## Abstract (บทคัดย่อ)

Project Code: MRG6080225

(รหัสโครงการ)

Project Title: Assistive Technology Design for Occupation-induced Musculoskeletal Disorder

Prevention based on Congenital Disability Orthotic Devices

(ชื่อโครงการ) การออกแบบเทคโนโลยีอำนวยความสะดวกสำหรับการป้องกันความผิดปกติของระบบกระดูก

และกล้ามเนื้อที่เกิดจากการประกอบอาชีพโดยพื้นฐานจากกายอุปกรณ์ของผู้พิการ

Investigators:

ดรุมานิดา สว่างเนตร นอยแบร์ท

Prof. Dr. David Kaber

Prof. Dr. Michael Gross

รศ.ดร.รุ้งทิพย์ พันธุเมธากุล

มหาวิทยาลัยขอนแก้น

University of Florida

University of North Carolina

มหาวิทยาลัยขอนแก่น

E-mail Address: manida@kku.ac.th

Project Period : 2 ਹੈ

(ระยะเวลาโครงการ)

งานวิจัยที่ผ่านมาแสดงให้เห็นว่าความพิการแต่กำเนิดอาจมีผลทางกายภาพและการรับรู้คล้ายกับความ พิการอันมีผลเนื่องมาจากสถานการณ์ที่พบในผู้ประกอบอาชีพ เทคโนโลยีอำนวยความสะดวกหลายประเภทที่ ออกแบบมาสำหรับคนพิการ ได้นำไปใช้กับผู้ใช้ทั่วไปที่มีการดำเนินงานในสภาพแวดล้อมที่รุนแรง งานวิจัยก่อน หน้านี้ของคณะผู้วิจัย (ได้รับการสนับสนุนจาก สกว.) ได้ดำเนินการศึกษาเปรียบเทียบสภาพทางกายภาพของ เกษตรกร (ชาวนา) และผู้พิการแต่กำเนิดหรือความพิการที่เกิดจากโรค (กลุ่มผู้ป่วยสมองพิการ (cerebral palsy, CP)) ผลการศึกษาแสดงให้เห็นว่าประชากรทั้งสองกลุ่มสามารถเชื่อมโยงกันได้ในแง่ของความชุกของ อาการผิดรูปของอาการผิดรูปของการหมุนของเท้าเข้าข้างใน (foot pronation) และข้อเข่าแบบโค้งเข้า (knee valgus) ระดับการรับรู้อาการปวดเข่า และสาเหตุความเจ็บปวดเนื่องมาจากระบบกระดูกและกล้ามเนื้อเท้า และเขาที่บกพร่อง จากการศึกษาที่ผ่านมานี้แสดงให้เห็นว่าการออกแบบเทคโนโลยีอำนวยความสะดวกสำหรับ สองกลุ่มประชากรนี้มีความเป็นไปได้ การศึกษานี้มีวัตถุประสงค์เพื่อพัฒนาออกแบบและทดสอบต้นแบบของ เทคโนโลยีอำนวยความสะดวกสำหรับการป้องกันความผิดปกติของระบบกระดูกและกล้ามเนื้อเท้าและเข่าที่ เกิดจากการประกอบอาชีพของชาวนาโดยพื้นฐานจากกายอุปกรณ์กายของกลุ่มผู้ป่วยสมองพิการ

