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A Simple graph is a minor of another if the first is obtained from the second by deleting vertices,
deleting edges, contracting edges, and deleting loops and parallel edges that are created when we contract
edges. A cube is an internally 4-connected planar graph with eight vertices and twelve edges corresponding
to the skeleton of the cube in the platonic solid. A complete characterization of graphs with no cube minor is
given only for the case of 3-connected graphs but not for the case of internally 4-connected graphs. In this
research, we want to investigate properties of such graphs. We determine all internally 4-connected graphs
that contain neither cube nor V, as minors, where V;, or Wagner graph is an internally 4-connected nonplanar
graph obtained from a cube by introducing a twist. Then we investigate 4-connected graphs with no cube
minor. These results provide a step closer to a complete characterization of all internally 4-connected graphs

with no cube minor.
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Abstract

A simple graph is a minor of another if the first is obtained from the
second by deleting vertices, deleting edges, contracting edges, and deleting
loops and parallel edges that are created when we contract edges. A cube
is an internally 4-connected planar graph with eight vertices and twelve
edges corresponding to the skeleton of the cube in the platonic solid, and
the Wagner graph Vg is an internally 4-connected nonplanar graph obtained
from a cube by introducing a twist. A complete characterization of all in-
ternally 4-connected graphs with no Vg minor is given in J. Maharry and N.
Robertson, The structure of graphs not topologically containing the Wagner
graph, J. Combin. Theory Ser. B 121 (2016) 398-420; on the other hand,
only a characterization of 3-connected graphs with no cube minor is given
in J. Maharry, A characterization of graphs with no cube minor, J. Combin.
Theory Ser. B 80 (2008) 179-201. In this paper we determine all inter-
nally 4-connected graphs that contain neither cube nor Vg as minors. This
result provides a step closer to a complete characterization of all internally
4-connected graphs with no cube minor.

Keywords: internally 4-connected, minor, cube graph, V3 graph.

2010 Mathematics Subject Classification: 05C83.
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1. INTRODUCTION

A graph G is called H -free, where H is a graph, if no minor of GG is isomorphic to
H. The structure of H-free graphs can be used to studied other properties of the
class of graphs; in addition, many important problems in graph theory can be
formulated in terms of H-free graphs. For example, the four color theorem can be
equivalently stated as: all K5-free graphs are 4-colorable, where K5 is a complete
graph on five vertices. Hadwiger’s Conjecture states that every K,-free graph is
n — 1 colorable, where K, is a complete graph on n vertices. This conjecture is
still open for n > 7 and the main difficulty for proving the conjecture is the lack of
structural information on K, -free graphs. Determining Kg-free graphs is one of
the two most famous problems in this area, and another problem is to determine
Petersen-free graphs, see Figure 1. Notice that both graphs have fifteen edges.
As an attempt to better understand these graphs, we try to exclude 3-connected
graphs H with at most fifteen edges. The complement of a path on seven vertices,
Pz, also has 15 edges and it is the largest graph H for which 4-connected H-free
graphs are completely determined, see [5]. The octahedron with an additional
edge is a graph with 13 edges and its characterization problem is solved in [8].
The octahedron, the cube, and Vg are graphs H with twelve edges and their
characterizations can be found in [3, 6, 7], and [9], respectively. For H with at
most eleven edges, all H-free graphs have been determined and their results are
surveyed in [4].

Let k be a non-negative integer. A k-separation of a graph G is an unordered
pair {G1,G2} of induced subgraphs of G such that V(G1) U V(Ga) = V(G),
E(G1)UE(G2) = E(G), V(G1) =V (G2) # 0, V(G2) = V(G1) # 0, and |V (G1) N
V(G2)| = k. If G has a k-separation, then there is X C V(G) such that |X| =k
and G \ X has at least two components. A 3-connected graph G on at least five
vertices is said to be internally 4-connected if for every 3-separation {G1, G2} of
G, one of them is isomorphic to Kj 3. The characterization of 3-connected cube-
free graphs is solved in [7]; however, the result does not completely determine
all the internally 4-connected cube-free graphs, see the theorem below. For each
integer n > 3, let Vo, denote a Mobius ladder, which is a graph obtained from a
cycle on 2n vertices by joining the n pairs of opposite vertices. Notice that Vg is
K3 3. For any graph G, the line graph of G, denoted by L(G), is a graph such
that each vertex of L(G) represents an edge of G, and two vertices of L(G) are
adjacent if and only if their corresponding edges share a common end vertex in
G. The 3-sum is an operation of combining two graphs by identifying a triangle
(C3) of one graph with a triangle of the other graph to produce a new graph.

Theorem 1 [7]. A 3-connected graph G is cube-free if and only if G is a minor
of a graph constructed from L(Petersen), L(Vay) for each integer n > 3 (Figure
1), and the ten graphs in Figure 2, of order < 8, by 3-sums over the triangles
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shaded or the vertices of the triangle circled.

@ % TTTT-T1 SOXOXX-XXXY

Figure 1. Petersen graph, L(Petersen), Vs, and L(Va,).

XA X

Figure 2. The ten graphs of order < 8 in [7].

This theorem contains an (possibly printing) error in the second last graph,
that contains two triangles shaded. Performing two 3-sums of K4’s over these
triangles results in a cube-minor.

By a graph we mean a finite, simple, undirected graph. All undefined ter-
minology can be found in [2]. In this paper, we consider internally 4-connected
{cube, Vg}-free graphs. To state our main result we need a few definitions. Let
Ky,n be a complete bipartite graph with partitions of m and n vertices. Let K
consist of internally 4-connected nonplanar graphs that are obtained from span-
ning subgraphs of some Ky, (n > 4) by adding edges to the color class of size
four.

Theorem 2. Let G be an internally 4-connected {cube, Vg}-free graph. Then G
satisfies one of the following:

(i) G has at most seven vertices,

(ii) G is isomorphic to L(Ks3),

(iii) G is isomorphic to Kz, for some n > 5,
)

(iv) G is a graph in KC, which is one of the six types of graph shown in Figure 3.
We close this section by providing an outline of the rest of the paper. In
the next section, we introduce a characterization of internally 4-connected Vg-
free graphs and a chain theorem for internally 4-connected graphs. Our proof of
Theorem 2 will be divided into two parts, Sections 3 and 4. First, we determine
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a a Y1 ] ® Y a Y a Y1 a * Y1
b b 0y, b 0 y; b v b 2y b » y;
¢ c " Y ¢ ® Yi+1 4 e Ys c . Y; c ° Yi+1
d d : : d ) :
d Yit Y; d Yn : Yin d Yn
. Yi+a ® Yj+1 Yn
U, » Y,
(@) (b) () (d) (e) (

Figure 3. The six-type of graph in Theorem 2(iv).

all internally 4-connected nonplanar {cube, Vg }-free graphs. Then we prove The-
orem 2 by showing that all internally 4-connected planar graphs on at least eight
vertices contains a cube-minor.

2. BAsic LEMMAS

All internally 4-connected graphs Vi-free graphs are determined in [9]. To state
the theorem we need to define a few classes of graphs. For each integer n > 3, a
double-wheel, DW,, (n > 3), is a graph on n + 2 vertices obtained from a cycle
C, by adding two nonadjacent vertices u,v and joining them to all vertices on
the cycle. An alternating double-wheel AW, is a subgraph of DWs,, (n > 3)
such that w and v are alternately adjacent to every vertex in Cs,. Notice that
AWs is a cube, see Figure 4. For each integer n > 3, let DW, and AW;;Z be
graphs obtained from DW,, and AW, respectively, by joining v and v. Let
Dt = {DW,} :n >3} U{AW, : n > 3}. Then every graph in DV is nonplanar.
Theorem 3 [9]. Every internally 4-connected Vs-free graph G satisfies one of the
following conditions:

(i) G is planar,

(ii) G has at most seven vertices,
(iii) G is isomorphic to L(K33),
)

(iv) G\ {w,x,y, 2z} has no edges for some w,z,y,z € V(G), or G is in DT.

This result suggests a process for determining all internally 4-connected non-
planar {cube, Vg}-free graphs. We also need the following lemma from [9].

Lemma 4 [9]. If G is an internally-4-connected graph, then either G contains
two disjoint cycles, each of which contains at least four edges, or G has at most
seven vertices, or G is isomorphic to L(K33).

This lemma implies that L(K33) is {cube, Vg}-free. Another main tool is a
chain theorem for internally 4-connected graphs. To explain this result we need
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a few definitions. For each integer n > 5, let C? be a graph obtained from a
cycle C), by joining all pairs of vertices of distance two on the cycle. Notice that
C2? = DI/V3Jr = K3, see Figure 4. Let terrahawk be the graph shown in Figure 4,
which can be obtained from a cube by adding a new vertex and joining it to four
vertices in the same Cy. We denote the number of edges of a graph G by [|G]|.

Figure 4. Graphs DWs, AWs, CZ2, and terrahawk.

