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เชิงท านายแบบจ าลองคงทนที่มี พ้ืนฐานเป็นท่อป้อนกลับผลลัพธ์แบบไม่เชื่อมตรงส าหรับ
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 งานวิจัยนี้ได้ท าการพัฒนาวิธีการใหม่ของการควบคุมเชิงท านายแบบจ าลองคงทนซึ่งสามารถ
รับประกันเสถียรภาพความคงทนของระบบภายใต้อิทธิพลของพารามิเตอร์ที่มีความไม่แน่นอน ตัว
แปรรบกวน และสัญญาณรบกวนของการวัด วิธีการควบคุมเชิงท านายแบบจ าลองคงทนที่พัฒนาขึ้น
สามารถจ ากัดขอบเขตผลกระทบของความไม่แน่นอนทั้งหมดและความผิดพลาดของการประมาณ
สถานะให้อยู่ภายในบริเวณของท่อยืนยงจึงสามารถลดผลกระทบของความไม่แน่นอนได้อย่างมี
นัยส าคัญ นอกจากนี้ได้ท าการแก้ไขปัญหาการหาค่าเหมาะสมที่สุดก่อนและกฎการควบคุมสามารถฝัง
ตัวลงในตัวควบคุมไมโครอิเล็กทรอนิกส์จึงสามารถน าไปประยุกต์ใช้กับการควบคุมระบบที่มีพลวัต
รวดเร็วได้ เมื่อท าการเปรียบเทียบกับวิธีการควบคุมเชิงท านายแบบจ าลองคงทนดั้งเดิมพบว่าวิธีการ
ควบคุมเชิงท านายแบบจ าลองคงทนที่พัฒนาขึ้นสามารถให้สมรรถนะการควบคุมที่ดีกว่าและใช้เวลา
การค านวณที่น้อยกว่า ในขั้นตอนสุดท้ายได้มีการน าวิธีการควบคุมเชิงท านายแบบจ าลองคงทนที่
พัฒนาขึ้นไปประยุกต์ใช้กับการควบคุมถังปฏิกรณ์ฟลูอิไดซ์เบดขนาดน าร่องส าหรับพอลิเอทิลีนความ
หนาแน่นต่ า โดยอนุภาคของพอลิเอทิลีนความหนาแน่นต่ าจะถูกบรรจุในหอซึ่งมีการสร้างความร้อน
ภายในเบดของอนุภาคตามกฎอัตราของการเกิดพอลิเมอร์ซึ่งค านวณด้วยคอมพิวเตอร์ ภายใต้อิทธิพล
ของความไม่แน่นอนในกระบวนการ เช่น ค่าคงที่อัตราของปฏิกิริยา ค่าความร้อนของปฏิกิริยา ตัวแปร
รบกวน และสัญญาณรบกวนของการวัด พบว่าวิธีการใหม่ของการควบคุมเชิงท านายแบบจ าลอง
คงทนที่พัฒนาขึ้นสามารถควบคุมอุณหภูมิของระบบให้เข้าสู่ค่าเป้าหมายจึงสามารถรับประกัน
เสถียรภาพความคงทนได้  
     
ค าหลัก: ตัวควบคุมไมโครอิเล็กทรอนิกส์ การควบคุมเชิงท านายแบบจ าลองคงทนที่มีพ้ืนฐานเป็นท่อ
ป้อนกลับผลลัพธ์แบบไม่เชื่อมตรง กระบวนการพอลิเมอร์ที่มีความไม่แน่นอน ความผิดพลาดของการ
ประมาณสถานะ เสถียรภาพคงทน 
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Abstract 
 
Project Code: MRG6180035  
Project Title: Development of a microelectronic controller embedded with novel 
off-line output feedback tube-based robust model predictive control for uncertain 
polymerization processes with state estimation errors  
Investigator:  Asst. Prof. Dr. Pornchai Bumroongsri  Mahidol University 
  Assoc. Prof. Dr. Soorathep Kheawhom Chulalongkorn University 
E-mail Address: pornchai.bum@mahidol.ac.th, soorathep.k@chula.ac.th 
Project Period: 2th May, 2018 to 1st May, 2020 (2 years)   
 
 This research develops a novel robust model predictive control algorithm 
that can guarantee robust stability of the systems under the influences of uncertain 
parameters, disturbances and measurement noises. The developed robust model 
predictive control algorithm can bound the effects of all uncertainties and state 
estimation errors in the regions of invariant tubes so the effects of uncertainties can 
be significantly reduced. In addition, the optimization problem is solved off-line and 
the control law can be embedded in the microelectronic controller so it can be 
applied to the control of fast dynamical systems. As compared with the conventional 
robust model predictive control algorithm, the developed robust model predictive 
control algorithm can give better control performance and use less computational 
time. In the last step, the developed robust model predictive control algorithm is 
applied to the control of a pilot-scale fluidized bed reactor for low-density 
polyethylene (LDPE). The LDPE particles are loaded into the chamber that generates 
heat in the bed of particles according to the rate law of polymerization calculated by 
the computer. Under the influences of uncertainties in the process such as the 
reaction rate constant, heat of reaction, disturbances and measurement noises, the 
developed robust model predictive control algorithm can regulate the temperature 
of the system to the set point so robust stability can be guaranteed.           
 
