

Final Report

A new solution for simultaneous electrochemical determination of dopamine, acetaminophen and caffeine with a PVP/graphene modified electrode

Assistant Professor Dr. Sireerat Lisnund

May 2020

รายงานวิจัยฉบับสมบูรณ์

ทางเลือกใหม่สำหรับการตรวจวัดทางเคมีไฟฟ้าอย่างต่อเนื่องของ โดพามีน
อะเซตามิโนเฟน และ คาเฟอีน โดยข้าวไฟฟ้าดัดแปลงกราฟิน/พีวีพี

ผศ.ดร. สิริรัตน์ ลิศนันท์

มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน

สนับสนุนโดยสำนักงานคณะกรรมการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

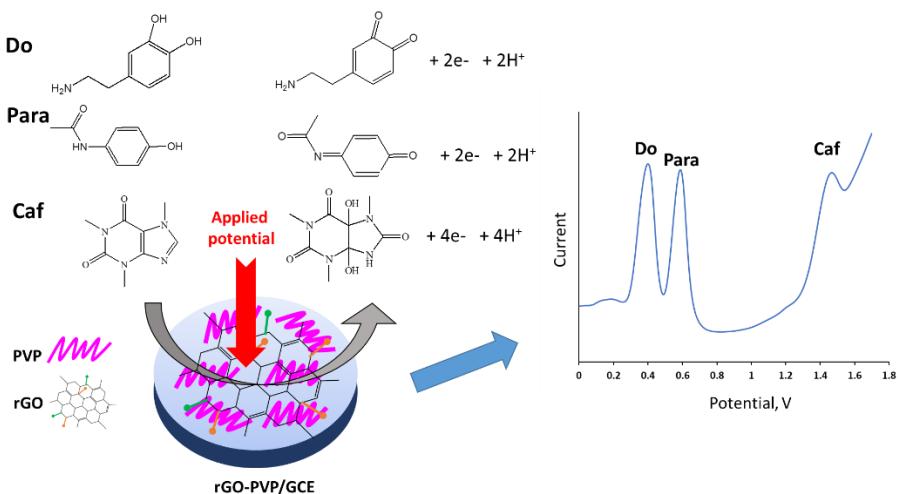
(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกอ. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract

Project Code: MRG6180072

Project Title: A new solution for simultaneous electrochemical determination of dopamine, acetaminophen and caffeine with a PVP/graphene modified electrode

Investigator: Assistant Professor Dr. Sireerat Lismund


E-mail Address: insireerat@gmail.com

Project Period : 2 May 2018 – 1 May 2020

Abstract:

The reduced graphene oxide (rGO) and polyvinylpyrrolidone (PVP) composite film was fabricated on the glassy carbon electrode (rGO-PVP/GCE), and used for simultaneous determination of dopamine (DO), paracetamol (PAR) and caffeine (CAF). The pH and scan rate were also investigated at the surface of rGO-PVP/GCE. Square wave voltammetry, three well and distinct peak with large peak potential separation between simultaneously Do, Para and Caf were observed. It showed good sensitivity and selectivity in a wide linear range from 5-100 μ M, 5-100 μ M and 20-200 μ M, with detection limit of 0.81 μ M, 0.16 μ M and 19.6 μ M for Do, Para and Caf, respectively. The rGO-PVP/GCE was also successfully applied for the determination Do, Para and Caf in pharmaceutical, beverage and biological samples.

Graphical abstract:

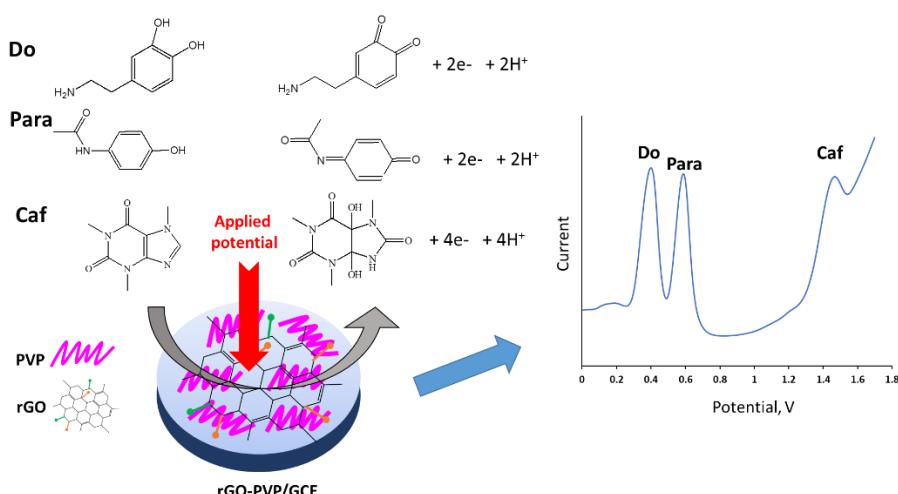
Key words: Reduce graphene oxide, Polyvinylpyrrolidone (PVP), Dopamine, Paracetamol, Caffeine, Voltammetry

บทคัดย่อ

รหัสโครงการ: MRG6180072

ชื่อโครงการ: ทางเลือกใหม่สำหรับการตรวจวัดทางเคมีไฟฟ้าอย่างต่อเนื่องของ โดพามีน อะเซตามิโน芬 และ คาเฟอีน โดยข้าไฟฟ้าดัดแปลงการพิมพ์/พีวีพี

หัวหน้าโครงการ: ผู้ช่วยศาสตราจารย์ ดร.สิรีรัตน์ ลิศนันท์


ที่อยู่อีเมล: insireerat@gmail.com

ระยะเวลาโครงการ: 2 พฤษภาคม 2561 – 1 พฤษภาคม 2563

บทคัดย่อ:

รีดิวซ์แกรฟีโนอกไซด์ (rGO) และพอลิไวนิลไฟโรลิโคน (PVP) คอมโพสิตพิล์มถูกสร้างขึ้น บนข้าไฟฟ้ากลาสซิคาร์บอน (rGO-PVP/GCE) และถูกนำไปใช้ในการตรวจวัด โดพามีน (Do) พาราเซตามอล (Para) และคาเฟอีน (Caf) อย่างพร้อมกัน ศึกษาค่าพีเอชและอัตราการส adenban พื้นผิว rGO-PVP/GCE . สแคร์เฟวอลแกรมเมตري แสดงพีที่แยกจากกันอย่างชัดเจนด้วยความ กว้างของความต่างศักย์ที่สัญญาณกระแสสูงสุดของสารทั้งสาม Do Para และ Caf ที่ตรวจวัดพร้อมกัน พบว่ามีค่าความไวและการเลือกสรรที่ดี อยู่ในช่วงความเป็นเส้นตรงของ Do Para และ Caf กว้างที่ 5-100 ไมโครโมลาร์, 5-100 ไมโครโมลาร์ และ 20-200 ไมโครโมลาร์ ขีดจำกัด ต่ำสุดในการตรวจวัด 0.81 ไมโครโมลาร์, 0.16 ไมโครโมลาร์ and 19.6 ไมโครโมลาร์ ตามลำดับ rGO-PVP/GCE ประสบความสำเร็จในการประยุกต์ใช้สำหรับการตรวจวัด Do Para และ Caf ในผลิตภัณฑ์ยา เครื่องดื่ม และตัวอย่างทางชีวภาพ

บทคัดย่อแบบกราฟิก:

คำสำคัญ: รีดิวซ์แกรฟีโนอกไซด์ พอลิไวนิลไฟโรลิโคน (พีวีพี) พาราเซตามอล โดพามีน คาเฟอีน ข้าไฟฟ้า โวลแกรมเมตري

2. Executive summary

Acetaminophen, commonly known as paracetamol (Para) is commonly used as an antipyretic and analgesic medicine, which is considered safe at therapeutic levels for humans with normal drug use. Dopamine (Do) is a neurotransmitter that plays a crucial role in the central nervous, cardiovascular, renal system and endocrine system. In the case of Parkinson's disease, the concentration of Do in extracellular fluid is an important parameter to be used in the diagnostics. Caffeine (Caf) is widely distributed in plant products and beverages such as tea, coffee bean, cocoa nuts, cola nuts, and Coca-Cola. It is one of the most widely used drugs in the world and has many important pharmacological effects such as the stimulant of central nervous system, diuresis and positive effect on cardio-vascular system. Obviously, the determination of dopamine, paracetamol and caffeine at trace quantities in the pharmaceutical preparation and biological sample as individual or simultaneous form is of importance but it require fast, simple, precise and sensitive methods. Spectrophotometry, high-performance liquid chromatography, chemiluminescence, and electrochemical methods have so far been used for the task. Electrochemical methods have attracted attention because of the combination of a high sensitivity, simplicity, reproducibility with low cost of the required instrumentation. Graphene has higher surface area, more excellent electrical conductivity and electron mobility at room temperature due to their unique two-dimensional nanostructure. More recently, it is attractive to develop graphene-based nanocomposite films for enhancing the sensitivity of the electrochemical sensors. The macromolecule surfactant of polyvinylpyrrolidone (PVP), contains a strong hydrophilic component with a considerable hydrophobic group with C=O, C-N and CH₂ functional groups. It is a water soluble inexpensive polymer with interesting features such as low toxicity and high thermal stability.

In this study, we successfully synthesized reduced graphene oxide (rGO) from graphene oxide (GO) by using ascorbic acid and characterized by FT-IR spectroscopy, Raman Spectroscopy, Scanning Electron Microscope (SEM) and Thermogravimetric analyzer (TGA). The combining the unique electronic properties of graphene with properties of PVP, the PVP, rGO modified glassy carbon electrode (rGO-PVP/GCE) was studies by cyclic voltammetry (CV) and square wave voltammetry (SWV). The rGO-PVP/GCE exhibited favorable electron transfer kinetics and electro catalytic activity towards the oxidation of Do, Para and Caf when comparative with GO/GCE, PVP/GCE, rGO/GCE. The SWV results show three well distinguished stripping peaks at 0.40, 0.53 and 1.43 V (vs Ag/Ag/Cl), corresponding to the oxidation of Do, Para and Caf, respectively that present good linearities in the investigated concentration ranges. Limit of detection (LOD, 3S/m) for Do, Para and Caf were found to be 0.81, 0.16 and 19.6 μ M, respectively. Finally, the proposed sensor has been utilized for the simultaneous determination of Do, Para and Caf in human urine sample, pharmaceutical tablet and energy beverage.

3. Objective

- 3.1 Preparation of reduced graphene oxide by Hummers method and chemical reduction.
- 3.2 Establishment of a new graphene/PVP-modified electrode tailored for the simultaneous electrochemical detection of acetaminophen, codeine and caffeine.
- 3.3 Characterization of the graphene/PVP-modified electrode and optimization of its application for simultaneous detection of acetaminophen, codeine and caffeine. Parameter identification for the optimal execution of measuring procedures and assessment of the selectivity, sensitivity, detection limit, stability and reproducibility for target analyte measurements.
- 3.4 Application of the developed sensing strategy for the quantification of acetaminophen, dopamine and caffeine content in some pharmaceutical, drinking and biological samples.

4. Research methodology

4.1 Preparation of graphene oxide and reduced graphene oxide

The preparation of graphite oxide (GO) was carried out with a modified Hummers' method [1]. In brief, 2 g of natural graphite powder (AR Grade, Chempur) were dispersed in concentrated H_2SO_4 68 ml and $NaNO_3$ 1.5 g in a round bottle flask equipped with a thermometer and a gas trap. $KMnO_4$ 9 g was then gradually added to the mixture over a period of 30 min. During this step, the reaction mixture was kept on an ice water bath due to the exothermic nature of the oxidation reaction. Following the mixture was allowed to cool for 2 h in the ice water bath. After cooling, the mixture was removed from the ice water bath and was allowed to stand for five days. During this time, the reaction temperature was maintained below 35 °C. Next, 0.1 M H_2SO_4 40 ml was added, and the mixture was stirred overnight. Then, unreacted $KMnO_4$ was removed using 30% H_2O_2 6 ml. The final mixture was centrifuged at 4000 rpm for 10 min and the graphite oxide precipitate collected and re-dispersed in H_2O and centrifuged again. This procedure was repeated 20 times to raise the pH. Finally, the outer solution was detected UV-vis absorbance until the absorbance nearly zero. The graphene oxide in form precipitated slurry was kept at -1 °C.

The reduced graphene was prepared by using ascorbic acid as the reduction agent according to Silva et al. [12]. A suspension of 100 mg GO was prepared by sonicating slurry GO in 100 mL distilled water. To its 100 ml, 100 mg of ascorbic acid was added. The pH of the medium was adjusted to ~ 10 by adding 28% NH_3 solution to promote colloidal stability through the electrostatic repulsion. The mixture was allowed to stir at 65 °C until 1 h. The resulting suspensions were filtered through cellulose acetate membrane filter papers, washed with copious of distilled water and dried at 80 °C until 2 h.

4.2 Preparation of GO, PVP, rGO, rGO-PVP modified electrode

The glassy carbon electrode (GCE, 3 mm diameter) surface was polished on fine emery paper and chamois leather containing 5, 1, 0.5 μm alumina (Al_2O_3) slurry respectively, and then sonicate in DI water and dried in air. 1 mg of rGO and 0.25 mg of PVP was dispersed in 1 mL of water by sonication in 2 h giving complete dissolution. A suspension of a mixture of rGO and PVP was prepared of the above rGO, PVP and PVP-rGO suspensions were separately dropped 2 μL onto the surface of clean GC electrodes and dried under IR lamp 5 min to obtain the rGO/GCE, PVP/GCE and PVP-rGO/GCE electrodes. After each measurement, the modified electrodes were regenerated by thoroughly washing the electrodes with DI water and then sonication the electrodes in DI water for about 2 min to remove any adsorbate from electrode surface and to provide a fresh one for subsequent experiments.

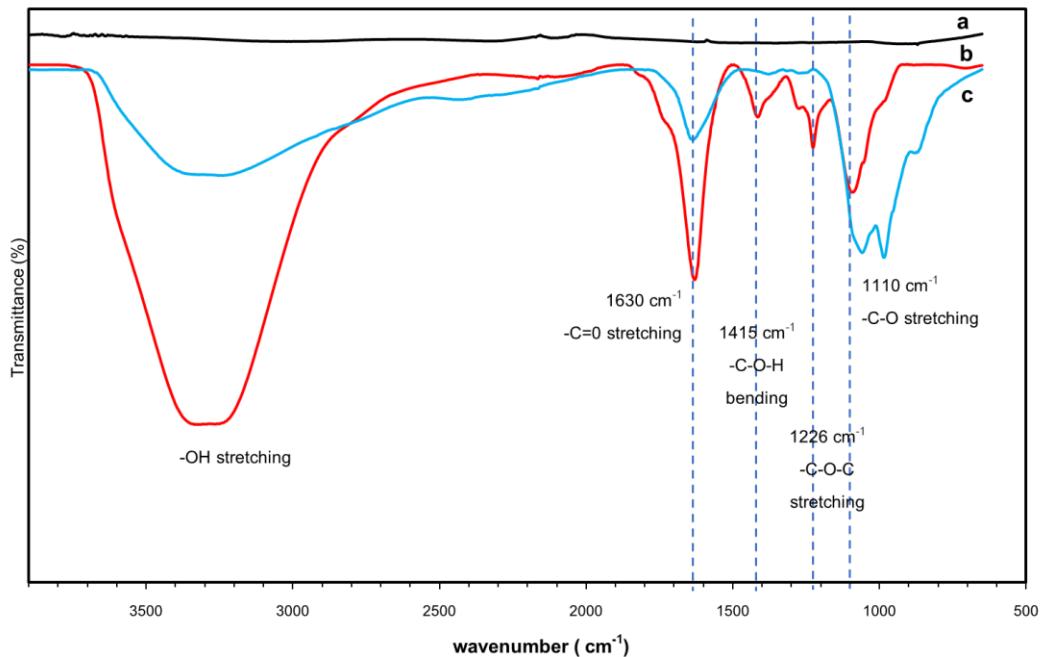
4.3 Morphology and surface characterization of graphite powder, GO and rGO

- FT-IR spectra of graphite powder, GO and rGO film were obtained with Fourier Transform Infrared Spectrometer, FTIR (Perkin, Spectrum100) by Attenuated total reflectance (ATR) mode.
- Raman spectra of graphite powder, GO and rGO film were obtained using a Bruker Senterra Raman Spectrometers and Microscopes with argon laser 532 nm, 5 mW.
- SEM image were obtained with Field Emission Scanning Electron Microscope (FE-SEM) Zeiss Auriga.
- TGA Thermogravimetric analyzer; TGA; were obtained with PerkinElmer; STA 6000 with a heating rate of 10 $^{\circ}\text{C min}^{-1}$.

4.4 Analytical procedures

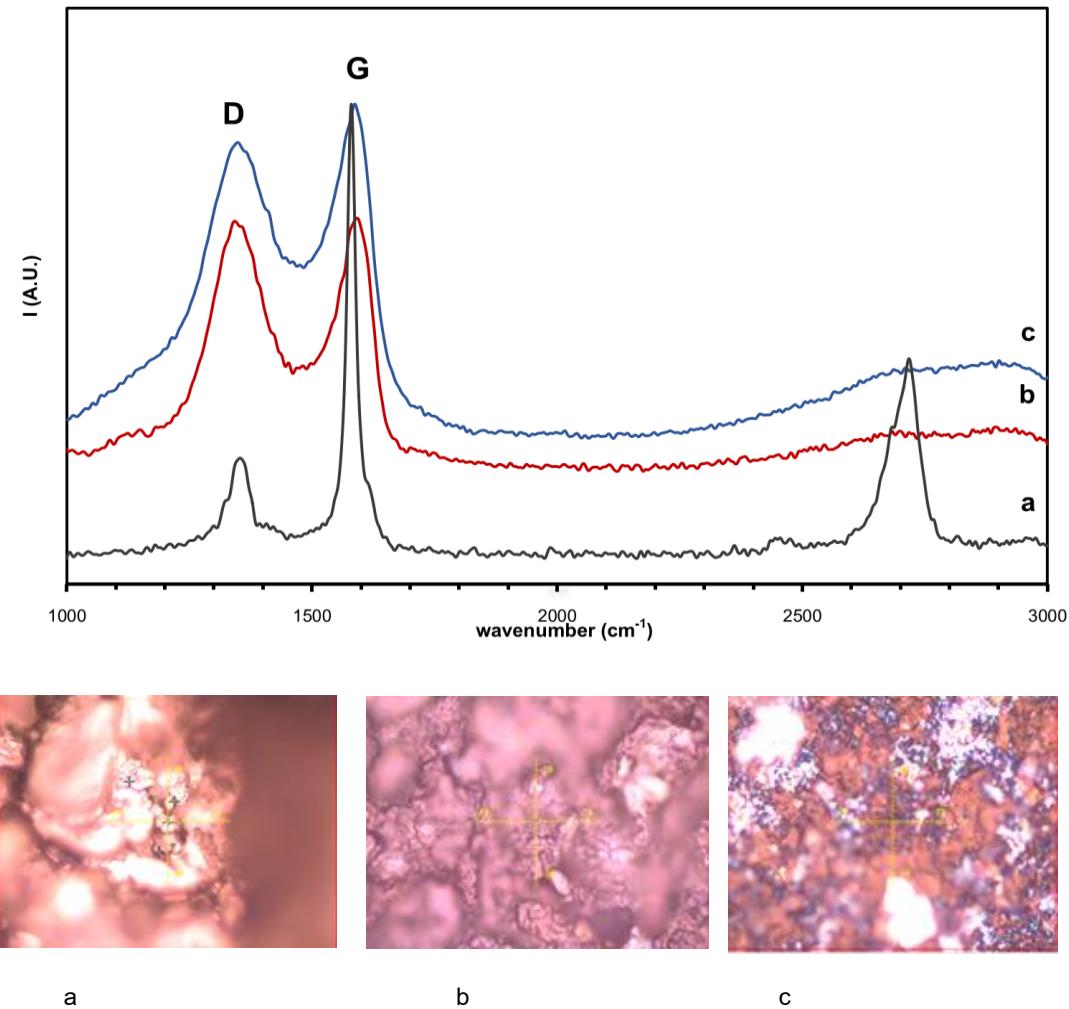
Electrochemical measurement were performed with an Autolab potentiostat (PGSTAT204) with Nova2.1 software package. A three electrode system in 50 mL voltammetric cell included bare GCE, graphene oxide (GO/GCE) and reduced graphene oxide (rGO/GCE) as working electrode, a platinum sheet and Ag/AgCl, 3 M KCl were used as counter and reference electrode, respectively. Cyclic voltammetric (CV) experiments were carried out in a quiescent solution at 50 mV/s in an electrochemical cell filled with 10.0 mL of buffer solution. Square wave voltammetry (SWV) with the following parameters: step potential, 10 mV; amplitude, 10 mV; frequency, 10 Hz.

4.5 Sample preparation

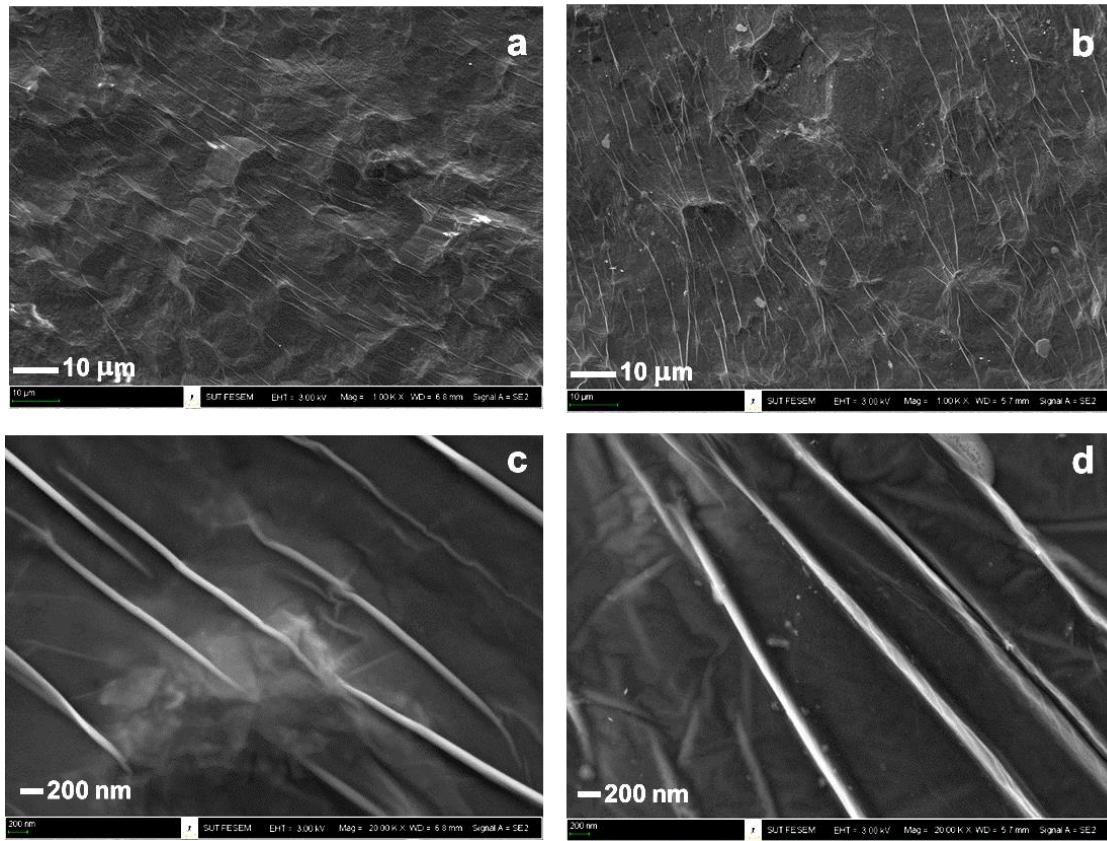

The pharmaceutical containing 500 mg Paracetamol per tablet were weighed and carefully ground with mortar to a fine powder. A quantity of homogeneous powders equivalent to the average weight of one tablet was dissolved in 100 mL of deionized water by sonication for 10 min. and then extracts diluted 10-times were added to the supporting electrolyte, and were analyzed using the voltammetric method. Liquid samples (energy drink) were degassed by sonification for 10 min. Then, energy drink samples were added to the 0.1 M acetate buffer at pH 5.0. Urine sample were centrifuged (2500 rpm) for 5 min. The supernatant

was filtered using filter paper no.1 and diluted 10 times with 0.1 M acetate buffer at pH 5.0. Then the determination of dopamine, paracetamol and caffeine content in real samples were evaluated using the standard addition method.