Let G\ e denote the graph obtained from G by deleting an edge e. The
reverse operation of deleting an edge is adding an edge, that is G obtained from
G \ e by adding edge e. We use GG/e denote the graph obtained from G by first
contracting an edge e then deleting all but one edge from each parallel family.
The reverse operation of contracting an edge is splitting a vertex. To be precise,
suppose v is a vertex with degree at least four in a graph G. Let Ng(v) denote
the set of neighbors of v, which are vertices adjacent to v. Let X,Y C Ng(v) such
that XUY = Ng(v) and |X|, Y| > 2. The splitting v results in the new graph G’
obtained from G\ v by adding two new adjacent vertices x, y then joining x to all
vertices in X and y to all vertices in Y. We call G’ a split of G, v a predecessor
of v and y, and the other vertex in G a predecessor of itself in G'. Note that
G'/ry = G and G’ is 3-connected as long as G is. To investigate internally 4-
connected graphs, the following chain theorem of Chun, Mayhew and Oxley [1]
will be useful in creating an algorithm that generates all internally 4-connected
graphs.

Theorem 5 [1]. Let G be an internally 4-connected graph such that G is not K3 3,
terrahawk, C2 (n > 5), or AWa, (n > 3). Then G has an internally 4-connected
minor H with 1 < ||G|| — ||H]|| < 3.

This theorem says that every internally 4-connected can be obtained from
K33, terrahawk, C2 (n > 5), or AWa, (n > 3) by repeatedly adding edges and
splitting vertices. Equivalently, for every internally 4-connected graph G, there
exists a sequence of internally 4-connected graphs Gg, G1,Go, ..., G} such that

(1) Gy = G and Gy is K33, terrahawk, C2 (n > 5), or AW, (n > 3), and
(ii) G; (i =2,...,k) is obtained from G;_; by adding edges or splitting vertices
at most three times.
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3. NONPLANAR {cube, Vg}-FREE GRAPHS

The cube and Vg can be obtained from two disjoint cycles Cy by connecting them
with four edges that preserves the ordering of the cycles; however, V3 is nonplanar.
To determine all internally 4-connected nonplanar {cube, Vg}-free graphs, we will
follow the characterization in Theorem 3. All graphs with at most seven vertices
have no cube and Vg minors.

We now consider the case that an internally 4-connected graph G satisfies the
condition (iv) in Theorem 3. Let X be a subset of V(G) of at most four vertices
such that G\ X has no edges, and let Y = V(G) — X consisting of y1,y2,...,Yn
for some n € N. Then all vertices in Y are nonadjacent. Since G is internally
4-connected, |X| > 3 and each y; is adjacent to at least three vertices in X.
Moreover, if | X| = 3, then G is K3, for some n > 5. We will show that K3, is
cube-free. We denote the classes of graphs in Figure 5 as follows: K; = {K3,, :
n > 5}, Ky ={K3, :n>5}, Kip = {K5, :n>5}, Ky = {Kj,, : n > 6}, and
Ky ={Kin:n>7}. Let gy = KUKy UK UK UKy. To study a graph in
these classes, a new vertex obtained from contracting an edge zy for x € X and
y € Y will be put in the partition set X to keep the number of vertices in X.

a vy a Y1 Y a Yy a Y
b Yy, b Yy y, b Yo Ys
Yys ¢C Y3 Ys Ys Y3

. Yy . Yy > Y, . Yy . Yy

Figure 5. Graphs K3, K3, K3, K3 ,, and K .

3,n

Lemma 6. For any G € Ky, G is cube-free.

Proof. Let G € K. Since all vertices in Y are nonadjacent, if the cube is a
subgraph of G, each disjoint Cy4 of the cube must contain two vertices of X.
However, | X| < 3, G does not contain a cube-subgraph. If the cube is a minor
of GG, then the minor can be obtained from G by a sequence of vertex deletions,
edge deletions, and edge contractions, where the order of operations is irrelevant.
Suppose that a sequence of edge contractions is performed on G first. Notice that
there are two types of edge in G; an edge connecting between X and Y, and an
edge connecting vertices in X. Then forallz € X andy € Y, G/zy € Ky, and for
zi,xj € X, G/zix; € Ky. After performing the sequence of edge contractions on
G, the resulting graph G* is in Ky. Then G* does not contain a cube-subgraph.
Hence, G is cube-free. [

From Theorem 3 and Lemma 6, we obtain the following lemma.
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Lemma 7. Forn > 5, K3, is {cube, Vg}-free.

Next, we consider an internally 4-connected graph G satisfying the condition
(iv) in Theorem 3 with |X| = 4. Then G € K and |Y| > 4. Since G is internally
4-connected, at most one pair of vertices in X can be adjacent. Notice that
for z € X and y € Y, G/xy is not internally 4-connected. To study this type of
graph, we relax the connectivity of G to 3-connected. Let £ consist of 3-connected
spanning subgraphs of some Ky ,, n > 4. Then £ C K. The cube is also in L,
see Figure 6.

a Y;
b Ys
c Ys
d Yy

Figure 6. The cube in L.

Lemma 8. A graph G in L contains a cube-subgraph if and only if there are
Y1,Y2,Y3, Y4 € Y such that {a,b,c} C N(y1), {a,b,d} C N(y2), {a,c,d} C N(y3),
and {b,c,d} C N(ya).

Proof. Let G € L. If there are y1,y2,y3,y4 € Y such that {a,b,c} C N(y1),
{a,b,d} C N(y2), {a,c,d} C N(y3), and {b,c,d} C N(y4), then there are two
disjoint C4’s, C41 : a,y1,b,y2 and Cy2 : y3,¢,y4,d, which four edges ays, yic,
by4, and yod preserve the ordering of the cycles. These form a cube-subgraph in
G. Suppose that G contains a cube-subgraph. Since both X and Y consist of
mutually nonadjacent vertices, each disjoint Cy of the cube must contain exactly
two vertices in X and two vertices in Y; C41 : a,y1,b,y2 and Cy2 : y3,¢,y4,d.
We assume without loss of generality that edges ays, yic, byy, and yod are edges
in G which orderly join Cy; and Cy . Thus, {a,b,c} € N(y1), {a,b,d} C N(y2),
{a,c,d} € N(y3), and {b,c,d} C N(y4). |

Let £’ be a class of 3-connected graphs that are obtained from spanning
subgraphs of some Ky, (n > 4) by adding edges to the color class of size four.
Then LC K C L.

Lemma 9. Let G € L'. Then the following statements are equivalent.
(i) G contains a cube-subgraph.

(i) G\ E(G[X]) contains a cube-subgraph, where G[X] is an induced subgraph
of G with vertex set X, the color class of size four.
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(iii) There are y1,y2,y3,ya € Y such that {a,b,c} C N(y1), {a,b,d} C N(y2),
{(1, ¢, d} C N(y3)? and {bv ¢, d} - N(y4)

Proof. (i)=(ii) Since G contains a cube-subgraph, if an edge uv joining two
disjoint Cy’s of the cube is in E(G[X]), we have that u,v € X, and there is
another edge wz joining those two Cy’s such that w,z € Y. This contradicts
with the fact that all vertices in Y are nonadjacent. So G\ E(G[X]) contains a
cube-subgraph.
(ii)=(iii) Since G\ E(G[X]) € L, by Lemma 8, we obtain (iii).
(iii)=(i) From Lemma 8, G \ E(G[X]) contains a cube-subgraph, so does G.
|

Lemma 10. Let G € L'. Then G contains a cube-subgraph if and only if G
contains a cube-minor.

Proof. The forward direction is obvious. Suppose that G contains a cube-minor.
We first perform all edge contractions in constructing the cube. Let G* be the
resulting graph. Then G* contains a cube-subgraph. Note that contracting an
edge in G[X] leads to a graph in Ky, by Lemma 6, it is cube-free. Thus, only
edges connecting X and Y are contracted. By putting the new vertex obtaining
from each edge contraction to the partite set X, G* is in £’. By Lemma 9, the
cube is a subgraph G* \ E(G*[X]), which is a subgraph of G \ E(G[X]). So G
contains a cube-subgraph. [

From Lemma 10, to find an internally 4-connected cube-free graph G with the
condition (iv), we have to find a graph with condition (iv) and no cube-subgraph.

Lemma 11. An internally 4-connected graph G € K with X = {a,b,c,d} con-
tains a cube-minor if and only if there are vertices y1,y2,ys3,ys € Y such that
{CL, ba C} - N(yl)) {CL, ba d} - N(y2), {aa c, d} - N(y3)7 and {b’ ¢, d} - N(y4)

Remark 12. Let G be an internally 4-connected cube-free graph in K. Then
G misses a neighbor set in Lemma 11. Since G is internally 4-connected, if X
contains two pairs of adjacent vertices, G contains Ky, as a subgraph for some
n > 4. So at most two vertices in X are adjacent. Then G can be classified as
follows.