Keywords: Microelectronic controller; off-line output feedback tube-based robust 
model predictive control; uncertain polymerization processes; state estimation errors; 
robust stability   
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1. Executive summary 

The control of the industrial processes when not all states can be exactly 
measurable is a challenging control problem because it is difficult to ensure both 
robust stability and constraint satisfaction as the state estimator is employed. 
Additionally, this problem is more severe in the case when there are some uncertain 
parameters and disturbances present in the process due to the mismatch between 
the real process and the process model. In order to efficiently control the uncertain 
industrial processes, it is important to develop an advanced control algorithm that 
can handle the effects of state estimation errors and all possible sources of 
uncertainties including the uncertain parameters, disturbances and measurement 
noises 

In this research, a novel off-line output feedback tube-based robust model 
predictive control algorithm is developed. The effects of the state estimation errors 
and all possible sources of uncertainties including the uncertain parameters, 
disturbances and measurement noises are bounded within the tubes so robust 
stability and constraint satisfaction can be guaranteed. All optimization problems are 
solved off-line to find the explicit control laws for on-line applications. These explicit 
control laws can be embedded into a microelectronic controller so it can be used for 
fast dynamical systems. As compared with the conventional model predictive 
controller in the literature, the proposed controller can achieve better control 
performance and lower computational time. The obtained results have contributed 
to the development of the advanced process control theory because a novel control 
algorithm has been developed in this research.   

The developed controller is applied to a challenging control problem of a 
pilot-scale fluidized bed reactor for low-density polyethylene (LDPE). The LDPE 
particles are loaded into the pilot-scale fluidized bed reactor and the heat within the 
particle bed is generated according to the uncertain rate law of polymerization 
simulated from the computer. The developed robust model predictive control 
algorithm can regulate the temperature of the system to the set point so robust 
stability can be guaranteed.  This pilot-scale reactor can be used as a prototype in 
the research and education of all process and chemical engineers. 
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2. Objectives of this research 

 

(1) To develop a microelectronic controller embedded with novel off-line output 
feedback tube-based robust MPC algorithm that can guarantee robust stability and 
constraint satisfaction of the control systems in the presence of the state estimation 
errors and all possible sources of uncertainties including the uncertain parameters, 
disturbances and measurement noises.    
 
(2) To develop a pilot-scale fluidized bed reactor for low-density polyethylene 
(LDPE). The heat within the particle bed is generated from the heater according to 
the uncertain rate law of polymerization simulated from the computer.  
 
(3) To apply the developed microelectronic controller to the control of a pilot-scale 
fluidized bed reactor for low-density polyethylene (LDPE). Both robust stability and 
constraint satisfaction of the system are guaranteed despite the presence of state 
estimation errors and the sources of uncertainties such as uncertain reaction rate 
constant, uncertain heat of polymerization, measurement noises and disturbances. 
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3. Research Methodology 

 
In this project, a microelectronic controller embedded with a novel off-line 

output feedback tube-based robust MPC algorithm is proposed. The proposed 
algorithm can handle uncertain parameters, disturbances, measurement noises and 
state estimation errors. Additionally, all of the optimization problems are solved off-
line so the developed off-line tube-based robust MPC algorithm is applicable to fast 
dynamical processes. In order to illustrate its effectiveness, the proposed control 
algorithm will be applied to a pilot-scale fluidized bed polymerization reactor for 
low-density polyethylene (LDPE) production. The research methodology is shown in 
Fig. 3.1. 

 

 
 

Figure 3.1 The research methodology. 
 
(1) Develop a microelectronic controller embedded with novel off-line output 
feedback tube-based robust MPC algorithm. 

 
A novel off-line output feedback tube-based robust MPC algorithm is 

developed. The explicit control laws are computed and can be embedded into a 
microelectronic controller so it can be conveniently and efficiently used for real-time 
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applications. Consider the following discrete-time system with uncertain parameter, 
bounded disturbance and measurement noise. 
 

wuBxAx    
vxCy                          (3.1) 

 
where x ℝn is the state that is not necessary to be measurable, u ℝm is the 
control input, w ℝn is the bounded disturbance, x ℝn is the successor state, 
y ℝp is the measured output and v ℝp is the measurement noise. The system is 

subject to the state constraint x 𝕏 and the control constraint u 𝕌 where 𝕏 ℝn 
and 𝕌ℝm are compact, convex and each set contains the origin as an interior 
point. The state disturbance w  and the measurement noise v  are known only to the 
extent that they lie in, w 𝕎 and v 𝕍 where 𝕎ℝn and 𝕍ℝp are compact, 
convex and each set contains the origin as an interior point.    
 
