รหัสโครงการ: MRG6080233

ชื่อโครงการ: Effects of Different Photosynthetic Bacteria (PSB) Used as Diet on

Survival, Growth Performances, Biochemical Composition and Rearing

Water Quality of the Nauplii and Adult Fairy Shrimp of Thailand and

Evaluation of Dried PSB on Fairy Shrimp Culture

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร.ชีวาพัฒน์ แซ่จึง

สาขาวิชาจุลชีววิทยา คณะวิทยาศาสตร์

มหาวิทยาลัยขอนแก่น

E-mail Address: chewap@kku.ac.th

ระยะเวลาโครงการ: กรกฎาคม 2560 - กรกฎาคม 2562

บทคัดย่อ: ไรน้ำนางฟ้าสิรินธร Streptocephalus sirindhornae Sanoamuang, Murugan, Weekers and Dumont. 2000 จัดเป็นอาหารมีชีวิตชนิดใหม่ที่สามารถนำไปใช้ในการเพาะเลี้ยงสัตว์น้ำ การผลิตอาหารที่มี คุณภาพสำหรับไรน้ำนางฟ้าจึงจัดว่ามีความสำคัญและปัจจุบันมีการใช้เพียงสาหร่ายขนาดเล็กและยีสต์ ซึ่ง แบคทีเรียสังเคราะห์แสงจัดเป็นจุลินทรีย์ที่มีประโยชน์ในการใช้เป็นอาหารสัตว์น้ำที่สามารถผลิตได้จาก สับสเตรทที่มีราคาถูก ดังนั้นในงานวิจัยนี้จึงใช้แบคทีเรียสังเคราะห์แสงสายพันธุ์ผลิตแคโรทีนอยด์ Rhodopseudomonas faecalis PA2 และแบคทีเรียสังเคราะห์แสงที่นิยมใช้เป็นอาหารสัตว์น้ำ ได้แก่ Rhodopseudomonas palustris และ Rhodobacter sphaeroides เพื่อเป็นอาหารแก่นอเพลียสและตัว เต็มวัยของไรน้ำนางฟ้าสิรินธร ซึ่งพบว่านอเพลียสและตัวเต็มวัยของไรน้ำนางฟ้าจะมีอัตราการรอดชีวิตและ อัตราการเจริญสูงสุดเมื่อใช้ Rps. faecalis PA2 เป็นอาหารเปรียบเทียบกับการเลี้ยงด้วยสาหร่าย Chlorella vulgaris และแบคทีเรียสังเคราะห์แสงชนิดอื่น จากนั้นนำ Rps. faecalis PA2 มาเตรียมในรูปเซลล์แห้งโดย วิธี lyophilization และตากแห้ง เพื่อนำไปเป็นอาหารแก่ไรน้ำนางฟ้า โดยใช้ C. vulgaris, Rps. faecalis PA2 ในรูปน้ำ, Rps. faecalis PA2 ในรูปเซลล์แห้งที่เตรียมโดยวิธี lyophilization, Rps. faecalis PA2 ในรูป เซลล์แห้งที่เตรียมโดยวิธีตากแห้งและสไปรูไลน่าผงเป็นอาหารให้แก่ไรน้ำนางฟ้าวันละ 1 ครั้ง จนกระทั่งไรน้ำ นางฟ้ามีอายุครบ 30 วัน ผลการทดลองพบว่าไรน้ำนางฟ้าที่ใช้ Rps. faecalis PA2 ในรูปน้ำเป็นอาหารจะมี อัตราการรอดชีวิตและอัตราการเจริญสูงสุด ในขณะที่การใช้สไปรูไลน่าผงเป็นอาหารจะทำให้มีอัตราการรอด ชีวิตต่ำสุด ถึงแม้ว่าการใช้ Rps. faecalis PA2 ในรูปน้ำเป็นอาหารจะมีประสิทธิภาพในการเพิ่มอัตราการรอด ชีวิตและอัตราการเจริญได้ดีกว่า แต่การใช้ในรูปเซลล์แห้งจะมีความสะดวกในการเก็บรักษา ดังนั้นแบคทีเรีย ชนิดนี้จึงจัดเป็นอาหารอีกทางเลือกหนึ่งแก่การเพาะเลี้ยงไรน้ำนางฟ้าสิรินธร

คำหลัก: แบคทีเรียสังเคราะห์แสง, ไรน้ำนางฟ้า, Rhodopseudomonas sp., Rhodobacter sp.

Project Code: MRG6080233

Project Title: Effects of Different Photosynthetic Bacteria (PSB) Used as Diet on

Survival, Growth Performances, Biochemical Composition and Rearing

Water Quality of the Nauplii and Adult Fairy Shrimp of Thailand and

Evaluation of Dried PSB on Fairy Shrimp Culture

Investigator: Assistant Professor Dr. Chewapat Saejung

Department of Microbiology, Faculty of Science

Khon Kaen University, Thailand

E-mail Address: chewap@kku.ac.th

Project Period: July 2017 - July 2019

Abstract: The indigenous fairy shrimp of Thailand, Streptocephalus sirindhornae Sanoamuang, Murugan, Weekers and Dumont, 2000 has been recognized as the new live food used in aquaculture. The mass production of high quality feed for fairy shrimp is crucial and it is currently restricted to microalgae and yeast. Photosynthetic bacteria (PSB) have considered advantages as diet in aquaculture that can be produced on the cheap substrate. In this study, carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2 and the known PSB utilized in aquaculture, Rhodopseudomonas palustris and Rhodobacter sphaeroides, were used as diets in the nauplii and adult fairy shrimp S. sirindhornae. The nauplii and immature/adult fairy shrimp fed with Rps. faecalis PA2 showed the highest survival and growth rates compared to Chlorella vulgaris and the other PSB. Rps. faecalis PA2 was formulated into the dry biomass by lyophilization and air drying methods, and then they were fed to the fairy shrimp. C. vulgaris, liquid Rps. faecalis PA2, lyophilized biomass of Rps. faecalis PA2, air dried biomass of Rps. faecalis PA2 and Spirulina powder were fed to the fairy shrimp once a day until the shrimp reached 30 days of age. Results showed that the highest survival and growth rates were found in the fairy shrimp fed with liquid Rps. faecalis PA2, whereas the shrimp fed with Spirulina powder showed the lowest survival. Although the liquid Rps. faecalis PA2 was more effective to enhance survival and growth rate, the dry biomass was more convenient for storage. Therefore, this bacterium is a good alternative food source for the cultivation of S. sirindhornae.