

รายงานวิจัยฉบับสมบูรณ์

โครงการการศึกษาระบาดวิทยาระดับโมเลกุลของเชื้อแบคทีเรียสแตฟิโลคอคคัส ออเรียสที่ดื้อต่อยาเมทิซิลลินในผู้ป่วยในโรงพยาบาล คนสุขภาพดีและสุกรในประเทศไทย

โดย ผศ.ดร.ภญ.ทศวรรณ์ จิตรวงศ์นกุล

ตุลาคม 2562

สัญญาเลขที่ MRG 6080263

รายงานวิจัยฉบับสมบูรณ์

โครงการการศึกษาระบาดวิทยาระดับโมเลกุลของเชื้อแบคทีเรียสแตฟิโลโคคัส ออเรียสที่ดื้อต่อยาเมทิซิลลินในผู้ป่วยในโรงพยาบาล คนสูขภาพดีและสูกรในประเทศไทย

ผู้วิจัย ผศ.ดร.ภญ.ทศวรรณ์ จิตรวงศ์นกุล
สังกัด คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร

สนับสนุนโดย
สำนักงานกองทุนสนับสนุนการวิจัยและต้นสังกัด
(ความเห็นในรายงานนี้เป็นของผู้วิจัย
สกอ.และต้นสังกัดไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

เชื้อสแตฟิโลโคคัส ออเรียสที่ต่อต้านยาเมทิซิลิน (Methicillin-resistant *Staphylococcus aureus*; MRSA) เป็นเชื้อที่ก่อให้เกิดโรคติดเชื้อในผู้ป่วยโดยเกิดจากทั้งชนิดที่มีจุดกำเนิดการตื้อ ยานในโรงพยาบาล (Hospital-acquired MRSA; HA-MRSA) และในชุมชน (Community-acquired MRSA; CA-MRSA) นอกจากนี้ยังพบเชื้อ MRSA ที่มีจุดกำเนิดการตื้อยาจากในปศุสัตว์ด้วย (Livestock-acquired MRSA; LA-MRSA) ที่แพร่กระจายมาอย่าง猛ขึ้นได้อีกด้วย อย่างไรก็ตาม ยังไม่มีการศึกษาความสัมพันธ์ทางพันธุกรรมและรูปแบบการตื้อยาชนิดต่างๆ ของเชื้อทั้งสาม กลุ่มที่ก่อโรคในสัตว์ คนสุขภาพดี และผู้ป่วยในโรงพยาบาลของประเทศไทย การศึกษาที่มีวัตถุประสงค์ในการประเมินระบาดวิทยาเชิงโมเลกุลและรูปแบบความไวต่อยาของเชื้อ MRSA ที่พบจากผู้ป่วยในโรงพยาบาล หมูและคนงานในฟาร์มหมูทั่วไป รวมถึงหมูและคนงานจากฟาร์ม หมูอินทรีย์ การศึกษานี้คาดหวังว่าจะได้ข้อมูลเบื้องต้นสำหรับประกอบการวางแผนการควบคุม การแพร่กระจายของเชื้อ MRSA โดยใช้วิธีการทดสอบความไวของเชื้อต่อยา การเปรียบเทียบ ประเกทชินส่วนพันธุกรรมเคลื่อนที่ SCCmec ที่มีผลต่อการตื้อยาของ MRSA และการเปรียบเทียบจีโนมของ MRSA ที่ระบาด ผลการทดสอบพบว่า เชื้อในจีนสแตฟิโลโคคัสที่ตื้อต่อยาเซฟฟอกซิ tinase ใช้เป็นตัวคัดเลือกเชื้อตื้อยาเมทิซิลินในฟาร์มเลี้ยงหมูทั่วไปร้อยละ 75 และ MRSA ร้อยละ 12.5 โดยสัดส่วนนี้มากกว่าฟาร์มหมูอินทรีย์ซึ่งพบร้อยละ 15 และ 0 ตามลำดับ และยังพบ MRSA ในโรงพยาบาล 4 ตัวอย่าง นอกจากนี้ยังมีความแตกต่างของชนิด SCCmec ของเชื้อจีนสแตฟิโลโคคัสและ MRSA ระหว่างในฟาร์มเลี้ยงหมูทั่วไป ฟาร์มเลี้ยงหมูอินทรีย์ และ โรงพยาบาล SCCmec ชนิดที่พบมากที่สุดในฟาร์มเลี้ยงหมูทั่วไปเป็นชนิด LA-*Staphylococci* [SCCmec XII(9C2)] ในฟาร์มเลี้ยงหมูอินทรีย์เป็นชนิด CA-*Staphylococci* [SCCmec IX(1C2)] และในโรงพยาบาลเป็นชนิด CA-*Staphylococci* [IVj(2B)] เป็นที่น่าสังเกตุ ว่า MRSA จากฟาร์มเลี้ยงหมูทั่วไป และโรงพยาบาลมี SCCmec ที่พบริ่่น MRSA ชนิดที่แตกต่างกัน เป็นไปได้ว่า CA-MRSA ของแต่ละชนิดจะเกิดขึ้นเฉพาะในแต่ละแหล่ง อย่างไรก็ตาม MRSA ในคนสุขภาพดีทั่วไปในชุมชนจังหวัดนครปฐมควรจะถูกศึกษาเพิ่มเติมในอนาคต