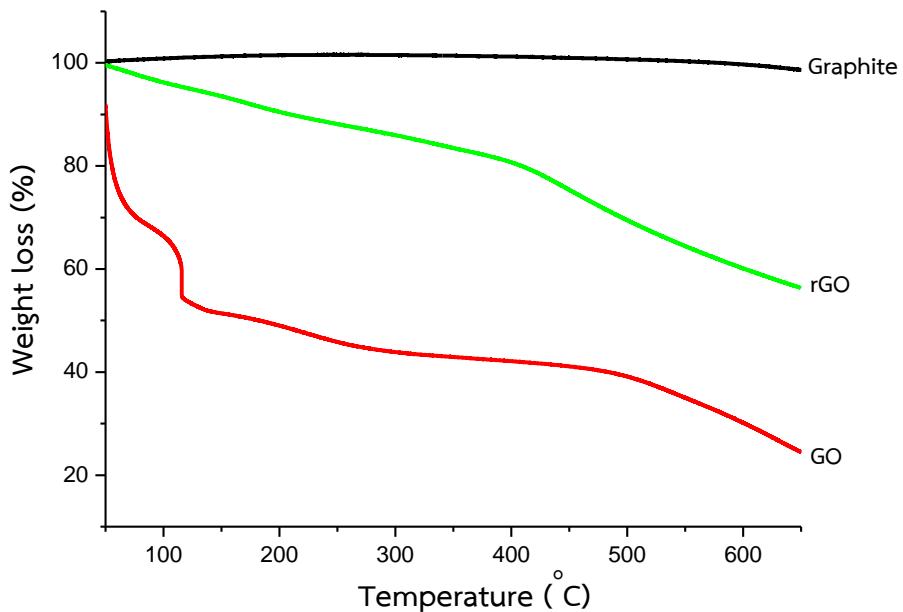
5. Result and discussion


5.1 Characterization of graphite powder, GO and rGO

FTIR is identify the type of oxygen functionalities and bonding configuration in GO and rGO. Figure 1, the GO and rGO spectrum shows a broad and intense peak between 3005–3450 cm^{-1} attributed to O–H stretching vibrations mode of intercalated water shows bands attributed to oxygen containing groups, which confirmed the successful oxidation of graphite. After the chemical reduction, the expected bands were observed C=O stretching vibration of carbonyl group (1630 cm^{-1}) of GO differs from that of rGO by the significant decrease of the intensities of C=O functional groups bands. Furthermore, the C–O–H bending (1415 cm^{-1}), C–O–C stretching (1226 cm^{-1}) was not observed in rGO spectrum. This indicated the most oxygen functionalities in GO can be effectively eliminated upon reduction which results agree with those reported in the literature [3,4]. Despite the increase significant band C–O stretching (1110 cm^{-1}) in the rGO sample and its position is shifted compared to the similar band in the GO, suggestion the reduction of carbonyl group due to the formation of hydroxyl groups. However, the alkoxy and epoxy groups were hardly reduced and could only be electrochemically reduced at more negative potential (i.e., -1.5 V vs. SCE) [5].


Figure 1. FT-IR spectra of graphite powder (a), GO (b) and rGO (c).

Raman spectroscopy is another useful and non-destructive technique used to reveal the structural information of carbon based materials, which in turn provides their electronic properties. Carbon-based materials such as graphene, carbon nanotubes, graphite, GO and rGO have been widely characterized by Raman spectroscopy. Figure 2 shows Raman spectra for graphite powder (a), GO (b) and rGO (c). All Raman data show first and second-order spectra. The first-order spectrum of the pristine graphite powder shows a characteristic strong G band at 1580 cm^{-1} and a weaker D band at 1355 cm^{-1} . The second-order spectrum of the starting graphite sample presents a strong 2D band at 2718 cm^{-1} and a weak shoulder on the G band at 1618 cm^{-1} (D' band). The spectrum of GO shows a dramatic increase in the ID/IG ratio from 0.25 to 1.00, compared to the starting graphite material, the 2D band is broader, the relative intensity is smaller compared to the G band. As it is known, the intensity ratio of the D and G bands (ID/IG), as well as the relative intensity of the D' band, increase with the amount of disorder in the graphitic layer. Thus, the observed features in the GO Raman spectrum demonstrate that some structural disorder is produced in the GO carbon lattice due to the oxidation process. The Raman spectrum of the reduced material rGO exhibits an increment in the ID/IG ratio compared to the GO sample. These results show that when the GO sheet is deoxygenated by the reduction process, the distortion of the 6-fold rings is removed and the carbon lattice returns to an essentially graphitic but highly defected state [4,6].


Figure 2. A: Raman spectra of graphite powder (a), GO (b) and rGO (c). **B:** the material portion as indicated in the optical image of graphite powder (a), GO (b) and rGO (c).

In Scanning electron microscopy characterization (SEM) a focused electron beam is applied to the sample and the electrons signal emitted from the samples are derived and used to generate the surface image of sample. As shown in Figure 3., the surface morphologies of the both GO and rGO films which formed from the stacking of individual sheets on a substrate by chemical techniques generally show crumpled and wrinkled texture in their SEM images. The same observation has been reported in the SEM images of rGO films [9] whereby its surface morphologies show little different from that of its GO film counterpart.

Figure 3. FESEM of (a) GO film, (b) rGO film (1,000 magnification), (c) GO film and (d) rGO film (20,000 magnification)

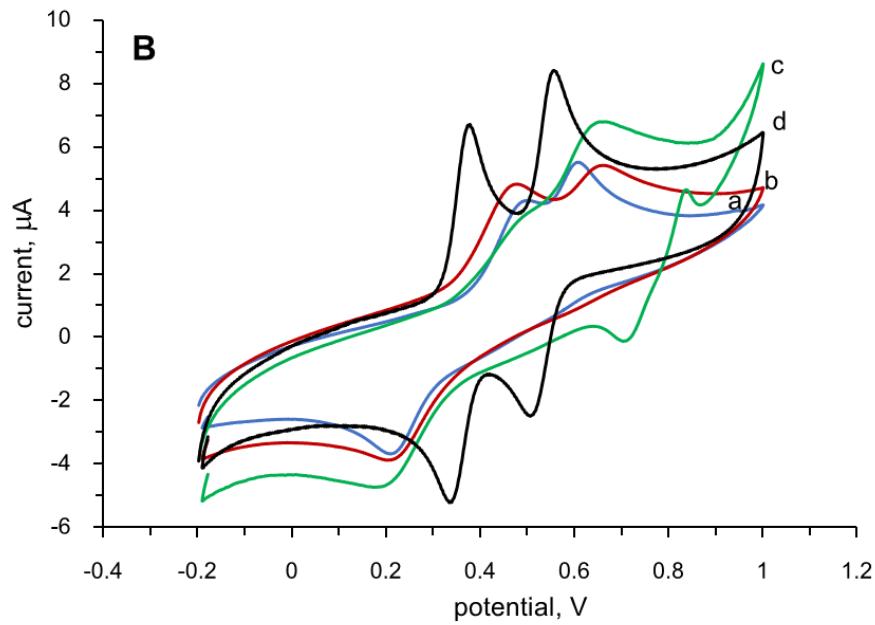
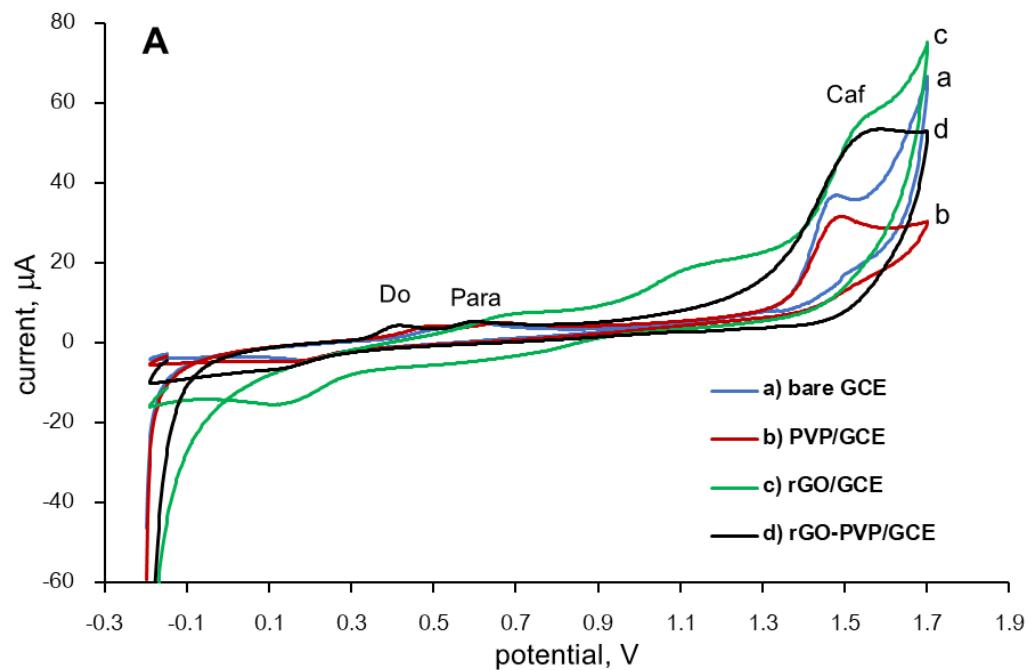
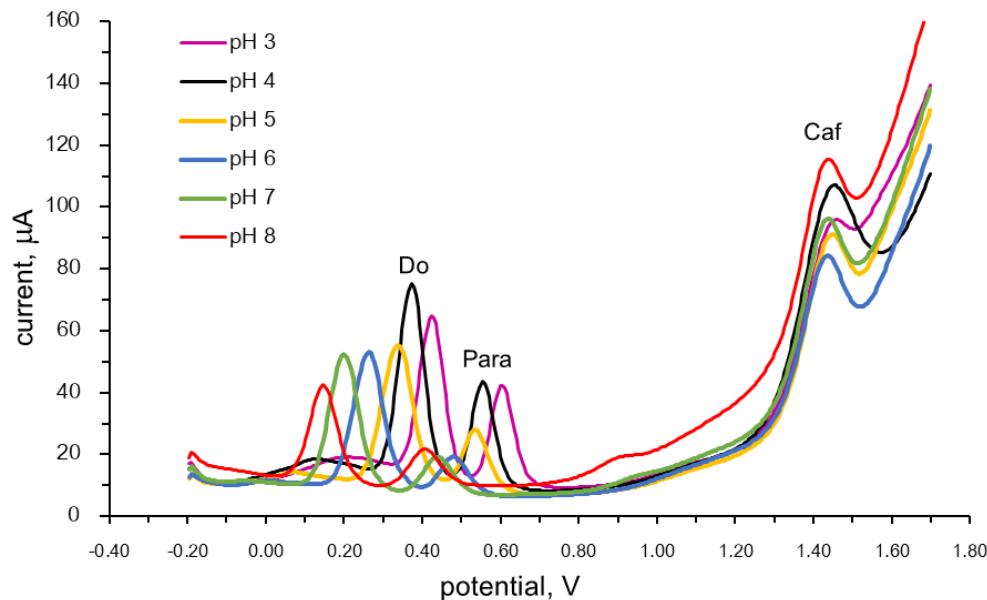
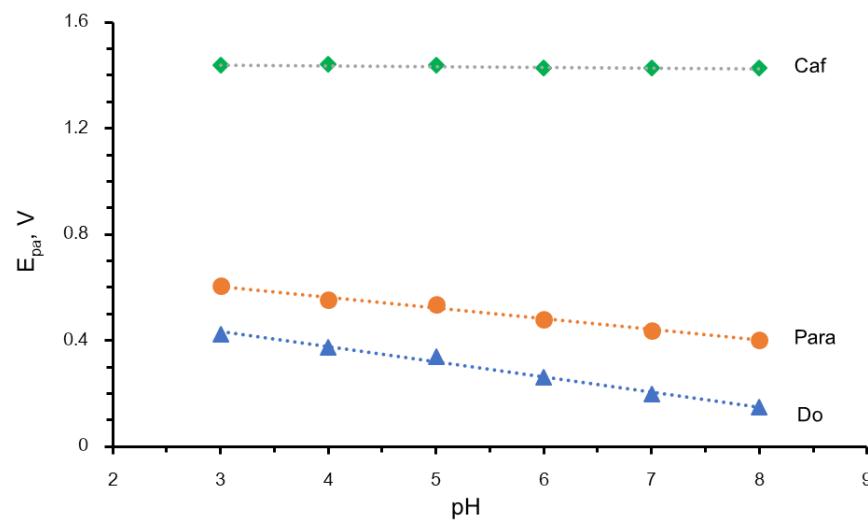


The thermal stability of graphite, GO and rGO were measured using TGA in a N₂ atmosphere and the results are shown in Figure 4. Graphite does not show any mass loss between room temperature and 650 °C. GO has a rapid 50% mass loss below 150 °C, resulting from the evaporation of adsorbed water and a slowly 10% mass loss from 150 to 500 °C which is due to the removal of the oxygen-containing functional groups. The mass loss of rGO is obviously lower than that of GO, especially the mass loss lower 150 °C, which demonstrates an obvious decrease in the amount of oxygen-containing functional groups and a profound reduction of GO. Meanwhile, a higher mass loss is found between 400 and 600 °C in rGO.

Figure 4. TGA curves of graphite, rGO and GO.

5.2 Electrochemical behavior of paracetamol dopamine and caffeine


The electrochemical performance of modified glassy carbon electrode was examined in acetate buffer solution of pH 4.0 containing dopamine, paracetamol and caffeine using cyclic voltammetry at potential -0.2 to +1.7 V (Figure 5A). As can be seen, three oxidation peak obtained on rGO-PVP/GCE assigned to 0.43 V, 0.62 V and 1.54 V are well separated. By contrast, bare GCE only showed one oxidation peak of caffeine; whereas the rGO/GCE decreased peak currents because the agglomeration and inhomogeneous of rGO on electrode surface. The composite of rGO and PVP show a synergy for promotion the separated electrochemical response of dopamine and paracetamol. The superior feature of rGO and PVP over rGO could be attributed to the important role of PVP in enhancing the electronic properties, rendering the hydrophilicity of composite and preventing the agglomeration of graphene sheet [10]. Moreover, the positive charges of PVP may be advantageous to the separation of dopamine and paracetamol which performed caffeine oxidation peak. Thus, the rGO-PVP/GCE showed the best feature for simultaneous determination of dopamine, paracetamol and caffeine.


Figure 4. Cyclic voltammogram of $200\mu\text{M}$ dopamine, $200\mu\text{M}$ paracetamol and 1mM caffeine in Acetate buffer pH 4 at a) bare GCE, b) PVP/GCE, c) rGO/GCE and d) rGO-PVP/GCE, scan rate 50 mV/s (A) - 0.2 to 1.7 V and (B) -0.2 to 1.0 V .

Effect of pH

The effect of solution pH on the oxidation response of rGO-PVP/GCE for the dopamine, paracetamol and caffeine mixed solution was carefully investigated by square wave voltammetry. In Figure 5, this parameter was established in a series of acetate buffer solutions with pH 3.0–8.0 by carrying out stripping measurement on the three species solution. It can be easily concluded that the oxidation peak current of dopamine, paracetamol and caffeine was very high at pH 4.0. Therefore, pH 4.0 employing 0.1 M acetate buffer was chosen for the subsequent analytical experiments.

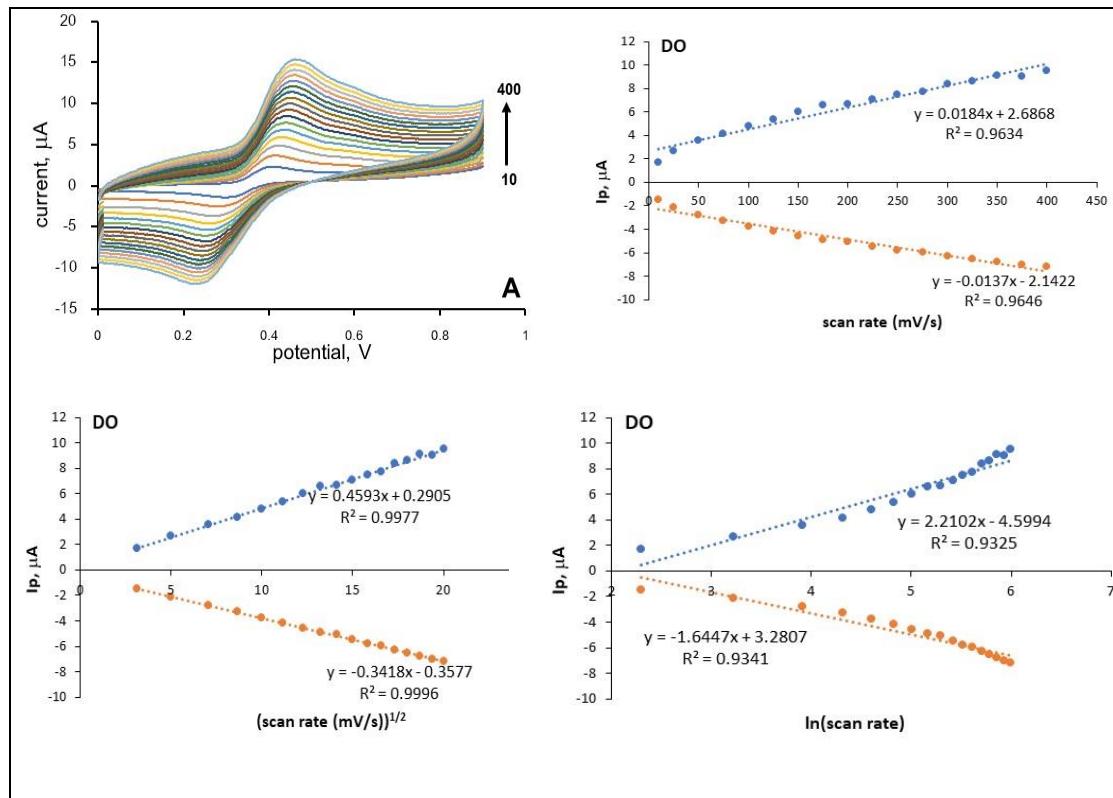
Figure 5. Square wave voltammogram of $200\mu\text{M}$ dopamine, $200\mu\text{M}$ paracetamol and 1mM caffeine in acetate buffer at different pH values between pH 3 to 8 at rGO-PVP/GCE

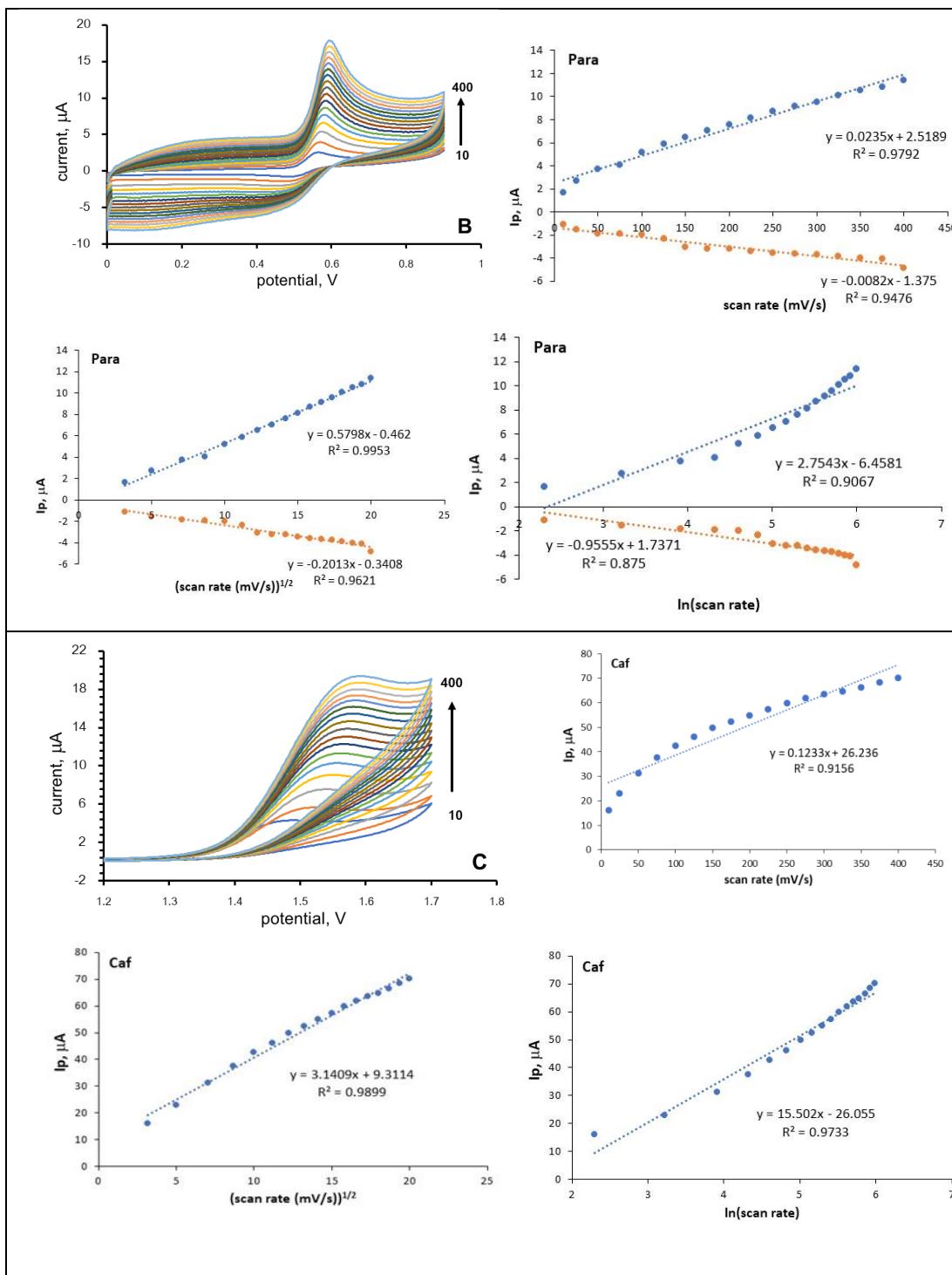
Figure 6. Effect of pH on the anodic peak potential of dopamine, paracetamol and caffeine by SWV technique.

The anodic peak potential (E_{pa}) of dopamine, paracetamol and caffeine was found to be dependent on pH and shifted to less positive potential with increasing pH, suggesting the involvement of protons in the oxidation reaction of dopamine, paracetamol and caffeine at rGO-PVP/GCE. From the plot of E_{pa} vs. pH (Figure 6), it is clear that the oxidation peak potential varies linearly with pH and is shifted to more negative by 57, 40 and 7.5 mV/pH for dopamine, paracetamol and caffeine respectively and expressed by the following regression equations,

Dopamine	$E_{pa}(V) = -0.0568pH + 0.6035$	$R^2 = 0.9909$
Paracetamol	$E_{pa}(V) = -0.0403pH + 0.7248$	$R^2 = 0.9917$
Caffeine	$E_{pa}(V) = -0.0075pH + 1.4725$	$R^2 = 0.9634$

The slopes of the two regression equations for dopamine and paracetamol were 57 and 40 mV/pH, respectively, indicating that the redox reactions of two compounds at the surface of rGO-PVP/GCE were accompanied by proton transfer following Nernstian theory. In case of caffeine, a slope of 7 mV/pH unit indicated that unequal number of protons and electrons are involved in the oxidation process because the electrode surface is more complex in the studies pH window [11].


Thus the redox of dopamine, paracetamol and caffeine at rGO-PVP/GCE given in Scheme 1, based on the previous literature [15,18,19]



Scheme 1. The simultaneous electrochemical oxidation of dopamine (A), paracetamol (B) and caffeine (C) at rGO-PVP/GCE.

Effect of scan rate

The effect of varying scan rates on the oxidative peak currents of each 200 μ M dopamine paracetamol and 3mM caffeine at the surface of rGO-PVP/GCE in acetate buffer pH 4.0, deposition potential +0.1 V 30 s was studied. Figs. 8 (A), and (B) shows the cyclic voltammetric curves of dopamine and paracetamol obtained in the range of 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400 mV/s respectively. The oxidation peak currents were observed to increase with scan rate with the anodic peak potentials shifts to the more positive value and cathodic peak potential shifts to more negative value in case of dopamine paracetamol and caffeine. The peak currents showed a linear relationship with the square root of the scan rate (Insets in Figure 7A, B and C), indicating the diffusion controlled process dominated for DO, Para and Caf, because of the fast electron transfer rate on nanocomposite. As shown in Figure 7A, B and C the following linear relationships were observed: $I_{pa} = 0.4593U^{1/2} + 0.2905$ ($R^2 = 0.9977$), $I_{pc} = -0.3418U^{1/2} - 0.3577$ ($R^2 = 0.9996$), $I_{pa} = 0.5798U^{1/2} - 0.462$ ($R^2 = 0.9953$), $I_{pc} = -0.2013U^{1/2} - 0.3408$ ($R^2 = 0.9621$), $I_{pa} = 3.1409U^{1/2} + 9.3114$ ($R^2 = 0.9899$) respectively and the plot showed good linearity, for DO, Para and Caf.