1. All vertices in X are nonadjacent and there is only one vertex y; in Y
whose neighbor set is X. Then G\ y; misses two neighbor sets in Lemma 11. We
may assume that there are no vertices in Y\ y; containing neighbor sets {a, b, d}
and {a, c, d}, see Figure 3(a).

2. All vertices in X are nonadjacent and |N(y;)| =3 for i = 1,...,n. Then
G misses at most two neighbor sets in Lemma 11. We may assume that there are
no vertices in Y containing neighbor sets {a,b,d} or {a,c,d}, see Figures 3(b)
and (c).
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3. Two vertices in X are adjacent, say a and b. There are three different
cases.

(a) There are only two vertices in Y, say y; and y9, such that N(y;) = N(y2) =
X. Then G\ {y1,y2} misses three neighbor sets in Lemma 11, and all y;’s,
3 < i < n, have the same neighbor set. We may assume that N(y;) = {b, ¢, d}
for i = 3,...,n, see Figure 3(d).

(b) There is only one vertex in Y, say 1, such that N(y;) = X. Then G \ y;
misses two neighbor sets in Lemma 11. We may assume that there are no
vertices in Y \ y; containing neighbor sets {a,b,c} and {a,b,d}, see Figure
3(e).

(c) Fori=1,...,n,|N(y;)| = 3. Then G misses only two neighbor sets in Lemma
11. We may assume that there are no vertices in Y containing neighbor sets
{a,b,c} and {a,b,d}, see Figure 3(f).

We now consider graphs in DT. Notice that DWJ contains a cube-minor by
deleting edge uv, and AW;n is a subgraph of DW;H for each n > 3. The following
lemma follows directly from the structure of cube-free graphs in Theorem 1.

Lemma 13. For each integer n > 3, DW;ng and AW;; contain a cube-minor.

4. PROOF OF THEOREM 2

To prove Theorem 2, we claim that all internally 4-connected planar graphs with
at least eight vertices contain a cube-minor. From Theorem 5, this statement can
be implied by the following lemma.

Lemma 14. The only internally 4-connected planar cube-free graphs are Cg and
DWs.

Proof. Let GG be an internally 4-connected planar cube-free graph. Suppose, on
contrary, that G is neither C2 nor DW5. From Theorem 5, there is a sequence of
internally 4-connected graphs Gy, Gy, ..., Gy satisfying the chain theorem such
that Gy, is isomorphic to G, and Gy is isomorphic to K3 3, terrahawk, C2 (n > 5)
or AWy, (n > 3). Notice that G; is a minor of G; for all i < j. Then for
each i, G; is a planar cube-free graph. Since both terrahawk and AWy, (n > 3)
contain a cube-minor, G is not isomorphic to these two graphs. From Kuratowski
Theorem, a graph is planar if and only if it contains neither K5 (or 052) nor K33
as a minor. So (G is not isomorphic to both Cg and K3 3. We now consider C’,QL
(n > 5). Let {vi,vs,...,v,} be the vertex set of C2 such that for all 1 < i <
n, N(v;) = {vi—2,vi—1,0i+1,vi+2}, where the indices are taken modulo n. By
contracting edges vivg and vovy4, we obtain 02_2. For all odd n > 5, C? contains
C?2 as a minor, so C2 is nonplanar. Thus, Gy is not isomorphic to C2, for all odd
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n > 5. Since a cube can be obtained from CZ by deleting edges v1va, v3v4, V506
and vyvs, 082 contains a cube-minor, and so does C2 for all even n > 10. So we
only need to consider planar graphs constructed from C2 by adding edges and
splitting vertices.

Suppose Gy is isomorphic to C3. Since adding an edge joining two nonadja-
cent vertices in 6’62 gives a nonplanar graph with K3 3-subgraph, we assume that
graph G in the sequence is obtained from C? by splitting vertices at least one
time. Up to symmetry, Cg has ten splits, one of them is DW5 and six of them
are nonplanar, as illustrated in Figure 7.

e asge.

(oh DW;

EY-2-3--%°

Figure 7. Ten splits of CZ, where all graphs in the second row are nonplanar.

£~ £ 0 T
H N B &

Figure 8. Splits of DWj where the first two graphs contain a cube-minor and the last
two graphs contain a K3 3-minor.

From [9], DW5 is the only internally 4-connected planar graph on seven
vertices. If G is DWs, then G is a split of DWs. Up to symmetry, there are
four splits of DW5 as shown in Figure 8 such that all splits of DW5 contain one of
these graphs as a minor. In these four graphs, two of them contain a cube-minor
and two of them are nonplanar. Since G is a planar cube-free graph, G is not
isomorphic to DW5. So (G is constructed from graph A, B, or D in Figure 7
by splitting vertices at least one times and adding edges. We claim that every
internally 4-connected planar graph constructed from these three graphs by such
methods contains a cube-minor.

For graph A, up to symmetry, every planar one-time split of A contains an
8-vertex graph in Figure 9 as a subgraph. We can construct all planar internally
4-connected graphs on eight vertices from A by adding edges to 8-vertex graphs in
Figure 9 and preserving the planar and the internally 4-connected properties. To
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8-vertex graph I 8-vertex graph with additional edges
|

| D
@_’ *)
I D

@@‘ -

Figure 9. Planar splits of graph A on eight vertices (set Al).

preserve such properties, if a split has a 3-separation {G1, G2} such that neither
G1 nor Gy is isomorphic to K 3, then we can add an edge joining two vertices
in G1 and G4 in which their predecessors are adjacent, see 8-vertex graphs with
additional edges in Figure 9. So every planar internally 4-connected graph on
eight vertices constructed from A contains a non-cube-free graph in Figure 9
as a subgraph. Thus, all of these graphs contain a cube-minor. For splitting
A two times, up to symmetry, every planar two-time split of A contains a 9-
vertex graph in Figures 10, 11, and 12 as a subgraph. By the same argument,
every planar internally 4-connected graph on nine vertices constructed from A
contains a cube-minor. So every internally 4-connected planar graph constructed
from A contains a cube-minor. The proof for splits of graphs B is of the same
flavor, see Figures 13, 14, 15, 16, and 17. For graph D, up to symmetry, every
planar one-time split of D contains an 8-vertex graph in Figure 18 as a subgraph.
Since every internally 4-connected graph with K4-subgraph is nonplanar, there
are no internally 4-connected planar graphs on eight and nine vertices that can
be constructed from a graph in the dotted rectangles in Figures 18 and 19 by
adding edges. Then, for the same reason, every internally 4-connected planar
graph constructed from D contains a cube-minor, see Figures 18, 19, and 20.
So (G1 contains a cube-minor, and so does G. This is a contradiction since G is
cube-free. Hence, G is isomorphic to either Cg or DWs5. [

Proof of Theorem 2. From Lemmas 4, 7, 11, and 13, we obtain a characteri-
zation of internally 4-connected nonplanar {cube, Vg}-free graphs. The result of
Theorem 2 follows from this characterization and Lemma 14. [
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9-vertex graph I 9-vertex graph with additional edges
[ — —
| 4
| B~ K
J

|
! —
|

—> —
I e

-

T

Adding edges according to the

choices of the white vertex leads
@ ! to a graph containing a graph

i in (*) of set Al as a minor.

Figure 10. Planar splits of graph A on nine vertices (set A2).
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9-vertex graph : 9-vertex graph with additional edges )

s
BEEGE
2

IR

\

SRAE
i

I

HOBS
EXTY

LA
HEE

'l Adding edges according to the choices of the white vertex
@ =~ @ leads to a graph containing a graph in (***) of set A3 as

|
: a subgraph and one extra case below.

— & - Ay

Figure 11. Planar splits of graph A on nine vertices (set A3).

13
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a subgraph and one
extra case below.

9-vertex graph with additional edges

|
|
I Adding edges according to the choices of the white vertex
|
|
|

leads to a graph containing a graph in (¥***) of set A3 as

Figure 12. Planar splits of graph A on nine vertices (set A4).

8-vertex graph

§

R

b

IR

|

I

%

GOHOOOROT

\4

| 8-vertex graph with additional edges
|

Figure 13. Planar splits of graph B on eight vertices.
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Figure 16. Planar
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9-vertex graph I 9-vertex graph with additional edges

C. LEWCHALERMVONGS

1 1]
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Figure 17. Planar splits of graph B on nine vertices.
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8-vertex graph

e

-4l
@ !
|
%
%

PDEEPR
NN

| 8-vertex graph with additional edges

AND N. ANANCHUEN

Figure 18. Splits of graph D on eight vertices, where graphs in the dotted rectangle

contain a Ky4-subgraph.
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9-vertex graph I 9-vertex graph with additional edges

|

..................

Figure 19. Splits of graph D on nine vertices, where graphs in the dotted rectangle contain
a Ky-subgraph.
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1 4-connected cube-free graphs

All graphs considered in this paper are simple. In particular, we use G/e to denote the graph obtained from
G by contracting edges, and deleting loops and parallel edges that are created when we contract edges. A
graph G is called H-free, where H is a graph, if no minor of G is isomorphic to H. Maharry [2] characterized
all maximal cube-free graphs; however, the result does not provide all the internally 4-connected cube-free
graphs. Our goal is to characterize all cube-free graphs. Equivalently, we determine all internally 4-connected
cube-free graphs. We will adopt Maharry’s main idea and use a theorem from [1], and then we verify more

facts by computer. So we can eliminate the lengthy case analysis by hands in [2].