Abstract (បញ្ជីយោបល់)

Methicillin-resistant *Staphylococcus aureus* (MRSA) is a causative microorganism of the infectious disease in hospital (HA-MRSA), and community (CA-MRSA). Also, it can colonize in livestock (LA-MRSA), and spread to humans. However, their genetic relatedness and drug-resistance pattern among animal, healthy human, and hospital had not been revealed in Thailand. This study aimed to evaluate the molecular epidemiology, and drug susceptibility pattern of epidemic MRSA among hospitalized patients, a general and an organic pig farms. This study expected the preliminary data for planning the control of MRSA outbreak by using antimicrobial susceptibility, SCCmec typing, and whole genome comparison. Surprisingly, the result showed that the general pig farm had 75% of cefoxitin-resistant *Staphylococci* and 12.5% of MRSA. In contrast, the organic one had 15% of cefoxitin-resistant *Staphylococci* and none of MRSA. Only 4 isolates of MRSA were discovered from patients. Moreover, there were significantly different SCCmec types of *Staphylococci* and that of MRSA between the general pig farm, the organic pig farm and the hospital. The most common SCCmec type from the general pig farm was LA-*Staphylococci* [SCCmec XII(9C2)], that from the organic pig farm was CA-*Staphylococci* [SCCmec IX(1C2)], that from the hospital was CA-*Staphylococci* [IVj(2B)]. Interestingly, MRSA in the general pig farm and the hospital belonged to the different community-acquired SCCmec elements. It is possible that CA-MRSA types were emerged in each community. In the future, MRSA should be more studied in healthy humans in Nakorn Pathom province.

Project Title : Molecular Epidemiology of Methicillin-resistant *Staphylococcus aureus* among hospitalized patients, healthy humans, and pigs in Thailand

Investigator : Assist.Prof.Dr.Tossawan Jitwasinkul

Department of Biopharmacy/ Faculty of Pharmacy/ Silpakorn University

E-mail Address : tosskiji@gmail.com; jitwasinkul_t@su.ac.th

Project Period : 2 years with extended 6 months

Objectives

- 1) To determine the molecular epidemiology of MRSA among hospitalized patients, outpatients, healthy human, and livestock.
- 2) To identify the association of drug susceptibility pattern and SCCmec type of epidemic MRSA among hospitalized patients, outpatients, healthy human, and livestock.

Methodology

*1) Sample collection, microbiological analysis and *S. aureus* identification*

The study investigates MRSA from 3 groups of population. In the first groups, 4 MRSA isolates from patients hospitalized more than 48 hours. In the two latter, nasal swab will be collected from 40 weaned healthy pigs living on two farms including a general and traditional farm in Nakorn Pathom province, and from all healthy workers of each farm. This study will be approved by Human Ethics Committee and Animal Ethics Committee. For microbiological analysis, swabs will be inoculated in enrichment medium, and after incubation period, it will be transferred to Mannitol Salt Agar with 2 µg/ml of cefoxitin which show drug-resistant *Staphylococci*. *S. aureus* will be identified by using species-specific PCR, whole genome sequencing and KmerFinder (Center for Epidemiology). Also, *mecA* will be detected by PCR to prove MRSA identification.

2) Antimicrobial susceptibility testing by disk diffusion and E-test

Disk diffusion method (CLSI 2016) will be applied for testing antimicrobial activity. The disk of antibiotics, including cefoxitin, tetracycline, trimethoprim/sulfamethoxazole, and clindamycin, will be put on the lawn of each isolates. After incubation, the diameter of clear zone around disk will be measured. In contrast, vancomycin susceptibility test was performed by using E-test and minimum-inhibitory concentration (MIC). The standard

methicillin-susceptible *S. aureus* (MSSA; *S. aureus* strain ATCC25923) and methicillin-resistant *S. aureus* (MRSA; *S. aureus* ATCC43300) will be used as experiment controls.

3) *mecA* detection

Genomic DNA of MRSA isolates will be extracted by using genomic DNA purification kit. Methicillin-resistance gene, *mecA* will be detected from genomic DNA by Polymerase Chain Reaction (PCR). Specific primers were formerly indicated by Oliveira et al (2002). Detectable *mecA* genes will be confirmed by using Sanger sequencing

4) *SCCmec* typing

SCCmec typing will be performed by using amplifying *SCCmec*-specific genes as previously described by Wilailuckana et al (2006), Okuma et al (2002), and Oliveira et al (2002).

