เอกสารแนบหมายเลข 2

บทคัดย่อ

รหัสโครงการ: MRG6080283

ชื่อโครงการ: การผลิตรีคอมบิแนนท์ยูริเคสของปลาซีลาคานท์และมิวแทนท์ที่มีความคงทนเพื่อพัฒนา

เป็นตัวยารักษาภาวะกรดยูริกในกระแสเลือดสูง

ชื่อนักวิจัย และสถาบัน: ผศ.ดร.ศักดิ์ดา ใยน้อย คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

E-mail Address: sakda.yai@mahidol.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ: เอนไซม์ยูริเคส (UOX) ที่มีศักยภาพในการพัฒนาเป็นยารักษาภาวะกรดยูริกในกระแสเลือด สูงควรมีคุณสมบัติที่สำคัญดังนี้ 1. สามารถผลิตในรูปของรีคอมบิแนนท์ได้ในปริมาณมาก 2. มีตันทุน การผลิตต่ำ 3. มี enzymatic activity สูง 4. มีความสามารถในการละลายสูง 5. มีความคงทนต่อสภาวะ แวดล้อมที่แปรผัน เช่น ทนต่ออุณหภูมิสูง หรือ ทนต่อการเปลี่ยนแปลงอุณหภูมิ และ 6. มี ต่ำ ซึ่งคุณสมบัติข้อสุดท้ายนี้ จะแปรผกผันกับความเหมือนของลำดับกรดอะมิโน immunogenicity (amino acid sequence identity) ของ UOX นั้น ๆ ต่อลำดับกรดอะมิโนของ deduced human UOX (dH-UOX) โดยในการศึกษานี้ คณะผู้วิจัยได้ศึกษา amino acid sequence ของ UOX จากปลา ซีลาคานท์ (LM-UOX) ซึ่งพบว่า UOX ดังกล่าวมี amino acid sequence identity ต่อ dH-UOX, therapeutic chimeric porcine-baboon UOX (PBC) และ ancient mammal UOX สูงถึง 65%, 68% และ 70% ตามลำดับ จึงมีความเป็นไปได้ที่จะพัฒนา LM-UOX เพื่อเป็นยารักษาภาวะกรดยูริกในกระแส เลือดสูง ดังนั้น เพื่อศึกษาคุณสมบัติของ LM-UOX ในด้านต่าง ๆ คณะผู้วิจัยจึงได้ทำการ clone, express ใน *E. coli* และ purify recombinant LM-UOX จนได้เอนไซม์ที่มีความบริสุทธิ์สูง ซึ่งเอนไซม์ที่ ผลิตได้มี specific activity สูงถึง 10.45 unit/mg ซึ่งสูงกว่า PBC ถึง 2 เท่า และจากการเพาะเลี้ยง recombinant E. coli 1 ลิตร พบว่าได้เอนไซม์มากถึง 132 mg นอกจากนี้คณะผู้วิจัยยังได้ทำการศึกษา โครงสร้างของ LM-UOX ด้วยวิธี homology modelling และทำนาย point mutations ที่จะช่วยทำให้เกิด inter-subunit disulphide bonds ซึ่งจากการทำ site-directed mutagenesis ของ point mutations ที่ได้ จากการทำนาย พบว่า I27C/N289C mutant มีคุณสมบัติเด่นหลายประการเช่น มี specific activity และ ปริมาณเอนไซม์ที่ผลิตได้ใกล้เคียงกับ wild type มีอุณหภูมิที่ครึ่งหนึ่งของโปรตีน denatured ($T_{1/2}$) สูง กว่า wild type ถึง 25 °C นอกจากนี้ เมื่อนำไปเก็บที่อุณหภูมิ -20 °C และ 4 °C จะรักษา 100% specific activity ได้เป็นเวลานานกว่า 60 วัน เมื่อนำไปไว้ที่ 37 °C จะรักษา 100% specific activity ได้ นานถึง 15 วัน ซึ่งนานกว่า wild type ถึง 120 เท่า ดังนั้น I27C/N289C mutant จึงมีศักยภาพในการ พัฒนาเป็นยารักษาภาวะกรดยูริกในกระแสเลือดสูงในอนาคต

คำหลัก: ยูริเคส; ซีลาคานท์; ลาติเมอร์เรีย; วิศวกรรมไดซัลไฟด์บอนด์; ภาวะกรดยูริกในกระแสเลือดสูง