2 Basic lemmas

Lemma 2.1. [2] Let H be a cubic internally 4-connected graph.

1. H is cube-free if and only if H is isomorphic to Pig or isomorphic to some V,, where n > 6.
2. H is cube-free if and only if L(H) is cube-free.

Theorem 2.2. [2] All 4-connected cube-free graphs can be generated from the following families of grpahs

by repeatedly performing all possible vertex splits which do not introduce a cube minor;

1. the octahedron,

2. the Mobius zigzag graphs for k > 2),
3. L(Py),

4. L(V,) for n > 6.

Theorem 2.3. [1] All 4-connected graph G can be constructed from octahedron, Ks, unless G is a line graph

of a cubic internally 4-connected graph H or C2, for some n.

3 4-Connected cube-free graphs

To explain our result we need a few definitions. A weak X -ladder is a graph G that admits an embedding on
the Mobius strip such that the following are satisfied. A special cycle C' of G is embedded on the boundary
of the strip and C' has two vertices such that if C; and Cs are the two paths of C' between these two
vertices, then every chord of C' has at least one end in each of C; and C5, and every vertex outside C' has
exactly four neighbors, two of which are adjacent in C; and the other two are adjacent in Cy. If G has the
minimum degree §(G) > 4 and C' is Hamiltonian, then G is isomorphic to C3, ., for some n. An X -ladder

is a 4-connected weak X-ladder.

From Lemma 2.1, and Theorem 2.3, other than C3, ., L(V,), and L(P;0), every 4-connected cube-free
graphs can be generated from octahedron or K5. We can obtain all such cube-free graphs with at most 13

vertices; in addition, we verified that among all of those with 13 vertices, only one graph is not an X-ladder
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and this graph cannot be extended into any other cube-free graphs. So all cube-free graphs with at least 14
vertices are generated from X-ladders on 13 vertices. We prove that they are all X-ladders. To do so, we
prove the following theorem.

Theorem 3.1. If a 4-connected cube-free graph G with at least 12 vertices is obtained from an X -ladder H
by splitting a vertex z, then G is an X-ladder. Moreover, G can be embedded with a special cycle C' such
that either C' is a special cycle of H or C/e is a special cycle of H for some edge e.

To prove this theorem, we need the lemma below.

Lemma 3.2. Let H be an X -ladder with at least 13 vertices and let C be a special cycle of H. Then for

any verter x of H, one of the following statement is true.

(i) C'\ N(x) has an edge e such that H/e is 4-connected.
(ii) C'\ N(zx) has two edges e,  such that there are three chords between them and H/{e, f} is 4-connected.

(i) H \ N(x) has a triangle with vertex set {u,v,w}, where u is not on C but the edge vw is, such that

H/{uv,vw,uw, } is 4-connected.

Proof. From the structure of the X-ladder, 4 < |N(z)| < 6. We can assume that there is y in N(x) such
that y is in C7. Then there is an edge vw in C; such that v,w ¢ N(z) and y € N(v). If N(v) N N(w) is
empty, then H/vw is 4 connected. Now, let v € N(v) N N(w). If u is outside C, then {u,v,w} forms a
triangle in H \ N(z) that satisfies (iii). If u is in C' and deg(u) = 4, then there is s € N(u) N N(w). So vw
and us forms two edges satisfying (ii). If v is in C' and deg(u) > 5, then vw forms an edge satisfying (i). O

Figure 3.1: T use this picture to think about the lemma. We may not need this picture.

Proof of Theorem 3.1. We prove by induction on |G|. If |G| = 12 or 13, the result is verified by
computer as follows. Let L£; denote the set of all X-ladders on k vertices and let Qp denote the set of all
4-connected cube-free graphs on k vertices.

L Qs = {K5}
2. Q¢ = {Ks, K¢ \ ¢, 0ct, oct™}

3. |Q7| = 24: all these and the above are minors of K7.
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4. |Qg| = 19: consists of A, B, C, D (see Figure 3.2) and their 4-connected spanning subgraphs. Graph D
is a minor of L(Pyg) but D ¢ Ls.

Figure 3.2: Graphs A, B, C, and D.

5. |Qo| = 19: twelve of these graphs are minors of L(Pjg) and nine of these graphs are members of Lqg.
(two are both)

6. |Q10| = 14: five of these graphs are minors of L(Pjg) and ten of these graphs are members of £1o. (one
is both)

7. |1Q11] = 21: three of these graphs are minors of L(Pjg) and 18 of these graphs are members of L1;.

8. |Q12| = 24: one of these graphs is a minor of L(Pjg) and 23 of these graphs are members of L15.

9. |Q13| = 37: one of these graphs is a minor of L(Pig) and 36 of these graphs are members of L5.

Suppose |G| > 13. Then |H| > 12. Let e be the edge of G with H = G/e, and let H be embedded with
special cycle C. We need to find an embedding of G with special cycle D such that D = C or D/e = C.
Let F be the set of edges in H determined in Lemma 3.2. Then H/F is an X-ladder. In addition, H/F
can be embedded with special cycle Co = C/F. Let U be the set of vertices created when F' is contracted.
Note that G/F is obtained from H/F by splitting x, this is because F is contained in H \ N(z). By the
induction hypothesis implies that G/F is an X-ladder and it can be embedded with special cycle Cy, where
C1 = Cy or Cy/e = Cy. Notice that when we obtain the embedding of G/F from the embedding H/F, only
x and its incident edges are affected; however, the rest of the embedding, including U and its neighbors, are
not affected. Therefore, the contraction Cy can be reversed which gives us an embedding of G. For this
embedding, the special cycle D satisfies D = C or D/e = C because C; = C/F or Cy/e = C/F. This

completes our induction and the theorem is proved. O

4 Maximal good sets of triangles

In this section, we consider X-ladder that which triangles we can add triads to generate internally 4-connected

graphs.

5 Internally 4-connected cube-free graphs

Finally, we determine all internally 4-connected cube-free graphs.
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1 Introduction

In this paper, the domination game is played on a finite simple graph G. The
domination game was first introduced by Bresar, Klavzar and Rall in 2010 [1]. It
is basically different from the domination number of a graph G (the minimum size
of its dominating set), v(G), although v(G) < v4(G) < 27(G) — 1, see [1]. The
game domination numbers, 7, and ~;, of some simple graphs such as paths and
cycles are determined in [2, 3]. For a tree T, a connected graph with no cycles,
the problem of determining its game domination numbers are non-trivial and the
lower bound of v4(T) is given in terms of the number of vertices and maximum
degree of T' [4]. To explain the relationship between 7,(G) and v, (G) of a graph
G, they use imagination strategy, which compares the moves in a real game with
an imaginary game both played on G. It is showed in [7] that these two numbers
can differ only by 1, [y4(G) — 75(G)| < 1. We call a pair (k,1) is realized by G
if 74(G) = k and 7, (G) = I. Some possible realizable pairs are studied in [1, 4].
All possible realizable pairs are given in [5]. For example, for every k, (k,k+ 1)
can be realized by a tree [4], and for all k£ > 2, (2k,2k — 1) can be realized by a
class of 2-connected graphs[5]. One way to study the game domination numbers
of a graph is by considering graph operations such as deletion of a vertex or of an
edge. As proved in [6], for a graph G and an edge e in G, the game domination
numbers of G and G deleted e can deffer only by 2, |v,(G) — v4(G —e)| < 2 and
175(G) — 74(G — €)| < 2. The same result holds for deleting a vertex in G.

We can think of a tree as joining paths together at vertices. The operation of
combining two graphs by identifying a vertex of one graph with a vertex of another
is called the 1-sum. Then a tree can be constructed from 1-sum of paths. In our
paper, we consider the game domination numbers of a tree constructed from 1-sum
of a path on n vertices, P,, and a path on two vertices, P,. To state our main
result we need to define a few graphs. Let x1,zo, ..., z, be vertices of P,, and let
v1,vg be vertices of Py. We define a graph Q,,4+1, n > 4, to be a 1-sum of P,>4
and P at xo and vy, see Figure 1.

Figure 1: Graph Q11

In a graph G, vertices u and v in G are neighbours if uv is an edge in G. Let
NJu] be the set consisting of u and all its neighbours. Note that a vertex in a
graph is called dominated if it is chosen or it is a neighbour of the vertex chosen.
Let S be a subset of the vertex set of G, V(G). Then a partially dominated graph
G|S is a subgraph of G where the vertices of S are already dominated. So these
vertices do not need to be dominated in the course of the game. The residual graph
corresponding to G|S is a graph obtained from G by deleting all edges between
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dominated vertices and all vertices u that cannot be chosen any more, Nu] C S.
Our main results are as follows.