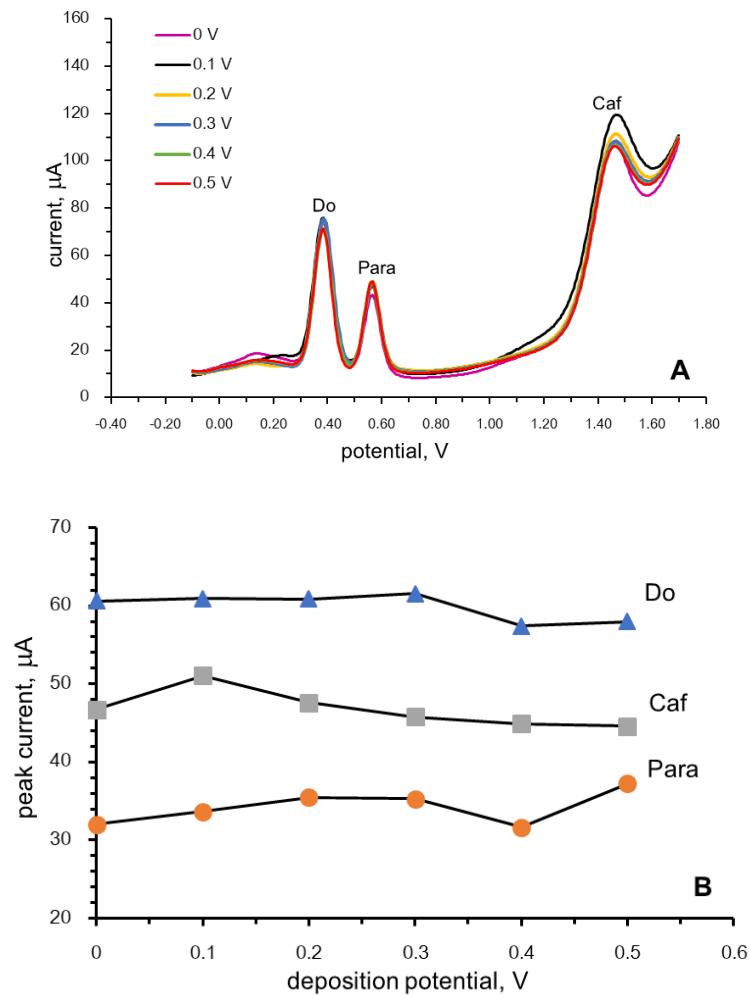


Figure 7. Cyclic voltammogram of 200 μM dopamine (**A**) 200 μM paracetamol (**B**) and 3 mM caffeine (**C**) in acetate buffer pH 4 on rGO-PVP/GCE at different scan rate 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400 mV/s. Insert a plot of I_p vs scan rate, $(\text{scan rate (mV/s)})^{1/2}$ and $\ln(\text{scan rate})$, respectively, obtained from cyclic voltammograms.

Effect of deposition potential of adsorptive anodic stripping square wave voltammetry

The stripping peak current was evaluated in the potential range +0.1 to +0.5 V in Figure 8A. The stripping peak currents of dopamine, paracetamol and caffeine in Figure 8 B reached their suitable at deposition potential of +0.1V. For all further studies, +0.1V was selected as deposition potential.

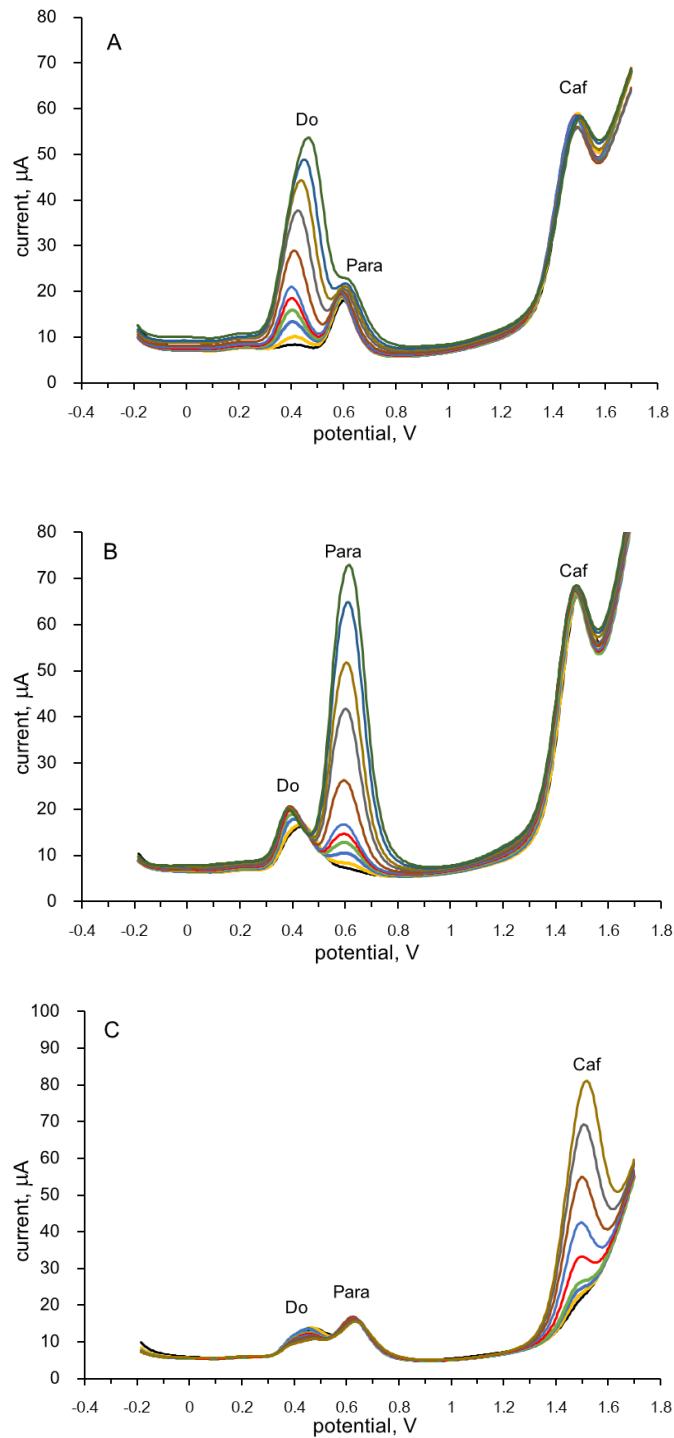
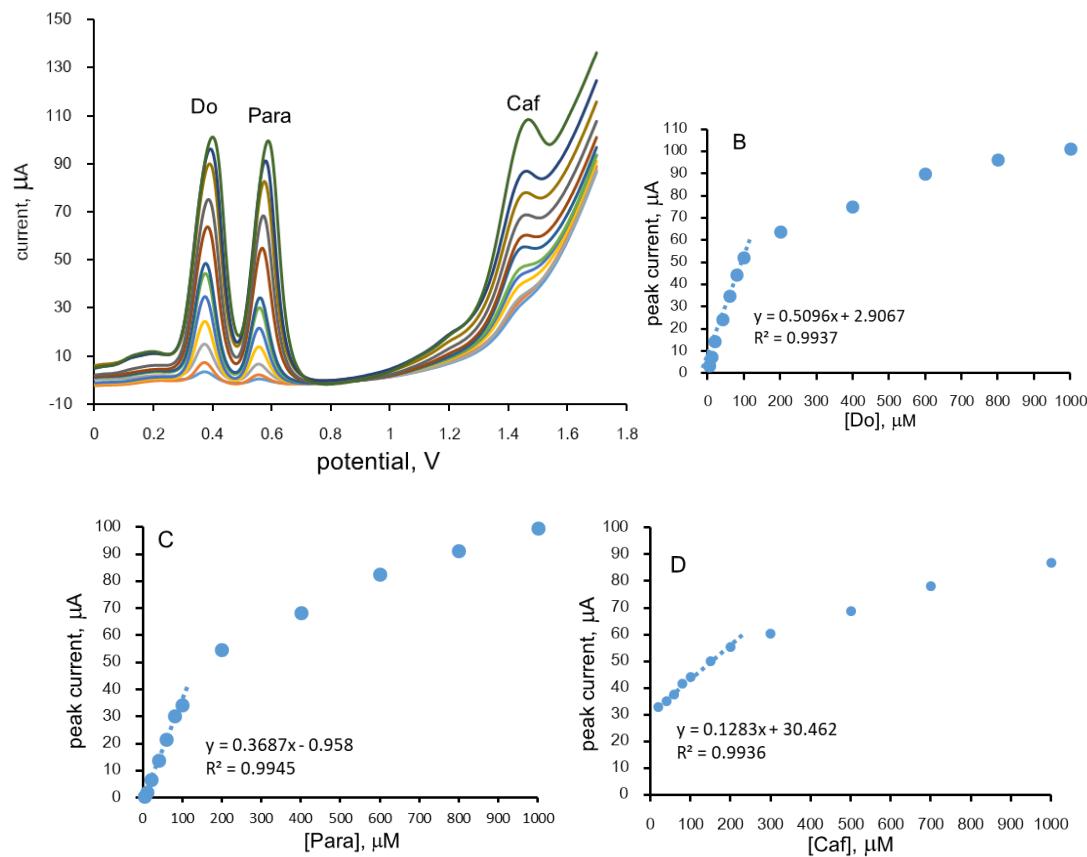


Figure 8. (A) Square wave voltammogram of 200 μ M dopamine, 200 μ M paracetamol and 1mM caffeine at different deposition potential in acetate buffer pH 4.0 at rGO-PVP/GCE, **(B)** peak current of dopamine, paracetamol and caffeine with deposition potential.

Simultaneous determination of dopamine, paracetamol and caffeine


Based on the results described above, an analytical method was proposed for determination of Do, Para and Caf simultaneously at rGO-PVP/GCE. For this purpose, two cases were studied. In the first study, in a mixture of Do, Para and Caf, the concentration of one species changed while the concentrations of the other two remained constant. The results was shown in Figure 9. The SWV results show three well distinguished stripping peaks at potentials of 0.44, 0.63 and 1.49 V (vs Ag/Ag/Cl), corresponding to the oxidation of Do, Para and Caf, respectively. The detected potential difference of 0.14 V between Do and Para, and 0.86 V between Para and Caf is large enough for separate determination of the three substances in their mixture. As shown in Figure 9A, the current response of DO increases regularly as it concentration is increased at fixed concentrations of Para and Caf (their oxidation currents remain fairly constant). Similarly, Figure 9B and C show that the peak current responses of Para and Caf increase with the increase of their contents, while the peak currents of the other two compounds remain fairly stable. After first case, to study the possibility of rGO-PVP/GCE for the simultaneous determination of Do, Para and Caf, the stripping peak currents of these species by simultaneously varying their concentrations in a mixture were measured. As can be seen in Figure 10, the respective SWV curves for Do, Para and Caf at 0.40, 0.53 and 1.43 V present good linearities in the investigated concentration ranges. Analytical parameters are presented in Table1. The sensitivity of the proposed method was checked in terms of the limit of detection(LOD) values. LOD was calculated using the following equations: $LOD = 3s/m$, where s is the standard deviation of the peak current (three runs) of the blank which the related linearity range, and m the slope of the related calibration plot.

These results are compared with other modified electrodes reported in the literature (Table 2). An electrode considerably improves current response (sensitivity) detection limit of three analyte simultaneous as compared to other reported method.

Figure 9. Square wave voltammogram of dopamine, paracetamol and caffeine obtained at different concentrations of **(A)** dopamine (10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000 μM) in the presence of 200 μM paracetamol and 1 mM caffeine; **(B)** paracetamol (10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000 μM) in the presence of presence of 200 μM dopamine and 1 mM caffeine; **(C)** Caffeine (40, 60, 80,

100, 200, 400, 600, 800, 1000 μM) in the presence of 200 μM paracetamol and 200 μM dopamine in acetate buffer pH 4.0, deposition potential +0.1 V 30 s, at rGO-PVP/GCE.

Figure 10. Square wave voltammogram of dopamine, paracetamol and caffeine obtained at different concentrations of (A) dopamine paracetamol 5, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000 μM and caffeine 20, 40, 60, 80, 100, 150, 200, 300, 500, 700, 1000, 2000 ; in acetate buffer pH 4.0, deposition potential +0.1 V 30 s, at rGO-PVP/GCE (B) (C) (D).

Table 1: The calibration characteristics of Do, Para and Caf obtained at rGO-PVP/GCE.

Compound	Linear working range (μM)	Linear regression equation	R^2	LOD (μM)
Do	5-100	$Ip(\mu\text{A}) = 0.05096[\text{Do}](\mu\text{M}) + 2.9067$	0.9937	0.81
Para	5-100	$Ip(\mu\text{A}) = 0.3687[\text{Para}](\mu\text{M}) + 0.958$	0.9945	0.16
Caf	20-200	$Ip(\mu\text{A}) = 0.1283[\text{Caf}](\mu\text{M}) + 30.46$	0.9936	19.6

Data for all the three compounds simultaneously

Table 2: Comparison for the simultaneous determinations of Do, Para and Caf at different modified electrodes

Electrode	Technique	Species	Linear range μM	Detection limit, μM	Ref.
BDD	MPA- HPLC	Para	50-1298	0.66	20
		Caf	51.4-1324	0.87	
Poly (AHNSA)	SWV	Para	10-125	0.45	21
		Caf	51.4-1324	0.87	
EIGPU	DPV	Para	1-40	0.84	18
		Caf	4-200	1.60	
GCE-M221- Fe_3O_4	DPV	Para	50-200	16	13
		Caf	20-900	23	
AG-NA/GCE	DPV	Do	0.5-35	0.33	14
		Para	0.05-20	0.031	
AuNPs/SDS- LDH/GCE	DPV	Do	0.5-300	not report	15
		Para	1-400	not report	
NiO-CuO/graphene	SWV	Do	0.5-20	0.17	16
		Para	4-400	1.33	
EDDPT/GO/CPE	DPV	Do	100-600	not report	17
		Para	100-600	not report	
rGO-PVP/GCE	SWV	Do	5-100	0.81	this
		Para	5-100	0.16	work
		Caf	20-200	19.6	

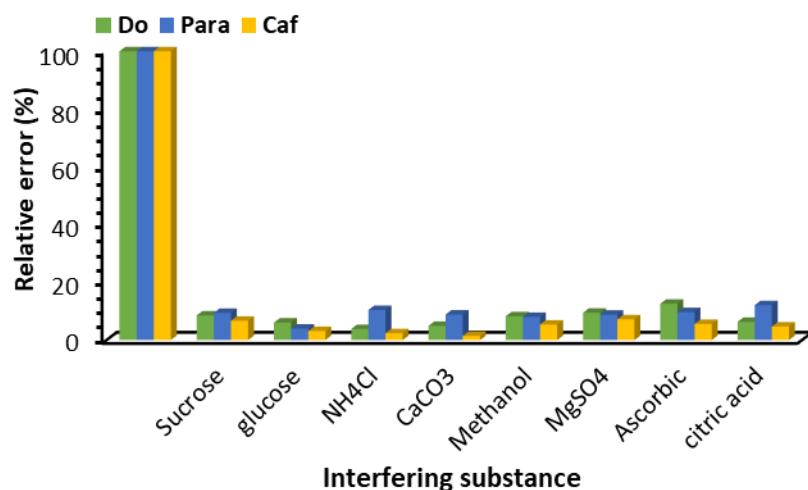
BDD: Boron-doped diamond film

Poly(AHNSA): poly(4-amino-3-hydroxynaphthalene sulfonic acid)

PNBMGCE: poly(Nile blue) modified glassy carbon electrode

EIGPU: polyurethane screen-printed composite electrode

GCE-M221- Fe_3O_4 : Cassava Starch- Fe_3O_4 nanoparticles modified glassy carbon electrode


AG-NA/GCE: graphene Nafion modified glassy carbon electrode

AuNPs/SDS-LDH/GCE: gold nanoparticles and a layered double hydroxide sodium modified with dodecylsulfate (SDS-LDH) modified glassy carbon electrode

EDDPT/GO/CPE: carbon paste electrode modified with graphene oxide and 2-(5-Ethyl-2,4-dihydroxyphenyl)-5,7-dimethyl-4H-pyrido[2,3-d][1,3]thiazine-4-one

Effect of interferences on the behaviors of Do, Para and Caf

Under optimal experimental conditions, the potential influence of some interference was also investigated to evaluate the anti-interferential ability of the modified electrode for the determination of Do, Para and Caf. Most common usual interference being derived from any of the 1mM glucose, sucrose, citric acid, , NH_4^+ , Mg^{2+} , Ca^{2+} , SO_4^{2-} , CO_3^{2-} and 0.1 mM ascorbic acid in 10 μM Do, Para and 100 μM Caf. Among these compounds, the interferences from any of Do, Para and Caf are very important because their oxidation peak potential are close to each other and they usually are present in real biological samples simultaneously. The results are shown in Figure 11, it suggesting that the presence of interference species causes the negligible amount of signal changes (less than 10%) only, which proposed that the rGO-PVP/GCE exhibits the excellent selectivity for electrochemical detection of Do, Para and Caf.

Figure 11. The corresponding relative error diagram from peak current of Do, Para and Caf for interference study.

Finally, the practical application of the proposed modified electrode was showed by simultaneously determining the concentrations of Do, Para and Caf commercial pharmaceutical, beverage and biological samples by means of the standard addition method. The results obtained are summarized in Table 3 and 4. It was found that the results obtained by the proposed method agree well with the labelled contents. Recovery tests were also performed and the mean results of three analysis for added Do, Para and Caf in urine sample ranged from 94.6 to 103.4%. This shows the possible applicability of rGO-PVP/GCE for the determination of Do, Para and Caf in real samples without any interference.

Table 3. Results obtained of paracetamol and caffeine in pharmaceutical formulations and energy drink using the rGO-PVP/GCE methods.

Sample	Compound	Found	Declared by manufacturer
Energy drink	Caffeine	43.4 \pm 2.5 mg/150mL	50 mg/150mL
Paracetamol syrup	Paracetamol	245 \pm 11 mg/5mL	250 mg/5mL

Mean \pm s (n=3)

Table 4. Detection results of dopamine paracetamol and caffeine in biological sample

Sample	Compound	Added (μ M)	Found (μ M)	Recovery (%)
Urine	dopamine	20	18.92	94.6
	Paracetamol	20	19.15	95.8
	caffeine	100	103.4	103.4

n=3

References

- [1] Österholma, A., Lindfors, T., Kauppila, J. Damlin. P., Kvarnström, C. (2012). *Electrochemical incorporation of graphene oxide into conducting polymer films*. **Electrochimica Acta**, 83, 463– 470.
- [2] Lee, S., Park, S.K., Choi, E., & Piao, Y. (2016). Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. **Journal of Electroanalytical Chemistry**, 766, 120-127.
- [3] Yiğit, A., Yardıman, Y., Çelebi, M. Levent, A., Şentürk, A. (2016). Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. **Talanta**, 158, 21–29.
- [4] Gasnier, A., Pedano, M. L., Rubianes, M. D., Rivas, G. A. (2013) Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH. **Sensors and Actuators B**, 176, 921– 926.

[5] Toh, S. Y., Loh, K. S., Kamarudin, S. K., Daud, W. R. W. (2014) Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. **Chemical Engineering Journal**, 251, 422-434.

[6] Paredes, J.I., Villar-Rodil,S., Solís-Fernandez, P., Martínez-Alonso, A., Tascón, J.M.D. (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. **Langmuir** 25, 5957–5968.

[7] Adhikari, B., Govindhan, M., Chen, A. (2015) Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor. **Electrochimica Acta**, 162, 198-204.

[8] Deng, P., Xu, Z., Li, J. (2014) Simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol based on an acetylene black paste electrode modified with a graphene-chitosan composite. **Microchim Acta**, 181, 1077–1084.

[9] Basirun, W.J., Sookhakian, M., Baradaran, S., Mahmoudian, M.R., Ebadi, M. (2013) Solid-phase electrochemical reduction of graphene oxide films in alkaline solution. **Nanoscale Res. Lett.** 8 (397), 1-9.

[10] Liu, Q., Zhu, X., He, X., Liang, Y., Xu, M. (2012) Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. **Talanta** 97, 557–562.

[11] Chitravathi, S., Munichandraiah N. (2016) Voltammetric determination of paracetamol, tramadol and caffeine using poly(Nile blue) modified glassy carbon electrode. **Journal of Electroanalytical Chemistry** 764, 93–103.

[12] De Silva, K. H., Huang, H. H., Yoshimura, M. (2018) Progress of reduction of graphene oxide by ascorbic acid. **Applied Surface Science** 447, 338-346.

[13] Mulyasuryani, A., Tjahjanto, R. T., Andawiyah, R. (2019) Simultaneous Voltammetric Detection of Acetaminophen and Caffeine Base on Cassava Starch— Fe_3O_4 Nanoparticles Modified Glassy Carbon Electrode **Chemosensors** 7,2-11.

[14] Kim, D., Lee, S., Piao Y. (2017) Electrochemical determination of dopamine and acetaminophen using activated graphene-Nafion modified glassy carbon electrode. **Journal of Electroanalytical Chemistry** 794, 221-228.

[15] Yin, H., Shang, K., Meng X., Ai, S. (2011) Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophilic layered double hydroxide. **Microchim Acta** 175, 39–46.

[16] Liu, B., Ouyang, X., Ding, Y., Luo, L., Xu, D., Ning, Y. (2016) Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. **Talanta** 114-121.

[17] Tezerjani, M. D., Benvidi, A., Firouzabadi, A. D., Ardakani, M. M., Akbari, A. (2017) Epinehrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and

graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine. **Measurement** 101, 183-189.

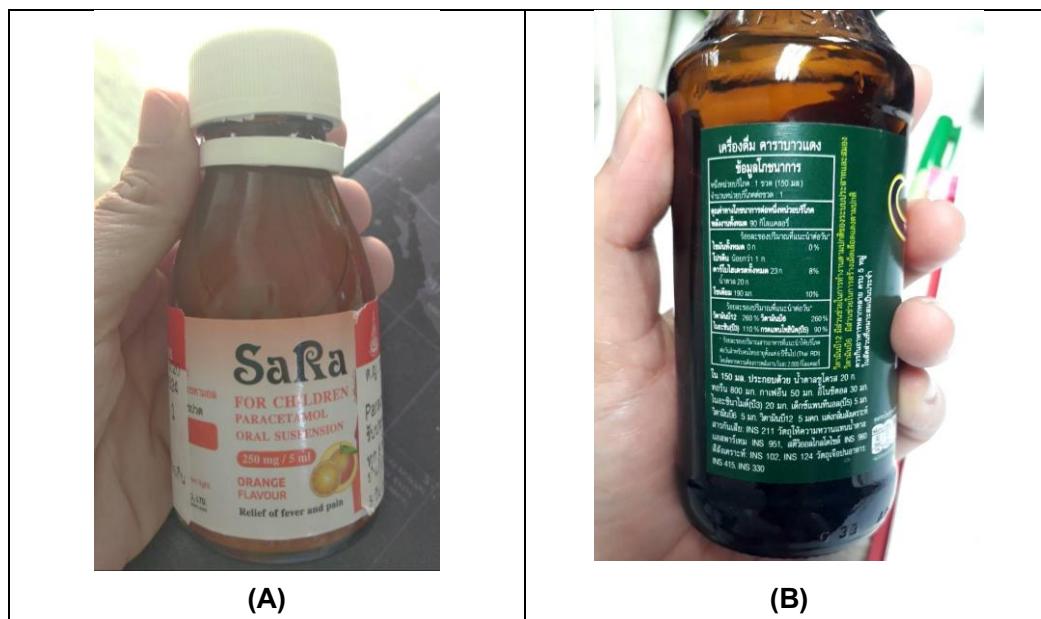
[18] Saciloto, T. R., Cervini, P., Cavalheiro, É. T. G. (2013) Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screen-printed composite electrode **J. Braz. Chem. Soc.** 24, 1461-1468.

[19] Eisele, A. P. P., Clausen, D. N., Tarley, C. R. T., Dall'Antonia, L. H., Sartori, E. R. (2013) Simultaneous Square-Wave Voltammetric Determination of Paracetamol, Caffeine and Orphenadrine in Pharmaceutical Formulations Using a Cathodically Pretreated Boron-Doped Diamond Electrode. **Electroanalysis** 25(7), 1734 – 1741.

[20] W. C. Silva, P. F. Pereira, M. C. Marra, D. T. Gimenes, R. R. Cunha, R. A. B. Silva, R. A. A. Munoz, E. M. Richter. (2011) Simple Strategy for Simultaneous Determination of Paracetamol and Caffeine Using Flow Injection Analysis with Multiple Pulse Amperometric Detection **Electroanalysis** 23(12), 2764-2770.

[21] M. Tefera, A. Geto, M. Tessema, S. Admassie (2016) Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode **Food Chemistry** 210, 156-162.

6. Conclusion and Discussion


Reduced graphene oxide was prepared by graphite powder and characterised by FT-IR, Raman, SEM and TGA techniques. Combining the unique electronic properties of reduced graphene oxide with the excellent properties of PVP, rGO-PVP modified film was constructed on the surface of GCE conveniently and firmly. In SWV response large peak potential separation and high peak current could be observed at the obtained electrode. Under the optimal condition, rGO-PVP/GCE showed excellent simultaneously the electro-oxidation of dopamine, paracetamol and caffeine. The proposed electrode system results a wide linear range, low limit of detection and selectivity of dopamine, paracetamol and caffeine. Moreover, this method very able for accurate determination in beverage drink, pharmaceutical and biological sample.