Abstract

Project Code: MRG6080283

Project Title: Production of recombinant Coelacanth uricase and its thermostable mutants

as potential therapeutic candidates for treatment of hyperuricemia

Investigator: Asst. Prof. Dr. Sakda Yainoy, Mahidol University

E-mail Address: sakda.yai@mahidol.ac.th

Project Period: 2 Years

Abstract: The ideal therapeutic uricase (UOX) is expected to have the following properties; high expression level, high activity, high thermostability, high solubility and low immunogenicity. The last property is believed to depend largely on sequence identity to the deduced human UOX (dH-UOX). Herein, we explored coelacanth uricase (LM-UOX) and found that it has 65% sequence identity to dH-UOX, 68% to the therapeutic chimeric porcine-baboon UOX (PBC) and 70% to the resurrected ancient mammal UOX. To study its biochemical properties, recombinant LM-UOX was produced in *E. coli* and purified to homogeneity. The enzyme had specific activity up to 10.45 unit/mg, which was about 2-fold higher than that of the PBC. One-liter culture yielded purified protein up to 132 mg. Based on homology modelling, we successfully engineered I27C/N289C mutant, which was proven to contain inter-subunit disulphide bridges. The mutant had similar specific activity and production yield to that of wild type but its thermostability was dramatically improved. Up on storage at -20 °C and 4 °C, the mutant retained ~100% activity for at least 60 days. By keeping at 37 °C, the mutant retained ~100% activity for 15 days, which was 120-fold longer than that of the wild type. Thus, the I27C/N289C mutant has potential to be developed for treatment of hyperuricemia.

Keywords: uricase; coelacanth; Latimeria; disulphide bond engineering; hyperuricemia

Objectives

- 1. To study the protein sequence of Coelacanth uricase (LM-UOX) using multiple sequences alignment. This tool helps to identify conserved regions/residues, which infer the structure and the identity of the protein to uricases from other organisms.
- 2. To study the protein sequence of LM-UOX using molecular phylogenetics. The results from these tools infer the evolutionary relationship between Coelacanth and other organisms
- 3. To predict the 3D structures of the wild type LM-UOX and its mutants. The results from these studies indicate structure-activity relationship and, perhaps, biochemical properties of the proteins such as solubility and thermostability.

deletion option). There was a total of 384 positions in the final dataset. Evolutionary analyses were conducted in MEGA X.

3. Homology modelling

The amino acid sequence of wild-type *L. menadoensis* uricase (LM-UOX) was obtained from UniProt (accession number of M3XGK0). The 3D structural model of LM-UOX was predicted by the Swiss-Model server using the euarchontoglires ancestor (PDB ID: 4MB8) and the zebrafish (PDB ID: 5M98) uricase crystallographic structures as templates. The resulting models were estimated for global and per-residue quality using the QMEAN scoring function in the Swiss-Model server. The models were also evaluated for stereochemical quality by PROCHECK, Verify3D, ProSA and Pro-Q. The 3D structural visualization was performed on PyMOL.

4. Prediction of potential disulphide bridges

Based on the predicted three-dimensional structure of LM-UOX, potential disulphide bridges were predicted using the web-based program Disulphide by Design 2.0. For software settings, only inter-chain prediction and the $\chi 3$ torsion angles at -87 or $+97 \pm 30$ degrees were selected. Suggested residue pairs with energy less than 2.2 kcal/mol were further evaluated for possible involvement with substrate catalysis. Only residue pairs presented outside the catalytic center were further proceed for site-directed mutagenesis (SDM). In addition, in zebrafish uricase, a natural disulphide bond between subunit A and C is formed by C129. Since zebrafish C129 and coelacanth S136 are identical, coelacanth S136 was also selected for substitution with cysteine.

5. DNA manipulations

L. menadoensis cDNA for uricase (LM-UOX) was synthesized by Integrated DNA Technologies (Skokie, Illinois). The gene was PCR-amplified using primers shown in Table 1 then PCR product was digested with Ndel and Xhol and cloned into pET20b(+) plasmid pretreated with the same enzymes. The constructed plasmid was designated as pET20LM-UOX, which is used for expression of wildtype (WT) enzyme. SDM was performed according to manufacturer's protocol, using primers listed in Table 1, generating plasmids encoding mutant enzymes including S136C, D288C, N289C, I27C/N289C and A132C/A225C. All constructed plasmids were subjected to automated DNA sequencing to verify the accuracy of cloning procedure and site-directed mutagenesis.