558233879 3¢
=3 L o S E 8 & £ & Lo £ 2 9o
22886583838 -86888°%588528853
S 34 8 EEF S 28 3ESTCS B8 8 2 > 59
@ 5 8 6 & S S E £ 6 3 S T3S 8 g &8 o @ £ &
e = ] fin] 205 £ 2c e £ 10 £
= 1235 E S w 5 o] T =6 © a5 g &
O 8 o Q O o3 ° s 2 g £ 0 35 =
S © 0 » a ] € 5 © = >
= o 0 o o s g < = @
i ] c =3 @
a c 28 c [s]
I ] T
© 24 <
2 o
]
°
©
e
I
(&)

Figure 4.4 A heatmap showing dissimilarity of microbial profiles between different reactor
types (SRB: Sulfate reducing reactor; SOB: Sulfide oxidizing reactor) and performance stages
(C:Control; 70: Optimal recirculation rate at 70%). Top 25 abundance microbes at a species

level are shown.

4.2.3 Functional profiles of microbial communities in the latex wastewater treatment

system

4.2.3.1 Numbers of functional genes predicted in the latex wastewater treatment system

For functional analysis, gene predictions were firstly performed based on assembled
reference contigs of all samples. The numbers of predicted open reading frames or genes in each
sample are shown in Figure 4.5. 305665 genes are found in all studied samples. Some genes are
uniquely found in each sample with the numbers of 12320, 15156, 14770 and 14666 in SRB_C,
SRB70, SOB_C and SOB_70, respectively.
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Figure 4.5 A Venn diagram showing numbers of functional genes predicted from microbial

communities in the latex wastewater treatment system.

4.2.3.2 Functional genes of microbiome in the latex wastewater treatment system

All detected genes were then annotated for functions. Only genes having RPKM >1 were
considered. Genes in the same functional pathway were grouped and displayed in Figure 4.6 and
Table 4.3. In this experiment, abundance of functional genes of the microbiome in each sample
are slightly different. Pathways of metabolite and short-chain fatty acid degradation and are
among the top 20 pathways as well as methane metabolism. These pathways are important in

AD process and biogas production.
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Figure 4.6 Top 20 abundance functional pathways found in the microbiome from the latex wastewater treatment system.
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Table 4.3 Top 20 abundance functional pathways of microbiome from the latex wastewater

treatment system. Sum RPKM of genes in each detected pathway are shown as abundance.

Functional pathway Sum abundance (RPKM)

SRB_C SRB70 SOB_C SOB70
ABC _transporters 35624 34340.7 28890.8 28488.3
Ribosome 225579 218743 239472 22538.2
Two-component system 26262 19582.8 23502.7 21140
Purine_metabolism 19479.3  18915.3 19644.7 18955.7
Quorum_sensing 16110.4 163343 14439.6 14276.1
Amino sugar and nucleotide sugar metabolism 15367.3 14669.7 15199.1 14511.2
Pyrimidine_metabolism 14463 14466.6 14623.9 13836.3
Glycolysis_Gluconeogenesis 14335.2 13811.3 13346.4 12698.4
Pyruvate _metabolism 13491.4 12489.2 127523 12474.2
Methane metabolism 12093.1 11028.5 12680.1 11306.7
Carbon_fixation pathways in_prokaryotes 11288.9 11562.1 122733 11971.9
Cysteine_and methionine metabolism 11157.8 10314.8 10517.2 9865.45
Glycine serine and threonine metabolism 11009.7 10521.4 10378.5 9782.25
Oxidative_phosphorylation 9499.01 9218.56 11033.1 10782.1
Butanoate metabolism 10059.3 9768.28 9273.37 8879.25
Aminoacyl-tRNA _biosynthesis 9349.05 911835 9781.63 9488.34
Glyoxylate and dicarboxylate metabolism 9613.77 9124.54 924296 9067.73
Peptidoglycan_biosynthesis 9616.94 8862.03 8689.5  8289.89
Propanoate _metabolism 8559.09 8613.5 8278.47 8511.09
Citrate cycle (TCA_ cycle) 7995.43 8373.18 8628.18 8563.41

Differential abundance genes between each pair of samples were calculated in order to

compare differences of microbial functions in each reactor. For example, differential abundance

genes in methane metabolism pathway between SRB_C and SRB70 were displayed in Figure

4.7. Most of the genes discovered in this pathway are found with higher abundance in SRB70

(represented in blue color in Figure 4.6) which is corresponding to the better performance of the

SRB70 sample of methane production.
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cannot be found in any sample.
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Chapter 5

Conclusion and suggestions

5.1 Conclusion

This project conducted the study of microbial communities in latex wastewaster
treatment system through the technique called metagenomomics. The study yielded high-
resolution of the microbes in the system without cultivation, which is a key information to
improve the AD treatment system and enhance methane production. Firstly, in order to perform
the metagenomic analysis, the bioinformatic pipeline was developed providing informative and
accurate of microbial communities for both profiles (richness and abundance), and functions
(what microbes can do). The pipeline is not limited to only project, but could also be applied to
other studies of metagenomic data. This would be a practical guideline for biologists or other
scientists to analyze metagenomic data. Secondly, the developed pipeline was applied to study
the microbiome in a multi-stage treatment system of latex wastewater. Here we reported several
of SRB in the system, often found in sulfate-rich wastewater, such as Desulfovibrionaceae,
Desulfomicrobiaceae and Desulfobacteraceae. A list of SOB were also found such as
Spirochaetaceae,  Rhodobacteraceae, = Campylobacteraceae, =~ Comamonadaceae  and
Burkholderiaceae. Methanosaetaceae Methanosarcinaceae were found as prevalent acetoclastic
methanogens utilizing acetate to methane. Interestingly, one of the discovered SRB,
Desulfovibrio vulgaris, was found with higher abundance in the optimal performance reactor. It
is a group of incompletely-oxidizing sulfate reducer providing acetate as a product, which could
be a substrate of methanogens. The communities could be further studied and utilized for
microbial management to increase the stability and efficiency of the anaerobic sulfate-rich

wastewater treatment.

5.2 Suggestions for further studies

1. Metatranscriptomics could be performed to reveal functional expressions in the studied
system. In this study, metagenomic analysis was performed. The technique allows to study
microbial community profiles and functions through DNA materials. This provides the
information of capacities of possible functions in the system. However, active genes could be
different and revealed through the study of RNA, called metagranscripotimcs. The study could

reflect functions that truly active in the system.
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2. Further studies of some discovered microoganisms and their interactions could be
performed to provide deeper information to improve the wastewater treatment systems. A group
of dominant microbes in the high-performance system would be as of interest leading the

microbiome engineering or manipulation for enhancing methane production.
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Abstract: Anaerobic digestion (AD) has been used for wastewater treatment and production of
renewable energy or biogas. Propionate accumulation is one of the important problems leading
to an unstable system and low methane production. Revealing propionate-degrading microbiome
is necessary to gain a better knowledge for alleviation of the problem. Herein, we systematically
investigated the propionate-degrading cultures enriched from various anaerobic sludge sources of
agro-industrial wastewater treatment plants using 16S rRNA gene sequencing. Different microbial
profiles were shown even though the methanogenic activities of all cultures were similar. Interestingly,
non-classical propionate-degrading key players Smithella, Syntrophomonas, and Methanosaeta were
observed as common prevalent taxa in our enriched cultures. Moreover, different hydrogenotrophic
methanogens were found specifically to the different sludge sources. The enriched culture of
high salinity sludge showed a distinct microbial profile compared to the others, containing mainly
Thermovirga, Anaerolinaceae, Methanosaeta, Syntrophobactor, and Methanospirillum. Our microbiome
analysis revealed different propionate-degrading community profiles via mainly the Smithella pathway
and offers inside information for microbiome manipulation in AD systems to increase biogas
production corresponding to their specific microbial communities.