7. Appendix

The calculation LOD of dopamine, paracetamol and caffeine

		current (μ A) at potential of		
	time	dopamine	paracetamol	caffeine
	1	0.5421	0.0223	26.1080
	2	0.4529	0.0399	26.6521
	3	0.3444	0.0524	27.1839
	4	0.2527	0.0627	27.8714
	5	0.1555	0.0791	28.4582
standard deviation (s) (n=5)		0.1377	0.0194	0.8381
sensitivity (m, slope from linear range)		0.5096	0.3687	0.1283
LOD (3s/m) (μ M)		0.8108	0.1577	19.5963

Picture of declared label by manufacturer for pharmaceutical formulations (A) and energy drink (B)

8. Output (Acknowledge the Thailand Research Fund)

8.1 International Journal Publication

1) Sub

mission to **International Journal of Electrochemical Science** on 29 April 2020

Title “Voltammetric Determination of Gallic Acid with a Glassy Carbon Electrode modified with Reduced Graphene Oxide” (First author)

2) Manuscript for submission to International Journal

Title “Electrochemical determination of paracetamol base on single wall carbon nanotube/Poly(vinylpyrrolidone) modified pencil lead electrode” (Frist and Corresponding author)

8.2 Application

- no -

8.3 Others e.g. national journal publication, proceeding, international conference, book chapter, patent

- national journal publication -

วารสารวิจัยและพัฒนา มหา. “การตรวจวัด ไอออนอะก์ (II) และ ไอออนแแคดเมียม (II) พร้อมกันโดย ใช้เครื่องชี้วัดพลาสติก (III) / บีสมัท (III) พิล์ม บนอิเล็ก trode ไส้ดินสอตันทุนต่ำ. 41: 235–245” (2561) (Frist and Corresponding author)

Voltammetric Determination of Gallic Acid with a Glassy Carbon Electrode modified with Reduced Graphene Oxide

Sireerat Lisnund,¹ Vincent Blay,² Kantapat Chansaenpak,³ Piyanut Pinyou^{4*}

¹ Department of Applied Chemistry, Faculty of Science and Liberal Arts Rajamangala University of Technology Isan, 744, Suranarai Rd., Nakhon Ratchasima 30000, Thailand: insireerat@gmail.com (S.L.)

² Division of Biomaterials and Bioengineering, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA: vincent.blayroger@ucsf.edu (V.B.)

³ National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand; kantapat.cha@nanotec.or.th (K.C.)

⁴ School of Chemistry, Institute of Science, Suranaree University of Technology, 111, Maha Wittayalai Rd., Nakhon Ratchasima 30000, Thailand; piyanutp@sut.ac.th (P.P.)

* Correspondence: piyanutp@sut.ac.th

Abstract

Gallic acid is a valuable compound that is present or incorporated in a variety of foods, beverages, cosmetics, and other chemical formulations. However, the cost-efficient determination of gallic acid over a wide range of concentrations is an unsolved problem. In this work, we propose a reduced graphene oxide (rGO)-modified electrode design that is easy to manufacture in a highly repeatable manner, does not involve toxic chemicals or fragile components, and offers superior sensitivity and linear dynamic range. Application of the electrode is demonstrated and optimized with common cyclic voltammetry and square-wave voltammetry system; the latter being recommended for quantification. The electrode is reusable, very robust to common interferents, and is shown to yield precise determinations in real samples, even at very low gallic acid concentrations.

Keywords: voltammetry; reduced graphene oxide; glassy carbon electrode (GCE); gallic acid; square-wave voltammetry

1. INTRODUCTION

Phenolic acids and polyphenols are secondary metabolites produced by some plants that are receiving increasing attention by industry and society due to their health implications [1]. Gallic acid (GA, 3,4,5-trihydroxybenzoic acid) is one of the most abundant phenolic acids in plants and is the building block of many polyphenols (hydrolysable tannins) [2]. GA is abundant in foods like tea, wine, and berries. Fast and simple determination of GA is essential in the quality control and authentication of

foods. The total phenolic content or antioxidant capacity of a sample is typically expressed as gallic acid equivalents. Gallic acid is also extracted to produce food additives and nutraceuticals [3] and, because of its bioactive properties -namely antioxidant but also antimicrobial, hepatoprotective, anti-HIV-1, etc. [4, 5], it is also widely used in the cosmetic industry and pharmaceutical research.

In research, a variety of methods have been used for the detection of gallic acid [6]. A common approach involves liquid chromatography separation followed by UV or electrochemical detection (ED) [6, 7]. However, for industrial applications, it is desirable to develop methods that can provide determinations requiring less capital investment, quickly and easily, involving few or no reagents and little sample preparation. This makes electrochemical sensors very attractive. Multiple electrochemical sensors have been proposed [8-15], which often would be used after sample pretreatment with liquid-liquid or solid-phase extraction. Despite the advances, there is still room to improve the sensitivity, linear range, cost and, especially, to minimize interferences by other compounds present in the matrix, which would simplify sample processing and improve accuracy. In addition, a better understanding of the effect of matrix and instrumental variables is necessary for the sensors to be applicable in a variety of samples and laboratories.

In this work, we propose a novel electrode design based on reduced graphene oxide (*r*GO). The *r*GO holds many benefits, including, low cost, excellent electrical properties, and ease of modifications due to its controlled amount of oxygen containing functional groups on its surface [16]. As the *r*GO prepared by electrochemical reduction has advantages over the one made by chemical reduction in terms of simplicity and avoidance of hazardous chemicals for the reduction of GO [17], we applied the electrochemical method for electrode preparation in this work. Next, the electrode was tested under a variety of conditions, such as pH and measurement parameters, to find the best conditions for the determination of GA. The interference study and the stability over repeated measurement cycles of the electrode were then evaluated in acidic buffer solutions. This *r*GO-modified electrode also demonstrated a wide analytical range for the GA determination with low limit of detection. Finally, the capability of this electrode for GA detection has been investigated in real samples, such as, drinking water and tea, to ensure its real-life applications.

2. EXPERIMENTAL

2.1 Reagents and Solutions

Gallic acid was obtained from Sigma-Aldrich (Missouri, USA). Potassium ferricyanide was purchased from Acros (Geel, Belgium). Citric acid and nitric acid were obtained from Carlo-Erba (Milan, Italy). Nitric acid, sulfuric acid, hydrogen peroxide, potassium permanganate, and sodium acetate were purchased from QRëC (New Zealand). All chemicals used in this work were of analytical

grade purity. Graphite was obtained from ChemPUR (Karlsruhe, Germany). All the solutions were prepared with deionized (DI) water ($R = 18.2 \text{ M}\Omega\cdot\text{cm}$).

2.2 Apparatus

A potentiostat/galvanostat Autolab model PGSTAT 204 (Metrohm Autolab B.V., Netherlands) was employed for the electrochemical measurements. Voltammetric experiments were carried out with a three-electrode system at room temperature. The reference electrode was an Ag/AgCl electrode, and the auxiliary electrode was a platinum sheet electrode. A glassy carbon electrode (3 mm diameter) was employed as the conductive substrate before GO modification. The chemical functionalities in GO and *r*GO were investigated with a Spectrum 100 FT-IR spectrometer (PerkinElmer, USA).

2.3 Synthesis of Graphene oxide

Graphene oxide was prepared by adapting Hummers' method [18]. 1 g of graphite was added and dispersed in 36 mL 98% H_2SO_4 . The mixture was continually stirred for 1 h. Then, the mixture was kept in an ice bath while 56 % HNO_3 was slowly added under agitation. Next, 5 g KMnO_4 was gradually added to the mixture while keeping the mixture in the ice bath. The resulting mixture was stirred at room temperature for 12 h. Then, 120 mL of deionized water were added and stirred for 2 h. Next, 6 mL of H_2O_2 were added to the mixture and further stirred for 2 h. After this step, the mixture was left for at least 24 at room temperature. The mixture was separated into two layers: a colorless supernatant and a yellow precipitate. The supernatant was removed from the mixture and the yellow precipitate was washed with 250 mL deionized (DI) water. Finally, 1 mL 37% HCl and 10 mL 3% H_2O_2 were added sequentially to the mixture and stirred for 2 h. The resulting mixture was centrifuged to obtain the precipitate. The precipitate recovered was washed with 600 mL DI water and centrifuged to remove the supernatant. This washing was repeated several times until the pH of the supernatant was 6.7. The precipitate of GO was kept in a freezer at -10 °C for 12 h. Then, the frozen precipitate was kept in a lyophilizer for 24 h before storing in a fridge at -4 °C.

2.4 Reduced Graphene Oxide-modified Electrode

A glassy carbon electrode (GCE) (Metrohm, diameter 3mm) was successively polished on a polishing cloth using alumina powders of size 5, 1, and 0.5 microns, respectively. The electrode surface was rinsed with DI water and sonicated in ethanol for 3 min to remove the alumina. GO was electrochemically reduced to *r*GO using cyclic voltammetry by adapting the approach from [19]. 5 μL of graphite oxide 0.5 mg/mL was drop-casted on the electrode surface and the electrode was allowed to dry for 2 h at room temperature. The obtained GO-modified glassy carbon electrode was immersed in an acetate buffer at pH 5. To obtain *r*GO, the potential of the GO-modified glassy carbon was scanned between -1.5 and 1.5 V (vs. Ag/AgCl electrode) with the scan rate of 100 mV/s for 30 cycles. The

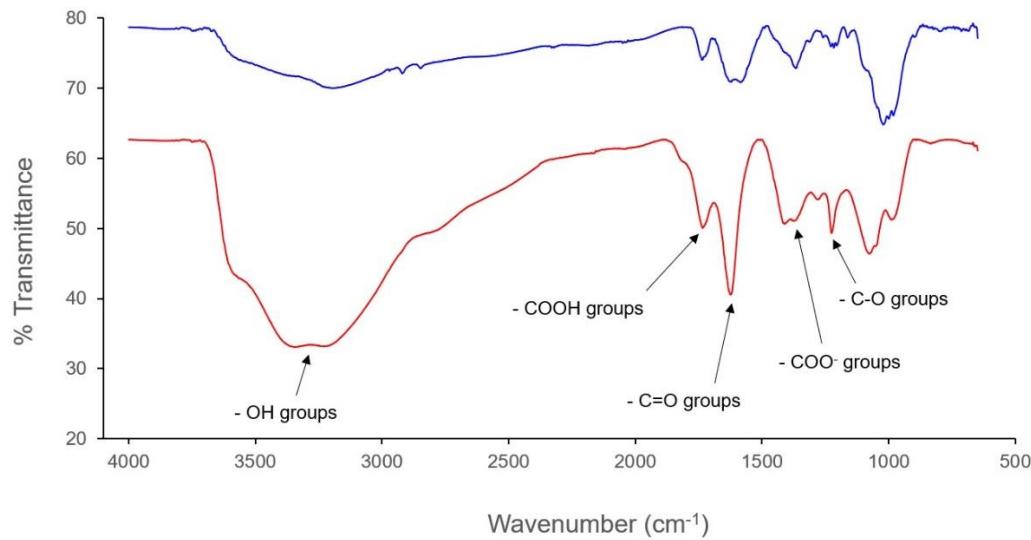
resulting *r*GO-modified glassy carbon electrode was thoroughly rinsed with deionized water before performing the voltammetric measurements.

To confirm the active surface area of the electrode, cyclic voltammetry was carried out in the solution containing 5 mM K₃[Fe(CN)₆] and 0.1 M KCl as a supporting electrolyte [20]. The electroactive surface area of the electrodes was calculated by using the oxidation peak current obtained from the CV using the Randles-Sevcik equation as following:

$$I_p = 2.69 \times 10^5 A D^{1/2} n^{3/2} v^{1/2} C$$

where A is the electroactive surface area of the electrode (cm²), n is the number of the electron involved the redox reaction, D is the diffusion coefficient (cm²/s), v is the scan rate applied to the electrode (V/s), and C is the concentration of the electroactive species (mol/L). By using the value for the diffusion coefficient of [Fe(CN)₆]³⁻ of 6.30 × 10⁻⁶ cm² s⁻¹, the electroactive surface area of each electrode was obtained.

2.5 Analytical procedure and sample preparation


The modified electrodes were used to study the electrochemical oxidation of gallic acid at varying concentrations in 0.1 M citrate buffer at pH 1.8. Cyclic voltammetry was demonstrated as a possible method, which is widely available. Subsequently, square-wave voltammetry (SWV) was demonstrated as a superior method for gallic acid determination with optimized SWV parameters (a pulse size of 10 mV, a potential step of 2.5 mV and a frequency of 15 Hz) in the potential range between 0.4 to 0.7 V. The accumulation time for allowing the gallic acid to adsorbed on the electrode surface before the SWV measurement was 180 s at the open-circuit potential.

Drinking water (brand ‘Crystal’) was directly analyzed by the standard addition method after spiking in known concentrations of gallic acid. For a green tea sample (purchased from the local market in Chiang Rai), the procedure was adapted from [11] 50.4 mg of green tea powder was dissolved in 10 mL DI water and boiled at 80 °C for 10 min under stirring. The tea sample was allowed to cool down before filtrating through a Whatman filter paper no.1 and then DI water was added to a volume of 50 mL. GA quantification in tea was performed by 25-fold dilution of the green tea sample with the citrate buffer at pH 1.8 using the standard addition method. Percentual recovery and percentual relative standard deviation were calculated for method validation.

3. RESULTS AND DISCUSSIONS

3.1 Characterization of the electrodes prepared

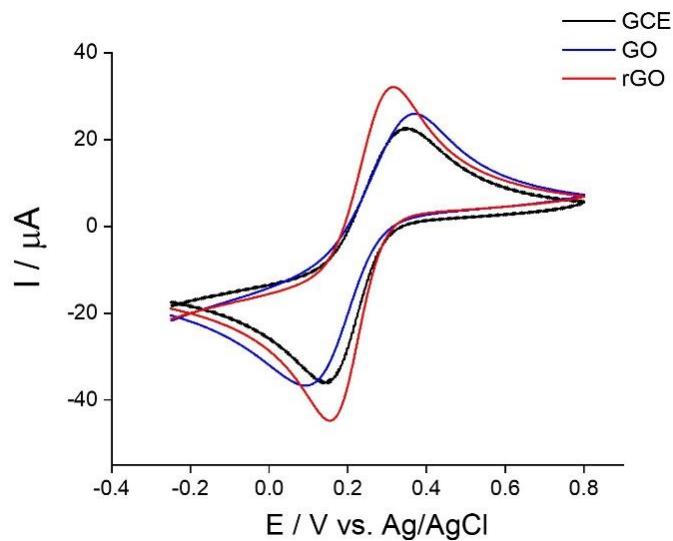

FT-IR spectroscopy was used to confirm the formation of *r*GO by electrochemical reduction. The IR spectra of graphene oxide (GO) and the prepared reduced graphene oxide (*r*GO) are shown in Fig. 1. The broad peak found in both GO and *r*GO at 3350 cm^{-1} is assigned to the -OH stretching vibration. In the GO spectrum, the band at 1735 cm^{-1} corresponds to -COOH (carboxylic acid group), while the peak at 1625 cm^{-1} is assigned to -C=O (carbonyl group). The bands at 1411 and 1226 cm^{-1} correspond to the stretching of -COO⁻ and -CO (epoxy group), respectively. By contrast, in *r*GO, the transmittance of these bands significantly increased relative to GO. This is because the electrochemical reduction process decreases the amount of functional groups including -OH, -C=O, -COOH, -COO⁻ and -CO. These results are consistent with previous reports [21-25].

Fig. 1 FT-IR absorption spectra of *r*GO (blue) and GO (red).

Evaluating the oxidation and reduction of $\text{K}_3[\text{Fe}(\text{CN})_6]$ is commonly used as a test reaction to characterize the electrochemical properties of new electrode designs. The effects of modifying the GCE with GO and *r*GO were investigated by measuring the cyclic voltammograms of the bare GCE, GO/GCE and *r*GO/GCE electrodes in $5\text{ mM K}_3[\text{Fe}(\text{CN})_6]$ containing 0.1 M KCl as supporting electrolyte. The results are shown in Fig 2. The *r*GO/GCE showed the highest peak current (I_p) as well as the smallest peak-to-peak separation (ΔE_p), which indicates a fast electron transfer for the reversible redox-couple $[\text{Fe}(\text{CN})_6]^{3-/-4-}$ [26]. The estimates of electroactive surface area (Table 1) indicate that the *r*GO-modified

electrode had the highest electroactive surface area. This may be due to a lower degree of structural disorder compared to that of GO, which possesses higher numbers of defects and functionalities and lead to poor electrical conductivity [16].

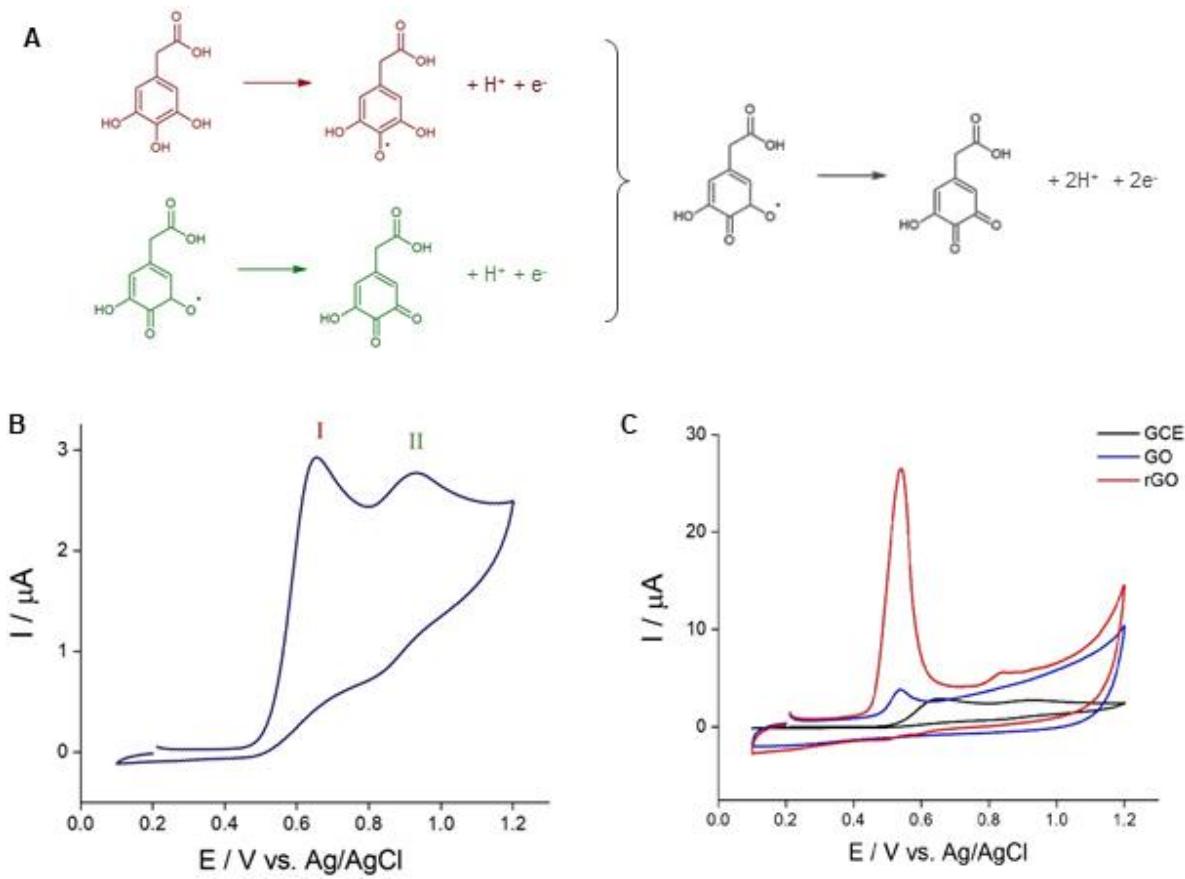
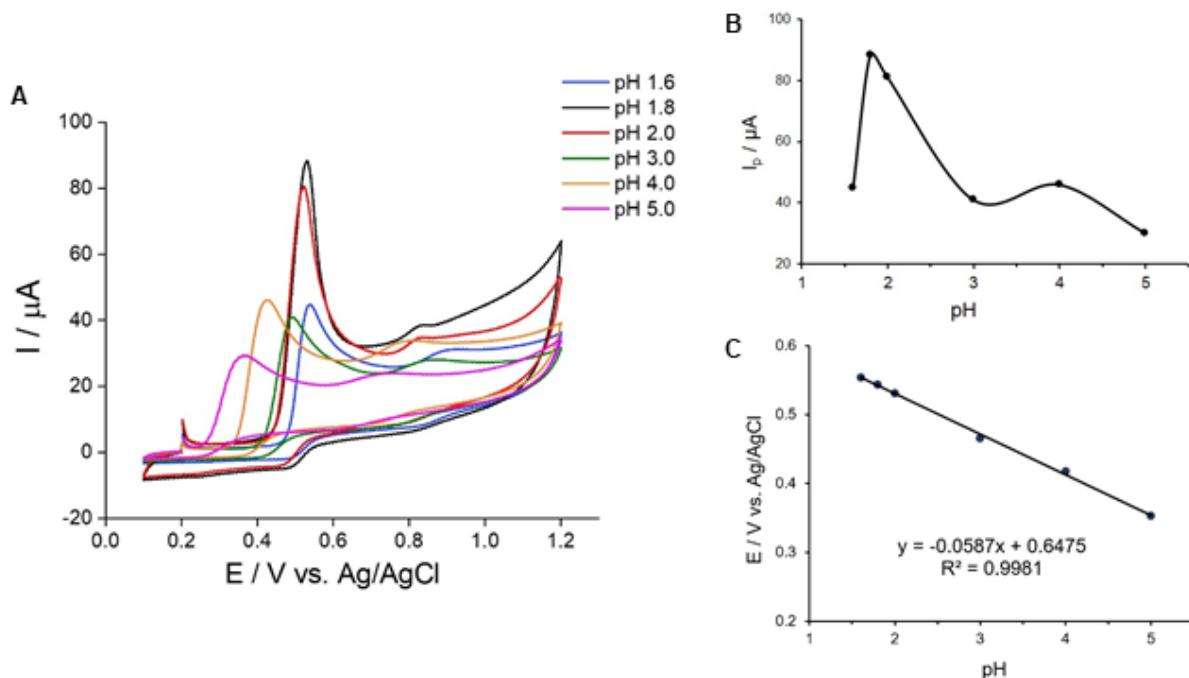


Fig. 2 Cyclic voltammograms of GCE (black); GO (blue); *r*GO (red) in (A) 5 mM $\text{K}_3[\text{Fe}(\text{CN})_6]$ in 0.1 M KCl at the scan rate 50 mV s^{-1} .

Table 1. Comparison of the peak current, peak separation, and electroactive surface area for the electrodes with different modification.

Electrode	Peak current (μA)	Peak-to-peak separation (V)	Electroactive surface area (cm^2)
GCE	29.125	0.200	0.0235
GO/GCE	29.750	0.276	0.0295
rGO/GCE	38.656	0.161	0.0422

3.2 Electrochemical oxidation of gallic acid on the electrodes prepared


Fig. 3 (A) Chemical structure of gallic acid and its two-step oxidation [27]. (B) Cyclic Voltammogram of 1 mM gallic acid at the scan rate of 100 mV/s in citrate buffer pH 1.8 with a glassy carbon electrode (GCE). (C) Cyclic voltammograms of the electrocatalytic oxidation of 1 mM gallic acid in 0.1 M citrate buffer (pH 1.8) at a scan rate 100 mV/s over the different electrodes.

The oxidation of gallic acid consists of two steps, as shown in the cyclic voltammogram in Fig. 3(A-B). Oxidation peak I corresponds to the first oxidation of gallic acid, involving the loss of a proton and an electron from the *para*-hydroxy group, resulting in a semiquinone product. The second oxidation corresponds to the loss of a proton and an electron at the *meta*-hydroxy group, which lead to the formation of the quinone [27]. When the scan direction was reversed towards negative potential values (cathodic scan), no reduction peak was observed, indicating that the electrochemical oxidation of gallic acid is an irreversible process [28].

The electrochemical oxidation of 1 mM gallic acid was studied on the different electrodes. As shown in Fig 2 (C), the CV for gallic acid obtained from rGO/GCE showed much higher oxidation peak current compared to those of GO and bare GCE (a value 12-fold higher than that of bare GCE). The essential benefit of using rGO for gallic acid detection is a significant decrease in the amounts of carboxyl and hydroxyl groups on GO. These groups are likely to cause a repulsive interaction with

carboxylic acid groups of the substrate. As a result, the electrochemical oxidation rate toward gallic acid obtained with the *r*GO-modified electrode was remarkably improved. With the *r*GO-modified electrode, the most distinct oxidation peak was the first peak (I), while the second peak (II) evidenced lesser oxidation. This may be attributed to the instability of the semiquinone radicals, which could quench to a significant extent, forming oxidized products by recombination, before the potential reaches sufficiently high values for their electrochemical oxidation on the electrode surface [29]. Indeed, other studies have shown that increasing the scan rate over GCE increases the ratio of peak currents II to I [28], which agrees with this interpretation.