The matrices A  and B  are not constant but vary with an uncertain parameter 
vector  . An uncertain parameter vector   can be measured at each sampling time 
but its future values are uncertain. We make the following assumption 
 
Assumption 1. ]}  [],...,  [Conv{]  [ 111 LLL CBACBACBA   where Conv  denotes the 
convex hull, ]  [ jjj CBA  are vertices of the convex hull and L  is the number of 
vertices of the convex hull. Any ]  [  CBA  can be written as 

 


L

j jjjj CBACBA
1

]  []  [  . The pair ] [ jj BA  is controllable and the pair ] [ jj CA  is 
observable. 
 
Since the state x  is not necessary to be measurable, the following Luenberger 
observer is employed  
 

 )ˆ(ˆˆ yyLuBxAx    
 xCy ˆˆ                          (3.2) 
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where x̂ ℝn is the observer state, L ℝnxp is the observer gain, ŷ ℝp is the 
observer output and x̂ ℝn is the observer successor state. Defining the state 
estimation error x~  as xxx ˆ~  , it is seen that 
 
          ).(~)(~ LvwxLCAx                        (3.3) 
 
The state estimation error will be bounded within a robust positively invariant set. 
The definition of the robust positively invariant set is as follows: 
 
Definition 1. The set Z  ℝn is a robust positively invariant set of an uncertain 
system with disturbance wxAx    if ZA 𝕎 Z  for Zx , w 𝕎 and 

},...,Conv{ 1 LAAA    where   denotes the Minkowski set addition (Mayne et al., 
2009). 
 
It can be observed that if L  satisfies the Lyapunov stability constraint 
 

},...,1{,0)()( LjPLCAPLCA jj
T

jj                   (3.4) 
 

where P  is a Lyapunov matrix, then 0)()(  PLCAPLCA T  , 
},...,2,1], [Conv{] [ LjBABA jj    and we can bound the state estimation error x~  

by a robust positively invariant set S~  satisfying  
 

 SLCA
~

)(  𝕎 L( 𝕍 S
~

)                              (3.5) 
 
for Sxx

~
)ˆ(  , w 𝕎 and v 𝕍. The set S~  can be approximated using the 

method in Raković et al. (2005).  
 
Let the nominal system (system with no uncertain parameter, bounded disturbance 
and measurement noise) be defined by   
    

       uBxAx 
                                           (3.6) 
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where x  ℝn is the state of the nominal system, u  ℝm is the control input of the 

nominal system and 

x  ℝn is the successor state of the nominal system. We will 

control the observer state x̂  in such a way that the state of the nominal system x  

converges to the target set. In order to counteract the effect of the uncertainty, the 

following control law is employed 

)ˆ( xxKuu                                           (3.7) 
 
where K ℝmxn is the disturbance rejection gain. Defining the control error e  as 

xxe  ˆ , it is seen that 
 

uBBxAALvxLCeBKAe )(ˆ)(~)(                      (3.8) 
 
It can be observed that if K  satisfies the Lyapunov stability constraint  
 

},...,1{,0)()( LjPKBAPKBA jj
T

jj                             (3.9) 
 

where P  is a Lyapunov matrix, then 0)()(  PKBAPKBA T  , 
},...,2,1], [Conv{] [ LjBABA jj    and we can bound the control error e  by a 

robust positively invariant set S  satisfying  
 

LSLCSBKA 
~

)(  𝕍 )( AA    𝕏 )( BB   𝕌 S           (3.10) 
 
for Sxx  )ˆ( , Sxx

~
)ˆ(  , v 𝕍, x 𝕏 and u 𝕌. The set S  can be 

approximated using the method in Raković et al. (2005). 
 
Defining SSS

~
 , it is seen that if the state estimation error xxx ˆ~   satisfies 

Sxx
~

ˆ  and the control error xxe  ˆ  satisfies Sxx ˆ , then SxSxx 
~

ˆ . For 
this reason, although the state x  is not exactly known, we can control the observer 
state x̂  in such a way that the unknown state x  is bounded and the state of the 
nominal system x  converges to the target set. In order to ensure that the unknown 
state x  satisfies the state constraint x 𝕏 and the control constraint u 𝕌, we must 
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employ tighter constraints for the nominal system, i.e., x 𝕏⊖ S  and u 𝕌⊖ SK . 
The optimization problem can be written as follows 
 

   nf

T

n
n
k k

T

kk

T

kux
xPxuRuxQx

k






















2

1
)(

2

1
min

1
0,0

                    (3.11) 

 
    s.t. Sxx  0ˆ                       (3.12) 
 
    kkk uBxAx 1 , }1,...,0{  nk                     (3.13) 
 
    kx 𝕏⊖ )