Theorem 1.1. v(Qnt1) <1+ FY;(QnJrl'N[‘TQ]) <1+ 'Y;(QnJrl‘N[gh])
Theorem 1.2 7(Qus) > 1+ 75(Quar | Nrs]).

Theorem 1.3. In a Staller-start game played on Qp41, for n =3 (mod 4), if the
Staller first move is vy, then Dominator cannot choose x4.

For the rest of the paper, we start with introducing our tools used in our
proofs. Then we analyze domination games played on @Q,+1. Finally, we consider
a Dominator-start game played on 1-sum of P, and P.

2 Basic Lemmas

In this section, we introduce our main tools, which are the continuation principal,
properties of realization, and formulas involving the game domination numbers of
a path P,.

Theorem 2.1 (Continuation Principle). [7] Let G be a graph and A,B C V(G).
If BC A, then 7,(G|4) < 7,(G|B) and +,(G|4) < +}(G|B).

The next theorem shows the relation between the game domination numbers.
Theorem 2.2. [7] For any graph G, |v,(G) — 7,(G)| < 1.

Suppose that 7,(G) = k and 7;(G) = m. Theorem 2.2 implies that the
realization of G is (k, k), (k. k + 1), (k,k — 1), where m = {k — 1,k k + 1}. We
call equal for the case (k, k), plus for the case (k,k + 1), and minus for the case
(k,k —1). If G is a family of forests, then the realization is (k, k) or (k,k + 1).

Theorem 2.3. [1, 7] Forests are no-minus graphs.

If the disjoint union of no-minus graphs has at least one equal graph (compo-
nent), then the following holds.

Theorem 2.4. [8] Let G1|S1 and G3|Ss be partially dominated no-minus graphs.
If G1|Sy1 realizes (k,k) and G2|S2 realizes (I,m) (where m € l,1+ 1), then the
disjoint union (G1 U G2)|(S1 U S2) realizes (k+ 1,k +m).

In the case that both components of a no-minus graph are plus, the following
statement holds.

Theorem 2.5. [8] Let G1|S1 and G2|S2 be partially dominated no-minus graphs
such that G1|S; realizes (k,k + 1) and G2|Sy realizes (1,1 +1). Then

kE+1<7,((GLUG)|[(S1US2)) <k+1+1,

k+1+1<7,(GiUG:)|(S1USs)) <k+1+2.
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Let P! denote the partially dominated path of order n+ 2, which its endpoints
are dominated, see Figure 2, and let P/ denote the partially dominated path of
order n + 1, which only one of its endpoint is dominated, see Figure 2. In both
cases, n vertices are not dominated. The following is an important lemma involving
the proof of the game domination numbers of a path.

Figure 2: Partially dominated paths of P/ (left) and P}, (right)

Lemma 2.6. [3] For every n > 0, we have

n —1: n53(m0d4)7
P// _ [2-‘
Yg(Py) {[gﬂ : otherwise,

[2]+1; n=2(mod4),

[%W ; otherwise.

Vo(Pr) = {

Moreover, for every i,j > 0 such that i +j = n, i, = (i mod 4) and j, = (j
mod 4), we also have

19 (F}") + 79 (P}'); (ir; jr) € {0,1} x {0,1,2,3} U
’YG(P'LHUP]H): {0,172,3}X{0,1},
Yo(PY) g (Pf) + 15 (ir,jr) € {2,3} x {2,3},
'Yg(Pi”) + FYg(PjH)v (irajr) € {07 1} X {07 1} ’

Yo(P") +7g(P/) +1;  (ir,jr) € {0,1} x {2,3}U
{2,3} x {0,1} U {(2,2)},
Yo(PI) +7g(PY) +25 (i, i) € {(2,3),(3,2),(3,3)} .

This lemma shows the optimal first move of both players playing on a partially
dominated graph P/. Dominator always chooses a vertex distance two from the
dominated endpoint, but Staller always choose dominated endpoint. Hence, both
players play the same way in P,. The following statement holds.

(PP =

Lemma 2.7. [8] For every n,m > 0, we have

(P U BL) = 5P U P) = 7Py U Bl and
A(PLU BL) = %P U L) = 2P U PA)

We can apply Lemmas 2.6 and 2.7 to determine the game domination number
of paths.
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Theorem 2.8. [3] For every n > 0, we have

] -1 n=3 (mod 0
Yo (Pn) {[ﬂ otherwise,

'7;(Pn) [g

3 A Dominator-Start Game Played on @),

In this section, we analyze v4(Qn+1). First, we study the game when the Domi-
nator first move is vertex xs.

Lemma 3.1. Suppose the Dominator first move is x3. Then

| =1 n=3(mod4),

] ; otherwise.

WQ(Qn+1|N[$3]) 2 {{

ISIEENTN

Proof. After the Dominator first move at x3, the residual graph is a disjoint union
between graph Py, 4,,, and P} _,<, where Py, ;,,, is a path in P, with the vertex
set {z1,x2,v2}. Notice that v, (Qni1|N[zs]) = 7} (Przgv, U Py_4). We calcu-
late the game domination number directly ,and obtain that v, (Py,z,0,) = 1 and
Yo (Pryzyvy) = 2. 80 Pryzyv, is a plus graph. We now consider vy (P, zp0, U Py _g)-
If P/_, is a plus graph where n — 4 = 2,3 (mod 4), then the residual graph is a
disjoint union between plus graphs Py, ..., and P/ _,. By Theorem 2.5, we have

7;(Pr1rzvz U PT/L—4) > Yg(Pryagvy) + ’Yg(Pr/L—4) +1
>2+ 'Yg(Pvlz—zL)'

If P/_, is an equal graph where n —4 = 0,1 (mod 4), then the residual graph is
a dlSJOlnt union between plus and equal graphs. By Theorem 2.4, we have

’y‘z/](PIlaizvz U PrIL74) = 'Y;(Pmlmgvz) + ’Yé(P’Iflle)
= 79(P961I202) +1+ VQ(PV/L—4)
=2+ 7y(Pp_y)-
We can easily check by hand for the case n = 4. Suppose that n > 5, we consider

four cases according to the value of n mod 4. We apply Lemmas 2.6 and 2.7 to
obtain the solution for all k£ > 1 as follows.

Vo(Pryzsvs U Pip_1y) = 2+ 79 (Pyg—1))
=2+ 7 (Pyr_1))
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Vo (Prizavs U Pie_1)41) = 2 + Yo (Pag—1)41)
=2+ 7 (Pi(k—1)41)
— 042k —241=2k+1,

’7;(P111202 U Pi(kfl)JrQ) 22+ ’YQ(Pi(kfl)+2)
>24+2k—1)+1=2k+1,

Vo (Porwavs U Pie_1)3) = 2+ 79 (Pyr—1y43)
> 2420k —1)+2—1=2k+1.

O

Notice that 7,(Qn+1) = 1+ mingeq,,, {75(Qn+1|[N[z])}. We obtain this
equality when z is the Dominator first move in an optimal strategy. Since it does
not guarantee that the Dominator first move at x3 is an optimal strategy, we
obtain the following corollary.

Corollary 3.1. ¥(Qn+1) < 1+ vg(Qn+1|N(zs]).

Next, we consider the game domination number on graph @Q,41 after the
Dominator first move choosing vertex xs.

Lemma 3.2. If the Dominator first move is xo, then

(%] —1; otherwise.

'Y;(Qn+1|N[:vg]) = { (%w —2; n=3(mod4),

Proof. Suppose that the Dominator first move is x5. Then vertices x1, 2, 3, V2
are all dominated, and the residual graph is P/, 5. We consider four cases accord-
ing to the value of n mod 4. Let k > 1. By Lemmas 2.6 and 2.7, we obtain that

'Y;(Pi(kfl)Jrl) = 7;( zi,(k71)+1)

= '79( zi/(k—l)-s-l)
=2k-1)+1=2k—-1,

'Y;(Pzi(k—l)+2) = ’Y;( Ai/(k—1)+2)

= Yg(Py(g—1)42) + 1 = 2k,
’Y;(Pzi(k71)+3) = 7;( Ai/(k71)+3)

=Yg (Py(—1)43) + 1 = 2k,
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Vo (Piy) = v4(Pi)
= ’Yg(PAYk) =2k.
O

Proof of Theorem 1.1. We compare v, (Qn+1|N[z2]) and v, (Qny1|N[z3]). Since
Yo (Qnr1|N[w2]) < 75 (Qni1|N[xs]), we obtain the result. O

We now consider some vertices which are not the Dominator first move in an
optimal strategy.

Lemma 3.3. In an optimal strategy of the Dominator-start game played on Qpn1,
the Dominator first move cannot be x1,x3, T, and vs.