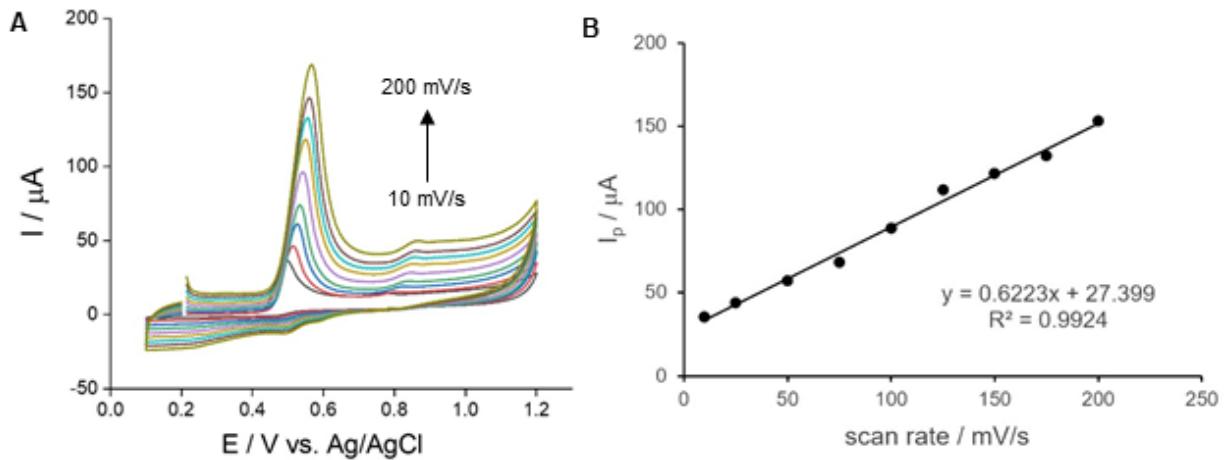

3.3 Optimizing the study of gallic acid by cyclic voltammetry

Fig. 4 (A) Cyclic voltammograms of 1 mM gallic acid at various pH ranging from 1.6 to 5.0 with a *r*GO/GCE electrode at a scan rate of 100 mV s⁻¹. (B) Effect of pH on the anodic peak current, and (C) dependence of peak potential on pH.

The effect of pH on the anodic peak of 1 mM gallic acid was investigated in citrate buffer in the pH range from 1.6 to 5.0 by cyclic voltammetry at a scan rate of 100 mV/s. As depicted in Fig. 4(A-B), the peak current increased from pH 1.6 to 1.8, and then declined as the pH was further increased from 1.8 to 5.0. The oxidation of gallic acid is strongly dependent on the pH of the solution and explicitly occurs at pH 2, as previously reported [30]. Therefore, pH 1.8 was chosen in the rest of the study, as it yielded the highest oxidation current from gallic acid. The anodic peak potential (E_{pa}) of gallic acid decreased linearly with an increase in pH, as shown in Fig. 4(C). The linear dependency between peak potential

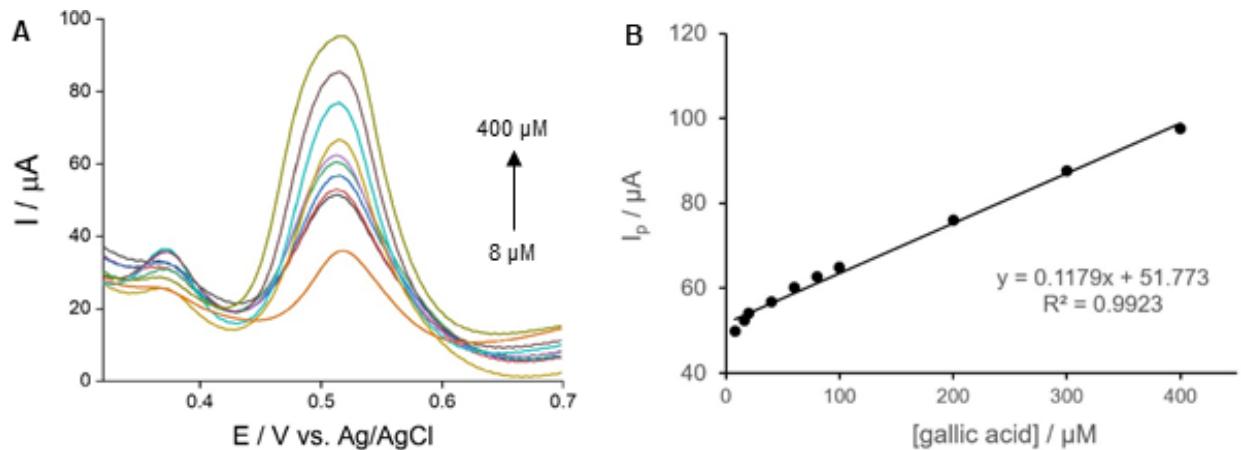

and pH was E_{pa} (V) = $-0.0587pH + 0.6475$ ($R^2 = 0.9981$). The slope value obtained, 58.7 mV, is very close to the theoretical Nernst value of 58 mV at 25 °C for a two-electron and two-proton process and is in agreement with previous works [12, 31].

Fig. 5 (A) Cyclic voltammograms of *r*GO/GCE for 1 mM gallic acid in 0.1 M citrate buffer pH 1.8 at the scan rates of 10, 25, 50, 75, 100, 125, 150, 175 and 200 mV s^{-1} (from inner to outer). (B) Relationship between the scan rate and the peak current.

The effect of the scan rate on the electrochemical oxidation peak of gallic acid for *r*GO/GCE was investigated in citrate buffer at pH 1.8 using cyclic voltammetry. The results are presented in Fig. 5(A). The oxidation process was studied by plotting the peak current against the scan rate used in the oxidation of gallic acid. A plot of the peak current vs. the square root of the scan rate was not linear (results not shown) suggesting that the process was not diffusion-controlled. By contrast, the peak current showed a linear dependence with the scan rate in the range 10 to 200 mV s^{-1} (R^2 of 0.9924), the dependence being $I_p = 0.6223v + 27.399$ (I_p : μA , v : mV/s) (Fig. 5(B)). Such linearity demonstrates that the electrochemical oxidation of gallic acid over the *r*GO-modified glassy carbon electrode prepared in this work is an adsorption-controlled process rather than a diffusion-controlled process [32].

3.4 Determination of gallic acid by square-wave voltammetry

Fig. 6 (A) SW Voltammograms for different concentrations from 8 to 400 μM of gallic acid at pH 1.8 with *r*GO/GCE and (B) the corresponding calibration curve for the quantification of gallic acid; SW pulse size 10 mV; SW frequency 15 Hz; potential step 2.5 mV.

To enhance the sensitivity for the detection of gallic acid, Square-Wave Voltammetry (SWV) was chosen, as it offers high sensitivity and enables the measurement with lower charging current than cyclic voltammetry [33]. A series of the SWV parameters including pulse size, potential step and frequency was investigated, the optimum values for the parameter were as follows: pulse-height of 10 mV, the potential step of 2.5 mV and frequency of 15 Hz and were used for all SWV experiments. Under the optimum condition, the corresponding voltammograms related to the electro-oxidation was obtained. The *r*GO/GCE electrode was applied to the quantification of gallic acid by SWV. Fig. 6(A) shows the SWV voltammograms obtained from gallic acid in the concentration range from 8 to 300 μM . The peak current increased linearly with the gallic acid concentration, as indicated in Fig. 6(B). The corresponding linear regression is: I_p (μA) = $0.1179\mu\text{M} + 51.773$ ($R^2 = 0.9923$), with a limit of detection of 0.42 μM .

The analytical characteristics of different methods published recently for the voltammetric detection of gallic acid were shown in Table 2. The *r*GO electrochemically modified glassy carbon proposed in this work shows a wide dynamic range as well as a low LOD compared to other proposals.

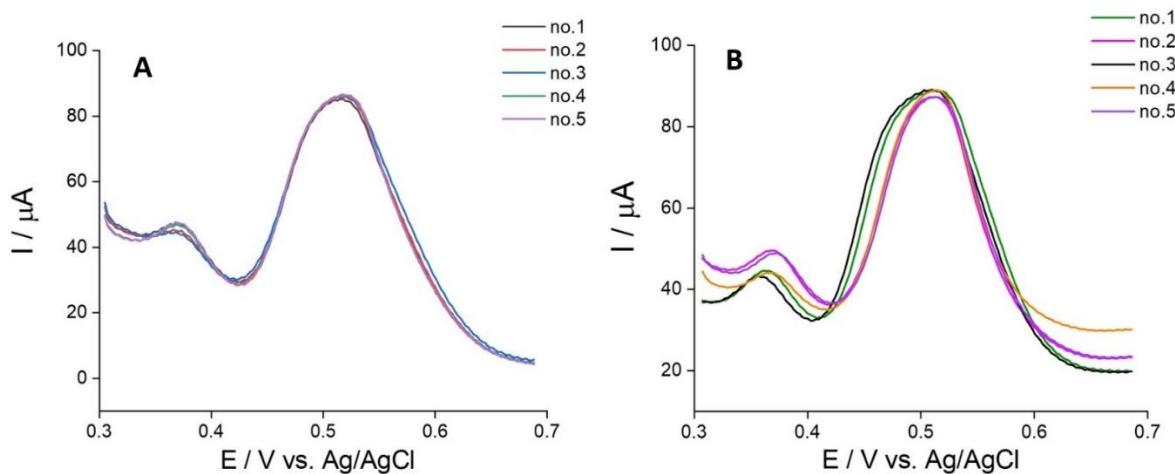
Table 2 Comparison of the analytical performance of different electrochemical methods for gallic acid determination.

Electrode	Method	Linear Range (μM)	LOD (μM)	Ref
rGO/carbon ceramic electrode	SWV	0.51 - 46.46	0.0867	[34]
Polyaminobenzene sulfonic acid functionalized SW-CNT /poly(pyrocatechol violet)/ GCE	DPV	10 -100	0.11	[35]
Polyepinephrine/GCE	SWV	1.0 – 20.0	0.66	[11]
Poly(glutamic acid)/rGO/GCE	DPV	0.03-480	0.01	[31]
Polymelamine/graphene/GCE	Amperometry	0.1 - 728.9	0.027	[36]
Hexagonal-prism-ZnO/GCE	Amperometry	0.1-130	0.02	[37]
Graphene/GCE	DPV	0.08-20	0.0012	[38]
ZrO ₂ nanoparticles/CPE	DPV	1-1000	0.124	[39]
rGO/GCE	SWV	8 - 400	0.42	This work

DPV: Differential pulse voltammetry

SW-CNT: Single-walled carbon nanotubes

SWV: Square-wave voltammetry


CPE: Carbon paste electrode

3.6 Repeatability, Reproducibility and Interference Studies

The repeatability of the measurements with the rGO-modified GCE was investigated by measuring the peak current from SWV of 1 mM gallic acid for 5 replicates (Fig. 7A). The relative standard deviation (%RSD) observed from the 5 peak currents was 0.50%, which is relatively low, indicating that the rGO/GCE can be employed for measuring the electrochemical signal of the gallic acid with good repeatability. The reproducibility of the proposed electrode design was evaluated by freshly preparing 5 electrodes modified with rGO and measuring the oxidation peak current of 1 mM gallic acid from the individual electrodes (Fig. 7B). The %RSD for peak currents obtained was 0.85%. This demonstrates that the electrode prepared in a simple manner from electrochemically reduced GO can produce highly reproducible results for gallic acid detection.

An interference study was carried on by comparing the peak current response from the oxidation of 60 μM gallic acid to those obtained in the presence of interfering species. The results for the influence of foreign substances are shown in Table 3. For example, ascorbic acid and caffeine are widely used in the food and beverage industry and contain ionizable and polar groups that could interfere with the determination. When ascorbic acid and caffeine were introduced at 30-fold higher concentrations than gallic acid, the peak currents for gallic acid observed were still maintained within $\pm 6.0\%$.

We also reasoned that some cations, including Ni^{2+} , Zn^{2+} , Na^+ and K^+ , could potentially interfere with the signal of gallic acid due to the formation of complexes, and were also investigated. The results also indicated that the presence of these metal ions, even at concentrations 300-fold higher than those of gallic acid did not cause any considerable change in the peak current of gallic acid. The results demonstrate that despite the presence of these common interferents, the *r*GO/GCE electrode can still be used for the determination of gallic acid thanks to its good selectivity.

Fig. 7 (A) SW Voltammograms acquired as part of the repeatability study and (B) of the reproducibility study in the electrochemical oxidation of 1 mM gallic acid at pH 1.8 over *r*GO/GCE; SWV pulse size 10 mV; frequency 15 Hz; potential step 2.5 mV.

Table 3 Effect of various interferents on the peak current in gallic acid determination with the *r*GO/GCE electrode in this work.

Substance	Amount (mM)	Peak current (μA)	% Deviation
60 μM gallic acid	-	95.14	-
NiSO_4	18	96.28	+1.20
ZnCl_2	18	89.50	-5.93
Na_2CO_3	18	99.00	+4.06
KNO_3	18	90.63	-4.74
Caffeine	0.54	99.44	+4.52
Ascorbic acid	0.54	92.89	-2.36

3.6 Validation of the *r*GO-modified electrode design for gallic acid determination

The validity of the proposed method for gallic acid determination was examined in water and tea samples, which contained 0.1 M citrate buffer pH 1.8. Gallic acid standards of known concentrations were also spiked into the samples in order to evaluate the percentual recovery. The determination of gallic acid in the samples was performed by the standard addition method. No gallic acid was found in the drinking water sample, while the concentration of gallic acid in the green tea sample was $8.77 \pm 0.17 \mu\text{M}$ ($n = 3$), which corresponds to 0.037 mg gallic acid/mg green tea. The recoveries for gallic acid in the beverage samples are close to 100%, showing the suitability of the electrode for the quantitative analysis of gallic acid.

Table 4 Recovery test for gallic acid in drinking water and green tea samples ($n = 3$).

Sample	Original conc. measured (μM)	Added (μM)	Detected (μM)	%Recovery	%RSD
Drinking water	-	5	5.21	104.2	2.88
Green tea	8.77	5	14.91	108.27	1.94

4. CONCLUSION

In this work, an electroanalytical method for gallic acid quantification using reduced graphene oxide (*r*GO) on glassy carbon electrode (GCE) was demonstrated. *r*GO can be prepared by the electrochemical reduction of graphene oxide, thus improving the electrical conductivity and chemical surface for this determination. The electrochemical behaviour of the *r*GO-modified electrode for the oxidation of gallic acid was investigated by cyclic voltammetry and square-wave voltammetry. The *r*GO-modified electrode displayed high sensitivity, a wide linear analytical range, as well as a low detection limit for gallic acid determination. The proposed method was successfully applied to the quantification of gallic acid in beverage samples, including tea and drinking water. The results obtained were reproducible with %RSD less than 5% and yielded a good percentual recovery, making it suitable for real applications.

Acknowledgements

The author thanks to the Thailand Research Fund (TRF) and Office of the Higher Education Commission (MRG) Grant No. MRG6180072 for financial support.

References

1. H. Cory, S. Passarelli, J. Szeto, M. Tamez, J. Mattei, *Front. Nutr.*, 5 (2018) 87.
2. D. Maria, L. Arianna Di, F.N. Seyed, S.T. Zeliha, M.N. Seyed, *Curr. Pharm. Biotechnol.*, 15 (2014) 362.
3. R. Álvarez, H. Araya, R. Navarro-Lisboa, C. Lopez de Dicastillo, *Food Technol. Biotechnol.*, 54 (2016) 462.
4. N. Kahkeshani, F. Farzaei, M. Fotouhi, S.S. Alavi, R. Bahrami, R. Naseri, S. Momtaz, Z. Abbasabadi, R. Rahimi, M.H. Farzaei, A. Bishayee, *Iran. J. Basic Med. Sci.*, 22 (2019) 225.
5. V. Saibabu, Z. Fatima, L.A. Khan, S. Hameed, *Adv. Pharmacol. Sci.*, 2015 (2015) 823539.
6. F.H.A. Fernandes, H.R.N. Salgado, *Crit. Rev. Anal. Chem.*, 46 (2016) 257.
7. J. Dobes, O. Zitka, J. Sochor, B. Ruttka-Nedecky, P. Babula, M. Beklova, J. Kynicky, J. Hubalek, B. Klejdus, R. Kizek, V. Adam, *Int. J. Electrochem. Sci.*, 8 (2013) 4520.
8. C. Chikere, N. Faisal, P. Kong-Thoo-Lin, C. Fernandez, *Nanomaterials-Basel*, 10 (2020) 537.
9. J.H. Luo, B.L. Li, N.B. Li, H.Q. Luo, *Sens. Actuators B Chem.*, 186 (2013) 84.
10. Z. Liang, H. Zhai, Z. Chen, H. Wang, S. Wang, Q. Zhou, X. Huang, *Sens. Actuators B Chem.*, 224 (2016) 915.
11. R. Abdel-Hamid, E.F. Newair, *J. Electroanal. Chem.*, 704 (2013) 32.
12. Y. Gao, L. Wang, Y. Zhang, L. Zou, G. Li, B. Ye, *Anal. Methods*, 8 (2016) 8474.
13. J. Tashkhourian, S.F.N. Ana, S. Hashemnia, M.R. Hormozi-Nezhad, *J. Solid State Electr.*, 17 (2013) 157.
14. S.M. Ghoreishi, M. Behpour, M. Khayatkashani, M.H. Motaghedifard, *Anal. Methods*, 3 (2011) 636.
15. M. Badea, F. di Modugno, L. Floroian, D.M. Tit, P. Restani, S. Bungau, C. Iovan, G.E. Badea, L. Aleya, *Sci. Total Environ.*, 672 (2019) 129.
16. P. Pinyou, V. Blay, L.M. Muresan, T. Noguer, *Mater. Horiz.*, 6 (2019) 1336.
17. X. Zhang, D. Zhang, Y. Chen, X. Sun, Y. Ma, *Chinese Sci. Bull.*, 57 (2012) 3045.
18. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, *ACS Nano*, 4 (2010) 4806.
19. A. Gholizadeh, D. Voiry, C. Weisel, A. Gow, R. Laumbach, H. Kipen, M. Chhowalla, M. Javanmard, *Microsyst. Nanoeng.*, 3 (2017) 17022.
20. D.S. Nayak, N.P. Shetti, *Sens. Actuators B Chem.*, 230 (2016) 140.
21. S.J. An, Y. Zhu, S.H. Lee, M.D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, R.S. Ruoff, *J. Phys. Chem.*, 1 (2010) 1259.
22. M.N.S. Hidayah, W.W. Liu, C.W. Lai, N.N. Zulkepli, C.-S. Khe, U. Hashim, H.C. Lee, *AIP Conf. Proc.*, 1892 (2017) 150002.

23. E. Andrijanto, S. Shoelarta, G. Subiyanto, S. Rifki, *AIP Conf. Proc.*, 1725 (2016) 020003.
24. T.F. Emiru, D.W. Ayele, *Egypt. J. Basic Appl. Sci.*, 4 (2017) 74.
25. N. Kumar, V.C. Srivastava, *ACS Omega*, 3 (2018) 10233.
26. D.P. Rocha, R.M. Dornellas, R.M. Cardoso, L.C.D. Narciso, M.N.T. Silva, E. Nossol, E.M. Richter, R.A.A. Munoz, *Sens. Actuators B Chem.*, 254 (2018) 701.
27. L.P. Souza, F. Calegari, A.J.G. Zarbin, L.H. Marcolino-Júnior, M.F. Bergamini, *J Agr. Food Chem.*, 59 (2011) 7620.
28. R. Abdel-Hamid, E.F. Newair, *J. Electroanal. Chem.*, 657 (2011) 107.
29. P. Caregnato, P.M. David Gara, G.N. Bosio, M.C. Gonzalez, N. Russo, M.d.C. Michelini, D.O. Mártil, *J. Phys. Chem. A*, 112 (2008) 1188.
30. S. Gunckel, P. Santander, G. Cordano, J. Ferreira, S. Munoz, L.J. Nunez-Vergara, J.A. Squella, *Chem.-Biol. Interact.*, 114 (1998) 45.
31. J.J. Feminus, R. Manikandan, S.S. Narayanan, P.N. Deepa, *J. Chem. Sci.*, 131 (2019) 11.
32. E. Laviron, L. Roullier, C. Degrand, *J. Electroanal. Chem. Interf. Electrochem.*, 112 (1980) 11.
33. J. Wang, *Analytical Electrochemistry*, Wiley,(2004).
34. J. Węgiel, B. Burnat, S. Skrzypek, *Diam. Relat. Mater.*, 88 (2018) 137.
35. G. Ziyatdinova, E. Guss, E. Morozova, H. Budnikov, R. Davletshin, V. Vorobev, Y. Osin, *Food Anal. Method*, 12 (2019) 2250.
36. T.-W. Chen, S. Palanisamy, S.-M. Chen, V. Velusamy, S.K. Ramaraj, *Int. J. Electrochem. Sci.*, (2017).
37. S.-M. Chen, G. Kesavan, *Int. J. Electrochem. Sci.*, 14 (2019) 4769.
38. M. Chen, *Int. J. Electrochem. Sci.*, 14 (2019) 4852.
39. C.O. Chikere, N.H. Faisal, P. Kong-Thoo-Lin, C. Fernandez, *Nanomaterials-Basel*, 10 (2020) 537.

Electrochemical determination of paracetamol base on single wall carbon nanotube/Poly(vinylpyrrolidone) modified pencil lead electrode

Sireerat Lismund^{*a} and Albert Schulte^b

^a Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, 744 Suranarai Road, Muang, Nakhonratchasima, Thailand

^b School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley 555 Moo 1, Payupnai, Wangchan, Rayong, Thailand

*corresponding author: insireerat@gmail.com

Abstract

A novel pencil lead electrode (PGE) modified with a single wall carbon nanotube and Poly(vinylpyrrolidone) (PVP) (PVP/SWCNT/PGE) was used for the voltammetric determination of paracetamol. The surface morphology was probed by scanning electron microscope (SEM). The co-existence and dispersions of PVP along with SWCNT on the PGE which may be responsible for the better electrochemical sensing performance for the detection of target analysis. This electrochemical sensor exhibits excellent analytical performance for paracetamol detection at physiological pH with limit of detection was 0.38 μ M and its linear response was from 1-500 μ M. The application of this sensor to determine syrup and tablet paracetamol was proposed with satisfactory results.

Introduction

Paracetamol (N-acetyl-p-aminophenol, also known as acetaminophen) is one of the most prescribed drugs globally, due to its antipyretic and analgesic properties [1]. However, it is highly toxic at elevated doses, with involvement of an already described oxidative stress, kidney and liver damage [2]. Paracetamol has been considered a priority pharmaceutical in the aquatic environment by de Voogt et al.[3] based on literature review and a series of criteria (including toxicity, persistence, environmental fate, etc.). The environmental concern surrounding paracetamol stems from its common presence in the aquatic environment that has been found in concentrations range of ng/l to mg/l [4]. A variety methods have been used for determining paracetamol in pharmaceutical, biological fluids and environmental sample [5] e.g. spectroscopy [6], chemiluminescence [7], titration [8], gas chromatography [9] high performance liquid chromatography [10] and electrochemical methods [11-13]. Among them, electrochemical methods have attracted much attention due to their advantages of high sensitivity, fast response, low cost of the instrument and simple operation.

In this study, a pencil graphite electrode (PGE) was used for the sensitive and selective voltammetric determination of paracetamol. When compared with other carbon-based electrodes, PGEs have the same advantages, such as high electrochemical reactivity, commercial availability, good mechanical rigidity, disposability, low cost, low technology and ease of modification [14-15]. Due to high adsorption property of PGE its surface modification with conductive polymers [16] metallic nanoparticles [17] carbon nanostructures [18] , or their combinations [19], facilitate the conversion of irreversible oxidation processes into reversible one due to the rapid electron transfer rates. Among these compounds carbon nanotubes (CNTs), have been widely applied to the surface modification with the aim to improve the electron transfer behavior on bare electrodes [20-21]. However, the practical applications of CNTs are challenged by its irreversible agglomeration both in the drying state and in common solvents, which significantly reduces its effectiveness [22]. To overcome these disadvantages, large effective surface area and strong electrochemical interaction of CNTs can be combined with the macromolecule surfactant of polyvinylpyrrolidone (PVP). The PVP molecule contains a strong hydrophilic component with a considerable hydrophobic group with C=O, C-N and CH₂ functional groups. It is a water soluble inexpensive polymer with interesting features such as low toxicity and high thermal stability [23]. Generally, it is used not only as a dispersant but also as

a stabilizer to prevent the aggregation of nanoparticles via the repulsive forces that arise from its hydrophobic carbon chains [24]. It has been well established that PVP can be used as capping assisting to adsorb paracetamol contaminations. However, the sensing potential of SWCNT with PVP for detection of paracetamol has not yet been investigated. In the present work, we develop a simple, rapid, and low-cost electrochemical paracetamol sensor based on SWCNT and PVP modified pencil graphite electrode. The electrochemical behavior of PVP/SWCNT/PGE and the electrocatalytic activity to the oxidation of paracetamol were investigated by cyclic voltammetry and square wave voltammetry. The PVP/SWCNT/PGE showed a significant increase in the anodic current accompanied with a decreased over-potential compared to a bare PGE, SWCNT/PGE and PVP/PGE due to its enhanced sensitivity for the determination of paracetamol. This method possesses several remarkable advantages, including high sensitivity, simplicity, rapid response, and good selectivity.