Keywords: 165 rRNA gene-based sequencing; agro-industrial sludge; anaerobic digestion;
microbiome; propionate-degrading cultures
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1. Introduction

Biogas is an alternative fuel that can be produced by wastewater treatment under the absence of
oxygen, called anaerobic digestion (AD). This process consists of various complex organic degrading
sub-processes which are driven by microbial communities [1,2]. Even though the AD system has been
considered as a promising solution for wastewater treatment and biogas production, the operational
stability in several systems is still poor and yields low biogas production. Various factors have been
reported as AD inhibitors causing system instability, such as volatile fatty acids (VFAs), long-chain
fatty acids (LCFAs), toxic chemical substances, etc. [3,4]. Many studies have been set up to determine
optimal process parameters for gaining high biogas production [5-8].

The anaerobic digestion process entails four steps: hydrolysis, acidogenesis, acetogenesis, and
methanogenesis [9]. During hydrolysis, lipids, proteins, polysaccharides, and soluble organic matter
are all degraded, with the final products being further treated through acidogenesis to yield volatile fatty
acids (VFAs). The acidogenesis step is followed by acetogenesis, during which the VFAs are digested
by acetogenic microorganisms producing a smaller molecule, acetate. The last step is methanogenesis,
in which methane is generated. This process involves microorganisms called methanogens, which
can be categorized into two groups according to their substrates. Acetoclastic methanogens (AMs)
use acetate, while hydrogenotrophic methanogens (HMs) use Hp/CO, as substrates [10]. Through
these AD steps, VFA accumulation often occurs because of the rapid degradation from the acidogenic
process and thermodynamically unfavorable degradation [11].

The accumulation of propionic acid, one of the VFAs, has been reported as one of the important
reasons for low methane production, as its propagation in the system decreases pH and subsequently
inhibits methanogenic activity [6,12]. Enriched cultures of propionic-degrading microorganisms for
bioaugmentation have been introduced as a solution to alleviate the acid accumulation, resulting
in a more stable system and higher biogas productivity [13-16]. The technique is the practice of
adding a particular microbial culture, which can be grown by using specific substrate as a carbon
and energy source, to the unstable AD system for enhancing or boosting process performance. This
relies on the fact that the propionate-degrading microbes are a key factor for the improvement of
stability and efficiency of anaerobic treatment. Understanding the structure and microbial dynamism
of the propionic-degrading communities, including mainly propionate degraders and methanogens, is
required to better control and manage the microorganisms for reliability of the treatment systems.

A number of propionate-degrading microbes have been reported, with two main pathways of
methylmalonyl Co-A (MMC) and dismutation. The MMC pathway was observed with Syntrophobacter
sp. and Pelotomaculum sp. [17,18], and was mostly reported as a route of classical propionate
degradation in AD. The overall reaction is: Propionate™ + 3H,O — Acetate” + HCO3~ + H* + 3H,;
AG° =76.1 kJ/mol [19]. Methanospirillum sp. has been found as the main HM, required to maintain
H, partial pressure for syntrophic activities with Syntrophobacter sp. [20-22]. On the other hand, the
dismutation pathway was found with Smithella propionica which dismutates propionate to acetate and
a butyrate through a six-carbon intermediate molecule. The overall equation is: 2Propionate™ + 2H,O
— 3Acetate” + H* + 2H,; AG® = 48.4 kJ/mol [23-25], giving more acetate and less hydrogen per one
mole propionate compared to the MMC pathway. The Smithella was found as syntrophic-oxidizing
bacteria with a number of HMs such as Methanospirillum sp. [26] and Methanoculleus sp. [27]. However,
we believe that all related microbes of the processes have not been completely revealed.

Next-generation sequencing (NGS) technologies have been developed, generating a large amount
of genetic sequences allowing culture-independent study of living organisms [28-30]. This provides
a big advantage to understanding microbial communities as beforehand only a few percent of
microorganisms could be studied by cultivation in laboratories. The 16S rRNA gene is a commonly
used marker to identify microorganisms from a particular environment using NGS. It has also
been applied to explore the AD systems for both lab-scale and full-scale digesters [31,32]. Several
microorganisms in the AD process were revealed through NGS-based techniques in different digester
conditions [33,34]. To our knowledge, a small number of propionate-degrading community studies
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have been reported [35,36]. Variation of the communities as a whole system from different wastewater
sources have still not been completely revealed. There is a need to extend the investigation of the
microorganisms in propionate-degrading microbial communities, providing insight for microbial
monitoring and manipulation to control the system stability and prevent failure.

Here, we observed anaerobic propionate-degrading communities via the enriched cultures
inoculated from different sources of agro-industrial wastewater treatment plants. The microbiome
profiles were investigated using a 165 rRNA-based sequencing approach. Firstly, we investigated the
shift of microbiome profiles from inoculum to enrichment stages for revealing propionate-degrading
communities. Then, we identified common and unique propionate-degrading microbes among the
different sludge sources. We discuss this and conclude with the possible propionate-degrading
communities and pathways specific to the original sludge sources.

2. Materials and Methods

2.1. Microorganisms and Enrichment Process

The propionate-degrading cultures used in this study were enriched from different anaerobic
sludge sources. The anaerobic sludge was obtained from six full-scale wastewater treatment plants in
Thailand, which treated domestic wastewater (Domestic), fruit juice-processing wastewater (FruitJuice),
palm oil mill effluent (PalmQOil), starch-processing wastewater (Starch), pig manure waste (PigManure),
and seafood-processing wastewater (Seafood). Ten g/L from each sludge was inoculated in a 2-liter
reactor-equipped gas counter and mixer at room temperature. To enrich the propionate-degrading
cultures, all reactors were fed daily with sodium propionate as the sole carbon source. All reactors were
operated for 7 months to increase the organic loading rate (OLR) to 3.0 g chemical oxygen demand
(COD)/L/d and the hydraulic retention time (HRT) to 5 days. During the enrichment process, all
reactors were evaluated by measuring pH, total volatile acid (TVA), alkalinity, COD reduction, and
methane production to control the reactor performance. All enriched cultures were measured for
specific methanogenic activity (SMA), using acetic acid as a substrate, with three replications. When
operating at propionate loading rate of 3.0 g COD/L/d, the performance of all reactors and the activities
of all enriched cultures are shown in Table 1.

Table 1. Performance of six reactors operating at propionate loading rate of 3.0 g COD/L/d and microbial
activities of enriched propionate-degrading cultures.

Reactor Performance

Anaerobic Sludge from Various Sp.e?iﬁc Methanogenic
Anaerobic Wastewater Treatment . CcoD Biogas Composition (%) Activity (SMA) (g COD/g
Plants pH TVA/Alkalinity Reduction (% VSS/d)
eduction (%) %CH, %CO,
Domestic 7.50 0.30 86.5 60.0 35.5 0.22 £ 0.016
FruitJuice 7.50 0.30 85.0 62.5 34.0 0.17 £ 0.011
PalmOil 7.49 0.30 86.5 75.0 22.0 0.20 + 0.009
Starch 7.56 0.25 90.0 73.5 235 0.22 £+ 0.007
PigManure 7.57 0.27 89.0 75.5 21.0 0.28 + 0.003
Seafood 7.52 0.35 80.0 80.0 17.5 0.14 + 0.015

Remark: 1 mole propionate gives 1.75 mole methane and 1.25 mole carbon dioxide [37]. TVA: total volatile acid,
COD: chemical oxygen demand.

