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Abstract: 

The epidemic of leptospirosis in animals and humans continues to this day, causing 
incidences annually in Thailand. The infection of humans and animals is mainly caused by direct 
contact with infected animals and also by indirect contact with urine of infected animals through cuts 
in the skin or mucous membranes in a contaminated environment. In case of flooding, leptospires 
could be spread into environment, increasing the risk of leptospirosis infection. The aim of this study 
was (1) to investigate the association of several environmental factors with cattle and buffalo 
leptospirosis cases in Thailand, focusing on the role of flooding, (2) to propose different leptospirosis 
transmission models for humans, which considers the impact of environmental factors such as 
seasonal flooding, and weather conditions, and (3) to use a spatial model as a stochastic cellular 
automata model for studying the impact of (the modified normalized difference water index) MNDWI 
and rainfall on the transmission of leptospirosis in Si Sa Ket, Thailand. We found that the percentage 
of flood area and MNDWI are significant factors for leptospirosis infection in cattle and buffalo, and 
humans. We found that the model with the transmission rate dependent on flooding or MNDWI is the 
most important for leptospirosis in Thailand, indicating a high degree of flooding leads to higher 
cases. Sensitivity analysis showed that the transmission of leptospires from the contaminated 
environment was the most important parameter for the total number of human cases. Our results 
suggest that public health policy makers should guide the people who work close to, or in 
contaminated environments to avoiding potential sources of leptospirosis, or by protecting 
themselves by wearing boots to reduce the leptospirosis outbreak. 
Keywords : Leptospirosis, Animals, Humans, Flood, Contaminated environment 
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1. Abstract 
 The epidemic of leptospirosis in animals and humans continues to this day, causing incidences annually in Thailand. 
The infection of humans and animals is mainly caused by direct contact with infected animals and also by indirect contact 
with urine of infected animals through cuts in the skin or mucous membranes in a contaminated environment.  In case of 
flooding, leptospires could be spread into environment, increasing the risk of leptospirosis infection. The aim of this study was 
(1) to investigate the association of several environmental factors with cattle and buffalo leptospirosis cases in Thailand, 
focusing on the role of flooding, (2) to propose different leptospirosis transmission models for humans, which considers the 
impact of environmental factors such as seasonal flooding, and weather conditions, and (3) to use a spatial model as a 
stochastic cellular automata model for studying the impact of (the modified normalized difference water index) MNDWI and 
rainfall on the transmission of leptospirosis in Si Sa Ket, Thailand. We found that the percentage of flood area and MNDWI 
are significant factors for leptospirosis infection in cattle and buffalo, and humans. We found that the model with the 
transmission rate dependent on flooding or MNDWI is the most important for leptospirosis in Thailand, indicating a high degree 
of flooding leads to higher cases. Sensitivity analysis showed that the transmission of leptospires from the contaminated 
environment was the most important parameter for the total number of human cases. Our results suggest that public health 
policy makers should guide the people who work close to, or in contaminated environments to avoiding potential sources of 
leptospirosis, or by protecting themselves by wearing boots to reduce the leptospirosis outbreak. 
 โรคเลปโตสไปโรซสีเป็นโรคทีร่ะบาดทัง้ในคนและสตัวใ์นประเทศไทยต่อเน่ืองจนถงึปัจจุบนั การตดิเชือ้ในคนและสตัวเ์กิดจาก
การไปสมัผสักบัสตัว์ที่เป็นโรคโดยตรง หรอืไปสมัผสักับสิง่แวดล้อมที่ปนเป้ือนเชื้อโรคนี้อยู่ แบคทเีรยีเลปโตสไปราสามารถอยู่ใน
สิง่แวดล้อมได้เมื่อมนี ้าท่วมขงัซึ่งเป็นสาเหตุของการติดเชื้อ งานวจิยันี้มวีตัถุประสงค์คอื (1) เพื่อศึกษาความสมัพนัธ์ของปัจจยัทาง
สิง่แวดล้อมโดยเฉพาะปัจจยัน ้าท่วมกบัการเกิดโรคในววัและควาย (2) เพื่อสรา้งสมการทางคณิตศาสตร์ส าหรบัการส่งผ่านโรคในคน 
โดยค านึงถงึปัจจยัน ้าฝน น ้าท่วม และอุณหภูม ิและ (3) เพื่อสรา้งแบบจ าลองเชงิพื้นที ่(stochastic cellular automata model) ส าหรบั
กรระบาดของโรคในคน โดยใชด้ชันีน ้าท่วม และน ้าฝนเป็นตวัแปรทีข่ ึน้กนัความน่าจะเป็นในการส่งผ่านโรค จากการศกึษาพบว่า ปัจจยั
น ้าท่วมและดชันีน ้าท่วม เป็นตวัแปรทีส่ าคญัในกรเกิดโรคของววั ควาย และคน จากการเปรยีบเทยีบแบบจ าลองต่าง ๆ ยงัพบอีกว่า
ความน่าจะเป็นในการส่งผ่านโรคในคนจะขึ้นกบัปัจจยัน ้าท่วมเป็นหลกั หมายความว่าน ้าท่วมจะท าใหจ้ านวนผูป่้วยสูงขึ้น ซึ่งเกดิจาก
การส่งผ่านโรคจากสิง่แวดลอ้มมาสู่คนเป็นหลกั ผลของการศกึษาสามารถน ามาเป็นขอ้มูลประกอบการตดัสนิใจในการหามาตรการเพื่อ
ควบคุมการระบาดเมื่อเกดิน ้าท่วม อกีทัง้ยงัสามารถน ามาเป็นขอ้มูลพืน้ในการรณรงคใ์หผูท้ีท่ างานใกล้ชดิกบัสิง่แวดลอ้มป้องกนัตนเอง
โดยการสวมรอ้งเทา้ก่อนลงสู่แหล่งน ้า    
  
2. Executive summary  

Leptospirosis is a worldwide zoonotic bacterial disease, that is particularly endemic in tropical and subtropical 
countries. The infection of humans and animals is mainly caused by direct contact with infected animals and also by indirect 
contact with urine of infected animals through cuts in the skin or mucous membranes in a contaminated environment. In this 
work, we first investigated the association of several environmental factors (especially remotely sensed indicators of flooding) 
with cattle and buffalo leptospirosis cases in Thailand. We then developed a mathematical model to study the transmission 
dynamics between humans, animals, and a contaminated environment in Si Sa Ket. We compared different models that 
included the impact of flooding and weather conditions on the transmission rate from a contaminated environment, the 
leptospire shedding rate and the multiplication rate of the leptospires in the environment. We found that the model with the 
transmission rate dependent on flooding and temperature best-fit the reported human data on leptospirosis in Thailand. Finally, 
we study the impact of (the modified normalized difference water index) MNDWI on the transmission of leptospirosis using a 
stochastic cellular automata model in Si Sa Ket, Thailand, which has the highest reported cases from 2014 to 2018. This 
study highlighted that seasonal MNDWI contributed to the transmission dynamics of leptospirosis. We also investigated the 
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epidemic size, which is the sum of overtime cases, was investigated to find the critical transmission probability from endemic 
to epidemic state. 

For leptospirosis in animals, our findings could identify flooding as a major driver of the risk of leptospirosis infection 
in cattle and buffalo. When flooding or heavy rainfall occurs, the water picks up contaminated soil and animal excreta from 
the soil. This results in the spread of leptospirosis through contaminated water. Flooding could possibly be the principal reason 
for leptospirosis epidemics above other factors.Flood control could be an option to reduce the risk of leptospirosis infection in 
animals, which can be a major reservoir for human infection.   

For leptospirosis in humans, our results highlight that flooding indicators have the most impact on transmission, 
indicating a high degree of flooding leads to higher cases. Sensitivity analysis showed that the transmission of leptospires 
from the contaminated environment was the most important parameter for the total number of human cases. The results of 
SCA model predicts the significant environment factor associated with leptospirosis transmission is flooding.  

Our model allows to identify areas and periods when the risk of leptospirosis infection is higher in cattle and buffalo, 
mainly due to a seasonal flooding. These areas and periods should be targeted for leptospirosis surveillance and control in 
both humans and animals. Our results also suggest that public health policy makers should guide the people who work close 
to, or in contaminated environments to avoiding potential sources of leptospirosis, or by protecting themselves by wearing 
boots to reduce the leptospirosis outbreak. Public awareness about the risk of leptospirosis during flooding should be raised 
in order for people to take prevention measures when possible. 
 
3. Objective  
1. To investigate the association of several environmental factors (especially remotely sensed indicators of flooding) with 
cattle and buffalo leptospirosis cases in Thailand. 
2. To use the environmental factors (flooding indicator, the amount of rainfall and temperature) for investigating the disease 
spread of leptospirosis in animals and humans in Thailand based on the SIR leptospirosis transmission model in Si Sa Ket 
province. The model that fit to the incidence data is used to study the control strategies. 
3. To develop the lattice-based leptospirosis transmission model in Si Sa Ket province and characterize some statistical 
mechanic properties such as phase transition between an absorbing state and an active state. 
  
4. Research methodology  
4.1 Data 
Epidemiological Data  
 The animal data of a total of 3,571 urine samples derived from 488 buffalo and 3,083 cattle, were collected from 
January 2011 to February 2013 under a cross-sectional program, which has been described in detail in a recent article [1]. 
All urine samples were examined for the presence/absence of leptospiral infection by loop-mediated isothermal amplification 
(LAMP) method [1, 2]. This technique showed high sensitivity and specificity at 96.8% and 97.0%, respectively [2].  

The reported cases of human leptospirosis were retrieved from the national disease surveillance (report 506), Bureau 
of Epidemiology, Department of Disease Control, Ministry of Public Health, Thailand [3]. Most positive cases were suspected 
leptospirosis cases, based on the clinical diagnosis made by attending physicians. The clinical criteria for leptospirosis were 
high fever, chills, headache, with at least one of the following symptoms including abdominal pain, red eyes, neurological 
symptoms (such as stiffness, abnormal feelings, etc.), and dry cough or cough with bloody sputum, and a career history of 
exposure to water areas or environments contaminated with animal excreta [4]. Some of the suspected cases were then 
examined using laboratory tests such as Latex agglutination test (LA), Dipstick test, Lateral flow test, Microcapsule 
agglutination test (MCAT), Immunofluorescent antibody test (IFA), Microscopic agglutination test (MAT) or ELISA for 
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confirmation. The suspected cases were mainly reported from public hospitals with a small fraction from private hospitals. In 
this research, we analyzed all reported cases from 2010 to 2016 in two provinces (i.e., Si Sa Ket and Surin), in which the 
highest number of cases were reported.  

Human data collection was performed as a part of routine clinical examination procedures of the Thai Ministry of 
Public Health surveillance and response. Data collection was approved by the Ethics Committee of the Ministry of Public 
Health of Thailand. Data containing the patient's medical records, without any patient information except location, were de-
identified prior to analysis. 

 
Environmental data 
 The amount of rainfall was obtained from near Real-time TRMM (Tropical Rainfall Measuring Mission) multi-satellite 
precipitation analysis (TMPA-RT), which is produced at the National Aeronautics and Space Administration, Goddard Earth 
Sciences Data and Information Services Center (NASA GES DISC) [5]. The daily accumulated precipitation product is 
generated from the Near Real-Time Precipitation 3-hourly 1 day TMPA at a spatial resolution of 0.25 degree x 0.25 degree 
Version 7 (TRMM 3B42RT Daily) [6, 7]. In this study, given the homogeneity of rainfall at the district level, we only extracted 
the TRMM data at the centroid of each district. 
 To identify flooded areas, we used the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) of 
the Terra satellite (Surface Reflectance 8-Day L3 Global 500m SIN Grid V005 (MOD09A1)). In each image pixel, the data 
provides an estimation of the surface spectral reflectance measured at ground level in the absence of atmospheric scattering 
or absorption. The band 4 (green) and band 7 (infrared) were used to calculate the modified normalized difference water 
index (MNDWI) [8, 9], which allows an estimate of the water presence in each pixel. Within all districts, each pixel was 
classified as flooded if the MNDWI value was more than or equal to zero. This threshold of zero for MNDWI is in the range 
of optimal thresholds calibrated in previous studies [8, 10, 11]. Permanent water bodies such as rivers and lakes were masked 
out using QGIS version 2.8.3 [12]. Then, the number of flooded pixels were counted to calculate the percentage of flooded 
land in each district. 

The LST was extracted from the MODIS Terra product (MOD11A2) with Emissivity 8-Day L3 Global 1 km, which is 
composed of the daily LST product (MOD11A1) with a 1 km resolution and stored on a 1 km Sinusoidal grid as the average 
values of clear-sky LSTs during an 8-day period[13].  
 Elevation can be associated with slopes and increased movement of surface water [14], but slope data was not 
available at a national scale in Thailand. Elevation data was derived from the NASA Shuttle Radar Topographic Mission 
(SRTM) 90m Digital Elevation Data, which provides elevation data for the entire world (http://srtm.csi.cgiar.org/index.asp). The 
average elevation at the district level was used in the model. 
 Human population data was obtained from the WorldPop database, which presents the number of people per hectare 
(http://www.worldpop.org.uk). Human population density was included in the model because it could be associated with 
different agricultural practices in areas with different levels of economic development. The animal population density of 
livestock species (buffalo, cattle, goat, pigs and sheep) were obtained from the Information and Communication Technology 
Center (ICT), Department of Livestock Development of Thailand at the district level (http://ict.dld.go.th). Goats, pigs and sheep 
were included because they may also contribute to the circulation of leptospirosis in cattle and buffaloes. Seroprevalences of 
other livestock were shown in Thailand from January to August 2001 in a previous study [15]. In this study, no urine samples 
were collected in urban districts because limited number of cattle and buffaloes are found in areas of high human population 
density. The districts with a human population density above 1400 people/km2, which corresponds to the urban centers of the 
main cities of Thailand, and no livestock were not included in the risk mapping given the limited number of animals in urban 
centers. 
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4.2 Model 
Statistical model 
 To investigate the association between of several environmental factors (especially remotely sensed indicators of 
flooding) and leptospirosis infection in animals, we first study univariate linear regressions. Using a generalized linear mixed 
model (GLMM) with a logit link since the response variable had a binomial distribution. We used R software [16] with the 
package lme4 [17]. Since all individual urine samples were not independent because they were collected during common 
sampling occasions, we used the sampling occasion index as a random effect variable. Each sampling occasion was identified 
by a date, a year and a district geocode. The best multivariable model was selected using a stepwise backward approach 
based on the Akaike Information Criterion (AIC). The Area Under the Curve (AUC) of the Receiver Operating Characteristic 
(ROC) plot was used to estimate the model performance. We also used cross-validation to measure the performance of the 
best model. Data was randomly split into training (2/3 of data) and test (1/3 of data) sets. Training data is used to produce 
the prediction model, while the test data is used to test the model performance. Given the size of our dataset, we chose to 
keep 2/3 of the data in the training set to optimize model performance. We performed repeated cross-validations 1,000 times 
to estimate the mean and standard deviation of the cross-validated AUC (cvAUC) of the best model. 
 The best model was used to predict leptospirosis infection risk in 2012 and 2016 for three periods (mid-January, 
mid-May and mid-September) which represents the middle of the dry season, the beginning of the rainy season and the end 
of the rainy season, respectively for central and northern Thailand. 
 
Mathematical model 

To use the environmental factors (flooding indicator, the amount of rainfall and temperature) for investigating the 
disease spread of leptospirosis in animals and humans in Thailand, we developed a simple SIR model. Susceptible human 
and livestock individuals are introduced, denoted by 𝑆ℎ  and 𝑆𝑎 , respectively. 𝑆ℎ  and 𝑆𝑎 can become infected through 
contact with infected livestock and/or the contaminated environment. The infected livestock can shed leptospires into the 
environment and increase the number of leptospires (𝐿 compartment) in that province. The hygienic level of the contaminated 
environment can be defined as the density of leptospires. The leptospires die at a rate 𝜇𝐿 . Infected humans and animals 
recover at the constant rates 𝛾ℎ and 𝛾𝑎 , and loss immunity at the rates 𝜈ℎ and 𝜈𝑎 , respectively. Both population sizes are 
assumed to be constant. In this work, we developed the transmission model based on previous studies[18, 19]. The 
leptospirosis transmission model is described by the following set of differential equations:  
𝑑𝑆ℎ(𝑡)

𝑑𝑡
= 𝜇ℎ𝑁ℎ − 𝛽ℎ𝑎(𝑡)

𝑆ℎ(𝑡)𝐼𝑎(𝑡)

𝑁ℎ
− 𝛽ℎ𝐿(𝑡)ℎ(𝑡)

𝑆ℎ(𝑡)

𝑁ℎ
+ 𝜈ℎ𝑅ℎ(𝑡) − 𝜇ℎ𝑆ℎ(𝑡), 

𝑑𝐼ℎ(𝑡)

𝑑𝑡
= 𝛽ℎ𝑎(𝑡)

𝑆ℎ(𝑡)𝐼𝑎(𝑡)

𝑁ℎ
+ 𝛽ℎ𝐿(𝑡)ℎ(𝑡)

𝑆ℎ(𝑡)

𝑁ℎ
− 𝛾ℎ𝐼ℎ(𝑡) − 𝜇ℎ𝐼ℎ(𝑡), 

𝑑𝑅ℎ(𝑡)

𝑑𝑡
= 𝛾ℎ𝐼ℎ(𝑡) − 𝜈ℎ𝑅ℎ(𝑡) − 𝜇ℎ𝑅ℎ(𝑡), 

𝑑𝑆𝑎(𝑡)

𝑑𝑡
= 𝜇𝑎𝑁𝑎 − 𝛽𝑎𝑎(𝑡)

𝑆𝑎(𝑡)𝐼𝑎(𝑡)

𝑁𝑎(𝑡)
− 𝛽𝑎𝐿(𝑡)ℎ(𝑡)

𝑆𝑎(𝑡)

𝑁𝑎(𝑡)
+ 𝜈𝑎𝑅𝑎(𝑡) − 𝜇𝑎𝑆𝑎(𝑡),  (1) 

𝑑𝐼𝑎(𝑡)

𝑑𝑡
= 𝛽𝑎𝑎(𝑡)

𝑆𝑎(𝑡)𝐼𝑎(𝑡)

𝑁𝑎(𝑡)
+ 𝛽𝑎𝐿(𝑡)ℎ(𝑡)

𝑆𝑎(𝑡)

𝑁𝑎(𝑡)
− 𝛾𝑎𝐼𝑎(𝑡) − 𝜇𝑎𝐼𝑎(𝑡), 

𝑑𝑅𝑎(𝑡)

𝑑𝑡
= 𝛾𝑎𝐼𝑎(𝑡) − 𝜈𝑎𝑅𝑎(𝑡) − 𝜇𝑎𝑅𝑎(𝑡), 

𝑑𝐿(𝑡)

𝑑𝑡
= 𝜔(𝑡)𝐼𝑎(𝑡) + 𝑚(𝑡)𝑔(𝑡)𝐿(𝑡) − 𝜇𝐿𝐿(𝑡), 

where 𝑁 = 𝑆 + 𝐼 + 𝑅 for livestock and human compartments. 
In this model, we assumed that, as a zoonosis disease, the human-human transmission does not exist[20]; thus 

infection in humans always developed from animal sources or the contaminated environment. The leptospires shedding from 

humans into the environment is neglected in our study as the likelihood is very low. The function 𝑔(𝑡) =
𝜒−𝐿(𝑡)

𝜒
 in 
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equation (1) represents the logistic growth multiplier, which allows the growth to depend on the current number of leptospires 
and limits excessive growth, where 𝜒 is the maximum carrying capacity, or saturating population size. A saturation term, 

ℎ(𝑡) =
𝐿(𝑡)

𝐿(𝑡)+𝜅
, is added to limit the effect of transmission due to the large number of leptospires [21, 22], where 𝜅 is the 

density of leptospires in the environment at which the transmission rate is 0.5𝛽𝐿(𝑡). The diagram of the model and its 
relationship between the compartments is provided in figure 1. A set of parameters is shown in Table 1. 
 

 
Figure 1. Dynamics of leptospirosis spread between humans, livestock and the contaminated environment. Dashed green 
arrow shows the transmission route from the contaminated environment to susceptible livestock (𝑆𝑎 ) and humans (𝑆ℎ ). 
Infected livestock (𝐼ℎ) transmit leptospires to humans and shed to environment (red dashed line) and to livestock (orange 
dashed line).      
  
Table 1. A set of parameters. 

Description Symbol Values 
Birth and death rate of humans 1/𝜇ℎ 70 years (estimated) 
Duration of infection for humans 1/𝛾ℎ 14 days (estimated from [23]) 
Duration of loss of immunity for humans 1/𝜈ℎ  720 days (estimated from [23]) 
Transmission rate from infected livestock to human 𝛽ℎ𝑎 fitted 
Birth and death rate of livestock 1/𝜇𝑎 3 years (estimated) 
Duration of infection for livestock 1/𝛾𝑎 200 days (estimated from [24]) 
Duration of loss of immunity for livestock 1/𝜈𝑎 540 days (estimated) 
Transmission rate from infected livestock to livestock 𝛽𝑎𝑎 fitted 
Duration of contamination for the environment 𝜇𝐿 0.02381 day-1 (estimated from [22]) 
Density of leptospires at which the transmission rate from the 
environment is 0.5𝜷𝑳(𝒕) 

𝜅 102 km-2 (estimated from [22]) 

Maximum carrying capacity 𝜒 1x105 (estimated) 
Density of the free living leptospires in a province at 𝒕 = 𝟎 𝐿𝑖(0) 10-3 km-2 (estimated from [22]) 
Density of leptospires shed per 
infected livestock 

𝜔 fitted 

Transmission rate from the contaminated environment to 
human and livestock 

𝛽ℎ𝐿and 𝛽𝑎𝐿 fitted 

Multiplication rate of the leptospires in the environment 𝑚 fitted 
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Some of the parameters in equation (1) may be affected by flooding and weather conditions. In this work, we look at 

how these conditions can affect the transmission from the contaminated environment, leptospire shedding rate, and the 
multiplication rate.  

The most important parameters are the transmission modes from the contaminated environment to susceptible 
humans and susceptible livestock (𝛽ℎ𝐿 and 𝛽𝑎𝐿). We hypothesized that the environment could influence the transmission 
of leptospirosis. Thus, the transmission terms are constructed as a linear function of normalized data of the percentage of 
flooded area (𝑓(𝑡)), total monthly rainfall (𝜌(𝑡)), and average monthly temperature (𝛵(𝑡)). The virulence of leptospires 
depends on temperature [25], leading to the inclusion of the average temperature, which may impact the transmission model. 
We examined four forms of transmission rate dependency corresponding to three environmental variables to test different 
hypotheses. These four transmission rates assumed the rates were linearly proportional to the environmental variable and 
are as follows: 

(1) Flooding (M1-F): The transmission rates are given by: 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝑓(𝑡 − 𝜏1)) 
𝛽𝑎𝐿(𝑡) = 𝑎2(1 + 𝑎2𝑓(𝑡 − 𝜏1)) 

(2) Rainfall (M1-R): The transmission rates are given by: 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝜌(𝑡 − 𝜏1)) 
𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝜌(𝑡 − 𝜏1)) 

(3) Flooding and temperature (M1-FT): The transmission rates are given by: 
𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝑓(𝑡 − 𝜏1) + ℎ3𝛵(𝑡 − 𝜏2)) 
𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝑓(𝑡 − 𝜏1) + 𝑎3𝛵(𝑡 − 𝜏2)) 

(4) Rainfall and temperature (M1-RT): The transmission rates are given by: 
𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝜌(𝑡 − 𝜏1) + ℎ3𝛵(𝑡 − 𝜏2)) 
𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝜌(𝑡 − 𝜏1) + 𝑎3𝛵(𝑡 − 𝜏2)) 

where ℎ𝑖 and 𝑎𝑖  are constant values (that were fitted) of each function for each transmission rate, and 𝜏1 and 𝜏2 are time 
lags, varying from 0-8 weeks, which are associated with the infection of humans. 

The second model (M2-F and M2-R) are the leptospire shedding rate (𝜔), which is affected by rainfall. Infected 
livestock shed leptospires into the environment, which will then be a source of exposure for susceptible humans and livestock. 
The shedding rate can be described as a logistic curve, to limit its effect at high concentrations. 

