(บทคัดย่อ)

รหัสโครงการ: MRG6080230

ชื่อโครงการ: การศึกษาความยืนยาวของการตอบสนองทางภูมิคุ้มกันของ Memory B cells และ Neutralizing antibodies จำเพาะต่อสายพันธุ์ polymorphic haplotypes ของวัคซีนแอนติเจน *Plasmodium vivax* Duffy Binding protein

ชื่อนักวิจัยและสถาบัน: รองศาสตราจารย์ ดร. พัชนี ชูทอง คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

อีเมลล์: pchooton@gmail.com

ระยะเวลาโครงการ: 17 กรกฎาคม พ. ศ. 2560-17 กรกฎาคม พ. ศ. 2562

บทคัดย่อ

การผลิตวัคซีนป้องกันโรคมาลาเรียชนิดไวแว็กซ์โดยนำแอนติเจน DBP มาพัฒนาผลิตค่อนข้างมีข้อจำกัดเนื่องจากมี การกลายพันธ์ของกรดอะมิโนของแอนติเจนชนิดนี้ ณ ตำแหน่งที่มีความจำเพาะกับ anti-inhibitory antibodies ในอัตราที่สูง ในการศึกษาครั้งนี้ได้ทำการวิเคราห์ความยืนยาวของการตอบสนองของกลุ่มเซลล์ memory B cells ที่จำเพาะต่อกลุ่มของ แอนติเจน DBL-TH ซึ่งได้แก่ DBL-TH2, -TH4, -TH5, -TH6 และ -TH9 ในคนไข้มาลาเรียชนิดไวแว็กซ์ที่อาศัยอยู่ในพื้นที่ ระบาดโรคมาลาเรียบริเวณภาคใต้ของประเทศไทยโดย vออกแบบการทดลองแบบ cohort study เพื่อตรวจติดตามการ ตอบสนองของแอนติบอดีและ memory B cells ในแต่ละคนไข้ในช่วงที่มีการติดเชื้อและหลังจากหายจากโรค ณ เวลา 3 เดือน 9 เดือนและ 12 เดือน การศึกษาพบว่าระดับของแอนติบอดีสูงขึ้นอย่างมีนัยสำคัญในช่วงที่คนไข้มีการติดเชื้อและระดับ แอนติบอดีจะยังคงอยู่ยืนยาวได้เพียงแค่ 9 เดือนหลังจากหายจากโรคซึ่งตรงกันข้ามกับการตอบสนองของ malaria-specific memory B cells ที่ยังคงตรวจพบหลังจากหายจากโรคเป็นระยะเวลา 3 ปีโดยคนไข้ไม่มีการติดเชื้อซ้ำ และเมื่อสวิเคราะห์กลุ่ม subset ของ memory B cell ที่ทำหน้าที่สอดคล้องกับการตอบสนองของแอนติบอดีโดยการตรวจด phenotype ของ memory B cells ผลการศึกษาพบว่ากลุ่ม subset ชนิด activated (CD19+CD21-CD27+) และ atypical MBCs (CD19⁺CD21⁻CD27⁻) มีการเพิ่มจำนวนสูงขึ้นในช่วงที่มีการติดเชื้อเมื่อเทียบกับคนปกติ เป็นที่น่าสนใจอย่างยิ่งว่าคนไข้ที่ตรวจ พบการเพิ่มจำนวนของสองกลุ่ม MBC subsets นี้มีการตอบสนองของระดับของแอนติบอดีต่ำลงหลังจากหายจากโรคในขณะที่ จำนวน DBL-TH-specific memory B cells ยังคงมีอยู่ การศึกษาครั้งนี้จึงบ่งชี้ให้เห็นว่าเชื้อมาลาเรียสามารถกระตุ้นกลุ่ม Activated และ atypical MBCs ได้และการเพิ่มจำนวนของสองเซลล์นี้มีความเสถียรซึ่งมีผลต่อการตอบสนองของ ผลการ ทดลองทั้งหมดนี้จึงสรุปได้ว่าแอนติเจน DBL-TH สามารถกระตุ้นให้เกิดการทำงานของ long-lasting MBCs ในคนไข้ที่อาศัยอยู่ ในพื้นที่ระบาดโรค low malaria endemicity

คำหลัก: แอนติเจน *Plasmodium vivax* Duffy Binding Protein, เซลล์กลุ่ม Memory B cells, ความยืนยาว

Abstract

Project Code: MRG6080230

Project Title: Longevity of memory B cell and neutralizing antibody responses against polymorphic

haplotypes of *Plasmodium vivax* Duffy Binding Protein vaccine candidate

Investigator: Assoc. Prof. Patchanee Chootong, Faculty of Medical Technology, Mahidol University

E-mail Address: pchooton@gmail.com

Project Period: 17 July 2017 - 17 July 2019

Abstract

The major challenge in designing a protective Duffy binding protein region II (DBPII)-based vaccine against blood-stage vivax malaria is the high number of polymorphisms in critical residues targeted by binding-inhibitory antibodies. Here, longevity of antibody and memory B cell response (MBCs) to DBL-TH variants, DBL-TH2, -TH4, -TH5, -TH6 and -TH9 were analyzed in P. vivax-exposed individuals living in a low malaria transmission area of southern Thailand. Antibody to DBL-TH variants were significantly detected during P. vivax infection and it was persisted for up to 9 months post-infection. However, DBL-TH-specific MBC responses were stably maintained longer than antibody response, at least 3 years post-infection in the absence of re-infection. Phenotyping of B cell subsets showed the expansion of activated (CD19+CD21-CD27+) and atypical MBCs (CD19+CD21-CD27-) during acute and recovery phase of infection. While the persistence of DBL-TH-specific MBCs was found in individuals who had activated and atypical MBC expansion, anti-DBL-TH antibody responses was rapidly declined in plasma. The data suggested that these two MBCs were triggered by P. vivax infection, its expansion and stability may have impact on antibody responses. Our results provided evidence for ability of DBPII variant antigens in induction of long-lasting MBCs among individuals who were living in low malaria endemicity.

Keywords: Plasmodium vivax Duffy Binding Protein, Memory B cells, longevity