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In this manuscript, we consider the finite-time H_ control for nonlinear systems with
time-varying delay. With the assistance of a novel Lyapunov-Krasovskii functional which
includes some integral terms, a matrix-based on quadratic convex approach, combined with
Wirtinger inequalities and some useful integral inequalities, a sufficient condition of finite-time
boundedness is established. A novel feature presents in this paper is that the restriction which
is necessary for the upper bound derivative is not restricted to less than 1. Further a H_
controller is designed via memoryless state feedback control and a new sufficient conditions
for the existence of finite-time H_ state feedback for the system are given in terms of linear
matrix inequalities (LMIs). At the end, some numerical examples with simulations are given to

illustrate the effectiveness of the obtained result.

Keywords: finite-time H_control; nonlinear system; time- varying delay; linear matrix

inequalities (LMIs); Lyapunov-Krasovskii functional (LKF)
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CHAPTER 1
Executive Summary

1 Introduction

The occurrence of time delays is an important fact in many of the networking and processing
control systems. Such delays can have the capacity to destabilize the control systems and
also make some crucial disintegration in the performance of the closed-loop systems, see the
references cited therein [1-7]. While modeling a real control system, the existence of time delays
is always taken to be a time-varying one that satisfies the condition d; < d(t) < da and d; which
is not necessarily restricted to be 0. In recent years, the study on finite-time stability (FTS)
has increased the research interest from various researches around the world due to the wider
applications in mathematical control theory, which has been studied by different approaches
in various kinds of systems, see for instance [8-15]. To this extent, the author Dorato in [§],
explained the fundamental concepts of stability theory of dynamical systems in finite-time sense.
Generally, the given system leads to be finite-time stable if the considered state of the system
should be within the bounded limit for a fixed interval of time. From this, one can observe that
the concept of finite-time stability mainly attracts the boundedness of a system during a fixed
interval of time period. Some of the exciting results for finite-time stability and stabilization with
the existence of time-delay have been obtained in [8-12]. Moreover, in some practical systems,
there is a need to outline the system that guarantees a maximum H., performance rather than
the finite-time stability. Hence this motivates us to concentrate on the present study of research.

On the other hand, the study on H., control problem will make a sense in reducing the
consequences of the external disturbances from both inside and outside the system. The main
theme of the H,, problem is to design a controller from outside the system and to obtain the
robust stability (i.e. to minimize the errors). Also this will result in minimizing the guaranteeing
disturbance attenuation level v in the H, sense for the system. Hence this finite-time H, control
concerns in the design of feedback controller which ensures the FTS of the closed-loop system
and guarantees a maximum H,, performance bound.

Recently, the authors[10, 11, 16, 17] have enhanced the results on finite time stability and H
performance analysis. In [10], finite-time Ho, control for a continuous system with norm-bounded
disturbance has been studied but a continuous system is not a nonlinear system. Robust finite-
time Ho control of linear time-varying delay systems with bounded control has been considered
in [11] based on Riccati Equations. In [12], the problem of robust finite-time stabilization with
guaranteed cost control was studied based on the Lyapunov functional method and generalized
Jensen integral inequality. These techniques allow us to design the state feedback controllers
which stabilize the closed-loop system in the finite time. In [18], authors used an improved
Lyapunov-Krasovskii functional (LKF) with triple-integral terms, augment terms and convex



combination technique to show the effectiveness of the obtained results [19] developed a novel
problem on time-varying delayed nonlinear systems with finite-time stability and stabilization
by employing the integral inequality and some free fuzzy by weighting metrices, which are less
conservative than other existing ones. In [20], delay-dependent finite-time stability criteria for an
uncertain continuous-time system with time varying delays has been studied but a continuous-
time system is not a nonlinear system and without H, performance analysis. In [21], improved
results on delay-dependent H,, control for uncertain systems with time-varying delays have
been considered by using bounding techniques for some cross-term of the LKF method and the
free-weighting matrix method.

Several approaches that reduce the conservatism for the system with time delay have been
reported in the literature. They are namely an appropriate Lyapunov-Krasovskii functional
method by using bounding techniques while finding the time-derivative, delay decomposition
approach; free weighting matrices approach and reciprocally convex optimization techniques, see
[21-24]. Of all the above mentioned approaches, a novel method to reduce the conservatism is
matrix-based quadratic convex approach. This approach will gives a better maximum allowable
upper bound for time-varying delay over some existing ones, see for references [25-27].

So with the intuition from the above evidences, in this paper, we have followed a matrix-
based quadratic convex approach to obtain a better maximum bound value. This is the first time
that we have incorporated this method to study the finite-time H., problem for the considered
control system with time-varying delay. Further, the purposes of this paper are given as follows:

I. We consider some new Lyapunov-Krasovskii functional which has not been considered yet
in stability analysis of finite-time H,, control. The new Lyapunov-Krasovskii functional
includes some integral terms of the form ftt_h(h—t—s)jdcT(s)Rjdc(s)ds (7 = 1,2) which the
integrands are polynomial multiplied by @7 (s)R;i(s)ds (j = 1,2) and one may estimate an
upper bound of the integral by employing some techniques from [22,25], the matrix based
quadratic convex approach, the use of a tighter bounding technique and useful integral
inequality such as Wirtinger inequality.

II. Lyapunov-Krasovskii with the matrix based quadratic convex approach is introduced to
formulate finite-time stability criteria and H, performance level where the time-varying
delay satisfies 0 < d; < d(t) < dg, w1 < d(t) < us. Moreover, the restriction of upper
bound derivative is not necessary restricted less than 1 compared with [20]

ITI. Two numerical examples are given to demonstrate the effectiveness of theoretical result.

2 Problem statement

In this section, we consider a system with time-varying delay and control input as
#(t) = Az(t) + Dx(t — d(t)) + Bu(t) + Cw(t) + f(z(t),t) + g(x(t — d(t)),t) } (1)
z2(t) = Ex(t) + Gx(t — d(t)) + Fu(t) + f(z(t),t) + g(x(t — d(t)), 1),
l‘(to + 9) = qb(e), 0 e [—dg, 0], (to, gf)) € Rt x C([—dg,to],Rn),

where z(t) € R" is the state; u(t) € R™ is the control input, w(t) € L2([0,00],R") is a
disturbance input and z(t) € R® is the observation output. The delay d(t) is time-varying



continuous function which satisfies
0<dy <d(t) <dg, pa <d(t) < pa.
In this paper, we consider the nonlinear functions satisfying

Fa(t),t) = (fi(e1(t),1), fal@a(t), 1), falza(t), 1)) € R"
g(x(t —d(t)),t) = (g1 (z1(t = d(t)), 1), ga(w2(t = (1)), 1), .. gnlza(t — d(1)), 1)) € R™,

fyg: R"™ x [—=dpr,00) — R™ are nonlinear function satisfying the Lipschitz conditions; namely,
there exist positive constants 31, 82, Vx,y € R™, such that

1£(y. 1) = F(a,O)I” < Bully(t) —2(B)]%,
gy, t) — gz, D)II* < Bolly(t) — =()]*.

We assume the following restrictions on the nonlinear perturbations

FHa(), ) f(x(t), 1) < fra’ (£)a(D), (2)
g (a(t = d(t)), )g(x(t — d(t)),t) < Boa” (t — d(t))(t — d(t)). (3)

The initial condition, ¢(.) := supsc_a,, o) {I 0@l [[¢(?)[|}. The disturbance is a continuous func-
tion satisfying

Jk>0: /OT w? (Hw(t)dt < k. (4)

Under the above assumptions on d(.), f(.), g(.) and the initial function ¢(t), the system (2) has a
unique solution z(t, ¢) on [0, T]. For a prescribed scalar v > 0, we define the performance index
as

J(t) = /OOO[ZT(S)Z(S) —7*w! (s)w(s)]ds. ()

The objective of this paper is to design a memoryless state feedback controller u(t) = Kx(t).