𝜔(𝑡) = 𝜔0 (
𝜌(𝑡−𝜏1)

𝛿+𝜌(𝑡−𝜏1)
) and 𝜔(𝑡) = 𝜔0 (

𝑓(𝑡−𝜏1)

𝛿+𝑓(𝑡−𝜏1)
) 

where 𝛿 is an inferred threshold parameter corresponding to the rate of half of the maximum shedding rate due to rainfall or 
the effect of flooding. 

The last model affects the multiplication rate of the leptospires in the environment (𝑚), which depends on three 
environmental variables, namely, the percentage of flooding area (𝑓(𝑡)), total monthly rainfall (𝜌(𝑡)) and average monthly 
temperature (𝛵(𝑡)). The multiplication rate is given by: 

(1) Flooding (M3-F): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝑓(𝑡 − 𝜏1)) 
(2) Rainfall (M3-R): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝜌(𝑡 − 𝜏1)) 
(3) Flooding and temperature (M3-FT): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝑓(𝑡 − 𝜏1) + 𝑥3𝛵(𝑡 − 𝜏2)) 
(4) Rainfall and temperature (M3-RT): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝜌(𝑡 − 𝜏1) + 𝑥3𝛵(𝑡 − 𝜏2)) 

where 𝑥1, 𝑥2 and 𝑥3 are constant values (fitted parameters). 
 Ten models (M1-F, M1-R, M1-FT, M1-RT, M2-F, M2-R, M3-F, M3-R, M3-FT and M3-RT) were considered individually 

and compared to the null hypothesis, where all parameters are constant values. The effect of flooding was compared to the 
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effect of rainfall without and with a temperature effect. The combined models that use multiple effects above were also 
considered. A stochastic simulation approach was employed using a tau-leaping algorithm with a fixed time step [26]. Using 
the parameters of the best model, 1,000 simulations were generated.  

 
Parameter estimation and sensitivity analysis for mathematical model 

To estimate the parameters of mathematical model, we assumed that the epidemic was initiated by free-living 
leptospires in that area by setting the initial number of free-living leptospires to a low concentration (Table 1). We linked the 
biweekly human cases from the simulation results with the corresponding actual reported human cases from 2010 to 2015. 
The best fit was obtained by maximizing a normal log-likelihood estimation, which produced simulation results that were most 
similar to the reported data. We used the nlminb function in R, which is a quasi-Newton method with a constrained bound, to 
find the optimal set of parameters [27]. The model that shows the minimum negative log-likelihood was selected as the best 
model.  

In this work, according to previous findings, we considered the effect of time lag (𝜏) on the environmental data to 
leptospirosis cases due to transmission. Rainfall has been observed to be associated with leptospirosis, often with a time lag 
of 1-3 months [28, 29]. We set the maximum time lags of flooding and rainfall to be eight weeks. We set the lag period to be 
the same for the effects of temperature, raining, and  flooding in this model [30]. 

To perform a sensitivity analysis of which parameters influence the effect of leptospirosis transmission the most, we 
used the Partial Rank Correlation Coefficients (PRCC) technique [31, 32]. Then, we used the Latin hypercube sampling (LHS), 
which is a statistical Monte Carlo sampling technique, to sample the parameters using the lhs package in R [33]. 1,000 
parameter sets were sampled with each parameter sampled from a uniform distribution. The PRCC was ranked as a response 
function to the cumulative new cases in each province using the sensitivity package in R with bootstrapping 1,000 times to 
obtain a 95% confidence intervals [34]. Based on the linear assumption, positive (negative) PRCC values imply positive 
(negative) correlations to the response function. 
 
Estimation of time-dependent reproduction number (𝑹𝒕𝒅) 
 The basic reproductive number (𝑅0) is generally defined as the average number of secondary infected individuals 
caused by an infected individual in a population that is completely susceptible. Due to the complexity of the model and the 
time-dependent variables, there is no exact way to explain 𝑅0 for this model, as it is a complex function of many different 
variables. An alternative method, proposed by Wallinga et al [35], computes the reproduction number from the observed cases 
using a likelihood-based method, calculated by averaging the overall transmission networks which makes it fit an epidemic 
curve [36]. In this work, we calculated a time-dependent reproduction number (𝑅𝑡𝑑 ) according to the R0 package in R [36]. 
The number of biweekly cases obtained from the simulations of the best model in three provinces was used to estimate 𝑅𝑡𝑑 . 
The serial interval between successive infections of the reported epidemic was identified and used to estimate the generation 
time distribution, with the mean and standard deviation (sd) of each province, using the R0 package. Then the 𝑅𝑡𝑑 of each 
province was estimated with the 95% confidence interval.  

 
Stochastic Cellular Automata model 

To develop the lattice-based model for leptospirosis transmission in Si Sa Ket province, we proposed a Stochastic 
Cellular Automata (SCA) model, which is constructed based on the existing knowledge about leptospirosis transmission. There 
are two bi-dimensional square lattice size (1000×1000) where a cell is in position (i,j). The total population is assumed to be 
350,000 individuals, who have agricultural and farmer worker at Si Sa Ket. Each individual (Hij) is chosen randomly on a cell. 
Thus, human lattice will consist of occupation site or empty site. Human individual can assume to be one of four states, which 
is in a susceptible state (S), an exposed state (E), an infectious state (I), and a recovered state (R) as illustrated in figure 2. 
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The environment lattice can contain both empty sites and contaminated environment site (representing the source of 
leptospirosis if infected), which estimated to 60% of lattice size (figure 2). To simplify the model, we assumed that contaminated 
environment cell can transmit the infection to humans when there are in the same site. In this model, we used the periodic 
boundary condition and take each time step to correspond to one day. In each cell (𝐻𝑖𝑗), human occupation is chosen 
randomly. Usually, the human mortality rate approximates 1/70 years, which is small compared to the simulation time. Hence, 
we do not account for significant deaths. We assume that the death rate of leptospirosis is zero as it is a small number [37].  

 

 
Figure 2. Schematic illustration of the transition state of the Stochastic Cellular Automata model. 

 
 Human mobility is considered primarily of large distance interaction diseases. Humans can move into infectious 
areas with the length distribution to the workplaces or other buildings leading to a high chance to be infected individuals. In 
each day, we randomly choose a human population leaves from its residence with probability 𝜌𝑚𝑜𝑏 . The selected human 
could move within the exponential step length distribution 𝑃(𝑟) = (𝑟 + Δ𝑟0) −𝛽𝑒𝑥𝑝(−𝑟/𝜅) with exponent 
𝛽=1.75,  Δ𝑟0=1.5 km and cutoff values 𝜅=80 km [38]. 

Due to the infected human presents the symptoms, we assumed that infected immobile. We confined that only S, E 
and R population can move to another site. People can move within the step length, which is determined by a random number 
following distribution with the maximum length of 𝑀/2. The angle is randomly chosen from a uniform distribution [0, 2𝜋]. 
The parameters for the human population and mobility are shown in Table 2.  

After human movement, if the position of the susceptible individual matches with the contaminated environment cell, 
the susceptible individual will gets infect with transmission rate (𝜆) to be exposed state. An exposed individual becomes an 
infected individual after a latent period of fixed length 𝜏𝐸 . An infected individual will infect for 𝜏𝐼 period then become a 
recovered state. This recovered individual will become an again susceptible period of fixed length 𝜏𝑅 . 

To study the impact of MNDWI and rainfall, the transmission rate depends on the MNDWI (𝑊(𝑡)) and the rainfall 
index (𝑅(𝑡)) as in equation (3-4) compared to null hypothesis as a sinusoidal function (equation (2)). The transmission rate 
(𝜆) is assumed as a linear proportional of environmental variables to test different hypotheses given by: 

𝜆1(𝑡) = 𝑛0 + 𝑛1(1 + sin(2𝜋𝑡 365⁄ ) − 𝜏) (2) 
𝜆2(𝑡) = 𝑛0 + 𝑛1(𝑊(𝑡) − 𝜏)   (3) 
𝜆3(𝑡) = 𝑛0 + 𝑛1(𝑅(𝑡) − 𝜏)   (4) 
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where 𝑛0 and 𝑛1 are constant values. The reported data during 2014 and 2018 is used to fit with the simulation results. 
The parameters 𝑛0 and 𝑛1 were chosen, where the Mean Square Error (MSE) is minimized.   
 
Table 2. Parameters for human and environmental lattices. 

Description Symbol Values 
Human population size 𝑁𝐻 350,000 
Daily rate of human mobility 𝜌𝑚𝑜𝑏 0.5 [39] 
Water area density in environmental lattice 𝜌𝐸 0.6 
Incubation period for human 𝜏𝐸 7 days [40] 
Duration of infection for human 𝜏𝐼 7 days [40] 
Duration of loss immunity for human 𝜏𝑅 720 days (estimated) 

  
5. Results  
5.1 Results of statistical model 

A total of 3,571 urine samples of cattle and buffalo were tested by the LAMP technique. 311 samples were positive. 
The overall uroprevalence over 107 districts is presented in figure 3. Positive samples were recorded in 51 districts (47.66% 
of districts). From the temporal aspect, higher prevalence was observed in May, which is the beginning of the rainy season 
in the central and northern part of Thailand [41]. 

 

 
Figure 3. Map of the positive rate of leptospirosis in cattle and buffalo in 107 districts of Thailand. Urine samples were tested 
by LAMP. The non-sampled districts are presented in white.  
 
 The results of the univariate linear regressions show that the percentage of flooded area and the percentage of 
flooded area with a 1 month lag were found to be significant (Table 3). The risk of livestock infection was higher if the 
percentage of flood area was higher. 
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Table 3. Summary results of the univariable linear regression model (with binomial function and random effect). 
Variable Odd Ratio 95% Confidence Interval p-value 
Amount of rainfall at sampling day 0.9378 0.6588 - 1.2861 

 
0.707 

Cumulative of rainfall for 30 days 1.1205 0.8121 - 1.5020 0.466 
Percentage of flood area 1.7129 1.1383 - 2.5942 0.009** 
Percentage of flood area at 1 month lag 1.4770 1.0034 - 2.1994 0.047* 
Average elevation 1.0118 0.6645 - 1.5262 0.966 
Human population density 1.3258 0.9134 - 1.9130 0.133 
livestock population density 0.6022 0.3082 - 1.1141 0.113 

*p<0.05, **p<0.01 
 
 Three explanatory variables were kept in the final model based on the stepwise backward approach: the percentage 
of flooded area, human and livestock population densities (Table 4). This final model was applied to predict the risk of 
Leptospira presence at the district level, it showed high performance with an AUC of 0.8861 (figure 4). The percentage of 
flooded area was the only variable significantly associated with the prevalence of leptospirosis in cattle and buffalo in the 
GLMM (p = 0.023, Table 4). The cvAUC had a mean of 0.6427 (sd = 0.0827). The distribution of the 1,000 estimations of the 
cvAUC is shown in figure 5. 
 
Table 4. Results of the best generalized linear mixed model as selected by a stepwise backward approach with the AIC. 

Variable Odd Ratio 95% Confidence Interval p-value 
Intercept 0.0309 0.0183 - 0.0473 <2e-16*** 
Percentage of flood area 1.5794 1.0611 - 2.3629 0.023* 
Human population density 1.3495 0.9511 - 1.9016 0.084 
Livestock population density 0.5989 0.3079 - 1.0957 0.105 

*p<0.05, ***p<0.001 
 

 
Figure 4. ROC curve of the best generalized linear mixed model. 
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Figure 5. The cross-validated AUC distribution. 

 
 Maps of leptospirosis infection risk were produced from the final model in the middle of January, May, and September 
in 2012, which corresponds to the period when most data was collected (figure 6). As expected from the results of the model, 
the areas of increased leptospirosis risk vary seasonally (figure 6) and are found in the regions with a high percentage of 
area flooded. The districts with a high leptospirosis infection risk in mid-January were mostly located in the southern part of 
Thailand, especially in the south-east coastal regions, i.e. during the high rainfall period in this area [41]. In mid-May, high 
leptospirosis infection risk mostly occurs in northern and northeastern parts, which correspond to the beginning of the rainy 
season in this part of Thailand. In mid-September, high leptospirosis infection risk areas occurred in all parts except for the 
southern part, and was particularly high in the central part. In this analysis, the final model was also used to predict the 
leptospirosis infection risk in 2016. The leptospirosis infection risk districts were also mostly found in regions with a high 
percentage of flooded area.  
 

 
Figure 6. Map of the prediction of leptospirosis infection risk using the final multivariate linear regression model in three 
different periods of 2012. A leptospirosis infection risk of 0.1 indicates that approximately 1/10 livestock are expected to be 
positive by LAMP for leptospirosis infection. The non-predicted districts are presented in white. 
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5.2 Results of mathematical model 
Based on the annual reports of leptospirosis cases in Thailand from 2010 to 2016, it appears that the disease 

continues to spread throughout the country (figure 7(A)). The highest number of annual cases was observed mostly in the 
northeastern region, which also had the highest number of cumulative cases (figure 7 (B)). In this work, we considered two 
provinces, namely, Si Sa Ket (highest number of cumulative cases) and Surin (second highest number of cumulative cases) 
for testing the models. The time series of reported biweekly cases were plotted with the percentage of flooding, the amount 
of rainfall, and temperature (figure 8). We found that the time series of biweekly reported cases in the two provinces showed 
a similar trend. The percentage of flooding and the amount of rainfall were found to increase around the same time of year 
when the number of reported cases increased. However, the temperature was negatively correlated with incident cases. 

 

 
Figure 7. The map of reported cases in Thailand. The annual reported cases during 2010-2016 (A). The total reported cases 
during 2010-2016 (B).  
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Figure 8. Data collection for 2 provinces. 

 
Using the model described in the methods section, we fit eleven models (our ten models plus the null model) to the 

reported cases from 2010 to 2015 with time lags between 0-8 weeks for each province (figure 9). In general, we found that 
model 1 (M1) improved the fit, which indicated that making the transmission rate a linear function with environmental variables 
has an important impact on the infection dynamics in humans. Comparing the models incorporating flooding or rainfall factors 
(M1-F and M1-R), we found the model including the flooding factor fit better. The models that also included a temperature 
effect showed better performance. Overall, the model with the transmission rate dependent on flooding and temperature (M1-
FT) had the lowest negative log-likelihood. Thus, we selected the M1-FT as the best-fit model for further analysis.  

The M1-FT fitting and the stochastic simulation results, using the parameters shown in Table 5, are shown in figure 
10. The stochastic output captures well the reported data. These results provide a reasonable fit with the predicted cases for 
2016. Our model can provide more understanding on the transmission dynamics in contaminated environments.  

 
 

 
Figure 9. Bar chart of negative log-likelihood values for the ten models compared to a null model (M0) for the two provinces. 
The parentheses of each bar shows the time lag in week of flooding (rainfall) and temperature (t1, t2). 

 
 



14 

 

Table 5. A summary of the parameter estimates for the 2010-2015 leptospirosis epidemic in three provinces of the M1-FT 
model. 

Symbol Si Sa Ket Surin 

𝐥𝐨𝐠(𝜷𝒉𝒂) -5.833 -6.000 
𝐥𝐨𝐠(𝜷𝒂𝒂) -2.518 -6.000 
𝐥𝐨𝐠(𝒉𝟏) 0.876 0.692 
𝐥𝐨𝐠(𝒉𝟐) 0.355 0.418 
𝐥𝐨𝐠(𝒉𝟑) -0.467* -0.228 
𝐥𝐨𝐠(𝒂𝟏) -1.267 -6.000 
𝐥𝐨𝐠(𝒂𝟐) -0.136 -1.510 
𝐥𝐨𝐠(𝒂𝟑) -0.959* -0.507* 
𝐥𝐨𝐠(𝝎) -0.497 -6.000 
𝐥𝐨𝐠(𝒎) 0.538 0.586 

*Negative number are provided on a normal scale 

 

 
Figure 10. The fitted results of the M1-FT model (red line) compared to the reported cases of leptospirosis (black dot). The 
orange shaded area displays 1,000 curves of the stochastic simulations. The red dashed line represents the predicted cases 
for 2016. The time-dependent transmission rate from the contaminated environment to susceptible human and susceptible 
livestock (𝛽ℎ𝐿and 𝛽𝑎𝐿) correspond to values in Table 5 are shown in the blue and green lines, respectively. 

 
The transmission rate from the contaminated environment to humans and livestock is plotted versus time according 

to the flooding and temperature factors (figure 10). The average transmission rate from the contaminated environment to 
humans (𝛽ℎ𝐿) over time is 9.886 and 8.737 for Si Sa Ket and Surin. This corresponds to a decline in the total number of 
reported cases during the dry season. The transmission rate from the contaminated environment to livestock (𝛽𝑎𝐿) also 
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varied with time. It was higher in Si Sa Ket and lower in Surin. However, the 𝛽ℎ𝐿 was always the highest transmission rate. 
This result indicated that the main reason for human infection is due to the transmission of leptospires from the contaminated 
environment, rather than from contact with infected animals. Comparing the coefficients of 𝛽ℎ𝐿 , the flooding indicator had 
the most impact on transmission, which indicates a high amount of flooded area leads to higher cases. 

The fitting results indicate that our model is capable to reproduce the incidences of the leptospirosis epidemic, using 
the seasonal changes of the amount of flooded area as an indicator of increased infection rates. The number of new infection 
cases can be predicted during winter, depending on the parameters calculated in the given areas. 

In this work, we estimated the time-dependent reproduction number (𝑅𝑡𝑑 ) for two provinces with the 95% confidence 
interval using the simulation results as shown in figure 11. We found the 𝑅𝑡𝑑 oscillated around 1.0 which suggests it is an 
endemic disease, as expected for leptospirosis in Thailand. The mean (sd) of 𝑅𝑡𝑑 is estimated at 1.020 (0.198) and 1.011 
(0.158) for Si Sa Ket and Surin. A similar pattern of 𝑅𝑡𝑑 was observed for both provinces in the same region in the simulated 
cases. Note that this estimation was based on the observed human cases. Normally, leptospirosis has a basic reproduction 
number close to zero due to its minimal transmissibility among human population. However, this estimation could provide a 
better picture of how leptospirosis transmits from animal sources and contaminated environments to humans.  

 

 
Figure 11. The estimated 𝑅𝑡𝑑  for the two provinces plotted with the 95% confidence interval. 

 
As no vaccine or specific medicines are available for leptospirosis, the most important strategy to control the disease 

is to decrease the transmission rate. Figure 12 shows the PRCC values with 95% CI, obtained for the ten parameters in Table 
S1. Absolute PRCC values greater than 0.3 are considered important parameters. We found that the parameters of 𝛽ℎ𝐿 
(ℎ1, ℎ2 and ℎ3) were the most important on the total number of cases for all provinces. Our results also suggest how 
decreasing the transmission rate of leptospirosis from the contaminated environment to human can affect the leptospirosis 
dynamics to reduce the number of human cases. Figure 13 shows how the number of human cases can be reduced as the 
transmission rate of 𝛽ℎ𝐿 is reduced. A 90% reduction (0.9𝛽ℎ𝐿) could reduce the total number of human cases by about 
90%. Considering the overall results, this study suggests that we should avoid contacting contaminated environments during 
flooding. 
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Figure 12. Partial rank correlation coefficients of the ten parameters and the total number of cases, plotted with an error bar 
showing the 95 % confidence interval. The ℎ𝑖 and 𝑎𝑖  are constant values to calculate the transmission rates 𝛽ℎ𝐿 and 
𝛽𝑎𝐿 , respectively. 
 

 
Figure 13. The number of human cases as the transmission rate from the contaminated environment to human (𝛽ℎ𝐿) of 
M1-FT is varied between 0.1𝛽ℎ𝐿 to 0.9𝛽ℎ𝐿 , where b is the baseline. 
 
5.3 Results of Stochastic Cellular Automata model 
 In this part, we aimed to use the lattice-based model of leptospirosis for human infection via environment using 
seasonal fluctuation in Si Sa Ket. We developed the Stochastic Cellular Automata model consist of human and environmental 
lattice. Figure 14 showed the relation between reported cases of leptospirosis, normalized MNDWI, normalized rainfall index, 
and sinusoidal function. The number of reported cases all year round showed a seasonality pattern, which have high cases 
occurred during August and October correspond to the rainy season. We found the peak of reported cases correspond to the 
peak of MNDWI, rainfall index and sinusoidal curve with some time lag. 
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Figure 14. The relation between reported cases of leptospirosis, the sinusoidal function, normalized MNDWI and normalized 
rainfall index for 2014-2018. 

 
 We varied time lag of the sinusoidal function, found that time lag of 4 weeks consistent with reports cases. We 
compared the real data and simulation results using mean square error (MSE), which found the minimized of MSE equal to 
64.30 (figure 15). However, this function captured the reported cases only for the small value. The simulation result of the 
transmission rate depends on rainfall index with the associations observed at time lag of 2 weeks, which correspond to 
previous study [42]. The peak of leptospirosis cases corresponds with the peak of simulation results in almost every year. 
However, it could not describe the data on 2017 due to the other factor such as monsoon and heavy rainfall [43]. In fitting 
process, our results suggested that using rainfall index fit better than a sinusoidal function, which found MSE equal to 47.35. 
For the transmission rate varied with MNDWI, we found the best fit of 1 week time lag with MSE equal to 36.75. The plot of 
figure 15 clearly showed that the MNDWI fit with the reported better than rainfall index and sinusoidal function. This finding 
indicated that the MNDWI contributed to the transmission dynamics of leptospirosis. Although, the sinusoidal function has 
been commonly used to represent seasonality in epidemic models [44].  

 

 
Figure 15. The reported cases of leptospirosis and the simulation result prediction of the transmission depend on the sinusoidal 
function with 𝑛0 = 3.47 × 10−7 and 𝑛1 = 2.09 × 10−6, the MNDWI with 𝑛0 = 2 × 10−6 and 𝑛1 =

1 × 10−6, and the rainfall index with 𝑛0 = 4.01 × 10−6 and 𝑛1 = 3.21 × 10−5. 
 
In various types of epidemic models, it has been the central issue of how the final epidemic size is determined by 

the individual system parameters or the composite of them [45]. In this study, we defined the final epidemic size as the fraction 
of recovered at steady state. To investigate the transmission rate contributes to the final epidemic size in our model, we set 



18 

 

the transmission rate be a constant value (λ = 𝑛0). The critical transmission rate is showed in figure 16, suggests that phase 
transition from endemic phase to epidemic state.  

 

 
Figure 16. The final epidemic size as predicted by the SEIR model is shown with respect to the transmission rate.  