5) Whole-genome sequencing and genome analysis

MRSA that spread among human and pigs will be performed whole-genome sequencing by using MiSeq (Illumina). Multilocus-sequence typing and spa typing was analyzed by using the MLST and spaTyper databases from Center for Genomic Epidemiology, DTU.

Result

1) Drug susceptibility test by using disk diffusion and E-test

Among 80 *Staphylococci* isolates from pigs in farm A (general farm) and farm B (organic farm), the result showed 75% and 15% of *Staphylococci* were resistant to cefoxitin from the general and organic pig farm, respectively. Also, 80% and 1.7% of cefoxitin-resistant *Staphylococci* were resistant to clindamycin from the general and organic pig farm, respectively. Among 5 workers in the general pig farm and 2 workers in the organic pig farm, 60% and 50% of their staphylococcal isolates were resistant to cefoxitin and most of them were resistant to clindamycin. Four staphylococcal isolates from patients were resistant to cefoxitin, and most of them were resistant to clindamycin. Moreover, susceptible pattern of tetracycline converted to that of sulphamethoxazole-trimethoprim. Fortunately, only 1 vancomycin-resistant isolate was found from each pig farm (Table 1).

Table 1: Drug susceptibility pattern of staphylococci isolates

FARM	Sample ID	Susceptibility (Zone diameter)				Susceptibility (MIC-ug/ml)
		Cefoxitin	Clindamycin	Tetracycline	Sulphamethoxazole - trimethoprim	
A	A1	Resistant (20)	Resistant (11)	Resistant (8)	Susceptible (28)	Susceptible (0.75)
	A2	Resistant (17)	Resistant (9)	Resistant (10)	Susceptible (28)	Susceptible (1.5)
	A3	Resistant (15)	Resistant (0)	Resistant (8)	Susceptible (27)	Susceptible (1)
	A5	Resistant (15)	Resistant (7)	Resistant (13)	Susceptible (18)	Susceptible (0.38)
	A6	Resistant (12)	Resistant (0)	Intermediate (15)	Susceptible (24)	Susceptible (0.75)
	A8	Resistant (19)	Resistant (0)	Resistant (13)	Susceptible (28)	Susceptible (0.75)
	A9	Resistant (19)	Resistant (7)	Resistant (10)	Susceptible (32)	Susceptible (1)
	A10	Resistant (19)	Intermediate (15)	Intermediate (14)	Susceptible (29)	Susceptible (0.5)
	A12	Resistant (18)	Intermediate (17)	Intermediate (15)	Susceptible (29)	Susceptible (0.5)
	A13	Resistant (15)	Resistant (13)	Resistant (8)	Susceptible (28)	Susceptible (0.5)
	A14	Resistant (10)	Resistant (8)	Intermediate (15)	Susceptible (20)	Susceptible (0.5)
	A15	Resistant (15)	Resistant (0)	Resistant (7)	Susceptible (22)	Susceptible (1)
	A17	Resistant (15)	Resistant (0)	Resistant (12)	Susceptible (18)	Susceptible (0.5)
	A18	Resistant (11)	Resistant (0)	Intermediate (14)	Susceptible (21)	Susceptible (0.75)
	A20	Resistant (12)	Resistant (9)	Intermediate (14)	Susceptible (28)	Susceptible (0.75)
	A21	Resistant (19)	Intermediate (15)	Resistant (12)	Susceptible (28)	Susceptible (0.5)
	A22	Resistant (19)	Intermediate (15)	Susceptible (30)	Susceptible (28)	Susceptible (0.75)
	A23	Resistant (15)	Resistant (9)	Resistant (7)	Susceptible (23)	Resistant (4)
	A24	Resistant (19)	Intermediate (15)	Susceptible (27)	Susceptible (23)	Susceptible (0.38)
	A25	Resistant (11)	Resistant (9)	Resistant (13)	Susceptible (23)	Susceptible (0.5)
	A26	Resistant (12)	Resistant (8)	Intermediate (14)	Susceptible (20)	Susceptible (1)
	A27	Resistant (11)	Resistant (9)	Intermediate (15)	Susceptible (20)	Susceptible (0.5)
	A28	Resistant (19)	Resistant (7)	Susceptible (29)	Susceptible (24)	Susceptible (0.5)
	A29	Resistant (11)	Resistant (9)	Resistant (13)	Susceptible (21)	Susceptible (0.5)
	A30	Resistant (11)	Resistant (8)	Intermediate (14)	Susceptible (19)	Susceptible (0.75)
	A31	Resistant (18)	Resistant (0)	Resistant (11)	Susceptible (24)	Susceptible (0.5)
	A35	Resistant (20)	Resistant (0)	Susceptible (28)	Susceptible (25)	Susceptible (0.75)
	A36	Resistant (20)	Resistant (0)	Resistant (0)	Susceptible (22)	Susceptible (1)
	A37	Resistant (20)	Intermediate (15)	Susceptible (28)	Susceptible (17)	Susceptible (0.75)
	A39	Resistant (16)	Resistant (0)	Resistant (0)	Susceptible (26)	Susceptible (0.5)
	AH1	Resistant (17)	Resistant (0)	Resistant (9)	Susceptible (26)	Susceptible (1.5)
	AH4	Resistant (19)	Resistant (0)	Resistant (7)	Susceptible (18)	Susceptible (0.75)
	AH5	Resistant (11)	Susceptible (25)	Resistant (13)	Susceptible (21)	Susceptible (1)
B	B1	Resistant (13)	Susceptible (30)	Susceptible (27)	Susceptible (32)	Susceptible (1)
	B2	Resistant (17)	Susceptible (27)	Resistant (11)	Susceptible (27)	Susceptible (0.5)
	B4	Resistant (18)	Susceptible (32)	Susceptible (27)	Susceptible (33)	Susceptible (0.5)
	B5	Resistant (0)	Resistant (0)	Resistant (7)	Susceptible (33)	Susceptible (1.5)
	B21	Resistant (18)	Susceptible (20)	Susceptible (24)	Susceptible (20)	Susceptible (2)
	B33	Resistant (14)	Susceptible (28)	Resistant (0)	Susceptible (28)	Resistant (>256)
	BH1	Resistant (19)	Resistant (13)	Intermediate (15)	Resistant (9)	Susceptible (0.75)
H	HH1	Resistant (10)	Susceptible (25)	Susceptible (25)	Susceptible (28)	Susceptible (0.75)
	HH2	Resistant (16)	Resistant (6)	Resistant (9)	Susceptible (23)	Susceptible (1)
	HH3	Resistant (10)	Resistant (6)	Susceptible (25)	Susceptible (28)	Susceptible (1)
	HH4	Resistant (8)	Resistant (6)	Resistant (9)	Susceptible (22)	Susceptible (1.5)

