

รายงานวิจัยฉบับสมบูรณ์

สารให้กลิ่นในข้าวไรซ์เบอร์รี่และผลของการบวนการให้ความร้อน¹
ต่อกลิ่นของเครื่องดื่มข้าวไรซ์เบอร์รี่

โดย

ผู้ช่วยศาสตราจารย์ ดร. เยาวภา หล่อเจริญผล

ตุลาคม 2562

รายงานវิជ្ជាប័ណ្ណសម្បរណ៍

សារใหកលិននឹងខ្សោយបេរិច្ឆេទនិងភេទនិងភាពរបស់ខ្សោយបេរិច្ឆេទ

ជូនីយការណាស់ទាញរាយ លោក យោវរោន អនុលោកស្រី

សារប័ណ្ណនេះត្រូវបានរៀបចំឡើងដើម្បីបង្កើតស្ថាបន្ទូនសារប័ណ្ណនេះ

(គោលការណ៍នេះត្រូវបានរៀបចំឡើងដើម្បីបង្កើតស្ថាបន្ទូនសារប័ណ្ណនេះ)

สารบัญ

	หน้า
สารบัญ	i
บทคัดย่อ	ii
Abstract	iii
Executive Summary	iv
บทนำ	1
วัตถุประสงค์	3
อุปกรณ์และวิธีการ	4
ตัวอย่างและสารเคมี	4
กลุ่มข้าวไรซ์เบอร์รี่ ข้าวขาวดอกมะลิ 105 และ ข้าวหอมนิลหุ่งสุก	4
กลุ่มเครื่องดื่มไรซ์เบอร์รี่ที่ผ่านการฆ่าเชื้อแบบต่าง ๆ	6
การวิเคราะห์ทางสถิติ	7
ผลและวิจารณ์	8
ข้าวไรซ์เบอร์รี่หุ่งสุก	8
เครื่องดื่มไรซ์เบอร์รี่ที่ผ่านการฆ่าเชื้อ	10
สรุปและข้อเสนอแนะ	17
สรุปผลการทดลอง	17
ข้อเสนอแนะ	17
เอกสารอ้างอิง	18
Output จากโครงการวิจัยที่ได้รับทุนจาก สวว.	24
ภาคผนวก	25
ภาคผนวกที่ 1	26
ภาคผนวกที่ 2	61

บทคัดย่อ

จากการวิเคราะห์กลิ่นด้วยเทคนิค aroma extract dilution analysis (AEDA) การคำนวณค่า odor activity value (OAV) และการประเมินทางประสาทสัมผัสเชิงพร่อง鼻 พบว่า vanillin, guaiacol, 4-vinylguaiacol และ raspberry ketone (hydroxyphenylbutan-2-one) คือสารให้กลิ่นสำคัญของข้าวไรซ์เบอร์รี่หุ่งสุก ซึ่งผลการวิเคราะห์ท่องค์ประกอบหลัก (principal component analysis; PCA) ของสารให้กลิ่นและลักษณะกลิ่น ยังพบความสัมพันธ์กับข้าวหอมมะลิ 105 และข้าวหอมนิล ที่เป็นพันธุ์แม่และพ่อ นอกจากนี้เครื่องดื่มข้าวไรซ์เบอร์รี่ที่ผ่านการฆ่าเชื้อด้วยวิธีพาสเจอร์ไรซ์แบบ high temperature-short time (HTST), พาสเจอร์ไรซ์แบบ ultrapasteurization (UP) และ สเตอเริลайซ์แบบ ultra-high temperature (UHT) มี vanillin, guaiacol และ raspberry ketone เป็นสารให้กลิ่นสำคัญเช่นเดียวกัน อย่างไรก็ตามแม้ว่าเด็กคงด้านกลิ่นของตัวอย่าง UP จะแตกต่าง จากตัวอย่าง HTST และ UHT แต่ไม่พบความแตกต่างของโครมาโทแกรมค่า flavor dilution ระหว่าง UP และ HTST ซึ่งผลการวิเคราะห์แบบจัดกลุ่มและผลการประเมินทางประสาทสัมผัสวิธี R-index ranking test ก็ยืนยันคุณภาพด้านกลิ่นที่คล้ายกันของตัวอย่างพาสเจอร์ไรซ์ทั้งสองวิธีระหว่างการเก็บรักษา ในขณะที่เครื่องดื่มข้าวไรซ์เบอร์รี่ UHT มีสารให้กลิ่นไม่เพียงประสงค์ ได้แก่ acetic acid, propanoic acid, butanoic acid และ indole เพิ่มขึ้น รวมถึงมีสีจางลงและมีปริมาณ cyanidin-3-glucoside และ peonidin-3-glucoside ต่ำลง ผลการวิจัยนี้จึงช่วยสนับสนุนคุณภาพที่ดีของผลิตภัณฑ์ที่ผ่านการฆ่าเชื้อด้วยวิธี UP

คำสำคัญ: กลิ่นรส; สารให้กลิ่น; ข้าวไรซ์เบอร์รี่; ultrapasteurization; raspberry ketone (hydroxyphenylbutan-2-one)

Abstract

Aroma extract dilution analysis (AEDA), odor activity values (OAV), and descriptive sensory analysis were employed to qualify and quantify Riceberry aroma. Vanillin, guaiacol, 4-vinylguaiacol, and raspberry ketone (hydroxyphenylbutan-2-one) were found to be the main contributors in cooked Riceberry. Principal component analysis (PCA) supported the conveyance of aroma-active compounds and characteristics of Riceberry parental lines (Khao Dawk Mali 105 and Hom Nin). Vanillin, guaiacol, and raspberry ketone were also the potent odorants in Riceberry beverages treated by high temperature-short time (HTST) pasteurization, ultrapasteurization (UP), and ultra-high temperature (UHT) commercial sterilization. Although the sensory aroma profile of the UP sample differed slightly from that of HTST and UHT beverages, the flavor dilution chromatograms of UP and HTST samples were identical. Hierarchical cluster analysis and sensory R-index ranking further confirmed the similarities of these two pasteurized samples during storage. Certain off-aroma increases, particularly those of acetic acid, propanoic acid, butanoic acid, and indole, set apart UHT Riceberry beverages from others. UHT samples were also light in color and lower in cyanidin-3-glucoside and peonidin-3-glucoside content. The entirety of this research supported the commercialization of high quality UP products.

Keywords: flavor; odorant; Riceberry; ultrapasteurization; raspberry ketone (hydroxyphenylbutan-2-one)

Executive Summary

Ultrapasteurization (UP) เป็นกระบวนการใช้ความร้อนเพื่อยืดอายุการเก็บรักษาอาหารเหลว ที่มีความเป็นกรดต่ำ โดยสภาวะที่ใช้ในการฆ่าเชื้อของ UP คล้ายกับการสเตอเริลайซ์ชัน ultra high temperature (UHT) แต่ไม่ต้องอาศัยการบรรจุและภาชนะบรรจุแบบปลดเชือก อย่างไรก็ตามแม้ว่า อุณหภูมิการฆ่าเชื้อที่สูงจะทำให้ผลิตภัณฑ์มีอายุนานกว่าการพาสเจอร์ไรซ์แบบดั้งเดิม แต่เป็นที่ทราบ ดีว่าความร้อนจะก่อให้เกิดการเปลี่ยนแปลงของลักษณะทางเคมีและกายภาพ ตลอดจนสมบัติทาง ปราสาทสัมผัสของผลิตภัณฑ์ ทั้งนี้งานวิจัยด้านผลของ UP ต่อคุณภาพของอาหารมีจำกัด โดยเฉพาะ อย่างยิ่งคุณภาพด้านกลิ่นรส ดังนั้นการเปรียบเทียบการพาสเจอร์ไรซ์แบบ high temperature short time (HTST), UHT และ UP จะช่วยเพิ่มความเข้าใจเรื่องความคงตัวของสารให้กลิ่น รวมถึงการเกิด สารให้กลิ่นจากความร้อนในระบบอาหารจริง ซึ่งสามารถนำไปใช้พัฒนาและทำให้ผลิตภัณฑ์มีอายุ การเก็บรักษาที่ยาวนานขึ้น โดยในงานวิจัยนี้ใช้เครื่องดื่มจากข้าวไรซ์เบอร์รี่เป็นตัวอย่างในการศึกษา เนื่องจากปัจจุบันน้ำมันข้าวหรือน้ำข้าวกล้องกำลังเป็นที่นิยมอย่างกว้างขวาง โดยเฉพาะในกลุ่มผู้ที่แพ้ นมวัวและถั่วเหลือง นอกจากนี้ข้าวไรซ์เบอร์รี่ซึ่งเกิดจากการผสมพันธุ์ระหว่างข้าวขาวดอกมะลิ 105 และข้าวหอมนิล ยังเป็นข้าวที่มีคุณค่าทางอาหารสูง สีสวย เนื้อสัมผัสนุ่ม และมีกลิ่นหอมที่เป็น เอกลักษณ์ โดยผู้ผลิตเครื่องดื่มและอาหารหลายรายต้องการซื้อวัตถุปูรุสแต่งกลิ่นข้าวไรซ์เบอร์รี่ แต่ งานถึงปัจจุบันยังไม่มีหน่วยทางการค้า อีกทั้งยังขาดข้อมูลด้านกลิ่นของข้าวไรซ์เบอร์รี่ที่วิเคราะห์ ด้วยเครื่องมือหรือการทดสอบทางปราสาทสัมผัส ซึ่งในงานวิจัยนี้ได้ศึกษาสารให้กลิ่นในข้าวขาวดอกมะลิ 105 และข้าวหอมนิลร่วมด้วย เพื่อเป็นข้อมูลในการสร้างมาตรฐานของข้าวไทย จากผลการวิเคราะห์กลิ่น ด้วยเครื่องมือและการประเมินทางปราสาทสัมผัส ตลอดจนการวิเคราะห์คุณภาพทางด้านกายภาพ เคมี และจุลินทรีย์ พบว่า UP สามารถฆ่าเชื้อและยืดอายุการเก็บรักษาเครื่องดื่มข้าวไรซ์เบอร์รี่ได้อย่าง มีประสิทธิภาพ โดยผลิตภัณฑ์ที่ได้มีคุณภาพด้านกลิ่นเทียบเท่ากับการใช้วิธี HTST ในขณะที่ตัวอย่าง UHT มีปริมาณสารให้กลิ่นไม่เพียงประสงค์สูงขึ้น สีจางลง และปริมาณแอนโธไซยานินต่ำลง ดังนั้นวิธี UP ซึ่งมีการปรับกระบวนการผลิตจากวิธี HTST เล็กน้อย จึงเป็นเทคโนโลยีที่มีต้นทุนเหมาะสมกับ ผู้ประกอบการขนาดเล็กและขนาดกลาง ส่วนการใช้ UHT ในอุตสาหกรรมก็ต้องระวังการเกิดกลิ่นผิดปกติ ที่ผู้บริโภคไม่ต้องการ นอกจากนี้ผลการวิเคราะห์สารให้กลิ่นสำคัญในข้าวไรซ์เบอร์รี่หุงสุกโดยเฉพาะ อย่างยิ่งการค้นพบ raspberry ketone (hydroxyphenylbutan-2-one) ยังสามารถใช้เป็นข้อมูล สำหรับการรังสรรค์กลิ่น (flavor creation) เพื่อผลิตเป็นวัตถุปูรุสแต่งกลิ่นรสอาหารสำหรับใช้ใน ผลิตภัณฑ์ต่าง ๆ ตลอดจนช่วยในการซื้อวัสดุคุณภาพ หรือนำไปพัฒนาพันธุ์ข้าวให้มีคุณภาพสูงและเป็นที่ ยอมรับของผู้บริโภคมากยิ่งขึ้น

รหัสโครงการ: MRG6080187

ชื่อโครงการ: สารให้กลิ่นในข้าวไรซ์เบอร์รี่และผลของกระบวนการให้ความร้อนต่อกลิ่นของเครื่องดื่มข้าวไรซ์เบอร์รี่

Odorants in Riceberry and effect of thermal processing on aroma of its beverage

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. เยาวภา หล่อเจริญผล

Email address: yaowapa.l@ku.ac.th

ระยะเวลาโครงการ: 3 เมษายน 2560 ถึง 2 เมษายน 2562

บทนำ

Ultrapasteurization (UP) คือกระบวนการแปรรูปด้วยความร้อนที่มีการใช้ในหลายประเทศ เพื่อยืดอายุการเก็บรักษาอาหารเหลวที่มีความเป็นกรดต่ำ โดยมีสภาวะการใช้ความร้อนใกล้เคียงกับกระบวนการ ultra-high temperature (UHT) แต่ไม่จำเป็นต้องบรรจุผลิตภัณฑ์ในสภาวะปลอดเชื้อ (Cornell University, 2007) ซึ่งการใช้ความร้อนสูงในการฆ่าเชื้อ ส่งผลให้ผลิตภัณฑ์มีอายุการเก็บรักษาที่นานกว่าการพาสเจอร์ไรซ์แบบดั้งเดิม แต่ก็อาจส่งผลต่อการเปลี่ยนแปลงของผลิตภัณฑ์ด้านต่าง ๆ ทั้งกายภาพ เช่น และคุณภาพทางประสิทธิภาพ เช่น Solano-Lopez, Ji, & Alvarez (2005) พบว่า นมไขมัน 2% ที่ผ่าน UP และเก็บไว้เป็นเวลา 60 วัน มีสารระเหยให้กลิ่นที่เกิดจากปฏิกิริยาออกซิเดชันของลิปิด ได้แก่ hexanal, octanal และ nonanal เพิ่มขึ้น แต่ผู้ทดสอบยังไม่ได้กลิ่นที่น่าจะตัวอย่าง ซึ่งนม UP เป็นผลิตภัณฑ์ที่ได้รับการยอมรับจากผู้ใหญ่ แต่มีคะแนนการยอมรับจากเด็กต่ำกว่านมที่ผ่านการพาสเจอร์ไรซ์แบบ high temperature-short time (HTST) และ UHT (Chapman & Boor, 2001) อย่างไรก็ตามนม UP ที่ปราศจากแคล็โคトイส์มีความเข้มจากการประเมินทางประสิทธิภาพ ด้านกลิ่น cooked สูงกว่าตัวอย่างนมพาสเจอร์ไรซ์ (Adhikari, Dooley, Chambers IV, & Bhumiratana, 2010) นอกจากนี้ UP ยังมีความหนืดสูงกว่านม HTST (Chapman, Boor, & Boor, 2001) ทั้งนี้การที่ต้องเก็บผลิตภัณฑ์ไว้ในตู้เย็นก็เป็นข้อจำกัดของผลิตภัณฑ์ UP เมื่อเทียบกับ UHT แต่การเก็บรักษาผลิตภัณฑ์ที่อุณหภูมิต่ำอาจช่วยป้องกันการเกิดลักษณะที่ไม่พึงประสงค์ได้ เช่น อาหารเด็กทารก UP ที่ไม่มีรสชาติผิดปกติอันเนื่องมาจากการปฏิกิริยาของวิตามิน (Kamarei, 2001) นอกจากนี้ UP ยังช่วยรักษาสมบัติเชิงหน้าที่ของโปรตีนในผลิตภัณฑ์ไข่เหลว (liquid whole egg) อีกด้วย (Monfort, Sagarzazu, Condón, Raso, & Álvarez, 2013) และแม้ว่าคุณภาพด้านกลิ่น จะส่งผลต่อความชอบและการยอมรับของผู้บริโภค แต่มีงานวิจัยที่ศึกษาเปรียบเทียบกลิ่นระหว่าง UP, HTST และ UHT ไม่มาก

ในการทดลองนี้เลือกศึกษาผลของการร่าดื่มด้วยความร้อนในเครื่องดื่มข้าวไรซ์เบอร์รี เนื่องจากเครื่องดื่มข้าวจัดเป็นเครื่องดื่มทางเลือกของน้ำนม ซึ่งมีไขมันต่ำ ปราศจากคอลเลสเตอรอลและน้ำตาล แลคโตส จึงเป็นที่สนใจของผู้บริโภคที่ไม่สามารถรับประทานแลคโตสหรือแพ็ลลั่วเหลือง จากการศึกษาของบริษัทวิจัยตลาดพบว่าผลิตภัณฑ์นมจากวัตถุดิบอื่น (non-dairy milk product) มีจำหน่ายในชูปเปอร์มาร์เก็ตทั่วโลก (The Nielsen Company, 2016) และมีอัตราการจำหน่ายสูงขึ้นอย่างมาก (Mintel, 2018) เครื่องดื่มข้าวสามารถเตรียมได้จากข้าวระยาน้ำนมหรือเรียกว่าข้าวยาคูซึ่งเป็นแหล่งของวิตามินและแร่ธาตุ หรืออาจทำจากข้าวกล้อง ข้าวกล้องออกที่อุดมไปด้วย gamma-aminobutyric acid (GABA) ข้าวขัดสี หรือแป้งข้าว และอาจมีการใช้อ่อนไชเมล็ดขายนิดร่วมด้วย เช่นการใช้ alpha-amylase ตามด้วย glucosidase และ/หรือ beta-amylase เพื่อช่วยป้องกันการเกิดกลิ่นสัมผัติ (Mitchell, Mitchell, & Nissenbaum, 1988) อย่างไรก็ตามเครื่องดื่มข้าวมีแคลเซียมและโปรตีนต่ำกว่าน้ำนมโคล

ข้าวไรซ์เบอร์รีซึ่งเป็นวัตถุดิบที่นำมาศึกษาในการวิจัยนี้เป็นข้าวสิ่งเดียว ที่ได้จากการปรับปรุงพันธุ์ระหว่างข้าวขาวดอกมะลิ 105 (ข้าวหอมมะลิ) (พันธุ์แม่) กับข้าวหอมนิลที่มีสีดำ (พันธุ์พ่อ) เพื่อให้มีคุณค่าทางโภชนาการสูงและมีน้ำส้มผักที่ดี ข้าวไรซ์เบอร์รีอุดมไปด้วยแอนโทไซยานินซึ่งมีสมบัติเป็นสารต้านออกซิเดชันที่ดี และมีคุณสมบัติ chemopreventive (Leardkamolkarn et al., 2011) จึงเป็นข้าวที่ได้รับความนิยมในหมู่ผู้บริโภคที่ใส่ใจสุขภาพ มีราคาส่งออกแพงกว่าข้าวหอมมะลิ และราคาขายปลีกของข้าวไรซ์เบอร์รียังสูงกว่าข้าวขาวทั่วไปถึงสองเท่า (The Board of Investment of Thailand, 2017) ซึ่งความต้องการที่เพิ่มสูงขึ้นของข้าวไรซ์เบอร์รีไม่เพียงเป็นเพาะปลูกด้านสุขภาพเท่านั้น แต่รวมถึงคุณสมบัติทางประสาทสัมผัสด้วย นั่นคือข้าวไรซ์เบอร์รีหุงสุกสีสวยงามและน้ำส้มผักนุ่ม ยิ่งไปกว่านั้นกลิ่นรสที่ดีและเป็นเอกลักษณ์ของข้าวไรซ์เบอร์รียังเป็นที่ต้องการของผู้บริโภค โดยผู้ผลิตอาหารหลายประเภทต้องการใช้สารปรุงแต่งกลิ่นรสข้าวไรซ์เบอร์รี แต่ยังไม่มีบริษัทผลิตสารปรุงแต่งกลิ่นรสข้าวไรซ์เบอร์รีออกจำหน่ายทางการค้า นอกจากนี้ยังไม่มีการศึกษาด้านกลิ่นของข้าวไรซ์เบอร์รีทั้งการวิเคราะห์ด้วยเครื่องมือและการประเมินทางประสาทสัมผัส

มีงานวิจัยด้านสารให้กลิ่นในข้าวสายพันธุ์ต่าง ๆ โดย Bryant & McClung (2011) พบว่าข้าวที่เพิ่งเก็บเกี่ยวจะมีสารระเหยมากกว่าข้าวเก่า ซึ่งสารให้กลิ่นที่สำคัญจากการคำนวณค่า OAV ของข้าวเมล็ดยาวสายพันธุ์แคลฟอร์เนียที่หุงสุก ได้แก่ 2-acetyl-1-pyrroline (2AP), (E,E)-2,4-decadienal, nonanal, hexanal, (E)-2-nonenal, octanal, decanal, 4-vinylguaiacol และ 4-vinylphenol (Buttery, Turnbaugh, & Ling, 1988) และนอกจาก 2AP แล้ว 2-amino acetophenone ยังเป็นสารให้กลิ่นสำคัญในข้าวกล้องพันธุ์ Malagkit Sungsong, Basmati 370 และ Khaskhani (Jezussek, Juliano, & Schieberle, 2002) ในขณะที่ข้าวหอมสีดำของเกาหลีกมี 2AP และ guaiacol เป็นสารให้กลิ่นสำคัญ (Yang, Lee, Jeong, Kim, & Kays, 2008) อย่างไรก็ตาม ข้าวหอมมีสารระเหยในกลุ่ม aliphatic aldehyde ต่ำกว่าข้าวที่ไม่เก็บกลิ่นหอม (Widjaja, Craske, & Woottton, 1996) ซึ่งสารประกอบกลุ่มนี้ที่มีโครงสร้างเป็นพันธะเดี่ยวทั้งหมด (saturated aliphatic aldehyde) มีปริมาณลดลงระหว่างการหุงสุก ในขณะที่สาร (E)-2-nonenal, (E,E)-2,4-decadienal, 4-vinylguaiacol, indole และ vanillin จะเพิ่มขึ้นตามระยะเวลาที่ใช้หุง (Zeng, Zhang, Zhang, Tamogami, & Chen, 2009) ดังนั้นงานวิจัยนี้จึงวิเคราะห์สารให้กลิ่นร่วมกับการประเมินคุณลักษณะ

ด้านกลืนของข้าวไรซ์เบอร์รี่ ข้าวขาวดอกมะลิ 105 และข้าวหอนนิลหุ่งสุก ตลอดจนศึกษาผลของ UP ต่อกลืนของเครื่องดื่มข้าวไรซ์เบอร์รี่ เมื่อเทียบกับการข้าวเชื้อด้วยกระบวนการ HTST และ UHT ทั้งภายหลังการแปรรูปและระหว่างการเก็บรักษา

วัตถุประสงค์

1. เพื่อวิเคราะห์สารให้กลืนในข้าวไรซ์เบอร์รี่ ข้าวขาวดอกมะลิ 105 และข้าวหอนนิล
2. เพื่อวิเคราะห์ลักษณะเฉพาะของสารให้กลืนในเครื่องดื่มข้าวไรซ์เบอร์รี่ที่เป็นผลจากกระบวนการพาสเจอร์ไรซ์แบบ HTST, UP และการสเตอเริลайซ์แบบ UHT
3. เพื่อศึกษาการเปลี่ยนแปลงของสารระเหยและลักษณะทางประสาทสัมผัสของเครื่องดื่มข้าวไรซ์เบอร์รี่ในระหว่างการเก็บรักษา

อุปกรณ์และวิธีการ

ตัวอย่างและสารเคมี

ชื่อข้าวกล้องของข้าวไรซ์เบอร์รี่ที่เก็บเกี่ยวในปีพ.ศ. 2560 และบรรจุในถุงสูญญากาศจากศูนย์วิทยาศาสตร์ข้าว มหาวิทยาลัยเกษตรศาสตร์ กำแพงแสน (นครปฐม) ส่วนข้าวกล้องของข้าวหอมนิล และข้าวขาวดอกมะลิ 105 ซึ่งเป็นพันธุ์พ่อและแม่ตามลำดับ เป็นของบริษัท แคปปิตอลไรซ์ จำกัด (สมุทรปราการ) ที่เก็บเกี่ยวในปีเดียวกันและบรรจุในถุงสูญญากาศ สำหรับตัวอย่างอ้างอิงที่ใช้ในการประเมินทางประสาทสัมผัสชื่อจากซุปเปอร์มาร์เก็ตในกรุงเทพฯ

สาร 2-methyl-3-heptanone สำหรับใช้เป็น internal standard และสารมาตรฐาน *n*-alkane ตลอดจนสารมาตรฐานสำหรับบุนิดของสารให้กลิ่น (ยกเว้น 2-acethyl-1-pyrroline) ได้จาก Sigma-Aldrich (MO, US) และ Fluka (Steinheim, Switzerland) ตัวทำละลายชนิด HPLC grade ได้แก่ diethyl ether, acetonitrile และ methanol ซึ่งจาก RCI Labscan (Dublin, Ireland) และ Brightchem (Selangor, Malaysia) สารเคมีอื่น ได้แก่ sodium chloride (NaCl), anhydrous sodium sulfate (Na₂SO₄) และ formic acid ได้จาก Ajax Finechem (Auckland, New Zealand) และ Merck KGaA (Darmstadt, Germany)

