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Abstract

Project Code: MRG6180035
Project Title: Development of a microelectronic controller embedded with novel
off-line output feedback tube-based robust model predictive control for uncertain
polymerization processes with state estimation errors
Investigator: Asst. Prof. Dr. Pornchai Bumroongsri Mahidol University

Assoc. Prof. Dr. Soorathep Kheawhom Chulalongkorn University
E-mail Address: pornchai.oum@mahidol.ac.th, soorathep.k@chula.ac.th
Project Period: 2" May, 2018 to 1*' May, 2020 (2 years)

This research develops a novel robust model predictive control algorithm
that can guarantee robust stability of the systems under the influences of uncertain
parameters, disturbances and measurement noises. The developed robust model
predictive control algorithm can bound the effects of all uncertainties and state
estimation errors in the regions of invariant tubes so the effects of uncertainties can
be significantly reduced. In addition, the optimization problem is solved off-line and
the control law can be embedded in the microelectronic controller so it can be
applied to the control of fast dynamical systems. As compared with the conventional
robust model predictive control algorithm, the developed robust model predictive
control algorithm can give better control performance and use less computational
time. In the last step, the developed robust model predictive control algorithm is
applied to the control of a pilot-scale fluidized bed reactor for low-density
polyethylene (LDPE). The LDPE particles are loaded into the chamber that generates
heat in the bed of particles according to the rate law of polymerization calculated by
the computer. Under the influences of uncertainties in the process such as the
reaction rate constant, heat of reaction, disturbances and measurement noises, the
developed robust model predictive control algorithm can regulate the temperature

of the system to the set point so robust stability can be guaranteed.

Keywords: Microelectronic controller; off-line output feedback tube-based robust
model predictive control; uncertain polymerization processes; state estimation errors;

robust stability



1. Executive summary

The control of the industrial processes when not all states can be exactly
measurable is a challenging control problem because it is difficult to ensure both
robust stability and constraint satisfaction as the state estimator is employed.
Additionally, this problem is more severe in the case when there are some uncertain
parameters and disturbances present in the process due to the mismatch between
the real process and the process model. In order to efficiently control the uncertain
industrial processes, it is important to develop an advanced control algorithm that
can handle the effects of state estimation errors and all possible sources of
uncertainties including the uncertain parameters, disturbances and measurement
noises

In this research, a novel off-line output feedback tube-based robust model
predictive control algorithm is developed. The effects of the state estimation errors
and all possible sources of uncertainties including the uncertain parameters,
disturbances and measurement noises are bounded within the tubes so robust
stability and constraint satisfaction can be guaranteed. All optimization problems are
solved off-line to find the explicit control laws for on-line applications. These explicit
control laws can be embedded into a microelectronic controller so it can be used for
fast dynamical systems. As compared with the conventional model predictive
controller in the literature, the proposed controller can achieve better control
performance and lower computational time. The obtained results have contributed
to the development of the advanced process control theory because a novel control
algorithm has been developed in this research.

The developed controller is applied to a challenging control problem of a
pilot-scale fluidized bed reactor for low-density polyethylene (LDPE). The LDPE
particles are loaded into the pilot-scale fluidized bed reactor and the heat within the
particle bed is generated according to the uncertain rate law of polymerization
simulated from the computer. The developed robust model predictive control
algorithm can regulate the temperature of the system to the set point so robust
stability can be guaranteed. This pilot-scale reactor can be used as a prototype in

the research and education of all process and chemical engineers.



2. Objectives of this research

(1) To develop a microelectronic controller embedded with novel off-line output
feedback tube-based robust MPC algorithm that can guarantee robust stability and
constraint satisfaction of the control systems in the presence of the state estimation
errors and all possible sources of uncertainties including the uncertain parameters,

disturbances and measurement noises.

(2) To develop a pilot-scale fluidized bed reactor for low-density polyethylene
(LDPE). The heat within the particle bed is generated from the heater according to

the uncertain rate law of polymerization simulated from the computer.