Remarks: A = general pig farm; B = organic pig farm, H = hospital

2) *mecA* detection and *SCCmec* typing by using multiplex PCR and *SCCmec* Finder

This multiplex PCR from the study of Kunyan Zhang et al. can define *mecA* and *SCCmec* type I-V. All drug-resistant *Staphylococci* from pig and worker in the general farm carried *mecA*, but those in the organic farm carried 66.67%. *SCCmec* type IVb were revealed in 9 *Staphylococci* isolates from the general farm; In contrast, 1 isolate from a worker in the organic farm carried *SCCmec* type Iva, and 1 isolate from patient carried and *SCCmec* type V. However, remaining isolates from both the general and organic farm cannot be identified by this method (Table 2). Therefore, this study performed whole genome sequencing and analyzed data with *SCCmec*Finder to identify other *SCCmec* types. Surprisingly, the result showed the different *SCCmec* types. *SCCmec* type IVb from the first method became XII(9C2), *SCCmec* type Iva change to unidentified type, and *SCCmec* type V convert to IVj(2B). It indicated that different methods showed different types of *SCCmec* elements. Multiplex PCR did not identify more than 5 types, and showed the deviation. For example, A26 was identified to *SCCmec* type IVb which is CA-methicillin-resistant-*Staphylococci*., but whole genome sequencing and *SCCmec*Finder program indicated *SCCmec* type XII(9C2) which is LA-methicillin-resistant-*Staphylococci*.. Therefore, this study used information from sequencing method and *SCCmec*Finder program.

Most *SCCmec* type of isolates from the general pig farm was XII(9C2), and that from the organic farm was IX(1C2). Also, non-typeable, *SCCmec* type V(5C2) + IX(1C2), VIII(4A) and III(3A) were found in the general pig farm. Non-typable *SCCmec* could be found from farm B. *SCCmec* types found in patients were IVj(2B), V(5C2) + IX(1C2), IVj(2B) and Vc(5C2&5) that all were CA-methicillin-resistant-*Staphylococci*. Interestingly, we found *SCCmec* type V(5C2) + IX(1C2) from farm A and hospital.