กลิ่นข้าวไรซ์เบอร์รี่ ข้าวขาวดอกมะลิ 105 และ ข้าวหอมนิลหุ่งสุก

การวิเคราะห์สารให้กลิ่นสำคัญ

หุ่งข้าวกล้อง 40 กรัม กับน้ำกลั่นปราศจากกลิ่น 65 มิลลิลิตร ด้วยมือหุ่งข้าวไฟฟ้า แล้ววิเคราะห์สารให้กลิ่นสำคัญตามวิธีของ Lorjaroenphon and Cadwallader (2015) โดยเริ่มจาก แซ่บชี้งข้าวหุ่งสุก 100 กรัม ที่เติมสารละลายสารมาตรฐานสำหรับวิเคราะห์ปริมาณ 10 ไมโครลิตร (2-methyl-3-heptanone เข้มข้น 0.0106 กรัม/10 มิลลิลิตร ของ methanol) ในไนโตรเจนเหลว ก่อนนำไปป้องกันการสูญเสียสารระเหย เตรียมตัวอย่างใส่ขวดเทฟลอนสำหรับหมุนเหวี่ยงขนาด 250 มิลลิลิตร และเติม NaCl ปริมาณ 10 กรัม สกัดตัวอย่าง 3 ครั้งด้วย diethyl ether ปริมาตร 50 มิลลิลิตร โดยใช้เครื่องเขย่าความเร็วรอบ 200 rpm เป็นเวลา 30 นาที จากนั้นทำการสกัดให้เข้มข้นด้วยคอลัมน์ *vigreux* ที่อุณหภูมิ 43 °C แล้วแยกสารไม่ระเหยออกโดยการกลั่นแบบสูญญากาศสูงที่ 10⁻⁵ torr ตามวิธีของ Engel, Bahr, and Schieberle (1999) ที่อุณหภูมิห้องและ 43 °C เป็นระยะเวลาอย่างละ 1 ชั่วโมง กำจัดน้ำออกด้วย Na₂SO₄ ที่ปราศจากน้ำ แล้วทำให้เข้มข้นจนได้ปริมาตร 200 ไมโครลิตร

ฉีดสารสกัด 2 ไมโครลิตร เข้าเครื่อง gas chromatography (GC) (Agilent Technologies, Inc.; MA, USA) ที่ต่อ กับ olfactometer (O) (DATU, Inc.; NY, USA) ด้วยเทคนิค cool on-column ที่ตั้งค่า +3 °C จากอุณหภูมิตู้อบ สารระเหยจะถูกแยกด้วยคอลัมน์ 2 ชนิด ที่มีความมีข้าวต่างกัน ได้แก่ Stabilwax[®] (Restek Ltd.; PA, USA) และ Rxi[®]-5ms (Restek Ltd.; PA, USA) ขนาดยาว 30 เมตร

× เส้นผ่านศูนย์กลาง 0.25 มิลลิเมตร × ความหนาชั้นพิล์ม 0.25 ไมโครเมตร โดยใช้ไฮด์รอกซีเลี่ยมเป็น carrier gas ที่อัตราการไหล 2 มิลลิลิตร/นาที อุณหภูมิตู้อบเริ่มที่ 35 °C เป็นเวลา 5 นาที แล้วเพิ่มขึ้นถึง 225 °C ด้วยอัตรา 10 °C/นาที สำหรับคอลัมน์ Stabilwax® หรือเพิ่มด้วยอัตรา 6 °C/นาที ถึง 250 °C สำหรับคอลัมน์ Rxi®-5ms และตั้งเวลาที่อุณหภูมิสุดท้ายของตู้อบ 10 นาที โดยให้ผู้ทดสอบจำนวน 3 คน ดูมและบรรยายลักษณะกลิ่นที่ได้ นอกจากนี้ยังวิเคราะห์สารสกัด 1 ไมโครลิตร ด้วยเครื่อง GC ที่ต่อกับ time-of-flight mass spectrometer (ToFMS) (LECO®; MI, USA) ซึ่งใช้ electron impact energy ที่ 70 eV และมีช่วงสแกน 30-300 m/z โดยมีส่วนวิเคราะห์เช่นเดียวกับ GCO ยกเว้นใช้ไฮด์รอกซีเลี่ยมที่อัตราการไหล 1 มิลลิลิตร/นาที และมีอัตราการเพิ่มอุณหภูมิของตู้อบ 4 °C/นาที

ระบุชนิดของสารให้กลิ่นโดยพิจารณาจากค่า retention index (RI) ลักษณะกลิ่น mass spectra (MS) และ สารมาตรฐานของสารให้กลิ่นต่าง ๆ ซึ่งค่า RI ที่ได้จากการวิเคราะห์สารด้วยคอลัมน์ 2 ชนิดที่มีความมีข้อต่างกัน คำนวณได้จากการ retention time (RT) ของสารให้กลิ่นเทียบกับ RT ของสารมาตรฐาน *n*-alkanes และน้ำค่า RI ที่ได้ไปพิจารณาเทียบกับข้อมูลจากงานวิจัยที่มีมาก่อน ส่วน MS ของสารให้กลิ่นก็เทียบกับฐานข้อมูล National Institute of Standards and Technology (NIST) Mass Spectral Library (version 2.0, 2011) และคำนวณค่าความเข้มข้นสัมพัทธ์ (relative concentration) ของสารให้กลิ่นจากพื้นที่ได้ peak ที่ได้จากการวิเคราะห์ผลด้วยโปรแกรม LECO ChromaTOF® version 4.50.8.0 เทียบกับพื้นที่ได้ peak ของสารมาตรฐานสำหรับวิเคราะห์ปริมาณ และค่า response factor จากกราฟมาตรฐานของสารให้กลิ่นนั้น ๆ จากนั้นวิเคราะห์สารให้กลิ่นสำคัญโดยการคำนวณค่า odor activity value (OAV) ตามวิธีของ Grosch (2001) ร่วมกับเทคนิคการทำ aroma extract dilution analysis (AEDA) ตามวิธีของ Schieberle (1995) ซึ่งค่า OAV คือสัดส่วนระหว่างค่าความเข้มข้นของสารให้กลิ่นกับค่า odor detection threshold ของสารนั้น ในน้ำ โดยสาระเหยที่มีค่า OAV มากกว่า 1 จะถูกจัดเป็นสารให้กลิ่นในตัวอย่าง ส่วนการทำ AEDA เริ่มจากนำสารสกัดมาเจือจากด้วย diethyl ether เป็นลำดับในอัตราส่วน 1:3 และนำแต่ละระดับความเจือจากไปวิเคราะห์ด้วย GCO ที่ต่อกับคอลัมน์ Stabilwax® เพื่อรายงานเป็น flavor dilution (FD) factor ซึ่งมีค่าเท่ากับระดับความเจือจากสูงสุดที่ยังคงได้กลิ่นสารนั้น

การประเมินคุณลักษณะด้านกลิ่น

ประเมินค่าโคงด้านกลิ่นของข้าวหุงสกัดด้วยการทดสอบทางประสานสัมผัสเชิงพรรณนาตามวิธีของ Meilgaard, Civille, and Carr (2007) โดยเริ่มจากคัดเลือกและฝึกฝนผู้ทดสอบ (ชาย 1 คน หญิง 9 คน ซึ่งมีอายุระหว่าง 23-28 ปี) เป็นเวลาอย่างน้อย 40 ชั่วโมง และเสริฟตัวอย่างที่บรรจุในขวดเทฟлонสำหรับใช้ดมขนาด 125 มิลลิลิตร (Thermo Scientific; MA, USA) และห่อด้วยอลูมิเนียมฟอยล์ที่มีการระบุรหัสเลขสามหลักแทนชื่อตัวอย่าง แก่ผู้ทดสอบที่ละตัวอย่างตามลำดับ ที่ได้รับการสลับอย่างสมดุล เพื่อให้ผู้ทดสอบประเมินกลิ่นและให้คะแนนความเข้มของคุณลักษณะต่าง ๆ ด้านกลิ่นบนสเกลเส้นตรงยาว 15 เซนติเมตร และรายงานผลเป็นกราฟไบแอมมูม

กลืนเครื่องดื่มไวร์เบอร์รี่ที่ผ่านการฆ่าเชื้อแบบต่าง ๆ

การเตรียมตัวอย่างและการวิเคราะห์คุณภาพ

เตรียมเครื่องดื่มข้าวไวร์เบอร์รี่ตามวิธีที่ดัดแปลงจาก Deeseenthum and Pejovic (2010) โดยต้มข้าวกล้องของข้าวไวร์เบอร์รี่ 7 กิโลกรัม กับน้ำกรอง 70 ลิตร ให้เดือดเป็นเวลา 30 min กรองด้วยผ้าข้าวบางสองชั้น แล้วทำให้เย็นลงทันทีในอ่างน้ำแข็งที่อุณหภูมิ 25 ± 2 °C เพื่อเก็บเป็นตัวอย่างควบคุมซึ่งไม่ผ่านการฆ่าเชื้อด้วยความร้อน ส่วนตัวอย่าง HTST, UP และ UHT เตรียมโดยการฆ่าเชื้อด้วยเครื่อง UHT/HTST system (MicroThermics; NC, USA) ตามอุณหภูมิและเวลาที่กำหนด โดยให้ความร้อนตัวอย่างแบบ HTST ที่ 70 °C เป็นเวลา 15 วินาที และแบบ UP ที่ 138 °C เป็นเวลา 2 วินาที (FDA, 2015) ก่อนบรรจุร้อนในขวดแก้วที่ผ่านการพาสเจอร์ไรซ์แล้ว จากนั้นทำให้เย็นลงอย่างรวดเร็วถึงอุณหภูมิ 4 °C หรือต่ำกว่า แล้วนำไปเก็บที่อุณหภูมิตู้เย็น (4 ± 2 °C) เป็นเวลา 2 และ 4 สัปดาห์ตามลำดับ สำหรับตัวอย่าง UHT จะให้ความร้อนที่ 140 °C เป็นเวลา 4 วินาที ตามวิธีการของ Cornell University (2007) แล้วทำให้เย็นลงอย่างรวดเร็ว ก่อนบรรจุในสภาวะปลอดเชื้อในขวดแก้วที่ผ่านการสเตอโรไลซ์แล้ว จากนั้นเก็บที่อุณหภูมิห้อง (25 ± 2 °C) เป็นเวลา 4 สัปดาห์

วิเคราะห์เชื้อจุลินทรีย์ในตัวอย่างเครื่องดื่มข้าวไวร์เบอร์รี่ตามมาตรฐานของ FDA's Bacteriological Analytical Manual (FDA-BAM) ดังนี้ *Bacillus cereus* ตามวิธีของ Tallent, Rhodehamel, Harmon, & Bennett (2012) แบคทีเรียโคลิฟอร์มตามวิธีของ Feng, Weagant, Grant, & Burkhardt (2002) จุลินทรีย์ทั้งหมดตามวิธีของ Maturin & Peeler (2001) และ ยีสต์และราตามวิธีของ Tournas, Stack, Mislicvec, Koch, & Bandler (2001) แล้วสังเกตลักษณะปรากฏของตัวอย่าง ตลอดจนวัดค่าสีในระบบ CIE L*, a*, b* สำหรับปริมาณแอนโ调配ยานินวิเคราะห์ตามวิธีที่ดัดแปลงจาก Pothinuch, Miyamoto, Nguyen, and Tongchitpakdee (2017) คือกรองตัวอย่างเครื่องดื่มข้าวไวร์เบอร์รี่ 150 มิลลิลิตรผ่านกระดาษกรอง Whatman เบอร์ 4 (GH Healthcare Bio-Science; Uppsala, Sweden) แล้วทำให้เข้มข้นจนได้ปริมาณ 10 มิลลิลิตร ด้วยการกรองแบบสุญญากาศสูง ก่อนนำไปกรองผ่าน Nylon membrane filter ขนาด 0.45 ไมโครเมตร (Sartorius; Hannover, Germany) จากนั้นวิเคราะห์ตัวอย่าง 20 ไมโครลิตร ด้วยเครื่อง HPLC ที่ต่อกับ photodiode array (PDA) detector (Waters; MA, USA) โดยแยกสารด้วยคอลัมน์ Symmetry® C18 (Waters; MA, USA) ขนาด 5 ไมโครเมตร \times 4.6 มิลลิเมตร \times 250 มิลลิเมตร และมี mobile phase ของ 100% acetonitrile (A) และ 1% (v/v) formic acid ในน้ำ (B) แบบ gradient ที่อัตราการไหล 1.0 มิลลิลิตร/นาที โดยเริ่มจาก 5-10% A เป็นเวลา 5 นาที 10-15% A เป็นเวลา 5 นาที 15-25% A เป็นเวลา 20 นาที 25-50% A เป็นเวลา 10 นาที 50-5% A เป็นเวลา 5 นาที และคง 5% A เป็นเวลา 5 นาที ใช้ความยาวคลื่น 200-500 นาโนเมตร เพื่อระบุชนิดของแอนโ调配ยานินโดยเทียบค่า RT และ ultraviolet (UV) spectrum กับสารมาตรฐาน ก่อนวิเคราะห์ปริมาณด้วยเทคนิค external standard

การวิเคราะห์สารให้กลิ่นและคุณลักษณะด้านกลิ่น

วิเคราะห์กลิ่นของเครื่องดื่มข้าวไรซ์เบอร์รี่ด้วยวิธีการคำนวณค่า OAV เทคนิค AEDA และการประเมินทางประสาทสัมผัสเชิงพร่องตามวิธีข้างต้น โดยเริ่มจากการสกัดสารให้กลิ่นจากตัวอย่าง 100 มิลลิลิตร ด้วย diethyl ether แล้วกลั่นแบบสูญญากาศสูง จากนั้นทำให้เข้มข้นก่อนฉีดเข้า GCO และ GC-ToFMS และประเมินคุณลักษณะด้านกลิ่นของตัวอย่าง 25 มิลลิลิตร ด้วยผู้ทดสอบที่ผ่านการคัดเลือกและฝึกฝนจำนวน 12 คน (ชาย 4 คน หญิง 8 คน อายุระหว่าง 23-28 ปี)

ประเมินคุณลักษณะด้านกลิ่นโดยรวมของตัวอย่างที่เก็บรักษาไว้ด้วยวิธี R-index ranking test ตามขั้นตอนของ Lorjaroenphon and Cadwallader (2015) โดยติดรหัสเลขสามหลัก ที่ตัวอย่าง HTST (เป็นตัวอย่าง blind control), UP และ UHT แล้วติดฉลากตัวอย่าง HTST อีกขวด เป็นตัวอย่างควบคุม จากนั้นสีร์ฟตัวอย่างทั้งหมดโดยสลับลำดับการนำเสนอตัวอย่างที่ติดเลขรหัสแบบสมดุลให้ผู้ทดสอบจำนวน 38 คน (ชาย 5 คน หญิง 33 คน อายุระหว่าง 23-34 ปี) เพื่อเรียงลำดับความแตกต่างด้านกลิ่นเมื่อเทียบกับตัวอย่างควบคุม คำนวณค่า R-index ตามวิธีของ John Brown (O'Mahony, 1992) ซึ่งเท่ากับร้อยละของตัวอย่างทดสอบที่ผู้ทดสอบเรียงลำดับว่าเหมือนกับตัวอย่างควบคุม น้อยกว่าตัวอย่าง blind control

การวิเคราะห์ทางสถิติ

วิเคราะห์ความแปรปรวนของค่าคุณลักษณะทางกายภาพและทางเคมีซึ่งวางแผนการทดลองแบบสุ่มตลอด (completely randomized design; CRD) จากการทำซ้ำ 3 ครั้ง ยกเว้นการวิเคราะห์ค่าแอนโกลไชยานินที่ทำ 2 ซ้ำ หากพบความแตกต่างอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95% จะเปรียบเทียบค่าเฉลี่ยด้วยวิธี Duncan's new multiple range test โดยใช้โปรแกรม SPSS (IBM; NY, USA) ส่วนความสัมพันธ์ระหว่างสารให้กลิ่นและคุณลักษณะด้านกลิ่นจะอธิบายโดยการวิเคราะห์องค์ประกอบหลัก (principal component analysis; PCA) ด้วยโปรแกรม XLSTAT (Addinsoft SARL; NY, USA) และวิเคราะห์การจัดกลุ่มของเครื่องดื่มข้าวไรซ์เบอร์รี่ตัวอย่างต่าง ๆ โดย agglomerative hierarchical clustering (AHC) ด้วยโปรแกรม XLSTAT

สำหรับการประเมินทางประสาทสัมผัสที่ได้รับการรับรองจริยธรรมการวิจัยในมนุษย์ เลขที่ COE59/005 จากสถาบันวิจัยและพัฒนาแห่งมหาวิทยาลัยเกษตรศาสตร์ วางแผนการทดลองแบบสุ่มในบล็อกอย่างสมบูรณ์ (randomized complete block design; RCBD) โดยมีผู้ทดสอบเป็นบล็อก วิเคราะห์ความแปรปรวนและเปรียบเทียบค่าเฉลี่ยตามวิธีข้างต้น ส่วน R-index คำนวณจาก 50% สำหรับการทดสอบสองทาง (two-tailed test) ที่ระดับนัยสำคัญ 0.05

ผลและวิจารณ์

ข้าวไรซ์เบอร์รี่หุงสุก

จากการวิเคราะห์คุณภาพด้านกลิ่นของข้าวไรซ์เบอร์รี่ ข้าวขาวดอกมะลิ และข้าวห้อมนิล หุงสุกด้วยการประเมินทางประสาทสัมผัสและการใช้เครื่องมือ พบสารให้กลิ่นในกลุ่ม acid, alcohol, aldehyde, ketone, lactone, phenol, terpene และสารประกอบที่มีในโตรเจนและซัลเฟอร์ เป็นองค์ประกอบในโมเลกุล โดยสารประกอบที่พบมากที่สุดคือ aldehyde ซึ่งเป็นสารให้กลิ่นที่เกิดจากปฏิกิริยาออกซิเดชันของกรดไขมันไม่อิ่มตัว โดยเฉพาะอย่างยิ่ง linoleic acid และ oleic acid มีรายงานว่ากรดไขมันทั้งสองชนิดนี้มีปริมาณมากกว่า 70% ของกรดไขมันทั้งหมดที่พบในข้าวไรซ์เบอร์รี่ (Luang-In, Yotchaisarn, Somboonwatthanakul, & Deeseenthum, 2018) ข้าวห้อมนิล และข้าวขาวดอกมะลิ 105 (Mingyai, Kettawan, Srikaeo, & Singanusong, 2017) ซึ่ง Shin, Yoon, Rhee, and Kwon (1986) พบความสัมพันธ์เชิงเส้นตรงระหว่างปริมาณ *n*-hexanal และ linoleic acid ในข้าวกล้อง Indica/Japonica ปฏิกิริยาออกซิเดชันของกรดไขมันอิสระในข้าวสามารถเกิดขึ้นได้ตลอดทุกช่วงตั้งแต่การเก็บเกี่ยว การเก็บรักษา และการหุงสุก จึงส่งผลให้มีสารประกอบ aldehyde สูง โดย hexanal ซึ่งจัดเป็นดัชนีชี้วัดการเกิดออกซิเดชันของลิปิดในข้าว เป็นสารให้กลิ่นที่มีปริมาณมากที่สุดของสารประกอบกลุ่มนี้ในข้าวหุงสุกทั้งสามพันธุ์ และเมื่อเปรียบเทียบ กันระหว่างข้าวทั้งสามพันธุ์ พบว่าข้าวไรซ์เบอร์รี่มีปริมาณ hexanal ต่ำที่สุด ตามด้วย ข้าวขาวดอกมะลิ 105 และข้าวห้อมนิลตามลำดับ ซึ่งอาจเป็นผลจากการเร่งปฏิกิริยา (catalyst) และสารต้านออกซิเดชันที่มีตามธรรมชาติในข้าวทั้งสามชนิด โดยเหล็กที่พบได้ในส่วนของรำข้าวจะช่วยเร่งปฏิกิริยาการเกิดออกซิเดชันของกรดไขมันอิสระ ในขณะที่แอนโกลไชยานินในข้าวสี (colored rice) จะช่วยชะลอการเกิดปฏิกิริยาดังกล่าว และแม้ว่าข้าวไรซ์เบอร์รี่มีปริมาณเหล็กสูงกว่าข้าวห้อมนิล ถึงสองเท่า (Ariyatanakatawong & Boonsirichai, 2016) แต่ก็มี total phenolic และสมบัติต้านออกซิเดชันสูงกว่าด้วยเช่นกัน (Daiponmak, Senakun, & Siriamornpun, 2014)

เมื่อพิจารณาค่า OAV และ FD factor ของสารให้กลิ่นต่าง ๆ ในข้าวไรซ์เบอร์รี่และข้าวพันธุ์ พ่อแม่ พบว่า vanillin (vanilla note), guaiacol (smoky note), 4-vinylguaiacol (clove, spicy, smoky note) และ raspberry ketone (*p*-hydroxyphenylbutan-2-one) (sweet, candy, fruity, berry note) คือสารให้กลิ่นสำคัญที่ส่งผลต่อกลิ่นโดยรวมของข้าวไรซ์เบอร์รี่และข้าวห้อมนิล (ตารางที่ 1) อย่างไรก็ตาม 2AP (pandan, sweet note) ซึ่งเป็นสารให้กลิ่นที่สำคัญของข้าวขาวดอกมะลิ 105 กลับไม่เป็นสารให้กลิ่นสำคัญในข้าวไรซ์เบอร์รี่ นอกจากนี้เป็นที่น่าสังเกตว่า vanillin ถูกจัดเป็นสารให้กลิ่นสำคัญของข้าวขาวดอกมะลิ 105 หุงสุกในการทดลองนี้ ซึ่งจากที่ผ่านมาไม่ค่อยมีงานวิจัยที่กล่าวถึงความสำคัญของ vanillin ในข้าวห้อมนิล ส่วนความสำคัญของ guaiacol และ 4-vinylguaiacol มักพบในข้าวพันธุ์สีเข้ม เช่น ข้าวเหนียวดำ (Ajarayasiri & Chaiseri, 2008) และข้าวสีดำของເກາ�ເທີ (Yang et al., 2008) ซึ่งสารให้กลิ่นสำคัญกลุ่ม phenol ทั้งสามชนิดนี้ (vanillin, guaiacol และ 4-vinylguaiacol) ในข้าวไรซ์เบอร์รี่ อาจเกิดจากการสลายของ ferulic acid ที่มีรายงานว่าเป็นสารออกฤทธิ์ชีวภาพที่มีมากเป็นอันดับสองรองจาก cyanidin-3-glucoside ในผลิตภัณฑ์เสริมอาหารจากข้าวไรซ์เบอร์รี่ (Prangthip et al., 2013) โดย Fiddler, Parker, Wasserman,

ตารางที่ 1 สารให้กลิ่นสำคัญ (OAV >1) ในข้าวไรซ์เบอร์รี่ ข้าวขาวดอกมะลิ 105 และ ข้าวหอมนิลหุงสุก