  
6. Conclusion and Discussion  

Using statistical model, our results show a significant association between the percentage of flood area and 
leptospirosis infection in cattle and buffalo at the district level. The flooding area was evaluated using a remote sensing 
indicator [8, 9]. This finding suggests that exposure to flooding increases the risk of leptospirosis infection for cattle and 
buffalo. Most of the samples used in this study were collected in rural areas. In these areas, the soil may become contaminated 
with leptospires because of the presence of infected animals. When flooding or heavy rainfall occurs, the water picks up 
contaminated soil and animal excreta from the soil. This results in the spread of leptospirosis through contaminated water 
[46, 47]. Flooding could possibly be the principal reason for leptospirosis epidemics above other factors [48]. This is consistent 
with other studies showing that local flooding can play an important role in leptospirosis transmission [9, 48, 49]. Therefore, 
flood control could be an option to reduce the risk of leptospirosis infection in animals, which can be a major reservoir for 
human infection [1, 50].  
 Furthermore, the results of the univariate linear regressions show that the flooding factor is the only significant factor 
and is a better indicator than the amount of rainfall and the accumulation of rainfall. It may be because rainfall does not 
directly influence leptospirosis transmission while flooding facilitating it. Rainfall has previously been associated with 
leptospirosis but often with a time lag of 1-3 months [28, 29] which is likely the lag between rainfall and flooding. A remotely 
sensed flooding indicator is likely to be a more accurate predictor of the risk of leptospirosis infection than using rainfall.  
 The predicted risk maps of leptospirosis infection were created based on the final model for 3 periods in 2012. In 
each part of Thailand, higher infection risk was observed during the first floods after a dry period in that part of the country. 
This influence of the first flood of the year has been suggested in other studies [9]. It could be responsible for the rapid 
dissemination of leptospires concentrated in small areas during the dry season. High prevalence in livestock is not predicted 
in the same period for the whole Thailand. Three main periods of risk can be identified and associated with three different 
parts of Thailand (i.e., Northern, Central and Southern parts) and are related with the periods of flooding. The difference in 
these flooding periods is mainly due to two factors: a) the difference of rainfall seasonality between southern Thailand and 
the rest of the country, and b) the delay between rainfall and flooding between the central part and the northeastern part of  
the country. The central part of the country is downstream of the most important rivers in Thailand, and major flooding occurs 
later than in the rest of the country, in September to November, with an increased intensity. This explains why high risk occurs 
for most districts in this period, which also corresponds to its high population [37]. 
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 With the backward step approach, the final model includes human and livestock population densities. However, the 
model results show that those variables are not significant. Furthermore, these variables should be interpreted very cautiously 
because several confounding factors could be involved. Thus, they were kept because they improved the final model (based 
on the decrease of the AIC), but they should not be over-interpreted.  
 Our study was based on a cross-sectional survey [1], which was limited as there may be procedural concerns. It 
does not provide data for all districts in the country and for all seasons in each district. A longitudinal survey is strongl y 
suggested in further studies, with repeated sampling in a larger number of districts in the whole country. It would provide 
better data to understand the seasonality of leptospirosis infection and could provide a more accurate disease transmission 
model. The samples in each district were mostly collected only once. However, the samples were distributed over every part 
of Thailand for all seasons. Furthermore, the model had a relatively good performance (AUC =0.8861) but a lower and quite 
variable cross-validated AUC (mean cvAUC = 0.6427, sd= 0.0827, Figure 3). This difference between AUC and cvAUC, and 
the variability of the cvAUC may be explained by the relatively small size of our dataset at the district level leading to a small 
validation dataset (71 districts for the training dataset and only 36 for the validation dataset). Furthermore, given this size 
limit, some validation datasets may include a different proportion of southern districts than their matching training datasets. 
The difference of flooding patterns between southern Thailand and the rest of the country may then further explain the lower 
cvAUC. Training the model on a larger dataset and having an independent large dataset to validate it would help build a more 
robust model.  

Using mathematical models, that include environmental data are presented and used to describe the transmission 
of leptospirosis in two provinces in the northeastern region of Thailand. This work presents the first attempt to incorporate 
environmental data into the mathematical models of leptospirosis transmission. The annual change of the environmental data 
can describe the seasonal epidemic with higher prevalence during the rainy season for the northeastern region, than a model 
not incorporating any environmental data.  

Our finding suggests that transmission from a contaminated environment, as opposed direct contact with an infected 
animal, is the best model. This study is novel by finding that the amount of flooded area in a region, which obtained from a 
remotely sensed data, is the most important factor for leptospirosis transmission to humans. This implies that including a 
leptospires compartment, which refers to the number of pathogenic bacteria in the contaminated environment, reasonable 
describes the infection of humans during an endemic.  

Previous studies have pointed out that leptospires survive and persist in the environment, both water and soil, for 
several weeks [51]. Environmental survival of pathogens can be an important parameter in epidemiology. During heavy rain 
with increased flooded areas, leptospires in the environment have more chances to enter the human body via cut skin. 
Working or living in flooded areas has been identified as a significant factor for increasing the contraction of leptospirosis [52]. 
Analysing our model, after fitting to human data from 2010-2015, the amount of flooded area was shown to be more important 
to improve the model as compared to the rainfall. Our results are consistent with a previous study that observed animals in 
Thailand from 2011–2013 [53]. This indicates that flooding is a factor that influences the epidemiology of leptospirosis in both 
humans and animals. Flooding was also observed to be an important risk factor in other countries such as Argentina [54], 
Brazil [55] and Malaysia [56]. In our study, including the effect of temperature in the model improved the transmission model 
a modest amount. The temperature may affect leptospire virulence [25], and the transmission rate. The temperature effect 
observed in our study is in line with previous studies [57-59]. 

In this study, the time-dependent reproductive number was estimated for leptospirosis in humans. Normally, the 
basic reproductive number (𝑅0) cannot be estimated in humans due to minimal transmission between humans. However, in 
our case, we focused on how the transmission occurred in humans in term of 𝑅𝑡𝑑 . Our model’s estimation highlights that 
leptospirosis occurs mainly during mid-year for provinces in northeastern region.       
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From the PRCC analysis of our model, the transmission rate of leptospires to humans is most effected by the total 
number of cases. A disease control method, according to the PRCC results, suggest avoiding flooded areas, to reduce the 
transmission rate during an outbreak [60]. And protective equipment, such as wearing boots or gloves, is recommended when 
in contact with flooded areas.   

Using spatial model as SCA model, our results confirmed that the MNDWI is the best factor to explain the 
transmission dynamics between human and environment. The epidemic of leptospirosis are known to be a seasonal pattern. 
Rainfall is an important risk factor for leptospirosis outbreaks and strongly associated with the tropical settings [20, 61, 62]. 
The heavy rainfall washes superficial soils, bringing pathogenic leptospires in freshwater bodies, where humans will be 
exposed. Massive leptospirosis outbreaks usually emerge following waterlogging. After heavy rainfall, this pathogen can 
survive for days to months in a contaminated environment [63].  

  In conclusion, our findings could identify flooding as a major driver of the risk of leptospirosis infection in cattle and 
buffalo. The leptospirosis transmission model predicts the significant environment factor associated with leptospirosis 
transmission is flooding as well as SCA model. Public awareness about the risk of leptospirosis during flooding should be 
raised in order for people to take prevention measures when possible. The risk maps could also help to develop effective 
intervention strategies and optimize the allocation of public health resources, veterinary care and control measures. High level 
of livestock infection could increase the risk to human health due to contact with infected animals or contact via to contaminated 
environment by the urine of infected animals [23, 64]. Livestock may then play an important role as a potential indicator of 
high risk areas for leptospirosis in humans. A reduction in contact with a contaminated environment can help to improve 
disease control. This work can be applied to other leptospirosis epidemic areas where flooding data is provided. Further 
studies should be carried out to access the role of livestock and other relevant data on the transmission of leptospires. Climate 
change or extreme weather events can also be modelled to predict the severity of future leptospirosis outbreaks [65]. Based 
on our results, public health policy maker may guide the people who work close to, or in contaminated environments to avoid 
potential sources of leptospirosis, or by protecting themselves by wearing boots to reduce the leptospirosis outbreak. 
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Abstract

Background: Leptospirosis is an important zoonotic disease worldwide, caused by spirochetes bacteria of the
genus Leptospira. In Thailand, cattle and buffalo used in agriculture are in close contact with human beings. During
flooding, bacteria can quickly spread throughout an environment, increasing the risk of leptospirosis infection. The
aim of this study was to investigate the association of several environmental factors with cattle and buffalo
leptospirosis cases in Thailand, with a focus on flooding.

Method: A total of 3571 urine samples were collected from cattle and buffalo in 107 districts by field veterinarians
from January 2011 to February 2013. All samples were examined for the presence of leptospirosis infection by loop-
mediated isothermal amplification (LAMP). Environmental data, including rainfall, percentage of flooded area
(estimated by remote sensing), average elevation, and human and livestock population density were used to build
a generalized linear mixed model.

Results: A total of 311 out of 3571 (8.43%) urine samples tested positive by the LAMP technique. Positive samples
were recorded in 51 out of 107 districts (47.66%). Results showed a significant association between the percentage
of the area flooded at district level and leptospirosis infection in cattle and buffalo (p = 0.023). Using this data, a
map with a predicted risk of leptospirosis can be developed to help forecast leptospirosis cases in the field.

Conclusions: Our model allows the identification of areas and periods when the risk of leptospirosis infection is
higher in cattle and buffalo, mainly due to a seasonal flooding. The increased risk of leptospirosis infection can also
be higher in humans too. These areas and periods should be targeted for leptospirosis surveillance and control in
both humans and animals.

Keywords: Leptospirosis, Flooding, Buffalo, Cattle, Thailand, Satellite imagery

Background
Leptospirosis is an important worldwide zoonotic dis-
ease, caused by spirochetes bacteria of the genus Leptos-
pira [1, 2]. This bacteria is classified into pathogenic and
nonpathogenic species, with more than 250 pathogenic
serovars [1–3]. The disease is particularly important in
tropical and subtropical countries. Human and animal
infections can occur through direct exposure to infected
animals or to indirect exposure to the soil or water

contaminated with urine from an infected animal
through skin abrasions or mucous membranes [1, 2].
In livestock, it is considered one of the most important

diseases, particularly in cattle due to reproductive fail-
ures (such as abortion, embryonic death, stillbirths and
weak off-spring), decreased milk production and growth
rates [1, 4–6]. This results in significant economic losses
[7] given the importance of these animals in tropical
countries. In Thailand, about 4.4 million beef cattle, 0.51
million dairy cattle, and 0.89 million buffaloes were
raised by 770,000, 160,000 and 200,000 households in
2012, respectively [8]. In rural areas, cattle and buffalo
live in close contact with agricultural workers, and can
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be a major source of leptospirosis in humans, as
highlighted by the predominance of the same serovars in
both livestock and humans [4, 9]. Furthermore, a rela-
tively high prevalence of leptospirosis have been de-
tected in the urine of cattle and buffalo in Thailand [10].
An important route of transmission of Leptospira from
livestock to humans could then be through contami-
nated urine [1, 2]. And as a consequence, flooding may
be an important factor facilitating the transmission of
Leptospira from livestock to humans and other animals
by facilitating the spread of bacteria in wet soils and sur-
face water, where the bacteria can survive for several
weeks or months [11].
In humans, the number of reported leptospirosis

cases in Thailand is highest after the peak in the
rainy season [12]. Higher numbers of leptospirosis
cases have been reported following rain or flooding in
tropical and subtropical areas (e.g., Laos [13], Guyana
[14], and Sri Lanka [15]). In Thailand, most reported
cases occurred in northern and northeastern regions,
where the main occupation is rice farming. Agricul-
tural workers are the most exposed to biological con-
taminates in the environment. A previous study in
Thailand found that human leptospirosis infections
were observed near rivers, and mostly in rice fields
likely to have flooding [16]. Furthermore, heavy rain
and flooding have been identified as environmental
drivers of leptospirosis infections in animals [17]. In
the same way, leptospirosis infection risk is associated
with flooding in Laos, particularly for human beings
who have behaviors and activities involving contact
with floodwater [13]. Overall, flooding appears as an
important driver of leptospirosis infection in both
humans and animals. By taking into account the sea-
sonal variations of flooding using remotely sensed in-
dicators, it may help in anticipating the risk of
leptospirosis infection and identify periods and areas
for increased surveillance and prevention [18].
The main objective of this study was to investigate the

association of several environmental factors (especially
remotely sensed indicators of flooding) with cattle and
buffalo leptospirosis cases in Thailand. A model of lepto-
spirosis infection risk at the district level was produced,
taking into account seasonal flooding.

Materials and methods
Epidemiological data
A total of 3571 urine samples derived from 488 buffalo and
3083 cattle, were collected from January 2011 to February
2013 under a cross-sectional program, which has been de-
scribed in detail in a recent article [4]. The sampling
process was prepared by the provincial Department of Live-
stock Development livestock officers in 107 districts from
28 provinces, and the samples were randomly selected from

each region of Thailand [4]. The sample size was calculated
using the multi-stage clustered sampling technique. Three
provinces in each of the 9 livestock administrative regions
were chosen to represent the area. Subsequently, districts
within the provinces were sampled. The target sample size
in each region was calculated with the method proposed by
Yamane [19]. In this study, we combined 9 regions of
Thailand into 4 parts with different climate and seasonal
flooding patterns, i.e. the Northern part, subdivided into
the Upper Northern and Lower Northern, Central part,
which consists of Central, Western and Eastern
sub-regions, Northeast part, which consist of Upper North-
eastern and Lower Northeastern regions, and the South,
which consist of Upper Southern and Lower Southern re-
gions. In their study, the number of samples in each district
was not controlled. Sampling was not systematically re-
peated in all districts, but data was collected during the
whole year in the different districts. All urine samples were
examined for the presence/absence of leptospiral infection
by loop-mediated isothermal amplification (LAMP) method
[4, 10]. This technique showed high sensitivity and specifi-
city at 96.8 and 97.0%, respectively [10].

Environmental data
The environmental variables tested in our study include
rainfall, flooded area, elevation, and human and livestock
population densities. Flooding is an important driver of
leptospirosis, but no data is readily available. The flooding
variable was calculated based on the modified normalized
difference water index (MNDWI). Other variables were
collected from national or international databases. All var-
iables were aggregated at the district level to match the
spatial resolution of the epidemiological data.
The amount of rainfall was obtained from near

Real-time TRMM (Tropical Rainfall Measuring Mission)
multi-satellite precipitation analysis (TMPA-RT), which
is produced at the National Aeronautics and Space
Administration, Goddard Earth Sciences Data and
Information Services Center (NASA GES DISC) [20].
The daily accumulated precipitation product is gener-
ated from the Near Real-Time Precipitation 3-hourly 1
day TMPA at a spatial resolution of 0.25 degree × 0.25
degree Version 7 (TRMM 3B42RT Daily) [21, 22]. In this
study, given the homogeneity of rainfall at the district
level, we only extracted the TRMM data at the centroid
of each district.
To identify flooded areas, we used the data from the

Moderate Resolution Imaging Spectroradiometer (MODIS)
of the Terra satellite (Surface Reflectance 8-Day L3 Global
500m SIN Grid V005 (MOD09A1)). In each image pixel,
the data provides an estimation of the surface spectral re-
flectance measured at ground level in the absence of atmos-
pheric scattering or absorption. The band 4 (green) and
band 7 (infrared) were used to calculate the modified
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normalized difference water index (MNDWI) [18, 23],
which allows an estimate of the water presence in each
pixel. Within all districts, each pixel was classified as
flooded if the MNDWI value was more than or equal to
zero. This threshold of zero for MNDWI is in the range of
optimal thresholds calibrated in previous studies [23–25].
Permanent water bodies such as rivers and lakes were
masked out using QGIS version 2.8.3 [26]. Then, the num-
ber of flooded pixels were counted to calculate the percent-
age of flooded land in each district.
Elevation can be associated with slopes and increased

movement of surface water [27], but slope data was not
available at a national scale in Thailand. Elevation data
was derived from the NASA Shuttle Radar Topographic
Mission (SRTM) 90m Digital Elevation Data, which pro-
vides elevation data for the entire world (http://
srtm.csi.cgiar.org/index.asp). The average elevation at
the district level was used in the model.
Human population data was obtained from the World-

Pop database, which presents the number of people per
hectare (http://www.worldpop.org.uk) (Additional file 2:
Figure S5). Human population density was included in
the model because it could be associated with different
agricultural practices in areas with different levels of
economic development. The animal population density
of livestock species (buffalo, cattle, goat, pigs and sheep)
were obtained from the Information and Communica-
tion Technology Center (ICT), Department of Livestock
Development of Thailand at the district level (http://
ict.dld.go.th) (Additional file 2: Figure S5). Goats, pigs
and sheep were included because they may also contrib-
ute to the circulation of leptospirosis in cattle and buffa-
loes. Seroprevalences of other livestock were shown in
Thailand from January to August 2001 in a previous
study [28]. In this study, no urine samples were collected
in urban districts because limited number of cattle and
buffaloes are found in areas of high human population
density. The districts with a human population density
above 1400 people/km2, which corresponds to the urban
centers of the main cities of Thailand, and no livestock
were not included in the risk mapping given the limited
number of animals in urban centers.

Statistical analysis
To investigate the association between the risk factors
listed in the previous paragraph (explanatory variables
with a fixed effect) and leptospirosis infection (the re-
sponse variable), we first study univariate linear re-
gressions. Using a generalized linear mixed model
(GLMM) with a logit link since the response variable
had a binomial distribution. We used R software [29]
with the package lme4 [30]. Since all individual urine
samples were not independent because they were col-
lected during common sampling occasions, we used

the sampling occasion index as a random effect vari-
able. Each sampling occasion was identified by a date,
a year and a district geocode. The best multivariable
model was selected using a stepwise backward ap-
proach based on the Akaike Information Criterion
(AIC). The Area Under the Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) plot was used
to estimate the model performance. We also used
cross-validation to measure the performance of the
best model. Data was randomly split into training (2/
3 of data) and test (1/3 of data) sets. Training data is
used to produce the prediction model, while the test
data is used to test the model performance. Given the
size of our dataset, we chose to keep 2/3 of the data
in the training set to optimize model performance.
We performed repeated cross-validations 1000 times
to estimate the mean and standard deviation of the
cross-validated AUC (cvAUC) of the best model.
The best model was used to predict leptospirosis infec-

tion risk in 2012 and 2016 for three periods (mid-Janu-
ary, mid-May and mid-September) which represents the
middle of the dry season, the beginning of the rainy sea-
son and the end of the rainy season, respectively for cen-
tral and northern Thailand.

Results
A total of 3571 urine samples of cattle and buffalo were
tested by the LAMP technique. 311 samples were posi-
tive. The overall uroprevalence over 107 districts is pre-
sented in Fig. 1. Positive samples were recorded in 51
districts (47.66% of districts). From the temporal aspect,
higher prevalence was observed in May (Fig. 2), which is
the beginning of the rainy season in the central and
northern part of Thailand [31].
The results of the univariate linear regressions show

that the percentage of flooded area and the percentage
of flooded area with a 1 month lag were found to be sig-
nificant (Additional file 1:Table S1). The risk of livestock
infection was higher if the percentage of flood area was
higher.
Three explanatory variables were kept in the final

model based on the stepwise backward approach: the
percentage of flooded area, human and livestock
population densities (Table 1). This final model was
applied to predict the risk of Leptospira presence at
the district level, it showed high performance with an
AUC of 0.8861 (Fig. 3). The percentage of flooded
area was the only variable significantly associated with
the prevalence of leptospirosis in cattle and buffalo in
the GLMM (p = 0.023, Table 1). The cvAUC had a
mean of 0.6427 (sd = 0.0827). The distribution of the
1000 estimations of the cvAUC is shown in Fig. 4.
Maps of leptospirosis infection risk were produced

from the final model in the middle of January, May, and
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September in 2012, which corresponds to the period when
most data were collected (Fig. 5). As expected from the
results of the model, the areas of increased leptospirosis
risk vary seasonally (Fig. 5) and are found in the regions
with a high percentage of area flooded (Additional file 2:
Figure S1). The districts with a high leptospirosis infection
risk in mid-January were mostly located in the southern
part of Thailand, especially in the south-east coastal
regions, i.e. during the high rainfall period in this area
(Additional file 2: Figure S2) [31]. In mid-May, high lepto-
spirosis infection risk mostly occurs in northern and north-
eastern parts, which correspond to the beginning of the

rainy season in this part of Thailand. In mid-September,
high leptospirosis infection risk areas occurred in all parts
except for the southern part, and was particularly high in
the central part. In this analysis, the final model was also
used to predict the leptospirosis infection risk in 2016
(Additional file 2: Figure S3). The leptospirosis infection
risk districts were also mostly found in regions with a high
percentage of flooded area (Additional file 2: Figure S4).

Discussion
This study investigates the relation between cattle and
buffalo leptospirosis infections and flooding based on

Fig. 1 Map of the positive rate of leptospirosis in cattle and buffalo in 107 districts of Thailand. Urine samples were tested by LAMP. The non-
sampled districts are presented in white
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cross-sectional surveillance during 2011–2013 in
Thailand. This analysis provides, to our knowledge, the
first predictive risk mapping for cattle and buffalo lepto-
spirosis in Thailand. The temporal and spatial variations
of leptospirosis infection in Thailand appears to be asso-
ciated with flooding.
Results of the GLMM show a significant association

between the percentage of flood area and leptospirosis
infection in cattle and buffalo at the district level.
The flooding area was evaluated using a remote sens-
ing indicator [18, 23]. This finding suggests that ex-
posure to flooding increases the risk of leptospirosis
infection for cattle and buffalo. Most of the samples
used in this study were collected in rural areas. In
these areas, the soil may become contaminated with
leptospires because of the presence of infected ani-
mals. When flooding or heavy rainfall occurs, the
water picks up contaminated soil and animal excreta
from the soil. This results in the spread of leptospir-
osis through contaminated water [32, 33]. Flooding
could possibly be the principal reason for leptospir-
osis epidemics above other factors [34]. This is con-
sistent with other studies showing that local flooding
can play an important role in leptospirosis transmis-
sion [17, 18, 34]. Therefore, flood control could be an

option to reduce the risk of leptospirosis infection in
animals, which can be a major reservoir for human
infection [4, 9].
Furthermore, the results of the univariate linear re-

gressions show that the flooding factor is the only sig-
nificant factor and is a better indicator than the amount
of rainfall and the accumulation of rainfall. It may be be-
cause rainfall does not directly influence leptospirosis
transmission while flooding facilitating it. Rainfall has
previously been associated with leptospirosis but often
with a time lag of 1–3months [35, 36] which is likely
the lag between rainfall and flooding. A remotely sensed
flooding indicator is likely to be a more accurate pre-
dictor of the risk of leptospirosis infection than using
rainfall.
The predicted risk maps of leptospirosis infection were

created based on the final model for 3 periods in 2012.
In each part of Thailand, higher infection risk was ob-
served during the first floods after a dry period in that
part of the country. This influence of the first flood of
the year has been suggested in other studies [18]. It
could be responsible for the rapid dissemination of lep-
tospires concentrated in small areas during the dry sea-
son. High prevalence in livestock is not predicted in the
same period for the whole Thailand. Three main periods

Fig. 2 The leptospirosis prevalence observed per month in both cattle and buffalo for 2011–2013

Table 1 Results of the best generalized linear mixed model as selected by a stepwise backward approach with the AIC

Variable Odd Ratio 95% Confidence Interval p-value

Intercept 0.0309 0.0183–0.0473 <2e-16***

Percentage of flood area 1.5794 1.0611–2.3629 0.023*

Human population density 1.3495 0.9511–1.9016 0.084

Livestock population density 0.5989 0.3079–1.0957 0.105

*p < 0.05, ***p < 0.001
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of risk can be identified and associated with three different
parts of Thailand (i.e., Northern, Central and Southern
parts) and are related with the periods of flooding. The
difference in these flooding periods is mainly due to two
factors: a) the difference of rainfall seasonality between
southern Thailand and the rest of the country, and b) the
delay between rainfall and flooding between the central
part and the northeastern part of the country. The central
part of the country is downstream of the most important
rivers in Thailand, and major flooding occurs later than in
the rest of the country, in September to November, with
an increased intensity. This explains why high risk occurs

for most districts in this period, which also corresponds to
its high population [12].
With the backward step approach, the final model in-

cludes human and livestock population densities. How-
ever, the model results show that those variables are not
significant. Furthermore, these variables should be inter-
preted very cautiously because several confounding fac-
tors could be involved. Thus, they were kept because
they improved the final model (based on the decrease of
the AIC), but they should not be over-interpreted.
Our study was based on a cross-sectional survey [4],

which was limited as there may be procedural concerns.

Fig. 3 ROC curve of the best generalized linear mixed model

Fig. 4 The cross-validated AUC distribution
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It does not provide data for all districts in the country and
for all seasons in each district. A longitudinal survey is
strongly suggested in further studies, with repeated sam-
pling in a larger number of districts in the whole country.
It would provide better data to understand the seasonality
of leptospirosis infection and could provide a more
accurate disease transmission model. The samples in
each district were mostly collected only once. How-
ever, the samples were distributed over every part of
Thailand for all seasons. Furthermore, the model had
a relatively good performance (AUC =0.8861) but a
lower and quite variable cross-validated AUC (mean
cvAUC = 0.6427, sd = 0.0827, Fig. 4). This difference
between AUC and cvAUC, and the variability of the
cvAUC may be explained by the relatively small size of
our dataset at the district level leading to a small valid-
ation dataset (71 districts for the training dataset and only
36 for the validation dataset). Furthermore, given this size
limit, some validation datasets may include a different
proportion of southern districts than their matching train-
ing datasets. The difference of flooding patterns between
southern Thailand and the rest of the country may then
further explain the lower cvAUC. Training the model on a
larger dataset and having an independent large dataset to
validate it would help build a more robust model.