Table 2: Comparison of *SCCmec* types of *Staphylococci* between Multiplex PCR and *SCCmec*Finder

FARM	Sample ID	Multiplex PCR		<i>SCCmec</i> Finder
		<i>mecA</i>	<i>SCCmec</i> type	<i>SCCmec</i> type
A	A1	Positive	none	none
	A2	Positive	none	VIII(4A)
	A3	Positive	none	III(3A)
	A5	Positive	none	none
	A6	Positive	IVb	NA
	A8	Positive	none	NA
	A9	Positive	none	NA
	A10	Positive	none	NA
	A12	Positive	none	none

	A13	Positive	none	none
	A14	Positive	IVb	XII(9C2)
	A15	Positive	none	NA
	A17	Positive	none	NA
	A18	Positive	IVb	XII(9C2)
	A20	Positive	IVb	XII(9C2)
	A21	Positive	none	NA
	A22	Positive	none	NA
	A23	Positive	none	NA
	A24	Positive	none	V(5C2) + IX(1C2)
	A25	Positive	IVb	NA
	A26	Positive	IVb	XII(9C2)
	A27	Positive	IVb	NA
	A28	Positive	none	NA
	A29	Positive	IVb	NA
	A30	Positive	IVb	NA
	A31	Positive	none	NA
	A35	Positive	none	NA
	A36	Positive	none	NA
	A37	Positive	none	NA
	A39	Positive	none	NA
	A42	Positive	none	V(5C2) + IX(1C2)
	AH1	Positive	none	VIII(4A)
	AH4	Positive	none	none
	AH5	Positive	none	XII(9C2)
B	B1	Positive	none	IX(1C2)
	B2	Positive	none	IX(1C2)
	B4	Positive	none	IX(1C2)
	B5	Negative	none	none
	B21	Negative	none	none
	B33	Positive	none	none
	BH1	Positive	IVa	none
H	HH1	Positive	none	IVj(2B)
	HH2	Positive	none	V(5C2) + IX(1C2)
	HH3	Positive	V	IVj(2B)
	HH4	Positive	none	Vc(5C2&5)

Remarks: none = non typable, NA = not perform sequencing

3) *S. aureus* identification and typing by using species-specific PCR, KmerFinder, Spa Typing and MLST

S. aureus species was identified from all methicillin-resistant *Staphylococci* by using species-specific PCR. After that, all *S. aureus* isolates were performed whole genome sequencing, and their data were analyzed with KmerFinder, SpaTyping, and MLST (Table 3). The result showed that five *S. aureus* isolates from both pig and worker from the general farm had the best homology with *Staphylococcus aureus* subsp. *aureus*

JH1, whereas two different strains of *S. aureus* were found from patients. Interestingly, no MRSA were found from pig isolate from farm B.

Table 3: Typing of methicillin-resistant *Staphylococcus aureus*

ID	SCCmec	Spa Type	MLST	Closely <i>S. aureus</i> strain
A14	XII(9C2)	t337	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> JH1
A18	XII(9C2)	t337	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> JH1
A20	XII(9C2)	t337	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> JH1
A26	XII(9C2)	t337	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> JH1
AH5	XII(9C2)	t337	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> JH1
HH1	IVj(2B)	t022	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> HO 5096 0412
HH2	V(5C2)+IX(1C2)	t034	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> ST398
HH3	IVj(2B)	t032	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> HO 5096 0412
HH4	Vc(5C2&5)	t034	NA	<i>Staphylococcus aureus</i> subsp. <i>aureus</i> ST398

Discussion and Conclusion

This study showed significantly different cefoxitin-resistant *Staphylococci* proportion between general and organic swine farm. The general swine farm has 75% of cefoxitin-resistant *Staphylococci*, but the organic farm has 15%. However, vancomycin resistance appeared only one sample from each farm. Cefoxitin-resistant *Staphylococci* types among pig, workers and patients were compared by using SCCmec typing, and MRSA types were evaluated by SCCmec typing, and spa typing. The result indicated that SCCmec elements of *Staphylococci* were quite similar between pigs and workers in the same farm, but different from patients. In congruent with comparison in *Staphylococci*, MRSA from pigs and a worker were the same SCCmec and spa type. When whole genome sequence of MRSA were compared with other reference MRSA, the closely related MRSA were different between pig farm and hospital. However, MRSA emerging in hospital were CA-MRSA.

SCCmec types from the general farm were XII(9C2), V(5C2) + IX(1C2), VIII(4A) and III(3A), whereas that from the organic farm was IX(1C2). SCCmec type XII that was the most prevalent in general farm had ever found in cow-milk in China, and it was LA-

MRSA; also, both hospital-acquired (HA) and community-acquired (CA) types were found in general farm. In contrast, cefoxitin-resistant *Staphylococci* from organic farm showed *SCCmec* type IX, which had ever found in LA-MRSA from pig isolates in North-eastern Thailand. According to both drug susceptibility pattern and *SCCmec* typing, they indicated that cefoxitin-resistant *Staphylococci* were more prevalent in the general pig farm and carried *SCCmec* cassette from all HA-, CA-, and LA-methicillin-resistant-*Staphylococci*. In contrast, a few cefoxitin-resistant *Staphylococci* (LA) were found in the organic farm, but no MRSA was discovered. The factors of feeding and antibiotic usage in different farms probably affect cefoxitin-resistant *Staphylococci* spreading.