3 Preliminaries

The following definition and lemma are necessary in the proof of the main results:

[?] The nonlinear system (2) where w(t) is a perturbation satisfying (4). The system (2) is
said to be finite-time bounded with respect to (¢1,c2, T, R,d) with 0 < ¢; < ¢2, and R > 0, if

SUp_r,<o<o 10" (5)Re(5)d" (5)Ro(s)} < e1 = ol (t)Ra(t) < e,V € [0, T]. (1)

[?7] The nonlinear system (2) is said to be finite-time H, bounded with respect to (c1, 2, T, R, d, )
with 0 < ¢1 < ¢2,d > 0,7 > 0, R > 0 and a memoryless state feedback controller u(t) = Kx(t),
following conditions should be satisfied:



(i) The zero solution of the closed-loop system, where w(t) = 0,

#(t) = —(A = BK)x(t) + f(x(t)) + g(2(t — 7(1))) + Cw(t), (2)

is finite-time bounded.

(ii) Under zero-initial condition ¢(t) = 0,V € [—ds, 0] the output z(t) satisfies
T
/ 2L () z(t)dt < v*wT (H)w(t)dt. (3)
0

We introduce the following technical lemmas, which will be used in the proof of our results. [?]
Let P € M™"™ R € M™™ be symmetric positive definite matrices. We have

(i) Amin(P)(R) > 0, Amax(P)(R) > 0 and Apin(P)zTz < 27 Pr < Apax(P)2T 2, Yz € R?
(ii) 272 < Mpax (R~ YzT Rz, Vo € R"
(iii) 27 Pz < Mpax(P)Amax(R™Y) 2T Rz, Vo € R™.
[?] For a given matrix R > 0, the following inequality holds for any continuously differentiable
function w : [a,b] — R"

/ ’ T(u)Ridu > - (IT RTy + 3T RIy) (4)

where Ty 1= w(b) — w(a),Ts := w(b) + w(a) — 72 f:w(u)du. : From the above inequality, it
can be observed that the inequality in Lemma 3 gives a firm lower bound for f: @ (w) R (u)du
than Jensen’s inequality since 3FgRF2 > 0 for Iy # 0. Hence it shows that the inequality (4) is
improved than the Jensen’s inequality. Before we introduce some useful integral inequalities,

we denote

n(t) = =t [ y(s)ds
va(t) == d(t) d1 t__dé)y(s)ds (5)

I/3(t = 1ft—d1

[?] For a given scalar d; > 0 and any n x n real matrices Y7 > 0 and Y2 > 0 and a vector
¥ : [—d1,0] — R™ such that the integration concerned below is well defined, the following
inequality holds for any vector-valued function 71 (t) : [0,00) — R* and matrices M; € RF*F

My, N
kxn : : 1 1 >
and N € R satisfying [ NT v } >0,

orim [ (=t 9" (i) ds
> —%771 (t) My (t) — 2dym] Nify(t) — vs(t)],

t
or= [ (=t 9 (9)Vag(s)ds
t—dy



> di[y(t) — vs(t)]" Yaly(t) — vs(t)]

where v3(t) is defined in (5). [?] Let d(t) be a continuous function satisfying 0 < d; < d(t) < da.
For any n x n real matrix Re > 0 and a vector ¢ : [—dz2,0] — R" such that the integration con-
cerned below is well defined, the following inequality holds for any ¢;; € RY and real matrices

Z; € R1%9, F; € RI*" satisfying { lf;; ]I;:i } >0,(i=1,2),
i 2

t—dy
- /td (o =+ )i (Y Roi(s)ds < 3 (da — d(0)*6T, Zios +2(ds — d(0)6Ty Fios

5[y — ) — (ds — d(1) )65 Zon
+2¢5, F[(da — d(t)) 2o + (d(t) — di)has]

where ¢1p 1= y(t — d(1)) — v1(t), d22 = y(t — d1) — z(t — d(1)), d23 = y(t — d1) — vo(t) with
vi(t)(i = 1,2) being defined in (5). [?] Let d(t) be a continuous function satisfying 0 < d; <
d(t) < dg. For any n x n real matrix Ry > 0 and a vector ¢ : [—ds,0] — R"™ such that the
integration concerned below is well defined, the following inequality holds for any 2n x 2n real

Ry Sl]>0

trix S satisfyi ~
matrix 57 satisfying [ SlT i

t—dq - -
(da — dy) / 3T () Rug(s)ds < 20T, S1bar — 6T, Batbrs — T, By,
t—do

where Ry := diag{R1,3R;}; and

Y11 = [ y(t —d(t)) —y(t — do) ] . [ y(t —dy) — gyt — d(b)
y(t —d()) +y(t —dg) — 201 (1) |’ y(t —di) +y(t —d(t)) — 2v2(t)

If we substitute d; = 0, in Lemma 3, then the inequality can be reduced and it is similar
to that of the one in [?]. Also, the dimensions of the slack matrix variables of Sy is 2n x 2n
compared to the dimension 2n x 5n introduced in [?].  [?] Let xo, x1 and x2 be m x m real
symmetric matrices and a continuous function d satisfy di < d < ds, where dy and dy are
constants satisfying 0 < d; < ds. If xg > 0, then

d*xo + dx1 + x2 < 0(< 0),Vd € [dy, do)

& d?xo0+ dix1 + x2 < 0(<0), (i = 1,2)

or  d*o+dyi+x2 > 0(>0),Yd € [dy, do)
& d?x0 +dix1 +x2 > 0(>0), (i =1,2).



CHAPTER 2
Main result

1 Main Results

In this section, we firstly design a memoryless H, feedback control for the addressed system (?7?)
with the inclusion of time-varying delays and then obtain the finite-time stabilizability analysis
conditions. Here we derive a novel finite-time stability for the system (??) by using the matrix-
based quadratic convex approach with some integral inequalities in [?]. To achieve this status,
we choose the following Lyapunov-Krasovskii functional:

V(t, @y, i) = Vi(t) + Valt) + Va(t)

where z; denotes the function z(t) defined on the interval [t — dg,t]. Setting P, = P~1, y(t) =
Pll'(t), d21 = dg — d1 and

t

Vi(t) := e®tyT (t) Py(t) + e /t_d 7T (5)Qoy(s)ds,
t—dy

Va(t) i= et / D I T (s)ds + e / W) (el (1) yT(s) ds

—d tfd(t)

t—d(t)
L et / W) " (5)]Qsly" () 7 (s) ds,
t—do

Va(t) := e /tjd [(dy — t+ 8)g" (s)diWhg(s) + (di — t + 8)*5" (s)Wag(s)]ds

t—ds
+ do1e™ /t_d [(di —t+ 8)y" (s)R1y(s) + (di — t + 5)*y" (s)Ray(s)]ds

where Q; > 0,(j = 0,1,2,3),W; > 0,Wy > 0,R; > 0,Ry > 0 and P are real matrices to
be determined. Before introducing the main result, the following notations of several matrix



variables are defined for simplicity: R; = diag{R1,3R1};

Eg(d(t), d(t)) :=Z90 + [d(t) — dl]Egl -+ [dg - d(t)]EQQ, (l)
E3(d(t)) ==p1 S142 + P53 ST ¢1 — G1 RY @1 + (d2 — d())*(Z1 — Zo) + (d2 — d(t)) =
+ (d(t) — dv)Zs2 + d3, Zo — &5 R1po, (2)

2y =d2Z3 — YW1 g3 + el (2W + d2Wy)eg + 2d1 N3(e1 — e7) + el (dE, Ry + dI) Ry)es
+2dy1(e1 — e7) ' NT + el (AP + PAT + (BY + YT BY) +cl)e;
+ el (PD)es + e (DT P)er + e (AP + Y BT )eg + ¢} (PAT + YT B)ey
+ el (DP)eg + el (PDT)ey + el (Qo)es + e (—2P + eI + Qo)eg
+efo(Dewo + el (Ierr + ef (PET)ers + efy(EP)ey
+ el (PGT)e13 + el (GP)es + el (YF )ers + el (Y)er + els (=2 D)ers, (3)
with e; € RV (5 = 1,2,...,15) denoting the i-th row-block vector of the 14n x 14n identity
matrix Wy = diag{W1, 3W; };and
Hao : [61 63](Q2 - Ql)[€1 63]T
+7ileg 0)Qilet ez]" +milet e7]Qifeg 0]
-(1- T(t))[€1 62](Q2 - Q3)[61 62]T
- [elT GZ]QS[Q{ €4T]T [61 el]Ql[el 61]
Eo1 :=le] e]Q2leg 0] + [eg 0)Qalet 5"
o2 :=le] e5]Qaleg 0] + [eg 0)Qs[et e5]"
E31 :=2N1(e2 — e5) + 2Na(es — e2) + 2(e3 — e2) " NG +2(e2 — e5)" N{
g2 :=2N1(e3 — eg) + 2(e3 — e6)" N{
P1 :=col{ea — ey, €9 + €4 — 2e5}
P9 :=col{e3 — ez, €3 + €3 — 2eg}
P3 :=col{e; — es,e1 + e3 — 2er}.
Consider v > 0. Then system (??) is finite-time Hy control with respect to (c1,c2, T, R, d, ")
and satisfies ||z(t)|l2 < 7v|Jw(t)||2 for all nonzero w € L2[0,00) if there exist positive definite

matrices P,Q; >0, (j =0,1,2,3), Wi, Wa, Ry, Ry,
S1, 721, Zs, Z3, N1, Na, N3 and Y such that the following linear matrix inequalities (LM Is) hold