~
( SS  , ku 𝕌⊖ SK ,                    (3.14) 

 
    fn Xx                        (3.15) 
 
where kx  and ku  are the predicted state and control input, respectively, in the 
prediction horizon n  of the nominal system, Q , R  and fP  are positive definite 
weighting matrices, fX  is the terminal constraint set and the Minkowski set addition 
and difference are defined, respectively, by },|{: YyXxyxYX   and 
X⊖Y }|{: XYxx  . In summary, the off-line output feedback tube-based robust 
MPC algorithm can be formulated as follows: 
 
Step 1: Compute off-line a sequence of observer gains NiLi ,...,2,1,   satisfying 

},...,1{,0)()( LjPCLAPCLA jij
T

jij   and a sequence of the disturbance rejection 
gain NiK i ,...,2,1,   satisfying },...,1{,0)()( LjPKBAPKBA ijj

T
ijj  . 

 
Step 2: Compute off-line the corresponding sequence of robust positively invariant 
sets for state estimation error NiSi ,...,2,1,

~
  satisfying (3.5) and the corresponding 

sequence of robust positively invariant sets for control error NiS i ,...,2,1,   satisfying 
(3.10).   
 
Step 3: Compute off-line the optimization problem (3.11)-(3.15) using the multi-
parametric programming (Kvasnica et al., 2004) to find the control input of the 
nominal system u  corresponding to the region of the state of the nominal system x . 
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Step 4: All of the components in the control law have been explicitly computed off-
line. Embed the pre-computed control law into the microelectronic controller for 
on-line utilization.   
 
We can now establish our main Theorem as follows 
 
Theorem 1: For any initial state x , observer state x̂  and state of the nominal system 
x  satisfying iSxx ˆ  and iSxx

~
ˆ  where iS

~  and iS  are the robust positively 
invariant sets for the state estimation error and the control error, respectively, in a 
sequence Ni ,...,2,1 , the proposed output feedback controller steers the initial 
observer state x̂  and state x  to the target sets if SX   and iif SSX

~
 , 

respectively, while satisfying the state constraint x 𝕏 and the control constraint 
u 𝕌.   

 
Proof:    
Consider the difference equation for the control error 

uBBxAALvxLCeBKAe )(ˆ)(~)(   . The disturbance rejection gains 
NiK i ,...,2,1,   have to satisfy the Lyapunov stability constraint 

},...,1{,0)()( LjPKBAPKBA ijj
T

ijj   so the control error xxe  ˆ  is bounded by 
the robust positively invariant set iS . Consider the difference equation for the state 
estimation error ).(~)(~ LvwxLCAx    The observer gains NiLi ,...,2,1,   satisfy 
the Lyapunov stability constraint },...,1{,0)()( LjPCLAPCLA jij

T
jij   so the state 

estimation error xxx ˆ~   is bounded by the robust positively invariant set iS
~ . From 

the optimal control problem (3.11)-(3.15), the state x  of the nominal system must 
be driven to the terminal constraint fX . Since iSxx ˆ  and iSxx

~
ˆ , the 

observer state x̂  and the state x  must be driven to the target sets if SX   and 

iif SSX
~

 , respectively. The tighter constraints for the state and control input of 
the nominal system are employed in (3.14) so the state constraint x 𝕏 and the 

input constraint u 𝕌 are satisfied. □ 
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(2) Develop a pilot-scale fluidized bed reactor for low-density polyethylene 
(LDPE). 
 
 Fluidized bed polymerization reactors are widely used in LDPE production 
process due to their several advantages such as high heat and mass transfer rate, 
simple construction and capability of continuous transport. However, the 
polymerization reaction occurring in the reactor is highly exothermic so the control of 
bed temperature is crucially important in order to avoid the runaway reactions 
especially in the presence of uncertain parameters such as uncertain reaction rate 
and uncertain heat of reaction. Moreover, the temperature measurement noises 
usually occur due to the fluctuating behavior in the fluidized bed reactor so the 
exact values of bed temperature are not explicitly known (Schneiderbauer et al., 
2015; Li et al., 2016).  

In this research, a pilot-scale fluidized bed polymerization reactor for LDPE 
production is developed. The LDPE particles are loaded within the fluidized bed 
reactor and the bed temperature is controlled using the developed microelectronic 
controller by adjusting the inlet air temperature fed to the bottom of the reactor. 
The heat in the particle bed is generated from the heater according to the uncertain 
rate law of polymerization. The uncertain polymerization reaction is simulated using 
the computer so there is no real polymerization reaction taking place in the reactor 
for the safety in experiments. The explicit control laws are embedded into a 
microelectronic controller so it can be conveniently and efficiently used for real-time 
applications. 
 