The presence of pathogenic leptospires in livestock
was tested with LAMP [4, 10], which allows a simple
and rapid diagnosis of leptospirosis with high accuracy.
However, this technique cannot provide any genotypic
information, thus could not be used to compare patho-
genic strains in the study. However, in Thailand, the ac-
curacy of LAMP (97.0%) was higher than real-time PCR
(91.9%) [10]. Thus, results from this technique can be
used with confidence in our study to investigate the as-
sociation of livestock leptospirosis infection with envir-
onmental factors.
Other environmental risk factors such as soil type and

land use, which were not explored in this study, may be
required to better characterize leptospirosis infection
risk. A previous study showed that agricultural land and
clay loams soil are significantly associated with leptospir-
osis infection in humans [37]. These factors could influ-
ence the identification of high-risk areas and help
improve our model.
Other individual variables such as sex and age of the

animals investigated were not considered in this study
due to data limits. These factors could help us to im-
prove the model and may impact the results [38, 39].
Leptospira can infect a wide range of livestock including
pigs, goats and sheep [40, 41]. Studies of these animals

Fig. 5 Map of the prediction of leptospirosis infection risk using the final multivariate linear regression model in three different periods of 2012. A
leptospirosis infection risk of 0.1 indicates that approximately 1/10 livestock are expected to be positive by LAMP for leptospirosis infection. The
non-predicted districts are presented in white
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should also be implemented as they may also contribute
to leptospirosis epidemics. However, the present study
focused on the flooding indicator associated with cattle
and buffalo infection. The good performance of the
model shows that flooding is a major factor that should
be considered in leptospirosis risk models.

Conclusion
Our findings could identify flooding as a major driver of
the risk of leptospirosis infection in cattle and buffalo.
Public awareness about the risk of leptospirosis during
flooding should be raised in order for people to take pre-
vention measures when possible. The risk maps could
also help to develop effective intervention strategies and
optimize the allocation of public health resources, veter-
inary care and control measures. A high level of live-
stock infection could increase the risk to human health
due to contact with infected animals or a contaminated
environment by the urine of infected animals [2, 34].
Livestock may then play an important role as a potential
indicator of high-risk areas for leptospirosis in humans.
Further study needs to be done to assess the risks asso-
ciated with contact between livestock and humans. In
this regard, further data needs to be collected and made
available.

Additional files
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(DOCX 14 kb)
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Abstract 27 

 The epidemic of leptospirosis in humans continues to this day, causing incidences 28 

annually in Thailand. We developed a mathematical model to study the transmission 29 

dynamics between humans, animals, and a contaminated environment. We compared 30 

different models that included the impact of flooding and weather conditions on the 31 

transmission rate from a contaminated environment, the leptospire shedding rate and 32 

the multiplication rate of the leptospires in the environment. We found that the model 33 

with the transmission rate dependent on flooding and temperature best-fit the reported 34 

human data on leptospirosis in Thailand. Our results highlight that flooding indicators 35 

have the most impact on transmission, indicating a high degree of flooding leads to higher 36 

cases. Sensitivity analysis showed that the transmission of leptospires from the 37 

contaminated environment was the most important parameter for the total number of 38 

human cases. Our results suggest that public health policy makers should guide the 39 

people who work close to, or in contaminated environments to avoiding potential sources 40 

of leptospirosis, or by protecting themselves by wearing boots to reduce the leptospirosis 41 

outbreak. 42 

 43 

Keywords: Leptospirosis, transmission dynamics, Flooding, Weather conditions  44 

 45 

  46 
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Introduction 47 

Leptospirosis is a worldwide zoonotic bacterial disease, that is particularly 48 

endemic in tropical and subtropical countries1,2. The infection of humans is mainly caused 49 

by direct contact with an infected animals and also by indirect contact with urine of 50 

infected animals through cuts in the skin or mucous membranes in a contaminated 51 

environment1,3.  52 

In humans, the epidemic of leptospirosis continues to this day, causing incidences 53 

annually. The highest number of cases reported in Thailand is during the rainy season in 54 

mid-May to mid-October4. High-risk groups include farmers and other agricultural 55 

workers, who are likely to come into contact with infected animals, and contaminated 56 

wet soil and water during their daily activities5-7. In addition, leptospirosis in livestock is 57 

also considered an important disease, causing reproductive failures (such as abortion, 58 

embryonic death, stillbirths, and weak off-spring), decreased milk production and growth 59 

rates8-11. A relatively high prevalence of leptospirosis has been detected in the urine of 60 

cattle and buffalo in Thailand8. Contact with infected livestock during production was also 61 

investigated, and was found to increase the risk of infection12. This spirochete bacteria 62 

are mainly transmitted through injured or cut skin in contact with contaminated water 63 

or soil. Leptospires may survive from a few weeks to almost a year in surface water or 64 

wet soil even during dry days13. 65 

Most of the previous leptospirosis models focused on spreading of the disease in 66 

humans and rodents14-16. However, compartment models of leptospirosis, with links 67 

between the host or livestock and the environment, have also been proposed. Babylon et 68 

al. presented a simple Susceptible-Infective (SI) model to describe the spreading of 69 

leptospirosis in lambs in contact with free-living leptsopires17. A model to study the 70 

leptospire infection dynamics in Norway rat (Rattus norvegicus) as the reservoir host in 71 

the environment was also presented18. However, the model should be composed of 72 

human, animals and environmental compartments for leptospirosis infection dynamics. 73 

Baca-Carrasco et al. presented an SI model to study the transmission in humans and 74 

animals and included bacteria in the environment19. The direct transmission between 75 

animals and humans has also been explored20.  76 

Thus far, those mathematical models did not consider seasonal effects, flooding or 77 

weather conditions. Seasonal and weather conditions have been shown to be associated 78 

with an increased leptospirosis risk12,21-24. In this work, we propose different 79 
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leptospirosis transmission models, which considers the impact of environmental factors 80 

such as seasonal flooding, and weather conditions. The livestock species, i.e., buffalo, 81 

cattle, goats, pigs, and sheep, are the animal reservoirs and contribute to the circulation 82 

of leptospirosis in humans and the environment25,26. The reported data on human 83 

leptospirosis in Thailand was used to fit the transmission models to help identify the 84 

factors that influence the leptospirosis transmission dynamics. The proposed 85 

transmission models may help to understand the processes of leptospirosis transmission 86 

in Thailand and allow more accurate predictions of future outbreaks and better control 87 

of the disease. 88 

 89 

Methods 90 

Data 91 

In this study, reported cases of human leptospirosis were retrieved from the 92 

national disease surveillance (report 506), Bureau of Epidemiology, Department of 93 

Disease Control, Ministry of Public Health, Thailand27. Most positive cases were suspected 94 

leptospirosis cases, based on the clinical diagnosis made by attending physicians. The 95 

clinical criteria for leptospirosis were high fever, chills, headache, with at least one of the 96 

following symptoms including abdominal pain, red eyes, neurological symptoms (such as 97 

stiffness, abnormal feelings, etc.), and dry cough or cough with bloody sputum, and a 98 

career history of exposure to water areas or environments contaminated with animal 99 

excreta28. Some of the suspected cases were then examined using laboratory tests such 100 

as Latex agglutination test (LA), Dipstick test, Lateral flow test, Microcapsule 101 

agglutination test (MCAT), Immunofluorescent antibody test (IFA), Microscopic 102 

agglutination test (MAT) or ELISA for confirmation. The suspected cases were mainly 103 

reported from public hospitals with a small fraction from private hospitals. In this 104 

research, we analyzed all reported cases from 2010 to 2016 in two provinces (i.e., Si Sa 105 

Ket and Surin), in which the highest number of cases were reported.  106 

Data collection was performed as a part of routine clinical examination 107 

procedures of the Thai Ministry of Public Health surveillance and response. Data 108 

collection was approved by the Ethics Committee of the Ministry of Public Health of 109 

Thailand. Data containing the patient's medical records, without any patient information 110 

except location, were de-identified prior to analysis. 111 
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The remotely sensed environmental data obtained included the modified 112 

normalized difference water index (MNDWI) and the Land Surface Temperature (LST). 113 

MNDWI was extracted from the data of the Moderate Resolution Imaging 114 

Spectroradiometer (MODIS) of the Terra satellite (Surface Reflectance 8-Day L3 Global 115 

500m SIN Grid V005 (MOD09A1)). We used band 4 (green) and band 7 (infrared) to 116 

calculate the Modified Normalized Difference Water Index (MNDWI)29,30. Within all 117 

provinces, each pixel was classified as flood area if the MNDWI value was greater than or 118 

equal to zero21,30. Permanent water bodies were masked out using QGIS version 2.8.331. 119 

The number of flooded pixels was counted to calculate the index of land flooding, which 120 

was then used to calculate the percentage of area flooded.  121 

The LST was extracted from the MODIS Terra product (MOD11A2) with Emissivity 122 

8-Day L3 Global 1 km, which is composed of the daily LST product (MOD11A1) with a 1 123 

km resolution and stored on a 1 km Sinusoidal grid as the average values of clear-sky 124 

LSTs during an 8-day period32.  125 

The amount of rainfall was obtained from the real-time Tropical Rainfall 126 

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA-RT)33. We 127 

derived daily precipitation and daily accumulated precipitation from the TMPA product: 128 

3B42RT34,35. 129 

The initial human population data were obtained from the WorldPop database, 130 

which presents the number of people per pixel (http://www.worldpop.org.uk). The 131 

initial livestock population of each specie (buffalo, cattle, goat, pigs, and sheep) was 132 

obtained from the Information and Communication Technology Center (ICT), 133 

Department of Livestock Development of Thailand at the province level 134 

(http://ict.dld.go.th). 135 

 136 

Model for leptospirosis transmission 137 

A simple SIR model of two groups is used to study the transmission dynamics of 138 

leptospirosis between humans, livestock and the contaminated environment. Susceptible 139 

human and livestock individuals are introduced, denoted by 𝑆ℎ and 𝑆𝑎, respectively. 𝑆ℎ 140 

and 𝑆𝑎 can become infected through contact with infected livestock and/or the 141 

contaminated environment. The infected livestock can shed leptospires into the 142 

environment and increase the number of leptospires (𝐿 compartment) in that province. 143 

The hygienic level of the contaminated environment can be defined as the density of 144 
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leptospires. The leptospires die at a rate 𝜇𝐿 . Infected humans and animals recover at the 145 

constant rates 𝛾ℎ and 𝛾𝑎, and loss immunity at the rates 𝜈ℎ and 𝜈𝑎, respectively. Both 146 

population sizes are assumed to be constant. In this work, we developed the transmission 147 

model based on previous studies19,20. The leptospirosis transmission model is described 148 

by the following set of differential equations:  149 

 150 

𝑑𝑆ℎ(𝑡)

𝑑𝑡
= 𝜇ℎ𝑁ℎ − 𝛽ℎ𝑎(𝑡)

𝑆ℎ(𝑡)𝐼𝑎(𝑡)

𝑁ℎ
− 𝛽ℎ𝐿(𝑡)ℎ(𝑡)

𝑆ℎ(𝑡)

𝑁ℎ
+ 𝜈ℎ𝑅ℎ(𝑡) − 𝜇ℎ𝑆ℎ(𝑡), 151 

𝑑𝐼ℎ(𝑡)

𝑑𝑡
= 𝛽ℎ𝑎(𝑡)

𝑆ℎ(𝑡)𝐼𝑎(𝑡)

𝑁ℎ
+ 𝛽ℎ𝐿(𝑡)ℎ(𝑡)

𝑆ℎ(𝑡)

𝑁ℎ
− 𝛾ℎ𝐼ℎ(𝑡) − 𝜇ℎ𝐼ℎ(𝑡), 152 

𝑑𝑅ℎ(𝑡)

𝑑𝑡
= 𝛾ℎ𝐼ℎ(𝑡) − 𝜈ℎ𝑅ℎ(𝑡) − 𝜇ℎ𝑅ℎ(𝑡), 153 

𝑑𝑆𝑎(𝑡)

𝑑𝑡
= 𝜇𝑎𝑁𝑎 − 𝛽𝑎𝑎(𝑡)

𝑆𝑎(𝑡)𝐼𝑎(𝑡)

𝑁𝑎(𝑡)
− 𝛽𝑎𝐿(𝑡)ℎ(𝑡)

𝑆𝑎(𝑡)

𝑁𝑎(𝑡)
+ 𝜈𝑎𝑅𝑎(𝑡) − 𝜇𝑎𝑆𝑎(𝑡),   (1) 154 

𝑑𝐼𝑎(𝑡)

𝑑𝑡
= 𝛽𝑎𝑎(𝑡)

𝑆𝑎(𝑡)𝐼𝑎(𝑡)

𝑁𝑎(𝑡)
+ 𝛽𝑎𝐿(𝑡)ℎ(𝑡)

𝑆𝑎(𝑡)

𝑁𝑎(𝑡)
− 𝛾𝑎𝐼𝑎(𝑡) − 𝜇𝑎𝐼𝑎(𝑡), 155 

𝑑𝑅𝑎(𝑡)

𝑑𝑡
= 𝛾𝑎𝐼𝑎(𝑡) − 𝜈𝑎𝑅𝑎(𝑡) − 𝜇𝑎𝑅𝑎(𝑡), 156 

𝑑𝐿(𝑡)

𝑑𝑡
= 𝜔(𝑡)𝐼𝑎(𝑡) + 𝑚(𝑡)𝑔(𝑡)𝐿(𝑡) − 𝜇𝐿𝐿(𝑡), 157 

where 𝑁 = 𝑆 + 𝐼 + 𝑅 for livestock and human compartments. 158 

 159 

In our model, we assumed that, as a zoonosis disease, the human-human 160 

transmission does not exist10; thus infection in humans always developed from animal 161 

sources or the contaminated environment. The leptospires shedding from humans into 162 

the environment is neglected in our study as the likelihood is very low. The function 163 

𝑔(𝑡) =
𝜒−𝐿(𝑡)

𝜒
 in equation (1) represents the logistic growth multiplier, which allows the 164 

growth to depend on the current number of leptospires and limits excessive growth, 165 

where 𝜒 is the maximum carrying capacity, or saturating population size. A saturation 166 

term, ℎ(𝑡) =
𝐿(𝑡)

𝐿(𝑡)+𝜅
, is added to limit the effect of transmission due to the large number of 167 

leptospires14,36, where 𝜅 is the density of leptospires in the environment at which the 168 

transmission rate is 0.5𝛽𝐿(𝑡). The diagram of the model and its relationship between the 169 

compartments is provided in Fig. 1. A set of parameters is shown in Table 1. 170 

 171 
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 172 

Figure 1. Dynamics of leptospirosis spread between humans, livestock and the 173 

contaminated environment. Dashed green arrow shows the transmission route from the 174 

contaminated environment to susceptible livestock (𝑆𝑎) and humans (𝑆ℎ). Infected 175 

livestock (𝐼ℎ) transmit leptospires to humans and shed to environment (red dashed line) 176 

and to livestock (orange dashed line).       177 

 178 

Table 1: A set of parameters. 179 

Description Symbol Values 

Birth and death rate of humans 1/𝜇ℎ 70 years (estimated) 

Duration of infection for humans 1/𝛾ℎ 14 days (estimated from3) 

Duration of loss of immunity for 

humans 

1/𝜈ℎ 720 days (estimated from3) 

Transmission rate from infected 

livestock to human 

𝛽ℎ𝑎 fitted 

Birth and death rate of livestock 1/𝜇𝑎 3 years (estimated) 

Duration of infection for livestock 1/𝛾𝑎 200 days (estimated from37) 

Duration of loss of immunity for 

livestock 

1/𝜈𝑎 540 days (estimated) 

Transmission rate from infected 

livestock to livestock 

𝛽𝑎𝑎 fitted 
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Duration of contamination for the 

environment 

𝜇𝐿 0.02381 day-1 (estimated from36) 

Density of leptospires at which the 

transmission rate from the 

environment is 0.5𝛽𝐿(𝑡) 

𝜅 102 km-2 (estimated from36) 

Maximum carrying capacity 𝜒 1x105 (estimated) 

Density of the free living leptospires in 

a province at 𝑡 = 0 

𝐿𝑖(0) 10-3 km-2 (estimated from36) 

Density of leptospires shed per 

infected livestock 

𝜔 fitted 

Transmission rate from the 

contaminated environment to human 

and livestock 

𝛽ℎ𝐿and 𝛽𝑎𝐿 fitted 

Multiplication rate of the leptospires in 

the environment 

𝑚 fitted 

 180 

Some of the parameters in equation (1) may be affected by flooding and weather 181 

conditions. In this work, we look at how these conditions can affect the transmission from 182 

the contaminated environment, leptospire shedding rate, and the multiplication rate.  183 

The most important parameters are the transmission modes from the 184 

contaminated environment to susceptible humans and susceptible livestock (𝛽ℎ𝐿 and 185 

𝛽𝑎𝐿). We hypothesized that the environment could influence the transmission of 186 

leptospirosis. Thus, the transmission terms are constructed as a linear function of 187 

normalized data of the percentage of flooded area (𝑓(𝑡)), total monthly rainfall (𝜌(𝑡)), 188 

and average monthly temperature (𝛵(𝑡)). The virulence of leptospires depends on 189 

temperature38, leading to the inclusion of the average temperature, which may impact the 190 

transmission model. We examined four forms of transmission rate dependency 191 

corresponding to three environmental variables to test different hypotheses. These four 192 

transmission rates assumed the rates were linearly proportional to the environmental 193 

variable and are as follows: 194 

(1) Flooding (M1-F): The transmission rates are given by: 195 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝑓(𝑡 − 𝜏1)) 196 

𝛽𝑎𝐿(𝑡) = 𝑎2(1 + 𝑎2𝑓(𝑡 − 𝜏1)) 197 
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(2) Rainfall (M1-R): The transmission rates are given by: 198 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝜌(𝑡 − 𝜏1)) 199 

𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝜌(𝑡 − 𝜏1)) 200 

(3) Flooding and temperature (M1-FT): The transmission rates are given by: 201 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝑓(𝑡 − 𝜏1) + ℎ3𝛵(𝑡 − 𝜏2)) 202 

𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝑓(𝑡 − 𝜏1) + 𝑎3𝛵(𝑡 − 𝜏2)) 203 

(4) Rainfall and temperature (M1-RT): The transmission rates are given by: 204 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝜌(𝑡 − 𝜏1) + ℎ3𝛵(𝑡 − 𝜏2)) 205 

𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝜌(𝑡 − 𝜏1) + 𝑎3𝛵(𝑡 − 𝜏2)) 206 

where ℎ𝑖  and 𝑎𝑖 are constant values (that were fitted) of each function for each 207 

transmission rate, and 𝜏1 and 𝜏2 are time lags, varying from 0-8 weeks, which are 208 

associated with the infection of humans. 209 

The second model (M2-F and M2-R) are the leptospire shedding rate (𝜔), which is 210 

affected by rainfall. Infected livestock shed leptospires into the environment, which will 211 

then be a source of exposure for susceptible humans and livestock. The shedding rate can 212 

be described as a logistic curve, to limit its effect at high concentrations. 213 

𝜔(𝑡) = 𝜔0 (
𝜌(𝑡−𝜏1)

𝛿+𝜌(𝑡−𝜏1)
) and 𝜔(𝑡) = 𝜔0 (

𝑓(𝑡−𝜏1)

𝛿+𝑓(𝑡−𝜏1)
) 214 

where 𝛿 is an inferred threshold parameter corresponding to the rate of half of the 215 

maximum shedding rate due to rainfall or the effect of flooding. 216 

The last model affects the multiplication rate of the leptospires in the environment 217 

(𝑚), which depends on three environmental variables, namely, the percentage of flooding 218 

area (𝑓(𝑡)), total monthly rainfall (𝜌(𝑡)) and average monthly temperature (𝛵(𝑡)). The 219 

multiplication rate is given by: 220 

(1) Flooding (M3-F): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝑓(𝑡 − 𝜏1)) 221 

(2) Rainfall (M3-R): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝜌(𝑡 − 𝜏1)) 222 

(3) Flooding and temperature (M3-FT): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝑓(𝑡 − 𝜏1) + 𝑥3𝛵(𝑡 − 𝜏2)) 223 

(4) Rainfall and temperature (M3-RT): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝜌(𝑡 − 𝜏1) + 𝑥3𝛵(𝑡 − 𝜏2)) 224 

where 𝑥1, 𝑥2 and 𝑥3 are constant values (fitted parameters). 225 

 Ten models (M1-F, M1-R, M1-FT, M1-RT, M2-F, M2-R, M3-F, M3-R, M3-FT and M3-226 

RT) were considered individually and compared to the null hypothesis, where all 227 

parameters are constant values. The effect of flooding was compared to the effect of 228 

rainfall without and with a temperature effect. The combined models that use multiple 229 
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effects above were also considered. A stochastic simulation approach was employed 230 

using a tau-leaping algorithm with a fixed time step39. Using the parameters of the best 231 

model, 1,000 simulations were generated.  232 

 233 

Parameter estimation and sensitivity analysis 234 

To estimate the parameters of our model, we assumed that the epidemic was 235 

initiated by free-living leptospires in that area by setting the initial number of free-living 236 

leptospires to a low concentration (Table 1). We linked the biweekly human cases from 237 

the simulation results with the corresponding actual reported human cases from 2010 to 238 

2015. The best fit was obtained by maximizing a normal log-likelihood estimation, which 239 

produced simulation results that were most similar to the reported data. We used the 240 

nlminb function in R, which is a quasi-Newton method with a constrained bound, to find 241 

the optimal set of parameters40. The model that shows the minimum negative log-242 

likelihood was selected as the best model.  243 

In this work, according to previous findings, we considered the effect of time lag (𝜏) 244 

on the environmental data to leptospirosis cases due to transmission. Rainfall has been 245 

observed to be associated with leptospirosis, often with a time lag of 1-3 months41,42. We 246 

set the maximum time lags of flooding and rainfall to be eight weeks. We set the lag period 247 

to be the same for the effects of temperature, raining, and  flooding in this model24. 248 

To perform a sensitivity analysis of which parameters influence the effect of 249 

leptospirosis transmission the most, we used the Partial Rank Correlation Coefficients 250 

(PRCC) technique43,44. Then, we used the Latin hypercube sampling(LHS), which is a 251 

statistical Monte Carlo sampling technique, to sample the parameters using the lhs 252 

package in R45. 1,000 parameter sets were sampled with each parameter sampled from a 253 

uniform distribution. The PRCC was ranked as a response function to the cumulative new 254 

cases in each province using the sensitivity package in R with bootstrapping 1,000 times 255 

to obtain a 95% confidence intervals46. Based on the linear assumption, positive 256 

(negative) PRCC values imply positive (negative) correlations to the response function. 257 

 258 

Estimation of time-dependent reproduction number (𝑹𝒕𝒅) 259 

 The basic reproductive number (𝑅0) is generally defined as the average number 260 

of secondary infected individuals caused by an infected individual in a population that is 261 

completely susceptible. Due to the complexity of the model and the time-dependent 262 
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variables, there is no exact way to explain 𝑅0 for this model, as it is a complex function of 263 

many different variables. An alternative method, proposed by Wallinga et al47, computes 264 

the reproduction number from the observed cases using a likelihood-based method, 265 

calculated by averaging the overall transmission networks which makes it fit an epidemic 266 

curve48. In this work, we calculated a time-dependent reproduction number (𝑅𝑡𝑑) 267 

according to the R0 package in R48. The number of biweekly cases obtained from the 268 

simulations of the best model in three provinces was used to estimate 𝑅𝑡𝑑 . The serial 269 

interval between successive infections of the reported epidemic was identified and used 270 

to estimate the generation time distribution, with the mean and standard deviation (sd) 271 

of each province, using the R0 package. Then the 𝑅𝑡𝑑  of each province was estimated with 272 

the 95% confidence interval.  273 

 274 

Results 275 

 Based on the annual reports of leptospirosis cases in Thailand from 2010 to 2016, 276 

it appears that the disease continues to spread throughout the country (Fig. 2(A)). The 277 

highest number of annual cases was observed mostly in the northeastern region, which 278 

also had the highest number of cumulative cases (Fig. 2(B)). In this work, we considered 279 

two provinces, namely, Si Sa Ket (highest number of cumulative cases) and Surin (second 280 

highest number of cumulative cases) for testing the models. The time series of reported 281 

biweekly cases were plotted with the percentage of flooding, the amount of rainfall, and 282 

temperature (Fig. S1.). We found that the time series of biweekly reported cases in the 283 

two provinces showed a similar trend. The percentage of flooding and the amount of 284 

rainfall were found to increase around the same time of year when the number of 285 

reported cases increased. However, the temperature was negatively correlated with 286 

incident cases. 287 
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 288 

Figure 2. The map of reported cases in Thailand. The annual reported cases during 2010-289 