Proof. We know that N[x1] and N[vg] are subsets of N[z, and {x,} is a subset
of N[z,—1]. By the continuation principle and Theorem 1.1, the result follows. O

From our analysis, we propose the following conjecture. In an optimal strategy
of the Dominator-start game played on @,,+1, the Dominator first move is 5. Then

Yg(Qni1) = 1 +75(Qny1|N[a2])
_ {Vﬂ —1; n=3(mod 4),

{%] ; otherwise.

4 A Staller-Start Game Played on @),

In this part, we consider the Staller-start game domination number on graph Q,,41.

Lemma 4.1. If the Staller first move is x3, then

[2] —1; n=0,1 (mod 4),
Vg(Qni1|Nzs]) = ¢ [5] —1or [5]; n =2 (mod 4),
[2] —1or [2] =2; n=3(mod4).

Proof. Suppose that the Staller first move is 3. Then the residual graph is a
disjoint union between Py, g,,, and P)_,~, where Py 4,., is a path in P, with
the vertex set {x1,z2,v2}. Notice that v,(Qn+1|N[z3]) = Vg (Pryzov, UP,_4). We
can find the game domination number directly from the graph; v4(Py zy0,) = 1
and vy (Pryayv,) = 2. S0 Pyyzy0, 18 a plus graph. Nest we find vy (Pyypu, U Py _y)-
If P! _, is a plus graph, where n — 4 = 2,3 (mod 4), then the residual graph is a
disjoint union between plus graphs Py, ..., and P,_,. By Theorem 2.5, we have
that

79(P111202) + ’Yg(PrlLfél) S WQ(PINE%& U PT/L74) S 79(P1315132v2) + 79(P71174) +1

L4+ 79(Pr—a) < Vg(Pryazao, U P, _y) <2+ 74(P)_y)-
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If P/ _, is an equal graph, where n —4 = 0,1 (mod 4), then the residual graph
is a disjoint union between plus graph and equal graph. By Theorem 2.4, we have
that

WQ(PI1$21)2 U P’r{L74) = ’yg(PIlIQUQ) + ’79( 7/174)
=1+ 794(Py_y)

It can be easily checked for n = 4. Assume that n > 5. There are four cases
according to the value of n mod 4. Then we apply Lemmas 2.6 and 2.7 to obtain
the solution for all k& > 1.

Vg (Pryzavs U Pye_1y) = 1 +79(Pygge_1y)
=1+ ’VQ(PAi/(kfl))
=14+2k—2=2k—-1,

Vo(Poywzvs U Pye_1y41) = 1+ 79 (Par—1)41)
=1+ ’YQ(PAi(kfl)Jrl)
— 142 —241=2k
1+ 9 (Pyr—1)42) < Yo(Priazvs U Pige1y42) < 2+ Yo (Pige—1)+2)
142k =2+ 1 < Yg(Pryagrs U Pl _1)12) S2+2k—2+1

2k < ’Yg(lezy)z U Péi(k—l)+2) <2k+1,

L+ 9 (Pyk—1y43) < Yo(Prraavs U Pyi1y13) < 2+ 79 (Pis—1)43)
1+2k_2+1 SFYQ(szzUz UPZi(k—l)—i—?)) < 2+2k—2+1

2k S VQ(PI1I2U2 U Pzi(k71)+3) S 2k + 1.

Proof of Theorem 1.2. We know that

Yg(Qny1) = 1+ maxoey (@, ) 175 (Qni1|Nz])}.

We can obtain this equality when x is the Staller first move in an optimal strategy.
Since it does not guarantee that the Staller first move at x3 is an optimal strategy,
we obtain the result. O

We next consider the Staller-start game domination number when Staller
chooses v and Dominator chooses x5.
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Lemma 4.2. If the Staller first move is vo and the next move by Dominator is
o, then
2] —2; n=3(mod 4),
7;(Qn+1|N[U2a$2D = {%ﬁ 1.

5 otherwise.

Proof. Suppose that the first move of Staller is vo, then x5 is dominated. If
Dominator chooses w2, then v,(Qnt1|N[v2]) = 1+ 7, (Qn+1|Nva, 72]). The cor-
responding residual graph is P/, where » > 0 and r = n — 3. We have that
Yo (Pr—3) = Y4(Q@ns1|N[va, 22]). There are four cases according to the value of
n mod 4. For k > 1, by Lemmas 2.6 and 2.7, we have that

"/;;(Pzi(kq)ﬂ) = ’7;(Pzil(k71)+1)
= 74/ zil(k—1)+1)

=2k —1)+1=2k—1,

/!

7;(P41(k—1)+2) = ’Y;(P4(k_1)+2)
=79 (Pik_1y42) +1 =2k,

’Y;(Pi(k—1)+3) = ’Y;( zil(k—1)+3)
=Yg (Pi(—1)43) + 1 = 2k,

Vo(Pix) = 7(Piz)
= ’Yg(PAYk) = 2k.

We assume that the Dominator first move is x4 in the Staller-start game.

Lemma 4.3. In the Staller-start game, if the Staller first move is vo and the
Dominator first move is x4, then

nl _ 9. = mod 4
Vg (Qni1|N[v2, 24]) = {PA _ i’ Ztheiu()iseo. ’

)

2

Proof. Suppose that the Staller first move is v and the Dominator first move is
r4. Then v4(Qni1|N[za]) = 1 + 7 (Qn11|N[v2, 24]). The corresponding residual
graph is P/ U Py, where 7 > 0 and r + 1 = n — 4. We have that v, (P U P,_3) =
Yy (Qn+1|Nva, 24]). There are four cases according to the value of n mod 4. For
k > 1, by Lemmas 2.6 and 2.7, we have that

’Y;(P{ U Pzi(k—2)+3) = ’Yg(Pll/) +7( zi/(k—2)+3) +1
=2+ 7,( Ai/(k—2)+3)
=2+2(k—-2)+2-1
=2+2k—44+1=2k—-1,


เอกสารแนบ 3


LNFISLUY 3

Domination Game Played on a Graph Constructed from 1-Sum of Paths 43

Vg(PLU Py_1y) = v9(PI) + 79 (Pyi_1))
=1+ 7(Pyx_1)
S 14+2%—2=2k—1,

Vg(PLU Py_1y41) = 9(PL) + Yo (Pih—1)41)
=1+ ’YQ(Pzi/(kflﬂ»l)
—14+2%—241=2k

Yo(PLU Pie_1y40) = Y9 (P1) + g (Pa(re—1)42) + 1
=2+ 7(Pyr—1)42)
=242k—-2+1=2k+1.

O
Proof of Theorem 1.3. Note that for u € Q,,41,
Yo (@ni1|N[u]) = 1+ minyev(q, ;1 )—u {7(@ni1[Nfu, v])}.
From Lemmas 4.2 and 4.3, for n = 3 (mod 4),
! n n /
Y (QutINfen,aa]) = [ 5] =2 < [5] = 1= 7 (@ua| Vv, ).
So for Dominator, choosing x5 is better than choosing z4. O

From our analysis, we propose the following conjecture. In an optimal strategy
of the Staller-start game, if the Staller first move is vy and the Dominator first
move is x,_1, then

1; n=1,3 (mod 4),
-| +1; otherwise.

! (Quit) =14 ﬂ

[SIBENTS

5 A Dominator-Start Game Played on 1-sum of
P, and P,

In this section, we analyze the game domination number on a graph 7,1, which
is a graph constructed from 1-sum of P, and P, at x, for some k = 2,....,.n — 1,
and vy, see figure 3. Then we find the upper bound of v4(T,+1) by assuming that
the Dominator first move is x;. By applying Lemmas 2.6 and 2.7, we obtain the
following lemma.
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X, 1 X, Xyer1 X

Figure 3: Graph T}, 1

Lemma 5.1. If k =0 (mod 4), then

[2]; n =0 (mod 4),
Yo(Tny1) < S [2]+1; n=1(mod 4),
[2]+2 n=23(mod4).

If k=1 (mod 4), then

[21; n =0 (mod 4),
Yg(Tri1) < [%W +1; n=1,2(mod 4),
[%] +2; n=3(mod 4).

If k=2 (mod 4), then v4(Th11) < [2] + 1.
If k =3 (mod 4), then

o(Torn) < { (21 +1 n = 0,1 (mod 4),

[2]4+2; n=23(mod 4).
Proof. We can easily check by hand for the case n = 4. Assume that n > 5.
Suppose that Dominator chooses xj, in the first move, then the residual graph is
P! U P!, where r + s = n — 3. We now consider the following cases of the residual
graph according to the value of n mod 4.

If n =0 (mod 4) or n = 45, where j > 0, there are two cases: 1) Py, U Py,
where [ +m + 1= j and [,m > 0; and 2) Py, , U P}, 3 where [ +m + 2 = j and
l,m>0.

If n =1 (mod4) or n = 45 + 1, where j > 0, there are three cases: 1)
Py 3UPy,, 13 where [+m+2 = jand I,m > 0; 2) PjyUP; .o where [+m+1 = j
and I,m > 0; and 3) Py, UPy,, ., where l[+m +1=jand l,m > 0.