[Rl S ] zo,[ Zi Ni]>0,<i=1,2)

ST Ry NI Ry | =
Zz Np
> >
|:N3T W2 :| Oa Zl Z2a
Ea(d1, p1) + E3(dy) +$ <0
EQ(dlaN2)+E3(dl)+§ <0 (4)
Eo(da, p1) + Z3(da) + 24 <0
Eo(da, p2) + Z3(d2) + 24 <0



and

2k
a2e1 +75 <e ey (5)
a1
For this problem, the feedback control is taken to be of

u(t) = YP 'a(t),t > 0. (6)
[Proof] By finding the time-derivative of V for the considered system (??), we obtain

Vi =2y (1) Py (t) + ae®yT () Py(t) + e {7 ()Quy(t) — 5" (t — d1)Qog(t — d)} + aVi(.)

7
Vs = 1y7(0) T D)@ () yT O — 7O ¥ — Al T - d)T !
b [T OO o+ T o= IR @) - )
A=) (- dQlT () o — )T
2 /t::[y%) YOI (1) 07ds — (1) o7t — d)Qsly™ (1) ¥t — )]
P dNT ) o dIQslT(0) ¥ - (o))
e[ Vel o s +avi0) 0

—ds
t

Vy =e*{g" () Wiy (t) + dig" () Way(t) — /t y §" ()da Wg(s)ds

—2 /_d (dy — t+ 8)y" (s)Wag(s)ds + (do1)*9" (t — di) Ragj(t — dy)
t—d;

+ (d21)?*9" (t — dr) Rag(t — di) — do /td g7 (s)Ryy(s)ds

t—dq
) / (ds — t + )57 () Ragi(s)ds} + aVi(.). )
t—do

From (7?7) and Cauchy inequality, we get the following equality:
—2¢T(t)P1[2:(t) — Az(t) — Da(t — d(t)) — Bu(t) — Cw(t) — f(x(t),t) — g(z(t — d(t)),t)] = 0
we obtain the following
0 =—2&T(t)P[@(t) — Az(t) — Dz(t — 7(t)) — Bu(t) — Cw(t) — f(z(t),t) — glz(t — d(t)),t)]
= — 257 () Py(t) + 297 (t) APy(t) + 29T (t) DPy(t — d(t)) + 297 (t)2BY y(t) + 257 (t)C Pw(t)
+25T ()P fy(t) + 29" (1) Pg(y(t — d(t))) (10)
From (??) and (??), we have V] is
Vi =2y (1) Py(t) + ae'y" (8) Py(t) + e {§" ()Quy(t) — §7 (t — d1)Qoy(t — d1)}
— 297 () Py(t) + 297 () APy(t) + 297 (1) DPy(t — d(t)) + 297 (t)2BY y(t) + 29" (t)CPw(t)
+25" ()P f(y(t) + 25" () Py(y(t — d(t)))
=T (EE(H) + aVa(.). (11)

~— —



W(h;?;‘;?}f(t) = COI&{y(t)v y(t_d(t))7 y(t_dl)a y(t_dZ)v 131 (t)v V2 (t)v VS(t)a y(t_dl)v y(t)’ f(y(t))v g(y(t_
AN},

=1 :=2¢T (P)eg + ael (P)e; + el (Qo)eg — el (Qo)es — 2ed (P)eg + 2l (AP + 4BY )ey 4 2el DPe,
+ 265013612 + 2e9Peig + 2eg9Peq.

With the consideration of the three terms of Vs (t), we obtained the following inequalities:
t
/ . 2[y" (1) y"())@i[p()" 0 ds <2dily" () vi]@u[g"(¢) 0],
t—dy

t—dy
/t_d(t)2[yT(t) yT()]Qalg ()T 0]Tds < 2(d(t) — d)[y" (1) vT]Qa[yT (¢) 0T

and

t—d(t)
/t » 2[y" (1) y" (s)]Qaly()" 0]Tds < 2(dy —d(t)[y" (t) v{]Qs[y" () 0].

Therefore, the estimation of Va(t) is estimated as

Va(t) < Zog + (d(t) — d1)Z21 + (do — d(t))Zaz + aVa
= €T (t)Ea(d(t), d(t))E(t) + aVa. (12)

where E, is given as the same as that of in (1). Further, V3(t) is estimated as

Va(t) = e €T (1)Z30€" (t) + 01(t) + 02(1)} + Vs

where
=30 1= €g(d%Wl + d%WQ)eg + 6g(d%1R1 + d%le)eg,
()= — [y (s)dar Ryg(s)ds — 2 [ (d — t + 8)57 (s) Ragi(s)ds,
Sty = = [y 07 () Wig(s)ds — 2 [, (dy —t + s)§7 (s)Wag(s)ds.

By Lemma 7?7 and Lemma 77, we obtain the following

t—dq - ~
—(dg — dl)/ gL (8)Rig(s)ds < 2p14 S1apar — b Ruvbry — 3y Ritpay,
t—do

where Ry 1= diag{ R1,3R; }; and
b1y = [ y(t —d(t)) —y(t — da) ]
Tyt —d() +y(t — da) — 204 (t) |

. [ y(t —di) —y(t — d(t)) ]
y(t —di) +y(t —d(t)) — 2vs(t). |



and

t—dq 1
2 / (dy — -+ )3 ()R (s)ds < ~2{3 (d — d(1))%€" () (1)

dy
+2(d2 — d(1))€" (£) Na[y(t — d(t)) — vs]
+ 3l(dz — d1)*(da — d(1))*)€7 (1) Z2£ (1)
+ 267 () N2[(d2 — d(t))[y(t — d1) — y(t — d(t))]
+ (d(t) — di)[y(t — dr) — wel]}-

Thus, we get

01(t) <2971 S19ba1 — ¥ Ripnn — ¥y Rt — 2{1(612 — d(t))%eT (1) Z1&(t)
(

)
+2(dy — d(1)€" () Naly(t — d(t)) — vs] + §[(d2 — d1)*(d> — dd(1))*]€7 (1) Z2€ (1)
+ 267 () N2(d2 — d())[y(t — di) — y(t — d(t))] + (d(t) — d)[y(t — d1) — a]]}.
=€ (t)=3(d(t))€(D), (13)

where Z3(d(t)) is given in (2). From Lemma ?? and Lemma ??, we obtain

- /ttd §7 (s)diWig(s)ds <[y(t) — y(t — d)"Waly(t) — y(t — di)] + 30" Wiy
and

t
2 / (dy — t + )57 () Wai(s)ds < —d2€T()MLE(E) — 2167 () Nly(t) — vs).
t—dq
From which it follows that

8a(t) <[y(t) — y(t — di)]"Waly(t) — y(t — dv)]
+ 300 Wiy — a2 (1) Mg (t) — 2di7 (8 N1 [y () — vs],
=€T(t)Za3¢ (1) (14)

where Q1 = y(t)+y(t—di)~2vs, Qo = y(t—d(t)+y(t+dz)—v1, Q3= y(t—di)+y(t—d(t))-vs,

B33 := — ¢ diag{W1, 3W1} @3 + diZs + 2d1 N3(er — e7) + 2d1(e1 — er) " Ny
Hence, from (??) and (??), we obtain
Vs < e {7 ()[Ea(d(t) + ZaJ€(t)} + aVs (15)

where 2 1= H30 + E33. From (2?), (7?) and (??), we obtain V (¢, y:, %) along the solution of the
system (?7) as

V(t,x) < aV(t, ) + e €T Ad(t), d(t))E(t)