ในงานวิจัยนี้คณะผู้วิจัยดำเนินการศึกษาเพื่อตรวจสอบอาการและสาเหตุของความผิดปกติของกระดูก และกล้ามเนื้อและสภาพความพิการของรยางค์ส่วนล่างของผู้ป่วย CP ที่มีโรคสมองพิการชนิดหดเกร็งประเภท spastic diplegia (มีอาการของขา 2 ข้างหดเกร็งมากกว่าแขน) เพิ่มจากการศึกษาครั้งก่อนอีกเป็นจำนวน 24 คน (อายุ 13.4 ± 2.3 ปี) ผลจากการศึกษาพบว่าอาสาสมัครผู้ป่วย CP ส่วนใหญ่ มีอาการผิดรูป การรับรู้อาการ ปวด และสาเหตุความเจ็บปวด ในลักษณะเช่นเดียวกับการศึกษาเบื้องต้น และสอดคล้องกับผลการศึกษาใน ชาวนาในการศึกษาครั้งก่อน ผลการเปรียบเทียบของชาวนาและอาสาสมัครผู้ป่วย CP เป็นการยืนยันให้เห็นว่า ประชากรทั้งสามารถเชื่อมโยงกันเช่นเดียวกับการศึกษาเบื้องต้นที่ผ่านมา นอกจากนี้ผลการศึกษาของการ ทดลองเพิ่มเติมเพื่อเปรียบเทียบกิจกรรมของกล้ามเนื้อระหว่างขณะที่ชาวนาเดินบนพื้นแข็งและพื้นโคลนแสดง ให้เห็นว่า การเดินพื้นดินโคลนทำให้ระดับของกล้ามเนื้อระหว่างขณะที่ชาวนาเดินบนพื้นแข็ง ดังนั้นปัญหาระบบ กระดูกและกล้ามเนื้อแ่อง (gastrocnemius ที่ใช้ในการงอข้อเท้า) มีค่ามากกว่าการเดินพื้นแข็ง ดังนั้นปัญหาระบบ กระดูกและกล้ามเนื้อและความบกพร่องที่เท้าและเข่าจึงเป็นส่วนสำคัญที่ควรเน้นต่อการพัฒนาออกแบบ เทคโนโลยีอำนวยความสะดวกเพื่อป้องกันความเสี่ยงต่อการบาดเจ็บรยางค์ส่วนล่างของทั้งชาวนาและผู้ป่วย CP

การทบทวนวรรณกรรมเกี่ยวกับเทคโนโลยีกายอุปกรณ์ของผู้พิการ พบว่าอุปกรณ์รองรับเท้าและข้อ เท้าที่มีความยืดหยุ่นและแผ่นเสริมพื้นรองเท้าเป็นเทคโนโลยีที่เป็นไปได้ในการช่วยเหลือชาวนาในกระบวนการ เพาะปลูกข้าว โดยพอลิเมอร์ชีวภาพและยางพาราเป็นวัสดุที่มีความเป็นไปได้ในการผลิตเทคโนโลยีอำนวยความ สะดวกสำหรับชาวนา จากการทดสอบเชิงกลและเชิงเคมีพบว่าอัตราส่วนพอลิเมอร์ชีวภาพต่อยางพาราที่ เหมาะสมต่อการใช้งานในสภาพพื้นที่ที่เป็นโคลนได้แก่ 3:2 ส่วนผสมของวัสดุดังกล่าวได้นำมาพัฒนาเป็น ต้นแบบของเทคโนโลยีอำนวยความสะดวกในรูปแบบของรองเท้า ประกอบกับแผ่นเสริมเท้าซึ่งออกแบบโดยใช้ เทคโนโลยีการแสกนเท้าและสร้างต้นแบบอย่างรวดเร็วเพื่อแก้ไขอาการผิดรูปของการหมุนของเท้าของแต่ละ บุคคล การทดลองเพื่อเปรียบเทียบกิจกรรมของกล้ามเนื้อระหว่างการจำลองการดำนาโดยไม่ใส่รองเท้า ใส่ รองเท้าบุท และใส่ต้นแบบของเทคโนโลยีอำนวยความสะดวกในรูปแบบของรองเท้า โดยมีอาสาสมัครที่มี อาการผิดรูปของ foot pronation พบว่าเทคโนโลยีอำนวยความสะดวกในรูปแบบของรองเท้าทำให้การใช้งาน กล้ามเนื้อ gastrocnemius มีค่าน้อยที่สุด และลดการใช้งานของกล้ามเนื้อ biceps femoris เมื่อเทียบกับการ ใส่รองเท้าบูทในขณะยกเท้าออกจากพื้นดินโคลน นอกจากนี้เทคโนโลยีอำนวยความสะดวกในรูปแบบของ รองเท้าสามารถช<sup>่</sup>วยให้กล้ามที่หน้าแข<sup>้</sup>งด้านหน้า (Tibialis Anterior ที่ใช้ในการชะลอการเกิด pronate ของ เท้า) มีค่าน้อยที่สุดในขณะยืนบนพื้นโคลน ดังนั้นเทคโนโลยีอำนวยความสะดวกในรูปแบบของรองเท้าที่เสนอ ในงานวิจัยนี้จึงมีความเป็นไปได้ที่จะสามารถลดและป้องกันความเสี่ยงต่อการบาดเจ็บรยางค์ส่วนล่างของ ชาวนาในการประกอบอาชีพได้