(3) To apply the developed microelectronic controller to the control of a pilot-scale
fluidized bed reactor for low-density polyethylene (LDPE). Both robust stability and
constraint satisfaction of the system are guaranteed despite the presence of state
estimation errors and the sources of uncertainties such as uncertain reaction rate

constant, uncertain heat of polymerization, measurement noises and disturbances.



3. Research Methodology

In this project, a microelectronic controller embedded with a novel off-line
output feedback tube-based robust MPC algorithm is proposed. The proposed
algorithm can handle uncertain parameters, disturbances, measurement noises and
state estimation errors. Additionally, all of the optimization problems are solved off-
line so the developed off-line tube-based robust MPC algorithm is applicable to fast
dynamical processes. In order to illustrate its effectiveness, the proposed control
algorithm will be applied to a pilot-scale fluidized bed polymerization reactor for
low-density polyethylene (LDPE) production. The research methodology is shown in
Fig. 3.1.

(1) Develop a microelectronic controller embedded with novel off-line
output feedback tube-based robust MPC algorithm.

(2) Develop a pilot-scale fluidized bed reactor for low-density
polyethylene (LDPE),

(3) Apply the developed controller to the control of a pilot-scale
fluidized bed reactor for LDPE.

Figure 3.1 The research methodology.

(1) Develop a microelectronic controller embedded with novel off-line output

feedback tube-based robust MPC algorithm.

A novel off-line output feedback tube-based robust MPC algorithm is
developed. The explicit control laws are computed and can be embedded into a

microelectronic controller so it can be conveniently and efficiently used for real-time



applications. Consider the following discrete-time system with uncertain parameter,

bounded disturbance and measurement noise.

st = A x+Bru+w

y=C*+v (3.1)

where xeR" is the state that is not necessary to be measurable, ueR™ is the
control input, weR" is the bounded disturbance, x*<R" is the successor state,
yeRP is the measured output and veRP is the measurement noise. The system is
subject to the state constraint xeX and the control constraint u e U where Xc R"
and UcR™ are compact, convex and each set contains the origin as an interior
point. The state disturbance w and the measurement noise v are known only to the
extent that they lie in, weW and veV where Wc R" and Ve R are compact,

convex and each set contains the origin as an interior point.

The matrices 4* and B* are not constant but vary with an uncertain parameter
vector 4. An uncertain parameter vector 2 can be measured at each sampling time

but its future values are uncertain. We make the following assumption

Assumption 1. [4* B* C*]eConv{(4, B, C]....[4;, B, C,]1} where Conv denotes the
convex hull, [4; B;C;] are vertices of the convex hull and L is the number of
vertices of the convex hull. Any [4*B*C*] can be witten as
[4* B* Ci]:zﬁzlﬂj[Aj B;C;]. The pair [4, B;] is controllable and the pair [4,C;] is

observable.

Since the state x is not necessary to be measurable, the following Luenberger

observer is employed

=A%+ Blu+L(y-9)
p=C*% (3.2)



where xeR" is the observer state, LeR™ is the observer gain, yeRP is the

A

observer output and x*eR" is the observer successor state. Defining the state

estimation error ¥ as ¥ =x—-x, it is seen that
¥t =(4* = LCHX +(w—Lv). (3.3)

The state estimation error will be bounded within a robust positively invariant set.

The definition of the robust positively invariant set is as follows:
Definition 1. The set Z cR" is a robust positively invariant set of an uncertain
system with disturbance xt=AMx+w if A’IZ@BWgZ for VxeZ, YweW and
VA’IeConv{Al,...,AL} where @ denotes the Minkowski set addition (Mayne et al,
2009).
It can be observed that if L satisfies the Lyapunov stability constraint

(4;-LC) P(4,~LC;)~P <0,%j € {L,....L} (3.9)
where P is a Lyapunov matrx, then (4%—-LCHT P(4*-LCH)-P <0,
V(4" B*1e Conv{[4, B,],¥j €12...,L} and we can bound the state estimation error ¥
by a robust positively invariant set § satisfying

(A" -LCHS@WS(-LV)c§ (3.5)

for V(x-%)eS, vweW and vveV. The set § can be approximated using the
method in Rakovi¢ et al. (2005).