7



where

Therefore, we have

V(t,xr) <aV(.) + €T (AR, d)E) +vlwt)|> -y ©)[PETEP + YFTFY]y(t)
—y"(t— d@®)[PCT GPly(t — d(t)) — f1 (z()) f(x(t)) — g (x(t — d(t)))g(x(t — d(1)))

where

2, =21 4+ el [PETEP + YFTFY]e;, + el [PGTGPley + ely[I]e1g + eli[1]en,

and 24 = Z; + Z, is defined in ( [?]). A(d(t),d(t)) may be rewritten as

Ad(t),d(t)) = d*(t) Ao + d(t) Ay + Ay

(17)

where Ag = Z1—Z5 and Ay, Ag are d(t)—incjependept real matrices. By Lemma ('7"), if Z1—25 >
0 and the inequality in (4) holds, then A(d(?),d(t)) < 0, Vd(t) € [d1,dy], Vd(t) € [u1, pal.
Moreover, the terms A(d(t),d(t)) can be recast in the sense of convex combination of d(t) as

follows:

A(d(t), d(t) = (1 = d(1)Qo +d(t)01 + 02

(18)

where $g = Q2 — Q3 and 1, o are d(t)—independent real matrices. Hence by mAaking use of the
Schur complement lemma, it follows from (?7), (??) and (6) that the inequality A(d(t),d(t)) <0

holds. Therefore, we have from inequality (??) that
V(t,xy) < aV(t,z)ywt) wt) — z(t) T 2(t)
and hence
V(t,z:) < aV(t,z) + y2w? (Hw(t).
because of z(t)Tz(t) > 0. Multiplying both sides with e, we obtain
e MW (t, 1) — ae MV (t, x) < ey T (Hw(t).

Hence, we have

d .
a(e*atV(t, 7)) = e V(1) — ae” MV (t, ).

So,

%(e*atV(t, 1)) < e 2wt (Hw(t).

(19)



Integrating both sides from 0 to ¢, we get

t
(Y (b)) = VO,20) < [ et (s,
0
which can be reformulated as
t
eV (t, ) < V(0,20) + ’yz/ e wT (s)w(s)ds,
0
note that
oz (t)Rx(t) < V(t,x),¥V:0< T. (20)

Hence, we have

Vit z¢) = e*taT ()P ta(t)

1 -1 101
= e*tzT ()R2R 2 P™'R 2 R2x(t)
1 1
= 3T () R2P ' R21(t)
1 1
> 2T(t)R2P'R22(t)
> Ain(P) 2" (8) Ra (1) (21)

and a1 = )\mzn(f))_l
Consider

0

0
V(0,z0) =y (0)Py(0) +/_d yT(S)Qo?J(S)dSHr/_d [y (0)y" (s)]@uly" (0) y" (s)]"ds

—dy
+ / " (0)y" ()]Q2ly" (0) " (s)]"ds + / " (0) ¥ (9)]Qs[y"(0) y" ()] ds,

—d(t) —da

0
" / -+ )3T ()W) + (e + 525 (5) W)}

7d1
+day / 1+ () Rai(s) + (i )5 () Bai(s)]ds

maz(P)|B11* 4 Amaz (Qo)[611* + Amaz (QU)IIll* + Amaz(Q2) 91> + Amaz (Q3) |21
+ )‘maw(Wl)d%HQSHz + Amax(W2)d%H¢”2 + )‘max(Rl)dgl”QbHQ + )‘maw(R2)d21H¢H2a

so we have

V(O, l’o) S()\maz(P) + )\max(QO) + )\max(Ql) + )\max(Q2) + Ama:p(@?f&)
(22)

+ Amax(Wl)d% + )\max(WQ)ﬂ'ﬁ + Amax(Rl)dgl + )\max(RZ)dgl)Cla
= (9C1 (23)



where ap = )\max(P)+)\max(Q0)+>\max(Q1)+)‘maﬂc(Q2)+)‘ma1(Q3)+)‘m‘w(Wl)d%—i_)\max(WQ)wﬁ—f_
)\max(Rl)dgl + Amar(R2)d%1'

Therefore, from (77?), (?7), it follows that
are T () Ra(t) < eV (t,2(t)) < ey + 72k, Vt € [0,T).

and hence from (7?), we have

aser + 2Bk
a7

T (t)Rx(t) < ( e < o,V € [0,T],

which implies that the closed-loop system is finite-time stable w.r.t (c1,c2,T, R, d, 7). To com-
plete the proof of the theorem, it remains to show the v optimal level condition (??). For this,
we consider the following relation

V(t,z) + 27 (t)2(t) — v (Hw(t) < 0.

Integrating both sides of above equation from tg to ¢, we get

/t [V(t,xt) + 2T (1) 2(t) — v?wT (H)w(t)|dt < 0.
It follows that
/ t 2T (0)2(t) — 72w (Bw(t) | dt < V(to,w1,) = V(t, 1)

to

IN

0. (24)

Therefore, under zero initial condition z(t) = 0, t € [—T», to, by letting ¢t — 400 in (77), we get
o oo
/ 2L ()2 (t)dt < 72/ w? (t)w(t)dt
to to

which gives ||z||2 < 7||w|2. This completes the proof.

10
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Abstract: In this manuscript, we consider the finite-time Hy control for nonlinear systems with
time-varying delay. With the assistance of a novel Lyapunov-Krasovskii functional which includes
some integral terms, a matrix-based on quadratic convex approach, combined with Wirtinger
inequalities and some useful integral inequalities, a sufficient condition of finite-time boundedness
is established. A novel feature presents in this paper is that the restriction which is necessary for
the upper bound derivative is not restricted to less than 1. Further a Hy, controller is designed via
memoryless state feedback control and a new sufficient conditions for the existence of finite-time
He, state feedback for the system are given in terms of linear matrix inequalities (LMIs). At the
end, some numerical examples with simulations are given to illustrate the effectiveness of the
obtained result.

Keywords: finite-time He, control; nonlinear system; time-varying delay; linear matrix inequalities
(LMIs); Lyapunov-Krasovskii functional (LKF)

1. Introduction

The occurrence of time delays is an important fact in many of the networking and processing
control systems. Such delays can have the capacity to destabilize the control systems and also make
some crucial disintegration in the performance of the closed-loop systems, see the references cited
therein [1-7]. While modeling a real control system, the existence of time delays is always taken to be
a time-varying one that satisfies the condition d; < d(t) < d, and d; which is not necessarily restricted
to be 0. In recent years, the study on finite-time stability (FTS) has increased the research interest from
various researches around the world due to the wider applications in mathematical control theory,
which has been studied by different approaches in various kinds of systems, see for instance [8-15].
To this extent, the author Dorato in [8], explained the fundamental concepts of stability theory of
dynamical systems in finite-time sense. Generally, the given system leads to be finite-time stable if
the considered state of the system should be within the bounded limit for a fixed interval of time.
From this, one can observe that the concept of finite-time stability mainly attracts the boundedness of
a system during a fixed interval of time period. Some of the exciting results for finite-time stability and
stabilization with the existence of time-delay have been obtained in [8-12]. Moreover, in some practical
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systems, there is a need to outline the system that guarantees a maximum He, performance rather than
the finite-time stability. Hence this motivates us to concentrate on the present study of research.

On the other hand, the study on He control problem will make a sense in reducing the
consequences of the external disturbances from both inside and outside the system. The main theme of
the Heo problem is to design a controller from outside the system and to obtain the robust stability (i.e.,
to minimize the errors). Also this will result in minimizing the guaranteeing disturbance attenuation
level v in the Hy sense for the system. Hence this finite-time He, control concerns in the design of
feedback controller which ensures the FTS of the closed-loop system and guarantees a maximum Heo
performance bound.

Recently, the authors [10,11,16,17] have enhanced the results on finite time stability and He
performance analysis. In [10], finite-time Ho, control for a continuous system with norm-bounded
disturbance has been studied but a continuous system is not a nonlinear system. Robust finite-time He,
control of linear time-varying delay systems with bounded control has been considered in [11] based on
Riccati Equations. In [12], the problem of robust finite-time stabilization with guaranteed cost control
was studied based on the Lyapunov functional method and generalized Jensen integral inequality.
These techniques allow us to design the state feedback controllers which stabilize the closed-loop
system in the finite time. In [18], authors used an improved Lyapunov-Krasovskii functional (LKF) with
triple-integral terms, augment terms and convex combination technique to show the effectiveness of the
obtained results. Hao et al. [19] developed a novel problem on time-varying delayed nonlinear systems
with finite-time stability and stabilization by employing the integral inequality and some free fuzzy
by weighting metrices, which are less conservative than other existing ones. In [20], delay-dependent
finite-time stability criteria for an uncertain continuous-time system with time varying delays has been
studied but a continuous-time system is not a nonlinear system and without He, performance analysis.
In [21], improved results on delay-dependent Hy, control for uncertain systems with time-varying
delays have been considered by using bounding techniques for some cross-term of the LKF method
and the free-weighting matrix method.