Previous research indicates congenital disabilities may have similar physical and cognitive outcomes to circumstantial disabilities encountered by workers in occupational tasks. There have been a number of studies conducted on assistive technology (AT) design for persons with disabilities that can be also applied to healthy workers who function in extreme environments. Our previous studies (previously funded by the Thailand Research Fund (TRF)) preliminarily identified correspondences between physical conditions of agricultural workers (rice farmers) and persons with congenital or disease-related disabilities (cerebral palsy (CP)). The studies found the farmers and CP participants to be potentially associated in terms of: foot pronation and knee valgus prevalence; knee pain perception and; foot and knee musculoskeletal impairments related pain. Through our previous studies, designing dual-use AT for working populations with MSDs and disabled populations was proved to be possible. This study aims to develop and preliminarily test a prototype of novel AT to target specific physical conditions and MSDs of knees and feet for rice farmers based on technology for CP populations.

In this study, we conducted additional examination of symptoms and causes of musculoskeletal and disability conditions of lower extremity (LE) in 24 CP patients (age:  $13.4 \pm 2.3$  years) with spastic diplegia. In line with previous preliminary results of the CP and farmer investigation, CP participants were found to exhibit similar characteristics of deformity, pain perception and origin of pain. The comparison results of farmers and CP participants confirmed the association between two populations, as previously identified in our preliminary study. Moreover, results of additional experiment, comparing muscle activity between when farmers walking on rigid and muddy ground, showed muddy ground to induce significantly higher levels of biceps femoris (BiF; knee flexor) and gastrocnemius (GA; ankle plantar flexor) muscle exertion, as compared with rigid ground. Therefore, knee and foot impairments and MSDs were emphasized in the development of our AT designs to prevent risk of LE injury for both farmer and CP populations.

The reviews of current orthotic technologies indicated a flexible ankle-footwear with corrective insoles to be a possible intervention to farmers in rice cultivation work. Biopolymer and natural rubber were selected as potential materials for AT design for farmers. Based on mechanical and chemical property tests, the ratio of biopolymer to rubber that was suitable for use in muddy areas was 3:2. The mixture of such materials was then developed as a prototype of AT in a form of footwear. The AT was equipped with corrective insoles designed using foot scanning technology and rapid prototyping to provide individual correction of foot

deformation. Experimental study was conducted with participants with foot pronation to compare muscle activity during simulated planting task with: barefoot, wearing common boots and wearing AT footwear. Results showed that during lifting the feet off the muddy ground, the AT footwear required the lowest levels of GA muscle exertion and lower levels of BiF muscle, as compared with wearing common boots. In addition, the AT footwear induced the lowest levels of tibialis anterior (TA; used to decelerate foot pronation) while standing on the mud. Therefore, the AT footwear proposed in this research provided a potential intervention for reducing and preventing risk of LE injury for farmer in their occupational tasks.

**Keywords :** Assistive technology; circumstantial disability; congenital disability; musculoskeletal conditions

(คำหลัก) เทคโนโลยีอำนวยความสะดวก; ความพิการอันมีผลเนื่องมาจากสถานการณ์; ความพิการแต่ กำเนิด; สภาพระบบกระดูกและกล้ามเนื้อ