In conclusion, the proportion of cefoxitin-resistant *Staphylococci* were found in the general pig farm more than the organic farm; together with, various *SCCmec* types were established in the general pig farm. It implied more contamination of antibiotics in the general pig farming. Interestingly, MRSA in both pig farm and hospital carried community-acquired *SCCmec* element. It was possible that CA-MRSA types were emerged in community. In the future, MRSA should be more studied in healthy humans in Nakorn Pathom province.

Keywords : Methicillin-resistant *Staphylococcus aureus*, Cefoxitin-resistant *Staphylococci*, *SCCmec*, Community-acquired MRSA, Livestock-acquired MRSA

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

1. ผลงานตามที่คาดไว้ในสัญญาโครงการ
 - ชื่อเรื่องที่คาดว่าจะพิมพ์: Molecular epidemiology of Methicillin-resistant *Staphylococcus aureus* among hospital, community and swine farm in Thailand
 - ชื่อวารสารที่คาดว่าจะตีพิมพ์: Journal of Global Antimicrobial Resistance ค่า impact factor: 1.087
2. การนำผลงานวิจัยไปใช้ประโยชน์
 - เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
ผลการดำเนินงานโครงการ “การศึกษาระบาดวิทยาระดับโมเลกุลของเชื้อแบคทีเรียสแต็พิโลโคคัส ออเรียสที่ดื้อต่อยาเมทิซิลลินในผู้ป่วยในโรงพยาบาล คนสุขภาพดีและสูกรในประเทศไทย” ช่วยส่งเสริมการทำฟาร์มเลี้ยงสัตว์อินทรีย์ของเกษตรกรในจังหวัดนครปฐมเพื่อช่วยลดปัญหาการเกิดเชื้อดื้อยาในผลิตภัณฑ์เนื้อหมู ส่งผลให้กลุ่มวิสาหกิจชุมชนเห็นช่องทางตลาดภายใต้เงื่อนไขดังนี้
และปลดภัยต่อผู้บริโภค สามารถวางแผนการผลิตได้อย่างมีประสิทธิภาพเกิดการพึ่งพาตนเองได้ในชุมชน ก่อให้เกิดศูนย์การเรียนรู้ (แหล่งเรียนรู้ชุมชน).
 - เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)
จากผลการดำเนินงานโครงการ “การศึกษาระบาดวิทยาระดับโมเลกุลของเชื้อแบคทีเรียสแต็พิโลโคคัส ออเรียสที่ดื้อต่อยาเมทิซิลลินในผู้ป่วยในโรงพยาบาล คนสุขภาพดีและสูกรในประเทศไทย” โดยสามารถแสดงการเปรียบเทียบให้เห็นการแพร่กระจายของเชื้อดื้อยาในการเลี้ยงสัตว์แบบทั่วไปและแบบอินทรีย์ และความสัมพันธ์กับเชื้อดื้อยาในโรงพยาบาล ซึ่งโครงการนี้สามารถสร้างองค์ความรู้ใหม่ (Journal paper) และผลิตบุคลากรนักวิจัยของภาควิชาชีวเภสัชศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร และนักวิจัยจากสถาบันอื่นให้มีองค์ความรู้ด้านเชื้อดื้อยาให้มีความชำนาญมากขึ้น
3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)
 - การนำเสนอผลงานในงานประชุม “นักวิจัยรุ่นใหม่..พบ..เมธิซิลลิน-โอโซ สกอ.” ครั้งที่ 18: The Spread of Community-acquired methicillin-resistant *Staphylococcus aureus* in animal farms and human in the middle part of Thailand
 - การนำเสนอผลงานในงานประชุมวิชาการ the 30th European Congress of Clinical Microbiology & Infectious Diseases ระหว่างวันที่ 18-21 เมษายน

2563 ที่คาดว่าจะเกิดขึ้น: The Spread of Livestock-acquired, Community-acquired, and Hospital acquired *Staphylococci* in pig farms and a hospital in the middle part of Thailand