2.2. Sample Collection and Molecular Analysis

To investigate the microbial communities of the anaerobic sludges obtained from the six full-scale
anaerobic digesters (called inoculum) and from the enrichment process (called enriched cultures),
DNA from all samples was extracted using DNeasy PowerSoil Kit. The extracted DNA was
sequenced with TruSeq PCR-Free library following the manufacturer’s protocol designed for the V3-V4
hypervariable region of the 165 rRNA gene. The universal primers, 319F-CCTAYGGGRBGCASCAG and
806-GGACTACNNGGGTATCTAAT, were utilized. The sequencing was based on the Illumina HiSeq
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platform generating 250 bases paired-end reads. The obtained 16S rRNA gene-based sequencing data
have been deposited at European Nucleotide Archive (ENA) under the accession number ERP113548.

2.3. Microbiome Analysis Based on the 16S rRNA Gene Sequences

The microbiome analysis of the enriched propionate-degrading culture was performed using
Mothur software (version 1.39.5) [38] including the processes of data preprocessing, operational
taxonomic units (OTUs) clustering, taxonomic assignment, and microbial diversity analysis. For the
data preprocessing step, sequencing adapter sequences were removed and then paired-end reads were
merged into contiguous sequences or contigs. Low-quality sequences which contained ambiguous
bases (N), undesired length, off-target amplicon, or > 8-base homopolymer length were discarded. The
derived sequences were denoised using a Precluster algorithm to reduce single-base sequencing errors.
The UCHIME algorithm [39] was used to remove chimeric sequences. The qualified sequences were
then utilized for downstream analyses. The de novo OTU clustering was performed using 97% sequence
similarity to identify the OTUs. Singletons (OTUs having only one sequence among all samples) were
considered as sequencing errors and discarded. SILVA database version 132 [40] was utilized for
taxonomic assignment of each OTU. Alpha diversity was measured to estimate sequencing coverage
and microbial richness using Good’s coverage and Chaol indices, respectively. To make comparable
microbial profiles, sequence abundances were normalized by a scaling technique based on the number
of smallest total sequences among studied samples. OTUs with greater than 1% relative abundance
across all samples were displayed in the microbial profiles. For beta-diversity analyses, Bray—Curtis
dissimilarities among samples were measured for community comparison and used to visualize
the principal coordinate analysis (PCoA) and heatmap. The visualization was performed using R
version 3.6.1 (ggplot2 [41] and pheatmap [42] packages). Significant differences of the community
profiles were estimated by analysis of similarity (ANOSIM) [43]. Dominant OTUs with greater than 1%
relative abundance of each sample were retrieved for the identification of major common and unique
organisms in propionate-degrading communities among different sludge sources. OTUs found in at
least three out of five samples (excluding the Seafood sample) were reported as common OTUs in
propionate-degrading communities.

3. Results

3.1. A Shift of Microbiome Profiles from Inoculums to Enriched Propionate-Degrading Cultures

Microbial communities of sludge inoculums obtained from different full-scale anaerobic
wastewater treatment systems and their corresponding propionate-degrading cultures were identified
using 165 rRNA gene sequencing. Richness of all samples estimated by Chaol index vary from 1495.17
to 2811.46 taxa, showing a lower number of enriched cultures than inoculums (Table S1). The similarities
of microbial community profiles between the inoculums and enriched propionate-degrading cultures
are illustrated via a PCoA plot (Figure 1). Both inoculums and enriched cultures show trends of more
similar microbial profiles at the same stages than the same sludge sources, except the Seafood sludge
(Tables S2 and S3). The microbial profiles of inoculums are significantly different from the enriched
cultures (p = 0.04). Figure 2 displays overall taxonomic profiles of all samples with their relative
abundance. Nine out of 57 phyla are prevalent, having greater than 1% relative abundance across all
samples (Figure 2A). Euryarchaeota, Proteobacteria, Firmicutes, Chloroflexi, and Synergistetes are
found as the top five most abundant phyla. These phyla are dominant in both inoculum and enriched
cultures, but their proportions are different in each sample. Figure 2B shows the assigned microbial
community profiles at the genus level. The overall profiles and dissimilarity measures suggest a
shift from inoculum to enriched stages. Methanosaeta is a dominant archaeon in all samples of both
inoculums and enriched cultures (5.43%-38.72%), but with higher proportion in the enriched cultures.
Smithella, one of the most abundant bacteria, increased their relative abundance in the enriched samples
(0.51%-9.16% in the inoculums and 0.61%-26.09% in the enriched cultures). Peptoclostridium show
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high proportion in the inoculums (0.98%-13.16%) but very less in the enriched cultures (0.06%-0.67%),
whereas Syntrophomonas have low abundance in the inoculums (0.2%-3.03%) but are mostly prevalent
in the enriched cultures (0.22%-18.91%). Particularly, the phylum Synergistetes represents high
proportion in the Seafood sludge, distinguishing from other samples in both stages (43.76% and 36.10%
at inoculum and enriched culture, respectively). These mainly belong to the genus of Thermovirga
(1.23% in the inoculum and 23.37% in the enriched culture). In addition, Syntrophobactor and Syner-01
show high abundance in the enriched sample from the Seafood sludge (8.47% and 6.73%, respectively).

Stages
0.24 ' Enriched Culture

A Inoculum

A O Sources of sludge

Domestic

0.04

PCo2
>

FruitJuice
PalmOil

-0.2 1 PigManure

Seafood

A Starch
-0.4 1 A

.06 04 02 0.0 0.2
PCo1

Figure 1. Principal Coordinate Analysis (PCoA) plot showing dissimilar microbial profiles of inoculums
and enriched propionate-degrading cultures using the Bray—Curtis measure. Each dot represents an
individual anaerobic digestion (AD) sample. Shapes represent stages of the samples: triangles for
inoculums and circles for enriched cultures. The colors represent samples from different anaerobic
sludge sources.

3.2. Microbiome Profiles of Propionate-Degrading Cultures Enriched from Different Inoculum Sources

Among the enriched cultures, common and distinct patterns of microbial profiles between different
inoculum sources were revealed at the OTU resolution. Figure 3 shows a heatmap of dominant OTUs
(greater than 1% relative abundance across all enriched samples) labeled at genus level with their
relative abundance. The result reveals 52 dominant OTUs among the propionate-degrading cultures
enriched from different inoculum sources from a total of 87 OTUs from both stages (Table S4). The
enriched cultures of Domestic and FruitJuice show closet profiles among the six enriched cultures,
followed by a pair of PigManure and Starch. Methanosaeta (OTU00003) and Syntrophomonas (OTU00011
and OTU00012) are commonly dominant in the enriched cultures of Domestic and FruitJuice. The
Seafood sample showed the most distinguished profile compared to others. Methanosaeta (OTU00001)
and Smithella (OTU00002) occurred with high abundance in all of the enriched cultures except the
Seafood sample (5.86%—-38.38% and 2.79%—23.77%, respectively). Thermovirga (OTU00007, 22.91%)
is remarkable as a unique OTU dominant in the enriched culture from the Seafood sludge. In
addition, Syntrophobacter (OTU00016, 8.13%), Desulfobacteraceae (OTU00040, 3.66%), Methanospirillum
(OTU00025, 2.71%), and Methanosaeta (OTU00041, 2.37%) are also shown with higher abundance in the
Seafood sample compared to others. Several unculturable dominant taxa of the class Anaerolineae were
observed, for example, OTU00004 (18.62%) in the Seafood, OTU00009 (8.18%) and OTU00028 (1.75%)
in the Starch, OTU00014 (7.14%) and OTU00046 (2.3%) in the PalmQil, and OTU00053 (1.34%) in the
PigManure samples.
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Figure 2. Microbial community profiles showing relative abundance of microbes derived from different
anaerobic sludge sources at inoculum and propionate-enriched culture stages, respectively. (A) At the
phylum level, 19 taxa are dominant (>1% relative abundance) from the total of 57 assignable phyla.
(B) At the genus level, 15 dominants of 875 assignable genera are shown.
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Figure 3. A heatmap shows microbial profiles of the propionate-degrading cultures enriched from
different sources. 52 dominant OTUs are presented with their relative abundance. The dendrogram
between samples (rows) and OTUs (columns) are drawn based on Bray—Curtis dissimilarity. The OTUs
are assigned their taxonomic information at the genus level. The gradient color represents relative
abundance of observed OTUs in each sample from low to high as light yellow to red, respectively.