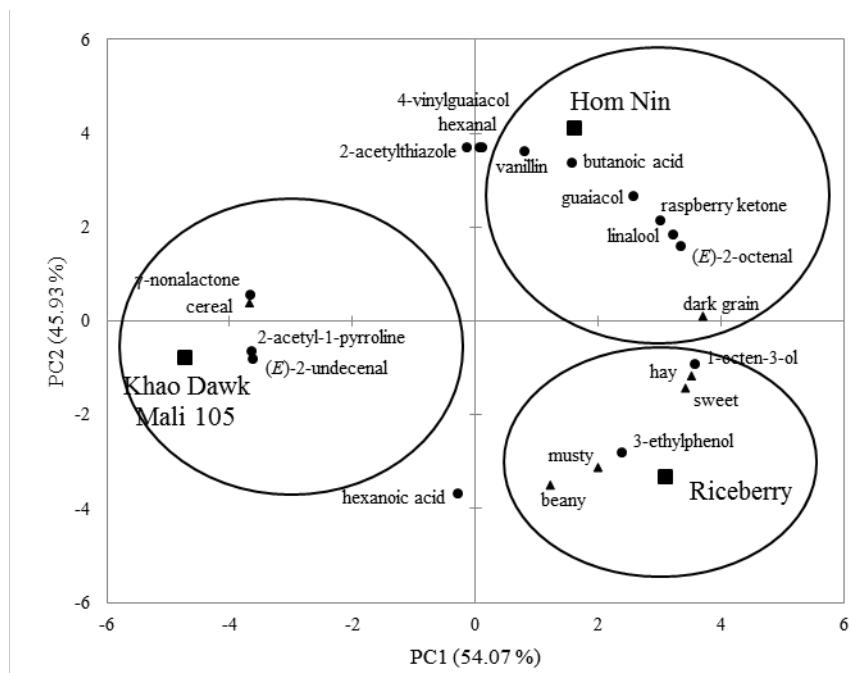
Odorant	Retention index		Odor description	Threshold ^a (ng/g)	OAV			FD factor		
	Stabilwax [®]	Rxi [®] -5ms			RB	HN	KM	RB	HN	KM
hexanal	1062	801	green	5 ^b	27	70	41	3	81	3
2-acetyl-1-pyrroline	1324	932	pandan, sweet	0.1 ^b	<1	<1	494	3	3	2,187
(E)-2-octenal	1406	1062	green, fatty	3 ^b	3	3	-	1	1	-
1-octen-3-ol	1421	986	mushroom	1 ^b	15	13	11	3	3	1
linalool	1541	1109	floral	6 ^c	4	6	<1	1	1	1
butanoic acid	1581	812	rancid, sweaty	240 ^d	2	7	1	3	27	3
2-acetylthiazole	1634	1024	nutty	10 ^e	<1	2	1	3	27	3
(E)-2-undecenal	1782	1357	green	1.4 ^f	27	25	65	243	243	729
hexanoic acid	1841	1053	sweaty	3,000 ^b	3	1	2	1	-	-
guaiacol	1843	1091	smoky	3 ^b	34	74	0	6,561	6,561	27
γ-nonalactone	2029	1371	coconut, sweet	9.7 ^g	7	7	7	81	81	243
3-ethylphenol	2178	1164	musty, barny	1.4 ^f	4	<1	<1	729	81	1
4-vinylguaiacol	2185	1312	clove, spicy, smoky	3 ^h	57	273	127	81	729	243
vanillin	2542	1404	vanilla	20 ^h	130	590	192	6,561	19,683	6,561
<i>p</i> -hydroxyphenylbutan-2-one (raspberry ketone)	2978	1516	sweet, candy, fruity, berry	10 ⁱ	<1	2	-	2,187	19,683	-

^aค่า odor threshold ในน้ำที่ได้จากเอกสารอ้างอิงดังต่อไปนี้: ^b Buttery et al. (1988); ^c Buttery, Ling, and Light (1987); ^d Buttery and Ling (1998); ^e Buttery, Stern, and Ling (1994); ^f Czerny et al. (2008); ^g Grosshauser and Schieberle (2013); ^h Buttery, Orts, Takeoka, and Nam (1999); ⁱ Larsen and Poll (1990)

and Doerr (2010) ได้ศึกษาปฏิกิริยาของสาร phenolic acid ชนิดนี้ว่าเริ่มจากการเกิด decarboxylation ของ ferulic acid ไปเป็น 4-vinylguaiacol แล้วเกิด oxidation เป็น vanillin จากนั้น guaiacol จะถูกสร้างขึ้นจากหลายปฏิกิริยาต่อเนื่องของ vanillin

ในงานวิจัยนี้ยังพบสาร raspberry ketone ซึ่งไม่เคยมีผู้รายงานในตัวอย่างข้าวมาก่อน สารให้กลิ่นชนิดนี้เป็นสารที่ทำให้เกิดลักษณะกลิ่นเฉพาะของผลราชเบอร์รี่ (Larsen & Poll, 1990) ซึ่งได้จากการสังเคราะห์ผ่าน phenylpropanoid pathway (Borejsza-Wysocki & Hrazdina, 1994; Lee, Lloyd, Pretorius, & Borneman, 2016) โดยเริ่มจากปฏิกิริยาการเปลี่ยน phenylalanine หรือ tyrosine เป็น *p*-coumaric acid แล้วเปลี่ยนเป็น *p*-coumaroyl-CoA โดยเอนไซม์ coumarate-CoA ligase และเกิดปฏิกิริยา enzyme-catalyzed condensation ระหว่าง *p*-coumaroyl-CoA กับ malonyl-CoA จำนวน 1 โมเลกุล ได้เป็น *p*-hydroxyphenylbut-3-ene-2-one (benzalacetone) จากนั้นสาร ketone นี้จะถูกเร่งปฏิกิริยาด้วยเอนไซม์ benzalacetone reductase ได้ raspberry ketone เป็นผลิตภัณฑ์สุดท้าย ซึ่งการคั้นพบ raspberry ketone ในข้าวไรซ์เบอร์รี่และข้าวห้อมนิล มีความสัมพันธ์กับปริมาณแอนโทไซยานินที่พบมากในข้าวทั้งสองสายพันธุ์ เนื่องจากการคั้นนี้ถูกสร้างผ่าน phenylpropanoid pathway (Beekwilder et al., 2007) เช่นเดียวกัน โดยเริ่มจากการเกิด enzymatic condensation ของ *p*-coumaroyl-CoA กับ malonyl-CoA จำนวน 3 โมเลกุล ได้ naringenin chalcone ซึ่งเป็น intermediate ที่จะเปลี่ยนเป็นสารแอนโทไซยานิน

ผลการประเมินทางประสาทสมัปส์ข้าวทั้งสามชนิดด้วยผู้ทดสอบที่ผ่านการคัดเลือกและฝึกฝนพบคุณลักษณะด้านกลิ่น 6 ด้าน (ตารางที่ 2) ที่สามารถอธิบายเค้าโครงด้านกลิ่นของข้าวแต่ละตัวอย่าง และเมื่อนำลักษณะทางประสาทสมัปส์ด้านกลิ่นไปวิเคราะห์องค์ประกอบหลัก (principle component analysis; PCA) ร่วมกับสารให้กลิ่นสำคัญ สามารถแสดง PCA biplot ได้ดังภาพที่ 1 โดยผลที่อธิบายด้วย PC1 (54.07%) และ PC2 (45.93%) ยืนยันว่าคุณภาพด้านกลิ่นของข้าวไรซ์เบอร์รี่เป็นผลมาจากการห้อมนิลและข้าวขาวดอกมะลิ 105 ตามลำดับ อีกทั้งยังแสดงความสัมพันธ์อย่างยิ่งระหว่างการวิเคราะห์ด้วยเครื่องมือและการทดสอบทางประสาทสมัปส์ ตัวอย่างเช่น 2AP สัมพันธ์กับกลิ่น cereal ($r = 0.959$) ซึ่งเป็นคุณลักษณะที่สำคัญของข้าวขาวดอกมะลิ 105 ซึ่งผลการทดลองนี้สอดคล้องกับผลงานวิจัยที่มีมาก่อนที่รายงานว่า 2AP คือสารให้กลิ่นที่เป็นเอกลักษณ์เฉพาะของข้าวขาวดอกมะลิ 105 (Buttery, Ling, Juliano, & Turnbaugh, 1983) นอกจากนี้ raspberry ketone ยังสัมพันธ์กับกลิ่น dark grain ($r = 0.833$) ซึ่งเป็นคุณลักษณะด้านกลิ่นที่สำคัญของข้าวไรซ์เบอร์รี่และข้าวห้อมนิล จึงอาจกล่าวได้ว่า raspberry ketone เป็นสารให้กลิ่นที่เป็นลักษณะเฉพาะ (character impact odorant) ของข้าวสีทั้งสองสายพันธุ์


เครื่องดื่มไรซ์เบอร์รี่ที่ผ่านการฆ่าเชื้อ

ในงานศึกษาวิจัยนี้พบว่าวิธี UP สามารถใช้ในการผลิตเครื่องดื่มข้าวไรซ์เบอร์รี่ได้อย่างปลอดภัย จากเชื้อจุลินทรีย์ที่ก่อให้เกิดโรคซึ่งพบในวัตถุดิบ และเป็นไปตามมาตรฐานคุณภาพของผลิตภัณฑ์น้ำ

ตารางที่ 2 คุณลักษณะด้านกลิ่นของข้าวไรซ์เบอร์รี่หุงสุกและเครื่องดื่มข้าวไรซ์เบอร์รี่

Attribute	Definition (reference standard used)
sweet	Aromatic associated with syrup (genmai flavored Japanese green tea)
hay	Aromatic associated with dried grass or rice husk (rice husk)
musty	Aromatic associated with closed air space or raw potato (fresh potato)
cereal	Aromatic associated with cooked new crop cereal (instant congee)
dark grain	Aromatic associated with dark grain or black rice (black sticky rice)
beany	Aromatic associated with soybean or pea (soy milk)
prune ^a	Aromatic associated with dried plum (prune essence concentrate)
toasted ^a	Aromatic associated with outside crust of bread (ground roasted rice)
cooked ^a	Aromatic associated with sterilized milk (sterilized milk)

^aพปในเครื่องดื่มข้าวไรซ์เบอร์รี่เท่านั้น

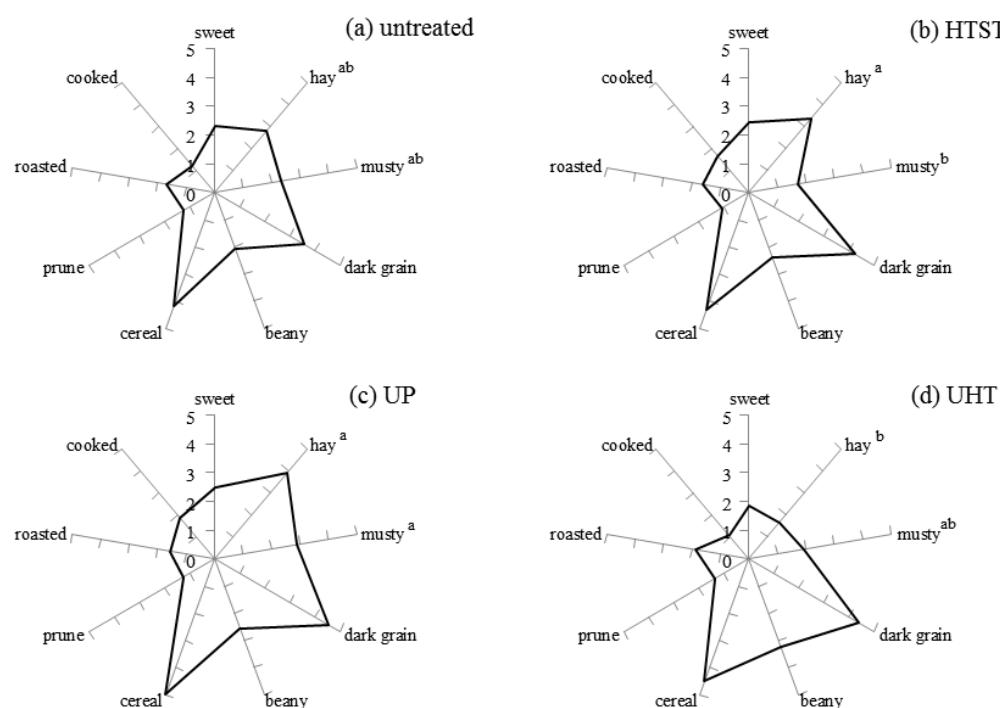
ภาพที่ 1 การวิเคราะห์องค์ประกอบหลัก (principle component analysis; PCA) ของสารให้กลิ่น สำคัญและคุณลักษณะด้านกลิ่นในข้าวไรซ์เบอร์รี่ ข้าวขาวดอกมะลิ 105 และ ข้าวหอมนิล หุงสุก

(Cornell University, 2008) เช่นเดียวกับการฆ่าเชื้อวิธี HTST และ UHT โดยทุกตัวอย่างที่ผ่านการฆ่าเชื้อด้วยความร้อนมีปริมาณ *Bacillus cereus* น้อยกว่า 1 cfu/มิลลิลิตร ซึ่งสาเหตุที่ใช้เชื้อจุลทรรศน์ชนิดนี้เป็นต้นน้ำชี้วัดความปลอดภัยของเครื่องดื่มข้าวไรซ์เบอร์รี่ เนื่องจากเป็นจุลทรรศน์ที่มักพบในข้าว (Ankolekar, Rahmati, & Labb  , 2009) นอกจากนี้ยังพบแบคทีเรีย coliform น้อยกว่า 1.1 MPN/100 มิลลิลิตรในตัวอย่าง ซึ่งแสดงว่าในกระบวนการแปรรูปมีการจัดการด้านสุขลักษณะที่ดี อีกทั้งไม่พบยีสต์และรา (<1 cfu/mL est.) ส่วนจำนวนเชื้อจุลทรรศน์ทั้งหมด (total plate count) ของตัวอย่าง HTST มีค่าเท่ากับ 2 cfu/มิลลิลิตร ในขณะที่ตัวอย่าง UP และ

UHT มีค่าน้อยกว่า 1 cfu/มิลลิลิตร ทั้งนี้เนื่องจาก UP ใช้สภาพเกือบที่ยับเท่าการสเตอโรไรซ์ (Cornell University, 2007) นอกจากนี้ปริมาณของแข็งทั้งหมดที่ละลายน้ำได้ (total soluble solids) pH และความหนืดของทุกตัวอย่างที่ผ่านการฆ่าเชื้อยังไม่แตกต่างจากเครื่องดื่มข้าวไรซ์เบอร์รี่ ก่อนการฆ่าเชื้อที่ใช้เป็นตัวอย่างควบคุม

จากการสังเกตถักขัณะปราภูของเครื่องดื่มข้าวไรซ์เบอร์รี่เมื่อผ่านการแปรรูป พบว่าตัวอย่าง UHT มีสีอ่อนกว่าตัวอย่างอื่น ซึ่งสอดคล้องกับผลการวัดสีที่มีค่า L^* สูงกว่า (ตารางที่ 3) และมีปริมาณแอนโกลิไซด์ต่ำกว่าตัวอย่างอื่น โดย cyanidin-3- β -glucoside และ peonidin-3- β -glucoside คือแอนโกลิไซด์ชนิด monomeric ที่พบมากที่สุดในเครื่องดื่มข้าวไรซ์เบอร์รี่ แต่จะมีปริมาณลดลงเมื่อผ่านกระบวนการ UHT (ตารางที่ 3) การสูญเสียแอนโกลิไซด์ชนิด monomeric จากการใช้ความร้อนสูงนี้ อาจ เพราะเปลี่ยนรูปเป็น polymeric form ซึ่งเคยมีรายงานการเกิด polymerization ของแอนโกลิไซด์ในสารสกัดกระเจี๊ยบแดง (roselle extract) ที่ได้รับความร้อนสูง (Sinela et al., 2017) อย่างไรก็ตามตัวอย่าง HTST กลับมีปริมาณแอนโกลิไซด์สูงกว่าตัวอย่างควบคุมที่ไม่ผ่านการฆ่าเชื้อด้วยความร้อน ทั้งนี้อาจเนื่องมาจากการเปลี่ยนรูปของสารเมื่อใช้ความร้อนปานกลาง ได้เป็น co-pigment ที่ไม่มีสี ตัวอย่างเช่นรายงานของ Vegara, Mena, Martí, Saura, and Valero (2013) ที่พบว่าแอนโกลิไซด์ชนิด monomeric ในน้ำทับทิมที่ใช้ความร้อนต่ำจะเปลี่ยนเป็น co-pigment ที่ไม่มีสี นอกจากนี้อาจเกิดจากแอนโกลิไซด์ที่อยู่ในรูป bound form ถูก hydrolysis เป็นรูปอิสระ โดย Fernandes, Brás, Mateus, & de Freitas (2014) พบว่าแอนโกลิไซด์ส่วนใหญ่ที่พบในข้าวไรซ์เบอร์รี่อยู่ในรูปที่จับกับคาร์บอไฮเดรต ดังนั้นการใช้ความร้อนปานกลางแบบ HTST จึงอาจช่วยลดปล่อยแอนโกลิไซด์ให้อยู่ในรูปอิสระมากขึ้น และเมื่อพิจารณาจากปริมาณของ cyanidin-3- β -glucoside และ peonidin-3- β -glucoside ในข้าวไรซ์เบอร์รี่ หุ่งสูง (Leardkamolkarn et al., 2011) 畿干เลี้ยงกับที่พบในตัวอย่างเครื่องดื่มข้าวไรซ์เบอร์รี่จากการทดลองนี้

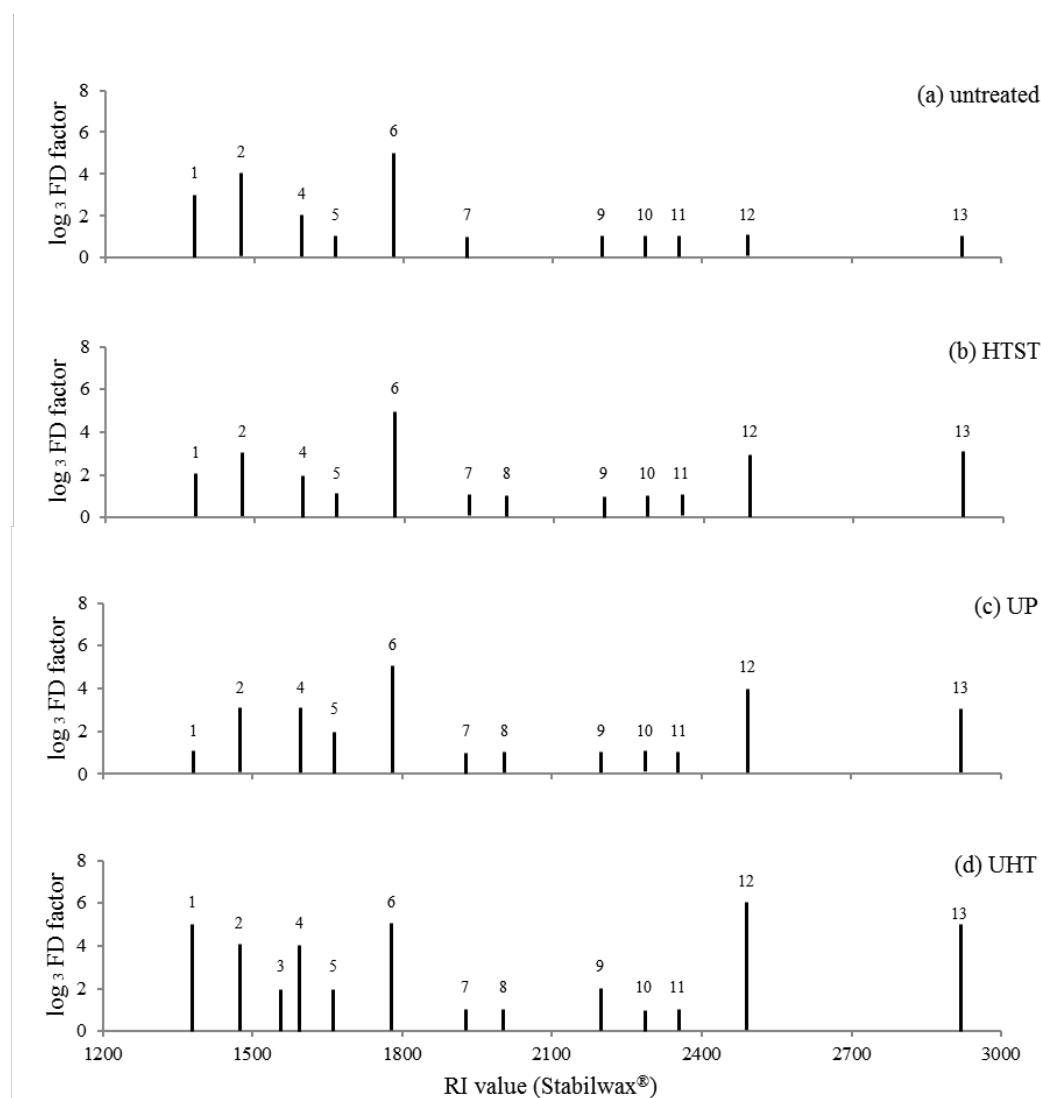
ตารางที่ 3 ค่าสีและปริมาณ anthocyanin ในเครื่องดื่มข้าวไรซ์เบอร์รี่ที่ไม่ผ่านการฆ่าเชื้อและผ่านการฆ่าเชื้อแบบต่าง ๆ


Property	untreated	HTST	UP	UHT
<i>Color</i>				
L^*	6.77 \pm 0.55 b	6.56 \pm 0.57 b	6.85 \pm 1.48 b	9.08 \pm 0.39 a
a^* ^{ns}	3.45 \pm 0.87	3.54 \pm 0.91	3.57 \pm 0.24	4.69 \pm 0.20
b^* ^{ns}	0.98 \pm 0.47	1.51 \pm 0.89	1.15 \pm 0.73	1.23 \pm 0.31
<i>Anthocyanin ($\mu\text{g/mL}$)</i>				
cyanidin-3- β -glucoside	2.62 \pm 0.08 b	3.79 \pm 0.06 a	0.89 \pm 0.12 c	0.58 \pm 0.05 d
peonidin-3- β -glucoside	1.48 \pm 0.14 b	1.94 \pm 0.05 a	0.48 \pm 0.07 c	0.37 \pm 0.00 c

ค่าเฉลี่ย \pm ค่าเบี่ยงเบนมาตรฐาน

ตามด้วยอักษรที่ต่างกันในแนวเดียวแสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($p \leq 0.05$)

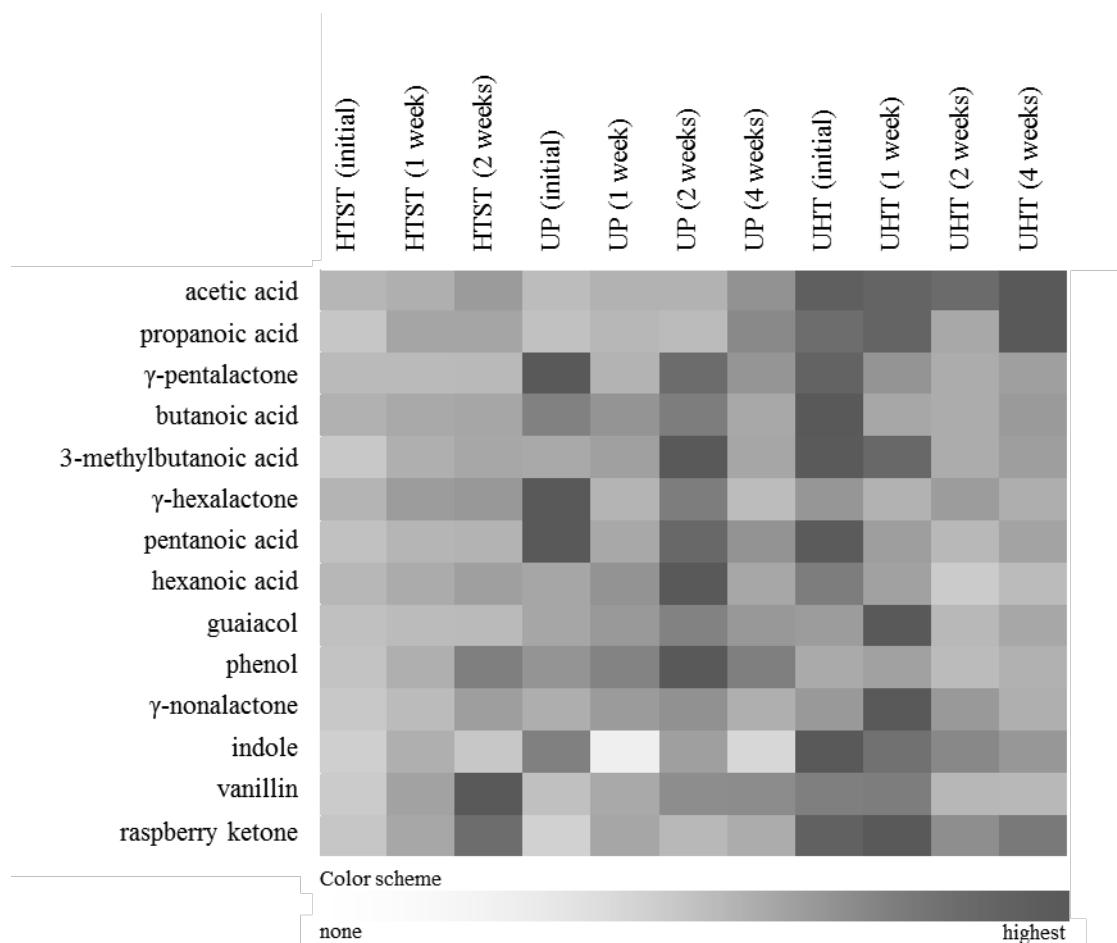
^{ns} ไม่แตกต่างอย่างมีนัยสำคัญทางสถิติ ($p > 0.05$)