If n = 2 (mod 4) or n = 4542, where j > 0, there are two cases: 1) P;,UP},, . 3
where [ +m + 1= j and [,m > 0; and 2) Py, U P}, .o where [ +m + 1 = j and
l,m>0.

If n =3 (mod 4) or n = 4;j+3, where j > 0, there are three cases: 1) P;,UP;,,
where [ +m = j and [,m > 0; 2) Py, UPy, .5 where [+m +1 = j and I,m > 0;
and 3) Py, U P, .o where [ +m+1=jand l,m > 0.

By applying Lemmas 2.6 and 2.7 to consider each cases, the result follows. [
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Abstract

The traffic circle at Victory Monument (Thailand) is the center of
the traffic network and one of the most important transportation hub
in Bangkok. There are three roads intersecting at the monument, Phaya
Thai Road, Ratchawithi Road, and Phahon Yothin Road; and traffic con-
gestion in rush hours is the most serious problem of this area. Especially
on Ratchawithi Road, an incompatible between the phasing traffic lights
at the traffic circle and the crosswalk can causes a traffic jam. Graph the-
ory can be applied to formulate the system of traffic streams approaching
this traffic circle into a compatibility graph. To investigate the efficiency
of the traffic light phasing system at this traffic circle, a corresponding
linear programming problem is constructed to find an optimal green light
assignment that minimizes the total amount of waiting time. A method
to relieve the traffic jam on Ratchawithi Road is also provided.

Key words: graph theory, compatibility graph, traffic light phasing system, linear program-
ming problem.
(2010) Mathematics Subject Classification: 94C15
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1 [ntroduction
of the most effective and flexible active control of traffic
ral cities worldwide. The benefits of traffic light aye
accidents, increasing the capacity of the intersec.
Jent of traffic flows. However, it also has
- .advantage. For € cause the excessive delays or the large
e ml-l . -gb' ause of the waiting for a traffic light. A complexity in the
stopped delays bece ke not only the cost of traffic light but also the

jon and im lementation ma . ]
design and imp Traffic lights are installed when the traffic

installing ¢ maintaining.

cost Of lllbtdlllllo (Uld . . » ]

engineers guarantee that they are as beneﬁcxal as pObblble. In Th'lllal 1.
o -]

alwavs encounter the traffic problems ox traﬁ‘if: jams, especially in the city ar-
eas. “The traffic congestion statistical history In year 2016 by TomTom traffic
index [6] shows that Bangkok was the secc?nd place of the Frafﬁc cc.)ngesti()n in
the world rank and the first place in the Asia rank. From this data, in two years
the Bangkok drivers spent an average 64.1 hours stuck in congestion. This is a
direct effect on increasing of fuel consumption and air pollution.

Recently, the surrounding area of the Victory Monument is the biggest
and the most important transportation hub in Bangkok. This area consists
of four junctions, and three roads intersecting: Phaya Thai Road, Ratchaw-
ithi Road. and Phahon Yothin Road, see Figure 1. There are more than ten
thousand people use these roads because of the fully located of many facilities,
such as shopping malls, hospitals, and education institutions. So the traffic
light phasing system is necessary to control the traffic circle at Victory mon-
ument. Nowadays there is a traffic jam although the traffic light system is
used. Consequently, we are interested in using graph theoretical concepts to
analyze feasible green light assignments of the traffic light phasing system at
the monument. We investigate the efficiency of the assignments during rush
h01'1r in the morning from 6:16 to 10:00. We also find a suitable green light
assignment in a situation that the phasing traffic lights at the traffic circle are
incompatible with the crosswalk on Ratchawithi Road.

o v‘:rtgiz:hcglzgn:(ijsw of‘;ﬁnite set of V' of vertices and a set E of ordere.d pairs
vertices as points angdez (? et aepresentis grap}l G2 hrdrarine tk%e
(o) derast olge, G ;a:‘ﬁngia' c.l‘lrve from u to v if an.d only if the ordered pair
I — intérrel ph theory is a tool for formulating problems by defining

. : ationships. The concepts of graph theory are used in many
studies involving the traffic syst D 2 y 6% dv
a method for solving traffi T S A8 [ SniliSe AL oesar X st
to the problem and gir;::la: Droy Witp. The Sompartbiltyy ek SOOI e
the method to reduce traﬂiirc grté)llphs have been mFroduced. Then they aPP}‘{Y
Baruah (1] conducts a researcll)]ro er}? s SS)h-mon oL EF p.ro-b.lems. = f
a traffic intersection that can b e i ol compatlblllty graph;’
traffic control system to di > Used to study the:most, efficient route & ' ‘e

irect the traffic flow to its maximum capacity by Us”

ing the minim
m
number of edges or the minimum number of vertices. The

A traffic light is one
lv used in seve
reducing the various type of v
tion and providing the orderly n?owe' .

xample, it may

and is wide
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Daeng Junction
Ratchaprarop Rd.
\ Owerpass

Figure 1: A diagram of the Victory Monument area.

S
Ratchawithi Rd

application of this result in the traffic control problem at an arbitrary inter-
section is to minimize the waiting time of the traffic participants and the cost
of locating the sensors in order to collect traffic data. S. Tanveer [5] proposes
the application of graph connectivity (vertex or edge) in traffic management
problems in an efficient way by minimizing the waiting time of the traffic par-
ticipants and collecting traffic data by located sensors in an appropriate area.
E.K. Setiawan [4] creates a mathematical model in the form of the total time
of all flows function by determining conditions, such as minimizing green light
of each flow affected by the volume and the weight of the traffic flow.

In what follow. it will be convenient to study some types of graphs which
relate to our work. A subgraph of a graph G = (V,E) is a graph such that
its vertex set and edge set are subsets of V' and E, respectively. A spanning
subgraph of G is a subgraph with vertex set V. A clique in G is a subgraph
which every vertex is joined to every other vertex. Let F' = {51, 55,...,5,} be
a nonempty family of sets. The intersection graph of F is a graph with vertex
set F' such that two sets S; and S;, where i # j, are adjacent if and only if
SinN S; # @. The circular arc graph is an intersection graph of a set of arcs on
a given circle, where there is an edge joining two arcs if and only if they are
overlapping, see Figure 2b.
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2 Traffic Light Phasing Problem Formulation

in Figure 1, there are four traf-
s el 1\I'Ommllemtraarf;ia; uclich;: and four traffic strei'bn}z
fic streams (a,b,c,d) approaching e le. Two traffic streams are compati i-
, k) moving around the traffic circle. . without causing an. ace
(e_, o her, if they can move at the same time : ne and f in the
o G;Ch Oi;:v le, traffic stream a from Sam Liam Din Dalztfa graph G by
?re:f;i.c ci(:'rclee canpge;; green lights at the same time. .TOt f((;rlr;;la estacof G and
the compatibility relationship, each stream is 'reple'senoiresponding . ?re
two vertices are joined by an edge if and only if thelrtc i g =
compatible. We call G a compatibility grqph for. the -r?ﬁ S SR
For example, traffic stream q is compatible with tra
but not €; so q is Joined by edges to b;ed. 1.9, h reen light in such a
Every traffic stream is assigned a period of time for at %he e time: ‘THE
way that only its compatible traffic streams can r.noved a\ % onsider a sequence
creates a cycle consisting of green lights and red l}ght_s. We ii the feasible green
of green lights of traffic streams in the cycle, which is calle b eriod of greed
light assignment. The cycle can be denoted by a circle ar}d eac pon ding traffic
light is an arc around the circle, Two ares overlap if their correSI:lt i feasible
Streams get green light at the same time. Then we can represeform our dataf
green light assignment by a circular arc graph. For e?(ample’ at the Victor
one of feasible green light assignments that traffic polices use
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Monument traffic circle consists of a consecutive ordering of six phases: 1) only
traffic streams d, e, g, f getting green lights, 2) only b, d, e, g getting green lights,
3) only d.e, f,g getting green lights, 4) only b,e, g, h getting green lights, 5)
only a,c, f.h getting green lights, 6) only a, f, g, h getting green lights. This
assignment is shown in Figure 2b and its corresponding circular arc graph is
graph H in Figure 2c. Notice that H is a spanning subgraph of G, and each
phase corresponds to a 4-vertex clique in G, which is the largest clique in G.
In this research, we consider feasible green light assignments that polices

use at the Victory Monument traffic circle from 6:16 am - 10:00 am. There are
forty different feasible green light assignments used.

3 Analyzing the Traffic Light Phasing System

One way to tell the efficiency of a traffic light phasing is by analyzing the
feasible green light assignment with the criteria of minimizing the total amount
of waiting time of each traffic stream. This is equivalent to minimize the total
amount of red light time in the cycle. From our data, there are eight different
phases that polices use to generate a feasible green light assignment, and each of
them corresponds to a 4-vertex clique in G; K} = {a, f.g,h}, K> = {b,e,g,h},
K3 = {c,e, f,h}, K4 = {d,e, [,9}, K5 = {a,c, f,h}, K¢ = {b,d,e,g9 }, K7 =
{a,b,g,h}, Kg = {e, f,g,h}, see Table 1.

