บทคัดย่อ

รหัสโครงการ: MRG6180009

ชื่อโครงการ: คุณสมบัติเชิงการดูดซับไฮโดรเจนในวัสดุโครงข่ายโลหะอินทรีย์ 525 และคุณสมบัติเชิงการเก็บประจุ

ของเซรามิกส์ (Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O₂

ชื่อนักวิจัย: รศ. ดร. พรจักร ศรีพัชราวุธ

E-mail Address: spornj@kku.ac.th

ระยะเวลาโครงการ: มิถุนายน 2561 - พฤษภาคม 2563

โครงการวิจัยนี้เกี่ยวกับการศึกษาคุณสมบัติเชิงการดูดซับไฮโดรเจนในวัสดุโครงข่ายโลหะอินทรีย์ 525 และ คุณสมบัติเชิงการเก็บประจุของเซรามิกส์ ($Mg_{1/3}Nb_{2/3}$) $_{0.05}$ Ti $_{0.95}O_2$ สำหรับโครงข่ายโลหะอินทรีย์ 525 ได้คำนวณตัวแปร โครงสร้างและพลังงานดูดซับไฮโดรเจนของ M-MOF-525 (M=Ti, V, Zr and Hf) ผลการคำนวณพบว่า ความยาวพันธะ M-O ในส่วนของโลหะออกไซต์คลัสเตอร์แปรผันโดยตรงกับรัศมีอะตอมของ M ดังนั้น การเพิ่มขึ้นของความยาวพันธะ ดังกล่าวส่งผลให้ค่าไดโพลทางไฟฟ้ามีค่าเพิ่มขึ้นนั่นเอง เมื่อพิจารณาคุณสมบัติการดูดซับไฮโดรเจน พบว่า โมเลกุล ไฮโดรเจนไม่สามารถยึดเกาะบนพื้นผิวของ Ti- และ V-MOF-525 ในส่วนของ Zr- และ Hf-MOF-525 พลังงานดูดซับ ไฮโดรเจนของ Zr- และ Hf-MOF-525 มีค่าอยู่ในช่วง 0.04-0.15 และ 0.06-0.16 eV/H₂ ตามลำดับ นอกจากนี้ยังพบว่า อันตรกิริยาระหว่างโมเลกุลไฮโดรเจนและวัสดุโครงข่ายโลหะอินทรีย์ 525 เป็นอันตรกิริยาแบบแวนเดอร์วาลล์ ในส่วนของ เซรามิกส์ $(Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O_2$ ผู้วิจัยได้ศึกษาคุณสมบัติเชิงอิเล็กทรอนิกส์และคุณสมบัติเชิงไดอิเล็กทริกซ์ ผลการ ทดลองแสดงให้เห็นว่าค่าคงที่ไดอิเล็กทริกซ์มีค่าค่อนข้างสูง (≈10⁴) และค่าแทนเจนต์ของการสูญเสียมีค่าค่อนข้างต่ำ (< 0.05 ที่ความถี่ 10³ Hz) ในส่วนของการศึกษาเชิงทฤษฎี โดยในที่นี้ได้อาศัยทฤษฎีฟังก์ชันนัลความหนาแน่นเพื่ออธิบายถึง สาเหตุที่ค่าคงที่ไดอิเล็กทริกซ์ของเซรามิกส์ดังกล่าวมีค่าสูง ผลการคำนวณพบว่า อะตอม Mg ชอบอยู่ใกล้กับช่องว่าง ออกซิเจน ในขณะที่ อะตอม Nb ภายในโครงสร้างไม่ชอบที่จะฟอร์มเป็นโครงสร้างแบบเพชร ส่งผลให้ไม่สามารถที่เกิดได โพลทางไฟฟ้าเนื่องจากโครงสร้างแบบเพชรได้ ดังนั้นการที่ค่าคงที่ไดอิเล็กทริกซ์ของเซรามิกส์ดังกล่าวมีค่าสูงจึงไม่ได้มา จากข้อบกพร่องภายในเนื้อเซรามิกส์แต่มาจากปัจจัยภายนอก เช่น ปรากฏการณ์ IBLC และ/หรือ SBLC

คำสำคัญ: พลังงานดูดซับไฮโดรเจน; วัสดุโครงข่ายโลหะอินทรีย์ 525; ค่าคงที่ไดอิเล็กทริกซ์; เซรามิกส์ $(Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O_2$

Ī

Abstract

Project Code: MRG6180009

Project Title: Hydrogen Adsorption Property of Metal-Organic Framework-525 and Capacitance

Property of $(Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O_2$ Ceramics

Investigator: Assoc. Prof. Pornjuk Srepusharawoot

E-mail Address: spornj@kku.ac.th

Project Period: June 2018 - May 2020

This Project related to the hydrogen adsorption property of Metal-Organic Framework-525 (MOF-525) and capacitance property of (Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O₂ ceramics. For MOF-525, the structural parameters and hydrogen adsorption energy of M-MOF-525 (M=Ti, V, Zr and Hf) were investigated. Our results revealed that the bond length between M-O of the metal-oxide cluster unit is proportional to the atomic radius of M in metal-oxide cluster. Hence, the increasing of the M-O distance results in enhancement of electric dipole moment of the M-MOF-525. By considering hydrogen adsorption property of the M-MOF-525, it was found that the Ti- and V-MOF-525 are unable to bind a hydrogen molecule on their surfaces, whereas a hydrogen molecule can trap on the surface of the Zr- and Hf-MOF-525. Moreover, the hydrogen adsorption energy of Zr-MOF-525 and Hf-MOF-525 ranges from 0.04-0.15 and 0.06-0.16 eV/H₂, respectively. Finally, we found that the interaction between the hydrogen molecule and the M-MOF-525 host is mainly governed by a weak dispersive interaction. For (Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O₂ Ceramics, electronic and dielectric properties were determined. Experimental results revealed that $(Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O_2$ exhibited low loss tangent (< 0.05 at 10^3 Hz) and high dielectric permittivity of $\approx 10^4$ with slightly dependent on temperature over a wide range. To understand the cause of high-performance dielectric properties in the(Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.05}O₂ ceramic, theoretical calculations based on density functional theory were performed. It was found that that Mg atom is located near the oxygen vacancy. Moreover, our results revealed that the Nb atoms in the (Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O₂ unlikely form the diamond shape resulting in inability to generate large defectdipole moments. Thus, the colossal permittivity in the $(Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O_2$ ceramic should be attributed to the extrinsic effects such as the IBLC and/or the SBLC effects.

Keywords: Hydrogen adsorption energy; Metal-Organic Framework-525; Dielectric constant; $(Mg_{1/3}Nb_{2/3})_{0.05}Ti_{0.95}O_2$ Ceramics