Experimental

Reagents and materials

Acetaminophen, $C_8H_9NO_2$ (Acros), single walls carbon nanotube (P3-SWCNT, Carbon Solutions, Inc.), polyvinylpyrrolidone ,PVP (Carlo erba), potassium ferricyanide, $K_3[Fe(CN)_6]$ (Acros), di-Sodium hydrogen phosphate, Na_2HPO_4 (Qrec), potassium dihydrogen phosphate, KH_2PO_4 (Qrec) potassium chloride, KCl (Qrec) were analytical grade and used without further purification. Deionized water was used for the preparation of all aqueous media.

Apparatus

All electrochemical experiments were carried out through the operation of a three-electrode electrochemical sensor interface (Metrohm 910 PSTAT Mini, The Netherlands) with PSTrace 4.8 software. Pseudo-reference electrode (RE) was an Ag/AgCl wire and the counter electrode (CE) was a Pt spiral. The surface morphologies of working electrode surface were investigated using field emission scanning electron microscope (FE-SEM Zeiss AURIGA FE-SEM/FIB/EDX).

Fabrication of the working electrodes

Pencil graphite electrode (PGE) were constructed from ordinary pencil rods (Staedtler mars carbon, 2H, 0.3 cm diameter) of 5 cm length. Suitable amount of two component epoxy resin AB glu (Alteco)

was mixed thoroughly on a glass slide. The cleaned-end of glass capillary (Din = 4 mm, Dout = 6 mm, L = 150 mm) was filled in with the prepared epoxy for approximate 1 cm and, it was kept in vertical position. Slowly insert the pencil rods through the epoxy filling, which was dried in air for 24hr. The PLE surface was polished on fine emery paper and chamois leather containing 5, 1, 0.5 μm alumina (Al_2O_3) slurry respectively, rinsed thoroughly with DI water, soak with 1% nitric acid, and then sonicate in DI water and dried in air. The home-made PGE was in Fig 1.

Preparation of the three composite modified pencil graphite electrode

SWCNT in ethanol (4mg/ml) was dispersed by using an ultrasonic for 1 hr to give black suspension. The PVP/SWCNT/PGE was obtained by drop-coating 2 μL SWCNT which was dried in air for 10 min at room temperature, subsequently, 2 μL PVP suspension in ethanol (0.25%) was add into SWCNT/PGE by drop-coating, and dried at room temperature. For comparison, the PVP/PGE and SWCNT/PGE were prepared by drop-casting 2 μL of PVP and 2 μL of SWCNT onto the PGE surface respectively.

Results and discussion

The effective of home-made bare PGE

The performance of home-made bare PGE in term of reproducibility and repeatability can be studied by the electrochemical response that shown in Fig.2. The repeatability of the 5mM $\text{K}_3\text{Fe}(\text{CN})_6$ cyclic voltammogram was evaluated by performing of 10 measurements at one PGE expressed as percentage relative standard deviation (%RSD) of 6.84 and 5.47 for I_{pa} and I_{pc} , respectively. For reproducibility performance of PGE, 10 new PGE were employed for each voltammetric recording, %RSD values of 8.55 and 7.88 were obtained for I_{pa} and I_{pc} respectively. These results indicate that home-made PGE has a very good repeatability and reproducibility.

Surface morphology of bare PGE, PVP/PGE, SWCNT/PGE and PVP/SWCNT/PGE

The FESEM images of bare PGE, PVP/PGE, SWCNT/PGE and PVP/SWCNT/PGE was shown in Fig.3. Fig.3A, the typical morphology of graphite flakes are recognizable on the pencil graphite surface agree with literature [25] and Fig.3B the PVP film coalesced, making the surface rough with no uniformity. After SWCNT coated to the PGE, it can be seen that SWCNT were dispersed on the

electrode with fiber three-dimensional structure (Fig.3(C)). The morphology of SWCNT has been changed by the introduction of PVP as shown in Fig.3(D) which fibers was visible and make the film uniform and highly porous which formatted three-dimensional network structure. The PVP in the nanocomposite appear to be distributed homogeneously throughout the material and was adherent to the SWCNT surface. The PVP appear as white spot embedded in the SWCNT matrix. These clearly reveal the co-existence and dispersions of PVP along with SWCNT on the PGE which may be responsible for the better electrochemical sensing performance for the detection of target analysis.

Electrochemical behavior of paracetamol

The electrochemical response of 1mM Paracetamol in 0.1M phosphate buffer pH7 at PGE, PVP/PGE, SWCNT/PGE and PVP/SWCNT/PGE have been studied by using cyclic voltammetry in Fig.4. On the bare PGE, Fig.4A and PVP/PGE, Fig.4B broads peak appeared at around 48 mV, which paracetamol shows an irreversible redox behavior with small and undefined redox peaks. In contrast, for the PVP/SWCNT/PGE (Fig.4D) a pair of strong and well-defined redox pair were located at anodic peak potential (E_{pa}) at 429 mV and cathodic peak potential (E_{pc}) at 331 mV. The peak separation (ΔE_p) 98 mV indicated a favorable quasi-reversible electrode process [26]. Moreover, it can be observed that the paracetamol oxidation peak current of SWCNT/PGE was improved by 2 times compared to bare PGE, while for PVP/SWCNT/PGE improving by approximately 5 time. Therefore, the modified PVP/SWCNT/PGE effective enhancement the oxidation of paracetamol. This improvement can be attributed in term of carbon nanotubes properties provide an electrocatalytic activity towards the oxidation of paracetamol due to their inherent materials properties such as, high conductivity and electron transfer capability [20-21]. The improvement current response in the oxidation of paracetamol in the presence of PVP into SWCNT can be described by facilitates a synergistic effect by introducing even higher surface area of the sensor as well as a closer contact of APAP molecule due to the homogeneous dispersion of SWCNT. Moreover, on pure SWCNT paracetamol results in a single-layer adsorption while PVP/SWCNT, PVP provides a biocompatibility and fixed on the electrode surface that multilayer surface structure adsorbed more paracetamol on the electrode surface compared to the single layer adsorption in SWCNT[26]. The fabricated PVP/SWCNT/PGE favors the reversible electrochemical reaction of paracetamol, which oxidation and reduction process involve two electrode and two protons, as illustrated in the scheme 1.

Effect of pH

The effect of solution pH on the electrochemical response of 1mM Paracetamol on PVP/SWCNT/PGE was investigated using CV. In Fig 5A, Variation of peak currents with respect to pH of phosphate buffer in the pH range 4 to 9. It can be seen that the peak current increase with solution pH until the pH reach 7. A small current was detected when the pH of the solution was either lower or higher than 7. The broadening of oxidation peak and decreasing of peak current are observed with increasing basicity, at pH higher than 7, suggesting a kinetically less favorable reaction at higher pH. The buffering at pH 7, which is near to physiological pH, hence the pH 7 was used for further electrochemical studies. As can be seen, with pH values of the solution increasing, the redox peak shifted negatively, which indicated that the redox reaction involves the proton [27] . The peak potential change linearly, depending on a pH from 4 to 9, and the equation was $Ep = -0.0507pH + 0.8288$ ($R^2 = 0.9953$). The slope is close to the Nernstian values of -59mV [35]. This suggest that the number of proton and electrons transfers in the redox reaction of Paracetamol are equal and likely to be two as mention in scheme 1.

Effect of scan rate

The scan rate on the anodic and cathodic peak current of paracetamol on the PVP/SWCNT/PGE was investigated for indicated of the sensing electrodes process. The redox peak currents of paracetamol were increased when increasing the scan rate from 10 to 400 mV/s (Fig. 6A). The resultant peak current was plotted against the scan rate (Fig. 6B) which follows the linearity with linear regression equation $Ipa(\mu A) = 0.5036U(mVs^{-1}) + 12.096$ ($R^2 = 0.9995$) and $Ipc (\mu A) = -0.3265U(mVs^{-1}) - 5.0498$ ($R^2 = 0.9978$) for anodic peak and cathodic peak, respectively. This result indicated that the electrochemical kinetic of paracetamol on the PVP/SWCNT/PGE is a surface-controlled process. At high scan rate ranging form 200 to 400 mV/s, plotting the Epa and Epc vs. $\ln(v)$ (Fig. 6C) produces a straight line with the linear regressions as: $Epa = 0.0547\ln(v) + 0.1578$ ($R^2 = 0.9906$) and $Epa = -0.0351\ln(v) + 0.5246$ ($R^2 = 0.9957$), respectively. According to Laviron's equation [27] $Epc = E^{\circ} - (RT/\alpha nF)\ln v$ and $Epa = E^{\circ} - (RT/(1-\alpha)nF)\ln v$ for cathodic and anodic peak, respectively. Here, F is the Faraday's constant, R is idea gas constant (J/mol.K) and T is temperature in kelvins. The Based on the slope of two straight lines the charge transfer coefficient, α was calculated as 0.61.

Determination of paracetamol on the PVP/SWCNT/PGE

Square wave voltammetry (SWV) is superior to cyclic voltammetry because of its sensitivity, resolution and lower limit of detection. Fig.7A shows the SWV of different concentrations of paracetamol in 0.1M PBS. The I_p was linearity related to the paracetamol concentration in the range of 1-500 μM . The linear regression equation was $I_{pa}(\mu\text{A}) = 0.0847x(\mu\text{M}) + 5.4037$ ($R^2 = 0.9980$). The detection limit was calculated to be 0.38 μM using $3\sigma/b$, where σ is the standard deviation of the blank and b is the slope of the calibration curve (sensitivity). The paracetamol oxidation on PVP/SWCNT/PGE was compared with the previously reported paracetamol sensor and given Table1. Table1 showing that the PVP/SWCNT/PGE developed in the present study exhibited a much lower LOD, as well as a much wider linear range. PGE gives better performance in comparison with GCE, because PGE is consists of graphite and clay mineral which suffer from a porous structure and high specific surface area, disposability, low cost, low technology, ease of modification, lack of need for polishing, and renewable surface.

Interference studies

The selectivity of the fabricated PVP/SWCNT/PGE sensor was investigated via the detection of paracetamol using interfering species under the optimized condition. A number of potential co-existing electroactive species, such as dopamine and caffeine. Fig 8. Shows that paracetamol 0.3 mM exhibited a well defined anodic peak with good separations from dopamine and caffeine. Therefore, it can be considered that this sensor showed satisfactory selectivity for the determination of paracetamol in the presence of Ascorbic acid and Caffeine.

Application in real sample

The practical application of the PVP/SWCNT/PGE sensor was validated by determining the concentration of paracetamol within a real sample such as APAP tablets. The sample of the paracetamol syrup was prepared by the appropriate dilution with 0.1 M phosphate buffer pH 7 and directly used for determination of paracetamol. The paracetamol commercial tablets was ground to powder and dissolved in phosphate buffer pH 7. These studies revealed that a good recovery and % R.S.D was achieved by PVP/SWCNT/PGE sensor for paracetamol syrup and tablet which results

summarized in Table 2. These results indicate that the sensor developed in this work has good accuracy and high precision for detection paracetamol in commercial samples.

Conclusion

We fabricated a simple, rapid and low-cost electrochemical sensor for precise sensing paracetamol based on PVP/SWCNT modification of pencil graphite electrode. The composite film modified electrode was successfully employed for the voltammetric determination of paracetamol with low detection limit of $0.38 \mu\text{M}$, wide linear range from $1\text{-}500 \mu\text{M}$ and good selectivity. We also investigated the sensing performance of the sensor using commercially available paracetamol syrup and tablet with satisfactory results.

Acknowledgements

The author thanks to the Thailand Research Fund (TRF) and Office of the Higher Education Commission (MRG) Grant No. MRG6180072 for financial support.

FIGURE CAPTIONS

Figure 1: The home-made PGE (A) side view and (B) top view

Figure 2: Cyclic voltammograms of $5\text{mM} \text{K}_3\text{Fe}(\text{CN})_6$ containing $0.1 \text{M} \text{KCl}$, scan rate 100 mV/s for (A) repeatability and (B) reproducibility of PGE

Figure 3: FESEM images of (A) bare PGE, (B) PVP/PGE, (C) SWCNT/PGE and (D) PVP/SWCNT/PGE

Figure 4: CVs of 1mM Paracetamol on the a) bare PGE, b) PVP/PGE, c) SWCNT/PGE and d) PVP/SWCNT/PGE in 0.1 M Phosphate buffer pH 7.0 at scan rate 50 mVs^{-1} .

Scheme 1. The reaction mechanism of paracetamol on the PVP/SWCNT/PGE

Figure 5: CVs of 1mM Paracetamol on PVP/SWCNT/PGE in various pH range of 0.1 M Phosphate buffer from 4 to 9 (A). The plot of the pH of the peak current vs. pH (B). The plot of The peak potential vs. pH (C)

Figure 6: CVs of 1mM Paracetamol on PVP/SWCNT/PGE in 0.1 M Phosphate buffer pH 7.0 at different scan rates (10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375 and 400 mV s⁻¹) (A). The plot of the peak current vs. scan rate (B). The dependes of the redox peak potential vs. ln(U)

Table 1. Comparison of the recent reported electrochemical sensor for Paracetamol

Figure 8: SWVs of 300 μ M Ascorbic acid, Paracetamol and Caffeine on PVP/SWCNT/PGE in 0.1 M Phosphate buffer pH 7.0

Table 2. Determination of Paracetamol in Paracetamol syrup and tablet by PLE/SWCNT/PVP

Reference

- 1] Bayram E, Akyilmaz E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. *Sensors Actuators B Chem.* 2016;233:409–418.
- 2] Nunes B, Antunes SC, Santos J, Martins L, Castro BB. Toxic potential of paracetamol to fresh water organisms: a headache to environmental regulators?. *Ecotoxicol Environ Saf.* 2014;107:178–185.
- 3] de Voogt P, Janex-Habibi ML, Sacher F, Puijker L, Mons M. Development of a common priority list of pharmaceuticals relevant for the water cycle. *Water Sci Technol.* 2009;59:39–46.
- 4] Roberts P, Thomas K. The occurrence of selected pharmaceuticals in waste water effluent and surface waters of the lower Tyne catchment. *Sci Total Environ.* 2006;356:143–153.
- 5] Montaseri H, and .Forbes PBC. Analytical techniques for the determination of acetaminophen: A review *TrAC, Trends Anal Chem.* 2018;108:122-134.
- 6] Sirajuddin KAR, Shah A, Bhanger MI, Niaz A, Mahesar S. Simpler spectrophotometric assay of paracetamol in tablets and urine samples. *Spectrochim Acta A Mol Biomol Spectrosc.* 2007;68(3):747–751.

7] Easwaramoorthy D, Yu YC, Huang HJ. Chemiluminescence detection of paracetamol by a luminolpermanganate based reaction. *Anal Chim Acta*. 2001;439:95–100.

8]. Kumar KG, Letha R. Determination of paracetamol in pure form and in dosage forms using N,N-dibromo dimethylhydantoin. *J Pharm Biomed Anal*. 1997;15:1725–1728.

9] Migowska N, Caban M, Stepnowski P, Kumirska J. Simultaneous analysis of nonsteroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection. *Sci Total Environ*. 2012;441:77-88.

10] Pugajeva I, Rusko J, Perkons I, Lundanes E, Bartkevics V. Determination of pharmaceutical residues in wastewater using high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry, *J. Pharm. Biomed. Anal.* 2017;133:64-74.

11] Fan Y, Liu JH, Lu HT, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO₂–graphene modified glassy carbon electrode. *Colloids Surf B* 2011;85(2):289-292.

12] Bouabia YEL, Farahi A, Labjar N, Hajjaji SEI, Bakasse M, Mhammedi MA. Square wave voltammetric determination of paracetamol at chitosan modified carbon paste electrode: Application in natural water samples, commercial tablets and human urines. *Mater Sci Eng C*.2016;58:70-77.

13] Asadpour-Zeynali K, Amini R. Nanostructured Hexacyanoferrate Intercalated Ni/Al Layered Double Hydroxide Modified Electrode as a Sensitive Electrochemical Sensor for Paracetamol Determination. *Electroanalysis*. 2017;29(2):635-642.

14] Annu, Sharma S., Jain R, Raja AN. , Review—Pencil Graphite Electrode: An Emerging Sensing Material. *J Electrochem Soc*. 2020;167:037501.

15] Sağlama Ö, Dilgin DG, Ertek B, Dilgin Y. Differential pulse voltammetric determination of eugenol at a pencil graphite electrode. *Mater Sci Eng C*. 2016;60:156–162.

16] Pattar VP, Nandibewoor ST. Staircase voltammetric determination of 2-thiouracil in pharmaceuticals and human biological fluids at polyaniline and polypyrrole film modified sensors. *Sens Actuators, A*. 2016;250:40-47.

17] Saleh GA, Askal HF, Refaat IH, Naggar, Abdel-aal FAM. Adsorptive square wave voltammetric determination of the antiviral drug valacyclovir on a novel sensor of copper microparticles-modified pencil graphite electrode. *Arabian J Chem.* 2016;9(1):143-151.

18] Eksin E, Zor E, Erdem A, Bingol H. Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. *Biosens Bioelectron.* 2017;92(15):207-214.

19] Torrinha Á, Amorim CG, Montenegro MC, Araújo AN. Biosensing based on pencil graphite electrodes. *Talanta.* 2018;190:235-247.

20] Lawal AT. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors *Mater Res Bull.* 2016;73:308-350.

21] Trojanowicz M. Analytical applications of carbon nanotubes: a review. *TrAC, Trends Anal Chem.* 2006;25(5):480-489.

22] Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. *Adv. Colloid Interface Sci.* 2006;128–130:37–46.

23] Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. *Dalton Trans.* 2015;44:17883-178905.

24] Arul P, John SA. Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: New electrode material for the trace level determination of nitrobenzene. *J Electroanal Chem.* 2018;829(15):168-176.

25] Navratil R, Kotzianova A, Halouzka V, Opletal T, Triskova I, Trnkova L, Hrbac J. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study. *J Electroanal Chem.* 2016;783(15):152-160.

26] Ghadimi H, Tehrani RMA, Ali ASM, Mohamed N, Ghani SA. Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. *Anal. Chim. Acta.* 2013;756:70-76.

27] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems *J. Electroanal. Chem. Interf Electrochem.* 1979;101(1):19-28.

28] Babaei A, Afrasiabi M, Babazadeh M. A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. *Electroanalysis*. 2010;22(15):1743–1749.

29] Barsan MM, Toledo CT, Brett CMA. New electrode architectures based on poly(methylene green) and functionalized carbon nanotubes:characterization and application to detection of acetaminophen andpyridoxine, *J Electroanal Chem*. 2015;736:8–15.

30] Li Y, Feng S, Li S, Zhang Y, Zhong Y. A high effect polymer-free covalent layer by layer self-assemble carboxylated MWCNTs films modified GCE for the detection of paracetamol. *Sens. Actuators B Chem*. 2014;190:999–1005.

31] Bahramipur H, Jalali FH. Sensitive determination of paracetamol using a graphene-modified carbon- paste electrode. *Afr J African Phar Pharmacol*. 2012;6(17):1298-1305.

32] Charithra MM, Manjunatha JG. Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor. *J. Electrochem. Sci. Eng*. 2020;10(1):29-40

33] Machado S, Calac GN, Silva JP, Araujo MP, Boer' RT, Pess^oa CA, Wohnrath K. Electrochemical Characterization of a Carbon Ceramic Electrode Modified with a Ru(II) Arene Complex and Its Application as Voltammetric Sensor for Paracetamol. *J Electrochem. Soc*. 2017;164(6):B314-B320.

34] Zhang X, Wang KP, Zhang LN, Zhang YC, Shen L. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen. *Anal Chim Acta*. 2018;1036:26–32.

35] Femius JJ, Manijandan R Narayanan SS, Deepa PN. Determination of gallic acid using poly(glutamic acid): graphene modified electrode. *J. Chem. Sci.* 2019;131(11):1-10.

Figure 1: The home-made PGE (A) side view and (B) top view

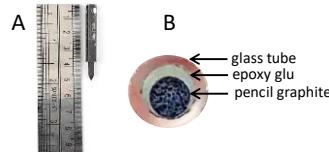


Figure 2: Cyclic voltammograms of 5mM $\text{K}_3\text{Fe}(\text{CN})_6$ containing 0.1 M KCl, scan rate 100 mV/s for (A) repeatability and (B) reproducibility of PGE

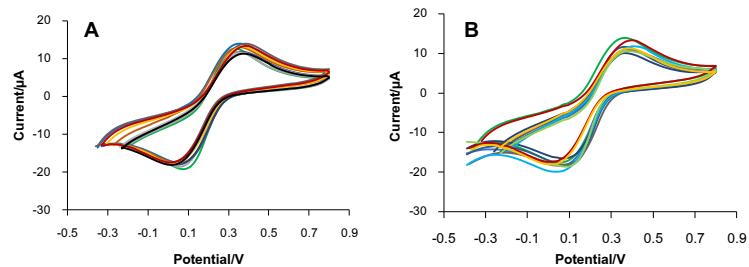


Figure 3: FESEM images of (A) bare PGE, (B) PVP/PGE, (C) SWCNT/PGE and (D) PVP/SWCNT/PGE

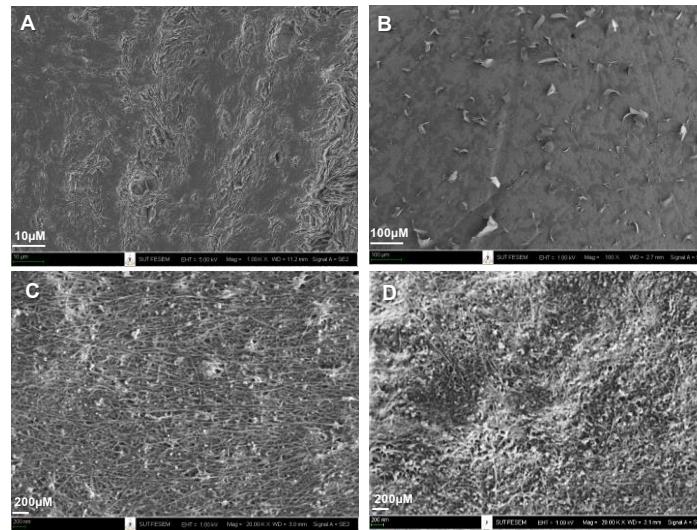
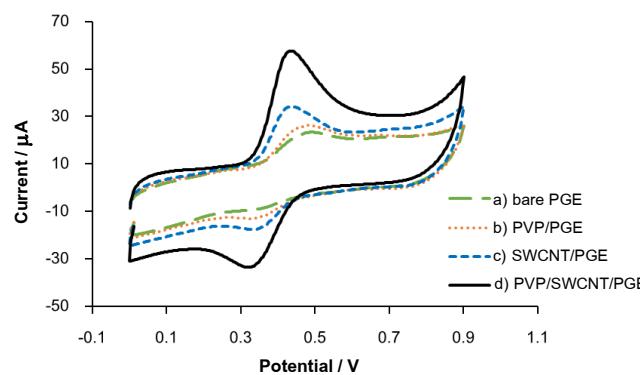



Fig.4 CV of 1mM Paracetamol on the a) bare PGE, b) PVP/PGE, c) SWCNT/PGE and d) PVP/SWCNT/PGE in 0.1 M Phosphate buffer pH 7.0 at scan rate 50 mV s⁻¹.