3.3. Common and Unique Microorganisms in Propionate-Degrading Cultures Enriched from Different
Inoculum Sources

We investigated common and unique microorganisms in the propionate-degrading communities
among different inoculum sources (Table 2 and Table S5, respectively). Due to the very distinct resulting
taxonomic profile of the enriched culture from the Seafood culture compared to other enriched cultures
(p = 0.018; Table S3), the analysis was performed without the Seafood sample. Table 2 displays common
microbes detected among the enriched propionate-degrading cultures (relative abundance greater
than 1% in each sample). Methanosaeta (OTU00001) and Smithella (OTU00002) appeared as common
microbes among all enriched cultures. Syntrophomonas is also a common genus in all cultures but with
different OTUs (OTU00011, OTU00012, and OTU00022). The Methanosaeta (OTU00001) was discovered
as a main AM. Another Methanosaeta (OTU00003) was also found in all enriched cultures except for the
Starch sample. Interestingly, different genera of HMs were discovered in each inoculum source (Table 3).
For example, Methanoregula was found dominantly in the enriched culture of the Domestic (1.20%) and
PigManure (2.77%) samples, Methanobacterium was found in the FruitJuice sample (6.07%), Methanolinea
was found in the Starch sample (4.97%), and Methanoculleus was found in the PalmOil sample (1.54%).
The genus Syner-01 belonging to the family Synergistaceae (OTU00006) appears commonly in the
enriched cultures of the Domestic, PalmQOil and PigManure samples. Furthermore, OTUs of the family
Anaerolineaceae (OTU00004, OTU00014, and OTU00046) were revealed dominantly in only the enriched
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culture of the PalmOil sample. Some OTUs were found uniquely in each enriched culture but belong
to the same genus of common OTUs such as Syntrophomonas in the Domestic sample, etc. (Table S5).

Table 2. A list of common propionate-degrading taxa enriched from different anaerobic agro-industrial
sludge sources.

Propionate-Enriched Culture

OTUs Taxonomic Lineage
Domestic FruitJuice PalmOil PigManure Starch
Archaea; Euryarchaeota; Methanomicrobia;
OTU00001 Methanosarcinales; Methanosaetaceae; v v v v v

Methanosaeta

Bacteria; Proteobacteria;
OTU00002 Deltaproteobacteria; Syntrophobacterales; v v v v v
Syntrophaceae; Smithella

Archaea; Euryarchaeota; Methanomicrobia;
OTU00003 Methanosarcinales; Methanosaeta; v v v v
Methanosaeta

Bacteria; Synergistetes; Synergistia;

©TU00006 Synergistales; Synergistaceae; Syner-01

Bacteria; Firmicutes; Clostridia;
OTU00011 Clostridiales; Syntrophomonadaceae; v v v
Syntrophomonas

Bacteria; Firmicutes; Cloastridia;
OTU00012 Clostridiales; Syntrophomonadaceae; v v v v
Syntrophomonas

Bacteria; Firmicutes; Clostridia;
OTU00022 Clostridiales; Syntrophomonadaceae; v v v v
Syntrophomonas

Table 3. A list of unique hydrogenotrophic methanogens in propionate-degrading cultures enriched
from anaerobic agro-industrial sludge sources.

Hydrogenotrophic Methanogen

OTU Observed Sample
Family Genus

OTU00061 Methanoregulaceae Methanoregula Domestic
OTU00023 Methanobacteriaceae Methanobacterium FruitJuice
OTU00105 Methanobacteriaceae Methanobacterium FruitJuice
OTU00100 Methanomicrobiaceae Methanoculleus PalmOil
OTU00036 Methanoregulaceae Metanoregula PigManure
OTU00097 Methanoregulaceae Metanoregula PigManure
OTU00015 Methanoregulaceae Methanolinea Starch

3.4. Several Uncultured Microbes Found in the Propionate-Degrading Cultures Using the Culture-Independent
Amplicon-Based Sequencing Approach

By performing the 165 rRNA gene sequencing, overall microbial communities of the samples
have been revealed without the limitation of cultivation. In our study, the majority of the OTUs could
be assigned their taxonomy as well-characterized microbes existing in the public databases (Table S1).
However, 8.01% of the identified OTUs were classified as the dominant uncultured microbes at the
genus level. These taxa are poorly defined in the available database and annotated as uncultured
microbes in different taxonomic levels. Several uncultured microbes were detached in the enriched
propionate-degrading communities (Table S6). For example, Desulfobacteraceae family was found in
the enriched culture of the Seafood sample (1.66%). The class of Anaerolineceae was found with the
highest number of OTUs in all the sludge samples, and dominant in several sludge sources such as
Seafood, Starch, PalmQil, and PigManure (18.62%, 9.94%, 9.54%, and 1.34%, respectively). In addition,
the Seafood samples contain high percent abundance of uncultured microbes in both the inoculums
(39.29%) and the enriched cultures (22.89%) (Table S7).
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4. Discussion

4.1. The Schematic Propionate-Degrading Pathway in the Enriched Cultures for Methane Production

With the limited carbon source of only propionate in the enriched cultures, microbial diversities in
the samples were lower than in the inoculum sludges (Table S1). The discovered microbial community
profiles and their degradation processes could be affected by the single carbon source feeding.
Excluding the Seafood sample, our experiment revealed very small percentages of Syntrophobacter
(<0.5%), which was previously proven as a propionate-degrading bacterium and found in most
of the propionate-degrading communities along with HMs [22,35,44,45]. Interestingly, Smithella
was found to be the dominant propionate-degrading bacterium [26] in our experiment, instead of
the regular Syntrophobacter. There might be two main reasons for the presence of Smithella in the
enriched cultures: (1) the nature of the original sludge containing a higher number of Smithella than
Syntrophobacter (Figure 2; Table S4) and (2) Syntrophobacter prefers to grow with propionate and sulfate
in the medium [23], which corresponds to our experiment that fed the medium without adding sulfate.
The results suggest that the main reaction of the propionate degradation (Figure 4 and Table S8)
is through Smithella, which can produce acetate and butyrate via a six-carbon intermediate, called
the dismutation pathway [23-25]. The total reactions produced more acetate molecules compared
to the classical pathway which belongs to Syntrophobacter and Pelotomaculum [23]. Following this
theoretical perspective, we observed a higher abundance of Methanosaeta, which produces methane
by acetate degradation, in the enriched samples [46]. Furthermore, Syntrophomonas was observed
in several enriched samples. It was reported as a butyrate utilizer to produce acetate for AMs in
the AD system [47]. Therefore, our studies suggest multi-trophic interaction of Smithella that can
degrade propionate directly to acetate and convert propionate to butyrate, which is a substrate
for Syntrophomonas (Figure 4). Consequently, Methanosaeta utilizes the resulting acetate from both
organisms to produce methane and functions as a key AM in the enriched cultures.