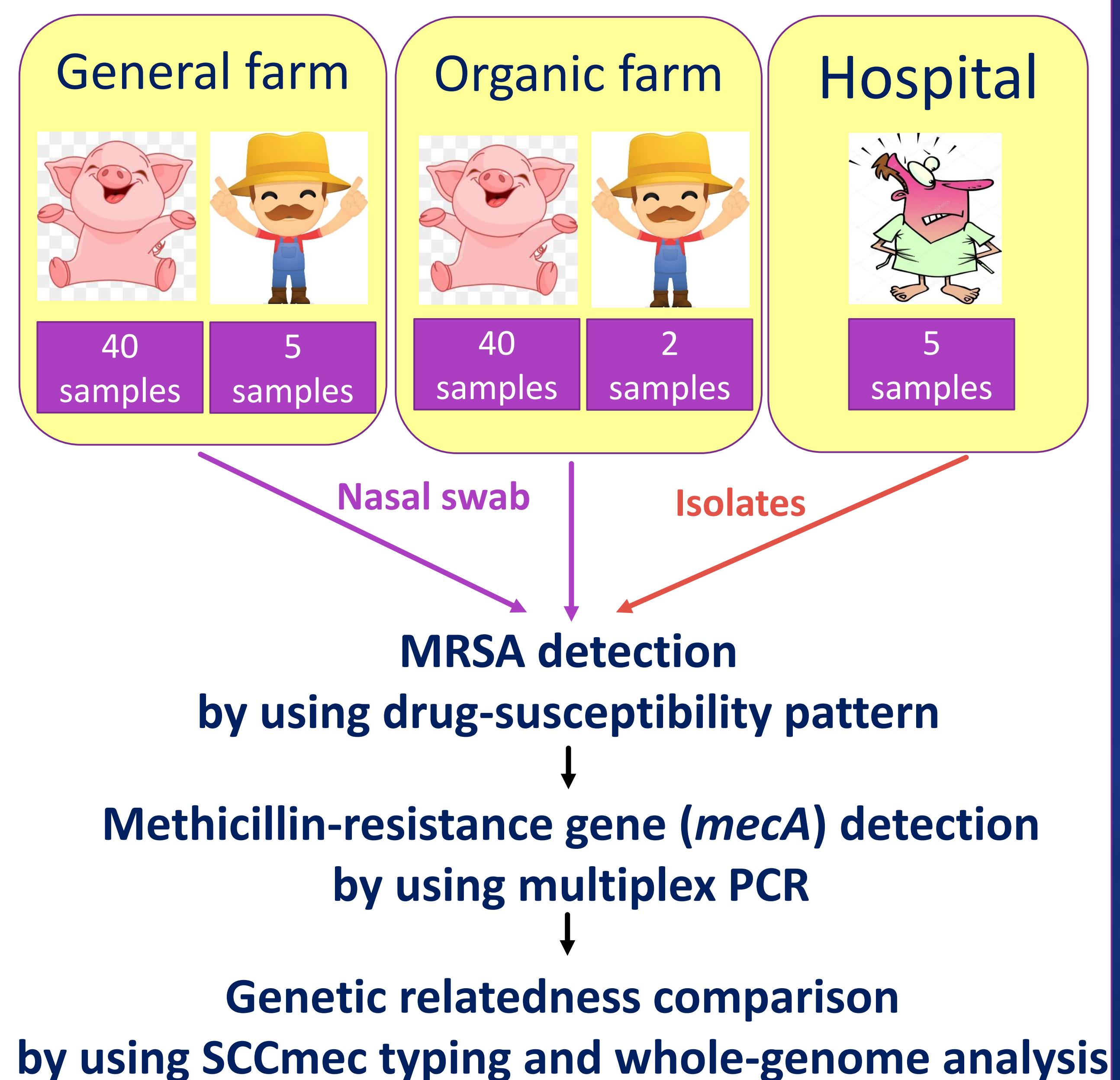
ກາຄພນວກ

The Spread of Community-acquired methicillin-resistant *Staphylococcus aureus* in animal farms and human in the middle part of Thailand