Let the nominal system (system with no uncertain parameter, bounded disturbance

and measurement noise) be defined by

X = Ax+Bu (3.6)



where xe R"is the state of the nominal system, ue R™ is the control input of the

nominal system and x e R"is the successor state of the nominal system. We will
control the observer state £ in such a way that the state of the nominal system x
converges to the target set. In order to counteract the effect of the uncertainty, the

following control law is employed

u=u+K(E-X) (3.7)

where K e R™" is the disturbance rejection gain. Defining the control error e as

e=x-Xx, it is seen that

e" =(A+BK)e+LC*X + Lv+(A* = )2 +(B* — B)u (3.8)
It can be observed that if K satisfies the Lyapunov stability constraint

(4;+B;K) P(4,+B,K)-P<0,Vj e{l,..L} (3.9)

where P is a Lyapunov matrix, then (4%+B*K)" P(4*+B*K)-P<0,
V(4" B*1e Conv{[4, B,],Vj €12...,L} and we can bound the control error e by a

robust positively invariant set S satisfying
(A4+BK)S®LC*S @ LV (4* - 4) XoB* -BUcS (3.10)

for V(-¥)eS, V(x-%eS, weV, vreX and vueU. The set S can be

approximated using the method in Rakovic¢ et al. (2005).

Defining S=S®S§, it is seen that if the state estimation error X =x—% satisfies
x—%eS and the control error e=%—x satisfies i-xeS, thenxei®S cx®S. For
this reason, although the state x is not exactly known, we can control the observer
state x in such a way that the unknown state x is bounded and the state of the
nominal system x converges to the target set. In order to ensure that the unknown

state x satisfies the state constraint x e X and the control constraint u € U, we must



10

employ tighter constraints for the nominal system, i.e., xeX& S and ueUOKS.

The optimization problem can be written as follows

fing, - z;—g(%j@ig;k sur R;k>+@;5 P (3.11)
st. Rexo®S (3.12)
Xkl =Axg +Buk, k €{0,...n—1} (3.13)
xk eXO @ S ®S), up cUOKS, (3.14)
xpneXs (3.15)

where )_ck and ;lk are the predicted state and control input, respectively, in the
prediction horizon n of the nominal system, 9, R and Py are positive definite
weighting matrices, )_(f is the terminal constraint set and the Minkowski set addition
and difference are defined, respectively, by X@®Y:={x+y|xeX,yeY} and
XOY ={x|x®Y c X}. In summary, the off-line output feedback tube-based robust

MPC algorithm can be formulated as follows:

Step 1: Compute off-line a sequence of observer gains L;,i=12,.,N satisfying
(Aj—LiCj)TP(Aj—L,-Cj)—P<O,Vje{l,...,L} and a sequence of the disturbance rejection
gain K;,i=12,..,N satisfying (4;+B,K,)" P(4,+B,K;)-P<0,Yj e {l,..L}.

Step 2: Compute off-line the corresponding sequence of robust positively invariant
sets for state estimation error §i,i:1,2,...,N satisfying (3.5) and the corresponding
sequence of robust positively invariant sets for control error S;,i=12,.,N satisfying

(3.10).