(3) Apply the developed controller to the control of a pilot-scale fluidized bed 
reactor for LDPE. 
 

In the last step, the developed robust model predictive control algorithm is 
applied to the control of a pilot-scale fluidized bed reactor for low-density 
polyethylene (LDPE). The uncertain polymerization reaction is simulated using the 
computer and the uncertain heat of reaction is generated from the heater according 
to the uncertain reaction rate. The control loop is shown in Figure 3.2.  
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Figure 3.2 The control loop of a pilot-scale fluidized bed reactor. 
 

 The rate of polymerization reaction pR  simulated using the computer can be 

calculated as (Chen et al., 2011)  
 

]][)[exp(  CM
RT

E
kR pp .                            (3.16) 

 
The amount of heat generated from the polymerization pQ  can be calculated as 

 
  HRQ pp                                        (3.17) 

 

where ][M  is the simulated monomer concentration, ][ C  is the simulated 
concentration of catalyst active site, T  is the measured bed temperature, E  is the 
activation energy and R  is the gas constant. 
 
Table 3.1 shows the uncertain parameters, measurement noises and disturbances 
occurring in the system. The reaction rate constant and the heat of polymerization 
are considered to be uncertain. The measurement noises usually occur due to the 
inherent fluctuating behavior in the fluidization so there exist the state estimation 
errors in the system.     
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Table 3.1 The uncertain parameters, measurement noises and disturbances. 
  

Parameters Descriptions 
Nominal 
values 

Units 

pK  
reaction rate 

constant 
106 m3mol-1s-1 

H  heat of reaction 100 kJmol-1 

noises 

Bed 
temperature 
measurement 

noises 

 0.1 K 

disturbances 
Inlet air 

temperature 
disturbances 

 0.2 K 

 
The polymerization reaction is highly exothermic. In the presence of sources of 
uncertainty as shown in Table 3.1 and the state estimation errors, an inefficient 
control of the process may lead to unexpected thermal runaway of the system. For 
this reason, all possible sources of uncertainties and the state estimation errors are 
explicitly taken into account in the proposed output feedback controller. 
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4. Results of this research 

(1) Results from the development of a microelectronic controller embedded 

with novel off-line output feedback tube-based robust MPC algorithm 
Case study 1.1: Consider the following uncertain system with uncertain parameter, 
disturbance and measurement noise 

  

wuxx 


















1

1

0

11


, vxy 










10

01 .           (4.1) 

 
The state constraint is x 𝕏 where 𝕏  x{: ℝ2

3]} ,50[1]  0[,3] ,50[0]  1[|  xx . The 
control constraint is u 𝕌 where 𝕌  u{: ℝ }.3| u  The uncertain parameter is  𝕃 

where 𝕃  {: ℝ }1.19.0|   . The disturbance and measurement noise are 
bounded ),( vw 𝕎 x𝕍 where 𝕎  w{: ℝ2

0.1}| 


w  and 𝕍  v{: ℝ2
0.01}.| 


v  

Since the state x  is unmeasurable, the following Luenberger observer is employed 
 

)ˆ(
1

1
ˆ

0

11
ˆ yyLuxx i 




















, xCy ˆˆ                  (4.2) 

 
where the observer gain iL  is updated at each sampling time. The nominal system is 
 

uxx 




















1

1

10

11 .                      (4.3) 

 
Figure 4.1 shows the robust positively invariant sets for the state estimation error 

5,...,2,1,
~

iSi . The robust positively invariant sets for the state estimation error iS
~  

are computed off-line. 
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Figure 4.1 The robust positively invariant sets for the state estimation error 
 5,...,2,1,

~
iSi  computed off-line in case study 1.1. 

 
Figure 4.2 shows the norm of the observer gains 5,...,2,1,

2
iLi  corresponding to the 

robust positively invariant sets for the state estimation error 5,...,2,1,
~

iSi . The norm 
of the observer gains increases as i  increases so larger value of the observer gain can 
be applied as the size of the robust positively invariant sets for the state estimation 
error decreases.  
 

 

Figure 4.2 The norm of the observer gains 5,...,2,1,
2

iLi  corresponding to the robust 
positively invariant sets for the state estimation error 5,...,2,1,

~
iSi .   
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Figure 4.3 shows the robust positively invariant sets for the control error 
5,...,2,1, iS i  computed off-line corresponding to the robust positively invariant sets 

for the state estimation error 5,...,2,1,
~

iSi . 
 

 

Figure 4.3 The invariant tubes for the control error 5,...,2,1, iS i  computed off-line 
in case study 1.1. 