2016 (A). The total reported cases during 2010-2016 (B).  290 

 291 
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Using the model described in the methods section, we fit eleven models (our ten 292 

models plus the null model) to the reported cases from 2010 to 2015 with time lags 293 

between 0-8 weeks for each province (Fig. 3). In general, we found that model 1 (M1) 294 

improved the fit, which indicated that making the transmission rate a linear function with 295 

environmental variables has an important impact on the infection dynamics in humans. 296 

Comparing the models incorporating flooding or rainfall factors (M1-F and M1-R), we 297 

found the model including the flooding factor fit better. The models that also included a 298 

temperature effect showed better performance. Overall, the model with the transmission 299 

rate dependent on flooding and temperature (M1-FT) had the lowest negative log-300 

likelihood. Thus, we selected the M1-FT as the best-fit model for further analysis. The log-301 

likelihood value of M1-FT varied time lags of flooding showed a similar pattern, which 302 

has a high value for time lag around one month (Fig. S2.). The effect of time lag on the 303 

temperature was found to be different than the time lag associated with flooding. The 304 

results indicate that the transmission dynamics depend on the weather in the given areas.   305 

 306 

 307 

Figure 3. Bar chart of negative log-likelihood values for the ten models compared to a null 308 

model (M0) for the two provinces. The parentheses of each bar shows the time lag in 309 

week of flooding (rainfall) and temperature (t1, t2). 310 

 311 
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 312 

Figure 4. The fitted results of the M1-FT model (red line) compared to the reported cases 313 

of leptospirosis (black dot). The orange shaded area displays 1,000 curves of the 314 

stochastic simulations. The red dashed line represents the predicted cases for 2016. The 315 

time-dependent transmission rate from the contaminated environment to susceptible 316 

human and susceptible livestock (𝛽ℎ𝐿and 𝛽𝑎𝐿) correspond to values in Table S1 are shown 317 

in the blue and green lines, respectively. 318 

 319 

The M1-FT fitting and the stochastic simulation results, using the parameters 320 

shown in Table S1, are shown in Fig. 4. The stochastic output captures well the reported 321 

data. These results provide a reasonable fit with the predicted cases for 2016. Our model 322 

can provide more understanding on the transmission dynamics in contaminated 323 

environments.  324 
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The transmission rate from the contaminated environment to humans and 325 

livestock is plotted versus time according to the flooding and temperature factors (Fig. 326 

4). The average transmission rate from the contaminated environment to humans (𝛽ℎ𝐿) 327 

over time is 9.886 and 8.737 for Si Sa Ket and Surin. This corresponds to a decline in the 328 

total number of reported cases during the dry season. The transmission rate from the 329 

contaminated environment to livestock (𝛽𝑎𝐿) also varied with time. It was higher in Si Sa 330 

Ket and lower in Surin. However, the 𝛽ℎ𝐿 was always the highest transmission rate. This 331 

result indicated that the main reason for human infection is due to the transmission of 332 

leptospires from the contaminated environment, rather than from contact with infected 333 

animals. Comparing the coefficients of 𝛽ℎ𝐿, the flooding indicator had the most impact on 334 

transmission, which indicates a high amount of flooded area leads to higher cases. 335 

The fitting results indicate that our model is capable to reproduce the incidences 336 

of the leptospirosis epidemic, using the seasonal changes of the amount of flooded area 337 

as an indicator of increased infection rates. The number of new infection cases can be 338 

predicted during winter, depending on the parameters calculated in the given areas. 339 

In this work, we estimated the time-dependent reproduction number (𝑅𝑡𝑑) for 340 

two provinces with the 95% confidence interval using the simulation results as shown in 341 

Fig. 5. We found the 𝑅𝑡𝑑  oscillated around 1.0 which suggests it is an endemic disease, as 342 

expected for leptospirosis in Thailand. The mean (sd) of 𝑅𝑡𝑑  is estimated at 1.020 (0.198) 343 

and 1.011 (0.158) for Si Sa Ket and Surin. A similar pattern of 𝑅𝑡𝑑  was observed for both 344 

provinces in the same region in the simulated cases. Note that this estimation was based 345 

on the observed human cases. Normally, leptospirosis has a basic reproduction number 346 

close to zero due to its minimal transmissibility among human population. However, this 347 

estimation could provide a better picture of how leptospirosis transmits from animal 348 

sources and contaminated environments to humans.  349 

 350 
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 351 

Figure 5. The estimated 𝑅𝑡𝑑  for the two provinces plotted with the 95% confidence 352 

interval. 353 

 354 

As no vaccine or specific medicines are available for leptospirosis, the most 355 

important strategy to control the disease is to decrease the transmission rate. Figure 6 356 

shows the PRCC values with 95% CI, obtained for the ten parameters in Table S1. 357 

Absolute PRCC values greater than 0.3 are considered important parameters. We found 358 

that the parameters of 𝛽ℎ𝐿 (ℎ1, ℎ2 and ℎ3) were the most important on the total number 359 

of cases for all provinces. Our results also suggest how decreasing the transmission rate 360 

of leptospirosis from the contaminated environment to human can affect the 361 

leptospirosis dynamics to reduce the number of human cases. Figure 7 shows how the 362 

number of human cases can be reduced as the transmission rate of 𝛽ℎ𝐿 is reduced. A 90% 363 

reduction (0.9𝛽ℎ𝐿) could reduce the total number of human cases by about 90%. 364 

Considering the overall results, this study suggests that we should avoid contacting 365 

contaminated environments during flooding. 366 
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The infection rate extrapolated from the parameters of Si Sa Ket were also 367 

calculated for 2016 in other providences of Thailand (Fig. S3.). Interestingly, we found 368 

that high infection rates were predicted in other regions rather than just the northeast. 369 

This may due to the high percentage of flooded areas observed in the other regions. Our 370 

results also suggest that the public health sector should increase awareness of outbreaks 371 

in these regions. 372 

 373 

 374 

 375 

Figure 6. Partial rank correlation coefficients of the ten parameters and the total number 376 

of cases, plotted with an error bar showing the 95 % confidence interval. The ℎ𝑖  and 𝑎𝑖 377 

are constant values to calculate the transmission rates 𝛽ℎ𝐿 and 𝛽𝑎𝐿, respectively. 378 

 379 

 380 
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 381 

Figure 7. The number of human cases as the transmission rate from the contaminated 382 

environment to human (𝛽ℎ𝐿) of M1-FT is varied between 0.1𝛽ℎ𝐿 to 0.9𝛽ℎ𝐿, where b is the 383 

baseline. 384 

 385 

Discussion 386 

 In this work, dynamical models, that include environmental data are presented 387 

and used to describe the transmission of leptospirosis in two provinces in the 388 

northeastern region of Thailand. This work presents the first attempt to incorporate 389 

environmental data into the mathematical models of leptospirosis transmission. The 390 

annual change of the environmental data can describe the seasonal epidemic with higher 391 

prevalence during the rainy season for the northeastern region, than a model not 392 

incorporating any environmental data.  393 

Our finding suggests that transmission from a contaminated environment, as 394 

opposed direct contact with an infected animal, is the best model. This study is novel by 395 

finding that the amount of flooded area in a region, which obtained from a remotely 396 
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sensed data, is the most important factor for leptospirosis transmission to humans. This 397 

implies that including a leptospires compartment, which refers to the number of 398 

pathogenic bacteria in the contaminated environment, reasonable describes the infection 399 

of humans during an endemic.  400 

Previous studies have pointed out that leptospires survive and persist in the 401 

environment, both water and soil, for several weeks49. Environmental survival of 402 

pathogens can be an important parameter in epidemiology. During heavy rain with 403 

increased flooded areas, leptospires in the environment have more chances to enter the 404 

human body via cut skin. Working or living in flooded areas has been identified as a 405 

significant factor for increasing the contraction of leptospirosis50. Analysing our model, 406 

after fitting to human data from 2010-2015, the amount of flooded area was shown to be 407 

more important to improve the model as compared to the rainfall. Our results are 408 

consistent with a previous study that observed animals in Thailand from 2011–201321. 409 

This indicates that flooding is a factor that influences the epidemiology of leptospirosis in 410 

both humans and animals. Flooding was also observed to be an important risk factor in 411 

other countries such as Argentina51, Brazil52 and Malaysia53. In our study, including the 412 

effect of temperature in the model improved the transmission model a modest amount. 413 

The temperature may affect leptospire virulence38, and the transmission rate. The 414 

temperature effect observed in our study is in line with previous studies54-56. 415 

In this study, the time-dependent reproductive number was estimated for 416 

leptospirosis in humans. Normally, the basic reproductive number (𝑅0) cannot be 417 

estimated in humans due to minimal transmission between humans. However, in our 418 

case, we focused on how the transmission occurred in humans in term of 𝑅𝑡𝑑 . Our model’s 419 

estimation highlights that leptospirosis occurs mainly during mid-year for provinces in 420 

northeastern region.       421 

From the PRCC analysis of our model, the transmission rate of leptospires to 422 

humans is most effected by the total number of cases. A disease control method, 423 

according to the PRCC results, suggest avoiding flooded areas, to reduce the transmission 424 

rate during an outbreak57. And protective equipment, such as wearing boots or gloves, is 425 

recommended when in contact with flooded areas.   426 

 Note that our proposed model is based on several assumptions, one of which is 427 

that the environmental parameters linearly affect the rates in the mathematical model. 428 

We do not consider other functions such as a Gaussian function due to the complexity. In 429 
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general, models assume that the entire population is homogeneously mixed. The 430 

stochastic simulations in our results can estimate the fluctuations of the epidemic curve. 431 

Other animal, such as rodents, were not included due to the limitation of data on the 432 

rodent population. Rodents also carrying leptospires during the rainy period, and risk 433 

transferring the disease to humans58. Other factors such as human mobility, personal 434 

hygiene, and protective equipment, were also not accounted for in this study. The fitting 435 

process is done by only fitting to the reported data in humans, because of the limitation 436 

of livestock infection data. Another limitation we faced is on the National Surveillance 437 

System. Errors in the final model may be caused by underreported cases from the private 438 

health care centres, asymptomatic transmission, poor reporting to the National 439 

Surveillance System or the lack of leptospire data in the environment.  440 

 In summary, the leptospirosis transmission model predicts the significant 441 

environment factor associated with leptospirosis transmission is flooding. A reduction in 442 

contact with a contaminated environment can help to improve disease control. This work 443 

can be applied to other leptospirosis epidemic areas where flooding data is provided. 444 

Further studies should be carried out to access the role of livestock and other relevant 445 

data on the transmission of leptospires. Climate change or extreme weather events can 446 

also be modelled to predict the severity of future leptospirosis outbreaks59. Based on our 447 

results, public health policy maker may guide the people who work close to, or in 448 

contaminated environments to avoid potential sources of leptospirosis, or by protecting 449 

themselves by wearing boots to reduce the leptospirosis outbreak.  450 

 451 

Data availability 452 

The datasets generated during and/or analysed during the current study are available 453 

from the corresponding author upon reasonable request. 454 
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Abstract. Leptospirosis is a worldwide zoonotic disease, especially in tropical and sub-tropical 

countries. In Thailand during the rainy season, agricultural and livestock workers are the main 

occupational risk groups, who are likely to be in contact with the contaminated environment. In 

this work, we aimed to study the impact of rainfall on the transmission of leptospirosis using a 

stochastic cellular automata model in Si Sa Ket, Thailand, which has the highest reported cases 

from 2014 to 2018. Two bi-dimensional square lattices are created to represent human and 

contaminated environmental lattices. The reported cases are used to fit with the simulation results 

by varying the transmission probability. The transmission probability that depends on a 

sinusoidal function and the rainfall index were compared. This study highlighted that seasonal 

rainfall contributed to the transmission dynamics of leptospirosis. The total epidemic size, which 

is the sum of overtime cases, was investigated to find the critical transmission probability from 

endemic to epidemic state. Further study of other factors such as flooding and temperature, 

should be investigated for a better understanding of how the transmission of leptospirosis impacts 

the environment. 

 

 

 

 

 

 

 

 



Introduction  

Leptospirosis is an important bacterial zoonosis of worldwide and mostly affects tropical and 

subtropical countries [1, 2]. The disease is caused by pathogenic spirochete bacteria, genus Leptospira 
[3], which affects humans and animals. The transmission of this disease to humans or animals can occur 

by exposure to direct contact with infected animals or indirect via contaminated freshwater, soil, or mud 

[4]. Humans mostly infected by indirect exposure to a contaminated environment [5]. The time between 

exposure to symptoms and signs appearance (incubation period) of leptospirosis ranges from 7 to 12 

days [4]. The acute phase is usually sudden and characterized by fever, headache and myalgia [5]. Later 

symptoms may include conjunctival injection, abdominal pain, vomiting, prostration, icterus, anuria or 

oliguria, cardiac arrhythmia or deficiency, meningeal syndrome and a skin rash [5]. 

In Thailand, the occupation of farmers and agricultural workers is important, estimated around 

30% of the population in 2018 [6]. This occupation is the risk group, i.e., the agricultural workers usually 

walk barefoot in paddy fields lead to exposure with water for a long period, which may cause skin 

wounds and mucosae to provide routes of entry for leptospires into the body [7]. According to the 

epidemiology of leptospirosis, reported cases mostly found in rural areas than urban ones because of the 

environmental factors mentioned [8]. 

This bacteria can survive for days to months in water or soil [9, 10], which caused outbreaks 

occurred typically in the rainy season. Thus, the weather condition is one of the major factors influencing 

the spread of the bacteria [11]. In Salvador Brazil, the incidence of hospitalized leptospirosis patients 

was positively associated with increased rainfall [12]. The seasonal pattern of leptospirosis cases was 

observed along with the correlation of rainfall in India [13] and Sri Lanka [14]. 

Many studies have been proposed on leptospirosis mathematical models. Triampo et al. 

presented a mathematical model for the leptospirosis using the rate of transmission from an infected rat 

to a susceptible human varies with the amount of rainfall in Phrae and Nakhon Ratchasima Thailand 

[15]. They considered a number of leptospirosis cases in Thailand and shown their numerical simulations 

[16]. Zaman et al. presented an SIR model of human and vector (rat) population using the real data of 

Thailand for their numerical simulations [17]. Holt et al. used the SIR model to understand the behavior 

of infection in an African rodent of Tanzania [18]. Pongsumpun et al. developed the SIR-SI model to 

study the behavior of leptospirosis disease, represented the rate of change for both the vector (rat) and 

human population [19]. 

However, those of study did not consider in spatial aspect. The Stochastic Cellular Automata 

(SCA) is the model that used to describe the spatial dynamics, which are dynamical systems, discrete in 

space and time [20]. Each lattice of cell can assume a state in a finite set, which can change at every 

time step based on the transition rules and the state of cell or its neighbor. This model allows to study 

the environmental transmission for leptospirosis. Previously, Athithan presented a Cellular Automata 

based computational model for the spread of leptospirosis between human and animal using voting rules 

[21]. The simulation results are compared with the real data of leptospirosis infection in Thailand during 

2000 and 2001. They found that the results were closely in match with the data. However due to the 

complexity of leptospirosis transmission, the environmental lattice should consider. The probability of 

changing status of human should depend weather condition and seasonal effect [13]. 

In this work, we developed the Stochastic Cellular Automata model using heterogeneous rules 

which consist of two bi-dimensional lattices, i.e., human and environmental lattices for leptospirosis 

transmission. We aimed to study the impact of transmission rate depends on the rainfall. The model was 

based on the rural shape of Si Sa Ket Thailand. In the model, we investigated the epidemic size to find 

the critical transmission probability from endemic to epidemic state. 

 

Method 

Data collection 

In this study, we study the leptospirosis outbreak of Si Sa Ket Thailand. Data were collected 

from the national disease surveillance, Bureau of Epidemiology, Department of Disease Control, 

Ministry of Public Health, Thailand [22]. Data collection was performed as a part of routine clinical 

examination procedures. 



The amount of daily rainfall for the duration of the study 2014–2018 was obtained from the real-

time TRMM Multi-Satellite Precipitation Analysis [23]. We derived daily precipitation from 3B42RT. 

The daily accumulated precipitation is obtained from TRMM 3B42RT Daily [15, 24]. 

 

Model 

The proposed SCA model is constructed based on the existing knowledge about leptospirosis 

transmission. There are two bi-dimensional square lattice size (1000×1000) where a cell is in position 

(i,j). The total population is assumed to be 350,000 individuals, who have agricultural and farmer worker 

at Si Sa Ket. Each individual (Hij) is chosen randomly on a cell. Thus, human lattice will consist of 

occupation or empty site. Human individual can assume to be one of four states, which is in a susceptible 

state (S), an exposed state (E), an infectious state (I), and a recovered state (R) as illustrated in figure 1. 

The environment lattice can contain both empty sites and contaminated environment (representing the 

source of leptospirosis if infected), which estimated to 60% of lattice size as illustrated in figure 1. To 

simplify the model, we assumed that contaminated environment cell can transmit the infection to 

humans. In this model, we used the periodic boundary condition and take each time step to correspond 

to one day. 
 

 
 

Figure 1. Schematic illustration of the transition state of the Stochastic Cellular Automata model. 
 

In this work, we assumed humans individual, who are not infect with leptospires, randomly 

chosen move into empty site with probability 𝜌𝑚𝑜𝑏 = 0.5 [25] in each day. The length of human 

movement depends on the probability of the exponential step length, which is 𝑃(𝑟) =

(𝑟 + Δ𝑟0) −𝛽𝑒−𝑟 𝜅⁄  with exponent 𝛽=1.75, Δ𝑟0=1.5 km and cutoff values 𝜅=80 km [26]. People can 

move within the maximum of half length (1000/2). The angle of movement is randomly chosen from a 

uniform distribution [0, 2𝜋]. The parameters for the human population and mobility are shown in Table 

1.  

After human movement, if the position of the susceptible individual matches with the 

contaminated environment cell, the susceptible individual will gets infect with transmission rate (𝜆) to 

be exposed state. An exposed individual becomes an infected individual after a latent period of fixed 

length 𝜏𝐸. An infected individual will infect for 𝜏𝐼 period then become a recovered state. This recovered 

individual will become an again susceptible period of fixed length 𝜏𝑅. 

To study the impact of rainfall, the transmission rate depends on the rainfall index (𝑅(𝑡)) as in 

equation (1) compared to null hypothesis as a sinusoidal function (equation (2)). The transmission rate 

(𝜆) is assumed as a linear proportional of environmental variables to test different hypotheses given by: 

 



𝜆1(𝑡) = 𝑛0 + 𝑛1(𝑅(𝑡) − 𝜏)            (1) 

𝜆2(𝑡) = 𝑛0 + 𝑛1(1 + sin(2𝜋𝑡 365⁄ ) − 𝜏)        (2) 

where 𝑛0 and 𝑛1 are constant values. The reported data during 2014 and 2018 is used to fit with the 

simulation results. The parameters 𝑛0 and 𝑛1 were chosen, where the Mean Square Error (MSE) is 

minimized.   

 

Table 1. Parameters for human and environmental lattices. 

Description Symbol Values 

Human population size 𝑁𝐻 350,000 

Daily rate of human mobility 𝜌𝑚𝑜𝑏 0.5 [25] 

Water area density in environmental lattice 𝜌𝐸 0.6 

Incubation period for human 𝜏𝐸 7 days [4] 

Duration of infection for human 𝜏𝐼 7 days [4] 

Duration of loss immunity for human 𝜏𝑅 720 days (estimated) 

 

Result /discussion 

In this work, we aimed to study the impact of transmission rate depend on the rainfall index 

compared to sinusoidal function using the SCA model in Si Sa Ket, Thailand. We found the rainfall 

index more impact than sinusoidal function, which showed better fit with reported cases. 

Figure 2 showed the relation between reported cases of leptospirosis, normalized rainfall index, 

and sinusoidal function. The number of reported cases all year round showed a seasonality pattern. The 

peak of leptospirosis curve occurred between August and October correspond to the rainy season. We 

found the peak of reported cases correspond to the peak of rainfall index and sinusoidal curve.  
 

 
 

Figure 2. The relation between reported cases of leptospirosis, normalization rainfall index and the 

sinusoidal function for 2014-2018. 

 

 We varied time lag of the sinusoidal function, found that time lag of 4 weeks consistent with 

reports cases. We compared the real data and simulation results using mean square error (MSE), which 

found the minimized of MSE equal to 64.30 (figure 3). However, this function captured the reported cases 

only for the small value. The simulation result of the transmission rate depends on rainfall index with 

the associations observed at time lag of 2 weeks, which correspond to previous study [27]. The peak of 

leptospirosis cases corresponds with the peak of simulation results in almost every year. However, it 

could not describe the data on 2017 due to the other factor such as monsoon and heavy rainfall [28]. In 

fitting process, our results suggested that using rainfall index fit better than a sinusoidal function, which 

found MSE equal to 47.35. This finding indicate that the rainfall index contributed to the transmission 



dynamics of leptospirosis. Although, the sinusoidal function has been commonly used to represent 

seasonality in epidemic models [29].  

The epidemic of leptospirosis are known to be a seasonal pattern. Rainfall is an important risk 

factor for leptospirosis outbreaks and strongly associated with the tropical settings [30-32]. The heavy 

rainfall washes superficial soils, bringing pathogenic leptospires in freshwater bodies, where humans 

will be exposed. Massive leptospirosis outbreaks usually emerge following waterlogging. After heavy 

rainfall, this pathogen can survive for days to months in a contaminated environment [33].  

 

 
 

Figure 3. The reported cases of leptospirosis and the simulation result prediction of the transmission 

depend on the sinusoidal function  𝑛0 = 3.47 × 10−7 𝑛1 = 2.09 × 10−6 and the rainfall index  

𝑛0 = 4.01 × 10−6 and 𝑛1 = 3.21 × 10−5. 

 

In various types of epidemic models, it has been the central issue of how the final epidemic size 

is determined by the individual system parameters or the composite of them [34]. In this study, we 

defined the final epidemic size as the fraction of recovered at steady state. To investigate the transmission 

rate contributes to the final epidemic size in our model, we set the transmission rate be a constant value 

(λ = 𝑛0). The critical transmission rate is showed in figure 3, suggests that point transition from endemic 

phase to epidemic state.  
 

 
 

Figure 3. The final epidemic size as predicted by the SEIR model is shown with respect to the 

transmission rate 𝜆 = 1 × 10−6 − 1 × 101. 

 



In conclusion, our results highlighted that the transmission rate depends on rainfall index with 

time lag 2 weeks capture has impact on the leptospirosis outbreak in Si Sa Ket. We also find the critical 

transmission rate, which can be basic idea to control the outbreak. However, there are several factors 

could influence to leptospirosis such as flooding, temperature and humidity. Further study of other 

factors should be investigated for a better understanding of how the transmission of leptospirosis impacts 

the environment.  
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Abstract

Background: Leptospirosis is an important zoonotic disease worldwide, caused by spirochetes bacteria of the
genus Leptospira. In Thailand, cattle and buffalo used in agriculture are in close contact with human beings. During
flooding, bacteria can quickly spread throughout an environment, increasing the risk of leptospirosis infection. The
aim of this study was to investigate the association of several environmental factors with cattle and buffalo
leptospirosis cases in Thailand, with a focus on flooding.

Method: A total of 3571 urine samples were collected from cattle and buffalo in 107 districts by field veterinarians
from January 2011 to February 2013. All samples were examined for the presence of leptospirosis infection by loop-
mediated isothermal amplification (LAMP). Environmental data, including rainfall, percentage of flooded area
(estimated by remote sensing), average elevation, and human and livestock population density were used to build
a generalized linear mixed model.

Results: A total of 311 out of 3571 (8.43%) urine samples tested positive by the LAMP technique. Positive samples
were recorded in 51 out of 107 districts (47.66%). Results showed a significant association between the percentage
of the area flooded at district level and leptospirosis infection in cattle and buffalo (p = 0.023). Using this data, a
map with a predicted risk of leptospirosis can be developed to help forecast leptospirosis cases in the field.