Scheme 1. The reaction mechanism of paracetamol on the PVP/SWCNT/PGE

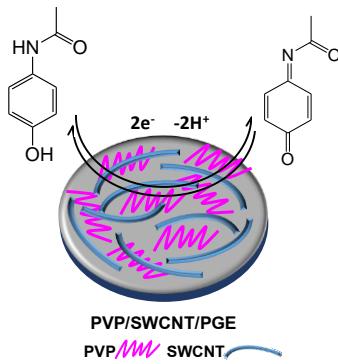


Figure 5: CVs of 1mM Paracetamol on PVP/SWCNT/PGE in various pH range of 0.1 M Phosphate buffer from 4 to 9 (A). The plot of the pH of the peak current vs. pH (B). The plot of The peak potential vs. pH (C)

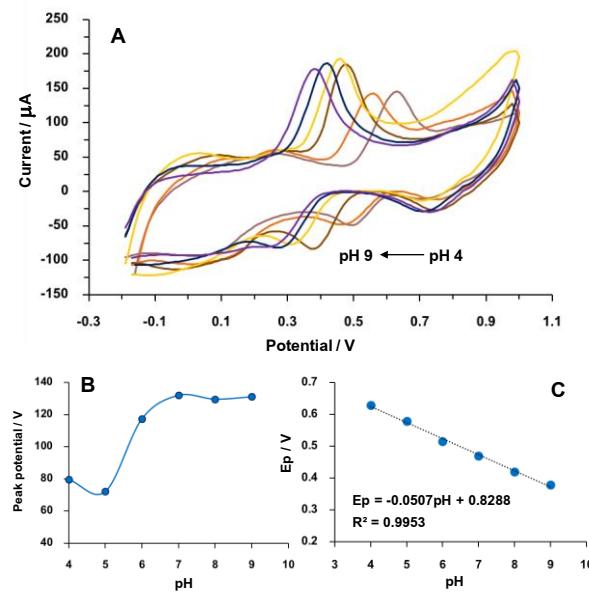


Figure 6: CVs of 1mM Paracetamol on PVP/SWCNT/PGE in 0.1 M Phosphate buffer pH 7.0 at different scan rates (10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375 and 400 mV s⁻¹) (A). The plot of the peak current vs. scan rate (B). The dependences of the redox peak potential vs. ln(v)

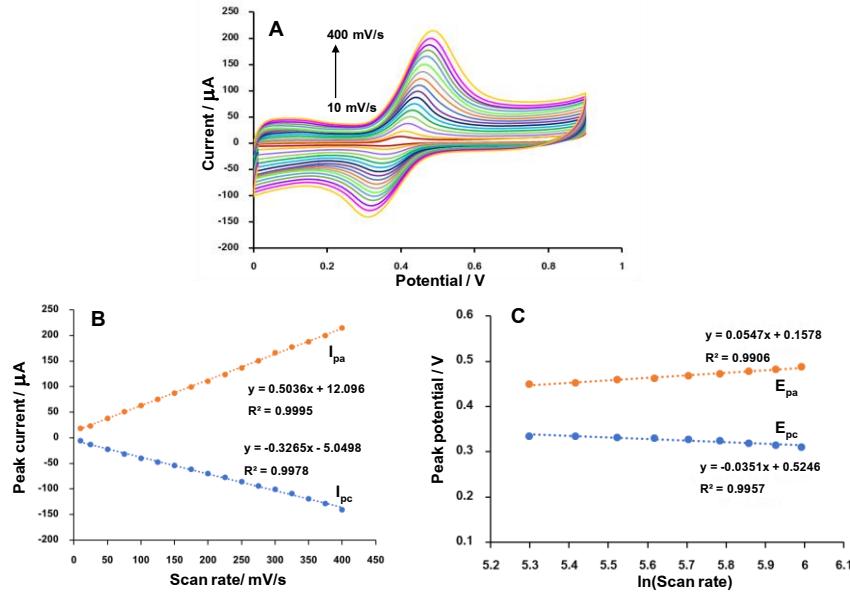


Figure 7: SWVs of 1, 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450 and 500 μ M Paracetamol on PVP/SWCNT/PGE in 0.1 M Phosphate buffer pH 7.0 (A). The plot of the peak current vs. Paracetamol concentration (B).

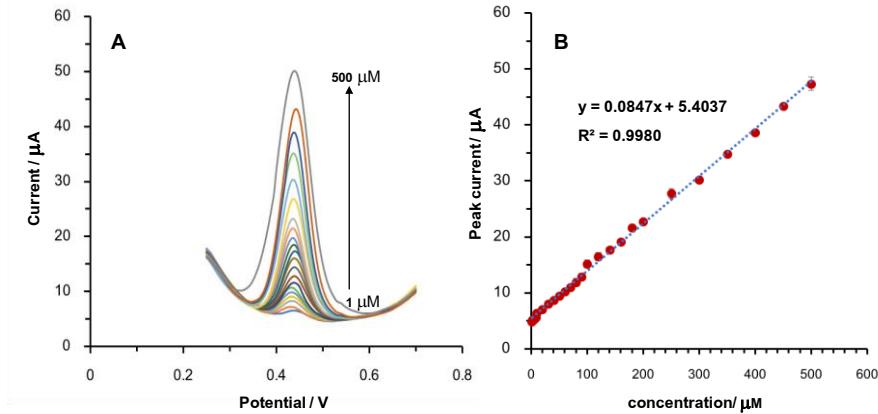


Table 1. Comparison of the recent reported electrochemical sensor for Paracetamol

Modified electrode	Method	Detection limit (μM)	Linear range (μM)	Reference
Chitosan/MWCNT/GCE	DPV	0.17	1-145/4-200	[28]
fCNT-PMG/CE	CA	9.3	0-200	[29]
ED-CMWGNT/GCE	DPV	0.092	1-200	[30]
GRPE	SWV	0.60	2.5-143	[31]
Nafion/TiO ₂ -graphene/GCE	DPV	0.21	1-100	[11]
CS/CPE	SWV	0.51	40-100, 0.8-20	[12]
Ni-Al-HCF/GCE	CA	0.80	3-1500	[13]
PMMCNTPE	DPV	0.38	2-50	[32]
Ru/CCE	SWV	0.583	1.99-31	[33]
P-RGO/GCE	DPV	0.36	1.5-120	[34]
PLE/CNT/PVP	SWV	0.38	1-500	This work

Chitosan/MWCNT/GCE = Chitosan and MWCNT modified GCE.

fCNT-PMG-CE = functionalized CNT polymer poly(methylene green) composite electrode.

ED-CMWGNT/GCE = ethylenediamine carboxylic acid functionalized MWCNT modified GCE

GRPE = graphene-modified carbon-paste electrode

CS/CPE = chitosan modified carbon-paste electrode

Ni-Al-HCF/GCE = hexacyanoferate(III) intercalated Ni-Al layered double hydroxide modified GCE

PMMCNTPE = poly(methyl orange) modified carbon nanotube paste electrode

Ru/CCE = arene-ruthenium (II) complex

P-RGO/GCE = Phosphorus-doped graphene modified GCE

CA = chronamperometry

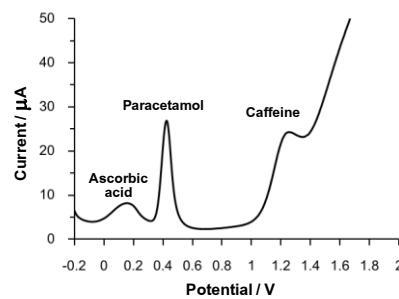

Figure 8: SWVs of 300 μM Ascorbic acid, Paracetamol and Caffeine on PVP/SWCNT/PGE in 0.1 M Phosphate buffer pH 7.0

Table 2. Determination of Paracetamol in Paracetamol syrup and tablet by PLE/SWCNT/PVP

Sample	Labeled content	Prepared concentration (μ M)	Add (μ M)	Found (μ M)	Recovery (%)	R.S.D (%)
Paracetamol syrup 250 mg/5mL	49.62	-	50.41	101.59	1.45	
	49.62	15	63.45	98.19	2.02	
	49.62	30	81.02	101.76	1.53	
Paracetamol tablet 500 mg/tablet	50.62	-	51.73	102.19	2.94	
	50.62	15	67.24	102.47	1.83	
	50.62	30	81.23	100.76	1.71	

^a Standard addition method.^b Relative standard deviation for three measurement.

การตรวจวัดไออุ่นตะกั่ว (II) และไออุ่นแคดเมียม (II) พร้อมกันโดยใช้วิธีอิน-ซิตร์ พลาง (III) / บิสมัท (III) พิล์ม บนอิเล็กโทรดได้ดินสอตันทุนตា

สิรีรัตน์ ลิคนันท์^{1*} ณัฐริกา ศิริยานนท์² รัชดาวรรณ ตามกลาง² ณัฐริกานันท์ บุตรวงศ์³ และ อาทิตย์ อัศวสุข⁴

มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน ถ.สุรนารายณ์ จ.นครราชสีมา 30000

บทคัดย่อ

งานวิจัยนี้เป็นการพัฒนาการตรวจวัดปริมาณไออุ่นตะกั่ว (II) และไออุ่นแคดเมียม (II) อย่างว่องไวด้วยเทคนิคสแกร์เวฟแอนดิกฟโอล์ฟแทนเมตري โดยใช้อิเล็กโทรดได้ดินสอที่ดัดแปลงด้วยพิล์มบางของพลาง (III) / บิสมัท (III) พิล์มโดยวิธีอิน-ซิตร์ การทดลองทำโดยการศึกษาตัวแปรที่มีอิทธิพลต่อผลการวิเคราะห์ เช่น การทดสอบประสิทธิภาพของอิเล็กโทรดได้ดินสอโดยศึกษาการทำซ้ำและการวัดซ้ำ พิเชชชงสารละลายอิเล็กโทรไลต์ ศักย์ดิโพลิชันและช่วงเวลาดิโพลิชัน สรุว่าที่เหมาะสมคือศักย์ดิโพลิชัน - 1.2 โวลต์ และเวลาดิโพลิชัน 120 วินาที ในสารละลายอิเล็กโทรไลต์อะซิเตอบาฟเฟอร์ พิเชช 4.5 การตรวจวัดไออุ่นตะกั่ว (II) และไออุ่นแคดเมียม (II) พร้อมกันมีช่วงความเป็นเส้นตรง 2 - 200 พีพีบี ($R^2 = 0.9904$) ขีดจำกัดในการตรวจวัดเท่ากับ 0.60 พีพีบี และช่วงความเป็นเส้นตรง 4 - 200 พีพีบี ($R^2 = 0.9982$) ขีดจำกัดในการตรวจวัด 0.65 พีพีบี สำหรับไออุ่นตะกั่ว (II) และไออุ่นแคดเมียม (II) ตามลำดับ งานวิจัยนี้ประสบความสำเร็จในการใช้อิเล็กโทรดได้ดินสอพลาง (III) / บิสมัท (III) พิล์ม ที่มีต้นทุนต่ำและเป็นมิตรต่อสิ่งแวดล้อมในการตรวจวัดปริมาณไออุ่นตะกั่ว (II) และไออุ่นแคดเมียม (II) ในด้วยอย่างน้ำประปา และน้ำแร่ โดยทดสอบความถูกต้องและความแม่นยำของวิธีการโดยการเตรียมสารมาตรฐานตะกั่ว (II) และแคดเมียม (II) ลงในน้ำด้วยอย่างจริง พบร่วมค่าร้อยละส่วนเบี่ยงเบนมาตรฐานสัมพัทธ์ (ร้อยละ 1.54-2.77) และค่าร้อยละการกลับคืน (ร้อยละ 103.8-108.6) ที่ดี

คำสำคัญ : อิเล็กโทรดได้ดินสอ / อิเล็กโทรไลต์พลาง (III) บิสมัท (III) พิล์ม / ไออุ่นตะกั่ว (II) และไออุ่นแคดเมียม (II) / แอนดิกฟโอล์ฟแทนเมตري

* Corresponding Author : insireerat@gmail.com

¹ อาจารย์ กลุ่มวิจัยนวัตกรรมวัสดุเพื่อพลังงานและสิ่งแวดล้อม สาขาวิชาเคมีประยุกต์ วิทยาศาสตร์และศิลปศาสตร์

² นักศึกษาระดับปริญญาตรี สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์

³ อาจารย์ สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์

⁴ ผู้ช่วยศาสตราจารย์ กลุ่มวิจัยนวัตกรรมวัสดุเพื่อพลังงานและสิ่งแวดล้อม สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์

Simultaneous Determination of Lead (II) and Cadmium (II) Using Antimony (III) / Bismuth (III) Film *in-situ* method on Low Cost Pencil-Lead Electrode

Sireerat Lisnund^{1*} Nattarika Siriyanon² Ratchadawan Tamklang² Nutthaya Butwong³
and Artit Ausavasukhi⁴

Rajamangala University of Technology Isan, Suranarai Road, Nakhon Ratchasima 30000

Abstract

A highly sensitive determination method for lead (II) and cadmium (II) was developed based on square-wave anodic stripping voltammetry using a pencil-lead electrode modified with antimony (III) / bismuth (III) thin film via an *in-situ* method. A study was then conducted to investigate the influences of selected variables on the analytical performance, namely, the determination of the reproducibility and repeatability of the performance of the pencil-lead electrode, pH of the electrolyte solution, deposition potential and deposition time. The optimal condition was noted to be - 1.2 Volt deposition potential and 120 s deposition time in acetate buffer at pH 4.5. The simultaneous detection of lead (II) and cadmium (II) exhibited linear relations within the concentrations of 2-200 ppb ($R^2 = 0.9904$) with the limit of detection (LOD) of 0.60 ppb and 4-200 ppb ($R^2 = 0.9982$) with LOD of 0.65 ppb for lead (II) and cadmium(II), respectively. Low cost and environmentally friendly pencil-lead antimony (III) / bismuth (III) film electrode was successfully applied to determine lead (II) and cadmium (II) in tap water and mineral drinking water samples. Accuracy and precision of the developed method was examined by spiking lead (II) and cadmium (II) standard solutions into real water samples, which provided good %RSD of 1.54-2.77% and %recovery of 103.8-108.6%.

Keywords : Pencil-graphite Electrode / Antimony (III) Bismuth (III) Film Electrode / Lead (II) and Cadmium (II) / Anodic Stripping Voltammetry

* Corresponding Author : insireerat@gmail.com

¹ Lecturer, Innovative Materials for Energy and Environment Research Group, Applied Chemistry Department, Faculty of Sciences and Liberal Arts.

² B.Sc. Student, Applied Chemistry Department, Faculty of Sciences and Liberal Arts.

³ Lecturer, Applied Chemistry Department, Faculty of Sciences and Liberal Arts.

⁴ Assistant Professor, Innovative Materials for Energy and Environment Research Group, Applied Chemistry Department, Faculty of Sciences and Liberal Arts.

1. บทนำ

ไอออนของโลหะหนักแคนดิเมียม (II) และตะกั่ว (II) มีความเป็นพิษค่อนข้างรุนแรงแม้จะได้รับในปริมาณเพียงเล็กน้อย ตะกั่ว (II) เมื่อร่างกายได้รับจะก่อให้เกิดอาการเนื้ยบพลันและเรื้อรัง คือ ปวดท้อง น้ำหนักลด เป็นอาหาร คลื่นไส้ อาเจียน ประสาทหลอน ซัก เป็นอัมพาต слаб และอาจเสียชีวิตได้ในขณะที่แคนดิเมียม (II) เป็นสารก่อมะเร็งอาจทำให้เกิดพิษต่อไต ตับ ปอด หัวใจ และหลอดเลือด นอกจากนี้ยังผลเสียต่อระบบภูมิคุ้มกันและระบบสืบพันธุ์ [1-3] โดยสำนักงานป้องกันสิ่งแวดล้อม (Environmental Protection Agency -EPA) ประเทศสหรัฐอเมริกา กำหนดค่าสูงสุดของปริมาณตะกั่ว (II) และ แคนดิเมียม (II) ที่ไม่เป็นอันตรายในน้ำดื่มมีค่าไม่เกิน 0.015 และ 0.005 มิลลิกรัมต่อลิตร ตามลำดับ [22]

การตรวจปริมาณตะกั่ว (II) และแคนดิเมียม (II) ในตัวอย่างทางสิ่งแวดล้อมสามารถทำได้โดยใช้เทคนิค อะตอมมิครอปอร์ฟัล์สเปกโตรสโคปี (Atomic absorption spectroscopy) [4] อินดักทีฟลี คับเบิล พลาสมา-แมสส์สเปกโตรเมทรี (Inductively coupled plasma-mass spectrometry) [5] และอัลตราไวโอเลต-วิสิเบิลสเปกโตรสโคปี (UV-visible spectroscopy) [6] แต่วิธีการเหล่านี้จะต้องใช้เครื่องมือที่มีราคาสูง ใช้งานยาก ต้องการการบำรุงรักษาเครื่องมือ ใช้สารเคมีปริมาณมาก และใช้เวลาในการวิเคราะห์ต่อตัวอย่างค่อนข้างนาน ดังนั้นในงานวิจัยนี้จึงเลือกใช้วิเคราะห์ทางเคมีไฟฟ้าในการวิเคราะห์ปริมาณโลหะหนัก เนื่องจากสามารถตรวจวัดไอออนตะกั่ว (II) และไอออนแคนดิเมียม (II) ได้พร้อมกัน และเป็นวิธีที่ใช้งานง่าย สะดวก ไม่ต้องมีการบำรุงรักษาเครื่องมือ ให้ผลที่น่าเชื่อถือได้ ให้ความไวในการตรวจวัดสูง ใช้สารเคมีปริมาณน้อย ใช้เวลาในการวิเคราะห์สั้น [7, 8] อย่างไรก็ตาม ประสิทธิภาพการวิเคราะห์ไอออนของโลหะหนักขึ้นกับอิเล็กโตรดที่ใช้ ดังนั้นจึงจำเป็นที่จะต้องมีการพัฒนาอิเล็กโตรด หรือขั้วไฟฟ้าในงานทางด้านเคมีไฟฟ้าวิเคราะห์ เพื่อให้อิเล็กโตรดมีประสิทธิภาพในการทำงานที่ดีขึ้น สามารถวัดสารปริมาณต่ำระดับพีบี หรือ นาโนโมลาร์ มีความไว และมีความจำเพาะสูงขึ้น โดยการดัดแปรพื้นผิวอิเล็กโตรดด้วย proto [9] บิสมัท [10, 11] และพลาวง [12] เป็นต้น แต่เนื่องจากในปัจจุบันจะไม่นิยมนำไอออนปรอท (II) มาทำเป็นพิล์ม เนื่องจากปรอทเป็นโลหะที่มีความเป็นพิษสูง ดังนั้นในงานวิจัยนี้จึงเลือกใช้

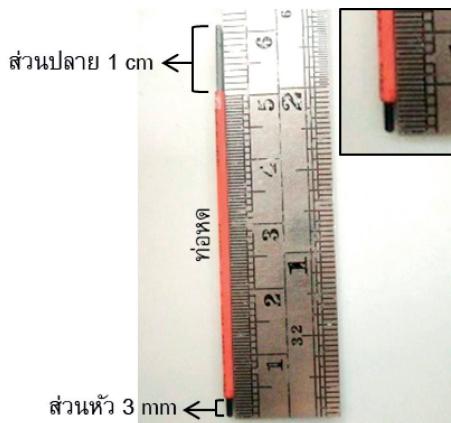
บิสมัท(III) นำมาทำเป็นพิล์มดัดแปรพื้นผิวอิเล็กโตรด เนื่องจากบิสมัส (III) พิล์มมีประสิทธิภาพการทำงานเทียบเท่ากับอิเล็กโตรดปรอท มีความไวสูง มีความเป็นพิษต่ำ และเป็นสารเคลื่อนผิวที่ดี [10, 11] และเพื่อเพิ่มประสิทธิภาพอิเล็กโตรดทำงานให้ดียิ่งขึ้นและให้ค่าระยะไฟฟ้าสูงขึ้น มีการเพิ่มพลาวง (III) ผสมกับบิสมัส (III) ทำเป็นพิล์มเพื่อดัดแปรบนพื้นผิวไส้ดินสองที่เป็นอิเล็กโตรดทำงาน จากการวิจัยของ Jiao และคณะ [13] เป็นผู้วิจัยกลุ่มแรกสำหรับการวิเคราะห์ไอออนแคนดิเมียม (II) ชนิดเดียว โดยใช้บิสมัท/พลาวงพิล์ม บนกลาสซิคาร์บอนอิเล็กโตรดและประยุกต์ใช้วิเคราะห์ไอออนแคนดิเมียม (II) ในตัวอย่างน้ำประปา ต่อมาก Ashrafi และคณะ [14] ได้ศึกษาบิสมัท (III)/พลาวง (III) พิล์ม บนอิเล็กโตรดcarbonเพลสโซลิเด็กโตรดเพื่อวิเคราะห์ไอออนแคนดิเมียม (II) และไอออนตะกั่ว (II) พร้อมกันแต่ไม่ได้นำไปประยุกต์ใช้ในการวิเคราะห์ตัวอย่างจริง อีกทั้งการเลือกใช้ไส้ดินสองที่เป็นวัสดุคุณภาพดีทันทุนต่อและเป็นมิตรต่อสิ่งแวดล้อม [15] มีการนำไปประยุกต์ใช้ในการทำปริมาณวิตามินซี [20] ดีเย็นอิบิโวเซนเซอร์ [21] ไอออนตะกั่วและไอออนแคนดิเมียม [17] เป็นต้น อย่างไรก็ตามการนำไส้ดินสองสำหรับเป็นฐานอิเล็กโตรดให้แก่บิสมัท (III) / พลาวง (III) พิล์มยังไม่มีผู้ศึกษามาก่อน

ดังนั้นในงานวิจัยนี้จึงศึกษาพลาวง/บิสมัทพิล์มบนอิเล็กโตรดไส้ดินสอง ด้วยวิธีอิน-ซิทู สำหรับการตรวจวัดปริมาณไอออนตะกั่ว (II) และไอออนแคนดิเมียม (II) พร้อมกัน และประยุกต์ใช้ในตัวอย่างจริง ได้แก่ น้ำประปาและน้ำแร่สำหรับดื่ม

2. วิธีการดำเนินการ

2.1 สารเคมีและอุปกรณ์

สารมาตรฐานไอออนตะกั่ว (II) 10019 พีพีเอ็ม ในสารมาตรฐานไอออนแคนดิเมียม (II) 10147 พีพีเอ็ม ใน $\leq 2\%$ กรดไนโตริก (ICP Grade, Sigma Aldrich) สารมาตรฐานไอออนบิสมัท (III) 5000 พีพีเอ็ม สารมาตรฐานไอออนพลาวง (III) 1000 พีพีเอ็ม (AAS Grade, Carlo erba) โพแทสเซียม-เฟอร์ริกไซยาไนด์ ($K_3[Fe(CN)_6]$, AR Grade, Sigma-Aldrich) และสารเคมีพื้นฐานในการเตรียมสารละลายน้ำฟเฟอร์เกรด วิเคราะห์ น้ำประปาจากไอออน ตัวอย่างน้ำดื่มน้ำแร่ (น้ำแร่ธรรมชาติที่ขายตามร้านสะดวกซื้อ) ตัวอย่างน้ำประปา (จากห้องปฏิบัติการ สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์


และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน นครราชสีมา)

เครื่องมือ ประกอบด้วย เครื่องเป่าลมร้อน (Gordak 952A, China) เครื่อง DC power supply (GIEINSTEK, GPS-18500) Potentiostat (Metrohm Autolab, PGSTAT204, Netherlands)

2.2 การเตรียมอิเล็กโตรด

อิเล็กโตรดทำงาน เตรียมไส้ดินสอเส้นผ่านศูนย์กลาง 0.9 มิลลิเมตร ความเข้ม 2B (Pentel High Polymer) มาหุ้มด้วยท่อหด เส้นผ่านศูนย์กลาง 1.0 มิลลิเมตร (WOER RSFR-H TUBE 125 °C VW-1 H) โดยใช้เครื่องเป่าลมร้อน ให้ส่วนปลายเหลือ 3 มิลลิเมตร ตั้งรูปที่ 1 ทำการทดสอบ

พื้นผิวไส้ดินสอด้วยนำอิเล็กโตรดไส้ดินสอมาจุ่มลงในสารละลาย กรดซัลฟิวริกที่ความเข้มข้น 0.5 มोลาร์ วัดโดยใช้เทคนิค ไซคลิกโอลแทมเมตريด้วยอัตราการสแกน 100 mV/s จำนวน 50 รอบ อิเล็กโตรดหัวอิเล็กโทรด (Ag/AgCl) เตรียมได้โดยนำลวดเงิน มาจุ่มลงในสารละลาย โพแทสเซียมคลอไรด์ ความเข้มข้น 3 มोลาร์ จากนั้นต่อเข้า เครื่องให้ศักย์ไฟฟ้าที่ 2 โวลต์ เป็นเวลา 1 นาที โดยต่อลวดเงิน ไปที่ขั้วบวกและต่อลวดแพลทินัมไปที่ขั้วลบ จากนั้นนำลวด Ag/AgCl ที่ได้มาบรรจุลงในหลอดแก้วที่มีสารละลาย 3 มोลาร์ KCl และที่ปลายหลอดด้านหนึ่งมีเซรามิก อีกปลายหลอด ด้านหนึ่งจะปิดด้วยพาราฟิน

รูปที่ 1 อิเล็กโตรดไส้ดินสอ และภาพขยายบริเวณส่วนหัวของอิเล็กโตรด

อิเล็กโตรดช่วยคือ ลวดแพลทินัม ความยาว 10 เซนติเมตร นำส่วนปลายมาหดเป็นวง ขนาดเส้นผ่านศูนย์กลาง 0.5 เซนติเมตร จำนวน 5 รอบ

2.3 การทดสอบประสิทธิภาพของอิเล็กโตรดไส้ดินสอ

การทดลองการวัดซ้ำ (Repeatability) ทำได้โดย นำอิเล็กโตรดไส้ดินสอ มาวัดในสารมาตรฐานโพแทสเซียม-เฟอร์ริกไซยาไนด์ 5 มิลลิโมลาร์ (ที่มีสารละลายโพแทสเซียม-คลอไรด์ 0.1 มोลาร์ เป็นสารละลายอิเล็กโตรโอล์ต) ด้วยเทคนิค ไซคลิกโอลแทมเมตري อัตราการสแกน 50 มิลลิโวลต์ต่อวินาที จำนวน 10 ครั้ง ส่วนกรณีการทดลองการทำซ้ำ (Reproducibility) ทำการทดลองด้วยวิธีเดียวกัน แต่ใช้อิเล็กโตรดไส้ดินสอ ที่เตรียมไว้จำนวน 10 อันในการวัด