Step 3: Compute off-line the optimization problem (3.11)-(3.15) using the multi-
parametric programming (Kvasnica et al., 2004) to find the control input of the

nominal system u corresponding to the region of the state of the nominal system x.
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Step 4: All of the components in the control law have been explicitly computed off-
line. Embed the pre-computed control law into the microelectronic controller for

on-line utilization.
We can now establish our main Theorem as follows

Theorem 1: For any initial state x, observer state x and state of the nominal system
x satisfying £-xeS; and x-ieS, where §. and S; are the robust positively
invariant sets for the state estimation error and the control error, respectively, in a
sequence i=1.2,.,N, the proposed output feedback controller steers the initial
observer state % and state x to the target sets X,®S; and X, ®S:®S,,
respectively, while satisfying the state constraint xe X and the control constraint

uel.

Proof:

Consider the difference equation for the control error
¢" =(A+BK)e+LC*X + Lv+(A4* — 4)i+(B*—Bu. The disturbance rejection  gains
K;,i=12,...,.N have to satisfy the Lyapunov  stability  constraint
(Aj+BjKi)TP(Aj+BjKi)—P<O,Vje{1,...,L} so the control error e=x—Xx is bounded by
the robust positively invariant set S;. Consider the difference equation for the state

estimation error " =(4* —LCHX +(w—Lv). The observer gains L;,i =1,2,...,N satisfy
the Lyapunov stability constraint (4;-LC,)" P(4, - L,C;)-P<0,Vj e{l...,L} so the state
estimation error ¥ =x—% is bounded by the robust positively invariant set S;. From
the optimal control problem (3.11)(3.15), the state x of the nominal system must
be driven to the terminal constraint )_(f. Since fc—)_cegi and x—fce§,~, the
observer state x and the state x must be driven to the target sets )_(f ®S; and
)_(f ®S; €r)§,-, respectively. The tighter constraints for the state and control input of

the nominal system are employed in (3.14) so the state constraint xeX and the

input constraint u € U are satisfied. O
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(2) Develop a pilot-scale fluidized bed reactor for low-density polyethylene
(LDPE).

Fluidized bed polymerization reactors are widely used in LDPE production
process due to their several advantages such as high heat and mass transfer rate,
simple construction and capability of continuous transport. However, the
polymerization reaction occurring in the reactor is highly exothermic so the control of
bed temperature is crucially important in order to avoid the runaway reactions
especially in the presence of uncertain parameters such as uncertain reaction rate
and uncertain heat of reaction. Moreover, the temperature measurement noises
usually occur due to the fluctuating behavior in the fluidized bed reactor so the
exact values of bed temperature are not explicitly known (Schneiderbauer et al,,
2015; Li et al., 2016).

In this research, a pilot-scale fluidized bed polymerization reactor for LDPE
production is developed. The LDPE particles are loaded within the fluidized bed
reactor and the bed temperature is controlled using the developed microelectronic
controller by adjusting the inlet air temperature fed to the bottom of the reactor.
The heat in the particle bed is generated from the heater according to the uncertain
rate law of polymerization. The uncertain polymerization reaction is simulated using
the computer so there is no real polymerization reaction taking place in the reactor
for the safety in experiments. The explicit control laws are embedded into a
microelectronic controller so it can be conveniently and efficiently used for real-time

applications.

(3) Apply the developed controller to the control of a pilot-scale fluidized bed
reactor for LDPE.

In the last step, the developed robust model predictive control algorithm is
applied to the control of a pilot-scale fluidized bed reactor for low-density
polyethylene (LDPE). The uncertain polymerization reaction is simulated using the
computer and the uncertain heat of reaction is generated from the heater according

to the uncertain reaction rate. The control loop is shown in Figure 3.2.
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Computer for simulation of
polymerization reaction

Measurement of
bed temperature

uncertain heat of polymerization reaction

The developed output generated to the particle bed

feedback microelectronic
controller

Adjust air
temperature

Inlet air fed to

air o fluidization chamber
—>| Electric air cooler

Figure 3.2 The control loop of a pilot-scale fluidized bed reactor.