คุณลักษณะด้านกลิ่นของเครื่องดื่มข้าวไรซ์เบอร์รี่ที่ประเมินโดยผู้ทดสอบที่ผ่านการฝึกฝน มีลักษณะกลิ่นต่าง ๆ คล้ายกับข้าวไรซ์เบอร์รี่หุงสุก และพบลักษณะกลิ่นเพิ่มเติมด้าน ได้แก่ prune, toasted และ cooked (ตารางที่ 2) ซึ่งเป็นลักษณะกลิ่นที่จัดเป็นกลิ่นรสจากกระบวนการแปรรูป (process flavor) โดยตัวอย่างเครื่องดื่มข้าวไรซ์เบอร์รี่ที่ผ่านการฆ่าเชื้อ มีลักษณะเค้าโครงด้านกลิ่น คล้ายกับตัวอย่างควบคุม (ภาพที่ 2) นอกจากนี้กลิ่น cereal และ dark grain ยังเป็นลักษณะกลิ่น ที่เด่นในเครื่องดื่มข้าวไรซ์เบอร์รี่ เช่นเดียวกับในข้าวไรซ์เบอร์รี่หุงสุก ส่วนกลิ่น musty และ hay ในตัวอย่าง HTST และ UHT จะอ่อนกว่าตัวอย่าง UP ดังนั้นจึงทำการศึกษาสารให้กลิ่นสำคัญใน ตัวอย่างเครื่องดื่มข้าวไรซ์เบอร์รี่เพื่อให้ได้ข้อมูลเชิงลึกมากขึ้น

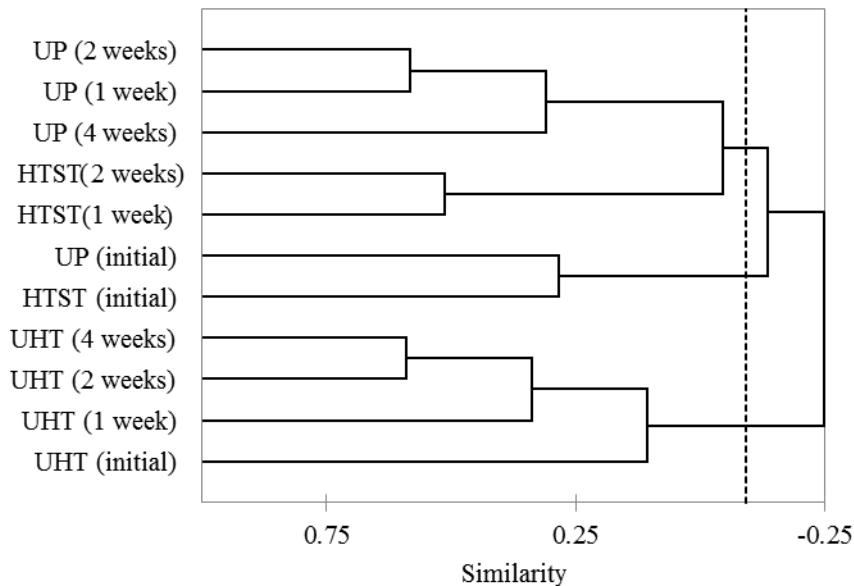
ภาพที่ 2 เค้าโครงด้านกลิ่นของเครื่องดื่มไรซ์เบอร์รี่ที่ไม่ผ่านการฆ่าเชื้อและผ่านการฆ่าเชื้อแบบต่าง ๆ คุณลักษณะด้านกลิ่นตามด้วยอักษรบรรทัดนีบันที่ต่างกันแสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($p \leq 0.05$)

โคลร์มาโตแกรมค่า flavor dilution (FD) factor ของเครื่องดื่มข้าวไรซ์เบอร์รี่จากการทดสอบ ด้วยเทคนิค AEDA แสดงดังภาพที่ 3 โดยทุกตัวอย่างมีชนิดของสารให้กลิ่นเหมือนกัน แต่มีค่า FD factor แตกต่างกัน ซึ่ง guaiacol, vanillin และ raspberry ketone คือสารให้กลิ่นสำคัญที่พบ ในเครื่องดื่มข้าวไรซ์เบอร์รี่ เช่นเดียวกับที่พบในข้าวไรซ์เบอร์รี่หุงสุก กลิ่น guaiacol ยังเป็นสารให้กลิ่นที่มี FD factor สูงสุดในตัวอย่างควบคุม นั่นแสดงว่า guaiacol เป็นสารให้กลิ่นที่มีความคงตัวต่อ ความร้อนในการแปรรูป เช่นเดียวกับรายงานของ Czégény et al. (2016) ที่พบว่าปริมาณ กลิ่น guaiacol ไม่เปลี่ยนแปลงระหว่างการให้ความร้อนที่ 300°C ซึ่งเป็นสภาวะจำลองของการสูบบุหรี่ อย่างไร้ตามปริมาณของ vanillin ในเครื่องดื่มข้าวไรซ์เบอร์รี่เพิ่มขึ้นตามอุณหภูมิการแปรรูปที่สูงขึ้น ทั้งนี้เนื่องจากอัตราการเกิดปฏิกิริยา Maillard เพิ่มขึ้น โดย Feather & Mossine (1997) พบว่าอุณหภูมิที่สูงขึ้น 10°C ทำให้อัตราการเกิดปฏิกิริยา Mallard เพิ่มขึ้น 2-3 เท่า และเมื่อ

เปรียบเทียบระหว่างตัวอย่าง พบว่าเครื่องดื่ม UP มีโครมาโตแกรมค่า FD factor คล้ายกับตัวอย่างควบคุมและตัวอย่าง HTST ในขณะที่ตัวอย่าง UHT มีค่า FD factor ของสารให้กลิ่น acetic acid (sour, vinegar note), butanoic acid (rancid, sweaty note) และ 3-methylbutanoic acid (rancid, sweaty note) สูงกว่า ทั้งนี้เนื่องจากการเสื่อมสภาพด้วยความร้อนของสาร primary metabolite โดยกรดcarboxylic acid สามารถเกิดจากโมโนแซ็คคาโรต กรดไขมัน หรือกรดแอมีโน เช่น Davidek, Gouézec, Devaud, & Blank (2008) พบ acetic acid เป็นผลิตภัณฑ์จากปฏิกิริยา Maillard ของ pentose หรือ Zhang et al. (2011) รายงานการเกิด butanoic acid จากออกซิเดชันของลิปิด ส่วน 3-methylbutanoic acid ก็เป็นสารให้กลิ่นที่เกิดจาก leucine (Siegmund, 2015) เป็นต้น



ภาพที่ 3 โครมาโตแกรมค่า flavor dilution (FD) factor ของสารให้กลิ่นสำคัญในเครื่องดื่ม ข้าวไรซ์เบอร์รี่ที่ไม่ผ่านการฆ่าเชื้อและผ่านการฆ่าเชื้อแบบต่าง ๆ


¹ acetic acid, ² propanoic acid, ³ butanoic acid, ⁴ 3-methylbutanoic acid, ⁵ pentanoic acid, ⁶ guaiacol, ⁷ phenol, ⁸ *p*-cresol, ⁹ 4-vinylguaiacol, ¹⁰ syringol, ¹¹ indole, ¹² vanillin, and ¹³ raspberry ketone

เป็นที่ทราบดีว่ากลิ่นอาหารมีลักษณะพลวัต (dynamic) ดังนั้นจึงศึกษาการเปลี่ยนแปลงของสารให้กลิ่นในเครื่องดื่มข้าวไรซ์เบอร์รี่ระหว่างการเก็บรักษา ซึ่งโดยทั่วไปผลิตภัณฑ์ UP จะมีอายุการเก็บรักษาประมาณ 30-90 วัน ในขณะที่ HTST มีอายุประมาณ 12-21 วัน (Cornell University, 2007) และเพื่อความปลอดภัย ตัวอย่างเครื่องดื่มข้าวไรซ์เบอร์รี่แบบ HTST และแบบ UP จึงเก็บรักษาเป็นเวลา 2 และ 4 สัปดาห์ ตามลำดับ ซึ่งผลการทดสอบทางจุลินทรีย์ก็ยืนยันความปลอดภัยของตัวอย่างดังกล่าว

การเปลี่ยนแปลงของสารให้กลิ่นในเครื่องดื่มข้าวไรซ์เบอร์รี่ระหว่างการเก็บรักษาแสดงด้วย heat map (ภาพที่ 4) และสามารถจัดกลุ่มตัวอย่างตามองค์ประกอบของสารให้กลิ่นได้ดังภาพที่ 5 โดยตัวอย่าง UP ถูกจัดอยู่ในกลุ่มเดียวกับตัวอย่าง HTST ในขณะที่เครื่องดื่มข้าวไรซ์เบอร์รี่ UHT ถูกแยกอยู่อีกกลุ่มหนึ่ง และเมื่อนำตัวอย่างไปประเมินทางประสาทสมัผสัตว์วิธี R-index ranking test ก็ได้ผลเช่นเดียวกันกับการวิเคราะห์สารให้กลิ่นด้วยเครื่อง GC นั่นคือตัวอย่าง UP ที่ผ่านการเก็บรักษามีคุณลักษณะด้านกลิ่นโดยรวมคล้ายกับตัวอย่าง HTST แต่แตกต่างอย่างมีนัยสำคัญจากตัวอย่าง UHT (ตารางที่ 4) ซึ่งในการทดสอบทางประสาทสมัผสัตว์นี้เลือกใช้เครื่องดื่มข้าวไรซ์เบอร์รี่ HTST เป็นตัวอย่างควบคุม เนื่องจากผู้บริโภคโดยทั่วไปชื่นชอบกลิ่นรสของผลิตภัณฑ์พาสเจอร์ไรซ์มากกว่าผลิตภัณฑ์สเตอโรไรซ์

ภาพที่ 4 ความเข้มข้นของสารให้กลิ่นในเครื่องดื่มข้าวไรซ์เบอร์รี่ที่เปลี่ยนแปลงระหว่างการเก็บรักษา

ภาพที่ 5 การจัดกลุ่มเครื่องดื่มข้าวไรซ์เบอร์รี่ตามองค์ประกอบของสารให้กลิ่น

ตารางที่ 4 ค่า John Brown's R-index (%) ของเครื่องดื่มข้าวไรซ์เบอร์รี่ที่ผ่านการฟ้าเชื้อแบบ UP และ UHT เมื่อเปรียบเทียบกับการฟ้าเชื้อแบบ HTST ระหว่างการเก็บรักษาเป็นเวลา 1 และ 2 สัปดาห์

Treatment	1-week	2-week
UP	39.47	62.50
UHT	76.32*	81.25*

ค่าวิกฤตที่ระดับนัยสำคัญ 0.05 แบบ two-tailed และ $n = 38$ เท่ากับ 15.33

*ค่า R-index ที่สูงกว่า 65.33 แสดงความแตกต่างอย่างมีนัยสำคัญ

นอกจากนี้เมื่อพิจารณาการเปลี่ยนแปลงของสารให้กลิ่นชนิดต่าง ๆ เพื่อให้ได้ข้อมูลเชิงลึกว่า เหตุใดเครื่องดื่มข้าวไรซ์เบอร์รี่แบบ UHT จึงแตกต่างจากตัวอย่างอื่นเมื่อเก็บรักษา ก็พบว่าตัวอย่าง ดังกล่าวมีปริมาณ acetic acid สูงตั้งแต่เริ่มต้นจนถึง 4 สัปดาห์ ของการเก็บรักษา (ภาพที่ 4) แม้ว่าจะมีปริมาณ raspberry ketone สูงก็ตาม นอกจากนี้ propanoica acid (rancid note) ซึ่งเกิดจากการสลายด้วยความร้อนจากน้ำตาลซูโคส (Shaw, Tatum, & Berry, 1969) ยังมีปริมาณสูงเช่นกัน เช่นเดียวกับการเพิ่มปริมาณของ indole (stinky, barny note) จากกระบวนการฟ้าเชื้อด้วย UHT ดังนั้นการมีสารให้กลิ่นไม่เพียงประสงค์เหล่านี้อยู่สูง จึงเป็นข้อจำกัดของการใช้วิธี UHT สำหรับเครื่องดื่มข้าวไรซ์เบอร์รี่

สรุปและข้อเสนอแนะ

สรุปผลการทดลอง

คุณภาพด้านเคมี การภาพ จุลินทรีย์ และประสาทสมัพส ของเครื่องดื่มข้าวไรซ์เบอร์รี่เป็นผลจากสภาวะที่ใช้ในการข้าวเชือด้วยความร้อน ซึ่งวิธี UP สามารถลดการเสื่อมเสียและช่วยยืดอายุของเครื่องดื่มข้าวไรซ์เบอร์รี่โดยมีคุณภาพด้านกลิ่นไม่แตกต่างจากตัวอย่างที่ผ่านการแปรรูปด้วยวิธี HTST ดังนั้น UP จึงเป็นวิธีการแปรรูปที่มีประโยชน์ต่อการผลิตเครื่องดื่มในระดับอุตสาหกรรม นอกจากนี้การเก็บอาหารที่มีคุณภาพดีได้ยาวนานขึ้นยังเป็นการช่วยแก้ปัญหาด้านความมั่นคงทางอาหารอีกด้วย อีกทั้งวิธี UP สามารถใช้อุปกรณ์ร่วมกับวิธี HTST โดยมีการปรับสภาวะในกระบวนการผลิตเพียงเล็กน้อย จึงมีต้นทุนและเทคโนโลยีที่เหมาะสมกับผู้ประกอบการขนาดเล็กและขนาดกลาง ส่วนการเกิดสารให้กลิ่นไม่พึงประสงค์จากการกระบวนการ UHT ก็เป็นสิ่งที่อุตสาหกรรมควรให้ความสำคัญ

สำหรับข้อมูลด้านสารให้กลิ่นสำคัญในข้าวไรซ์เบอร์รี่ โดยเฉพาะอย่างยิ่ง vanillin, guaiacol, 4-vinylguaiacol และ raspberry ketone สามารถใช้เป็นข้อมูล fingerprint ของข้าวสายพันธุ์นี้ และสามารถนำไปใช้ในการรังสรรค์กลิ่นรส (flavor creation) ข้าวไรซ์เบอร์รี่ที่เป็นที่ต้องการของผู้บริโภคในผลิตภัณฑ์ต่าง ๆ นอกจากนี้การค้นพบสาร raspberry ketone ในข้าวไรซ์เบอร์รี่และข้าวหอมนิล ซึ่งยังไม่เคยมีรายงานสารให้กลิ่นชนิดนี้ในข้าวพันธุ์ต่าง ๆ มา ก่อน ยังเป็นข้อมูลที่สำคัญในการพัฒนาและปรับปรุงคุณภาพข้าวไทย รวมถึงใช้เป็นตัวชี้วัดทางชีวภาพเพื่อเป็นมาตรฐานสำหรับกำหนดระดับคุณภาพและราคา หรือนำไปพัฒนาเป็นตัวชี้วัดการปลอมปนข้าวในขั้นตอนการซื้อขายต่อไปในอนาคต

ข้อเสนอแนะ

1. ควรทำการทดสอบ omission test ของสารให้กลิ่นสำคัญในข้าวไรซ์เบอร์รี่ เพื่อยืนยันผลการวิเคราะห์ ซึ่งจะได้ข้อมูลที่มีความสมบูรณ์มากยิ่งขึ้น และมีประโยชน์ต่อการรังสรรค์กลิ่นข้าวไรซ์เบอร์รี่
2. ปัจจุบันมีวิธีการแปรรูปแบบไม่ใช้ความร้อน เช่น high pressure process หรือ pulse-electric field เพื่อรักษาคุณภาพด้านกลิ่นรสที่ดีของน้ำผลไม้ จึงควรมีการศึกษาผลของ UP เทียบกับการแปรรูปแบบไม่ใช้ความร้อนนี้ เพื่อเป็นข้อมูลด้านข้อดีและข้อจำกัดของ UP สำหรับใช้ประกอบการพิจารณาเลือกวิธีการแปรรูปสำหรับเครื่องดื่มประเภทต่าง ๆ
3. เนื่องจากมีงานวิจัยพบว่า raspberry ketone มีคุณสมบัติช่วยลดน้ำหนัก ป้องกันโรคอ้วน และลดการสะสมของไขมันในตับ (Morimoto, Satoh, Hara, Inoue, Tsujita, & Okuda, 2005) จึงควรศึกษาคุณสมบัติดังกล่าวของข้าวไรซ์เบอร์รี่และข้าวหอมนิลเพิ่มเติม ซึ่งหากพบประโยชน์เหล่านี้ก็จะยิ่งช่วยเพิ่มคุณค่าและมูลค่าให้กับข้าวไทย

เอกสารอ้างอิง

Adhikari, K., Dooley, L. M., Chambers IV, E., & Bhumiratana, N. (2010). Sensory characteristics of commercial lactose-free milks manufactured in the United States. *LWT- Food Science and Technology*, 43, 113-118.

Ajarayasiri, J., & Chaiseri, S. (2008). Comparative study on aroma-active compounds in Thai, black and white glutinous rice varieties. *Kasetsart Journal (Natural Science)*, 42, 715-722.

Ankolekar, C., Rahmati, T., & Labb  , R. G. (2009). Detection of toxigenic *Bacillus cereus* and *Bacillus thuringiensis* spores in US rice. *International Journal of Food Microbiology*, 128, 460-466.

Ariyatanakatawong, P., & Boonsirichai, K. (2016). The iron content of traditional and purple Thai rice varieties under acid-soil condition. *International Journal of Management and Applied Science*, 2(3), 135-138.

Beekwilder, J., van der Meer, I. M., Sibbesen, O., Broekgaarden, M., Qvist, I., Mikkelsen, J. D., & Hall, R. D. (2007). Microbial production of natural raspberry ketone. *Biotechnology Journal*, 2(10), 1270-1279.

Borejsza-Wysocki, W., & Hrazdina, G. (1994). Biosynthesis of *p*-hydroxyphenylbutan-2-one in raspberry fruits and tissue cultures. *Phytochemistry*, 35, 623-628.

Bryant, R. J., & McClung, A. M. (2011). Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. *Food Chemistry*, 124, 501-503.

Buttery, R. G., & Ling, L. C. (1998). Additional studies on flavor components of corn tortilla chips. *Journal of Agricultural and Food Chemistry*, 46, 2764-2769.

Buttery, R. G., Ling, L. C., Juliano, B. O., & Turnbaugh, J. G. (1983). Cooked rice aroma and 2-acetyl-1-pyrroline. *Journal of Agricultural and Food Chemistry*, 31(4), 823-826.

Buttery, R. G., Ling, L. C., & Light, D. M. (1987). Tomato leaf volatile aroma components. *Journal of Agricultural and Food Chemistry*, 35, 1039-1042.

Buttery, R. G., Orts, W. J., Takeoka, G. R., & Nam, Y. (1999). Volatile flavor components of rice cakes. *Journal of Agricultural and Food Chemistry*, 47, 4353-4356.

Buttery, R. G., Stern, D. J., & Ling, L. C. (1994). Studies on flavor volatiles of some sweet corn products. *Journal of Agricultural and Food Chemistry*, 42, 791-795.

Buttery, R. G., Turnbaugh, J. G., & Ling, L. C. (1988). Contribution of volatiles to rice aroma. *Journal of Agricultural and Food Chemistry*, 36, 1006-1009.

Chapman, K. W., & Boor, H. T. (2001). Acceptance of 2% ultra-pasteurized milk by consumers, 6 to 11 years old. *Journal of Dairy Science*, 84, 951-954.

Chapman, K. W., Boor, H. T., & Boor, K. J. (2001). Quantitative descriptive analysis and principal component analysis for sensory characterization of ultrapasteurized milk. *Journal of Dairy Science*, 84(1), 12-20.

Cornell University. (2007). Pasteurized versus Ultra-pasteurized milk-Why such long sell-by dates? Retrieved June 5, 2019, from <https://foodsafety.foodscience.cornell.edu/sites/foodsafety.foodscience.cornell.edu/files/shared/documents/CU-DFScience-Notes-Milk-Pasteurization-UltraP-10-10.pdf>

Cornell University. (2008). Raw milk bacteria tests & sources and causes of high bacteria counts. Retrieved June 5, 2019, from <https://foodsafety.foodscience.cornell.edu/sites/foodsafety.foodscience.cornell.edu/files/shared/documents/CU-DFScience-Notes-Bacteria-Raw-Milk-Review-09-08.pdf>

Czégény, Z., Bozi, J., Sebestyén, Z., Blazsó, M., Jakab, E., Barta-Rajnai, E., . . . Liu, C. (2016). Thermal behaviour of selected flavour ingredients and additives under simulated cigarette combustion and tobacco heating conditions. *Journal of Analytical and Applied Pyrolysis*, 121, 190-204.

Czerny, M., Christlbauer, M., Christlbauer, M., Fischer, A., Granvogl, M., Hammer, M., . . . Schieberle, P. (2008). Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. *European Food Research and Technology*, 228, 265-273.

Daiponmak, W., Senakun, C., & Siriamornpun, S. (2014). Antiglycation capacity and antioxidant activities of different pigmented Thai rice. *International Journal of Food Science and Technology*, 49, 1805-1810.

Davidek, T., Gouézec, E., Devaud, S., & Blank, I. (2008). Origin and yields of acetic acid in pentose-based Maillard reaction systems. *Annals of the New York Academy of Sciences*, 1126, 241-243.

Deeseenthum, S., & Pejovic, J. (2010). Bacterial inhibition and antioxidant activity of kefir produced from Thai jasmine rice milk. *Biotechnology*, 9(3), 332-337.

Engel, W., Bahr, W., & Schieberle, P. (1999). Solvent assisted flavour evaporation-a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. *European Food Research and Technology*, 209, 237-241.

Feather, M. S., & Mossine, V. V. (1997). The Maillard Reaction: Consequences for the Chemical and Life Sciences. *Journal of the American Chemical Society*, 119(45), 11136.

Feng, P., Weagant, S. D., Grant, M. A., & Burkhardt, W. (2002). BAM 4: Enumeration of *Escherichia coli* and the Coliform Bacteria. Retrieved June 5, 2019, from <https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm064948.htm>

Fernandes, A., Brás, N. F., Mateus, N., & de Freitas, V. (2014). Understanding the molecular mechanism of anthocyanin binding to pectin. *Langmuir*, 30, 8516-8527.

Fiddler, W., Parker, W. E., Wasserman, A. E., & Doerr, R. C. (2010). Thermal decomposition of ferulic acid. *Journal of Agricultural and Food Chemistry*, 58(15), 757-761.

Grosch, W. (2001). Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. *Chemical Senses*, 26, 533-545.

Grosshauser, S., & Schieberle, P. (2013). Characterization of the key aroma compounds in pan-fried white mushrooms (*Agaricus bisporus* L.) by means of molecular sensory science: comparison with the raw mushroom tissue. *Journal of Agricultural and Food Chemistry*, 61, 3804-3813.

Ježussek, M., Juliano, B. O., & Schieberle, P. (2002). Comparison of key aroma compounds in cooked brown rice varieties based on aroma extract dilution analyses. *Journal of Agricultural and Food Chemistry*, 50, 1101-1105.

Kamarei, A. R. (2001). *US Patent No. US 6194009 B1*. Retrieved from <https://app.dimensions.ai/details/patent/US-6194009-B1>

Larsen, M., & Poll, L. (1990). Odour thresholds of some important aroma compounds in raspberries. *Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung*, 191, 129-131.

Leardkamolkarn, V., Thongthep, W., Suttiarpong, P., Kongkachuichai, R., Wongpornchai, S., & Wanavijitr, A. (2011). Chemopreventive properties of the bran extracted from a newly-developed Thai rice: the Riceberry. *Food Chemistry*, 125, 978-985.

Lee, D., Lloyd, N. D. R., Pretorius, I. S., & Borneman, A. R. (2016). Heterologous production of raspberry ketone in the wine yeast *Saccharomyces cerevisiae* via pathway engineering and synthetic enzyme fusion. *Microbial Cell Factories*, 15, 49-55.