Dismutation pathway

————————————  Propionate
Smithella spp.
Syntrophobacter spp. (2:79% - 25.84%)
(0.05% - 0.48%)
Butyrate
Methylmalonyl-CoA
Pathway (MMC) { Syntrophomonas spp.
(3.14% - 17.29%)
N——p Acetate
‘ \/ l
- -
Hz CO,
Methanosaeta spp. Acetoclastic
(10.03% - 38.67%) Methanogens
[

Methanolinea spp. (Starch:4.97%)
Methanoculleus spp. (PalmOil: 1.21%)

Methane Methanobacterium spp. (FruitJuice: 6.33%, Starch 2.56%)
Methanoregular spp. (PigManure: 2.77%)

Figure 4. Schematic pathway of methane production based on propionate-degrading cultures enriched
from different anaerobic sludge sources excluding the Seafood sample. Colors represent pathways
of propionate degradation to methane production; red: methylmalonyl-CoA (MMC) pathway, blue:
dismutation pathway, gray: acetoclastic pathway, and yellow: hydrogenotrophic pathway. Microbial
taxa found in our study were drawn along the pathways with their percent relative abundance.
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4.2. Different Taxa of Hydrogenotrophic Methanogens Found Specifically to Different Sludge Sources

While a single genus of AM was found as dominant taxa in all enriched samples, various genera
of HMs were found particular to different sludge sources (Table 3 and Figure 4). In this study,
Methanobacterium, Methanoculleus, and Methanolinea, were found in the FruitJuice, PalmQil, and Starch
samples, respectively. Different OTUs of Methanoregula were found in the Domestic and PigManure
samples. All of these HMs were reported in various mesophilic environments [48,49], and some of them,
e.g., Methanolinea and Methanoculleus, were isolated from propionate-enrichment cultures as prevalent
methanogen [50,51]. Although relatively smaller amounts of these HMs compared to AMs have been
observed, they could also play a role in our systems for methane production by conversion of CO,/H,.
These small amounts could also result from less Hy produced from the dismutation pathway compared
to the MMC pathway (Table S8). The observed HMs could refer to the syntrophic contribution of
propionate degradation with Smithella [23]. Several types of HMs resulting from different wastewater
treatment sludges suggest possible various pairs of syntrophic propionate oxidation and methane
production between Smithella and HMs. The information of specific microbial taxa or communities of
propionate degradation could be used as a guideline for microbial management, leading to efficient
biogas production.

4.3. Unique Microbial Community in the Propionate-Degrading Culture Enriched from Seafood Sludge

The Seafood sludge revealed statistically distinct microbial profiles compared to the other
sludges from different wastewater sources (Figure 2 and Table S3). Thermovirga and Anaerolineaceae
uncultured groups affiliating to phylum Synergistetes and Chloroflexi, respectively, were found
as prevalent organisms in the enriched propionate-degrading culture. Thermovirga were reported
as amino acid degrading bacteria and were found dominantly in high salinity environments [52].
This is consistent with the condition of the Seafood sample, that originally contained high salinity.
Anaerolineaceae were found in the AD system relating to granular formation and maintenance [53].
Both Thermovirga and Anaerolineaceae have been revealed dominantly with Methanosaeta in several
AD experiments [54-56], suggesting that these microbes would play an important role in propionate
degradation and biogas production pathways. Syntrophobacter and Methanospirillum were found as
syntrophic propionate-oxidizing bacteria and Hj-utilizing methanogen, respectively [22,35]. These
microbes have relatively higher abundance in the Seafood sample compared to the other five samples,
suggesting an observation of the classical MMC pathway instead of our main discovered Smithella
pathway (Figure 4). Furthermore, the Seafood sample showed the highest HM:AM ratio compared to
other samples (Table S9). This corresponds to the result of a higher percent methane production but less
SMA, indicating AM activities of utilizing acetates as substrates, compared to other samples (Table 1).
The result suggested that the HMs would play more of a role in this sample as the MMC pathway
provides more Hj than the dismutation pathway (Table S8). The result showed that the Seafood sample
has a unique profile and could be further investigated for the enrichment of methanogenic propionate
degradation in a saline environment.

4.4. Overall Microbial Profiles of Propionate-Degrading Cultures and Unculturable Microbes Revealed Through
Amplicon-Based Sequencing

The utilization of NGS allows the study of microbes taken directly from the samples without
cultivation, showing all existing microbes with their abundance in the studied sample. Beforehand, a
small number of known microbes has been studied, limited by cultivation [22,26,57]. Since microbes
live as a community, this high-resolution technique provides a great opportunity to derive an overall
picture of a microbial community and provides more insights to understand the dynamism of the
studied consortium. In this study, a set of propionate-degrading communities was revealed according
to their original sludge sources. Many OTUs of the class Anaerolineae were empirically revealed as
predominant uncultured microbes in the enriched propionate-degrading cultures (Table S6). This
microbe has been discovered dominantly in several AD systems [56]. In addition, Mcllroy S.J. et al. [56]
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reported a member of Anaerolineae co-located with Methanosaeta spp., which was discovered in our
study as major archaea. The function of the Anaerolineae and its synergistic relationship to Methanosaeta
could be worth further investigation. The information from high-throughput sequencing provided a
whole microbial community leading to better understanding of the control and management of the AD
systems, as the microorganisms work together in the process.

5. Conclusions

The microbiome of the propionate-degrading communities enriched from different inoculum
sources was investigated using 165 rRNA gene sequencing analysis. Interestingly, we found Smithella as
the dominant propionate-degrading bacteria in most of the studied samples, suggesting the dismutation
pathway of propionate degradation instead of the classical MMC pathway. The experiment supported
a key role of Smithella and Syntrophomonas that implied a multi-trophic interaction of these two
microorganisms to convert propionate to acetate and butyrate, and butyrate to acetate, respectively.
A major abundance of Methanosaeta was observed as a main methanogen using acetate, while
dominant HMs were found specific to different inoculum sources. The Seafood sludge sample shows
a distinctive microbial profile containing Thermovirga, Anaerolinaceae, and Methanosaeta as dominant
taxa, as well as Syntrophobacter and Methanospirillum which are mostly reported as regular syntrophic
propionate-degrading culture through the MMC pathway. The highest HM:AM ratio was found
in the Seafood sample, which corresponds to the MMC pathway producing more hydrogen that is
utilized by HMs than the Smithella pathway. On the other hand, the relative abundances of AMs in
the samples with the dismutation pathway were higher than in the Seafood sample, as more acetates
are produced from that pathway. Furthermore, several uncultured bacteria of the class Anaerolinea
were revealed in the enriched cultures. Our study shows that digesters with comparable performance
and methane production could contain different communities of propionate-degrading microbes
corresponding to their original sludge sources. The result suggests that inside information of specific
propionate-degrading communities could be further applied to microbial monitoring and manipulation
of wastewater treatment systems to increase biogas production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/2/277/s1,
Table S1: Alpha-diversity estimation of microbiome in inoculums and their corresponding propionate-degrading
cultures, Table S2: Statistical comparison of microbial profile between stages of inoculum and enriched culture
using analysis of similarity (ANOSIM), Table S3: Statistical comparison of microbial profiles among different
sources of anaerobic sludge using analysis of similarity (ANOSIM), Table S4: Relative abundance of 87 dominant
OTUs (relative abundance greater than 1% in at least one sample) in our studied samples, Table S5: A list
of unique propionate-degrading microbes enriched from different anaerobic sludge sources, Table S6: A
list of SILVA-annotated uncultured microbes found dominantly (greater than 1% relative abundance) in the
propionate-degrading cultures, Table S7: Percent relative abundance of uncultured microbes found in the inoculums
and propionate-degrading cultures using the culture-independent amplicon-based sequencing approach, Table S8:
Reactions of syntrophic metabolism of obligate proton-reducing acetogens and methanogens [19,25]. Table S9:
Relative abundance of dominant methanogens found in the inoculum and propionate-degrading cultures and
percentage HM:AM ratio.
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ABSTRACT