The rate of polymerization reaction R,, simulated using the computer can be

calculated as (Chen et al,, 2011)
R, =k, exp(—i)[M][c*]. (3.16)
RT
The amount of heat generated from the polymerization Q,, can be calculated as
0, =R,AH (3.17)

where [M] is the simulated monomer concentration, [C*] is the simulated
concentration of catalyst active site, T is the measured bed temperature, E is the

activation energy and R is the gas constant.

Table 3.1 shows the uncertain parameters, measurement noises and disturbances
occurring in the system. The reaction rate constant and the heat of polymerization
are considered to be uncertain. The measurement noises usually occur due to the
inherent fluctuating behavior in the fluidization so there exist the state estimation

errors in the system.
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Table 3.1 The uncertain parameters, measurement noises and disturbances.

Nominal
Parameters Descriptions Units
values
reaction rate ¢
K, 10 m’molls?
constant
. -1
AH heat of reaction 100 kJmol
Bed
temperature
noises +0.1 K
measurement
noises
Inlet air
disturbances | temperature £0.2 K
disturbances

The polymerization reaction is highly exothermic. In the presence of sources of
uncertainty as shown in Table 3.1 and the state estimation errors, an inefficient
control of the process may lead to unexpected thermal runaway of the system. For
this reason, all possible sources of uncertainties and the state estimation errors are

explicitly taken into account in the proposed output feedback controller.
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4. Results of this research

(1) Results from the development of a microelectronic controller embedded

with novel off-line output feedback tube-based robust MPC algorithm
Case study 1.1: Consider the following uncertain system with uncertain parameter,

disturbance and measurement noise

L[l [t o
X —L) /J)H—L}u+w, y—{o 1}x+v. 4.1)

The state constraint is x € X where X:= {x e R?|[l 0]x €[-50,3],[0 1]x €[-50,3]}. The
control constraint is u € U where U:={u e R|[u|<3}. The uncertain parameter is A €L
where L:={1eR|09<A<1.1}. The disturbance and measurement noise are
bounded (w,v)e WxV where W:={we R2|”W”oo <0.1} and V:={veR?| M., <0.01}.

Since the state x is unmeasurable, the following Luenberger observer is employed
11 n o
I { JHHu +L(y-P), y=Ck (4.2)
where the observer gain L; is updated at each sampling time. The nominal system is

}; . (4.3)

Figure 4.1 shows the robust positively invariant sets for the state estimation error

§i,i=1,2,...,5. The robust positively invariant sets for the state estimation error §;

are computed off-line.
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Figure 4.1 The robust positively invariant sets for the state estimation error

§,-,i =12,....,5 computed off-line in case study 1.1.

Figure 4.2 shows the norm of the observer gains |L]|,.i =1.2....5 corresponding to the
robust positively invariant sets for the state estimation error §l~,i =12,...,5. The norm
of the observer gains increases as i increases so larger value of the observer gain can
be applied as the size of the robust positively invariant sets for the state estimation

error decreases.

Norm of the precomputed observer gains, || L; ||,

o 4

T T T T
1 2 3 4

Invariant tube, i

Figure 4.2 The norm of the observer gains ||L,- i=12,..5 corresponding to the robust

positively invariant sets for the state estimation error §,~,i =12,...5.
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Figure 4.3 shows the robust positively invariant sets for the control error
S‘i,i=1,2,...,5 computed off-line corresponding to the robust positively invariant sets

for the state estimation error §,-,i =12,...5.

Figure 4.3 The invariant tubes for the control error Ei,i =12,...,5 computed off-line

in case study 1.1.