Lorjaroenphon, Y., & Cadwallader, K. R. (2015). Characterization of typical aroma compounds in cola-flavored carbonated beverages by aroma extract dilution analysis. *Journal of Agricultural and Food Chemistry*, 63, 769-775.

Luang-In, V., Yotchaisarn, M., Somboonwatthanakul, I., & Deeseenthum, S. (2018). Bioactivities of organic riceberry broken rice and crude riceberry rice oil. *Thai Journal of Pharmaceutical Sciences*, 42(3), 161-168.

Maturin, L., & Peeler, J. T. (2001). BAM: Aerobic Plate Count. Retrieved June 5, 2019, from
<https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm063346.htm>

Meilgaard, M. C., Civille, G. V., & Carr, B. T. (2007). *Sensory Evaluation Techniques* (4th ed). Boca Raton, FL: CRC Press.

Mingyai, S., Kettawan, A., Srikaeo, K., & Singanusong, R. (2017). Physicochemical and antioxidant properties of rice bran oils produced from colored rice using different extraction methods. *Journal of Oleo Science*, 66(6), 565-572.

Mintel. (2018). US non-dairy milk sales grow 61% over the last five years. Retrieved June 5, 2019, from <https://www.mintel.com/press-centre/food-and-drink/us-non-dairy-milk-sales-grow-61-over-the-last-five-years>

Mitchell, C. R., Mitchell, P. R., & Nissenbaum, R. (1988). *US Patent No. US 4744992 A*. Retrieved from <https://patents.google.com/patent/US4744992A/en>

Monfort, S., Sagarzazu, N., Condón, S., Raso, J., & Álvarez, I. (2013). Liquid whole egg ultrapasteurization by combination of PEF, heat, and additives. *Food and Bioprocess Technology*, 6, 2070-2080.

Morimoto, C., Satoh, Y., Hara, M., Inoue, S., Tsujita, T., & Okuda, H. (2005). Anti-obese action of raspberry ketone. *Life Sciences*, 77(2), 194-204.

O'Mahony, M. (1992). Understanding discrimination tests: a user-friendly treatment of response bias, rating and ranking R-index tests and their relationship to signal detection. *Journal of Sensory Studies*, 7, 1-47.

Pothinuch, P., Miyamoto, A., Nguyen, H. T. T., & Tongchitpakdee, S. (2017). Vasodilatory effects of mulberry (*Morus spp.*) leaf extract on porcine cerebral arteries in vitro: Possible underlying mechanisms. *Journal of Functional Foods*, 38, 151-159.

Prangthip, P., Surasiang, R., Charoensiri, R., Leardkamolkarn, V., Komindr, S., Yamborisut, U., . . . Kongkachuichai, R. (2013). Amelioration of hyperglycemia, hyperlipidemia, oxidative stress and inflammation in streptozotocin-induced diabetic rats fed a high fat diet by riceberry supplement. *Journal of Functional Foods*, 5(1), 195-203.

Schieberle, P. (1995). New developments in methods for analysis of volatile flavor compounds and their precursors. In A. G. Gaonkar (Ed.), *Characterization of Food: Emerging Methods* (pp. 403-431). Amsterdam, The Netherlands: Elsevier Science.

Shaw, P. E., Tatum, J. H., & Berry, R. E. (1969). Base-catalyzed sucrose degradation studies. *Journal of Agricultural and Food Chemistry*, 17(4), 907-908.

Shin, M. G., Yoon, S. H., Rhee, J. S., & Kwon, T. W. (1986). Correlation between oxidative deterioration of unsaturated lipid and n-hexanal during storage of brown rice. *Journal of Food Science*, 51(2), 460-463.

Siegmund, B. (2015). 7-Biogenesis of aroma compounds: Flavour formation in fruits and vegetables. In J. K. Parker, J. S. Elmore, & L. Methven (Eds.), *Flavour Development, Analysis and Perception in Food and Beverages* (pp. 127-149). Cambridge, England: Woodhead Publishing.

Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H., & Dornier, M. (2017). Anthocyanins degradation during storage of *Hibiscus sabdariffa* extract and evolution of its degradation products. *Food Chemistry*, 214, 234-241.

Solano-Lopez, C. E., Ji, T., & Alvarez, V. B. (2005). Volatile compounds and chemical changes in ultrapasteurized milk packaged in polyethylene terephthalate containers. *Journal of Food Science*, 70, 407-412.

Tallent, S. M., Rhodehamel, E. J., Harmon, S. M., & Bennett, R. W. (2012). BAM: *Bacillus cereus*. Retrieved June 5, 2019, from <https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm070875.htm>

The Board of Investment of Thailand. (2017). Riceberry rice-a nutritious gift from Thailand to the world. Retrieved June 5, 2019, from http://www.boi.go.th/upload/content/TIR-SEP2017_81650.pdf

The Nielsen Company. (2016). Milking it: Surge in lactose-free dairy milk sales. Retrieved June 5, 2019, from <http://www.nielsen.com/au/en/insights/news/2016/milking-it.print.html>

Tournas, V., Stack, M. E., Mislicvec, P. B., Koch, H. A., & Bandler, R. (2001). BAM: Yeasts, molds and mycotoxins. Retrieved June 5, 2019, from <https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm071435.htm>

FDA. (2015). 21 CFR 131.3. Retrieved June 5, 2019, from https://www.ecfr.gov/cgi-bin/text-idx?SID=7e8aaa2ec336d46bf7dd0665814e130f&mc=true&node=se21.2.131_13&rgn=div8

Vegara, S., Mena, P., Martí, N., Saura, D., & Valero, M. (2013). Approaches to understanding the contribution of anthocyanins to the antioxidant capacity of pasteurized pomegranate juices. *Food Chemistry*, 141, 1630-1636.

Widjaja, R., Craske, J. D., & Wootton, M. (1996). Comparative studies on volatile components of non-fragrant and fragrant rices. *Journal of the Science of Food and Agriculture*, 70(2), 151-161.

Yang, D. K., Lee, K. S., Jeong, O. Y., Kim, K. J., & Kays, S. J. (2008). Characterization of volatile aroma compounds in cooked black rice. *Journal of Agricultural and Food Chemistry*, 56(1), 235-240.

Zeng, Z., Zhang, H., Zhang, T., Tamogami, S., & Chen, J. Y. (2009). Analysis of flavor volatiles of glutinous rice during cooking by combined gas chromatography-mass spectrometry with modified headspace solid-phase microextraction method. *Journal of Food Composition and Analysis*, 22, 347-353.

Zhang, S., Yang, R., Zhao, W., Hua, X., Zhang, W., & Zhang, Z. (2011). Influence of pulsed electric field treatments on the volatile compounds of milk in comparison with pasteurized processing. *Journal of Food Science*, 76(1), C127-C132.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

- ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ
อยู่ระหว่างพิจารณาผลงานเพื่อการตีพิมพ์ (under review) ในวารสารวิชาการ Food Chemistry (ภาคผนวกที่ 1)
- การนำผลงานวิจัยไปใช้ประโยชน์
การใช้ประโยชน์เชิงวิชาการคือสร้างนักวิจัยใหม่ระดับปริญญาโทจำนวน 1 คน ได้แก่
นางสาวณัฐณิชา กุลนานันท์
- อื่น ๆ
ผลงานวิจัยที่นำเสนอในที่ประชุมวิชาการระดับนานาชาติ (ภาคผนวกที่ 2):
Kullananant, N. & Lorjaroenphon, Y. Characterization of Riceberry aroma by gas chromatography-olfactometry and descriptive sensory analysis. *In* Proceedings of the 2016 International Conference on Engineering and Natural Science – Summer Session (ICENS-Summer 2016); Kyoto, Japan, 2016; pp 612-619.

ภาคผนวก

ภาคผนวกที่ 1

บทความวิจัยที่อ้างอิงระหว่างพิจารณาผลงานเพื่อการตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

ชื่อสาระ: Food Chemistry

(impact factor 5.399)

ชื่อเรื่อง: Riceberry odorant potency and ultrapasteurization effects on Riceberry
beverage aroma

ชื่อผู้แต่ง: Natnicha Kullananant, Siree Chaiseri, and Yaowapa Lorjaroenphon*

(*Corresponding author)

สถานะ: ระหว่างการพิจารณาผลงานเพื่อการตีพิมพ์

Manuscript Number:

Title: Riceberry Odorant Potency and Ultrapasteurization Effects on Riceberry Beverage Aroma

Article Type: Research Article (max 7,500 words)

Keywords: flavor; aroma; Riceberry; ultrapasteurization; p-hydroxyphenylbutan-2-one (raspberry ketone)

Corresponding Author: Dr. Yaowapa Lorjaroenphon,

Corresponding Author's Institution: Kasetsart University

First Author: Natnicha Kullananant

Order of Authors: Natnicha Kullananant; Siree Chaiseri; Yaowapa Lorjaroenphon

Abstract: AEDA, OAV, and descriptive analysis were employed to qualify and quantify Riceberry aroma. Vanillin, guaiacol, 4-vinylguaiacol, and p-hydroxyphenylbutan-2-one were the main contributors in cooked Riceberry. Principal component analysis supported the conveyance of aroma-active compounds and characteristics of Riceberry parental lines. Vanillin, guaiacol, and p-hydroxyphenylbutan-2-one were also the potent odorants in Riceberry beverages treated by HTST pasteurization, ultrapasteurization (UP), and UHT commercial sterilization. Although the aroma profile of the UP sample differed slightly from that of HTST and UHT beverages, the FD chromatograms of UP and HTST samples were identical. Cluster analysis and R-index ranking further confirmed the similarities of these two pasteurized samples during storage. Certain off-aroma increases, particularly those of acetic acid, propanoic acid, butanoic acid, and indole, set apart UHT sample from others. UHT samples were also light in color and lower in anthocyanin content. The entirety of this research supported the commercialization of high quality UP products.

1 **Highlights**

- 2 • Riceberry aromas, especially raspberry ketone, are valuable for flavor creation.
- 3 • Riceberry aroma characteristics remain in ultrapasteurized (UP) beverage.
- 4 • UP surpasses UHT by extending shelf life with no noticeable off-odors.
- 5 • UP requires minimum modification beyond the commercial pasteurization process.

1 **Riceberry Odorant Potency and Ultrapasteurization Effects on Riceberry Beverage**

2 **Aroma**

3

4 Natnicha KULLANANANT^a, Siree CHAISERI^a, and Yaowapa LORJAROENPHON^a, *

5

6 **Affiliations:**

7 *^aDepartment of Food Science and Technology, Faculty of Agro-Industry, Kasetsart*

8 *University, 50 Ngamwongwan Road, Ladyao, Chatuchak, Bangkok 10900, Thailand*

9

10 ***Corresponding author**

11 Yaowapa Lorjaroenphon

12 Phone: +66 2562 5020 ext. 5215

13 Fax: +66 2562 5021

14 Email: fagiyp@ku.ac.th

15

16 **Co-authors' email addresses**

17 Natnicha Kullananant Email: n.kullananant@gmail.com

18 Siree Chaiseri Email: siree.c@ku.ac.th

19

20 **Word count**

21 4019

22

23 **Abbreviated running title**

24 Potent Odorants of Riceberry and Ultrapasteurized Riceberry Beverage

25

26 **Abstract**

27 AEDA, OAV, and descriptive analysis were employed to qualify and quantify
28 Riceberry aroma. Vanillin, guaiacol, 4-vinylguaiacol, and *p*-hydroxyphenylbutan-2-one were
29 the main contributors in cooked Riceberry. Principal component analysis supported the
30 conveyance of aroma-active compounds and characteristics of Riceberry parental lines.
31 Vanillin, guaiacol, and *p*-hydroxyphenylbutan-2-one were also the potent odorants in
32 Riceberry beverages treated by HTST pasteurization, ultrapasteurization (UP), and UHT
33 commercial sterilization. Although the aroma profile of the UP sample differed slightly from
34 that of HTST and UHT beverages, the FD chromatograms of UP and HTST samples were
35 identical. Cluster analysis and R-index ranking further confirmed the similarities of these
36 two pasteurized samples during storage. Certain off-aroma increases, particularly those of
37 acetic acid, propanoic acid, butanoic acid, and indole, set apart UHT sample from others.
38 UHT samples were also light in color and lower in anthocyanin content. The entirety of this
39 research supported the commercialization of high quality UP products.

40

41 **Keywords:** flavor; aroma; Riceberry; ultrapasteurization; *p*-hydroxyphenylbutan-2-one
42 (raspberry ketone)

43

44 **1. Introduction**

45 Ultrapasteurization (UP) is a thermal process used worldwide which extends the
46 refrigerated shelf life of non-acid liquid food. Heating conditions are similar to those of
47 ultra-high temperature (UHT) but packing under the sterile condition is not required (Cornell
48 University, 2007). Higher treatment temperatures extend storage times beyond that of
49 conventional pasteurization but potentially alters certain physical, chemical and organoleptic
50 product properties. Although 60-day UP 2% milk contained lipid oxidation volatiles (such as
51 hexanal, octanal, and nonanal), panelists were unable to detect rancidity within samples
52 (Solano-Lopez, Ji & Alvarez, 2005). Adults found UP milk acceptable, however children
53 found it less appealing when compared to high temperature-short time (HTST) and UHT milk
54 (Chapman & Boor, 2001). Panelists scored the cooked aroma of UP lactose-free milk higher
55 than that of pasteurized regular milk (Adhikari, Dooley, Chambers IV & Bhumiratana, 2010).
56 The viscosity of UP milk was also perceived to be higher than that of HTST milk (Chapman,
57 Boor & Boor, 2001). A limitation of UP products is the requirement for refrigerated storage
58 conditions compared to UHT samples. However, a lower temperature may prevent
59 undesirable qualities. For example, vitamin degradation in refrigerated UP infant formula did
60 not create off-taste compounds (Kamarei, 2001). Furthermore, the higher functional
61 properties of proteins found in liquid whole eggs was maintained by UP but not UHT
62 (Monfort, Sagarzazu, Condón, Raso & Álvarez, 2013). Despite aroma influencing consumer
63 acceptability, limited research and published literature exists on the correlation between
64 aroma component assessment and sensorial approach when comparing UP product samples
65 with those of HTST and UHT.

66 Riceberry beverage was selected for study since rice beverages are becoming popular
67 non-dairy alternatives for consumers who are lactose intolerant or allergic to soy. Non-dairy
68 milk is available in supermarkets throughout the world currently enjoying dramatic sales

69 growth (Mintel, 2018). Rice beverages are prepared from rice paddy (young rice or rice at
70 milky stage), brown rice, germinated brown rice, milled rice, or rice flour. Flavor can be
71 preserved by treating whole rice grain with a series of enzymes, including alpha-amylase and
72 glucosidase and/or beta-amylase. Rice beverages from rice paddy are a good source of
73 vitamins and minerals. Germinated brown rice is rich in gamma-aminobutyric acid (GABA).
74 Although rice beverages are low fat, cholesterol-, and lactose-free, they provide less calcium
75 and protein than dairy milk.

76 Riceberry is a dark purple cross-breed between Khao Dawk Mali 105 (Thai Hom Mali
77 rice as maternal line) and Hom Nin (black rice as paternal line) offering high nutrition,
78 tenderness, and palatability. Cooked Riceberry offers a unique color and pleasing aroma.
79 Riceberry has become increasingly popular to health-conscious consumers. It is rich in
80 anthocyanin, has powerful antioxidant activity, and even possesses chemopreventive
81 properties (Leardkamolkarn, Thongthep, Suttiarporn, Kongkachuichai, Wongpornchai &
82 Wanavijitr, 2011).

83 Despite Riceberry being more expensive than Jasmine rice and conventional white
84 rice, consumer demand is increasing dramatically because of its health benefits and especially
85 its unique organoleptic properties. Regarding the latter, flavor houses have been requested
86 Riceberry flavoring for food manufacturing, however it is not yet commercially available.
87 Moreover, no instrumental nor sensorial analysis studies exist regarding Riceberry aroma.

88 Various rice volatile aroma compounds studies have found, among other things, that
89 freshly harvested rice contain substantially more volatiles than stored (Bryant & McClung,
90 2011). 2-Acetyl-1-pyrroline (2AP), (*E,E*)-2,4-decadienal, nonanal, hexanal, (*E*)-2-nonenal,
91 octanal, decanal, 4-vinylguaiacol, and 4-vinylphenol had the greatest impact in Californian
92 long-grain cooked rice (Buttery, Turnbaugh & Ling, 1988). 2-Amino acetophenone and 2AP
93 were the most potent odorants in Malagkit Sungsong, Basmati 370, and Khaskhani brown

94 rice (Jezussek, Juliano & Schieberle, 2002), while 2AP and guaiacol had the greatest impact
95 in cooked black aromatic rice (Yang, Lee, Jeong, Kim & Kays, 2008).

96 Therefore, this research used Riceberry, Khao Dawk Mali 105, and Hom Nin cooked
97 rice for aroma compound analysis and sensory evaluation. This study also compared the
98 impact of UP to that of HTST and UHT treatments on Riceberry beverage aroma.

99

100 **2. Materials and Methods**

101 ***2.1 Rice samples and sensory references***

102 Rice Science Center, Kasetsart University, Kamphaeng Saen Campus (Nakhon
103 Pathom, Thailand) provided the unpolished Riceberry and Capital Rice Co., Ltd. (Samut
104 Prakan, Thailand) supplied the parental lines (Khao Dawk Mali 105 and Hom Nin). Samples
105 had been harvested and vacuum packed in 2017. Reference samples for sensory evaluation
106 were purchased from a local supermarket.

107

108 ***2.2 Chemicals***

109 Sigma-Aldrich (MO, USA) and Fluka (Steinheim, Switzerland) provided internal
110 standard (2-methyl-3-heptanone), C₆-C₃₀ alkane standards, authentic standards (except 2AP)
111 for positive identification, and reference anthocyanins. RCI Labscan (Dublin, Ireland) and
112 Brightchem (Selangor, Malaysia) supplied high performance liquid chromatography (HPLC)
113 grade solvents including diethyl ether, acetonitrile, and methanol. Ajax Finechem (Auckland,
114 New Zealand) and Merck KGaA (Darmstadt, Germany) supplied sodium chloride (NaCl),
115 anhydrous sodium sulfate (Na₂SO₄), and formic acid.

116

117 **2.3 Cooked Riceberry in comparison with Khao Dawk Mali 105 and Hom Nin rice**118 *2.3.1 Analysis of aroma-active compound*

119 Rice samples (40 g) plus odorless-distilled water (65 mL) was cooked in a
120 conventional rice cooker. The extraction process and gas chromatography (GC) method were
121 modified from Lorjaroenphon and Cadwallader (2015). One hundred grams of cooked rice
122 and 10 μ L of 2-methyl-3-heptanone (0.0106 g/10 mL in methanol) were ground in liquid
123 nitrogen to prevent loss of volatiles. The sample with 10 g of NaCl was prepared in a 250-
124 mL TeflonTM centrifuge bottle and extracted with 50 mL of diethyl ether. Extraction was
125 repeated three times at 200 rpm for 30 min via automatic shaker. The combined extract was
126 concentrated to 50 mL using a vigreux column at 43 °C followed by high-vacuum distillation
127 at 10^{-5} torr as per Engel, Bahr and Schieberle (1999). Distillation occurred at room
128 temperature (25 ± 2 °C) for 1 h and at 43 °C for another 1 h. Distillate was concentrated to 10
129 mL via vigreux column and dried over 1 g of anhydrous Na₂SO₄ before concentrating to 200
130 μ L.

131 Two microliters of aroma extract were injected via cool on-column technique (+3 °C
132 oven tracking mode) into GC (Agilent Technologies, Inc., MA, USA) coupled with
133 olfactometer (O) (DATU, Inc., NY, USA). The sample was separated on two capillary
134 columns of different polarity including Stabilwax[®] (30 m \times 0.25 mm i.d. \times 0.25 μ m film
135 thickness) (Restek Ltd., PA, USA) and Rxi[®]-5ms (30 m \times 0.25 mm i.d. \times 0.25 μ m film
136 thickness) (Restek Ltd.) columns. Helium was used as a carrier gas at 2 mL/min. The initial
137 oven temperature was 35 °C and held for 5 min. Temperature was increased at 10 °C/min to
138 225 °C for Stabilwax[®] column and at 6 °C/min to 250 °C for Rxi[®]-5ms column. The holding
139 time of final temperature was 10 min. The aroma characteristics of the component was
140 described by three trained assessors.

141 One microliter of extract was injected into GC coupled with a time-of-flight mass
142 spectrometer (ToFMS) (LECO[®], MI, USA). The GC condition was similar to the GCO,
143 except 1 mL/min helium flow and 4 °C/min increasing oven temperature. The electron
144 impact energy was 70 eV and the range of scan was 30-300 m/Z.

145 Retention indices (RIs) from two different polarity columns, odor description, mass
146 spectra (MS), and authentic standards were used to positively identify odorants. RI value was
147 calculated from odorant retention time (RT) to RTs of alkane standards. Odorant RIs from
148 two columns were compared to literature. Odorant MS was compared to the National
149 Institute of Standards and Technology (NIST) Mass Spectral Library (version 2.0, 2011).
150 Relative concentrations were calculated from the peak areas and response factors. The peak
151 areas were integrated by LECO ChromaTOF[®] version 4.50.8.0 and the response factors were
152 obtained from calibration curves.

153 The key odorant in cooked rice was determined via odor activity values (OAV) and
154 aroma extract dilution analysis (AEDA). OAV followed Grosch (2001) by calculating the
155 ratio between compound concentrations to its odor threshold in water obtained from
156 literature. Odorants with an OAV greater than one was considered as aroma-active
157 compound. AEDA was revealed using the same procedure as Schieberle (1995). Extract was
158 diluted stepwise with diethyl ether in a series of 1:3. Each dilution was evaluated using GCO
159 coupled with a Stabilwax[®] column as previously described. The highest dilution from three
160 assessors of each odorant was expressed as a flavor dilution (FD) factor.

161

162 *2.3.2 Evaluation of aroma characteristic*

163 Sensory aroma profile of cooked rice was examined by descriptive analysis following
164 the procedure of Meilgaard, Civille and Carr (2007). Ten graduate students (ages 23 to 28
165 years, 9 females and 1 male) comprised the test panel and underwent panel training for 40 h.

166 Panelists were asked to sniff various cooked rice samples, characterize aroma attributes,
167 choose references, and rate intensity scores on 15-cm line scale (none to strong).

168 Twenty-five grams of warm cooked rice and references were prepared in 125-mL
169 Teflon™ sniffing bottles (Thermo Scientific, MA, USA) and covered with aluminum foil.
170 The rice samples were labeled with a three-digit random number code and served in a
171 monadic sequential and balance order. The panelists evaluated samples in individual booths.
172 Scores were expressed as average values and illustrated via radar chart.

173

174 **2.4 UP Riceberry beverage in comparison with HTST and UHT treatments**

175 *2.4.1 Preparation and determination of quality property*

176 Riceberry beverage preparation was adapted from Deeseenthum and Pejovic (2010).
177 Seven kilograms of Riceberry with 70 L of water was boiled for 30 min. The supernatant
178 was filtered through two layers of muslin cloth and rapidly cooled to 25 ± 2 °C in an ice bath
179 to obtain the untreated sample. HTST, UP, and UHT were performed by UHT/HTST system
180 (MicroThermics, NC, USA) at the certain temperature for a specific holding time. The
181 conditions of HTST and UP treatments were 72°C for 15 s and 138°C for 2 s, respectively
182 (FDA, 2015). The pasteurized samples were immediately hot-filled into previously
183 pasteurized glass bottles under sanitized environment and rapidly cooled to 4 °C or below.
184 HTST and UP samples were kept refrigerated (4 ± 2 °C) for two and four weeks, respectively.
185 In terms of UHT commercial sterilization, the process temperature of 140°C for 4 s was
186 suggested by Cornell University (2007). After heating and fast cooling, the sample was
187 aseptically filled in pre-sterilized bottles and hermetically sealed. The UHT beverage was
188 stored at room temperature (25 ± 2 °C) for four weeks.