Several approaches that reduce the conservatism for the system with time delay have been
reported in the literature. They are namely an appropriate Lyapunov-Krasovskii functional method
by using bounding techniques while finding the time-derivative, delay decomposition approach; free
weighting matrices approach and reciprocally convex optimization techniques, see [21-24]. Of all the
above mentioned approaches, a novel method to reduce the conservatism is matrix-based quadratic
convex approach. This approach will gives a better maximum allowable upper bound for time-varying
delay over some existing ones, see for references [25-27].

So with the intuition from the above evidences, in this paper, we have followed a matrix-based
quadratic convex approach to obtain a better maximum bound value. This is the first time that we
have incorporated this method to study the finite-time He, problem for the considered control system
with time-varying delay. Further, the purposes of this paper are given as follows:

L. We consider some new Lyapunov-Krasovskii functional which has not been considered yet in
stability analysis of finite-time H, control. The new Lyapunov-Krasovskii functional includes
some integral terms of the form ﬁih(h —t— s)ij(s)ij(s)ds (j = 1,2) which the integrands are
polynomial multiplied by xT(s)R]-J'c(s)ds (j = 1,2) and one may estimate an upper bound of the
integral by employing some techniques from [22,25], the matrix based quadratic convex approach,
the use of a tighter bounding technique and useful integral inequality such as Wirtinger inequality.

II. Lyapunov-Krasovskii with the matrix based quadratic convex approach is introduced to formulate
finite-time stability criteria and He performance level where the time-varying delay satisfies
0<dy <d(t)<dp, m1 < d(t) < up. Moreover, the restriction of upper bound derivative is not
necessary restricted less than 1 compared with [20]

III. Two numerical examples are given to demonstrate the effectiveness of theoretical result.
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2. Problem statement

In this section, we consider a system with time-varying delay and control input as

x(
z(t

t) = Ax(t) + Dx(t — d(t)) + Bu(t) + Cw(t) + f(x(t),t) + g(x(t —d(t)),t) } 1)
) = Ex(t) + Gx(t —d(t)) + Fu(t) + f(x(t),t) + g(x(t —d(t)), 1),
x(tg+0) = ¢(0),0 € [—da, 0], (to, p) € R x C([—da, to], R"),

where x(t) € R" is the state; u(t) € R™ is the control input, w(t) € £([0, 0], R") is a disturbance
input and z(t) € R is the observation output. The delay d(t) is time-varying continuous function
which satisfies

0<dy <d(t) <dy p1 <d(t) < pa.
In this paper, we consider the nonlinear functions satisfying

Fx(),8) = (Ala(8), 1), fa(x2(b), 1), ful(xa(t), 1) € R
glx(t —d(t)),t) = (ga(x1(t —d(t)), 1), g2(x2(t — (1)), 1), ..., gu(xn(t — d(1)), 1)) € R",

f,g : R" x [—dp, ) — R" are nonlinear function satisfying the Lipschitz conditions; namely,
there exist positive constants 1, B2, Vx,y € R", such that

1f (v t) = fx DI < Bully(t) = x(D)]1%,
lg(y, t) = g(x,B)|* < Bally(t) — x (1)

We assume the following restrictions on the nonlinear perturbations

Fr(t), ) f(x(8), 1) < BrxT (D)x(t), @
' (x(t —d(t),)g(x(t —d(t),t) < Pox" (t —d(t))x(t —d(t)). ®)

The initial condition, ¢(.) := SUP;¢ [ dM,o]{HGb(t)Hr llo(t)]|}. The disturbance is a continuous
function satisfying

3k >0 / Hdt < k. )

Under the above assumptions on d(.), f(.), g(.) and the initial function ¢(t), the system (2) has a
unique solution x(t,¢) on [0, T]. For a prescribed scalar ¢y > 0, we define the performance index as

1) = [ET )2 - Pl (u(s)lds. )
The objective of this paper is to design a memoryless state feedback controller u(t) = Kx(t).

3. Preliminaries

The following definition and lemma are necessary in the proof of the main results:

Definition 1. [9] The nonlinear system (2) where w(t) is a perturbation satisfying (4). The system (2) is said
to be finite-time bounded with respect to (c1,c2, T, R,d) with0 < ¢1 < cp, and R > 0, if

SUp_zy<s<o{®" (5)RP(s)$T (5)R(s)} < e = xT (HRx(t) < ¢,V € [0, T]. )
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Definition 2. [9] The nonlinear system (2) is said to be finite-time Ho bounded with respect to
(c1,62, T,R,d,v) with 0 < ¢; < ¢cp,d > 0,y > 0, R > 0 and a memoryless state feedback controller
u(t) = Kx(t), following conditions should be satisfied:

(i) The zero solution of the closed-loop system, where w(t) = 0,

(t) = —(A = BK)x(t) + f(x()) + g(x(t = 7(8))) + Cw(t), @)

is finite-time bounded.

(ii)  Under zero-initial condition ¢(t) = 0,V € [—dy, 0] the output z(t) satisfies
T
/ 2T ()z(t)dt < v2w” (t)w(t)dt. ®)
J0

We introduce the following technical lemmas, which will be used in the proof of our results.

Proposition 1. [11] Let P € M"*",R € M"*" be symmetric positive definite matrices. We have
(i) Apin(P)(R) > 0, Apyax (P)(R) > 0 and Ay (P)xTx < xTPx < Ay (P)xTx, Vx € R"

(i) xTx < Apax(R™HxTRx, Yx € R"
(iii) xTPx < Aax(P)Apax (R™1)xTRx, Vx € R

Lemma 1. [22] For a given matrix R > 0, the following inequality holds for any continuously differentiable
function w : [a,b] — R"

/ ' @™ (u)Radu > - (TTRT; + 3T7RT,) 9)
where Ty 1= w(b) — w(a), T2 := w(b) + w(a) — % fbw(u)du.

Remark 1. : From the above inequality, it can be observed that the inequality in Lemma 1 gives a firm lower
bound for | ﬂb & (u) R (u)du than Jensen’s inequality since 3T's RTy > 0 for Ty # 0. Hence it shows that the
inequality (9) is improved than the Jensen’s inequality.

Before we introduce some useful integral inequalities, we denote

vi(t) == 7= d(t ft i y(s)ds
t—
() == f— ,,-1(1) y(s)ds (10)
vs(t) i= - ftfdl s)ds.
Lemma 2. [25] For a given scalar d1 > 0 and any n X n real matrices Y1 > 0 and Y, > 0 and a vector
¥ : [—dq1,0] — R" such that the integration concerned below is well defined, the following inequality holds
for any vector-valued function 11 (t) : [0,00) — RF and matrices My € R¥* and Ny € R¥*" satisfying
[ My N

>0,
N v | T

1= /tid (dy—t +s)y‘T(s)Y1y'(s)ds
> — 8T (6 My (8) — 2] N [y (£) — va ()],

t
prim [ (= t+ 97 (5)Yay(s)ds
t—dy
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> dify(t) — vs(D)] YValy(t) — v3(t)]
where v3(t) is defined in (10).

Lemma 3. [26] Let d(t) be a continuous function satisfying 0 < d; < d(t) < dp. For any n X n real
matrix Ry > 0 and a vector y : [—dp,0] — R" such that the integration concerned below is well defined,
the following inequality holds for any ¢;; € RT and real matrices Z; € RT*1, F; € RT*" satisfying
Zi kK

>0,(i=1,2),
FT Ry |~ (d )

(dy — d())*pf1 Z1gn + 2(dp — d(t)) o1, Frra

NI~

t—d
—/t dl(dz—t—l—s)y'T(s)Rzy(s)ds <
—uz

4 = )2 = (8 — (1) 2 Zagn
+2¢51 Fa[(dy — d(t)) o + (d(t) — d1) o]

where gy = y(t — () — v1(8), ¢aa := y(t — dv) — x(t — (1)), das := y(t — ) — va(t) with v (£) (i =
1,2) being defined in (10).