Figure 4.4 shows the closed-loop responses of the systems. The invariant tubes for
the state estimation error §,~ and the control error S; are shown in cyan and green,
respectively. The yellow, red and blue lines represent the state trajectories of the
uncertain system, the observer system and the nominal system, respectively. The
target sets )_(f, )_(f @Ei and )_(f @Ei@gi are shown in blue, red and yellow,
respectively. The infeasible region for the state constraint is shown in magenta.
Although the state x is unmeasurable, we can control the observer state x in such a
way that the unknown state x is bounded and the state of the nominal system x

converges to the target set.
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Figure 4.4 The closed-loop responses of the systems in case study 1.1. The invariant
tubes for the state estimation error 5,- and the control error §i are shown in cyan
and green, respectively. The vyellow, red and blue lines represent the state
trajectories of the uncertain system, the observer system and the nominal system,
respectively. The target sets )_(f, )_(f @Ei and )_(f G—)Ei G—)SN*,- are shown in blue, red
and yellow, respectively. The infeasible region for the state constraint is shown in

magenta.

Figure 4.5 shows the control inputs of the systems. The control inputs of the nominal
system and the uncertain system are represented by blue and red lines, respectively.
The infeasible region for the input constraint is shown in yellow. The original

constraint is satisfied by employing tighter constraint set for the nominal system.
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Control Input

Figure 4.5 The control inputs of the systems. The control inputs of the nominal

system and the uncertain system are represented by blue and red lines, respectively.

Table 4.1 shows the comparison between the proposed output feedback controller
and the conventional output feedback tube-based controller (Mayne et al., 2006)
where the observer gain, the robust positively invariant sets for the state estimation
error and the robust positively invariant sets for the control error are constant for all
time step. The proposed output feedback controller can achieve better performance
cost Zle(;ciQ;k +usRuy) due to the fact that the observer gain, the robust
positively invariant sets for the state estimation error and the robust positively
invariant sets for the control error can be updated. Note that )_ck and &k converge to
the origin for large time step k. The on-line computational burden of the proposed
output feedback controller is less than that required for the conventional output
feedback tube-based controller. The computations are performed using Intel Core 2

Duo (2.53 GHz), 2 GB RAM.

Table 4.1 The comparison between the proposed output feedback controller and

the conventional output feedback tube-based controller.

On-line computational time
Algorithm Performance Cost
per step (s)

The proposed algorithm 315.89 0.012

Mayne et al. (2006) 371.06 0.067
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Figure 4.6 shows the domain of attraction (feasibility set for the optimal control
problem with the prediction horizon n=10. The domain of attraction for the
proposed output feedback controller is shown in blue and that of the conventional
output feedback tube-based controller is shown in green. It is seen that the
proposed output feedback controller has a larger domain of attraction compared

with that of the conventional output feedback tube-based controller.

Figure 4.6 The domain of attraction. The domain of attraction for the proposed
output feedback controller is shown in blue. The domain of attraction for the
conventional output feedback tube-based controller (Mayne et al., 2006) is shown in

green.
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Case study 1.2: Consider the following uncertain model of a non-isothermal CSTR

(Wan and Kothare, 2002)

xt=Ax+Bu+w, y=Cx+v (4.49)

where x is a vector of the reactor concentration and temperature, u is the coolant
flow, w is the state disturbance, y is a vector of measured output and v is the

measurement noise. The system matrices can be written as

_E g e E/RI _szoe—E/RTSCAS

RT;

A = — ’

—AH ke EIRT; F U4 E E/RT,
Ty Ty, T ) ko $C g
I PCp PCp pC pRT; |
0

1 0

B=|_2098x10° T, -365) C= |:0 1:| (4.5)

VpC)p
where  F=Im’/min, V=1Im>,  k,=3x10"min~!,  E/R=8330.1K,

~AHppy =3x10" calkmol,  p=10°gm?,  U4=534x10° calK,  C, =lcal/(gK),
Ty =394K and Cy=0.265 kmolm3. The state constraint is xeX where
X:={xeR|[1 O]st.OSkmol/m3, [0 1]x<1K}. The control constraint is uelU
where U= {ueR||u|SO.5 m> /min}. The disturbance and measurement noise are
bounded (w,v) e W xV where W:={weR?||w],, <0.01} and
V= {ve]R2|||v||Oo <0.01}.The discrete-time model can be obtained by discretizing
(4.4) with a sampling time of 0.15 min. The state is unmeasurable so the objective is
to regulate the observer state in such a way that the state of the nominal system is
driven to the target set. The difference between the observer state and the state of
the nominal system e=x—Xx is bounded by the invariant tubes for the control error.
The difference between the real state and the observer state X =x—-x is bounded

by the invariant tubes for the state estimation error.