189 FDA Bacteriological Analytical Manual (FDA-BAM) regulations were referenced to
190 examine *Bacillus cereus* (Tallent, Rhodehamel, Harmon & Bennett, 2012), coliform bacteria

191 (Feng, Weagant, Grant & Burkhardt, 2002), total microbial (Maturin & Peeler, 2001), yeast,
192 and mold (Tournas, Stack, Mislivec, Koch & Bandler, 2001) in all samples. Sample
193 appearance was observed and CIE L*, a*, b* values were determined. Anthocyanins were
194 identified in Riceberry beverages using the method employed by Pothinuch, Miyamoto,
195 Nguyen and Tongchitpakdee (2017) with modifications. One hundred fifty milliliters of
196 sample were filtered through Whatman No. 4 filter paper (GH Healthcare Bio-Science,
197 Uppsala, Sweden) and concentrated to 10 mL by high-vacuum distillation. Residual particles
198 were eliminated from the supernatant via micro refrigerated centrifuge and then filtered
199 through a 0.45 μ m-pore size nylon membrane filter (Sartorius, Hannover, Germany). The
200 analysis was performed on HPLC equipped with a photodiode array (PDA) detector (Waters,
201 MA, USA). The sample injection volume was 20 mL and the mobile phase flow rate on a
202 Symmetry[®] C18 column (Waters) (5 μ m, 4.6 mm \times 250 mm) was 1.0 mL/min. The mobile
203 phases were 100% acetonitrile (A) and 1% formic acid in water (v/v) (B) with the following
204 gradient: 5-10% A for 5 min, 10-15% A for 5 min, 15-25% A for 20 min, 25-50% A for 10
205 min, 50-5% A for 5 min, and held 5% A for 5 min. Anthocyanin was scanned at 200-500 nm
206 wavelength and identification was based on RT, ultraviolet (UV) spectrum, and reference
207 standard. The content of anthocyanin was quantified with the external standard.

208

209 2.4.2 *Investigation of aroma component and characteristic*

210 Riceberry beverage aroma based on OAV calculation, AEDA technique, and sensory
211 evaluation was performed as previously described. One hundred milliliters of beverage
212 sample was solvent-extracted directly, distilled, and concentrated before injection into the
213 GCO and GC-ToFMS. Descriptive aroma analysis of 25-mL Riceberry beverage was
214 evaluated by 12 trained panelists (23 to 28 years, 8 females and 4 males).

215 Stored samples underwent additional sensory analysis. The R-index ranking test
216 followed the method from Lorjaroenphon and Cadwallader (2015). HTST, UP, and UHT
217 sniffing bottles were labeled with a three-digit code while another bottle of HTST Riceberry
218 beverage acted as control. The control and three test samples were presented to panelists ($n =$
219 38) (23 to 34 years, 33 females and 5 males). Panelists evaluated the control and followed by
220 the test samples in a randomized and balanced serving order. They were asked to rank test
221 samples based on the degree of difference from the control. R-index values were estimated
222 as the percentage of times in which test samples were ranked less similar to the blind control
223 via the John Brown computation (O'Mahony, 1992).

224

225 ***2.5 Statistical analysis***

226 Physical and chemical properties were subjected to analysis of variance (ANOVA)
227 testing using a completely randomized design (CRD) with three independent replications,
228 except for the duplication of anthocyanin. Significant differences among mean values were
229 applied using Duncan's new multiple range test at 95% confidence interval by SPSS program
230 (IBM, NY, USA). Relationships between aroma-active compounds and aroma attributes in
231 cooked rice cultivars were explained by principal component analysis (PCA) using XLSTAT
232 software (Addinsoft SARL, NY, USA). Grouping untreated, HTST, UP, and UHT sample
233 sets during storage were expressed by agglomerative hierarchical clustering (AHC) using
234 XLSTAT software.

235 The experimental design of sensory evaluation [approved by the Kasetsart University
236 Research Ethics Committees (code no. COE59/005)] was a randomized complete block
237 design (RCBD) with panelists serving as a block. The mean comparison was performed in
238 the same manner. The R-index 50% for the two-tailed test was analyzed at $\alpha = 0.05$.

239

240 **3. Results and Discussion**241 **3.1 Cooked Riceberry rice**

242 Aroma characteristics of Riceberry, Khao Dawk Mali 105, and Hom Nin were
243 specified by sensorial and instrumental analyses. Forty two odorants, comprised of acids,
244 alcohols, aldehydes, ketones, lactones, phenols, terpenes, and nitrogen- and sulfur-containing
245 compounds, were found in cooked rice. Among them, aldehydes provide the dominant
246 aroma. These aldehydes were lipid oxidation products derived from unsaturated fatty acids,
247 especially linoleic and oleic acids. These two fatty acids represented more than 70% of the
248 total Riceberry fatty acids (Luang-In, Yotchaisarn, Somboonwatthanakul & Deeseenthum,
249 2018), Hom Nin, and Khao Dawk Mali 105 (Mingyai, Kettawan, Srikaeo & Singanusong,
250 2017). Shin, Yoon, Rhee and Kwon (1986) revealed the linear proportional relationship
251 between *n*-hexanal and linoleic acid contents in Indica/Japonica brown rice. Free fatty acid
252 oxidation in rice is possible throughout any of the various stages (including harvesting,
253 storage, and cooking) possibly resulting in an abundance of aldehydes. Hexanal, a lipid
254 oxidation marker in rice, was the primary aldehyde in all three types of cooked rice. Among
255 the rice cultivars, Riceberry had the lowest hexanal content, followed by Khao Dawk Mali
256 105 and lastly Hom Nin, possibly due to the presence of antioxidants. Free fatty acid
257 oxidation can be accelerated by iron found in rice bran. This reaction, however, is prevented
258 by anthocyanin in colored rice. Although Riceberry contained twice the iron of Hom Nin
259 (Ariyatanakatawong & Boonsirichai, 2016), total phenolic content and antioxidant activity
260 remained higher (Daiponmak, Senakun & Siriamornpun, 2014).

261 Aroma-active compounds in cooked Riceberry along with Riceberry parental lines
262 were examined based on OAV calculation and FD factor. Vanillin (vanilla note), guaiacol
263 (smoky note), 4-vinylguaiacol (clove, spicy, smoky note), and the *p*-hydroxyphenylbutan-2-
264 one (raspberry ketone) (sweet, candy, fruity, berry note) were the main aroma contributors in

265 Riceberry and Hom Nin (Table 1). However, 2AP (pandan, sweet note), one of the key
266 odorants in Khao Dawk Mali 105, was not classified as a potent in Riceberry. Interestingly,
267 the high odor potency of vanillin in Khao Dawk Mali 105 was stated in this experiment.

268 Guaiacol and 4-vinylguaiacol were also mentioned for their impact in other dark
269 colored rice varieties, such as black glutinous rice (Ajarayasiri & Chaiseri, 2008) and Korean
270 black rice (Yang et al., 2008). The three phenol aroma contributors (vanillin, guaiacol, and 4-
271 vinylguaiacol) in Riceberry might be generated from ferulic acid degradation. Fiddler,
272 Parker, Wasserman and Doerr (2010) studied the chemical reaction of this phenolic acid.
273 Ferulic acid was decarboxylated to form 4-vinylguaiacol and then oxidized to form vanillin.
274 Guaiacol was further generated from vanillin via a series of reactions including oxidation and
275 decarboxylation.

276 Most importantly, this was the first time raspberry ketone was reported in rice
277 samples. It was considered the prominent aroma of raspberry fruit (Larsen & Poll, 1990) and
278 was derived from the phenylpropanoid pathway (Beekwilder et al., 2007). The conversion of
279 phenylalanine or tyrosine to *p*-coumaric acid was initiation step which then transformed to *p*-
280 coumaroyl-CoA by coumarate-CoA ligase. The enzyme-catalyzed condensation reaction
281 between *p*-coumaroyl-CoA and one molecule of malonyl-CoA formed *p*-hydroxyphenylbut-
282 3-ene-2-one (benzalacetone). This ketone was further catalyzed by benzalacetone reductase
283 to yield raspberry ketone. The existence of raspberry ketone in Riceberry and Hom Nin was
284 confirmed by the high anthocyanin content. This anthocyanin pigment was also generated
285 through the phenylpropanoid pathway (Beekwilder et al., 2007) starting with *p*-coumaroyl-
286 CoA enzymatic condensation with three malonyl-CoA molecules. The intermediate,
287 naringenin chalcone, was then converted to anthocyanin.

288 Beyond chemical analysis, trained descriptive panelists detected six rice aroma
289 attributes. The relationship between aroma-active compounds and odor attributes were

290 elucidated via PCA biplot (Figure 1). The result of PC1 (54.07%) and PC2 (45.93%)
291 supported the genealogy of Riceberry from Hom Nin and Khao Dawk Mali 105. It also
292 revealed a high correlation between instrumental and sensory analyses. For example, 2AP
293 was associated with the major aroma attribute of Khao Dawk Mali 105, namely cereal note (r
294 = 0.959). This agreed with literature which showed 2AP as a character note of Khao Dawk
295 Mali 105 (Buttery, Ling, Juliano & Turnbaugh, 1983). Furthermore, raspberry ketone
296 correlated with dark grain note (r = 0.833) which was the main aroma of Riceberry and Hom
297 Nin. This correlation indicated that raspberry ketone was one of the character impact
298 odorants of these two colored rice species.

299

300 **3.2 UP Riceberry beverage**

301 Based on the most common pathogen and spoilage microorganism, UP condition
302 rendered adequate microbiological safety as did HTST and UHT treatments in this study.
303 The *Bacillus cereus* count in treated samples was less than 1 cfu/mL. *B. cereus* was chosen
304 as a microbiological safety indicator in Riceberry beverage for its propensity for rice
305 contamination. Coliform bacteria levels (<1.1 MPN/100 mL) guaranteed hygienic conditions
306 during processing and post-processing handling. Yeast and mold were also undetectable (<1
307 cfu/mL est.) in treated samples. The total plate count of HTST Riceberry beverage was 2
308 cfu/mL, while the values for the UP and UHT samples were less than 1 cfu/mL. It should be
309 noted that UP is very near but not completely sterile (Cornell University, 2007).
310 Additionally, total soluble solids, pH, and viscosity for all heat treatments were similar to
311 untreated Riceberry beverage (data not shown).

312 Notably, the paler color of UHT Riceberry beverage was distinguishable from the
313 other beverages with the naked eye. The higher L^* value and the least anthocyanin (Table 2)
314 confirmed this appearance. Cyanidin-3-glucoside and peonidin-3-glucoside were the major

315 monomeric anthocyanins in Riceberry beverage and decreased dramatically after UHT
316 processing (Table 2). Excess heat caused monomeric anthocyanin loss which then changed
317 into polymeric form. Anthocyanin polymerization was reported in Roselle extract when
318 heated to high temperatures (Sinela, Rawat, Mertz, Achir, Fulcrand & Dornier, 2017).
319 However, an increase in monomeric anthocyanin was observed in HTST samples compared
320 to the untreated samples possibly due to the conversion from a colorless co-pigment during
321 mild heat treatments. Vegara, Mena, Martí, Saura and Valero (2013) reported a change in
322 low heat treated pomegranate juice from having a colorless co-pigment to a free monomeric
323 anthocyanin. Hydrolysis of the bound form to free form might also be a reason for this
324 change. Anthocyanin in Riceberry is mostly bound to carbohydrates and moderate
325 temperatures may accelerate the release of free anthocyanin. Nonetheless, the proportion of
326 cyanidin-3-glucoside and peonidin-3-glucoside in cooked Riceberry (Leardkamolkarn et al.,
327 2011) and in Riceberry beverage were the same.

328 The aroma of Riceberry beverage was further evaluated by descriptive trained
329 panelists. The character notes were similar to that of cooked Riceberry with three additional
330 attributes including prune, toasted, and cooked. These extra terms were considered as
331 process flavors. Treated and untreated samples had similar aroma profiles (Figure 2). Cereal
332 and dark grain, the leading notes in Riceberry, were the major aspects for all beverages. In
333 comparison with UP treatment, musty and hay were less intense in HTST and UHT samples,
334 respectively. Therefore, the contribution of aroma-active compounds to aroma perception
335 was investigated in-depth.

336 Riceberry beverage flavor dilution (FD) chromatograms obtained from the AEDA
337 technique are presented in Figure 2. Samples had the same aroma-active compounds at
338 different FD factors. Guaiacol, vanillin, and raspberry ketone were the most potent odorants
339 in treated Riceberry beverages. This was in consistency with the high potency in cooked

340 Riceberry. Untreated Riceberry beverage had the greatest guaiacol potency as well. Results
341 revealed that guaiacol stability could be maintained under heat treatment. Czégény et al.
342 (2016) reported steady guaiacol content during tobacco heating simulations at 300 °C. On
343 the other hand, vanillin concentrations increased with processing temperature due to the high
344 development rate of the Maillard reaction. Increasing the temperature 10 °C doubled or
345 tripled the Maillard reaction rate (Feather & Mossine, 1997).

346 Considering the FD factors, UP sample aromagrams were similar to that of untreated
347 and HTST treatments. However, acetic (sour, vinegar note), butanoic (rancid, sweaty note),
348 and 3-methylbutanoic (rancid, sweaty note) acids became more potent in UHT samples due to
349 primary metabolite thermal degradation. Carboxylic acid can be formed from
350 monosaccharides, fatty acids, or amino acids. Acetic acid was one product of the Maillard
351 reaction from pentose. Butanoic acid was a lipid oxidation product while 3-methylbutanoic
352 acid was generated from amino acid.

353 Changes in the Riceberry beverage aroma during storage were also investigated. UP
354 liquid food generally has a 30-90 day refrigerated shelf life, while that of HTST food is
355 around 12-21 days (Cornell University, 2007). Regarding food safety concern,
356 microbiological result for 2-week HTST and 4-week UP Riceberry beverages proved
357 harmless for human consumption (data not shown). Odorant alterations during storage is
358 illustrated by heat map along with cluster analysis (Figure 3) based on variation of contents.
359 The results indicated that UP beverage was together with HTST sample. Unfortunately, UHT
360 Riceberry beverage was in the other group. Overall aroma of Riceberry beverage, as
361 indicated by R-index ranking, also confirmed GC analysis results. Stored UP and HTST
362 samples were ranked similarly, while the UHT Riceberry beverage differed significantly
363 (Table 3). The HTST treatment was chosen as the benchmark due to consumer preference of
364 pasteurization to sterilization.

365 Insights into differences of UHT Riceberry beverage from other treatments were
366 gained through considering temporal fluctuations in individual aroma compounds. Although
367 UHT samples showed high raspberry ketone content, acetic acid concentrations in UHT
368 samples were the dominant odorant from initial storage until four weeks (Figure 3).
369 Propanoic acid (rancid note) as a result of sucrose thermal degradation was also present in
370 high amounts. Moreover, the UHT process could induce indole (stinky, barny note)
371 formation. A high abundance of these undesirable aromas underscored the limitations of
372 using UHT treatment in Riceberry beverage.

373

374 **4. Conclusions**

375 Riceberry beverage quality is a function of thermal conditions. The UP process
376 successfully extends shelf life without additional off-odor from HTST treatment. These
377 advantages foster commercial exploitation and may help global food security. UP production
378 with minimal modification of HTST process can improve economic interests of small-scale
379 food producer as well. In contrast, the UHT process causes some off-aroma, an important
380 consequence of which the food industry should be aware. Additionally, the information on
381 aroma-active compounds, especially high potency of vanillin, guaiacol, 4-vinylguaiacol, and
382 raspberry ketone in Riceberry could be considered as its fingerprint. It is essential for flavor
383 creation which is highly on-demand in many products. Moreover, raspberry ketone is the
384 new scientific finding in Riceberry which is necessary for breeding approach to improve rice
385 quality. It may also provide the biomarker for grading/pricing standard and it is the first step
386 for further identification of adulteration indicator. Aroma characteristic of Riceberry and its
387 origin could crucial drive an impact on consumer's purchase intent.

388

389 **Acknowledgements**

390 This research was financially supported by the Thailand Research Fund (TRF) under
391 grant number MRG6080187. The authors thank Assoc. Prof. Parichat Hongsprabhas, Ph.D.
392 and Asst. Prof. Sasitorn Tongchitpakdee, Ph.D. for their assistance of UP processing.

393

394 **Conflict of interest**

395 The authors declare no conflict of interest.

396

397 **References**

398 Adhikari, K., Dooley, L. M., Chambers IV, E., & Bhumiratana, N. (2010). Sensory
399 characteristics of commercial lactose-free milks manufactured in the United States.
400 *LWT- Food Science and Technology*, 43, 113-118.

401 Ajarayasiri, J., & Chaiseri, S. (2008). Comparative study on aroma-active compounds in
402 Thai, black and white glutinous rice varieties. *Kasetsart Journal (Natural Science)*,
403 42, 715-722.

404 Ariyantanakatawong, P., & Boonsirichai, K. (2016). The iron content of traditional and purple
405 Thai rice varieties under acid-soil condition. *International Journal of Management
406 and Applied Science*, 2(3), 135-138.

407 Beekwilder, J., van der Meer, I. M., Sibbesen, O., Broekgaarden, M., Qvist, I., Mikkelsen, J.
408 D., & Hall, R. D. (2007). Microbial production of natural raspberry ketone.
409 *Biotechnology Journal*, 2(10), 1270-1279.

410 Bryant, R. J., & McClung, A. M. (2011). Volatile profiles of aromatic and non-aromatic rice
411 cultivars using SPME/GC-MS. *Food Chemistry*, 124, 501-503.

412 Buttery, R. G., Ling, L. C., Juliano, B. O., & Turnbaugh, J. G. (1983). Cooked rice aroma and
413 2-acetyl-1-pyrroline. *Journal of Agricultural and Food Chemistry*, 31(4), 823-826.

414 Buttery, R. G., Turnbaugh, J. G., & Ling, L. C. (1988). Contribution of volatiles to rice
415 aroma. *Journal of Agricultural and Food Chemistry*, 36, 1006-1009.

416 Chapman, K. W., & Boor, H. T. (2001). Acceptance of 2% ultra-pasteurized milk by
417 consumers, 6 to 11 years old. *Journal of Dairy Science*, 84, 951-954.

418 Chapman, K. W., Boor, H. T., & Boor, K. J. (2001). Quantitative descriptive analysis and
419 principal component analysis for sensory characterization of ultrapasteurized milk.
420 *Journal of Dairy Science*, 84(1), 12-20.

421 Cornell University. Pasteurized versus ultra-pasteurized milk-Why such long sell-by dates?
422 (2007).
423 <https://foodsafety.foodscience.cornell.edu/sites/foodsafety.foodscience.cornell.edu/files/shared/documents/CU-DFScience-Notes-Milk-Pasteurization-UltraP-10-10.pdf>.
424 Accessed 15 July 2019.

425 Czégény, Z., Bozi, J., Sebestyén, Z., Blazsó, M., Jakab, E., Barta-Rajnai, E., Forster, M.,
426 Nicol, J., McAdam, K. G., & Liu, C. (2016). Thermal behaviour of selected flavour
427 ingredients and additives under simulated cigarette combustion and tobacco heating
428 conditions. *Journal of Analytical and Applied Pyrolysis*, 121, 190-204.

429 Daiponmak, W., Senakun, C., & Siriamornpun, S. (2014). Antiglycation capacity and
430 antioxidant activities of different pigmented Thai rice. *International Journal of Food
431 Science and Technology*, 49, 1805-1810.

432 Deeseenthum, S., & Pejovic, J. (2010). Bacterial inhibition and antioxidant activity of kefir
433 produced from Thai jasmine rice milk. *Biotechnology*, 9(3), 332-337.

434 Engel, W., Bahr, W., & Schieberle, P. (1999). Solvent assisted flavour evaporation-a new and
435 versatile technique for the careful and direct isolation of aroma compounds from
436 complex food matrices. *European Food Research and Technology*, 209, 237-241.

437 FDA. 21 CFR 131.3. (2015). https://www.ecfr.gov/cgi-bin/text-idx?SID=7e8aaa2ec336d46bf7dd0665814e130f&mc=true&node=se21.2.131_13&rgn=div8. Accessed 15 July 2019.

438 Feather, M. S., & Mossine, V. V. (1997). The Maillard reaction: Consequences for the
439 chemical and life sciences. *Journal of the American Chemical Society*, 119(45),
440 11134-11136.

441 Feng, P., Weagant, S. D., Grant, M. A., & Burkhardt, W. BAM 4: Enumeration of
442 *Escherichia coli* and the coliform bacteria. (2002).

446 <https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm064948.htm>.
447 Accessed 15 July 2019.

448 Fiddler, W., Parker, W. E., Wasserman, A. E., & Doerr, R. C. (2010). Thermal
449 decomposition of ferulic acid. *Journal of Agricultural and Food Chemistry*, 58(5),
450 757-761.

451 Grosch, W. (2001). Evaluation of the key odorants of foods by dilution experiments, aroma
452 models and omission. *Chemical Senses*, 26, 533-545.

453 Jezussek, M., Juliano, B. O., & Schieberle, P. (2002). Comparison of key aroma compounds
454 in cooked brown rice varieties based on aroma extract dilution analyses. *Journal of
455 Agricultural and Food Chemistry*, 50, 1101-1105.

456 Kamarei, A. R. US Patent No. US 6194009 B1. (2001).
457 <https://app.dimensions.ai/details/patent/US-6194009-B1>. Accessed 15 July 2019.

458 Larsen, M., & Poll, L. (1990). Odour thresholds of some important aroma compounds in
459 raspberries. *Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung*, 191, 129-
460 131.

461 Leardkamolkarn, V., Thongthep, W., Suttiarporn, P., Kongkachuichai, R., Wongpornchai, S.,
462 & Wanavijitr, A. (2011). Chemopreventive properties of the bran extracted from a
463 newly-developed Thai rice: the Riceberry. *Food Chemistry*, 125, 978-985.

464 Lorjaroenphon, Y., & Cadwallader, K. R. (2015). Characterization of typical aroma
465 compounds in cola-flavored carbonated beverages by aroma extract dilution analysis.
466 *Journal of Agricultural and Food Chemistry*, 63, 769-775.

467 Luang-In, V., Yotchaisarn, M., Somboonwatthanakul, I., & Deeseenthum, S. (2018).
468 Bioactivities of organic riceberry broken rice and crude riceberry rice oil. *Thai
469 Journal of Pharmaceutical Sciences*, 42(3), 161-168.

470 Maturin, L., & Peeler, J. T. BAM: Aerobic Plate Count. (2001).
471 <https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm063346.htm>.
472 Accessed 15 July 2019.

473 Meilgaard, M. C., Civille, G. V., & Carr, B. T. (2007). *Sensory evaluation techniques* (4th
474 ed.). Boca Raton, FL: CRC Press.

475 Mingyai, S., Kettawan, A., Srikaeo, K., & Singanusong, R. (2017). Physicochemical and
476 antioxidant properties of rice bran oils produced from colored rice using different
477 extraction methods. *Journal of Oleo Science*, 66(6), 565-572.

478 Mintel. US non-dairy milk sales grow 61% over the last five years. (2018).
479 <https://www.mintel.com/press-centre/food-and-drink/us-non-dairy-milk-sales-grow-61-over-the-last-five-years>. Accessed 15 July 2019.

480 Monfort, S., Sagarzazu, N., Condón, S., Raso, J., & Álvarez, I. (2013). Liquid whole egg
481 ultrapasteurization by combination of PEF, heat, and additives. *Food and Bioprocess
482 Technology*, 6, 2070-2080.

483 O'Mahony, M. (1992). Understanding discrimination tests: a user-friendly treatment of
484 response bias, rating and ranking R-index tests and their relationship to signal
485 detection. *Journal of Sensory Studies*, 7, 1-47.

486 Pothinuch, P., Miyamoto, A., Nguyen, H. T. T., & Tongchitpakdee, S. (2017). Vasodilatory
487 effects of mulberry (*Morus* spp.) leaf extract on porcine cerebral arteries in vitro:
488 Possible underlying mechanisms. *Journal of Functional Foods*, 38, 151-159.

489 Schieberle, P. (1995). New developments in methods for analysis of volatile flavor
490 compounds and their precursors. In A. G. Gaonkar (Ed.), *Characterization of food:
491 emerging methods* (pp. 403-431). Amsterdam, the Netherlands: Elsevier Science.

492

493 Shin, M. G., Yoon, S. H., Rhee, J. S., & Kwon, T. W. (1986). Correlation between oxidative
494 deterioration of unsaturated lipid and n-hexanal during storage of brown rice. *Journal
495 of Food Science*, 51(2), 460-463.

496 Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H., & Dornier, M. (2017).
497 Anthocyanins degradation during storage of *Hibiscus sabdariffa* extract and
498 evolution of its degradation products. *Food Chemistry*, 214, 234-241.

499 Solano-Lopez, C. E., Ji, T., & Alvarez, V. B. (2005). Volatile compounds and chemical
500 changes in ultrapasteurized milk packaged in polyethylene terephthalate containers.
501 *Journal of Food Science*, 70, 407-412.