Tossawan Jitwasinkul^{1*} and Chanwit Tribuddharat²

¹Faculty of Pharmacy, Silpakorn University; jitwasinkul_t@silpakorn.edu

²Faculty of Medicine Siriraj Hospital; chanwit.tri@mahidol.ac.th

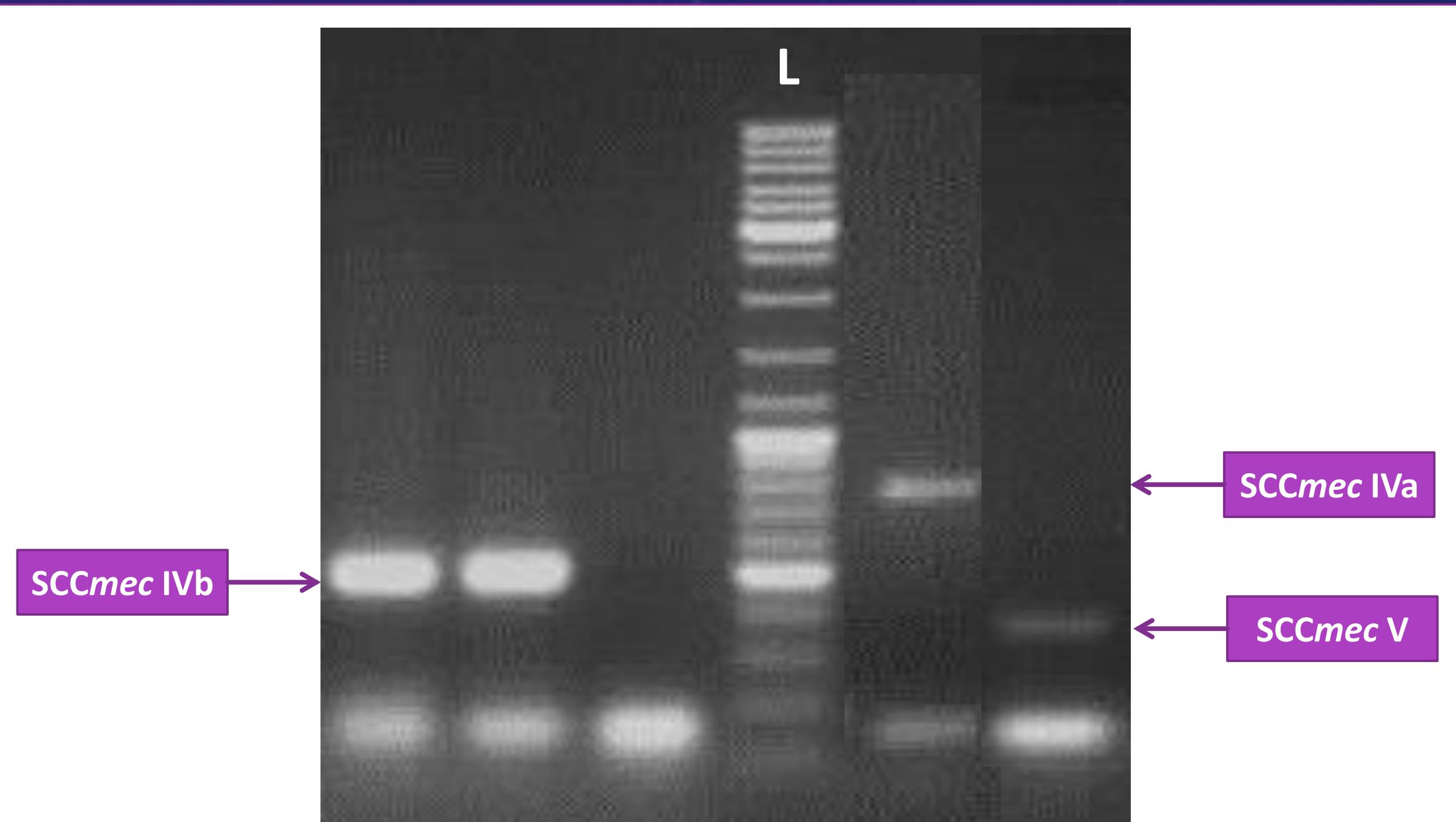

Rational

Methicillin-resistant *Staphylococcus aureus* (MRSA) is a causative microorganism of the infectious disease in hospital. There are three MRSA types; hospital-acquired MRSA (HA-MRSA), community-acquired MRSA (CA-MRSA), and livestock-acquired MRSA (LA-MRSA) spreading to patients. At the present, their genetic relatedness and their drug-resistance pattern have not been revealed in Thailand.

Objectives

1. To evaluate the molecular epidemiology of MRSA among hospitalized patients, healthy human, and livestock.
2. To find the relationship of drug susceptibility pattern and epidemic MRSA

Material and Methods



Acknowledgement

The authors are grateful to Mr.Sithichai, Dr.Yongyuth and Nakhon Pathom Hospital for sample collection

Results

The result showed significantly different MRSA proportion between general and organic swine farm. The general swine farm has 75% of MRSA, but the organic farm has 15%. However, vancomycin resistance appeared only in one sample in each farm. For farm workers, there were similar proportions of MRSA among them (approximately 50%). *mecA* (methicillin-resistance gene) detection showed positive detection about 100% of MRSA from general swine farm, but 66% of that from organic swine farm. For *SCCmec* typing, the result showed 30% of *SCCmec* type IVb of MRSA (CA-MRSA) from general swine farm, 14% (1 of 7 isolates) of *SCCmec* type Iva (CA-MRSA) of that from organic general swine farm, and 20% of *SCCmec* type V (CA-MRSA) of that from patients. Surprisingly, most were unidentified types from all sources. (Figure1)

Discussion and Conclusion

The proportion of MRSA were found in the general pig farm more than the organic farm. It implied the contamination of antibiotics in general pig farming. Interestingly, most MRSA were unidentified *SCCmec* types and some were CA-MRSA. It is possible that new MRSA types were emerged. However, their whole genome should be revealed further.