Figure 4.7 shows the closed-loop responses of the systems. The invariant tubes for

the state estimation error §i and the control error S; are shown in cyan and green,
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respectively. The yellow, red and blue lines represent the state trajectories of the
uncertain system, the observer system and the nominal system, respectively. The
target sets)_(f, )_(f ®S; and )_(f ®§i®§,~ are shown in blue, red and yellow,
respectively. The infeasible region for the state constraint is shown in magenta.
Starting from an initial observer state x=(-0.3,—1), it is seen that the state of the
nominal system, the observer state and the real state are steered to target sets )_(f,

)_(f @ §,~ and )_(f @ Ei @ §,~, respectively.

Figure 4.7 The closed-loop responses of the systems in case study 1.2. The invariant

tubes for the state estimation error §,~ and the control error S; are shown in cyan
and green, respectively. The yellow, red and blue lines represent the state
trajectories of the uncertain system, the observer system and the nominal system,
respectively. The target sets )_(f, }f ®S; and }f ®S; @§i are shown in blue, red
and yellow, respectively. The infeasible region for the state constraint is shown in

masgenta.
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(2) Results from the development of a pilot-scale fluidized bed reactor for low-

density polyethylene (LDPE)

Figure 4.8 shows the process flow diagram of a pilot-scale fluidized bed reactor. The
experimental apparatus consist of the compressor, rotary valve, electric air cooler,

particle feeder, fluidization chamber, heater, microelectronic controller, cyclone and

filter. The compressor delivers a maximum air flow rate of 0.25 m/s and a
maximum pressure of 1.83 bars (absolute). The air flow rate can be adjusted with a
rotary valve. The air enters the fluidization chamber with a diameter of 0.15 m and
the height of 1.2 m. The top section of the fluidization chamber is a dome in order

to reduce possible risk of particle entrainment out of the reactor.

P-101 Compressor E-102 Heater to generate uncertain heat of polymerization
V-101 Rotary valve C-101 The developed output feedback —
microelectronic controller / VENT AR >
E-101 Electric air cooler D-101 Cyclone
R-101 Fluidization chamber F-101 Filter
~ D-102
PC-101 Computer D-102 Particle feeder U

)8 VI B Particle

v .y P15
c-101 G-
| 10 J
N - R-101 PC-101
AR > okt ,Q >
E-101

Figure 4.8 The process flow diagram of a pilot-scale fluidized bed reactor.

The compressor and the fluidization chamber in a pilot-scale fluidized bed reactor

for LDPE are shown in Fig. 4.9.



b) Fluidization chamber

Figure 4.9 a) The compressor and b) the fluidization chamber in a pilot-scale

fluidized bed reactor.
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The process specifications can be summarized as shown in Table 4.2.

Table 4.2 The process specifications of a pilot-scale fluidized bed reactor.

25

fluidization chamber

Parameter Value Unit
Air feed rate max 0.25 m3/s
Average diameter of
1,000 micrometer
LDPE particle
Fluidization chamber
0.15 m
diameter
Fluidization chamber
1.2 m
height
Operating bed
70 OC
temperature
Operating pressure of
1 bar
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(3) Results from the application of the developed controller to the control of a

pilot-scale fluidized bed reactor for LDPE.

In this section, the developed robust model predictive control algorithm is applied to
the control of a pilot-scale fluidized bed reactor for low-density polyethylene (LDPE).
The LDPE particles are loaded into the chamber that generates heat in the bed of
particles according to the rate law of polymerization calculated by the computer.
The objective is to regulate the temperature of the system to the set point under
the influences of uncertainties such as the reaction rate constant, heat of reaction,

disturbances and measurement noises.