502 Tallent, S. M., Rhodehamel, E. J., Harmon, S. M., & Bennett, R. W. BAM: *Bacillus cereus*.
503 (2012).
504 <https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm070875.htm>.
505 Accessed 15 July 2019.

506 Tournas, V., Stack, M. E., Mislicvec, P. B., Koch, H. A., & Bandler, R. BAM: Yeasts, molds
507 and mycotoxins. (2001).
508 <https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm071435.htm>.
509 Accessed 15 July 2019.

510 Vegara, S., Mena, P., Martí, N., Saura, D., & Valero, M. (2013). Approaches to
511 understanding the contribution of anthocyanins to the antioxidant capacity of
512 pasteurized pomegranate juices. *Food Chemistry*, 141, 1630-1636.

513 Yang, D. K., Lee, K. S., Jeong, O. Y., Kim, K. J., & Kays, S. J. (2008). Characterization of
514 volatile aroma compounds in cooked black rice. *Journal of Agricultural and Food
515 Chemistry*, 56(1), 235-240.

516

517 **Figure captions**518 **Figure 1.** Principle component analysis (PCA) biplot of aroma-active compounds and aroma
519 attributes in cooked Riceberry, Khao Dawk Mali 105, and Hom Nin rice

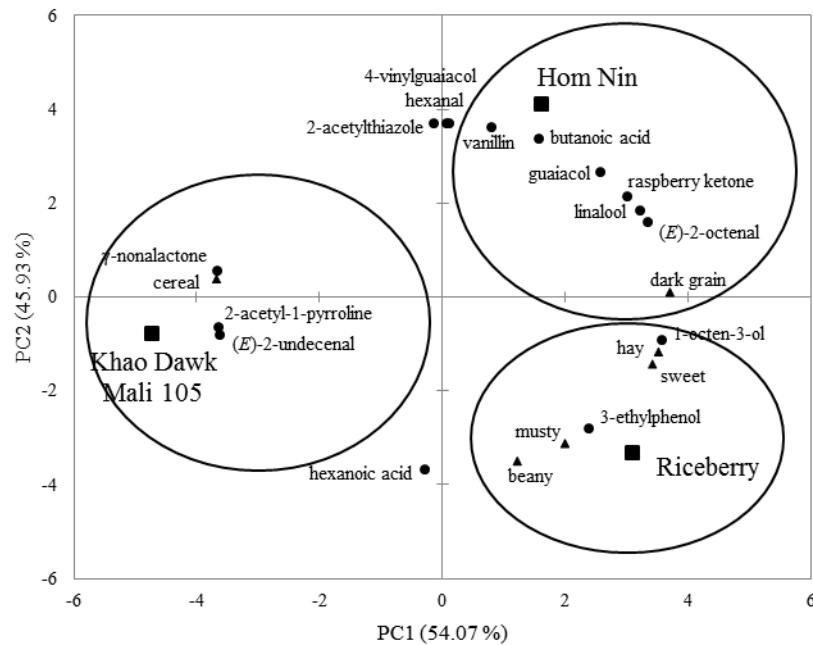
520

521 **Figure 2.** Aroma profiles and flavor dilution (FD) chromatograms of (a) untreated, (b)
522 HTST, (c) UP, and (d) UHT Riceberry beverages

523

524 **Figure 3.** Cluster heat map of odorant concentrations in Riceberry beverages during storage

525

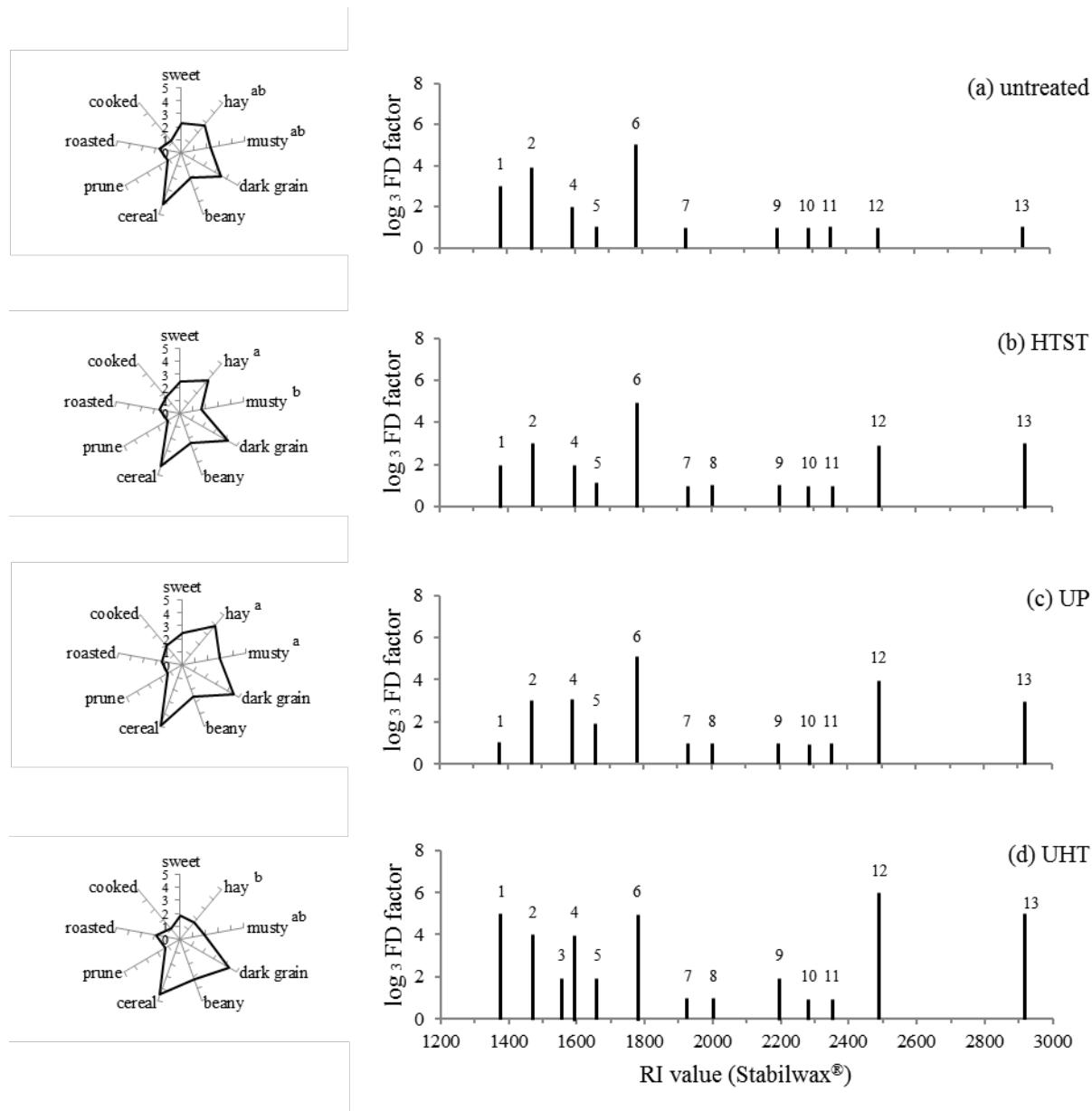

526 **List of tables**527 **Table 1.** Aroma-active compounds which OAV >1 in cooked Riceberry (RB), Hom Nin
528 (HN), and Khao Dawk Mali 105 (KM) rice

529

530 **Table 2.** Color and anthocyanin contents in Riceberry beverages

531

532 **Table 3.** John Brown's R-index values (%) of UP and UHT Riceberry beverages compared
533 to HTST Riceberry beverage during storage for 1 and 2 weeks



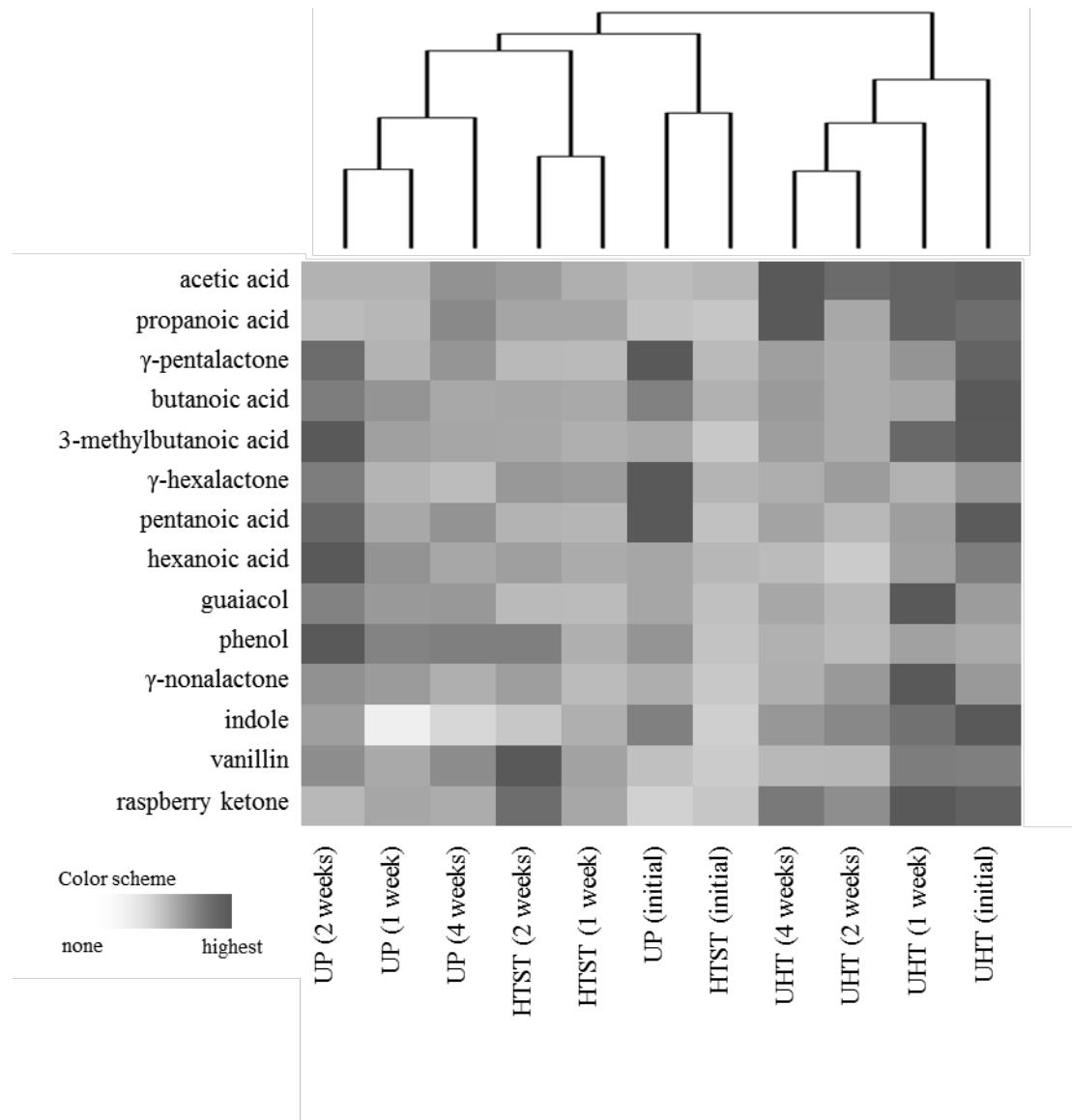
1

2 **Figure 1.** Principle component analysis (PCA) biplot of aroma-active compounds and aroma
3 attributes in cooked Riceberry, Khao Dawk Mali 105, and Hom Nin rice

4

5 *The aroma lexicon (definition; reference) included sweet (aromatic associated with syrup;
6 genmai flavored Japanese green tea), hay (aromatic associated with dried grass or rice husk;
7 rice husk), musty (aromatic associated with closed air space or raw potato; fresh potato),
8 cereal (aromatic associated with cooked new crop cereal; instant congee), dark grain
9 (aromatic associated with dark grain or black rice; black sticky rice), and beany (aromatic
10 associated with soybean or pea; soy milk).*

1


2 **Figure 2.** Aroma profiles and flavor dilution (FD) chromatograms of (a) untreated, (b)
 3 HTST, (c) UP, and (d) UHT Riceberry beverages

4

5 Apart from Figure 1, the additional aroma terms (definition; reference) were prune
 6 (aromatic associated with dried plum; prune essence concentrate), toasted (aromatic
 7 associated with outside crust of bread; ground roasted rice), and cooked (aromatic
 8 associated with sterilized milk; sterilized milk).

9 Terms followed by different superscripts are significantly different ($p \leq 0.05$).

10 Key odorants were ¹acetic acid, ²propanoic acid, ³butanoic acid, ⁴3-methylbutanoic acid,
11 ⁵pentanoic acid, ⁶guaiacol, ⁷phenol, ⁸p-cresol, ⁹4-vinylguaiacol, ¹⁰syringol, ¹¹indole,
12 ¹²vanillin, and ¹³raspberry ketone.

1

2 **Figure 3.** Cluster heat map of odorant concentrations in Riceberry beverages during storage

1 **Table 1.** Aroma-active compounds which OAV >1 in cooked Riceberry (RB), Hom Nin (HN), and Khao Dawk Mali 105 (KM) rice

Odorant	Retention index		Odor	Odor threshold ^a (ng/g)	OAV			FD factor		
	Stabilwax [®]	Rxi [®] -5ms			RB	HN	KM	RB	HN	KM
hexanal	1062	801	green	5 ^b	27	70	41	3	81	3
2-acetyl-1-pyrroline	1324	932	pandan, sweet	0.1 ^b	<1	<1	494	3	3	2,187
(E)-2-octenal	1406	1062	green, fatty	3 ^b	3	3	-	1	1	-
1-octen-3-ol	1421	986	mushroom	1 ^b	15	13	11	3	3	1
linalool	1541	1109	floral	6 ^c	4	6	<1	1	1	1
butanoic acid	1581	812	rancid, sweaty	240 ^d	2	7	1	3	27	3
2-acetylthiazole	1634	1024	nutty	10 ^e	<1	2	1	3	27	3
(E)-2-undecenal	1782	1357	green	1.4 ^f	27	25	65	243	243	729
hexanoic acid	1841	1053	sweaty	3,000 ^b	3	1	2	1	-	-
guaiacol	1843	1091	smoky	3 ^b	34	74	0	6,561	6,561	27
γ-nonalactone	2029	1371	coconut, sweet	9.7 ^g	7	7	7	81	81	243
3-ethylphenol	2178	1164	musty, barny	1.4 ^f	4	<1	<1	729	81	1
4-vinylguaiacol	2185	1312	clove, spicy,	3 ^h	57	273	127	81	729	243

			smoky							
vanillin	2542	1404	vanilla	20 ^h	130	590	192	6,561	19,683	6,561
<i>p</i> -	2978	1516	sweet, candy,	10 ⁱ	<1	2	-	2,187	19,683	-
hydroxyphenylbutan-			fruity, berry							
2-one (raspberry										
ketone)										

2 ^aOdor threshold in water obtained from the literatures: ^bJ. Agric. Food Chem., 36, 1006-1009 (1988); ^cJ. Agric. Food Chem., 35, 1039-1042
3 (1987); ^dJ. Agric. Food Chem., 46, 2764-2769 (1998); ^eJ. Agric. Food Chem., 42, 791-795 (1994); ^fEur. Food Res. Technol., 228, 265-273
4 (2008); ^gJ. Agric. Food Chem., 61, 3804-3813 (2013); ^hJ. Agric. Food Chem., 47, 4353-4356 (1999); ⁱZ. Lebensm. Unters. Forsch., 191, 129-131
5 (1990).

1 **Table 2.** Color and anthocyanin contents in Riceberry beverages

Property	untreated	HTST	UP	UHT
<i>Color</i>				
L*	6.77 ± 0.55 b	6.56 ± 0.57 b	6.85 ± 1.48 b	9.08 ± 0.39 a
a* ^{NS}	3.45 ± 0.87	3.54 ± 0.91	3.57 ± 0.24	4.69 ± 0.20
b* ^{NS}	0.98 ± 0.47	1.51 ± 0.89	1.15 ± 0.73	1.23 ± 0.31
<i>Anthocyanin (µg/mL)</i>				
cyanidin-3-glucoside	2.62 ± 0.08 b	3.79 ± 0.06 a	0.89 ± 0.12 c	0.58 ± 0.05 d
peonidin-3-glucoside	1.48 ± 0.14 b	1.94 ± 0.05 a	0.48 ± 0.07 c	0.37 ± 0.00 c

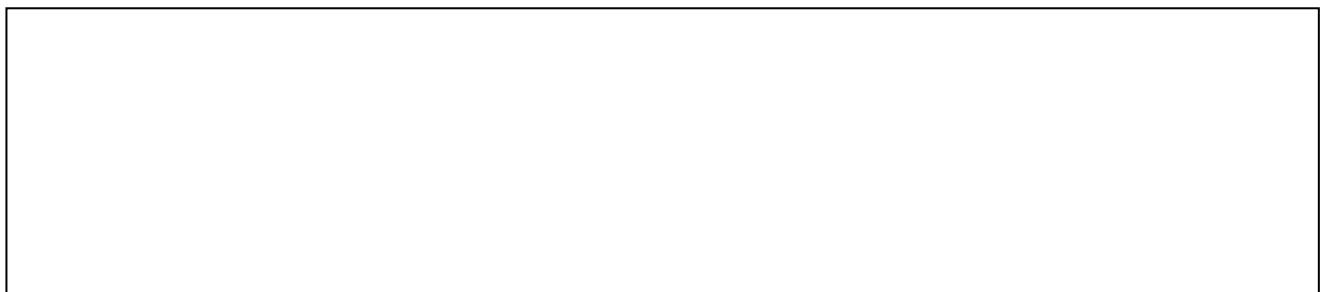
2 Means ± standard deviation within the same row followed by different letters are

3 significantly different ($p \leq 0.05$). ^{NS} means no significant difference.

1 **Table 3.** John Brown's R-index values (%) of UP and UHT Riceberry beverages compared
2 to HTST Riceberry beverage during storage for 1 and 2 weeks

Treatment	1-week	2-week
UP	39.47	62.50
UHT	76.32 ^a	81.25 ^a

3 The critical value at $\alpha = 0.05$ (two-tailed test) and $n = 38$ is 15.33. ^aValue higher than 65.33
4 shows significantly different.


1 **Declaration of interests**

2

3 The authors declare that they have no known competing financial interests or personal
4 relationships that could have appeared to influence the work reported in this paper.

5

6 The authors declare the following financial interests/personal relationships which may be
7 considered as potential competing interests:

8

ภาคผนวกที่ 2

ผลงานวิจัยที่นำเสนอในที่ประชุมวิชาการระดับนานาชาติ

Kullananant, N. & Lorjaroenphon, Y. Characterization of Riceberry aroma by gas chromatography-olfactometry and descriptive sensory analysis. *In* Proceedings of the 2016 International Conference on Engineering and Natural Science – Summer Session (ICENS-Summer 2016); Kyoto, Japan, 2016; pp 612-619.

ICENS-Summer 2016

**2016 International Conference on Engineering and
Natural Science – Summer Session**

International Community House, Kyoto, Japan
July 12-14, 2016

Conference Program

Conference Organizers

Chiba Institute of Technology, Japan
Kwansei Gakuin University, Japan
Tamkang University, Taiwan
University of North Dakota, USA

Conference Sponsors

Kwansei Gakuin University, Japan
Kyoto City Government, Japan

Full Area Mosaic Imaging Techniques for Analysis of Microscopic Targets

Leithe Budel, Karima Djabali 609

Saikosaponin a Induces Apoptosis through Mitochondria-Dependent Pathway in Hepatic Stellate Cells

Li Yen Shiu, Ming Feng Chen, Chang Han Chen, Hao Kuang Wang, Wen Chuan Hsieh 611

Characterization of Riceberry Aroma by Gas Chromatography-Olfactometry and Descriptive Sensory Analysis

Natnicha Kullananant, Yaowapa Lorjaroenphon 612

Dust-Ion-Acoustic Shock Waves in a Multi Component Dusty Plasma with Positive and Negative Ions

Gurudas Mandal, N Y Tanisha, Sharmin Sultana, A A Mamun 620

On the 2-Fault Hamiltonicity for Graphs Satisfying Ore's Condition

Shin-Shin Kao, Hsun Su, Hsio-Chunj Pan 631

Community Structure, Composition, Species Richness and Diversity Analyses of Ectomycorrhizae from Chashma and Army Barracks Stand, Khanspur, KPK, PAKISTAN

Muhammad Hanif, Abdul Nassir Khalid 633

Effect of Different Varieties of Mango Peel Extracts on Enzymatic Browning Inhibition in Banana Puree

Chotika Jirasuteeruk, Chockchai Theerakulkait 634

Engineering of Transaldolase in Yeast to Improve Bioethanol Production

Yung-Ling Lee, Pi-Hui Liang 645

A Seismic Refraction Study for a Horizontal Transverse Isotropic Medium

Young-Fo Chang, Cheng-Wei Tseng, Jai-Wei Liu, Chao-Ming Lin 646

GIS Mapping of Forest Fires as Climate Change Indicator on North Russia: Case Study of the Republic of Sakha (Yakutia)

Kiunnei Kirillina, Elham Goumehei, Wanglin Yan 647

Overexpression System of Gamma-polyglutamic Acid in *Bacillus Subtilis*

Yi-Huang Hsueh, De-Yu Wen 663

Tropical Almond Bottom Ash for Stoneware Pottery Glaze

Sekporn Tansripaparsiri 664

Characterization of Riceberry Aroma by Gas Chromatography-Olfactometry and Descriptive Sensory Analysis

Natnicha Kullananant^a and Yaowapa Lorjaroenphon^{a*}

^aDepartment of Food Science and Technology, Kasetsart University,

Ngamwongwan Road, Bangkok, Thailand

*Corresponding Author: fagiyl@ku.ac.th

ABSTRACT

Riceberry, a cross-bred strain of rice, is well-known for its nutritional benefit as a source of antioxidant. The objectives of this research were to characterize aroma compounds in cooked Riceberry and describe the aroma attributes by using descriptive sensory analysis. Aroma compounds of cooked Riceberry were analyzed by gas chromatography-olfactometry (GCO) and GC-time of flight mass spectrometry (GC-TOFMS). Forty-six aroma compounds were identified, and hexanoic acid (sweaty) had the highest concentration. 2-Methoxyphenol (guaiacol) (smoky, sweet) and 4-hydroxy-3-methoxybenzaldehyde (vanillin) (vanilla) were the major contributors to the aroma characteristics of Riceberry based on odor activity values (OAVs) and perceived odor intensities. Nonanal (fruity), 2-methoxy-4-vinylphenol (clove, spicy), hexanal (green), 1-octen-3-ol (mushroom), (*E*)-2-octenal (green, fatty), and 3,7-dimethyl-1,6-octadien-3-ol (linalool) (floral) had high OAVs, while 3-methylbutanoic acid (rancid, sweaty), benzyl alcohol (sweet, fruity), 2,5-dimethyl-4-hydroxy-3(2H)-furanone (caramel, sweet), *p*-cresol (medicinal, smoky), and indole (stinky, barny) were described to have a very strong odor intensity. In addition, black sticky rice note evaluated by 10 sensory panelists was remarked at the highest score, followed by sweet note.

Keywords: Riceberry, Aroma, Gas Chromatography-Olfactometry, Descriptive Sensory Analysis.

1. Introduction

Rice is full of nutritional and sensory values that have taken the interest of worldwide consumer. Riceberry, Thai dark purple rice, has been proven to have high anthocyanin, which has antioxidant and chemopreventive properties (Leardkamolkarn *et al.*, 2011; Jiapong and Jiamyangyuen, 2012; Suttiarporn *et al.*, 2015; Suttiarporn *et al.*, 2016). Riceberry is a hybrid of Hom-Nin and Khao Dawk Mali 105 (KDM1 105) rice. Hom-nin rice is a black rice and well-known to have high antioxidant properties (Nakornriab *et al.*, 2008; Pitija *et al.*, 2013), while KDM1 105 rice has a remarkable aroma and texture qualities. Therefore, Riceberry flavor is currently on demand. Previously, there are a number of researches carried out on aroma compounds in both fragrant and non-fragrant rice (Bullard and Holguin, 1977; Butterly *et al.*, 1988; Widjaja *et al.*, 1996; Jezussek *et al.*, 2002; Ajarayasiri and Chaiseri, 2008; Yang *et al.*, 2008; Bryant and McClung, 2011; Mahantanatawee and Rouseff, 2014). However, there has been no report on aroma compounds of Riceberry neither instrumental identification nor sensory analysis. The objectives of this research were: i) to characterize aroma compounds in cooked Riceberry using gas chromatography-olfactometry (GCO) and GC-time of flight mass spectrometry (GC-TOFMS), ii) to

identify the key odor-active compounds according to odor activity values (OAVs), and iii) to define the aroma attributes by using descriptive sensory test.

