

Abstract

Project Code : MRG6180038

Project Title : Improving efficacy of anticancer drugs in P-gp overexpressing cells

by flavonoid incorporated into mPEG-b-OCL-Bz micelles

Investigator : Assist. Prof. Dr. Ruttiros Khonkarn

E-mail Address : ruttiros.khonkarn@cmu.ac.th; pharrutty@gmail.com

Project Period : 2 May 2018 – 1 May 2020

Abstract:

Over expression of cell-membrane transporters is one of the major mechanism of multidrug resistant (MDR) phenomenon which is associated with failure of cancer treatment. Therefore, inhibition of drug transporter function is challenge in cancer therapy. Two flavonoid glycosides; quercetin (QRT) and rutin (RUT) as well as their aglycone, quercetin (QCT) are inhibitors of the P-glycoprotein (P-gp) which is overexpressed in cancer cells and is one of the mechanism for the resistance towards cytostatic drugs. However, their pharmaceutical application is limited according to their low aqueous solubility. In this study, the polymeric micelles of benzoylated methoxy-poly(ethylene glycol)-*b*-oligo(ϵ -caprolactone) or mPEG-*b*-OCL-Bz loading with the flavonoids were prepared to solve these problems. The flavonoid-loaded micelles showed average size of 13-20 nm and maximum loading capacity of 35% (w/w). The release of QCT (21%, 3 h) was lower than QTR (51%, 3 h) and RUT (58%, 3 h). QCT (free and micelle forms) exhibited significantly higher cytotoxicity against P-glycoprotein overexpressing leukemia (K562/ADR) cells than QTR and RUT ($p<0.05$). The results demonstrated that QCT-loaded micelles effectively reversed cytotoxicity of both doxorubicin (multidrug resistant reversing (δ) values up to 0.71) and daunorubicin (δ values up to 0.74) on K562/ADR cells. It was found that QCT-loaded micelles as well as empty polymeric micelles inhibited P-gp efflux of tetrahydropyranyl adriamycin. Besides, mitochondrial membrane potential was decreased by QCT (in its free form and micellar formation). Our results suggested that a combination effects of polymeric micelles (inhibiting P-gp efflux) and QCT (interfering mitochondrial membrane potential) might be critical factors contributing to the reversing multidrug resistant of K562/ADR cells by QCT-loaded micelles. We concluded that QCT-loaded mPEG-*b*-OCL-Bz micelles are the attractive systems for overcoming multidrug-resistant cancer cells.

Keywords : Flavonoid; Polymeric micelle; Resistance; Cancer; P-gp

บทคัดย่อ

กระบวนการขนส่งสารผ่านเยื่อหุ้มเซลล์ที่มีจำนวนมากในเซลล์จะเริ่งที่ดื้อยาเป็นสาเหตุหลักของการดื้อยา ซึ่งส่งผลให้การรักษาจะเริ่งล้มเหลว ดังนั้นการยับยั้งกระบวนการขนส่งสารผ่านเยื่อหุ้มเซลล์จึงเป็นวิธีที่น่าสนใจในการนำรักษาจะเริ่ง สารฟลาโวนอยด์ชนิดคิวอชิทрин รูทิน และคิวอชิทิน สามารถยับยั้งพี-ไกลโโคโปรตีนที่ทำหน้าที่ขนส่งยาด้านจะเริ่งออกจากเซลล์จะเริ่งทำให้เซลล์จะเริ่งดื้อยาการน้ำที่ต่ำ ในการศึกษานี้จึงได้นำสารฟลาโวนอยด์มาศึกษาที่กักเก็บในพอลิเมอริกไมเซลล์ชนิดเบนโซชิล เมทอกซี โพลี เอทิลีน ไกลคอล โอลิโกลาโพรอลแลคโทน เพื่อเพิ่มการละลาย ผลการศึกษาพบว่าสารฟลาโวนอยด์ที่กักเก็บในพอลิเมอริกไมเซลล์มีขนาด 13-20 นาโนเมตร และมีประสิทธิภาพการกักเก็บสารสูงสุดที่ 35 เปอร์เซ็นต์ การศึกษาการปลดปล่อยสารพบว่าสารคิวอชิทิน (21 เปอร์เซ็นต์, 3 ชั่วโมง) ปลดปล่อยจากพอลิเมอริกไมเซลล์ช้ากว่าสารคิวอชิทрин (51 เปอร์เซ็นต์, 3 ชั่วโมง) และรูทิน (58 เปอร์เซ็นต์, 3 ชั่วโมง) สารคิวอชิทินมีประสิทธิภาพมากกว่าเซลล์จะเริ่งเม็ดเลือดขาวที่ดื้อยาได้มากกว่าสารคิวอชิทринและรูทิน สารคิวอชิทินที่กักเก็บในพอลิเมอริกไมเซลล์สามารถเพิ่มประสิทธิภาพด้านจะเริ่งของยาตอกโซรูบิซิน (ค่าการยึดกลับการดื้อยา สูงถึง 0.71) และยาดาวโนรูบิซิน (ค่าการยึดกลับการดื้อยา สูงถึง 0.74) ในเซลล์จะเริ่งเม็ดเลือดขาวที่ดื้อยา นอกจากนี้สารคิวอชิทินที่กักเก็บในพอลิเมอริกไมเซลล์และพอลิเมอริกไมเซลล์เปล่าสามารถยับยั้งกระบวนการขนส่งยาเดตราไโซโตรไฟราโนล อะเครียมัชชิน โดยยับยั้งการทำงานของพี-ไกลโโคโปรตีน อีกทั้งสารคิวอชิทินในรูปอิสระและที่กักเก็บในพอลิเมอริกไมเซลล์สามารถลดศักย์เยื่อเซลล์ของไมโทคอนเดรีย ผลการศึกษานี้แสดงให้เห็นว่าการที่สารคิวอชิทินที่กักเก็บในพอลิเมอริกไมเซลล์สามารถเพิ่มประสิทธิภาพการด้านจะเริ่งของยาการรักษาจะเริ่งเนื่องจากผลที่เกิดจากการรวมกันของพอลิเมอริกไมเซลล์ที่ไปยังยับยั้งกระบวนการขนส่งยาการรักษาจะเริ่งโดยพี-ไกลโโคโปรตีน และผลของคิวอชิทินที่ไปลดศักย์เยื่อเซลล์ของไมโทคอนเดรีย การศึกษานี้จึงสรุปได้ว่าสารคิวอชิทินที่กักเก็บในพอลิเมอริกไมเซลล์เป็นระบบนำส่งยาที่น่าสนใจในการรักษาจะเริ่งที่ดื้อยา

คำสำคัญ : ฟลาโวนอยด์; พอลิเมอริกไมเซลล์; ดื้อยา; จะเริ่ง; พี-จีพี