Lemma 4. [25] Let d(t) be a continuous function satisfying 0 < dy < d(t) < dp. For any n x n real matrix
Ry > 0and a vector  : [—dp, 0] — R such that the integration concerned below is well defined, the following

Ri S

>0,
ST Ry

inequality holds for any 2n x 2n real matrix Sy satisfying [

t—dy ) )
—(dy —dy) / ¥ (s)Ryy(s)ds < 291 S19po1 — Y1 Ryypnn — 3, Ry,

t—dy

where Ry := diag{Ry,3R1}; and

by = y(t—d(t)) —y(t — do) - y(t —dy) —y(t —d(t))
Tyt —dm) +y(t—dp) =2 (t) |7 THT | y(t—dh) +y(t—d(t) — 2va(t)

Remark 2. If we substitute dy = 0, in Lemma 4, then the inequality can be reduced and it is similar to that of
the one in [22]. Also, the dimensions of the slack matrix variables of Sq is 2n X 2n compared to the dimension
2n x 5n introduced in [23].

Lemma 5. [25] Let xo, x1 and x2 be m x m real symmetric matrices and a continuous function d satisfy
dy < d < dp, where dy and d are constants satisfying 0 < di < dp. If xo > 0, then

Axo +dx1 + x2 < 0(< 0),Vd € [dy, do]

& d?xo+dix1 +x2 <0(<0), (i =1,2)

or  d*xo+dxi+x2>0(>0),¥d € [dy,dy]
& dxo+dixi +x2 > 0(>0), (i = 1,2).

4. Main Results

In this section, we firstly design a memoryless Ho, feedback control for the addressed system (2)
with the inclusion of time-varying delays and then obtain the finite-time stabilizability analysis
conditions. Here we derive a novel finite-time stability for the system (2) by using the matrix-based
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quadratic convex approach with some integral inequalities in [25]. To achieve this status, we choose
the following Lyapunov-Krasovskii functional:

V(t,xp, %) = Vi(t) + Va(t) + V3(1)

where x; denotes the function x(t) defined on the interval [t — dy, t]. Setting P; = P~ 1, y(t) = Pyx(t),
d21 = dz — dl and

W) = TPy e [ ) Quile)ds

v i= e [0 w0 v s e [0 el ) v o)
e [T TN (1) v,

_dZ
t
Vs(t) == e”‘t/t ) [(dy — t+3)yT (s)d1 Wiy (s) + (d1 — t +5)%y7 (s)Way(s)]ds
-t
t—dy
+ d21e“t/t ] [(dy — t+8)5T (s)Ryy(s) + (d — t +35)*yT (s)Roy(s)]ds
—a2
where Q; >0, (j=0,1,2,3),W; >0,W; > 0,R; > 0,R; > 0 and P are real matrices to be determined.
Before introducing the main result, the following notations of several matrix variables are defined for

simplicity: Ry = diag{Ry,3R};

2(d

[1]

(£),d(t)) :=Ea0 + [d(t) — d1]E21 + [da — d(t)]En, (11)
E3(d(t)) =1 S1¢2 + §3 51 §1 — P R{ 1 + (d2 — d(1))*(Z1 — Z2) + (d2 — d(1))Ea
+ (d(t) — d1)Es2 + d3 Zo — P R12, (12)
By =275 — LWy ¢ + el (2Wy + d3 W, )eg + 2d1 N3 (ep — e7) + el (A2 Ry + d1 Ry )es
+2dy(e; —e7)INT + el (AP + PAT 4 (BY + YIBT) 4 ¢l)e,
+el (PD)es + el (DTP)ey +ef (AP 4+ YBT)eg + el (PAT + YTB)e;
+ el (DP)eg + el (PDT)ey + el (Qo)es + el (—2P 4 €I + Qq)eo (13)
+efg(Derg + efy (Ien +ef (PET )erz + ef, (EP)ey
+e3 (PGT)ers + eg3(GP)ex + efy (YFT Jers +efy (Y)er +efs(—7*I)ens,

with e; € R 1" (i = 1,2,...,15) denoting the i-th row-block vector of the 14n x 14n identity matrix
Ny = diag{W;,3W; };and

Epo :=[e] €3](Q2 — Q1)lef e3]"

+1leg 0]Qulef e7]" +ule] €7]Ques 0]

—(1—(t ))[‘31 ez](Qz - QB)[el ‘32]

— [ef e1]Qalef ef]" + [ef ef]Qulef ef]"

Eo1 :=lef eg)Qaled 0]" + [eg 0]Qalef eg]"
Enp: [91 6’5](23[99 0" + [€9T 0 Q3[€1 95]
E31 :=2Nj(ex —e5) +2Na(e3 —e2) +2(e3 —e) INT +2(ex —e5)INT
Hap :=2Ni(e3 —e6) +2(e3 —e6) "N
@1 :=col{er —eq, €7 + €4 — 2e5}
(o :=col{ez — ey, e3 + ey —2e6}

@3 3:C01{€1 —e3,61 +6e3 — 26’7}.
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Theorem 1. Consider v > 0. Then system (2) is finite-time Heo control with respect to (c1,¢2, T,R,d,7y)
and satisfies ||z(t)|l2 < y||w(t)||2 for all nonzero w € L]0, 00) if there exist positive definite matrices
P, Q] >0, (] =0, 1,2,3),W1, Ws, Ry, Ry,
S1,Z1,23,73,N1, N, N3 and Y such that the following linear matrix inequalities (LMIs) hold

and

Ri S
ST Ry

( )
2(d1, p2)
( )
( )

+ 4+ + +

[x1 [ [1 [1]

(
3(d1
(

(

For this problem, the feedback control is taken to be of

u(t) = YP x(t),t > 0.

Proof. By finding the time-derivative of V for the considered system (2), we obtain

Vi =2e*yT (1) Py(

Vo =e"{[y" (t) y"

t) + ae

)
(

BHlQ 1[y () y (] -

y () Py(t) + e {57 () Qoy (t)

—yT(t—dy)Qoy(t —dr)} +aVi(.)
[y (1) y"(t—d)]Quily" (t) y"(t—dy)]"

[, 2T S QT 0T+ 470y~ d)IQuly (1) o7 (¢ = )T

— (L =d(O)y (1) yT(t—d(t)]Qaly"
()]Qa[y" (1) 0T ds — [y" (1) y" (t—d2)]Qsly" () y' (t —d2)]"
(t—d()]"

t—dy
+2
t—d(t)

() y"
+ (1 —d() [y () yT(t—d(t)]Qsly”

t—d(t)
+ / [
t—dy

T

2y’ (t) y

) y"

(t) y"

T(s)]Qsly" (1) 0 ds} +aVa()

(t—d()]’

Vs = T (e Wi () + B9 (OWay (1) — [ 3T (Wi (s)ds

- 2/;1(511 —t+5)y" (s)Way(s)ds + (do1)

2yT(t — d1)Ryy(t — dy)

t—d,
+ (do1)*y" (t — d1)Roy(t — dy) —d21/t ) YT (s)Ryy(s)ds
—uz

) /H]l1 (dy — t + )y (s)Roy(s)ds} + aVa(.).
t—dy

From (2) and Cauchy inequality, we get the following equality:

23 (1) Py [3(t) —

Ax(t) —

Dx(t—d(t)) — Bu

() -

Cw(t)

— f(x(t),t) — g(x(t—d(t)), )] =0

(14)

(15)

(16)

(17)

(18)

(19)
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we obtain the following

0 =—2xT(1)Pi[#(t) — Ax(t) — Dx(t — 7(t)) — Bu(t) — Cw(t) — f(x(t),t) — g(x(t = d(1)),1)]
= — 29" ())Py(t) + 29" (1) APy(t) + 25" () DPy(t — (1)) + 25" (£)2BYy(t) + 2y ()CPw(t) (20)
+25T (HPf(y(1)) + 297 (+) Pg(y(t — d(t)))

From (17) and (20), we have V] is

Vi =2¢yT (1) Py (t) + ae™y" () Py(t) + {57 (1) Qoy(t) — v (t — d1)Qoy(t — d1)}
— 2y ()Py(t) + 29" (1) APy(t) + 2" (+)DPy(t — d(t ))+2y (1)2BYy(t) +2y" (H)CPw(t) (21)
+29T () Pf(y(t)) + 297 (£) Pg(y(t — d(t)))

="l (HEE(t) +aVy ().
where (1) = col&{y(t),y(t — d(t)),y(t — di),y(t — da),vi(t), va(t),va(t),y(t —
d),y(t), f(y(t)), g(y(t —d(t)))},

By :=2el (P)eg + ael (P)ey +ed (Qo)eg — el (Qo)es — 2ed (P)eg + 2ed (AP + 4BY)e; + 2el DPe,
+ ZegTCPelz + 2e9Peyg 4 2e9 Peqy.