2. Methods

2.1 Materials

Unpolished Riceberry, cropped in 2015, was obtained from Rice Science Center, Kasetsart University (Kamphaeng Saen Campus), Nakhon Pathom, Thailand. References used in sensory evaluation (Table 1) were obtained from local markets (Bangkok, Thailand).

2.2 Chemicals

All authentic standards were used for positive identification. Linalool, pentanoic acid, 1-octen-3-ol, and γ -hexalactone were supplied from Sigma-Aldrich Co. (St. Louis, MO, US). Phenol was purchased from Merck KGaA (Darmstadt, Germany). Hexanal and methional were obtained from Givaudan Co., Ltd. (Switzerland).

2.3 Analysis of aroma compounds in cooked Riceberry

Riceberry (40 g) was prepared with odorless-distilled water (65 mL) in 600 mL beaker and steam-cooked for 30 min. The extraction and identification methods were modified from Kabir and Lorjaroenphon (2014). Ten μ L of 2-methyl-3-heptanone (0.0011 g/10 mL in methanol), as internal standard, was spiked in warm rice. Liquid nitrogen was used to prevent any lose volatile compound during grinding. Riceberry sample was prepared in 250-mL TeflonTM centrifuge bottle (NalgeneTM) with 10 g of NaCl and 50 mL of diethyl ether. Extraction was performed 3 times. The solvent layer was combined together into a round bottom flask and concentrated to 50 mL using a Vigreux column. The concentrated extract was subjected to a high-vacuum distillation. After the mixture was dried over anhydrous Na₂SO₄, it was further concentrated to 200 μ L and kept at -40 °C until analysis.

Aroma compounds were evaluated by GC (7890A; Agilent Technologies, US) with a flame ionization detector (FID) and sniffing port (DATU, Inc., US). Cool on-column injection technique with +3 °C oven tracking mode was used. Helium blew as carrier gas at a constant flow rate of 2 mL/min and two capillary columns of different polarity were used. Initial oven temperature was 35 °C, and held for 5 min. Temperature was increased at 6 °C/min to 225 °C for DB-wax column (Agilent Technologies, US; 15 m × 0.32 mm i.d. × 0.25 μ m film thickness) and 250 °C for Rxi[®]-5ms column (Restek, US; 30 m × 0.25 mm i.d. × 0.25 μ m film thickness). The holding time of final temperature was 10 min. The aroma of the individual component was described by three trained evaluators. The odor intensity was also scored using 5-point scale: 1 = very weak; 2 = weak; 3 = moderate; 4 = strong; 5 = very strong and expressed as mean \pm standard deviation ($n = 3$). The extract was also injected into GC (7890A; Agilent Technologies, US) coupled with TOFMS (Pegasus 4D; LECO[®]; US). The GC condition was similar to that of GCO except 4 °C/min increasing oven temperature, Stabilwax[®] column (Restek, US; 30 m × 0.25 mm i.d. × 0.25 μ m film thickness), and 1 mL/min helium flow. The identification of aroma compound was based on mass spectra (MS), retention indices (RIs) of 2 different polarity columns, odor description, and authentic standards. Relative concentration was expressed as the average from three replications. OAV was also calculated as the ratio between the concentration and the odor threshold in water obtained from the literatures.

2.4 Sensory evaluation of cooked Riceberry

The sensory evaluation was performed by descriptive sensory analysis. Ten trained panelists (1 male and 9 females, age range 23 to 27 years old) were chosen from graduate students in the Department of Food Science and Technology, Kasetsart University, based on ability and availability. The panelists were trained for at least 40 hours (Meilgaard *et al.*, 2007). Warm cooked Riceberry (25 g) was prepared in 125-mL Teflon™ sniffing bottle (Nalgene™) (Lorjaroenphon and Cadwallader, 2015). Sample and reference bottles were covered with aluminium foil. Six aroma attributes, definitions, and references were generated (Table 1). The panelists scored each attribute on a 15-cm line scale (none to extreme). Intensity score was expressed as average value ($n = 10$) and illustrated by a radar chart.

Table 1: Aroma attributes, definitions, and corresponding reference standards used for descriptive sensory evaluation of cooked Riceberry

Aroma attribute	Definition	Reference	Reference intensity
Sweet	The aromatic associated with pasteurized green tea	20 mL of Japanese green tea Genmai flavor (Oishi Trading Co., Ltd.; Pathumthani, Thailand)	8
Hay	The aromatic associated with dried hay	3 g of dried rice husk	8
Musty	The aromatic associated with closed air space such as attic or closet	15 g of fresh potato (peeled and cut into cubes of 0.5 cm)	10
Black sticky rice	The aromatic associated with cooked black sticky rice	25 g of cooked black sticky rice (steamed 30 g of black sticky rice (Thanya Farm Co., Ltd.; Nonthaburi, Thailand) with 30 mL of water for 30 min)	8
Soy milk	The aromatic associated with beany, green	20 mL of soymilk (Homesoy original; University Food Public Co., Ltd.; Nakorn Pathom, Thailand)	12
Congee	The aromatic associated with brown rice congee	6 g of Congee (mixed 8 g of instant congee (Chiensiri Nutritious Food Co., Ltd.; Bangkok, Thailand) with 100 mL of hot water)	9

3. Results and Discussion

3.1 Aroma compounds in cooked Riceberry

Forty-six aroma compounds were identified in Riceberry (Table 2). Thirty-six compounds have been reported in rice varieties from the literatures (Bullard and Holguin, 1977; Buttery *et al.*, 1988; Widjaja *et al.*, 1996; Jezussek *et al.*, 2002; Ajarayasiri and Chaiseri, 2008; Yang *et al.*, 2008; Bryant and McClung, 2011; Mahantanatawee and Rouseff, 2014). 4-Methyl-3-penten-2-one, δ -terpinene, 5-methylfurfural, 2-acetylthiazole, α -terpineol, ethyl dihydrocinnamate, 2-methoxy-4-(2-propenyl)phenol (eugenol), 2,6-dimethoxyphenol (syringol), acetovanillone, and 4-(*p*-hydroxyphenyl)-2-butanone (raspberry ketone) were identified for the first time as aroma compound in cooked Riceberry. Most aroma compounds in cooked Riceberry were aldehydes and phenols. Aldehyde is a degradation product of lipid oxidation. Yang *et al.* (2008) reported hexanal as the most abundant compound in cooked Korean black rice. Hexanal is generated from oxidation of linoleic acid (Shin and Yoon, 1986; Wang and Ha, 2013), which is a common fatty acid in rice (Zhou *et al.*, 2002). Hexanal can be oxidized into hexanoic acid (Lee *et al.*, 2000), which had the highest concentration among all aroma compounds in Riceberry. Another major group, phenols, are generated from the thermal degradation of hemicellulose (Sung *et al.*, 2007) which is commonly found in rice (Mod *et al.*, 1979).

Table 2: Relative concentrations of aroma compounds in cooked Riceberry

No. ^a	Odorant	Odor description	RI ^b		Concentration ^c (μg/g)
			Rxi [®] -5ms	DB-wax	
1	hexanal	green	801	1062	75.7 ± 26.6
2	4-methyl-3-penten-2-one	sweet	-	1152	-
3	2-heptanone	soapy	-	1176	27.6 ± 5.5
4	1-pentanol	balsamic	751	1263	123 ± 41.0
5	2-octanone	soapy, gasoline	1007	1279	2.6 ± 0.7
6	δ-terpinene	plastic	1081	1290	-
7	2-acetyl-1-pyrroline	pandan, sweet	932	1324	-
8	1-hexanol	mushroom	837	-	189 ± 72.8
9	nonanal	fruity	1105	1359	64.3 ± 20.5
10	(E)-2-octenal	green, fatty	1062	1406	7.0 ± 5.0
11	1-octen-3-ol	mushroom	-	1421	11.7 ± 9.7
12	methional	cooked potato	909	1436	-
13	benzaldehyde	sweet, plastic	-	1481	42.5 ± 15.9
14	(E)-2-nonenal	fatty, chemical	1153	1514	-
15	3,7-dimethyl-1,6-octadien-3-ol (linalool)	floral	1109	1541	37.6 ± 14.9
16	5-methylfurfural	sweet	-	1548	7.82 ± 3.9
17	butanoic acid	rancid, sweaty	812	1614	95.0 ± 46.2
18	2-acetylthiazole	nutty	-	1634	6.5 ± 2.1
19	acetophenone	musty, floral	1024	1645	2.3 ± 1.3
20	3-methylbutanoic acid	rancid, sweaty	875	1657	194 ± 81.8
21	γ-hexalactone	coumarin, sweet	-	1673	45.5 ± 18.8
22	α-terpineol	pine	1187	1685	2.7 ± 1.3
23	pentanoic acid	sweaty	949	1727	460 ± 197.6
24	(E)-2-undecenal	green	-	1782	28.3 ± 16.4
25	β-damascenone	sweet, honey	1392	1796	-
26	geranyl acetone	green, musty, hay	1415	1801	-
27	hexanoic acid	sweaty	1053	1841	1,890 ± 749.7
28	2-methoxyphenol (guaiacol)	smoky	1091	1843	126 ± 49.2
29	benzyl alcohol	sweet, fruity	-	1867	54.4 ± 40.3
30	benzothiazole	rubber	1251	1896	-
31	ethyl dihydrocinnamate	floral, rose	1354	1921	-
32	phenylethyl alcohol	floral	1117	1951	-
33	phenol	chemical	982	-	65.6 ± 28.3
34	γ-nonalactone	coconut, sweet	1371	2029	46.9 ± 23.5
35	2,5-dimethyl-4-hydroxy-3(2H)-furanone	caramel, sweet	-	2058	-
36	octanoic acid	sweaty	-	2074	215 ± 120
37	p-cresol	medicinal, smoky	1090	2085	11.7 ± 6.4
38	2-methoxy-4-(2-propenyl)phenol (eugenol)	rubber, herbaceous	1374	2155	-
39	3-ethylphenol	musty, barny	-	2178	4.0 ± 0.8
40	2-methoxy-4-vinylphenol	clove, spicy	1312	2185	50.3 ± 23.3
41	2,6-dimethoxyphenol (syringol)	medicinal	-	2258	1.8 ± 0.8
42	indole	stinky, barny	-	2462	8.1 ± 4.5
43	4-hydroxy-3-methoxybenzaldehyde (vanillin)	vanilla	1404	2542	582 ± 321
44	phenylacetic acid	floral	1274	2547	60.8 ± 37.5
45	acetovanillone	sweet	-	2602	27.7 ± 15.4
46	4-(p-hydroxyphenyl)-2-butanone (raspberry ketone)	sweet, candy, fruity, berry	1516	2978	3.8 ± 1.9

^aCorresponding to Table 3^bRetention index^cMean ± standard deviation (n = 3)

For identification of key aroma compounds in cooked Riceberry, OAV concept was used. OAV estimates contribution of aroma to the overall aroma of food. Compounds with OAVs greater than one are considered as aroma active compounds. The potency of aroma compounds in cooked Riceberry (Table 3) was classified according to the OAVs into three groups. Nonanal (fruity), 2-methoxyphenol (guaiacol), and 4-hydroxy-3-methoxybenzaldehyde (vanillin) were the most potent aromas in cooked Riceberry. Nonanal is a marker compound indicating the degree of lipid oxidation (Gökmen *et al.*, 2011). It was reported as the major aroma compound in cooked Korean black rice (Yang *et al.*, 2008). Guaiacol was also concluded as the main contributor to its aroma based on odor threshold, relative concentration, and olfactometry in cooked Korean black rice. Vanillin was found in brown rice varieties

(Jezussek *et al.*, 2002) and it is possibly converted from ferulic acid in hemicellulose (Mod *et al.*, 1979; Negishi *et al.*, 2009).

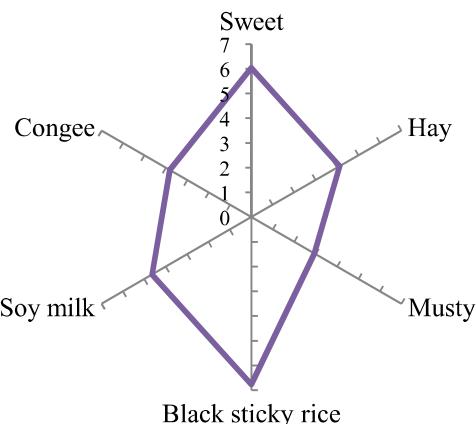
2-Methoxy-4-vinylphenol, hexanal, and 1-octen-3-ol were classified as moderate potent aromas. 2-Methoxy-4-vinylphenol, which is generated from ferulic acid decomposition (Fiddler *et al.*, 1967), has been reported to have the highest OAV in Thai black glutinous rice (Ajarayasiri and Chaiseri, 2008). 1-Octen-3-ol is normally found in rice varieties (Buttery *et al.*, 1988; Widjaja *et al.*, 1996; Yang *et al.*, 2008) and it can be formed from linoleic acid through biosynthetic pathway (Matsui *et al.*, 2003).

(E)-2-Octenal and 3,7-dimethyl-1,6-octadien-3-ol (linalool) were grouped as low potent aromas. (E)-2-Octenal is formed by lipid oxidation and generally found in various rice (Buttery *et al.*, 1988; Widjaja *et al.*, 1996; Yang *et al.*, 2008; Mahantanatawee and Rouseff, 2014), while linalool is found only in KDM1 105 rice (Mahantanatawee and Rouseff, 2008).

Furthermore, Guaiacol, vanillin, 1-octen-3-ol, 3-methylbutanoic acid (rancid, sweaty), benzyl alcohol (sweet, fruity), 2,5-dimethyl-4-hydroxy-3(2H)-furanone (caramel, sweet), *p*-cresol (medicinal, smoky), and indole (stinky, barny), were rated at very strong intensity that may contribute to Riceberry aroma (Table 3). Thus, guaiacol and vanillin were expressed as major contributors of cooked Riceberry based on their OAVs and perceived odor intensities.

Table 3: Key aroma compounds in cooked Riceberry which high odor activity values (OAVs) and/or very strong intensity evaluated by GCO panelists

No. ^a	Odorant	Odor threshold in water (ng/g)	OAV	Intensity ^b
9	nonanal	1 (Buttery <i>et al.</i> , 1988)	64	1.5
28	2-methoxyphenol (guaiacol)	3 (Buttery <i>et al.</i> , 1988)	42	5.0
43	4-hydroxy-3-methoxybenzaldehyde (vanillin)	20 (Buttery <i>et al.</i> , 1999)	29	5.0
40	2-methoxy-4-vinylphenol	3 (Buttery <i>et al.</i> , 1988)	17	3.5
1	hexanal	5 (Buttery <i>et al.</i> , 1988)	15	3.5
11	1-octen-3-ol	1 (Buttery <i>et al.</i> , 1988)	12	5.0
10	(E)-2-octenal	3 (Buttery <i>et al.</i> , 1988)	2	2.5
15	3,7-dimethyl-1,6-octadien-3-ol (linalool)	37 (Frauendorfer and Schieberle, 2006)	1	4.5
20	3-methylbutanoic acid	250 (Buttery and Ling, 1998)	<1	5.0
29	benzyl alcohol	10,000 (Buttery <i>et al.</i> , 1988)	<1	5.0
35	2,5-dimethyl-4-hydroxy-3(2H)-furanone	60 (Buttery and Ling, 1998)	- ^c	5.0
37	<i>p</i> -cresol	55 (Buttery <i>et al.</i> , 1988)	<1	5.0
42	indole	140 (Buttery <i>et al.</i> , 1988)	<1	5.0


^aCorresponding to Table 2

^bAveraged from 3 assessors (1 = very weak; 2 = weak; 3 = moderate; 4 = strong; 5 = very strong)

^cCannot be calculated because their concentrations were below the detection limit of GC-TOFMS

3.2 Sensory evaluation of cooked Riceberry

The panelists generated 6 aroma attributes including sweet, hay, musty, black sticky rice, soy milk and congee (Figure 1). Black sticky rice note was given the highest intensity, followed by sweet note. The results of sensory evaluation were associated with key aroma compounds in Table 3 and aroma characteristics in Table 2. Sweet attribute may generate from vanillin, linalool, benzyl alcohol, and 2,5-dimethyl-4-hydroxy-3(2H)-furanone. Soy milk note, which is associated with green and beany aroma characteristics, may be contributed from hexanal and (E)-2-octenal, while musty note may be attributed to 1-octen-3-ol.

Figure 1: The aroma profile of cooked Riceberry from descriptive sensory analysis ($n = 10$) (mean scores from 15-cm line scale)

4. Conclusion

Hexanoic acid (sweaty) was identified as the most abundant compound in cooked Riceberry. Guaiacol (smoky) and vanillin (vanilla) were considered as key aroma compound according to their OAVs and perceived odor intensities. In addition, sensory analysis agrees with the analytical data from GCO and GC-TOFMS.

REFERENCES

Ajarayasiri, J. and Chaiseri, S. 2008. Comparative Study on Aroma-Active Compounds in Thai, Black and White Glutinous Rice Varieties, *Kasetsart Journal (Nat. Sci.)*, 42, 715-722.

Bryant, R. J. and McClung, A. M. 2011. Volatile Profiles of Aromatic and Non-Aromatic Rice Cultivars using SPME/GC-MS, *Food Chemistry*, 124, 501-503.

Bullard, R. W. and Holguin, G. 1977. Volatile Components of Unprocessed Rice (*Oryza sativa L.*), *Journal of Agricultural and Food Chemistry*, 25(1), 99-103.

Buttery, G. R. and Ling, L. C. 1998. Additional Studies on Flavor Components of Corn Tortilla Chips, *Journal of Agricultural and Food Chemistry*, 46, 2764-2769.

Buttery, G. R., Orts, W. J., Takeoka, G. R. and Nam, Y. 1999. Volatile Flavor Components of Rice Cakes, *Journal of Agricultural and Food Chemistry*, 47, 4353-4356.

Buttery, G. R., Turnbaugh, J. G. and Ling, L. C. 1988. Contribution of Volatiles to Rice Aroma, *Journal of Agricultural and Food Chemistry*, 36, 1006-1009.

Gökmen, V., Mogol, B. A., Lumaga, R. B., Fogliano, V., Kaplun, Z. and Shimoni, E. 2011. Development of Functional Bread Containing Nanoencapsulated Omega-3 Fatty Acids, *Journal of Food Engineering*, 105, 585-591.

Frauendorfer, F. and Schieberle, P. 2006. Identification of the Key Aroma Compounds in Cocoa Powder Based on Molecular Sensory Correlations, *Journal of Agricultural and Food Chemistry*, 54, 5521-5529.

Ježussek, M., Juliano, B. O. and Schieberle, P. 2002. Comparison of Key Aroma Compounds in Cooked Brown Rice Varieties Based on Aroma Extract Dilution Analyses, *Journal of Agricultural and Food Chemistry*, 50, 1101-1105.

Jiapong, S. and Jiamyangyuen, S. 2012. Total Anthocyanin Content and Antioxidant Activity of Germinated Colored Rice, *International Food Research Journal*, 19(1), 215-221.

Kabir, A. and Lorjaroenphon, Y. Identification of Aroma Compounds in Coconut Sugar, *Proceedings of 52nd Kasetsart University Annual Conference: Agro-Industry*, p. 239-246, Kasetsart University, Thailand, February 4-7, 2014.

Leardkamolkarn, V., Thongthep, W., Suttiarporn, P., Kongkachuichai, R., Wongpornchai, S. and Wanavijitr, A. 2011. Chemopreventive Properties of the Bran Extracted from A Newly-Developed Thai Rice: The Riceberry, *Food Chemistry*, 125, 978-985.

Lee, K.G., Mitchell, A. and Shibamoto, T. 2000. Antioxidative activities of aroma extracts isolated from natural plants, *Biofactors*, 13, 173-178.

Lorjaroenphon, Y. and Cadwallader, K. R. 2015. Characterization of Typical Potent Odorants in Cola-Flavored Carbonated Beverages by Aroma Extract Dilution Analysis, *Journal of Agricultural and Food Chemistry*, 63, 769-775.

Mahattanatawee, K. and Rouseff, R. L. 2008. 2-Acetyl-2-thiazoline, A New Character Impact Volatile in Jasmine Rice, In: *In Expression of Multidisciplinary Flavour Science*, p. 475-478, Amado, R., Blank, I., Escher, F., Eds., Interlaken, Switzerland.

Mahattanatawee, K. and Rouseff, R. L. 2014. Comparison of Aroma Active and Sulfur Volatiles in Three Fragrant Rice Cultivars using GC-Olfactometry and GC-PFPD, *Food Chemistry*, 154, 1-6.

Matsui, K., Sasahara, S., Akakabe, Y. and Kajiwara, T. 2003. Linoleic Acid 10-Hydroperoxide as an Intermediate during Formation of 1-Octen-3-ol from Linoleic Acid in *Lentinus decadietes*, *Bioscience, Biotechnology, and Biochemistry*, 67(10), 2280-2282.

Meilgaard, M. C., Civille, G. V. and Carr, B.T. 2007. *Sensory Evaluation Techniques* 4th ed., NW: CRC Press.

Mod, R. R., Conkerton, E. J., Ory, R. L. and Normand, F. L. 1979. Composition of Water-Soluble Hemicelluloses in Rice Bran from Four Growing Areas, *Cereal Chemistry*, 56(4), 356-358.

Nakornriab, M., Sriseadka, T. and Wongpornchai, S. 2008. Quantification of Carotenoid and Flavonoid Components in Brans of Some Thai Black Rice Cultivars using Supercritical Fluid Extraction and High-Performance Liquid Chromatography-Mass Spectrometry, *Journal of Food Lipids*, 15, 488-503.

Negishi, O., Sugiura, K. and Negishi, Y. 2009. Biosynthesis of Vanillin via Ferulic Acid in *Vanilla planifolia*, *Journal of Agricultural and Food Chemistry*, 57, 9956-9961.

Pitija, K., Nakornriab, M., Sriseadka, T., Vanavichit, A. and Wongpornchai, S. 2013. Anthocyanin Content and Antioxidant Capacity in Bran Extracts of Some Thai Black Rice Varieties, *International Journal of Food Science and Technology*, 48, 300-308.

Shin, M. G. and Yoon, S. H. 1986. Correlation Between Oxidative Deterioration of Unsaturated Lipid and *n*-Hexanal during Storage of Brown Rice, *Journal of Food Science*, 51(2), 460-463.

Sung, W. C., Stone, M. and Sun, F. M. 2007. Analysis of Volatile Constituents of Different Temperature Rice Hulls Liquid Smoke, *Chia-Nan Annual Bulletin*, 33, 1-12.

Suttiarporn, P., Chumpolsri, W., Mahatheeranont, S., Luangkamin, S., Teepsawang, S. and Leardkamolkarn, V. 2015. Structures of Phytosterols and Triterpenoids

with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice, *Nutrients*, 7, 1672-1687.

Suttiarporn, P., Sookwong, P. and Mahatheeranont, S. 2016. Fractionation and Identification of Antioxidant Compounds from Bran of Thai Black Rice cv. Riceberry, *International Journal of Chemical Engineering and Applications*, 7(2), 109-114.

Wang, Y. and Ha, J. 2013. Determination of Hexanal in Rice Using an Automated Dynamic Headspace Sampler Coupled to a Gas Chromatograph–Mass Spectrometer, *Journal of Chromatographic Science*, 51, 446–452.

Widjaja, R., Craske, J. D. and Wootton, M. 1996. Comparative Studies on Volatile Components of Non-Fragrant and Fragrant Rices, *Journal of the Science of Food and Agriculture*, 70, 151-161.

Yang, D. K., Lee, K. S., Jeong, O. Y., Kim, K. J. and Kays, S. J. 2008. Characterization of Volatile Aroma Compounds in Cooked Black Rice, *Journal of Agricultural and Food Chemistry*, 56 (1), 235-240.

Zhou, Z., Blanchard, C., Helliwell, S. and Robardsa, K. 2002. Fatty Acid Composition of Three Rice Varieties Following Storage, *Journal of Cereal Science*, 00(3), 1-9.