Case study 3.1: The control performance when the reaction rate constant is

uncertain.

In this case study, the developed controller is applied to the system as the reaction
rate constant is uncertain. The values of the reaction rate constant are in the range
between -20% to +20% from the nominal value. Figure 4.10 shows the closed-loop
trajectories of the system. The developed controller can regulate the system to the
set point despite the uncertain reaction rate constant. It can be observed that larger
value of reaction rate constant leads to lower reactant concentration and higher

temperature of the system.
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Figure 4.10 The closed-loop trajectories of the system as the reaction rate constant is

uncertain.
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Case study 3.2: The control performance when the heat of reaction is uncertain.

The developed controller is applied to the system as the heat of reaction is
uncertain in this case study. The values of the heat of reaction are in the range
between -20% to +20% from the nominal value. Figure 4.11 shows the closed-loop
trajectories of the system. For high value of the heat of reaction, the overshoot of
the temperature can occur in the system. This action leads to lower value of

manipulated air temperature in order to reduce the temperature of the system.
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Figure 4.11 The closed-loop trajectories of the system as the heat of reaction is

uncertain.
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Case study 3.3: The control performance when the bed temperature

measurement contains noises.

In this case study, the developed controller is applied to the system as the bed
temperature measurement contains noises. The values of the bed temperature
measurement noises are in the range between -2% to +2% from the nominal value.
Figure 4.12 shows the closed-loop trajectories of the system. The system can be
regulated to the set point despite the presence of the bed temperature

measurement noises.
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Figure 4.12 The closed-loop trajectories of the system as the bed temperature

measurement contains noises.
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Case study 3.4: The control performance when the inlet air temperature

contains disturbances.

In this case study, the developed controller is applied to the system as the inlet air
temperature contains disturbances. The values of the inlet air temperature
disturbances are in the range between -2% to +2% from the nominal value. Figure
4.13 shows the closed-loop trajectories of the system. The deviation of temperature
from the steady state is high as the values of disturbances increase. The temperature
can be regulated to the neighborhood of the steady state as the values of

disturbances increase so robust stability of the system can be guaranteed.
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Figure 4.13 The closed-loop trajectories of the system as the inlet air temperature

contains disturbances.
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5. Conclusions

The control of the system in the presence of various sources of uncertainties
including the uncertain parameters, disturbances and measurement noises is a
challenging control problem because it is difficult to ensure both robust stability and
constraint satisfaction. In this research, a novel off-line output feedback tube-based
robust model predictive control algorithm is presented. The effects of the state
estimation errors and all possible sources of uncertainties are bounded within the
tubes so robust stability and constraint satisfaction can be guaranteed. All
optimization problems are solved off-line to find the explicit control laws so the
developed control algorithm can be applied to the fast dynamical systems. In order
to demonstrate the effectiveness of the developed controller, it is applied to a pilot-
scale fluidized bed reactor for low-density polyethylene (LDPE). The LDPE particles
are loaded into the pilot-scale fluidized bed reactor and the heat within the bed is
generated according to the uncertain rate of reaction simulated from the computer.
The polymerization reaction is highly exothermic so it is important to control the bed
temperature at the set point. The temperature measurement noises usually exist due
to the fluctuating behavior of fluidization. In the presence of uncertainties including
the reaction rate constant, heat of reaction, disturbances and measurement noises,
the developed robust model predictive control algorithm can regulate the

temperature of the system to the set point so robust stability can be guaranteed.
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6. Recommendations for future research

6.1 The range of the uncertainties in this work may be limited due to some
constraints and limitations of the system. Future work can be extended to

accommodate more values of uncertainties.

6.2 As the economic performance is important for the industrial process, the
economic model predictive control involving the costs and profits can be developed

in the future work.
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