With the consideration of the three terms of V5(t), we obtained the following inequalities:

[ 20 FEIQOT o <207 1) o,
[0 2T (0 3T EIQal 0 07ds < 20a(8) — )y (1) +F1Qal3 (1) 0T
and

—d(t)
/tt " 2[y" (1) ¥ (9)]Qs[y(1)T 0] ds < 2(d2 —d(1))[y" () vi]Qs[y" (1) 0].

—d,

Therefore, the estimation of V;(t) is estimated as

Vz(t) < Epg + (d(t) - d1)521 + (dz — d(t))Ezz +aVsp
= Mgt (D) Ea(d(1), d(1)E(t) + aVa, (22)

where F, is given as the same as that of in (11). Further, V3(t) is estimated as

Va(t) = e {&T(£)Ta08" (t) + 01(t) + 62(t)} + a V3

where
Hao 1= ey (d2W1 + dZWZ)Eg +eg (d%1R1 + d%le)ES,
S(t) = = [T (s)dn Ryy(s)d Hf%@*HﬂWﬁRﬁwﬁ
Jz(t) = _ft & y dlwly( th d d] —t+S)y ( )Wzy'(s)ds.

By Lemma 3 and Lemma 4, we obtain the following

t—dy N .
—(dy —dy) /t ] v (s)R1y(s)ds < 291 S19por — Y1 Ry — 3, Ry,
—u2
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where R; := diag{R;,3R; }; and

- y(t —d(t)) —y(t = da)
y(t—d(t) +y(t —da) = 2n(t) |’

y(t = dy) = y(t — d(1)) ]

P21 1= [ y(t—dy) +y(t—d(t)) — 2va(t).

and

—2 /tt;dl (dy — t+5)y" (s)Ray(s)ds < —2{1(d2 —d(1)2ET () Z1E(t)

+2(dy — d(1) & () N1 [y(t — d(t)) — v3]

+ L(dy — dy)?(do — d(1))H]ET () ZaE (t)

+ 28T (H)No[(do — d (1)) [y(t — dy) — y(t —d(t))]
(

(
+ (d(t) —d1)[y(t —d1) —v2]]}.

Thus, we get

51(t) <291, 1921 — i Raprs — 93 Rapoy — 2{%(d2 —d(t)*ET () Z1E(t)

+2(dy = d(0))ST (N1 [y(t = d(1)) = vs] + 3[(d2 — d1)*(d2 — dd(1))*]5T (+) Z2 (1)
+287 () No[(d — (1)) [y(t — d) — y(t —d(1))] + (d(t) — 1) [y(t — dr) — v2]]}.
=¢" (1) Es(d(1)E(1),

where E3(d(t)) is given in (12). From Lemma 1 and Lemma 2, we obtain
t ~ ~
B /t d 97 (s)dr Wiy (s)ds <[y(t) — y(t —d1)]TWaly(t) — y(t — d1)] + 30 Wy Yy
-
and
! T 22T T
2 [ (49 (Wai(s)ds < ~BET M) ~ 218 (ONs[y (1) — ).
vi—a

From which it follows that

(1) <[y(t) — y(t — d1)] " Wi [y(t) — y(t — dq)]
+30 WGy — 3T (DMIE(H) — 2417 (1) N1 [y (1) — v3],
=27 (+)Basé(t)

90f 16

(23)

(24)

where (51 = y(f) +y(t — dl) — 2u3, ﬂz = y(i’ — d(t)) + y(t + dz) -V, dg = y(t — d1) +y(t —

d(t)) — vz,

Hzz i= — ¢3Tdiag{W1, 3W1}(P3 + d%Z3 + 2d1N3(€1 — 67) + 2dq (61 — 67)TN5T
Hence, from (23) and (24), we obtain

V3 < e {gT(1)[E5(d(t)) + Ealg (1)} +aVs

(25)
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where &y :=

E30 + E33. From (21), (22) and (25), we obtain V(t,y;,4;) along the solution of the
system (2) as

V(t,x1) < aVi(t,xe) + e ETA(A(E), d(t)E(t)

where

Therefore, we have

V(tx) <aV)+ T (OA@(E), d(B)EE) + Alw(t)|2 — yT () [PETEP + YETFY]y(t)
— YT (= d(#)[PCTGPly(t — d(t)) — T (x(D)f(x(t) — gT (x(t — d(E)g(x(t —d(£))  (26)

where

+ (21 + &)
= Ep(d(t),d(t)) + E5(d(t)) + g,
By =E; + el [PETEP + YFTFY]e; + e [PGTGPley + ey [I]e1o + eq [I]e11,
and &y = B + 4 is defined in ([23]). A(d(t),d(t)) may be rewritten as
A(d(t),d(t)) = d*(t)do +d(t) A + As (27)
where Ag = Zy — Z; and A1, A; are d(t)-independent real matrices. By Lemma (5), if Z; — Z > 0 and

the inequality in (14) holds, then A(d(t),d(t)) < 0, Vd(t) € [dy,da], Vd(t) € [u1, pa]. Moreover, the
terms A(d(t),d(t)) can be recast in the sense of convex combination of d(t) as follows:

A(d(t),d(t)) = (1 —d(t)) o +d(H) 01 + O2 (28)
where $p = Qy» — Q3 and {1, & are d (t)-independent real matrices. Hence by making use of the

Schur complement lemma, it follows from (27), (28) and (6) that the inequality A(d(t),d(t)) < 0 holds.
Therefore, we have from inequality (26) that

V(t,x) < aV(t,x)yw(t) w(t) —z(t)Tz(t) (29)
and hence
V(t,x) < aV(t,xp) +y*w! (Hw(t).
because of z(t)Tz(t) > 0. Multiplying both sides with e =%, we obtain

e MV (t,x1) — e MV (tx;) < e Myl (Hw(t).

Hence, we have

;t (e™™V(t,x;)) = e ™V (t,x;) —ae” "V (t,x;).
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So,

%(e*“tV(t, xt)) < e “pPwl (Hw(t).

Integrating both sides from 0 to ¢, we get

(e ™V (t,x)) — V(0,x0) < 72 /Ote*"‘th(s)w(s)ds,
which can be reformulated as
e ™V (t,x1)) < V(0,x0) + 2 /Ote*“th(s)w(s)ds,
note that
wmxT(H)Rx(t) < V(t,x),V:0<T. (30)

Hence, we have

=exT(H)R2P'R2x(t) (31)

and a1 = Ay, (P)~L
Consider

1

+ ] [(dy +5)y" (5)d1 W1y (s) + (dy +5)°y" () Way(s)]ds

oy [+ T ORE) + (e () Ras) s

S)Lmax(P)H(P”z + Amux(QO)H‘P”Z + )\muX(Ql)Hi”z + )\muX(QZ)H‘PHZ + )\muX(Q3)||‘PH2
+ Aoz (W) A1 + Amax (W2)d3 ]| 9117 + Amax (R1)d51 | 11> + Amax (R2)dar || 12,

so we have

V(O/ xO) S(Amax(P) + /\max(QO) + Amax(Ql) + )\mux(Q2) + )\max(Q3>
(32)

+ /\mux(wl)d% + )\max(wz)r% + )\max(Rl)dgl + Amux(RZ)d%)Cl/
= N2(C1 (33)
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where ay = )\max(P) + )\max(QO) + /\max(Ql) + /\max(QZ) + Amax(Q?)) + /\max(wl)d% + /\max<w2)7ré +
/\max (Rl)dé + )\max (Rz)dgl .
Therefore, from (31), (33), it follows that

ape M xT (HRx(t) < e ™V (t,x(t)) < agey + v?k, Yt € [0,T).
and hence from (30), we have

azcr + 2Bk

et < ¢, Vt € [0,T],
451

xT(HRx(t) < (

which implies that the closed-loop system is finite-time stable w.r.t (c¢1,c2, T, R, d, 7). To complete the
proof of the theorem, it remains to show the 7 optimal level condition (5). For this, we consider the
following relation

V(t,x:) + 28 (H)z(t) — YT (Hw(t) < 0.