 
Figure 4.4 shows the closed-loop responses of the systems. The invariant tubes for 
the state estimation error iS

~  and the control error iS  are shown in cyan and green, 
respectively. The yellow, red and blue lines represent the state trajectories of the 
uncertain system, the observer system and the nominal system, respectively. The 
target sets fX , if SX   and iif SSX

~
  are shown in blue, red and yellow, 

respectively. The infeasible region for the state constraint is shown in magenta. 
Although the state x  is unmeasurable, we can control the observer state x̂  in such a 
way that the unknown state x  is bounded and the state of the nominal system x  
converges to the target set.  
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Figure 4.4 The closed-loop responses of the systems in case study 1.1. The invariant 
tubes for the state estimation error iS

~  and the control error iS  are shown in cyan 
and green, respectively. The yellow, red and blue lines represent the state 
trajectories of the uncertain system, the observer system and the nominal system, 
respectively. The target sets fX , if SX   and iif SSX

~
  are shown in blue, red 

and yellow, respectively. The infeasible region for the state constraint is shown in 
magenta. 
 
Figure 4.5 shows the control inputs of the systems. The control inputs of the nominal 
system and the uncertain system are represented by blue and red lines, respectively. 
The infeasible region for the input constraint is shown in yellow. The original 
constraint is satisfied by employing tighter constraint set for the nominal system. 
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Figure 4.5 The control inputs of the systems. The control inputs of the nominal 
system and the uncertain system are represented by blue and red lines, respectively. 
 
Table 4.1 shows the comparison between the proposed output feedback controller 
and the conventional output feedback tube-based controller (Mayne et al., 2006) 
where the observer gain, the robust positively invariant sets for the state estimation 
error and the robust positively invariant sets for the control error are constant for all 
time step. The proposed output feedback controller can achieve better performance 

cost 




1

)(
k k

T

kk

T

k uRuxQx  due to the fact that the observer gain, the robust 
positively invariant sets for the state estimation error and the robust positively 
invariant sets for the control error can be updated. Note that kx  and ku  converge to 
the origin for large time step k . The on-line computational burden of the proposed 
output feedback controller is less than that required for the conventional output 
feedback tube-based controller. The computations are performed using Intel Core 2 
Duo (2.53 GHz), 2 GB RAM. 
 
Table 4.1 The comparison between the proposed output feedback controller and 
the conventional output feedback tube-based controller. 

Algorithm Performance Cost 
On-line computational time 

per step (s) 

The proposed algorithm 315.89 0.012 

Mayne et al. (2006) 371.06 0.067 
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Figure 4.6 shows the domain of attraction (feasibility set for the optimal control 

problem with the prediction horizon 10n . The domain of attraction for the 

proposed output feedback controller is shown in blue and that of the conventional 

output feedback tube-based controller is shown in green. It is seen that the 

proposed output feedback controller has a larger domain of attraction compared 

with that of the conventional output feedback tube-based controller.  

 

Figure 4.6 The domain of attraction. The domain of attraction for the proposed 
output feedback controller is shown in blue. The domain of attraction for the 
conventional output feedback tube-based controller (Mayne et al., 2006) is shown in 
green.
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Case study 1.2: Consider the following uncertain model of a non-isothermal CSTR 
(Wan and Kothare, 2002)  
 

wBuAxx  , vCxy                       (4.4) 
 
where x  is a vector of the reactor concentration and temperature, u  is the coolant 
flow, w  is the state disturbance, y  is a vector of measured output and v  is the 
measurement noise. The system matrices can be written as     
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where min,/m 1 3F  ,m 1 3V  ,min 103 19  xko  K, 1.330,8/ RE  

cal/kmol, 103 7xHrxn   ,g/m 10 36  cal/K, 1034.5 6xUA   cal/(gK), 1pC  
K 394sT  and .kmol/m 265.0 3AsC  The state constraint is x 𝕏 where 

𝕏  x{: ℝ2
,kmol/m 08.00]  1[| 3x  K} 11]  0[ x . The control constraint is u 𝕌 

where 𝕌  u{: ℝ min}./m 5.0| 3u  The disturbance and measurement noise are 
bounded ),( vw 𝕎 x𝕍 where 𝕎  w{: ℝ2 0.01}| 


w  and 

𝕍  v{: ℝ2
0.01}.| 


v The discrete-time model can be obtained by discretizing 

(4.4) with a sampling time of 0.15 min. The state is unmeasurable so the objective is 
to regulate the observer state in such a way that the state of the nominal system is 
driven to the target set. The difference between the observer state and the state of 
the nominal system xxe  ˆ  is bounded by the invariant tubes for the control error. 
The difference between the real state and the observer state xxx ˆ~   is bounded 
by the invariant tubes for the state estimation error. 
 