The advent of next-generation sequence technology has opened a new door for studying microbial community called
metagenomics. The whole genome shotgun metagenomic approach provides a potential to analyze all genomic content
in a particular environment and reveal microbiota components and their functions. The technique has been widely
applied in several area such as soil, water, air, plant, animal and human. So far, the results of metagenomic studies
strongly depend on the chosen computational analysis methods and parameters, which yield different microbial and
functional profiles, and consequently affect the downstream interpretation. Despite the performance of available tools
for shotgun metagenomic data have been compared, these reports mainly focused on run time, database size and/or
taxonomic classification accuracy based on a fraction of reads classified. Nevertheless, the investigation in term of
detected microbial richness and diversity has not explicitly been reported, which are the main results of a microbiome
study. Here, widely used metagenomic tools including Centrifuge, Kraken, MEGAN and MetaPhlAn2 are examined
for their performance of taxonomic classification. Not only considering the sequencing reads whether they are
accurately classified but the resulting microbial richness and diversity are also investigated. To evaluate the tools, we
generated mock communities combining mock and shuffled input metagenomic reads. We report performance evalua-
tion of commonly used metagenomic tools with their different resulting microbial profiles. The study could provide a
guideline for choosing a metagenomic tool for more accurate reported taxonomic profiles.

KEYWORDS
Metagenomics, Taxonomic classification, Whole metagenome shotgun, Microbial richness, Microbial diversity
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ABSTRACT

Metagenomics has become popular to study microbial communities in wastewater treatment
for manipulating pollution control and biogas production. The technique allows broad study of
microbial communities without culturing by directly sequencing genetic materials from an environment
sample using next-generation sequencing (NGS) technology. The 16s rRNA gene-based metagenomic
analysis is a commonly used method for identifying bacteria and archaea in studied samples by
sequencing targeted hypervariable regions on their 16s rRNA genes. A choice of a selected
hypervariable region and its primers has been shown as an important factor for detecting microbes.
Recent studies show that different hypervariable regions could capture different community profiles
depending on types of samples and microbial compositions. Nevertheless, there is no specific report for
the study of microbial communities in wastewater treatment. Here we performed bioinformatics
analysis to evaluate sensitivity of commonly used primers in activated sludge and anaerobic digestion
studies. The results show that overall of the studied primers could capture 85-99% of all bacteria and
archaea based on the studied 16s rRNA gene database of activated sludge and anaerobic digesters. From
our study, V4 and V4-V5 primers provide better resolution to detect the microorganisms than V3-V4
primers especially those in the phyla Euryarchaeota, Thaumarchaeota and Woesearchaeota. Moreover,
target size of each hypervariable region are reported, which are useful information for filtering amplified
targeted regions in metagenomic analysis. This study could be introduced as a guideline for selecting
optimal hypervariable regions for 16s rRNA gene-based metagenomics in wastewater treatment

systems.

KEYWORDS: 16s rRNA gene, Activated sludge, Anaerobic digestion, Hypervariable region,

Metagenomics
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INTRODUCTION

Microbes live as a community and survive in various sources of wastewater such as food waste
(Hagen et al., 2017; He et al., 2017), manure slurry (Lin et al., 2016), mining (Ma et al., 2015), and
residence (He et al., 2017). In wastewater treatment systems, microbes are key players for pollution
control by degrading from complex organic polymers into small molecules. In anaerobic digestion
systems, the degradation processes result formation of biogas (i.e. methane and carbon dioxide), which
has been considered to contribute as sustainable energy. The systems have been studied not only for
treating water but also produce biogas as alternative fuel source (Doloman, Soboh, Walters, Sims, &
Miller, 2017). To control and manage the wastewater treatment system, microbial management is
essential and understanding the microbial communities is a key step. Nevertheless, a clear picture of
the complex communities and their behaviors has not been characterized. The studies to understand the
communities are still going on (Doloman et al., 2017; Kouzuma et al., 2017; Tian, Zhang, & Yang,
2018).

With the availability of the next generation sequencing (NGS) technology, living cells can be
studied in molecular levels in a high-throughput manner. Recently, metagenomic technique has been
introduced to study microbial communities by sequencing genetic materials from a particular
environment. Unlike the conventional microbial techniques that are culture-dependent techniques,
metagenomics extracts DNAs directly from a sample of the study without cultivation. The technique
provides overall pictures of microorganism and has been more applied to study microorganisms
including in wastewater treatment systems (Doloman et al., 2017; He et al., 2017; Lin et al., 2016; Tian
et al., 2018).

The 16s rRNA gene-based metagenomic analysis is one of commonly used methods for
identifying microbial communities in studied samples by sequencing targeted hypervariable regions on
their 16s TRNA genes. These gene encodes small subunit of ribosomal with approximate lengths of
1,500 bp. (Jo, Kennedy, & Kong, 2016), containing conserved and nine hypervariable regions (V1-V9)
regions which are specific to each organisms (B. Yang, Wang, & Qian, 2016). From this reasons,
selected hypervariable regions of 16s rRNA genes were used extensively in varieties of taxonomic
investigation based on Illumina sequencing platform (Guo, Ju, Cai, & Zhang, 2013). With the popular
Illumina sequencing, high-throughput sequences could be produced at a time but the derived sequences
are relatively short (about 100-300 base pairs). Thus, one or consecutive two hypervariable regions is
selected to study microorganism to represent the studied microbes. Sets of commonly used primers from
[llumina and some modified primers are specified to various hypervariable regions of 16s rRNA genes
such as V3-V4 (Doloman et al., 2017; S. Yang et al., 2017), V4 (Kouzuma et al., 2017; Lin et al., 2016)
and V4-V5 (Mei, Narihiro, Nobu, & Liu, 2016). Those targeted hypervariable regions has been reported

to provide sufficient results for investigating microorganisms in metagenomic studies. After
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sequencing, the targeted sequences are clustered into OTUs (Operational Taxonomic Units) and
annotated their taxonomy by searching for similarity to the existing sequences in available databases
(Doloman et al., 2017) such as Microbial Database for Activated Sludge (MiDAS) (Mcllroy et al.,
2017), Silva (Quast et al., 2012), Greengenes (DeSantis et al., 2006), and Ribosomal Database Project
(RDP) (Cole et al., 2013).