Conclusions: Our model allows the identification of areas and periods when the risk of leptospirosis infection is
higher in cattle and buffalo, mainly due to a seasonal flooding. The increased risk of leptospirosis infection can also
be higher in humans too. These areas and periods should be targeted for leptospirosis surveillance and control in
both humans and animals.

Keywords: Leptospirosis, Flooding, Buffalo, Cattle, Thailand, Satellite imagery

Background
Leptospirosis is an important worldwide zoonotic dis-
ease, caused by spirochetes bacteria of the genus Leptos-
pira [1, 2]. This bacteria is classified into pathogenic and
nonpathogenic species, with more than 250 pathogenic
serovars [1–3]. The disease is particularly important in
tropical and subtropical countries. Human and animal
infections can occur through direct exposure to infected
animals or to indirect exposure to the soil or water

contaminated with urine from an infected animal
through skin abrasions or mucous membranes [1, 2].
In livestock, it is considered one of the most important

diseases, particularly in cattle due to reproductive fail-
ures (such as abortion, embryonic death, stillbirths and
weak off-spring), decreased milk production and growth
rates [1, 4–6]. This results in significant economic losses
[7] given the importance of these animals in tropical
countries. In Thailand, about 4.4 million beef cattle, 0.51
million dairy cattle, and 0.89 million buffaloes were
raised by 770,000, 160,000 and 200,000 households in
2012, respectively [8]. In rural areas, cattle and buffalo
live in close contact with agricultural workers, and can
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be a major source of leptospirosis in humans, as
highlighted by the predominance of the same serovars in
both livestock and humans [4, 9]. Furthermore, a rela-
tively high prevalence of leptospirosis have been de-
tected in the urine of cattle and buffalo in Thailand [10].
An important route of transmission of Leptospira from
livestock to humans could then be through contami-
nated urine [1, 2]. And as a consequence, flooding may
be an important factor facilitating the transmission of
Leptospira from livestock to humans and other animals
by facilitating the spread of bacteria in wet soils and sur-
face water, where the bacteria can survive for several
weeks or months [11].
In humans, the number of reported leptospirosis

cases in Thailand is highest after the peak in the
rainy season [12]. Higher numbers of leptospirosis
cases have been reported following rain or flooding in
tropical and subtropical areas (e.g., Laos [13], Guyana
[14], and Sri Lanka [15]). In Thailand, most reported
cases occurred in northern and northeastern regions,
where the main occupation is rice farming. Agricul-
tural workers are the most exposed to biological con-
taminates in the environment. A previous study in
Thailand found that human leptospirosis infections
were observed near rivers, and mostly in rice fields
likely to have flooding [16]. Furthermore, heavy rain
and flooding have been identified as environmental
drivers of leptospirosis infections in animals [17]. In
the same way, leptospirosis infection risk is associated
with flooding in Laos, particularly for human beings
who have behaviors and activities involving contact
with floodwater [13]. Overall, flooding appears as an
important driver of leptospirosis infection in both
humans and animals. By taking into account the sea-
sonal variations of flooding using remotely sensed in-
dicators, it may help in anticipating the risk of
leptospirosis infection and identify periods and areas
for increased surveillance and prevention [18].
The main objective of this study was to investigate the

association of several environmental factors (especially
remotely sensed indicators of flooding) with cattle and
buffalo leptospirosis cases in Thailand. A model of lepto-
spirosis infection risk at the district level was produced,
taking into account seasonal flooding.

Materials and methods
Epidemiological data
A total of 3571 urine samples derived from 488 buffalo and
3083 cattle, were collected from January 2011 to February
2013 under a cross-sectional program, which has been de-
scribed in detail in a recent article [4]. The sampling
process was prepared by the provincial Department of Live-
stock Development livestock officers in 107 districts from
28 provinces, and the samples were randomly selected from

each region of Thailand [4]. The sample size was calculated
using the multi-stage clustered sampling technique. Three
provinces in each of the 9 livestock administrative regions
were chosen to represent the area. Subsequently, districts
within the provinces were sampled. The target sample size
in each region was calculated with the method proposed by
Yamane [19]. In this study, we combined 9 regions of
Thailand into 4 parts with different climate and seasonal
flooding patterns, i.e. the Northern part, subdivided into
the Upper Northern and Lower Northern, Central part,
which consists of Central, Western and Eastern
sub-regions, Northeast part, which consist of Upper North-
eastern and Lower Northeastern regions, and the South,
which consist of Upper Southern and Lower Southern re-
gions. In their study, the number of samples in each district
was not controlled. Sampling was not systematically re-
peated in all districts, but data was collected during the
whole year in the different districts. All urine samples were
examined for the presence/absence of leptospiral infection
by loop-mediated isothermal amplification (LAMP) method
[4, 10]. This technique showed high sensitivity and specifi-
city at 96.8 and 97.0%, respectively [10].

Environmental data
The environmental variables tested in our study include
rainfall, flooded area, elevation, and human and livestock
population densities. Flooding is an important driver of
leptospirosis, but no data is readily available. The flooding
variable was calculated based on the modified normalized
difference water index (MNDWI). Other variables were
collected from national or international databases. All var-
iables were aggregated at the district level to match the
spatial resolution of the epidemiological data.
The amount of rainfall was obtained from near

Real-time TRMM (Tropical Rainfall Measuring Mission)
multi-satellite precipitation analysis (TMPA-RT), which
is produced at the National Aeronautics and Space
Administration, Goddard Earth Sciences Data and
Information Services Center (NASA GES DISC) [20].
The daily accumulated precipitation product is gener-
ated from the Near Real-Time Precipitation 3-hourly 1
day TMPA at a spatial resolution of 0.25 degree × 0.25
degree Version 7 (TRMM 3B42RT Daily) [21, 22]. In this
study, given the homogeneity of rainfall at the district
level, we only extracted the TRMM data at the centroid
of each district.
To identify flooded areas, we used the data from the

Moderate Resolution Imaging Spectroradiometer (MODIS)
of the Terra satellite (Surface Reflectance 8-Day L3 Global
500m SIN Grid V005 (MOD09A1)). In each image pixel,
the data provides an estimation of the surface spectral re-
flectance measured at ground level in the absence of atmos-
pheric scattering or absorption. The band 4 (green) and
band 7 (infrared) were used to calculate the modified
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normalized difference water index (MNDWI) [18, 23],
which allows an estimate of the water presence in each
pixel. Within all districts, each pixel was classified as
flooded if the MNDWI value was more than or equal to
zero. This threshold of zero for MNDWI is in the range of
optimal thresholds calibrated in previous studies [23–25].
Permanent water bodies such as rivers and lakes were
masked out using QGIS version 2.8.3 [26]. Then, the num-
ber of flooded pixels were counted to calculate the percent-
age of flooded land in each district.
Elevation can be associated with slopes and increased

movement of surface water [27], but slope data was not
available at a national scale in Thailand. Elevation data
was derived from the NASA Shuttle Radar Topographic
Mission (SRTM) 90m Digital Elevation Data, which pro-
vides elevation data for the entire world (http://
srtm.csi.cgiar.org/index.asp). The average elevation at
the district level was used in the model.
Human population data was obtained from the World-

Pop database, which presents the number of people per
hectare (http://www.worldpop.org.uk) (Additional file 2:
Figure S5). Human population density was included in
the model because it could be associated with different
agricultural practices in areas with different levels of
economic development. The animal population density
of livestock species (buffalo, cattle, goat, pigs and sheep)
were obtained from the Information and Communica-
tion Technology Center (ICT), Department of Livestock
Development of Thailand at the district level (http://
ict.dld.go.th) (Additional file 2: Figure S5). Goats, pigs
and sheep were included because they may also contrib-
ute to the circulation of leptospirosis in cattle and buffa-
loes. Seroprevalences of other livestock were shown in
Thailand from January to August 2001 in a previous
study [28]. In this study, no urine samples were collected
in urban districts because limited number of cattle and
buffaloes are found in areas of high human population
density. The districts with a human population density
above 1400 people/km2, which corresponds to the urban
centers of the main cities of Thailand, and no livestock
were not included in the risk mapping given the limited
number of animals in urban centers.

Statistical analysis
To investigate the association between the risk factors
listed in the previous paragraph (explanatory variables
with a fixed effect) and leptospirosis infection (the re-
sponse variable), we first study univariate linear re-
gressions. Using a generalized linear mixed model
(GLMM) with a logit link since the response variable
had a binomial distribution. We used R software [29]
with the package lme4 [30]. Since all individual urine
samples were not independent because they were col-
lected during common sampling occasions, we used

the sampling occasion index as a random effect vari-
able. Each sampling occasion was identified by a date,
a year and a district geocode. The best multivariable
model was selected using a stepwise backward ap-
proach based on the Akaike Information Criterion
(AIC). The Area Under the Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) plot was used
to estimate the model performance. We also used
cross-validation to measure the performance of the
best model. Data was randomly split into training (2/
3 of data) and test (1/3 of data) sets. Training data is
used to produce the prediction model, while the test
data is used to test the model performance. Given the
size of our dataset, we chose to keep 2/3 of the data
in the training set to optimize model performance.
We performed repeated cross-validations 1000 times
to estimate the mean and standard deviation of the
cross-validated AUC (cvAUC) of the best model.
The best model was used to predict leptospirosis infec-

tion risk in 2012 and 2016 for three periods (mid-Janu-
ary, mid-May and mid-September) which represents the
middle of the dry season, the beginning of the rainy sea-
son and the end of the rainy season, respectively for cen-
tral and northern Thailand.

Results
A total of 3571 urine samples of cattle and buffalo were
tested by the LAMP technique. 311 samples were posi-
tive. The overall uroprevalence over 107 districts is pre-
sented in Fig. 1. Positive samples were recorded in 51
districts (47.66% of districts). From the temporal aspect,
higher prevalence was observed in May (Fig. 2), which is
the beginning of the rainy season in the central and
northern part of Thailand [31].
The results of the univariate linear regressions show

that the percentage of flooded area and the percentage
of flooded area with a 1 month lag were found to be sig-
nificant (Additional file 1:Table S1). The risk of livestock
infection was higher if the percentage of flood area was
higher.
Three explanatory variables were kept in the final

model based on the stepwise backward approach: the
percentage of flooded area, human and livestock
population densities (Table 1). This final model was
applied to predict the risk of Leptospira presence at
the district level, it showed high performance with an
AUC of 0.8861 (Fig. 3). The percentage of flooded
area was the only variable significantly associated with
the prevalence of leptospirosis in cattle and buffalo in
the GLMM (p = 0.023, Table 1). The cvAUC had a
mean of 0.6427 (sd = 0.0827). The distribution of the
1000 estimations of the cvAUC is shown in Fig. 4.
Maps of leptospirosis infection risk were produced

from the final model in the middle of January, May, and
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September in 2012, which corresponds to the period when
most data were collected (Fig. 5). As expected from the
results of the model, the areas of increased leptospirosis
risk vary seasonally (Fig. 5) and are found in the regions
with a high percentage of area flooded (Additional file 2:
Figure S1). The districts with a high leptospirosis infection
risk in mid-January were mostly located in the southern
part of Thailand, especially in the south-east coastal
regions, i.e. during the high rainfall period in this area
(Additional file 2: Figure S2) [31]. In mid-May, high lepto-
spirosis infection risk mostly occurs in northern and north-
eastern parts, which correspond to the beginning of the

rainy season in this part of Thailand. In mid-September,
high leptospirosis infection risk areas occurred in all parts
except for the southern part, and was particularly high in
the central part. In this analysis, the final model was also
used to predict the leptospirosis infection risk in 2016
(Additional file 2: Figure S3). The leptospirosis infection
risk districts were also mostly found in regions with a high
percentage of flooded area (Additional file 2: Figure S4).

Discussion
This study investigates the relation between cattle and
buffalo leptospirosis infections and flooding based on

Fig. 1 Map of the positive rate of leptospirosis in cattle and buffalo in 107 districts of Thailand. Urine samples were tested by LAMP. The non-
sampled districts are presented in white
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cross-sectional surveillance during 2011–2013 in
Thailand. This analysis provides, to our knowledge, the
first predictive risk mapping for cattle and buffalo lepto-
spirosis in Thailand. The temporal and spatial variations
of leptospirosis infection in Thailand appears to be asso-
ciated with flooding.
Results of the GLMM show a significant association

between the percentage of flood area and leptospirosis
infection in cattle and buffalo at the district level.
The flooding area was evaluated using a remote sens-
ing indicator [18, 23]. This finding suggests that ex-
posure to flooding increases the risk of leptospirosis
infection for cattle and buffalo. Most of the samples
used in this study were collected in rural areas. In
these areas, the soil may become contaminated with
leptospires because of the presence of infected ani-
mals. When flooding or heavy rainfall occurs, the
water picks up contaminated soil and animal excreta
from the soil. This results in the spread of leptospir-
osis through contaminated water [32, 33]. Flooding
could possibly be the principal reason for leptospir-
osis epidemics above other factors [34]. This is con-
sistent with other studies showing that local flooding
can play an important role in leptospirosis transmis-
sion [17, 18, 34]. Therefore, flood control could be an

option to reduce the risk of leptospirosis infection in
animals, which can be a major reservoir for human
infection [4, 9].
Furthermore, the results of the univariate linear re-

gressions show that the flooding factor is the only sig-
nificant factor and is a better indicator than the amount
of rainfall and the accumulation of rainfall. It may be be-
cause rainfall does not directly influence leptospirosis
transmission while flooding facilitating it. Rainfall has
previously been associated with leptospirosis but often
with a time lag of 1–3months [35, 36] which is likely
the lag between rainfall and flooding. A remotely sensed
flooding indicator is likely to be a more accurate pre-
dictor of the risk of leptospirosis infection than using
rainfall.
The predicted risk maps of leptospirosis infection were

created based on the final model for 3 periods in 2012.
In each part of Thailand, higher infection risk was ob-
served during the first floods after a dry period in that
part of the country. This influence of the first flood of
the year has been suggested in other studies [18]. It
could be responsible for the rapid dissemination of lep-
tospires concentrated in small areas during the dry sea-
son. High prevalence in livestock is not predicted in the
same period for the whole Thailand. Three main periods

Fig. 2 The leptospirosis prevalence observed per month in both cattle and buffalo for 2011–2013

Table 1 Results of the best generalized linear mixed model as selected by a stepwise backward approach with the AIC

Variable Odd Ratio 95% Confidence Interval p-value

Intercept 0.0309 0.0183–0.0473 <2e-16***

Percentage of flood area 1.5794 1.0611–2.3629 0.023*

Human population density 1.3495 0.9511–1.9016 0.084

Livestock population density 0.5989 0.3079–1.0957 0.105

*p < 0.05, ***p < 0.001

Chadsuthi et al. BMC Infectious Diseases          (2018) 18:602 Page 5 of 9



of risk can be identified and associated with three different
parts of Thailand (i.e., Northern, Central and Southern
parts) and are related with the periods of flooding. The
difference in these flooding periods is mainly due to two
factors: a) the difference of rainfall seasonality between
southern Thailand and the rest of the country, and b) the
delay between rainfall and flooding between the central
part and the northeastern part of the country. The central
part of the country is downstream of the most important
rivers in Thailand, and major flooding occurs later than in
the rest of the country, in September to November, with
an increased intensity. This explains why high risk occurs

for most districts in this period, which also corresponds to
its high population [12].
With the backward step approach, the final model in-

cludes human and livestock population densities. How-
ever, the model results show that those variables are not
significant. Furthermore, these variables should be inter-
preted very cautiously because several confounding fac-
tors could be involved. Thus, they were kept because
they improved the final model (based on the decrease of
the AIC), but they should not be over-interpreted.
Our study was based on a cross-sectional survey [4],

which was limited as there may be procedural concerns.

Fig. 3 ROC curve of the best generalized linear mixed model

Fig. 4 The cross-validated AUC distribution
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It does not provide data for all districts in the country and
for all seasons in each district. A longitudinal survey is
strongly suggested in further studies, with repeated sam-
pling in a larger number of districts in the whole country.
It would provide better data to understand the seasonality
of leptospirosis infection and could provide a more
accurate disease transmission model. The samples in
each district were mostly collected only once. How-
ever, the samples were distributed over every part of
Thailand for all seasons. Furthermore, the model had
a relatively good performance (AUC =0.8861) but a
lower and quite variable cross-validated AUC (mean
cvAUC = 0.6427, sd = 0.0827, Fig. 4). This difference
between AUC and cvAUC, and the variability of the
cvAUC may be explained by the relatively small size of
our dataset at the district level leading to a small valid-
ation dataset (71 districts for the training dataset and only
36 for the validation dataset). Furthermore, given this size
limit, some validation datasets may include a different
proportion of southern districts than their matching train-
ing datasets. The difference of flooding patterns between
southern Thailand and the rest of the country may then
further explain the lower cvAUC. Training the model on a
larger dataset and having an independent large dataset to
validate it would help build a more robust model.

The presence of pathogenic leptospires in livestock
was tested with LAMP [4, 10], which allows a simple
and rapid diagnosis of leptospirosis with high accuracy.
However, this technique cannot provide any genotypic
information, thus could not be used to compare patho-
genic strains in the study. However, in Thailand, the ac-
curacy of LAMP (97.0%) was higher than real-time PCR
(91.9%) [10]. Thus, results from this technique can be
used with confidence in our study to investigate the as-
sociation of livestock leptospirosis infection with envir-
onmental factors.
Other environmental risk factors such as soil type and

land use, which were not explored in this study, may be
required to better characterize leptospirosis infection
risk. A previous study showed that agricultural land and
clay loams soil are significantly associated with leptospir-
osis infection in humans [37]. These factors could influ-
ence the identification of high-risk areas and help
improve our model.
Other individual variables such as sex and age of the

animals investigated were not considered in this study
due to data limits. These factors could help us to im-
prove the model and may impact the results [38, 39].
Leptospira can infect a wide range of livestock including
pigs, goats and sheep [40, 41]. Studies of these animals

Fig. 5 Map of the prediction of leptospirosis infection risk using the final multivariate linear regression model in three different periods of 2012. A
leptospirosis infection risk of 0.1 indicates that approximately 1/10 livestock are expected to be positive by LAMP for leptospirosis infection. The
non-predicted districts are presented in white
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should also be implemented as they may also contribute
to leptospirosis epidemics. However, the present study
focused on the flooding indicator associated with cattle
and buffalo infection. The good performance of the
model shows that flooding is a major factor that should
be considered in leptospirosis risk models.

Conclusion
Our findings could identify flooding as a major driver of
the risk of leptospirosis infection in cattle and buffalo.
Public awareness about the risk of leptospirosis during
flooding should be raised in order for people to take pre-
vention measures when possible. The risk maps could
also help to develop effective intervention strategies and
optimize the allocation of public health resources, veter-
inary care and control measures. A high level of live-
stock infection could increase the risk to human health
due to contact with infected animals or a contaminated
environment by the urine of infected animals [2, 34].
Livestock may then play an important role as a potential
indicator of high-risk areas for leptospirosis in humans.
Further study needs to be done to assess the risks asso-
ciated with contact between livestock and humans. In
this regard, further data needs to be collected and made
available.

Additional files

Additional file 1: Table S1. Summary results of the univariable
linear regression model (with binomial function and random effect).
(DOCX 14 kb)

Additional file 2: Figure S1. Percentage of flood area in 2012.
Figure S2. The monthly rainfall of Thailand in 2012. Figure S3.
Prediction of leptospirosis infection risk in 2016. The non-predicted dis-
tricts are
presented in white. Figure S4. Percentage of Flood area in 2016.
Figure S5. Maps of human density (people/km2) and livestock density
(animal/km2). (DOCX 3416 kb)
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2 

Abstract 27 

 The epidemic of leptospirosis in humans continues to this day, causing incidences 28 

annually in Thailand. We developed a mathematical model to study the transmission 29 

dynamics between humans, animals, and a contaminated environment. We compared 30 

different models that included the impact of flooding and weather conditions on the 31 

transmission rate from a contaminated environment, the leptospire shedding rate and 32 

the multiplication rate of the leptospires in the environment. We found that the model 33 

with the transmission rate dependent on flooding and temperature best-fit the reported 34 

human data on leptospirosis in Thailand. Our results highlight that flooding indicators 35 

have the most impact on transmission, indicating a high degree of flooding leads to higher 36 

cases. Sensitivity analysis showed that the transmission of leptospires from the 37 

contaminated environment was the most important parameter for the total number of 38 

human cases. Our results suggest that public health policy makers should guide the 39 

people who work close to, or in contaminated environments to avoiding potential sources 40 

of leptospirosis, or by protecting themselves by wearing boots to reduce the leptospirosis 41 

outbreak. 42 

 43 
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3 

Introduction 47 

Leptospirosis is a worldwide zoonotic bacterial disease, that is particularly 48 

endemic in tropical and subtropical countries1,2. The infection of humans is mainly caused 49 

by direct contact with an infected animals and also by indirect contact with urine of 50 

infected animals through cuts in the skin or mucous membranes in a contaminated 51 

environment1,3.  52 

In humans, the epidemic of leptospirosis continues to this day, causing incidences 53 

annually. The highest number of cases reported in Thailand is during the rainy season in 54 

mid-May to mid-October4. High-risk groups include farmers and other agricultural 55 

workers, who are likely to come into contact with infected animals, and contaminated 56 

wet soil and water during their daily activities5-7. In addition, leptospirosis in livestock is 57 

also considered an important disease, causing reproductive failures (such as abortion, 58 

embryonic death, stillbirths, and weak off-spring), decreased milk production and growth 59 

rates8-11. A relatively high prevalence of leptospirosis has been detected in the urine of 60 

cattle and buffalo in Thailand8. Contact with infected livestock during production was also 61 

investigated, and was found to increase the risk of infection12. This spirochete bacteria 62 

are mainly transmitted through injured or cut skin in contact with contaminated water 63 

or soil. Leptospires may survive from a few weeks to almost a year in surface water or 64 

wet soil even during dry days13. 65 

Most of the previous leptospirosis models focused on spreading of the disease in 66 

humans and rodents14-16. However, compartment models of leptospirosis, with links 67 

between the host or livestock and the environment, have also been proposed. Babylon et 68 

al. presented a simple Susceptible-Infective (SI) model to describe the spreading of 69 

leptospirosis in lambs in contact with free-living leptsopires17. A model to study the 70 

leptospire infection dynamics in Norway rat (Rattus norvegicus) as the reservoir host in 71 

the environment was also presented18. However, the model should be composed of 72 

human, animals and environmental compartments for leptospirosis infection dynamics. 73 

Baca-Carrasco et al. presented an SI model to study the transmission in humans and 74 

animals and included bacteria in the environment19. The direct transmission between 75 

animals and humans has also been explored20.  76 

Thus far, those mathematical models did not consider seasonal effects, flooding or 77 

weather conditions. Seasonal and weather conditions have been shown to be associated 78 

with an increased leptospirosis risk12,21-24. In this work, we propose different 79 
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leptospirosis transmission models, which considers the impact of environmental factors 80 

such as seasonal flooding, and weather conditions. The livestock species, i.e., buffalo, 81 

cattle, goats, pigs, and sheep, are the animal reservoirs and contribute to the circulation 82 

of leptospirosis in humans and the environment25,26. The reported data on human 83 

leptospirosis in Thailand was used to fit the transmission models to help identify the 84 

factors that influence the leptospirosis transmission dynamics. The proposed 85 

transmission models may help to understand the processes of leptospirosis transmission 86 

in Thailand and allow more accurate predictions of future outbreaks and better control 87 

of the disease. 88 

 89 

Methods 90 

Data 91 

In this study, reported cases of human leptospirosis were retrieved from the 92 

national disease surveillance (report 506), Bureau of Epidemiology, Department of 93 