Figure 4.7 shows the closed-loop responses of the systems. The invariant tubes for 
the state estimation error iS

~  and the control error iS  are shown in cyan and green, 
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respectively. The yellow, red and blue lines represent the state trajectories of the 
uncertain system, the observer system and the nominal system, respectively. The 
target sets fX , if SX   and iif SSX

~
  are shown in blue, red and yellow, 

respectively. The infeasible region for the state constraint is shown in magenta. 
Starting from an initial observer state )1 ,3.0(ˆ x , it is seen that the state of the 
nominal system, the observer state and the real state are steered to target sets fX , 

if SX   and iif SSX
~

 , respectively. 
 

 

Figure 4.7 The closed-loop responses of the systems in case study 1.2. The invariant 
tubes for the state estimation error iS

~  and the control error iS  are shown in cyan 
and green, respectively. The yellow, red and blue lines represent the state 
trajectories of the uncertain system, the observer system and the nominal system, 
respectively. The target sets fX , if SX   and iif SSX

~
  are shown in blue, red 

and yellow, respectively. The infeasible region for the state constraint is shown in 
magenta. 
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(2) Results from the development of a pilot-scale fluidized bed reactor for low-
density polyethylene (LDPE) 
 
Figure 4.8 shows the process flow diagram of a pilot-scale fluidized bed reactor. The 
experimental apparatus consist of the compressor, rotary valve, electric air cooler, 
particle feeder, fluidization chamber, heater, microelectronic controller, cyclone and 

filter. The compressor delivers a maximum air flow rate of 0.25 /sm3  and a 
maximum pressure of 1.83 bars (absolute). The air flow rate can be adjusted with a 
rotary valve. The air enters the fluidization chamber with a diameter of 0.15 m and 
the height of 1.2 m. The top section of the fluidization chamber is a dome in order 
to reduce possible risk of particle entrainment out of the reactor.   
 

 
 

Figure 4.8 The process flow diagram of a pilot-scale fluidized bed reactor. 
 
The compressor and the fluidization chamber in a pilot-scale fluidized bed reactor 
for LDPE are shown in Fig. 4.9.  
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a) Compressor 
 

 
 

                                   b) Fluidization chamber 
 

Figure 4.9 a) The compressor and b) the fluidization chamber in a pilot-scale 
fluidized bed reactor. 
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The process specifications can be summarized as shown in Table 4.2. 
 
Table 4.2 The process specifications of a pilot-scale fluidized bed reactor. 
 

Parameter Value Unit 

Air feed rate max 0.25  /sm3  
Average diameter of 

LDPE particle  
1,000 micrometer 

Fluidization chamber 
diameter 

0.15 m 

Fluidization chamber 
height 

1.2 m 

Operating bed 
temperature  

70 Co  

Operating pressure of  
fluidization chamber  

1 bar 
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(3) Results from the application of the developed controller to the control of a 
pilot-scale fluidized bed reactor for LDPE. 
 
In this section, the developed robust model predictive control algorithm is applied to 
the control of a pilot-scale fluidized bed reactor for low-density polyethylene (LDPE). 
The LDPE particles are loaded into the chamber that generates heat in the bed of 
particles according to the rate law of polymerization calculated by the computer. 
The objective is to regulate the temperature of the system to the set point under 
the influences of uncertainties such as the reaction rate constant, heat of reaction, 
disturbances and measurement noises. 
 
Case study 3.1: The control performance when the reaction rate constant is 
uncertain. 
 
In this case study, the developed controller is applied to the system as the reaction 
rate constant is uncertain. The values of the reaction rate constant are in the range 
between -20% to +20% from the nominal value. Figure 4.10 shows the closed-loop 
trajectories of the system. The developed controller can regulate the system to the 
set point despite the uncertain reaction rate constant. It can be observed that larger 
value of reaction rate constant leads to lower reactant concentration and higher 
temperature of the system.   
 

 
(a) reactant concentration 
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(b) reactor temperature 

 

 
(c) manipulated air temperature 

 
Figure 4.10 The closed-loop trajectories of the system as the reaction rate constant is 

uncertain. 
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Case study 3.2: The control performance when the heat of reaction is uncertain. 
 
The developed controller is applied to the system as the heat of reaction is 
uncertain in this case study. The values of the heat of reaction are in the range 
between -20% to +20% from the nominal value. Figure 4.11 shows the closed-loop 
trajectories of the system. For high value of the heat of reaction, the overshoot of 
the temperature can occur in the system. This action leads to lower value of 
manipulated air temperature in order to reduce the temperature of the system. 
    

 
      (a) reactant concentration 

 
    (b) reactor temperature 
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      (c) manipulated air temperature 

 
Figure 4.11 The closed-loop trajectories of the system as the heat of reaction is 

uncertain. 
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Case study 3.3: The control performance when the bed temperature 
measurement contains noises. 
 