Integrating both sides of above equation from ¢j to ¢, we get

/tt [V(t, )+ 27 (D)z(t) — ysz(t)w(t)}dt <0.
It follows that
/t [zT(t)z(t) _ ysz(t)w(t)} dt < V(to, x1,) — V(£ x)

fo

IN

0. (34)

Therefore, under zero initial condition x(t) = 0, t € [—1, to], by letting t — 400 in (34), we get
/ T (z(t)dt < 42 [ w (t)w(t)dt

fo to

which gives ||z||2 < 7||w]|2. This completes the proof. [

5. Numerical Examples

In this section, we provide two numerical examples with their simulations to demonstrate the
effectiveness of our results.

Example 1. Consider the nonlinear system with interval time-varying delays which was considered in [7]

X(t) = Ax(t) + Dx(t — d(t)) + Bu(t) + Cw(t) + f(x(¢),t) + g(x(t — d(t)),t)
z(t) = Ex(t) + Gx(t —d(t)) + Fu(t) + f(x(t),t) + g(x(t — d(¢)), ).

We have used theorem 1 to evaluated the value of minimum <y for Heo control condition. Where

A=1 05 o1 003 —0.04 |’

-13 0.3] B l 001  0.02 |

02 0 —0.02 001 |
B_[os 01’ C‘[ 0.02 —0.03 |’

08 0 |
06 0 |’

0.06 —0.06
—0.08 0.08

7

e~ |
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£ = g() =001
* [ SR+ 20— T()

B1=B2=001,1=0317=05pu =-01,u =0.1,7 =4k = 2. And the condition (15) is satisfied
witha = 0.6,T = 10,¢1 = 1,¢q4 = 50y = 4. By using LMI Toolbox in Matlab, it can be shown that the
constructed LMI in Theorem (1) is feasible. Further the Hoo controller feedback gain matrix is obtained as:

—3.4638 —6.8069
K=YP 1= )
[ —43243 —4.1846 1

Table 1, shows the value of minimum y with yy = —0.1 and py = 0.1 by using Theorem (1). In Table 2,
we show the value of minimum «y with y; = 0.05 and pp = 0.1 by using Theorem (1)

Table 1. The value of the minimum allowable disturbance attenuation 7y with yy = —0.1 and yp = 0.1.
B1 = B2 =0.01
Method T D Yimin
By Theorem1 0.1 0.3 0.2377
01 05 0.2474
B1 = B2 =0.05
Method T D Yimin
By Theorem1 0.1 0.3 0.8991
01 05 0.9643

Table 2. The value of the minimum allowable disturbance attenuation -y with yy = 0.05 and i = 0.1.

B1 = B2 = 0.01
Method T (o) Ymin
By Theorem1 0.1 0.5 0.2487

Example 2. [20] Consider the following nonlinear system with interval time-varying delay which was
considered in

%(t) = Ax(t) + Dx(t — d(t)) + Bu(t) + Cw(t) + f(x(t),t) + g(x(t —d(¢)),t)

with
0.01 0.01 0.01 0.01 0.01 0.01 |
A= 001 001 002 |, D= 001 001 001 |,
0.02 0.01 0.02 0.01 0.01 001 |
100 10 0|
B=|01 0], c=1]010],
00 1 00 1|

f(x(t),t) = 0.0025sin(0.05)x(£)[0 0 1]T
g(x(t —d(t)),t) = 0.0025sin(0.05)x(¢)[1 0 0]T

we investigate delay function d(t) = 0.5|sin(3t)| + 0.1. Consider the finite-time of nonlinear system with
respect to (c1, ¢, T, d, y) with different fixed times (T = 2,4, 6,8,10). The maximum values of the norm of state
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vector are 1.1780, 0.5706, 0.8510, 0.3974, 4.8264,0.2091 and 0.0558 for T = 2,4, 6,8, 10, respectively. We have
Figure 1 to show the trajectories of x (t)x(t) of the closed-loop system with the condition ¢(t) = [0.5, —0.5].
Moreover, we set y = 0.5,d = 2 and the initial function ¢7 = [0.1¢ +0.2,0.1t +0.2,0.1t + 0.2], Vt € [—0.6,0],
dy=1<dy =281 =pr=125x10"*¢T(t)¢p(t) = 0.5 < 0.5 = ¢1. From (31) and (33), we obtain
aq = 0.9227 and ay = 8.0883. By solving Theorem using MATLAB toolbox a feasible solution (show some
solution) is

1.1153 —0.0597 —0.0872 0.569877 —0.0011 —0.0013
P=| -00597 11062 —0.0932 |, Qo= | —0.0011 05690 —0.0019 |,
—0.0872 —0.0932  1.0498 —0.0013 —0.0019 0.5682
0.2088 —0.0003 —0.0004 0.0551  —0.0006 —0.0009 |
Ry = —0.0003 0.2087 —0.0005 |, R, = | —0.0006 0.0550 —0.0010 |,
—0.0004 —0.0005 0.2085 —0.0009 —0.0010 0.0544
0.3957 0.0005 0.0007 [ 48208 —0.0112 —0.0110 |

Wi = | 0.0005 0.3959 0.0008 |, W, = | —0.0112 4.8039 —0.0223
0.0007 0.0008 0.3964 —0.0110 —0.0223 4.7988
0.5284 —0.0012 —0.0015 —0.0000 —0.0000 —0.0000
—0.0012 0.5276 —0.0021 —0.0000 0.0000  —0.0000
| —0.0015 —0.0021 0.5266 —0.0000 0.0000  0.0000
Q= —0.0000 —0.0000 —0.0000 0.8473  0.0009  0.0010
—0.0000  0.0000  0.0000  0.0009  0.8485  0.0018
| —0.0000 —0.0000 0.0000  0.0010  0.0018  0.8490
04602 —0.0017 —0.0025 0.0000 —0.0000 —0.0000
—0.0017 0.4598 —0.0028 0.0000 —0.0000 —0.0000
| —0.0025 —0.0028 0.4582 —0.0000 —0.0000  0.0000
Q2= 0.0000  0.0000 —0.0000 0.8663  0.0146  0.0224
—0.0000 —0.0000 —0.0000 0.0146 0.8649  0.0214
| —0.0000 —0.0000 0.0000  0.0224  0.0214  0.8802
1.8321  0.0103  0.0167 —0.0000 —0.0000 —0.0000
0.0103  1.8297  0.0151  0.0000  0.0000 —0.0000
| 0.0167 0.0151  1.8413 —0.0000 0.0000  —0.0000
Q= —0.0000 0.0000 —0.0000 2.0919  0.0091  0.0141
—0.0000 0.0000  0.0000  0.0091  2.0907  0.0133
| —0.0000 —0.0000 —0.0000 0.0141  0.0133  2.1004
the Heo controller feedback gain can be computed as

—36.12 21.03 —16.49

K=YP'=| -134 -932 -516

2259 —1559 445

Table 3 to shows the smallest value of cy with different T = 2,4,6,8,10

Table 3. Shows the smallest value of ¢, with different T = 2,4,6,8,10

T 2 4 6 8 10
5.5527 6.2606 7.0589 7.9589 8.9736
NF NF NF NF NF

By Theorem 1

Stojanovic [20]
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Remark 3. From Table 3, the table lists the smallest values of c; with different T = 2,4, 6,8, 10. It is obvious
that condition in [20] is not-feasible (NF) because d(t) = 1.5 for all T. It not consistent with the conditions

d(t) =15 < p < 1in [20].

xT(x(t)

Figure 1. Trajectories of x” (t)x(t) in Example 2, the unit of T which is second.
6. Conclusions

In this paper, finite-time He control for nonlinear systems with time-varying delay is studied.
By using a set of improved Lyapunov-Krasovskii functional including with some integral terms, a
matrix-based on quadratic convex, combined with Wirtinger inequalities and some useful integral
inequalities were proposed which illustrate the effectiveness of the obtained result in the numerical
part. However, the improved method for the restriction on the upper bound of the delay derivative
should be considered which means that a fast time-varying delay is allowed without any requirement
on the derivative. New sufficient conditions of finite-time boundedness for above-mentioned class of
system were given in term of linear matrix inequalities (LMIs).
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