Disease Control, Ministry of Public Health, Thailand27. Most positive cases were suspected 94 

leptospirosis cases, based on the clinical diagnosis made by attending physicians. The 95 

clinical criteria for leptospirosis were high fever, chills, headache, with at least one of the 96 

following symptoms including abdominal pain, red eyes, neurological symptoms (such as 97 

stiffness, abnormal feelings, etc.), and dry cough or cough with bloody sputum, and a 98 

career history of exposure to water areas or environments contaminated with animal 99 

excreta28. Some of the suspected cases were then examined using laboratory tests such 100 

as Latex agglutination test (LA), Dipstick test, Lateral flow test, Microcapsule 101 

agglutination test (MCAT), Immunofluorescent antibody test (IFA), Microscopic 102 

agglutination test (MAT) or ELISA for confirmation. The suspected cases were mainly 103 

reported from public hospitals with a small fraction from private hospitals. In this 104 

research, we analyzed all reported cases from 2010 to 2016 in two provinces (i.e., Si Sa 105 

Ket and Surin), in which the highest number of cases were reported.  106 

Data collection was performed as a part of routine clinical examination 107 

procedures of the Thai Ministry of Public Health surveillance and response. Data 108 

collection was approved by the Ethics Committee of the Ministry of Public Health of 109 

Thailand. Data containing the patient's medical records, without any patient information 110 

except location, were de-identified prior to analysis. 111 
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The remotely sensed environmental data obtained included the modified 112 

normalized difference water index (MNDWI) and the Land Surface Temperature (LST). 113 

MNDWI was extracted from the data of the Moderate Resolution Imaging 114 

Spectroradiometer (MODIS) of the Terra satellite (Surface Reflectance 8-Day L3 Global 115 

500m SIN Grid V005 (MOD09A1)). We used band 4 (green) and band 7 (infrared) to 116 

calculate the Modified Normalized Difference Water Index (MNDWI)29,30. Within all 117 

provinces, each pixel was classified as flood area if the MNDWI value was greater than or 118 

equal to zero21,30. Permanent water bodies were masked out using QGIS version 2.8.331. 119 

The number of flooded pixels was counted to calculate the index of land flooding, which 120 

was then used to calculate the percentage of area flooded.  121 

The LST was extracted from the MODIS Terra product (MOD11A2) with Emissivity 122 

8-Day L3 Global 1 km, which is composed of the daily LST product (MOD11A1) with a 1 123 

km resolution and stored on a 1 km Sinusoidal grid as the average values of clear-sky 124 

LSTs during an 8-day period32.  125 

The amount of rainfall was obtained from the real-time Tropical Rainfall 126 

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA-RT)33. We 127 

derived daily precipitation and daily accumulated precipitation from the TMPA product: 128 

3B42RT34,35. 129 

The initial human population data were obtained from the WorldPop database, 130 

which presents the number of people per pixel (http://www.worldpop.org.uk). The 131 

initial livestock population of each specie (buffalo, cattle, goat, pigs, and sheep) was 132 

obtained from the Information and Communication Technology Center (ICT), 133 

Department of Livestock Development of Thailand at the province level 134 

(http://ict.dld.go.th). 135 

 136 

Model for leptospirosis transmission 137 

A simple SIR model of two groups is used to study the transmission dynamics of 138 

leptospirosis between humans, livestock and the contaminated environment. Susceptible 139 

human and livestock individuals are introduced, denoted by 𝑆ℎ and 𝑆𝑎, respectively. 𝑆ℎ 140 

and 𝑆𝑎 can become infected through contact with infected livestock and/or the 141 

contaminated environment. The infected livestock can shed leptospires into the 142 

environment and increase the number of leptospires (𝐿 compartment) in that province. 143 

The hygienic level of the contaminated environment can be defined as the density of 144 
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leptospires. The leptospires die at a rate 𝜇𝐿 . Infected humans and animals recover at the 145 

constant rates 𝛾ℎ and 𝛾𝑎, and loss immunity at the rates 𝜈ℎ and 𝜈𝑎, respectively. Both 146 

population sizes are assumed to be constant. In this work, we developed the transmission 147 

model based on previous studies19,20. The leptospirosis transmission model is described 148 

by the following set of differential equations:  149 

 150 

𝑑𝑆ℎ(𝑡)

𝑑𝑡
= 𝜇ℎ𝑁ℎ − 𝛽ℎ𝑎(𝑡)

𝑆ℎ(𝑡)𝐼𝑎(𝑡)

𝑁ℎ
− 𝛽ℎ𝐿(𝑡)ℎ(𝑡)

𝑆ℎ(𝑡)

𝑁ℎ
+ 𝜈ℎ𝑅ℎ(𝑡) − 𝜇ℎ𝑆ℎ(𝑡), 151 

𝑑𝐼ℎ(𝑡)

𝑑𝑡
= 𝛽ℎ𝑎(𝑡)

𝑆ℎ(𝑡)𝐼𝑎(𝑡)

𝑁ℎ
+ 𝛽ℎ𝐿(𝑡)ℎ(𝑡)

𝑆ℎ(𝑡)

𝑁ℎ
− 𝛾ℎ𝐼ℎ(𝑡) − 𝜇ℎ𝐼ℎ(𝑡), 152 

𝑑𝑅ℎ(𝑡)

𝑑𝑡
= 𝛾ℎ𝐼ℎ(𝑡) − 𝜈ℎ𝑅ℎ(𝑡) − 𝜇ℎ𝑅ℎ(𝑡), 153 

𝑑𝑆𝑎(𝑡)

𝑑𝑡
= 𝜇𝑎𝑁𝑎 − 𝛽𝑎𝑎(𝑡)

𝑆𝑎(𝑡)𝐼𝑎(𝑡)

𝑁𝑎(𝑡)
− 𝛽𝑎𝐿(𝑡)ℎ(𝑡)

𝑆𝑎(𝑡)

𝑁𝑎(𝑡)
+ 𝜈𝑎𝑅𝑎(𝑡) − 𝜇𝑎𝑆𝑎(𝑡),   (1) 154 

𝑑𝐼𝑎(𝑡)

𝑑𝑡
= 𝛽𝑎𝑎(𝑡)

𝑆𝑎(𝑡)𝐼𝑎(𝑡)

𝑁𝑎(𝑡)
+ 𝛽𝑎𝐿(𝑡)ℎ(𝑡)

𝑆𝑎(𝑡)

𝑁𝑎(𝑡)
− 𝛾𝑎𝐼𝑎(𝑡) − 𝜇𝑎𝐼𝑎(𝑡), 155 

𝑑𝑅𝑎(𝑡)

𝑑𝑡
= 𝛾𝑎𝐼𝑎(𝑡) − 𝜈𝑎𝑅𝑎(𝑡) − 𝜇𝑎𝑅𝑎(𝑡), 156 

𝑑𝐿(𝑡)

𝑑𝑡
= 𝜔(𝑡)𝐼𝑎(𝑡) + 𝑚(𝑡)𝑔(𝑡)𝐿(𝑡) − 𝜇𝐿𝐿(𝑡), 157 

where 𝑁 = 𝑆 + 𝐼 + 𝑅 for livestock and human compartments. 158 

 159 

In our model, we assumed that, as a zoonosis disease, the human-human 160 

transmission does not exist10; thus infection in humans always developed from animal 161 

sources or the contaminated environment. The leptospires shedding from humans into 162 

the environment is neglected in our study as the likelihood is very low. The function 163 

𝑔(𝑡) =
𝜒−𝐿(𝑡)

𝜒
 in equation (1) represents the logistic growth multiplier, which allows the 164 

growth to depend on the current number of leptospires and limits excessive growth, 165 

where 𝜒 is the maximum carrying capacity, or saturating population size. A saturation 166 

term, ℎ(𝑡) =
𝐿(𝑡)

𝐿(𝑡)+𝜅
, is added to limit the effect of transmission due to the large number of 167 

leptospires14,36, where 𝜅 is the density of leptospires in the environment at which the 168 

transmission rate is 0.5𝛽𝐿(𝑡). The diagram of the model and its relationship between the 169 

compartments is provided in Fig. 1. A set of parameters is shown in Table 1. 170 

 171 
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 172 

Figure 1. Dynamics of leptospirosis spread between humans, livestock and the 173 

contaminated environment. Dashed green arrow shows the transmission route from the 174 

contaminated environment to susceptible livestock (𝑆𝑎) and humans (𝑆ℎ). Infected 175 

livestock (𝐼ℎ) transmit leptospires to humans and shed to environment (red dashed line) 176 

and to livestock (orange dashed line).       177 

 178 

Table 1: A set of parameters. 179 

Description Symbol Values 

Birth and death rate of humans 1/𝜇ℎ 70 years (estimated) 

Duration of infection for humans 1/𝛾ℎ 14 days (estimated from3) 

Duration of loss of immunity for 

humans 

1/𝜈ℎ 720 days (estimated from3) 

Transmission rate from infected 

livestock to human 

𝛽ℎ𝑎 fitted 

Birth and death rate of livestock 1/𝜇𝑎 3 years (estimated) 

Duration of infection for livestock 1/𝛾𝑎 200 days (estimated from37) 

Duration of loss of immunity for 

livestock 

1/𝜈𝑎 540 days (estimated) 

Transmission rate from infected 

livestock to livestock 

𝛽𝑎𝑎 fitted 
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Duration of contamination for the 

environment 

𝜇𝐿 0.02381 day-1 (estimated from36) 

Density of leptospires at which the 

transmission rate from the 

environment is 0.5𝛽𝐿(𝑡) 

𝜅 102 km-2 (estimated from36) 

Maximum carrying capacity 𝜒 1x105 (estimated) 

Density of the free living leptospires in 

a province at 𝑡 = 0 

𝐿𝑖(0) 10-3 km-2 (estimated from36) 

Density of leptospires shed per 

infected livestock 

𝜔 fitted 

Transmission rate from the 

contaminated environment to human 

and livestock 

𝛽ℎ𝐿and 𝛽𝑎𝐿 fitted 

Multiplication rate of the leptospires in 

the environment 

𝑚 fitted 

 180 

Some of the parameters in equation (1) may be affected by flooding and weather 181 

conditions. In this work, we look at how these conditions can affect the transmission from 182 

the contaminated environment, leptospire shedding rate, and the multiplication rate.  183 

The most important parameters are the transmission modes from the 184 

contaminated environment to susceptible humans and susceptible livestock (𝛽ℎ𝐿 and 185 

𝛽𝑎𝐿). We hypothesized that the environment could influence the transmission of 186 

leptospirosis. Thus, the transmission terms are constructed as a linear function of 187 

normalized data of the percentage of flooded area (𝑓(𝑡)), total monthly rainfall (𝜌(𝑡)), 188 

and average monthly temperature (𝛵(𝑡)). The virulence of leptospires depends on 189 

temperature38, leading to the inclusion of the average temperature, which may impact the 190 

transmission model. We examined four forms of transmission rate dependency 191 

corresponding to three environmental variables to test different hypotheses. These four 192 

transmission rates assumed the rates were linearly proportional to the environmental 193 

variable and are as follows: 194 

(1) Flooding (M1-F): The transmission rates are given by: 195 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝑓(𝑡 − 𝜏1)) 196 

𝛽𝑎𝐿(𝑡) = 𝑎2(1 + 𝑎2𝑓(𝑡 − 𝜏1)) 197 
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(2) Rainfall (M1-R): The transmission rates are given by: 198 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝜌(𝑡 − 𝜏1)) 199 

𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝜌(𝑡 − 𝜏1)) 200 

(3) Flooding and temperature (M1-FT): The transmission rates are given by: 201 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝑓(𝑡 − 𝜏1) + ℎ3𝛵(𝑡 − 𝜏2)) 202 

𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝑓(𝑡 − 𝜏1) + 𝑎3𝛵(𝑡 − 𝜏2)) 203 

(4) Rainfall and temperature (M1-RT): The transmission rates are given by: 204 

𝛽ℎ𝐿(𝑡) = ℎ1(1 + ℎ2𝜌(𝑡 − 𝜏1) + ℎ3𝛵(𝑡 − 𝜏2)) 205 

𝛽𝑎𝐿(𝑡) = 𝑎1(1 + 𝑎2𝜌(𝑡 − 𝜏1) + 𝑎3𝛵(𝑡 − 𝜏2)) 206 

where ℎ𝑖  and 𝑎𝑖 are constant values (that were fitted) of each function for each 207 

transmission rate, and 𝜏1 and 𝜏2 are time lags, varying from 0-8 weeks, which are 208 

associated with the infection of humans. 209 

The second model (M2-F and M2-R) are the leptospire shedding rate (𝜔), which is 210 

affected by rainfall. Infected livestock shed leptospires into the environment, which will 211 

then be a source of exposure for susceptible humans and livestock. The shedding rate can 212 

be described as a logistic curve, to limit its effect at high concentrations. 213 

𝜔(𝑡) = 𝜔0 (
𝜌(𝑡−𝜏1)

𝛿+𝜌(𝑡−𝜏1)
) and 𝜔(𝑡) = 𝜔0 (

𝑓(𝑡−𝜏1)

𝛿+𝑓(𝑡−𝜏1)
) 214 

where 𝛿 is an inferred threshold parameter corresponding to the rate of half of the 215 

maximum shedding rate due to rainfall or the effect of flooding. 216 

The last model affects the multiplication rate of the leptospires in the environment 217 

(𝑚), which depends on three environmental variables, namely, the percentage of flooding 218 

area (𝑓(𝑡)), total monthly rainfall (𝜌(𝑡)) and average monthly temperature (𝛵(𝑡)). The 219 

multiplication rate is given by: 220 

(1) Flooding (M3-F): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝑓(𝑡 − 𝜏1)) 221 

(2) Rainfall (M3-R): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝜌(𝑡 − 𝜏1)) 222 

(3) Flooding and temperature (M3-FT): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝑓(𝑡 − 𝜏1) + 𝑥3𝛵(𝑡 − 𝜏2)) 223 

(4) Rainfall and temperature (M3-RT): 𝑚(𝑡) = 𝑥1(1 + 𝑥2𝜌(𝑡 − 𝜏1) + 𝑥3𝛵(𝑡 − 𝜏2)) 224 

where 𝑥1, 𝑥2 and 𝑥3 are constant values (fitted parameters). 225 

 Ten models (M1-F, M1-R, M1-FT, M1-RT, M2-F, M2-R, M3-F, M3-R, M3-FT and M3-226 

RT) were considered individually and compared to the null hypothesis, where all 227 

parameters are constant values. The effect of flooding was compared to the effect of 228 

rainfall without and with a temperature effect. The combined models that use multiple 229 
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effects above were also considered. A stochastic simulation approach was employed 230 

using a tau-leaping algorithm with a fixed time step39. Using the parameters of the best 231 

model, 1,000 simulations were generated.  232 

 233 

Parameter estimation and sensitivity analysis 234 

To estimate the parameters of our model, we assumed that the epidemic was 235 

initiated by free-living leptospires in that area by setting the initial number of free-living 236 

leptospires to a low concentration (Table 1). We linked the biweekly human cases from 237 

the simulation results with the corresponding actual reported human cases from 2010 to 238 

2015. The best fit was obtained by maximizing a normal log-likelihood estimation, which 239 

produced simulation results that were most similar to the reported data. We used the 240 

nlminb function in R, which is a quasi-Newton method with a constrained bound, to find 241 

the optimal set of parameters40. The model that shows the minimum negative log-242 

likelihood was selected as the best model.  243 

In this work, according to previous findings, we considered the effect of time lag (𝜏) 244 

on the environmental data to leptospirosis cases due to transmission. Rainfall has been 245 

observed to be associated with leptospirosis, often with a time lag of 1-3 months41,42. We 246 

set the maximum time lags of flooding and rainfall to be eight weeks. We set the lag period 247 

to be the same for the effects of temperature, raining, and  flooding in this model24. 248 

To perform a sensitivity analysis of which parameters influence the effect of 249 

leptospirosis transmission the most, we used the Partial Rank Correlation Coefficients 250 

(PRCC) technique43,44. Then, we used the Latin hypercube sampling(LHS), which is a 251 

statistical Monte Carlo sampling technique, to sample the parameters using the lhs 252 

package in R45. 1,000 parameter sets were sampled with each parameter sampled from a 253 

uniform distribution. The PRCC was ranked as a response function to the cumulative new 254 

cases in each province using the sensitivity package in R with bootstrapping 1,000 times 255 

to obtain a 95% confidence intervals46. Based on the linear assumption, positive 256 

(negative) PRCC values imply positive (negative) correlations to the response function. 257 

 258 

Estimation of time-dependent reproduction number (𝑹𝒕𝒅) 259 

 The basic reproductive number (𝑅0) is generally defined as the average number 260 

of secondary infected individuals caused by an infected individual in a population that is 261 

completely susceptible. Due to the complexity of the model and the time-dependent 262 
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variables, there is no exact way to explain 𝑅0 for this model, as it is a complex function of 263 

many different variables. An alternative method, proposed by Wallinga et al47, computes 264 

the reproduction number from the observed cases using a likelihood-based method, 265 

calculated by averaging the overall transmission networks which makes it fit an epidemic 266 

curve48. In this work, we calculated a time-dependent reproduction number (𝑅𝑡𝑑) 267 

according to the R0 package in R48. The number of biweekly cases obtained from the 268 

simulations of the best model in three provinces was used to estimate 𝑅𝑡𝑑 . The serial 269 

interval between successive infections of the reported epidemic was identified and used 270 

to estimate the generation time distribution, with the mean and standard deviation (sd) 271 

of each province, using the R0 package. Then the 𝑅𝑡𝑑  of each province was estimated with 272 

the 95% confidence interval.  273 

 274 

Results 275 

 Based on the annual reports of leptospirosis cases in Thailand from 2010 to 2016, 276 

it appears that the disease continues to spread throughout the country (Fig. 2(A)). The 277 

highest number of annual cases was observed mostly in the northeastern region, which 278 

also had the highest number of cumulative cases (Fig. 2(B)). In this work, we considered 279 

two provinces, namely, Si Sa Ket (highest number of cumulative cases) and Surin (second 280 

highest number of cumulative cases) for testing the models. The time series of reported 281 

biweekly cases were plotted with the percentage of flooding, the amount of rainfall, and 282 

temperature (Fig. S1.). We found that the time series of biweekly reported cases in the 283 

two provinces showed a similar trend. The percentage of flooding and the amount of 284 

rainfall were found to increase around the same time of year when the number of 285 

reported cases increased. However, the temperature was negatively correlated with 286 

incident cases. 287 
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 288 

Figure 2. The map of reported cases in Thailand. The annual reported cases during 2010-289 

2016 (A). The total reported cases during 2010-2016 (B).  290 

 291 
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Using the model described in the methods section, we fit eleven models (our ten 292 

models plus the null model) to the reported cases from 2010 to 2015 with time lags 293 

between 0-8 weeks for each province (Fig. 3). In general, we found that model 1 (M1) 294 

improved the fit, which indicated that making the transmission rate a linear function with 295 

environmental variables has an important impact on the infection dynamics in humans. 296 

Comparing the models incorporating flooding or rainfall factors (M1-F and M1-R), we 297 

found the model including the flooding factor fit better. The models that also included a 298 

temperature effect showed better performance. Overall, the model with the transmission 299 

rate dependent on flooding and temperature (M1-FT) had the lowest negative log-300 

likelihood. Thus, we selected the M1-FT as the best-fit model for further analysis. The log-301 

likelihood value of M1-FT varied time lags of flooding showed a similar pattern, which 302 

has a high value for time lag around one month (Fig. S2.). The effect of time lag on the 303 

temperature was found to be different than the time lag associated with flooding. The 304 

results indicate that the transmission dynamics depend on the weather in the given areas.   305 

 306 

 307 

Figure 3. Bar chart of negative log-likelihood values for the ten models compared to a null 308 

model (M0) for the two provinces. The parentheses of each bar shows the time lag in 309 

week of flooding (rainfall) and temperature (t1, t2). 310 

 311 
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 312 

Figure 4. The fitted results of the M1-FT model (red line) compared to the reported cases 313 

of leptospirosis (black dot). The orange shaded area displays 1,000 curves of the 314 

stochastic simulations. The red dashed line represents the predicted cases for 2016. The 315 

time-dependent transmission rate from the contaminated environment to susceptible 316 

human and susceptible livestock (𝛽ℎ𝐿and 𝛽𝑎𝐿) correspond to values in Table S1 are shown 317 

in the blue and green lines, respectively. 318 

 319 

The M1-FT fitting and the stochastic simulation results, using the parameters 320 

shown in Table S1, are shown in Fig. 4. The stochastic output captures well the reported 321 

data. These results provide a reasonable fit with the predicted cases for 2016. Our model 322 

can provide more understanding on the transmission dynamics in contaminated 323 

environments.  324 
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The transmission rate from the contaminated environment to humans and 325 

livestock is plotted versus time according to the flooding and temperature factors (Fig. 326 

4). The average transmission rate from the contaminated environment to humans (𝛽ℎ𝐿) 327 

over time is 9.886 and 8.737 for Si Sa Ket and Surin. This corresponds to a decline in the 328 

total number of reported cases during the dry season. The transmission rate from the 329 

contaminated environment to livestock (𝛽𝑎𝐿) also varied with time. It was higher in Si Sa 330 

Ket and lower in Surin. However, the 𝛽ℎ𝐿 was always the highest transmission rate. This 331 

result indicated that the main reason for human infection is due to the transmission of 332 

leptospires from the contaminated environment, rather than from contact with infected 333 

animals. Comparing the coefficients of 𝛽ℎ𝐿, the flooding indicator had the most impact on 334 

transmission, which indicates a high amount of flooded area leads to higher cases. 335 

The fitting results indicate that our model is capable to reproduce the incidences 336 

of the leptospirosis epidemic, using the seasonal changes of the amount of flooded area 337 

as an indicator of increased infection rates. The number of new infection cases can be 338 

predicted during winter, depending on the parameters calculated in the given areas. 339 

In this work, we estimated the time-dependent reproduction number (𝑅𝑡𝑑) for 340 

two provinces with the 95% confidence interval using the simulation results as shown in 341 

Fig. 5. We found the 𝑅𝑡𝑑  oscillated around 1.0 which suggests it is an endemic disease, as 342 

expected for leptospirosis in Thailand. The mean (sd) of 𝑅𝑡𝑑  is estimated at 1.020 (0.198) 343 

and 1.011 (0.158) for Si Sa Ket and Surin. A similar pattern of 𝑅𝑡𝑑  was observed for both 344 

provinces in the same region in the simulated cases. Note that this estimation was based 345 

on the observed human cases. Normally, leptospirosis has a basic reproduction number 346 

close to zero due to its minimal transmissibility among human population. However, this 347 

estimation could provide a better picture of how leptospirosis transmits from animal 348 

sources and contaminated environments to humans.  349 

 350 
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 351 

Figure 5. The estimated 𝑅𝑡𝑑  for the two provinces plotted with the 95% confidence 352 

interval. 353 

 354 

As no vaccine or specific medicines are available for leptospirosis, the most 355 

important strategy to control the disease is to decrease the transmission rate. Figure 6 356 

shows the PRCC values with 95% CI, obtained for the ten parameters in Table S1. 357 

Absolute PRCC values greater than 0.3 are considered important parameters. We found 358 

that the parameters of 𝛽ℎ𝐿 (ℎ1, ℎ2 and ℎ3) were the most important on the total number 359 

of cases for all provinces. Our results also suggest how decreasing the transmission rate 360 

of leptospirosis from the contaminated environment to human can affect the 361 

leptospirosis dynamics to reduce the number of human cases. Figure 7 shows how the 362 

number of human cases can be reduced as the transmission rate of 𝛽ℎ𝐿 is reduced. A 90% 363 

reduction (0.9𝛽ℎ𝐿) could reduce the total number of human cases by about 90%. 364 

Considering the overall results, this study suggests that we should avoid contacting 365 

contaminated environments during flooding. 366 
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The infection rate extrapolated from the parameters of Si Sa Ket were also 367 

calculated for 2016 in other providences of Thailand (Fig. S3.). Interestingly, we found 368 

that high infection rates were predicted in other regions rather than just the northeast. 369 

This may due to the high percentage of flooded areas observed in the other regions. Our 370 

results also suggest that the public health sector should increase awareness of outbreaks 371 

in these regions. 372 

 373 

 374 

 375 

Figure 6. Partial rank correlation coefficients of the ten parameters and the total number 376 

of cases, plotted with an error bar showing the 95 % confidence interval. The ℎ𝑖  and 𝑎𝑖 377 

are constant values to calculate the transmission rates 𝛽ℎ𝐿 and 𝛽𝑎𝐿, respectively. 378 