In this case study, the developed controller is applied to the system as the bed 
temperature measurement contains noises. The values of the bed temperature 
measurement noises are in the range between -2% to +2% from the nominal value. 
Figure 4.12 shows the closed-loop trajectories of the system. The system can be 
regulated to the set point despite the presence of the bed temperature 
measurement noises.   
   
 

 
(a) reactant concentration 

 
   (b) reactor temperature 
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       (c) manipulated air temperature 

 
Figure 4.12 The closed-loop trajectories of the system as the bed temperature 
measurement contains noises. 
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Case study 3.4: The control performance when the inlet air temperature 
contains disturbances. 
 
In this case study, the developed controller is applied to the system as the inlet air 
temperature contains disturbances. The values of the inlet air temperature 
disturbances are in the range between -2% to +2% from the nominal value. Figure 
4.13 shows the closed-loop trajectories of the system. The deviation of temperature 
from the steady state is high as the values of disturbances increase. The temperature 
can be regulated to the neighborhood of the steady state as the values of 
disturbances increase so robust stability of the system can be guaranteed.   
 

 
      (a) reactant concentration 

 
    (b) reactor temperature 
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      (c) manipulated air temperature 

 
Figure 4.13 The closed-loop trajectories of the system as the inlet air temperature 
contains disturbances.  
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5. Conclusions 

 

 The control of the system in the presence of various sources of uncertainties 

including the uncertain parameters, disturbances and measurement noises is a 

challenging control problem because it is difficult to ensure both robust stability and 

constraint satisfaction. In this research, a novel off-line output feedback tube-based 

robust model predictive control algorithm is presented. The effects of the state 

estimation errors and all possible sources of uncertainties are bounded within the 

tubes so robust stability and constraint satisfaction can be guaranteed. All 

optimization problems are solved off-line to find the explicit control laws so the 

developed control algorithm can be applied to the fast dynamical systems. In order 

to demonstrate the effectiveness of the developed controller, it is applied to a pilot-

scale fluidized bed reactor for low-density polyethylene (LDPE). The LDPE particles 

are loaded into the pilot-scale fluidized bed reactor and the heat within the bed is 

generated according to the uncertain rate of reaction simulated from the computer. 

The polymerization reaction is highly exothermic so it is important to control the bed 

temperature at the set point. The temperature measurement noises usually exist due 

to the fluctuating behavior of fluidization. In the presence of uncertainties including 

the reaction rate constant, heat of reaction, disturbances and measurement noises, 

the developed robust model predictive control algorithm can regulate the 

temperature of the system to the set point so robust stability can be guaranteed. 
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6. Recommendations for future research 
 
6.1 The range of the uncertainties in this work may be limited due to some 
constraints and limitations of the system. Future work can be extended to 
accommodate more values of uncertainties.  
 
6.2 As the economic performance is important for the industrial process, the 
economic model predictive control involving the costs and profits can be developed 
in the future work.   
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ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยศิลปากร  
4. ผศ.ดร.พรชัย บ ารุงศรี  
ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล 
 
2) เชิงวิชาการ โดยภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล  
งานวิจัยนี้ก่อให้เกิดองค์ความรู้ใหม่ซึ่งน าไปใช้ในการพัฒนาการเรียนการสอนโดยการเป็นวิทยากร
บรรยายพิเศษรายวิชา EGCH 691 Seminar ซึ่งเป็นรายวิชาของนักศึกษาในระดับบัณฑิตศึกษา 
(นานาชาติ) ของคณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล 
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7.3 อ่ืนๆ 
 
1) งานวิจัยนี้ก่อให้ เกิดองค์ความรู้ใหม่ซึ่ งได้รับเชิญเป็น speaker ณ. คณะวิศวกรรมศาสตร์ 
จุฬาลงกรณ์มหาวิทยาลัย ส าหรับผลงานวิจัยเรื่อง 
Yadbantung, R., Kheawhom, S., and Bumroongsri, P. (2019). Nonlinear model 
predictive control of chemical reactors with uncertain economic costs, The 8th 
International Symposium on Design, Operation and Control of Chemical Processes 
(PSE Asia 2019), January 13-16, Chulalongkorn University, Bangkok, Thailand.     
  
2)  โครงการวิจัยก่อให้เกิดความร่วมมือจากภาคส่วนต่างๆดังตัวอย่างงานวิจัย 
Duangsri, S., Kheawhom, S., and Bumroongsri, P. (2019). A PDE-based data 
reconciliation approach for systems with variations of parameters. Engineering 
Jouirnal, 23, pp. 157-169. (Scopus Q2)  
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Appendix 

  
แนบผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

 