To construct an objective function of total red light time in a cycle, we
denote a duration of clique K; by d;. We consider the cycle at 8:11 am to
show the method. This cycle is generated by cliques K, K2, Ky, K5, K. Since
traffic stream a gets a red light during phases K>, Ky and Kj, the total red
light time of a is d2 + d4 + d¢. Then the total red light time of each traffic
stream is as follows: b :dy +dy +ds, ¢ : di +d2 +dy + ds, d : dy + d2 + d5,
e:dy+ds, f:d2+ds, g:ds, h:dy+ds. The total red light time of the cycle
at 8:11 is given by

4d, + 4d> + 4d, + 4ds + 4ds. (31)

From our data, the green light time for each stream is at least 20 seconds,
and the duration of the cycle is 275 seconds. Thus, we want to minimize
equation (3.1) subject to the following constraints

d, +ds = 20, d> + dg > 20,

ds > 20, dy + dg 2> 20,

dy + dy + ds = 20, dy +dy + ds > 20,

dy + do + dy + ds 2 20, dy +dz +ds > 20,

dy + da + dy + ds + de = 275, dy,d2,dy,ds,dg 2 0.

We solve this linear programming problem and obtain the minimum total red
light time 1,100 seconds, where one of solutions is d; = 0, d2 = 0, dy = 0,

ds = 20, and dg = 255.
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1\3.

¢ WRRFNINWL 4

Stem

en light assignments from 6:16 am to 10 am R
' e

Duration o

f Tota.l “'altlng

Time Sequence of cliques in each cycle each cycle time
(sec) (sec)
06:16 Ka, Ko, K2, K1, K5, K7, Ks 300 1200
06:20 K, Ke, K2,K5 % ggg 1220
06:24 K, Ko, K2, K5, K7, K5 1400
06:30  Ka, Ko, K2, K5, K7, Ks 260 1040
0634 Ks. Ko, K2, K5, K1, K5, K7, K1, Ks 405 1620
06:42 Ks, K, Ko, K2, K3, K5, K7, K5 375 1500
06:48 K, Ko, K2,Ks, K5 255 1020
06:53 K, Ke, K2,K7,K1,Ks 256 1060
07:02 Ko, K¢, K3,Ks,K7,K1,Ks 290 1160
07.07 KJ.KG.Kz,KS‘KlyK5~K7)K19K5 290 1500
07:14 Ka, K, K2, K5, K1, K5 280 1120
07.19 Kg,K2,K1,K5 160 640
0722 Ks, K2, Ke, Ks,Ks, K5,K1,Ks 360 1440
07:26 Ks, K2, Ke, K4, K8, K5, K1, K7, K5 325 1300
07:31 K4,K6,K2,K1,K5,K1,K5 305 1220
03:35 K4,K6,K2,K5,K1,K5,K1,K5.K7,1\’1.K5 435 1740
07:42 Ks3.Ks,K4,K3,Ks5,K7,K1,K5 360 1440
07:48 K4,Ks,K2,Ks5,K7 230 1120
07:50 K»o,K1,Ks5 120 480
07:53 Kg,K2,K3,K5 185 740
07:56 K4,Ke,K2,K1,K5 180 720
08:02 Ky, Ko, K2, K1,Ks 225 900
gg(l)i Ilgs,Ks,Kz,Ks.Ks,KmKs 380 1520
: 4, K¢, K4, K2, K5, Ky 275 1100
08:15 K2, K5 150 600
081.8 KﬁszwK:h K5 220 880
08:22 Ky, Ko, K2, Ka, K2, K1, K5, K7, K1, K3 535 2140
08.30 K4,K6,K8,K4,K5 ¢ 960
08:39 Ko, K sy
i , K5 115 460
: K¢, K4,K3,K5,K7, K|, K 940
08:45 K K ,7 1, A\A5 235
' 4, 6,K4.1{3,I\5 660
08:48 Ky, K =65
: 1, Ks, K2, K, K5 = 660
08:51 K i
o 2aK7yK1|K5 330
09:00 Ky, K, Kq, Ks, K rhas
0904 K‘h 6,1\ 4, 8,[\5,K7,K1,K5 260 1040
09:0 4»K6-K2,K1,K5 225 900
% 8 K4!K61K47 KS, K5 640
09:11 K, K 160
09:15 K4‘,K6‘K8,K4,K5 220 880
e 2,5 7 460
0925 K, Ko, K, Ky, K 160 610
og'g:} zz, K7,K1, K5 120 480
S 5] -
0640 K:s,?,gs,i}s,?,lﬁ,& 280 1120
) ) 6y 2, 1 5 840
09:44 K, Kg K 210
ar 6,y 4,1{3 K 640
09:47 K, K A 160
’ G’KSa 1\4yK 60
0052 K, Ko Ky K. K 240 9
10:00 Ko Ko Ko Ko K R D 250 L
4, Ko, K2, K5, K7, K5 320 1280
_/
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Figure 3: The real situation when traffic stream c gets a green light and polices
allow people to cross Ratchawithi Road.

By applying this method to analyze other cycles and testing the duration
polices use, we obtain the total red light time of each cycle shown in the last
column of Table 1, and we found that each of these times is the minimum of

its corresponding cycle.

4 A Special Case on Ratchawithi Road

From our observation at the Victory Monument area from 6:16 am - 8:11 am,
there is an interesting problem about the crosswalk in front of the Rajavithi
hawithi Road, Figure 1. Crossing the road depends on the
is at the same time when traffic stream c gets a green
This causes the delay on the traffic flow and leads to a
we propose a solution for the problem by considering
ffic stream and using the method we discussed to

Hospital on Ratc
polices signal, which
light, see Figure 3a.
traffic jam on the road. So,
the crosswalk as a new tra

analyze.
Traffic stream i are compatible with almost every traffic streams, except b,

c and f. The new compatibility graph is shown in Figure 4a. We obtain a new
phase defined by clique Ko = {i,d,e,g}. To show the method we consider the
cycle at 8:11 am with the new circular arc graph in Figure 4b.. We obs'erve tl?at
cliques K4 = {d.e, f.9} and Ks = {b,d,¢, g} have nonempty intersections with

Ky. From our observation, traffic stream on Phayathai Road is not heavy in

the morning, and it is safe for people using the crosswalk. So we choose K¢ to

share the duration with Ky by adding the constraint dg + do = 60.

Then the total red light time of each traffic stream is as follows; a : dis: A
dy+dg + dy, b: d +dy + ds + do, c:dy +dy + ds + ds + do, d:d} +d.2.+d5’
e:dy+ds, f:dy+ds+dog: ds, h: dy +dg +do. The total red light time of
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P
(b)

(a)

mpatibility graph adding crosswalk 7, and (b) the

Figure 4: (a) the new co
graph of the new cycle at 8:11 am.

corresponding intersection

the new cycle is given by

4d, + 4ds + 4ds + 4ds + 4dg + 5dg. (41)

We set the minimum green light time for each stream equal 20 seconds, and use
the same duration for the cycle 275 seconds. Then we minimize equation (4.1)
subject to the following constraints

dy + ds > 20, dy + dg > 20,

ds > 20, dy + dg + dg > 20,

dy + dy + dg + dg > 20, dl+d4+d5_>_20,
dl+d2+d4+d6+d9220, dy + ds + d5 > 20,

dy + dz + dy + d5 + dg + dy = 275, d, > 20
dy > 50, dy > 55,

ds 2> 90, dg > 20,

dy > 20, de + dg = 60.

The soluti .
of solutions ;0;1 oit;(;b :ilne_ar programming problem is 1,120 seconds, where one
that the duration of K, f:i 50, d4 = 55, d5 = 90, dg = 40, and dy = 20. Notice
by the safety of peopl 6 18 decreased by 20 seconds; however, it is compensated

ple using the crosswalk. From our analysi's on.all cygl es from

6:16 am to 8:11 am. thi
: , this method d :
the total red light time by 20 Secon;greaseb the duration of K and increases
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5 Concluding Remarks

The result shows that the traffic li Ao .
C hght ph&blng system of the \/’lCtOI'y Mot

traffic .cu'cle is effl(‘l?xlt in the aspect of the total waiting time; however, a traffi
jam still occurs seriously. From our observation : : Sam

- : S : , in the morning, a (from San
Liam Din Daeng) is a heavily traveled traffic stream and has a t,grafﬁé jam for alL

long period of time, while all traffic streams inside the traffic circle (e, fy9,}
and all traffic streams moving out from the traffic circle have light trafﬁ’cs, ﬂz‘itlli
smoothly flowing. This reflects an inefficiency of phasing management. We now
analyze this problem to come up with a solution that c()mm reli:ve thé problem
with reasonable effect on other traffic streams.

For the safety reason of people who use the crosswalk on Ratchawithi Road.,

it is worth to study the possibility of installing a network linking the traffic light
phasing system and the crosswalk light.
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