Even though metagenomic studies have been increasing, a choice of a selected hypervariable
region and its primers is still remained as a question since it has been shown as an important factor for
deriving community profiles. Several recent studies show that different hypervariable regions could
capture different community profiles depending on types of samples and microbial compositions
(Graspeuntner, Loeper, Kiinzel, Baines, & Rupp, 2018; B. Yang et al., 2016). For example,
hypervariable region V3-V4 has been shown to capture most of bacterial and archaeal profiles in
activated sludge studies (Cai, Ye, Tong, Lok, & Zhang, 2013; Guo et al., 2013) and vaginal microbiome
study (Graspeuntner et al., 2018). Another report showed that hypervariable region V4-V6 is suitable
for microbial taxonomy identification in general condition by computational analysis (B. Yang et al.,
2016). Moreover, one study showed that the reliable of hypervariable region V4 could represent general
taxonomy of microbes better than using whole sequence of 16s rRNA gene (B. Yang et al., 2016).
Nevertheless, there is no systematic investigation for detecting microbial profiles using different
targeted hypervariable regions in wastewater treatment, particularly activated sludge and anaerobic
digestion. There is a need of a guideline for selecting a hypervariable region to perform the
metagenomic analysis.

Here we performed bioinformatics analysis to evaluate sensitivity of selected universal primers
in wastewater treatment systems using Microbial Database for Activated Sludge (MiDAS) (Mcllroy et
al., 2017; Mcllroy et al., 2015), an integrated collection of microbial sequences in activated sludge and
anaerobic digesters. Comparative genomics analysis has been performed in order to investigate
sensitivities of the selected universal primers to capture the desired targeted regions and annotate the
studied microbes. Moreover, we also report the target lengths of each hypervariable region among
microorganisms by commonly used primers in metagenomic studies, which are useful information for
filtering desired sizes of the amplified targeted regions. We report the results of hypervariable regions
assessment, which could be suggested as a guideline for selecting a hypervariable region for 16s rRNA

gene-based metagenomics in wastewater treatment systems.

MATERIALS AND METHODS
1. The investigated 16s rRNA genes and metagenomic primer sequences
In order to investigate 16s TRNA gene of microorganisms in activated sludge and anaerobic

digesters, the data were retrieved from MiDAS (http://www.midasfieldguide.org/en/download/).
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MiDAS is a huge collection of curated taxonomy of 16s rRNA genes specifically to activated sludge
and anaerobic digesters. The database integrates 16s rRNA genes from SILVA database, a
comprehensive ribosomal RNA sequences, and Danish wastewater treatment plants. It comprises
21,483 archaea and 453,045 bacteria. Four commonly used primers targeting hypervariable regions
were selected based on the most reliable regions for representing 16s rRNA gene (B. Yang et al., 2016).
These primers are universal primers in metagenomic studies based on Illumina platform and used in
various environments including wastewater. This study includes two pairs of V3-V4, one pair of V4,

and one pair of V4-V5. Information of the primers are shown in Table 1.

Table 1 The information of commonly used primers for 16s rRNA genes-based metagenomic analysis.

Hypervariable Primer

Primer sequences Source
regions name
V4 515F  5-GTGCCAGCMGCCGCGGTAA-3’ (Kouzuma et al., 2017; Lin
806R  5’-GGACTACHVGGGTWTCTAAT-3 etal., 2016)
341F  5-CTAYGGGRBGCASCAG-3’
V3-V4 (1) (S. Yang et al., 2017)

806R  5’-GGACTACNNGGGTATCTAAT-3’

338F  5’-ACTCCTACGGGAGGCAGC-3’
V3-V4 (2) (Doloman et al., 2017)
785R  5’-TACNVGGGTATCTAATCC-3’

S515F  5-GTGCCAGCMGCCGCGGTAA-3’
V4-V5 (Mei et al., 2016)
909R  5’-CCCCGYCAATTCMTTTRAGT-3’

2. Hypervariable regions assessment for 16S rRNA gene-based metagenomic analysis

In this study, we investigated sensitivities of the selected primers targeting different
hypervariable regions of 16s TRNA genes of microorganisms in wastewater treatment systems. The
studied primers were mapped to the reference 16s rRNA genes from the MiDAS database by
bioinformatics approaches. The primer sequences were aligned to the 16s TRNA genes database using
Clustal Omega version 1.2.4 (Sievers et al., 2011) with default parameters. This is to determine whether
the primers could amplify the desired target regions. From the alignment results, the targeted
hypervariable regions, or the regions between the forward and reverse primers, were extracted by our
in-house python scripts. In our analysis, the reported candidate target lengths were determined using

the criteria that a particular position contains equal or greater than 100 detected sequences.
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RESULTS AND DISCUSSION
1. Using different hypervariable regions can overall detect microbes in activated sludge and
anaerobic digestion systems similarly

We first investigated how the metagenomic primers for different hypervariable regions (Table
1) can capture the targeted sequences of the microbial communities in wastewater treatment systems.
By our computational analysis, the results show that 85 — 99% of 16s rRNA genes can be captured
within the candidate target sizes based on the analyzed primers (Figure 1). Larger proportions of
bacteria sequences can be detected by the studied primers compared to archaea as the greater proportion
of the bacteria domain in the database. From the analytic results, the primers of V4 and V4-V5
hypervariable regions provide better resolutions to detect archaea and bacteria compared to V3-V4.
Even through the primer positions of two analyzing V3-V4 regions are very similar, numbers of
captured sequences are different. The results suggest that a selection of hypervariable regions could
slightly reflect the numbers of detected microbes, and different primers of the same hypervariable region

could detect microbial communities differently (Nikolaki & Tsiamis, 2013; Youssef et al., 2009).

2,350 522 4 2,720
s 35 3,481 -
2,032
90% 3,081
80% +
0% +
60% T
449,564
50%
40%
30%
20%
10% " '
Archaea Bacteria Archaea Bacteria Archaea Bacteria Archaea Bacteria microorganisms
V4 V3-V4 (1) V3-V4(2) V45 primers

B Captured 16s rRNA gene Not captured 16s rRNA gene

Figure 1 Proportions of captured 16s rRNA genes using different hypervariable region primers. The
analyzed 16s rRNA genes are based on MiDAS database containing microbes related to wastewater
treatment systems with total numbers of 21,483 archaea and 453,045 bacteria.

2. Target sizes of the studied hypervariable regions are varying among archaea and bacteria

Table 2 and Figure 2 show ranges of candidate target sizes detected by the studied primers. The target
sizes captured by V4 and V4-V5 primers are slightly shifted between archaea and bacteria. However,
the candidate target sizes by V3-V4 primers are not in an overlapped range. The results indicate different
target sizes between archaea and bacteria and give a notification for filtering desired targeted sequences
in metagenomic analysis. For example, Mothur (Schloss et al., 2009) requires users to specify the target
length of interest. Having such information would provide more accurate results of the analysis.

Furthermore, we found that both primers of V3-V4 provide the same candidate target sizes. Comparing
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to E. coli, the identified candidate target sizes from V4 and V4-V5 primers were slightly smaller than

E. coli depending on the binding positions of primers (Table 2). On the other hand, the candidate target
sizes from V3-V4 primers cover V3-V4 region of E. coli (Table 2) (B. Yang et al., 2016). From the

analytic results, the prediction show the reliable of candidate target sizes.

Table 2 Candidate target sizes of the studied hypervariable regions of archaea and bacteria and E. coli’s

target size.