 379 

 380 
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 381 

Figure 7. The number of human cases as the transmission rate from the contaminated 382 

environment to human (𝛽ℎ𝐿) of M1-FT is varied between 0.1𝛽ℎ𝐿 to 0.9𝛽ℎ𝐿, where b is the 383 

baseline. 384 

 385 

Discussion 386 

 In this work, dynamical models, that include environmental data are presented 387 

and used to describe the transmission of leptospirosis in two provinces in the 388 

northeastern region of Thailand. This work presents the first attempt to incorporate 389 

environmental data into the mathematical models of leptospirosis transmission. The 390 

annual change of the environmental data can describe the seasonal epidemic with higher 391 

prevalence during the rainy season for the northeastern region, than a model not 392 

incorporating any environmental data.  393 

Our finding suggests that transmission from a contaminated environment, as 394 

opposed direct contact with an infected animal, is the best model. This study is novel by 395 

finding that the amount of flooded area in a region, which obtained from a remotely 396 
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sensed data, is the most important factor for leptospirosis transmission to humans. This 397 

implies that including a leptospires compartment, which refers to the number of 398 

pathogenic bacteria in the contaminated environment, reasonable describes the infection 399 

of humans during an endemic.  400 

Previous studies have pointed out that leptospires survive and persist in the 401 

environment, both water and soil, for several weeks49. Environmental survival of 402 

pathogens can be an important parameter in epidemiology. During heavy rain with 403 

increased flooded areas, leptospires in the environment have more chances to enter the 404 

human body via cut skin. Working or living in flooded areas has been identified as a 405 

significant factor for increasing the contraction of leptospirosis50. Analysing our model, 406 

after fitting to human data from 2010-2015, the amount of flooded area was shown to be 407 

more important to improve the model as compared to the rainfall. Our results are 408 

consistent with a previous study that observed animals in Thailand from 2011–201321. 409 

This indicates that flooding is a factor that influences the epidemiology of leptospirosis in 410 

both humans and animals. Flooding was also observed to be an important risk factor in 411 

other countries such as Argentina51, Brazil52 and Malaysia53. In our study, including the 412 

effect of temperature in the model improved the transmission model a modest amount. 413 

The temperature may affect leptospire virulence38, and the transmission rate. The 414 

temperature effect observed in our study is in line with previous studies54-56. 415 

In this study, the time-dependent reproductive number was estimated for 416 

leptospirosis in humans. Normally, the basic reproductive number (𝑅0) cannot be 417 

estimated in humans due to minimal transmission between humans. However, in our 418 

case, we focused on how the transmission occurred in humans in term of 𝑅𝑡𝑑 . Our model’s 419 

estimation highlights that leptospirosis occurs mainly during mid-year for provinces in 420 

northeastern region.       421 

From the PRCC analysis of our model, the transmission rate of leptospires to 422 

humans is most effected by the total number of cases. A disease control method, 423 

according to the PRCC results, suggest avoiding flooded areas, to reduce the transmission 424 

rate during an outbreak57. And protective equipment, such as wearing boots or gloves, is 425 

recommended when in contact with flooded areas.   426 

 Note that our proposed model is based on several assumptions, one of which is 427 

that the environmental parameters linearly affect the rates in the mathematical model. 428 

We do not consider other functions such as a Gaussian function due to the complexity. In 429 
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general, models assume that the entire population is homogeneously mixed. The 430 

stochastic simulations in our results can estimate the fluctuations of the epidemic curve. 431 

Other animal, such as rodents, were not included due to the limitation of data on the 432 

rodent population. Rodents also carrying leptospires during the rainy period, and risk 433 

transferring the disease to humans58. Other factors such as human mobility, personal 434 

hygiene, and protective equipment, were also not accounted for in this study. The fitting 435 

process is done by only fitting to the reported data in humans, because of the limitation 436 

of livestock infection data. Another limitation we faced is on the National Surveillance 437 

System. Errors in the final model may be caused by underreported cases from the private 438 

health care centres, asymptomatic transmission, poor reporting to the National 439 

Surveillance System or the lack of leptospire data in the environment.  440 

 In summary, the leptospirosis transmission model predicts the significant 441 

environment factor associated with leptospirosis transmission is flooding. A reduction in 442 

contact with a contaminated environment can help to improve disease control. This work 443 

can be applied to other leptospirosis epidemic areas where flooding data is provided. 444 

Further studies should be carried out to access the role of livestock and other relevant 445 

data on the transmission of leptospires. Climate change or extreme weather events can 446 

also be modelled to predict the severity of future leptospirosis outbreaks59. Based on our 447 

results, public health policy maker may guide the people who work close to, or in 448 

contaminated environments to avoid potential sources of leptospirosis, or by protecting 449 

themselves by wearing boots to reduce the leptospirosis outbreak.  450 

 451 

Data availability 452 

The datasets generated during and/or analysed during the current study are available 453 

from the corresponding author upon reasonable request. 454 
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Abstract. Leptospirosis is a worldwide zoonotic disease, especially in tropical and sub-tropical 

countries. In Thailand during the rainy season, agricultural and livestock workers are the main 

occupational risk groups, who are likely to be in contact with the contaminated environment. In 

this work, we aimed to study the impact of rainfall on the transmission of leptospirosis using a 

stochastic cellular automata model in Si Sa Ket, Thailand, which has the highest reported cases 

from 2014 to 2018. Two bi-dimensional square lattices are created to represent human and 

contaminated environmental lattices. The reported cases are used to fit with the simulation results 

by varying the transmission probability. The transmission probability that depends on a 

sinusoidal function and the rainfall index were compared. This study highlighted that seasonal 

rainfall contributed to the transmission dynamics of leptospirosis. The total epidemic size, which 

is the sum of overtime cases, was investigated to find the critical transmission probability from 

endemic to epidemic state. Further study of other factors such as flooding and temperature, 

should be investigated for a better understanding of how the transmission of leptospirosis impacts 

the environment. 

 

 

 

 

 

 

 

 



Introduction  

Leptospirosis is an important bacterial zoonosis of worldwide and mostly affects tropical and 

subtropical countries [1, 2]. The disease is caused by pathogenic spirochete bacteria, genus Leptospira 
[3], which affects humans and animals. The transmission of this disease to humans or animals can occur 

by exposure to direct contact with infected animals or indirect via contaminated freshwater, soil, or mud 

[4]. Humans mostly infected by indirect exposure to a contaminated environment [5]. The time between 

exposure to symptoms and signs appearance (incubation period) of leptospirosis ranges from 7 to 12 

days [4]. The acute phase is usually sudden and characterized by fever, headache and myalgia [5]. Later 

symptoms may include conjunctival injection, abdominal pain, vomiting, prostration, icterus, anuria or 

oliguria, cardiac arrhythmia or deficiency, meningeal syndrome and a skin rash [5]. 

In Thailand, the occupation of farmers and agricultural workers is important, estimated around 

30% of the population in 2018 [6]. This occupation is the risk group, i.e., the agricultural workers usually 

walk barefoot in paddy fields lead to exposure with water for a long period, which may cause skin 

wounds and mucosae to provide routes of entry for leptospires into the body [7]. According to the 

epidemiology of leptospirosis, reported cases mostly found in rural areas than urban ones because of the 

environmental factors mentioned [8]. 

This bacteria can survive for days to months in water or soil [9, 10], which caused outbreaks 

occurred typically in the rainy season. Thus, the weather condition is one of the major factors influencing 

the spread of the bacteria [11]. In Salvador Brazil, the incidence of hospitalized leptospirosis patients 

was positively associated with increased rainfall [12]. The seasonal pattern of leptospirosis cases was 

observed along with the correlation of rainfall in India [13] and Sri Lanka [14]. 

Many studies have been proposed on leptospirosis mathematical models. Triampo et al. 

presented a mathematical model for the leptospirosis using the rate of transmission from an infected rat 

to a susceptible human varies with the amount of rainfall in Phrae and Nakhon Ratchasima Thailand 

[15]. They considered a number of leptospirosis cases in Thailand and shown their numerical simulations 

[16]. Zaman et al. presented an SIR model of human and vector (rat) population using the real data of 

Thailand for their numerical simulations [17]. Holt et al. used the SIR model to understand the behavior 

of infection in an African rodent of Tanzania [18]. Pongsumpun et al. developed the SIR-SI model to 

study the behavior of leptospirosis disease, represented the rate of change for both the vector (rat) and 

human population [19]. 

However, those of study did not consider in spatial aspect. The Stochastic Cellular Automata 

(SCA) is the model that used to describe the spatial dynamics, which are dynamical systems, discrete in 

space and time [20]. Each lattice of cell can assume a state in a finite set, which can change at every 

time step based on the transition rules and the state of cell or its neighbor. This model allows to study 

the environmental transmission for leptospirosis. Previously, Athithan presented a Cellular Automata 

based computational model for the spread of leptospirosis between human and animal using voting rules 

[21]. The simulation results are compared with the real data of leptospirosis infection in Thailand during 

2000 and 2001. They found that the results were closely in match with the data. However due to the 

complexity of leptospirosis transmission, the environmental lattice should consider. The probability of 

changing status of human should depend weather condition and seasonal effect [13]. 

In this work, we developed the Stochastic Cellular Automata model using heterogeneous rules 

which consist of two bi-dimensional lattices, i.e., human and environmental lattices for leptospirosis 

transmission. We aimed to study the impact of transmission rate depends on the rainfall. The model was 

based on the rural shape of Si Sa Ket Thailand. In the model, we investigated the epidemic size to find 

the critical transmission probability from endemic to epidemic state. 

 

Method 

Data collection 

In this study, we study the leptospirosis outbreak of Si Sa Ket Thailand. Data were collected 

from the national disease surveillance, Bureau of Epidemiology, Department of Disease Control, 

Ministry of Public Health, Thailand [22]. Data collection was performed as a part of routine clinical 

examination procedures. 



The amount of daily rainfall for the duration of the study 2014–2018 was obtained from the real-

time TRMM Multi-Satellite Precipitation Analysis [23]. We derived daily precipitation from 3B42RT. 

The daily accumulated precipitation is obtained from TRMM 3B42RT Daily [15, 24]. 

 

Model 

The proposed SCA model is constructed based on the existing knowledge about leptospirosis 

transmission. There are two bi-dimensional square lattice size (1000×1000) where a cell is in position 

(i,j). The total population is assumed to be 350,000 individuals, who have agricultural and farmer worker 

at Si Sa Ket. Each individual (Hij) is chosen randomly on a cell. Thus, human lattice will consist of 

occupation or empty site. Human individual can assume to be one of four states, which is in a susceptible 

state (S), an exposed state (E), an infectious state (I), and a recovered state (R) as illustrated in figure 1. 

The environment lattice can contain both empty sites and contaminated environment (representing the 

source of leptospirosis if infected), which estimated to 60% of lattice size as illustrated in figure 1. To 

simplify the model, we assumed that contaminated environment cell can transmit the infection to 

humans. In this model, we used the periodic boundary condition and take each time step to correspond 

to one day. 
 

 
 

Figure 1. Schematic illustration of the transition state of the Stochastic Cellular Automata model. 
 

In this work, we assumed humans individual, who are not infect with leptospires, randomly 

chosen move into empty site with probability 𝜌𝑚𝑜𝑏 = 0.5 [25] in each day. The length of human 

movement depends on the probability of the exponential step length, which is 𝑃(𝑟) =

(𝑟 + Δ𝑟0) −𝛽𝑒−𝑟 𝜅⁄  with exponent 𝛽=1.75, Δ𝑟0=1.5 km and cutoff values 𝜅=80 km [26]. People can 

move within the maximum of half length (1000/2). The angle of movement is randomly chosen from a 

uniform distribution [0, 2𝜋]. The parameters for the human population and mobility are shown in Table 

1.  

After human movement, if the position of the susceptible individual matches with the 

contaminated environment cell, the susceptible individual will gets infect with transmission rate (𝜆) to 

be exposed state. An exposed individual becomes an infected individual after a latent period of fixed 

length 𝜏𝐸. An infected individual will infect for 𝜏𝐼 period then become a recovered state. This recovered 

individual will become an again susceptible period of fixed length 𝜏𝑅. 

To study the impact of rainfall, the transmission rate depends on the rainfall index (𝑅(𝑡)) as in 

equation (1) compared to null hypothesis as a sinusoidal function (equation (2)). The transmission rate 

(𝜆) is assumed as a linear proportional of environmental variables to test different hypotheses given by: 

 



𝜆1(𝑡) = 𝑛0 + 𝑛1(𝑅(𝑡) − 𝜏)            (1) 

𝜆2(𝑡) = 𝑛0 + 𝑛1(1 + sin(2𝜋𝑡 365⁄ ) − 𝜏)        (2) 

where 𝑛0 and 𝑛1 are constant values. The reported data during 2014 and 2018 is used to fit with the 

simulation results. The parameters 𝑛0 and 𝑛1 were chosen, where the Mean Square Error (MSE) is 

minimized.   

 

Table 1. Parameters for human and environmental lattices. 

Description Symbol Values 

Human population size 𝑁𝐻 350,000 

Daily rate of human mobility 𝜌𝑚𝑜𝑏 0.5 [25] 

Water area density in environmental lattice 𝜌𝐸 0.6 

Incubation period for human 𝜏𝐸 7 days [4] 

Duration of infection for human 𝜏𝐼 7 days [4] 

Duration of loss immunity for human 𝜏𝑅 720 days (estimated) 

 

Result /discussion 

In this work, we aimed to study the impact of transmission rate depend on the rainfall index 

compared to sinusoidal function using the SCA model in Si Sa Ket, Thailand. We found the rainfall 

index more impact than sinusoidal function, which showed better fit with reported cases. 

Figure 2 showed the relation between reported cases of leptospirosis, normalized rainfall index, 

and sinusoidal function. The number of reported cases all year round showed a seasonality pattern. The 

peak of leptospirosis curve occurred between August and October correspond to the rainy season. We 

found the peak of reported cases correspond to the peak of rainfall index and sinusoidal curve.  
 

 
 

Figure 2. The relation between reported cases of leptospirosis, normalization rainfall index and the 

sinusoidal function for 2014-2018. 

 

 We varied time lag of the sinusoidal function, found that time lag of 4 weeks consistent with 

reports cases. We compared the real data and simulation results using mean square error (MSE), which 

found the minimized of MSE equal to 64.30 (figure 3). However, this function captured the reported cases 

only for the small value. The simulation result of the transmission rate depends on rainfall index with 

the associations observed at time lag of 2 weeks, which correspond to previous study [27]. The peak of 

leptospirosis cases corresponds with the peak of simulation results in almost every year. However, it 

could not describe the data on 2017 due to the other factor such as monsoon and heavy rainfall [28]. In 

fitting process, our results suggested that using rainfall index fit better than a sinusoidal function, which 

found MSE equal to 47.35. This finding indicate that the rainfall index contributed to the transmission 



dynamics of leptospirosis. Although, the sinusoidal function has been commonly used to represent 

seasonality in epidemic models [29].  

The epidemic of leptospirosis are known to be a seasonal pattern. Rainfall is an important risk 

factor for leptospirosis outbreaks and strongly associated with the tropical settings [30-32]. The heavy 

rainfall washes superficial soils, bringing pathogenic leptospires in freshwater bodies, where humans 

will be exposed. Massive leptospirosis outbreaks usually emerge following waterlogging. After heavy 

rainfall, this pathogen can survive for days to months in a contaminated environment [33].  

 

 
 

Figure 3. The reported cases of leptospirosis and the simulation result prediction of the transmission 

depend on the sinusoidal function  𝑛0 = 3.47 × 10−7 𝑛1 = 2.09 × 10−6 and the rainfall index  

𝑛0 = 4.01 × 10−6 and 𝑛1 = 3.21 × 10−5. 

 

In various types of epidemic models, it has been the central issue of how the final epidemic size 

is determined by the individual system parameters or the composite of them [34]. In this study, we 

defined the final epidemic size as the fraction of recovered at steady state. To investigate the transmission 

rate contributes to the final epidemic size in our model, we set the transmission rate be a constant value 

(λ = 𝑛0). The critical transmission rate is showed in figure 3, suggests that point transition from endemic 

phase to epidemic state.  
 

 
 

Figure 3. The final epidemic size as predicted by the SEIR model is shown with respect to the 

transmission rate 𝜆 = 1 × 10−6 − 1 × 101. 

 



In conclusion, our results highlighted that the transmission rate depends on rainfall index with 

time lag 2 weeks capture has impact on the leptospirosis outbreak in Si Sa Ket. We also find the critical 

transmission rate, which can be basic idea to control the outbreak. However, there are several factors 

could influence to leptospirosis such as flooding, temperature and humidity. Further study of other 

factors should be investigated for a better understanding of how the transmission of leptospirosis impacts 

the environment.  
 

Acknowledgments 

This research was supported by the Thailand Research Fund and the Office of the Higher 

Education Commission under Grant no. MRG6180051. We thank Faculty of Science, Naresuan 

University for their support. 

 

Reference 

[1] Pappas G, Papadimitriou P, Siozopoulou V, Christou L and Akritidis N 2008 The 

globalization of leptospirosis: worldwide incidence trends International Journal of Infectious 

Diseases 12 351-7 

[2] Organization W H 1999 Leptospirosis worldwide Weekly Epidemiological Report vol 74 

[3] Palaniappan R U M, Ramanujam S and Chang Y-F 2007 Leptospirosis: pathogenesis, 

immunity, and diagnosis Current Opinion in Infectious Diseases 20 

[4] Haake D A and Levett P N 2015 Leptospirosis in humans Curr Top Microbiol Immunol 387 

65-97 

[5] Massenet D, Yvon J-F, Couteaux C and Goarant C 2015 An Unprecedented High Incidence of 

Leptospirosis in Futuna, South Pacific, 2004 – 2014, Evidenced by Retrospective Analysis of 

Surveillance Data PLOS ONE 10 e0142063 

[6] Office. N S 2018 Summary of the Labor Status Survey.  

[7] Vijayachari P, Sugunan A P and Shriram A N 2008 Leptospirosis: an emerging global public 

health problem Journal of Biosciences 33 557-69 

[8] Wiwanitkit V 2006 A note from a survey of some knowledge aspects of leptospirosis among a 

sample of rural villagers in the highly endemic area, Thailand Rural Remote Health 6 526 

[9] Henry R A and Johnson R C 1978 Distribution of the genus Leptospira in soil and water 

Applied and Environmental Microbiology 35 492 

[10] Rood E J J, Goris M G A, Pijnacker R, Bakker M I and Hartskeerl R A 2017 Environmental 

risk of leptospirosis infections in the Netherlands: Spatial modelling of environmental risk 

factors of leptospirosis in the Netherlands PLOS ONE 12 e0186987 

[11] Lau C L, Clements A C A, Skelly C, Dobson A J, Smythe L D and Weinstein P 2012 

Leptospirosis in American Samoa – Estimating and Mapping Risk Using Environmental Data 

PLOS Neglected Tropical Diseases 6 e1669 

[12] Hacker K P, Sacramento G A, Cruz J S, de Oliveira D, Nery N, Jr., Lindow J C, Carvalho M, 

Hagan J, Diggle P J, Begon M, Reis M G, Wunder E A, Jr., Ko A I and Costa F 2020 

Influence of Rainfall on Leptospira Infection and Disease in a Tropical Urban Setting, Brazil 

Emerg Infect Dis 26 311-4 

[13] Pawar S 2018 Seasonality of leptospirosis and its association with rainfall and humidity in 

Ratnagiri, Maharashtra International Journal of Health & Allied Sciences 7 

[14] Ehelepola N D B, Ariyaratne K and Dissanayake W P 2019 The correlation between local 

weather and leptospirosis incidence in Kandy district, Sri Lanka from 2006 to 2015 Glob 

Health Action 12 1553283- 

[15] Huffman GJ B D R-t T m-s p a d s d N T D  

[16] Triampo W, Baowan D, Tang I M, Nuttavut N, Wong-ekkabut J and Doungchawee G 2006 A 

Simple Deterministic Model for the Spread of Leptospirosis in Thailand 2 

[17] Zaman G, Khan M, Islam S, Ikhlaq M and Jung I H 2012 Modeling Dynamical Interactions 

between Leptospirosis Infected Vector and Human Population Applied Mathematical Sciences 

6 1287-302 



[18] Holt J, Davis S and Leirs H 2006 A model of Leptospirosis infection in an African rodent to 

determine risk to humans: Seasonal fluctuations and the impact of rodent control Acta Trop 99 

218-25 

[19] Pongsumpun P, T Manmai and Rujira Kongnuy 2009 AGE STRUCTURAL 

TRANSMISSION MODEL FOR LEPTOSPIROSIS Conference Proceedings  

[20] Sarkar P 2000 A brief history of cellular automata ACM Comput. Surv. 32 80–107 

[21] Athithan S, Shukla V and Biradar S 2015 Voting Rule Based Cellular Automata Epidemic 

Spread Model for Leptospirosis Indian Journal of Science and Technology 8 337 

[22] Bureau of Epidemiology D M 2019 National Disease Surveillance (report 506).  

[23] Goddard Earth Sciences Data and Information Services Center (2016) TRMM (TMPA-RT) 

Near Real-Time Precipitation L3 1 day 0.25 degree x 0.25 degree V7 G, MD, Goddard Earth 

Sciences Data and Information Services Center (GES DISC)  

[24] Huffman G, Adler R F, Bolvin D T, Gu G, Nelkin E J, Bowman K P, Stocker E and Wolff D 

2007 The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-

sensor precipitation estimates at fine scale J. Hydrometeor. 8 28-55 

[25] Medeiros L C d C, Castilho C A R, Braga C, de Souza W V, Regis L and Monteiro A M V 

2011 Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence 

PLOS Neglected Tropical Diseases 5 e942 

[26] González M C, Hidalgo C A and Barabási A-L 2008 Understanding individual human 

mobility patterns Nature 453 779-82 

[27] Matsushita N, Ng C F S, Kim Y, Suzuki M, Saito N, Ariyoshi K, Salva E P, Dimaano E M, 

Villarama J B, Go W S and Hashizume M 2018 The non-linear and lagged short-term 

relationship between rainfall and leptospirosis and the intermediate role of floods in the 

Philippines PLOS Neglected Tropical Diseases 12 e0006331 

[28] Center N W a C D 2017 Flooding from the influence of the storm "Sengka" (SONCA) 24-31 

July 2017.  

[29] Tanaka G and Aihara K 2013 Effects of seasonal variation patterns on recurrent outbreaks in 

epidemic models Journal of Theoretical Biology 317 87-95 

[30] Adler B and de la Peña Moctezuma A 2010 Leptospira and leptospirosis Veterinary 

Microbiology 140 287-96 

[31] Levett P N 2001 Leptospirosis Clinical Microbiology Reviews 14 296 

[32] Hunter P R 2003 Climate change and waterborne and vector-borne disease Journal of Applied 

Microbiology 94 37-46 

[33] Goarant C 2016 Leptospirosis: risk factors and management challenges in developing 

countries. In: Res Rep Trop Med, pp 49-62 

[34] Hethcote H W 2000 The Mathematics of Infectious Diseases SIAM Review 42 599-653 

 


	1. Research Report
	1.1 Cover.pdf
	1.2 Research Report
	1.3.1 A remotely sensed flooding indicator associated with cattle and buffalo leptospirosis cases in Thailand 2011–2013
	Abstract
	Background
	Method
	Results
	Conclusions

	Background
	Materials and methods
	Epidemiological data
	Environmental data
	Statistical analysis

	Results
	Discussion
	Conclusion
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

	1.3.2 Modelling Leptospirosis transmission in Thailand accessing the impact of flooding and weather conditions
	1.3.3 Impact of rainfall on the transmission of leptospirosis in Si Sa Ket, Thailand
	1.4 appendix

	1.3.1 A remotely sensed flooding indicator associated with cattle and buffalo leptospirosis cases in Thailand 2011–2013
	Abstract
	Background
	Method
	Results
	Conclusions

	Background
	Materials and methods
	Epidemiological data
	Environmental data
	Statistical analysis

	Results
	Discussion
	Conclusion
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

	1.3.2 Modelling Leptospirosis transmission in Thailand accessing the impact of flooding and weather conditions
	1.3.3 Impact of rainfall on the transmission of leptospirosis in Si Sa Ket, Thailand

