บทคัดย่อ

รหัสโครงการ: MRG6180021

ชื่อโครงการ: การบ่งชี้โปรตีนหลักที่เกี่ยวข้องกับโรคที่ซับซ้อนในมนุษย์

ชื่อหัวหน้าโครงการ: ผู้ช่วยศาสตราจารย์ ดร.อภิชาต ศุรธณี

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

E-mail Address: apichat.s@sci.kmutnb.ac.th

ระยะเวลาโครงการ: 2 ปี

งานวิจัยนี้ศึกษาและพัฒนากระบวนการหาโปรตีนหลักที่เกี่ยวข้องกับโรคที่มีความซับซ้อนในมนุษย์ ด้วยวิธีการทางการคำนวณ โดยพัฒนาขั้นตอนการวิเคราะห์ข้อมูลของโรคมาลาเรียที่เกิดจากพาราไซต์ พลาสโม เดียมไวแว็กซ์ ในงานวิจัยนี้ใช้คุณลักษณะทางโครงข่ายชีววิทยาของมนุษย์และพาราไซต์ จากนั้นได้ทำการสร้าง โครงข่ายความสัมพันธ์เชื่อมต่อโครงข่ายของมนุษย์และโครงข่ายของพาราไซต์ โดยโครงข่ายที่สร้างขึ้นจะถูก นำไปใช้เพื่อการอนุมานความสัมพันธ์เพิ่มเติมของมนุษย์และพาราไซต์ วิธีการอนุมานที่พัฒนาขึ้นจะใช้ตัวแบบ กระบวนการแพร่กระจายทางโครงข่ายและขั้นตอนการเรียนรู้ของเครื่องจักรคำนวณ เพื่อให้ได้ชุดของ ความสัมพันธ์ที่ทำนายได้ จากนั้นกลุ่มของโปรตีนมนุษย์ที่สำคัญต่อความสัมพันธ์ดังกล่าวจะถูกระบุโดยขั้นตอน การจัดอันดับทางสถิติ ผลงานวิจัยได้ค้นพบกลุ่มของโปรตีนที่มีความสำคัญ และกลุ่มของโปรตีนดังกล่าวถูกนำไป หาฟังก์ชันการทำงาน และการจัดกลุ่มเพื่อหากลุ่มของโปรตีนที่ทำงานร่วมกันได้

Keywords : การอนุมานความสัมพันธ์, โปรตีนที่สำคัญในมนุษย์, การเรียนรู้ของเครื่องจักรคำนวณ

Abstract

Project Code: MRG6180021

Project Title: Identification of core disease-related proteins causing complex human

diseases

Investigator: Assistant Professor Dr. Apichat Suratanee

King Mongkut's University of Technology North Bangkok

E-mail Address: apichat.s@sci.kmutnb.ac.th

Project Period: 2 years

In this study, we developed an analysis framework to identify core disease-related proteins for a human complex disease. The developed analysis focused on malaria disease causing by *Plasmodium vivax*. Biological network topology features of human and parasite networks were employed. The networks of human and *Plasmodium vivax* were reconstructed to infer associations between human and parasite proteins. The inference methods were based on network diffusion model and machine learning technique to obtain promising associations. The core disease-related proteins were identified through statistical ranking method. We obtained a group of important proteins and their related functions. Then, the clustering analysis was performed to identify co-operative proteins.

Keywords: Association inference; Essential proteins in human; Machine learning.