Hypervariable Domain E. coli
regions Archaea Bacteria (B. Yang et al., 2016)
V4 252 - 256 bp. 243 -266 bp. 259 bp.
V3-V4 (1) 382-393 bp. 397 - 443 bp. 440 bp.
V3-V4 (2) 382-393 bp. 397 - 443 bp. 440 bp.
V4-V5 377 - 383 bp. 363 - 393 bp. 398 bp.
400000 _ Frequency (seq.) §V4 o
i —— Archaea Bacteria |
300000 4 /'243 —266 bp. '
200000 +
100000 + | T :
o | A £ Target length (bp.)
120000 _E_Frequency (seq.) ] §V3-V4 (1) = = o
Vo ——Archaea acteria
90000 1 :
60000 + E ‘;397 —443 bp.
30000 |+ l ';; .
382 —393 bp. 'Y H
0 Rl M Target length (bp.) E
120000 -E—F'eq“""“(seq') EV3'V4 @ :
el {0 —— Archaea Bacteria !
90000 + :
60000 + 397 —443 bp.
i |
30000 1 i ’::
382 —393 bp. il i i I
0 4 AL_L:E Target length (bp.) '
150000 _E_Frequency (seq.) ;V4-V5 :
! —— Archaea Bacteria |
120000 + H
So0G0LL 363 —393 bp.#
60000 + | :
30000 + 377% —383 bp. '
04 | il Targetlength (bp.) |
0bp 500: bp 1,00(:)

Figure 2 Distribution of target sizes of different hypervariable region primers, V4 (A), V3-V4 (B-C),
and V4-V5 (D). X-axis represents a target length and Y-axis represents a number of detected 16s

rRNA genes using the primers. The black and orange lines represent the domain of archaea and

bacteria, respectively.
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3. Some microbial organisms in activated sludge and anaerobic digestion studies could be
detected with different resolution among different hypervariable regions

We assessed sensitivities for capturing microbes using different hypervariable region primers
for 16s rRNA genes-based metagenomic analysis. All captured 16s rRNA genes with candidate target
length were assigned their taxonomy according to MiDAS database. Taxonomic annotations of the
captured archaea and bacteria using different hypervariable regions are shown in Figure 3 and Figure
4, respectively. The top detected archaea (Figure 3A, 3C) and bacteria (Figure 4A, 4C) are very similar
among different utilized primers in both phylum and genus levels. In addition, the abundances of each
detected organisms are slightly different. By considering the abundances of the detected phylum in
archaea, the phylum of Thaumarchaeota is the one that can be captured less using both V3-V4 primers.
Interestingly, the abundances of Thaumarchaeota and Miscellaneous Crenarchaeotic Group are
different between V3-V4 (1) and V3-V4 (2) even though the same hypervariable regions are utilized.
This suggests that different primers used in a particular variable region could also provide different
resolution of microbes detected.

Figure 3B and Figure 3D show the numbers of archaea that could not be captured by the studied
primers in phylum and genus levels, respectively. From our analysis, V3-V4 primers could not capture
many of three archaeal phyla including Euryarchaeota (6.6% and 9.2% of total Euryarchaeota for V3-
V4(1) and V3-V4(2), respectively), Thaumarchaeota (14.2% and 23.2% of total Thaumarchaeota), and
Woesearchaeota (DHVEG-6) (39.7% and 42.8% of total Woesearchaeota) more than other primers
(Figure3B). This should be noted especially if the phylum is in the studied samples or under a specific
interest. For instance, Euryarchaeota include methanogens which play an important role for producing
methane. The organism has been focused in anaerobic wastewater treatment systems for enhancing
biogas production (Doloman et al., 2017). In bacteria domain, several Proteobacteria (0.54% - 0.74%
of total Proteobacteria for all studied primers), Firmicutes (0.46% - 0.58% of total Firmicutes),
Actinobacteria (0.32% - 0.52% of total Actinobacteria) and Planctomycetes (0.86% - 7.79% of total
Planctomycetes) could not be captured. Interestingly, Planctomycetes phylum could not be captured by
V3-V4 primers for about 4-10 times comparing to other primers (Figure 4B). At the genus level, the
less captured bacteria include unknown, uncultured, and Bacillus (Figure 4D). Many of unknown and
uncultured genus in archaea and bacteria were not detected by the selected primers (Figure 3D and
Figure 4D). This suggests current commonly used primers could still not capture some non-informative

microorganisms pointing out a limitation to study novel microorganisms in metagenomics.
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Figure 3 Abundance of top 10 archaeal microorganisms that could be captured (left) and could not be

captured (right) using different hypervariable primers at phylum (A-B) and genus (C-D) levels,

respectively.
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Figure 4 Abundance of Top10 bacterial microorganisms that could be captured (left) and could not be
captured (right) using different hypervariable primers at phylum (A-B) and genus (C-D) levels,

respectively.

CONCLUSION

From our analysis, different hypervariable region primers for 16s rRNA genes-based metagenomics
could capture the majority of the microorganisms in wastewater treatment systems based on MiDAS
database. V4 and V4-V5 primers provide better resolution to detect the microorganisms than V3-V4
primers. Some microbes could be captured less using V3-V4 primers than V4 and V4-V5. Moreover,

candidate target sizes of each analytic primers are reported showing slightly different ranges of target
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size of archaea and bacteria domains. This study could serve as a guideline for selecting hypervariable
primers for 16s rRNA genes-based metagenomics in wastewater treatment systems. In addition, the
identified candidate target size could be provided as background information to filter the desired target

size for more accurate metagenomic analysis.
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ABSTRACT

In the last decades, microbiome research has been growing rapidly as a consequence of dramatic
improvement of next-generation sequencing technologies (NGS). The study, called metagenomics,
allows us to study microbial communities by sequencing all genetic materials from a particular
environment without culturing microorganisms in a laboratory. As a huge volume of such data has been
produced and still increasing, several databases have been developed to collect and manage
metagenomic samples including raw sequences, metadata and some processed results. These well-
known databases include Sequence Read Archive (SRA), The European Nucleotide Archive (ENA),
DNA Data Bank of Japan (DDBJ), and EBI metagenomics (or MGnify). Even though, these databases
are claimed to be linked and exchanging the data, they still have different formats of metadata and data
could be found in each database using different keywords of the sample properties. An integrated
database that could synchronize all metagenomic data would facilitate scientists to search for datasets
of interest without going through different databases. In this work, we construct a platform for
compressive non-redundant metagenomic database and web-application called SBI Metagenomics
(http://metagenomics.sbi.kmutt.ac.th). The platform integrates metagenomic data from the mentioned
available repositories and provides a powerful access to the data via user-friendly web application for
searching, visualizing and comparing metagenomic data associated with interested metadata. The
platform would be useful for researchers who are interested in a particular filed of metagenomics and

would like to revise existing data or compare to their own data to the available data.
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1 ... N | -Experment type ce quality report
- Se 1.1 nomic profile

——+ | - Analytical pipeline

- Host status

*Note: 1...1:0Onetoonerelz ship e g one Run provides one Microbial profile

1 ... N: One to many relationship e.g. one Project has several Samples

Objective Result

To develop integrated metagenomic database and web Sitemap of SBImetagenomics web application
application for searching, visualizing and comparing microbiome
and asscociated metadata

SBImetagenomics web application (Overview)

¥ ¥ ¥ )
— Browse data Visualize data About Help
Conclusion
SBImetagenomics is an integrated platform for a comprehensive - Project
microbiome study. Currently, it provides 3 pilot microbionme categories,

which are those of human, chicken and wastewater. Itis a user-friendly
platform that users can easily search, visualize and compare
microbiome data with their asscociated metadata. More
microbiome data will be added in the near future.

About

Microbial profile SBImetagenomics
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