2.4 การวิเคราะห์อ่อนแแคดเมียมและตะกั่วโดยวิธี

อิน-ชิตู พลวง (III) / บิสมัท (III) พิล์ม บนอิเล็กโตรดไส้ดินสอสารละลายในบีกเกอร์ประกอบด้วยสารละลาย 4 ชนิด ได้แก่ สารละลายบิสมัท (III) 500 พีพีบี (ใช้ 10 ไมโครลิตรจากสารละลายมาตรฐานบิสมัท (III) 1000 พีพีเอ็ม) และ สารละลาย พลวง (III) 500 พีพีบี (ใช้ 10 ไมโครลิตรจากสารละลาย มาตรฐานพลวง (III) 1000 พีพีเอ็ม) สารละลายมาตรฐานตะกั่ว (II) และแคดเมียม (II) ความเข้มข้น 50 พีพีบี ในสารละลาย อะซิเตตบเฟอร์ 0.1 มोลาร์ พีเอช 4.5 ใช้อิเล็กโตรดไส้ดินสอ เป็นขั้วไฟฟ้าทำงาน การทำให้เกิดพลวง (III) / บิสมัท (III) พิล์มบาง ใช้ศักย์ดิโพลิชัน -1.2 โวลต์ ช่วงเวลาดิโพลิชัน 120 วินาที จากนั้นใช้วิธีสแกว์ร์เวฟแอนดิกสทริปปิ้งโอลแทมเมตري

สำหรับการตรวจวัดปริมาณไออ่อนตะกั่ว (II) และไออ่อนแคนดเมียม (II) พร้อมกัน

2.5 การหาสภาวะที่เหมาะสมในการทดลอง

การเปรียบเทียบประสิทธิภาพของอิเล็กโทรดไส้ดินสอที่ไม่ผ่านการดัดแปรและดัดแปรด้วยฟิล์มพลาสติก (III) / บิสมัท (III) นำอิเล็กโทรดไส้ดินสอที่ไม่ผ่านการดัดแปร (Bare PLE) ดัดแปรด้วยบิสมัท (III) ชนิดเดียว (BiPLE) ดัดแปรด้วยพลาสติก (III) ชนิดเดียว (SbPLE) และดัดแปรด้วยพลาสติกบิสมัท (Sb/BiPLE) โดยวิธีอิน-ซิซู

จากนั้นศึกษาปัจจัยที่มีผลต่อประสิทธิการการวิเคราะห์โดยการศึกษาผลพื้นที่ของสารละลายอิเล็กโทรไรล์ต นำอิเล็กโทรดไส้ดินสอมาด้วยสารมาตรฐานตะกั่ว (II) และแคนดเมียม (II) ที่ความเข้มข้น 50 พีพีบี ในสารละลายอิเล็กโทรไรล์ต 0.1 ไมลาร์ โพแทสเซียมคลอไรด์ พีอีช 6.2, 0.1 ไมลาร์ อะซิเตตบัฟเฟอร์ พีอีช 4.5, 0.01 ไมลาร์ กรดไฮโดรคลอริก พีอีช 2 และ 0.01 ไมลาร์ กรดไฮโดรคลอริก พีอีช 4.5 ด้วยวิธี สแควร์เวฟแอนดิกสทริปปิ้งโลหะเมตรี

ศึกษาผลของศักย์ดิไฟชันและช่วงเวลาดิไฟชัน ทำได้โดยการเปลี่ยนแปลงศักย์ดิไฟชัน - 1.4, - 1.3, - 1.2, - 1.1 และ - 1.0 โวลต์ เปลี่ยนแปลงเวลาดิไฟชัน 60, 120, 180, 240 และ 300 วินาที ในการตรวจวัดความเข้มข้นไออ่อนตะกั่ว (II) และแคนดเมียม (II) 50 พีพีบี

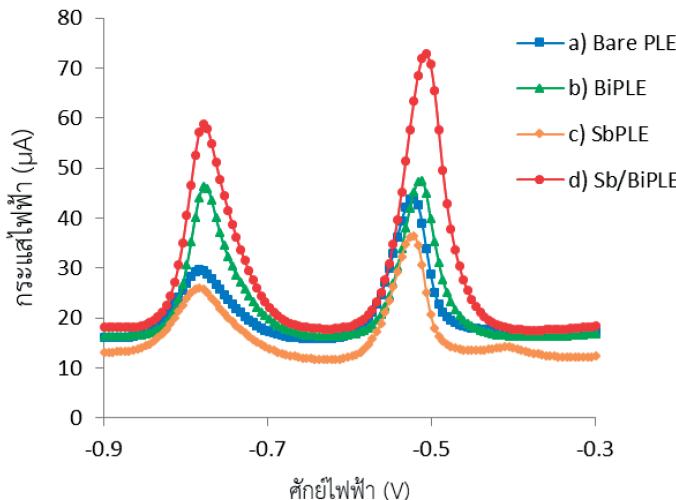
2.6 การศึกษาช่วงความเป็นเส้นตรงและขีดจำกัดในการตรวจวัด

ศึกษาช่วงความเป็นเส้นตรงโดยการวัดไออ่อนตะกั่ว (II) และไออ่อนแคนดเมียม (II) ที่ความเข้มข้น 2 ถึง 200 พีพีบี และการหาค่าขีดจำกัดในการตรวจวัด โดยใช้วิธี สแควร์เวฟ สทริปปิ้งโลหะเมตรี

2.7 การตรวจวัดไออ่อนตะกั่ว (II) และไออ่อนแคนดเมียม (II) ในตัวอย่างน้ำประปาและน้ำดื่มน้ำแร่

ปีเพตตัวอย่างน้ำ 1 มิลลิลิตร และ 0.1 ไมลาร์ สารละลายอะซิเตตบัฟเฟอร์ พีอีช 4.5 ปริมาตร 9 มิลลิลิตร ลงในบีกเกอร์ขนาด 10 มิลลิลิตร ทำการวัด 3 ชั้้า และวิเคราะห์ด้วยวิธี Standard Addition โดยมีการทำขั้นของการทดลองเพื่อหาค่าร้อยละการกลับคืน (%Recovery) และค่าเบี่ยงเบนมาตรฐานสัมพัทธ์ (%RSD)

3. ผลการวิจัย/ผลการดำเนินการ/ผลการทดลอง

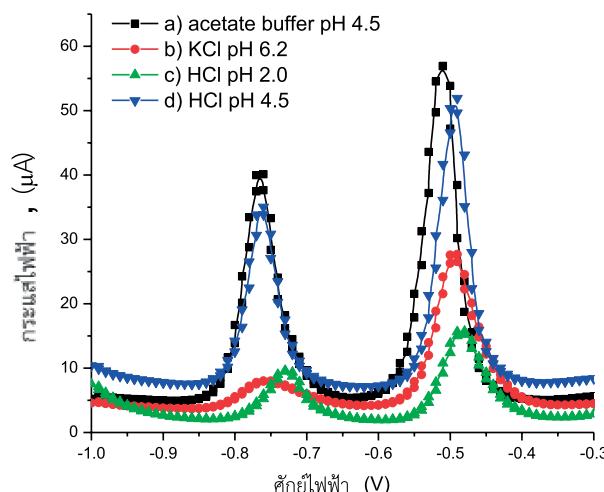

3.1 การทดสอบประสิทธิภาพของอิเล็กโทรดไส้ดินสอ

ผลการทดสอบประสิทธิภาพการวัดช้า และการทำข้าของอิเล็กโทรดไส้ดินสอที่ยังไม่ผ่านการดัดแปร (Bare PLE) ได้ค่าเฉลี่ยสัญญาณของกระแสแอนดิคิลและค่าเฉลี่ยของสัญญาณกระแสแคนโทิดิก ซึ่งเมื่อวิเคราะห์ร้อยละส่วนเบี่ยงเบนมาตรฐานสัมพัทธ์ (%RSD=SD. / \bar{x} *100) พบว่าการทำข้า และการวัดช้าเท่ากับ 8.19 และ 9.42 ($n=10$) ตามลำดับ ซึ่งค่าดังกล่าวมีค่าต่ำกว่า 10 เป็นค่าที่ยอมรับได้ทางสถิติ อัตราส่วนระหว่างสัญญาณกระแสแอนดิคิลและสัญญาณกระแสแคนโทิดิกในการทำข้า และการวัดช้ามีค่า 1.08 และ 1.00 ตามลำดับ แสดงให้เห็นว่าอิเล็กโทรดไส้ดินสอ มีประสิทธิภาพในการตรวจวัดได้ดี สามารถทำข้าได้มากไปกว่านั้นอิเล็กโทรดไส้ดินสอสามารถเตรียมได้จ่ายใช้เวลาไม่นาน และราคาไม่แพง

3.2 การเปรียบเทียบประสิทธิภาพของอิเล็กโทรดไส้ดินสอที่ไม่ผ่านการดัดแปร และดัดแปรด้วยพลาสติก (III) / บิสมัท (III) ฟิล์ม โดยวิธีอิน-ซิซู

จากการเติมสารละลายพลาสติก (III) 500 พีพีบี และบิสมัท (III) 500 พีพีบี ลงไปทำเป็นฟิล์มด้วยวิธีอิน-ซิซูบนอิเล็กโทรดไส้ดินสอ ดังรูปที่ 2 (เส้น d) พบว่าทำให้ฟิล์มสัญญาณกระแสไฟฟ้าของไออ่อนตะกั่ว (II) และไออ่อนแคนดเมียม (II) มีค่ากระแสไฟฟ้าเพิ่มขึ้นอย่างเห็นได้ชัดเจนเมื่อเปรียบเทียบกับการใช้อิเล็กโทรดไส้ดินสอที่ไม่ผ่านการดัดแปร (รูปที่ 2 เส้น a)

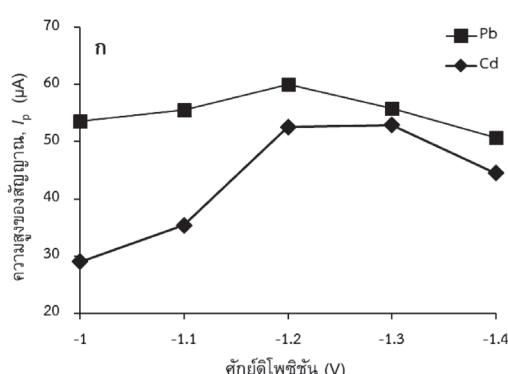
การดัดแปรด้วยบิสมัท (III) (รูปที่ 2 เส้น b) และการดัดแปรด้วยพลาสติก (III) (รูปที่ 2 เส้น c) เนื่องจาก SbBi เป้าไปช่วยในการทำให้เกิดเป็นโลหะผสม (alloy) เกิดเป็น SbBiPb และ SbBiCd [13, 18] ที่บริเวณพื้นผิวอิเล็กโทรดได้ดีและเกิดการสะสมของไออ่อนตะกั่ว (II) และไออ่อนแคนดเมียม (II) ได้มากขึ้น ทำให้พื้นที่ผิวของอิเล็กโทรดเพิ่มมากขึ้น จึงเกิดการเคลื่อนที่ของมวล (mass transfer) การแพร่ (diffusion) และเกิดการถ่ายเทประจุ (change transfer) ได้เพิ่มมากขึ้นในการเกิดปฏิกิริยาออกซิเดชันของไออ่อนโลหะ แสดงให้เห็นว่าการผสมไออ่อนโลหะบิสมัท (III) / พลาสติก (III) ช่วยเพิ่มความกว้างใน การวิเคราะห์ปริมาณไออ่อนตะกั่ว (II) และไออ่อนแคนดเมียม (II)

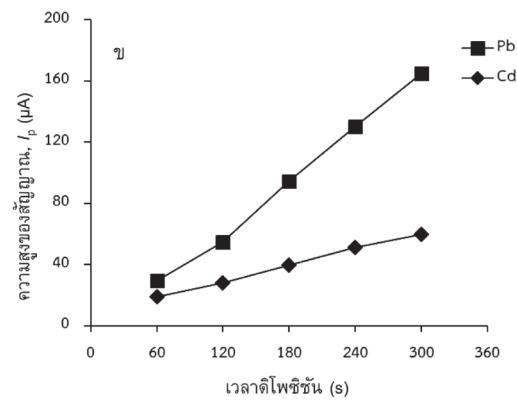


รูปที่ 2 แสดงสแกร์เวฟโวลเเอนะก์มแกรมการเบรียบเทียบประสิทธิภาพของอิเล็กโทรดไส้ดินสอที่ไม่ผ่านการดัดแปลง และ ดัดแปลงด้วยพิล์มพลวง (III) / บิสมัท (III)

3.3 การหาสภาวะที่เหมาะสมในการทดลอง

การศึกษาผลของพิเออของสารละลายนิ่วอิเล็กโทรลิต ให้ผลการทดลองดังรูปที่ 3 พบว่าพิเออ ที่อยู่ในสภาวะเหมาะสมที่สุดในการวิเคราะห์ปริมาณไอออนตะกั่ว (II) และไอออนแแคดเมียม (II) คืออะซิเตตบัฟเฟอร์ พิเออ 4.5 เนื่องจากมีสัญญาณกระแสสูงสุดและมีค่าคีดิโพลิชันต่ำที่สุด เมื่อเทียบกับพิเอออื่นๆ เมื่อพิเออขนาดกว่า 4.5 มีสัญญาณกระแสไฟฟ้าต่ำ อาจมีสาเหตุมาจากการไอลไดซิสของพลวงในสารละลายนิ่ว

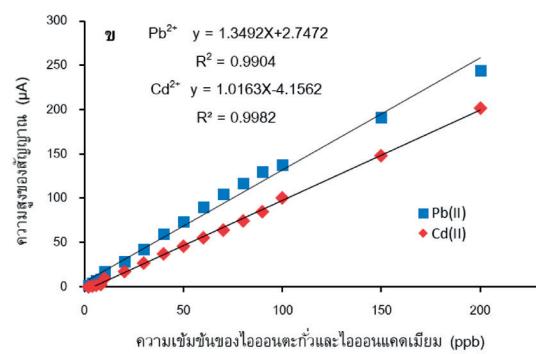
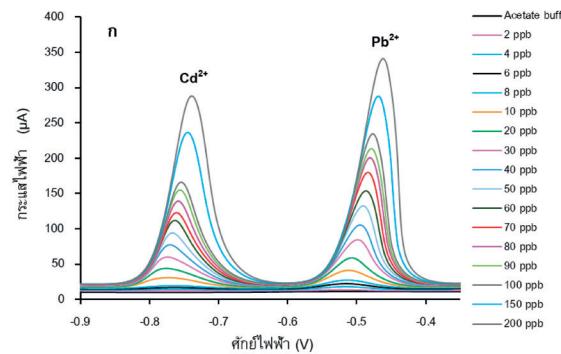

ทำให้ความเข้มข้นของพลวงลดลง และเมื่อพิเออ มากกว่า 4.5 ไอออนของโลหะหนักอาจจะเกิดการตกลงกันเป็นสารประกอบไฮดรอกไซด์ได้ และเมื่อเปรียบเทียบระหว่างกรดไฮดรคลอริก (HCl) และ อะซิเตตบัฟเฟอร์ พิเออ 4.5 ความเข้มข้น 0.01 มोลาร์ พบว่าการใช้บัฟเฟอร์ที่ความเข้มข้นต่ำๆ ทำให้การเคลื่อนที่ของมวล (mass transfer) ลดลง ซึ่งสอดคล้องกับงานวิจัยของ Baldrianova และคณะ [19]


รูปที่ 3 สแกร์เวฟโวลเเอนะก์มแกรมของการวิเคราะห์ปริมาณไอออนตะกั่ว และไอออนแแคดเมียม โดยใช้สารละลายนิ่วอิเล็กโทรลิตชนิดต่างๆ

การศึกษาผลของศักย์ดิโพลิกซ์และช่วงเวลาดิโพลิกซ์นี้ให้ผลการทดลอง ดังรูปที่ 4 ก พบร่วมศักย์ดิโพลิกซ์ที่ทำให้กระแสไฟฟ้าที่ตรวจวัดไอนอนตะกั่ว (II) และไอนอนแคนดิเมียม (II) ได้สูงสุดของ คือ -1.2 โวลต์ เมื่อใช้ศักย์ไฟฟ้ามากกว่า -1.2 โวลต์ จะทำให้กระแสไฟฟ้าที่ตรวจวัดได้ลดลงเล็กน้อย แสดงว่าที่ความต่างศักย์ -1.2 โวลต์ เป็นความต่างศักย์ที่เพียงพอต่อการเกิดปฏิกิริยาดักชันของไอนอนตะกั่วและไอนอนแคนดิเมียม การลดลงของสัญญาณเล็กน้อยที่ความต่างที่มากกว่า -1.2 โวลต์ อาจเกิดจากสะสมของไอนอนตะกั่วและไอนอนแคนดิเมียมบนบริเวณพื้นผิวน้ำของอิเล็กโทรดมากและแน่นเกินไปทำให้ในขั้นตอนสหประสิปปิ่งไอนอนตะกั่ว (II) และไอนอนแคนดิเมียม (II) ในขั้นตอนการวิเคราะห์หลุดออกมานิ่งหมด แต่ถ้าศักย์ดิโพลิกซ์

น้อยกว่า -1.2 โวลต์อาจทำให้ไอนอนตะกั่ว (II) และไอนอนแคนดิเมียม (II) เกาะติด (deposition) ที่บนพื้นผิวอิเล็กโทรด ได้ไม่หมด จึงทำให้สัญญาณที่ตรวจวัดลดลง ส่วนในกรณีผลของช่วงเวลาดิโพลิกซ์นี้ พบร่วมศักย์ไฟฟ้ามากขึ้นทำให้กระแสไฟฟ้าที่ตรวจวัดได้สูงขึ้น และจะมีแนวโน้มเป็นสัมตรอง (รูปที่ 4 ข) แต่เมื่อเพิ่มเวลาดิโพลิกซ์นมากกว่า 180 วินาที ค่ากระแสไฟฟ้าที่ตรวจวัดได้ก็ยังมีค่าเพิ่มขึ้น แต่พื้นผิวของอิเล็กโทรดอาจเกิดการอิ่มตัวและค่าแบล็คกราวน์เริ่มมีค่าสูงขึ้นเมื่อเวลาเพิ่มขึ้น ดังนั้นจึงเลือกเวลาดิโพลิกซ์ที่ 120 วินาทีซึ่งเป็นเวลาที่เหมาะสมที่สามารถให้สัญญาณสูงเพียงพอต่อการวิเคราะห์ปริมาณไอนอนตะกั่ว (II) และไอนอนแคนดิเมียม (II)

รูปที่ 4 ก. ความสูงของสัญญาณไอนอนตะกั่วและไอนอนแคนดิเมียมกับศักย์ดิโพลิกซ์ ข. ความสูงของสัญญาณไอนอนตะกั่วและไอนอนแคนดิเมียมกับเวลาดิโพลิกซ์



3.4 การศึกษาช่วงความเป็นเส้นตรงและขีดจำกัดในการตรวจวัด

เมื่อศึกษาช่วงความเป็นเส้นตรงของการวิเคราะห์ไอนอนตะกั่ว (II) และไอนอนแคนดิเมียม (II) ให้ผลการทดลอง ดังรูปที่ 5 โดยพบว่าช่วงความสัมพันธ์เชิงเส้นของความเข้มข้นของไอนอนตะกั่วที่ความสามารถตรวจวัดได้คือ 2.0 ถึง 200.0 พีพีบี และความเข้มข้นของไอนอนแคนดิเมียมที่ความสามารถตรวจวัดได้คือ 4.0 ถึง 200.0 พีพีบี ดังนั้นงานวิจัยนี้สามารถนำไปวิเคราะห์ปริมาณไอนอนตะกั่วและไอนอนแคนดิเมียมที่ปั่นเป็นในน้ำดื่มได้ เนื่องจากช่วงความเป็นเส้นตรงในการตรวจวัดอยู่ในค่าที่ Environmental Protection Agency (EPA) กำหนด คือปริมาณไอนอนตะกั่วและไอนอนแคนดิเมียมที่สามารถ

ปั่นเป็นในน้ำดื่มได้สูงสุดมีค่าไม่เกิน 15 พีพีบี และ 5 พีพีบี ตามลำดับ [22] ขีดจำกัดในการตรวจวัด ($3SD/\text{Slope}$) ของไอนอนตะกั่วและไอนอนแคนดิเมียมเท่ากับ 0.60 และ 0.65 พีพีบี ตามลำดับ การเปรียบเทียบผลการวิเคราะห์ที่ได้จากการวิจัยนี้กับงานวิจัยที่ผ่านมาแสดงได้ในตารางที่ 1 เช่น Jiao และคณะ [14] ใช้พลาสติมัลบ์บันกลาสสิการ์บอนอิเล็กโทรด วิเคราะห์ปริมาณไอนอนแคนดิเมียมเพียงชนิดเดียว Ashrafi และคณะ [13] ใช้พลาสติมัลบ์บันการ์บอนเพลสโซลิเด็กโทรด วิเคราะห์ปริมาณไอนอนแคนดิเมียมและไอนอนตะกั่วแต่ไม่ได้ประยุกต์ในตัวอย่างจริง Intarakamhang และคณะ [17] ใช้บิสมัลฟิล์มบันอิเล็กโทรดได้ดินสอและใช้เวลาดิโพลิกซ์นานถึง 600 วินาที และเมื่อเปรียบเทียบการศึกษาของ Yang และคณะ

[16] ดัดแปรอิเล็กโทรดด้วยวัสดุนาโนชิลิกาด้วยบิสมัฟฟิล์ม พบว่าเมื่อเปรียบเทียบกับงานวิจัยที่ยกตัวอย่างมา ค่าศักย์ดิ-โพเช็ชันในงานวิจัยนี้ใช้ค่า -1.2 โวลต์น้อยกว่าหรือเท่ากับงานวิจัยอื่น และพบว่าอิเล็กโทรดในงานนี้มีช่วงความเป็นเส้นตรง

กว้างกว่า และมีจุดจำกัดในการตรวจวัดที่ต่ำกว่าหรือใกล้เคียงกับงานวิจัยอื่น อีกทั้งการใช้สีดินสอซึ่งเป็นวัสดุแกรไฟต์มีรีราคากูกกว่ากลาชิคาร์บอนอิเล็กโทรด

รูปที่ 5 ก. แสดงสแกร์เวฟโวล์ฟแอม์แกรมของกราวิเคราะห์ปริมาณไออ่อนตะกั่วและไออ่อนแคนเดเมียมที่ความเข้มข้นต่างๆ ข. กราฟเส้นตรงแสดงความสัมพันธ์ระหว่างความเข้มข้นของไออ่อนตะกั่วและไออ่อนแคนเดเมียมกับกระแสไฟฟ้า

ตารางที่ 1 เปรียบเทียบช่วงความเป็นเส้นตรงและจุดจำกัดในการตรวจวัดโลหะไออ่อนกับงานวิจัยอื่น

อิเล็กโทรด	ตัวอย่าง	ศักย์ดิโพชิชัน (โวลต์)	เวลาจิโพชิชัน (วินาที)	ช่วงความเป็นเส้นตรง (พีพีบี)		จุดจำกัดในการตรวจวัด (พีพีบี)		อ้างอิง
				Pb ²⁺	Cd ²⁺	Pb ²⁺	Cd ²⁺	
Bi/SbGCE	Cd ²⁺	-1.3	210	-	1-220	-	0.15	[14]
NanoSiO ₂ BiFE/GCE	Cd ²⁺ , Pb ²⁺	-1.1	120	2-150	2-150	0.60	0.20	[16]
PLE	Cd ²⁺ , Pb ²⁺	-1.4	600	2-200	2-200	-	-	[17]
SbBi/CPE	Cd ²⁺ , Pb ²⁺	-1.2	120	10-70	10-70	0.90	0.80	[13]
SbBi/PLE	Cd ²⁺ , Pb ²⁺	-1.2	120	2-200	4-200	0.60	0.65	งานวิจัยนี้

หมายเหตุ : Bi/SbGCE คือ Bismuth/Antimony Film Glassy Carbon Electrode

NanoSiO₂BiFE คือ silica nanoparticles modified bismuth film electrode,

GCE คือ Glassy Carbon Electrode,

Sb-BiF/CPEs คือ Antimony-Bismuth film carbon paste electrodes,

PLE คือ pencil lead electrode

3.5 การประยุกต์ใช้อิเล็กโทรดไส้ดินสอที่ผ่านการตัดแปรในการตรวจวัดไอออนตะกั่ว (II) และไอออนแแคดเมียม (II) ในตัวอย่างน้ำจิริ

เมื่อนำอิเล็กโทรดไส้ดินสอที่ตัดแปรด้วยพลาสติก (III) / บิสมัท (III) พิล์ม มาตรวัดปริมาณตะกั่วไอออน (II) และแแคดเมียมไอออน (II) แสดงผลดังตารางที่ 2 ซึ่งจากการวิเคราะห์ไม่เพิ่งไอออนตะกั่ว (II) และไอออนแแคดเมียม (II) ปานเปื้อนในน้ำประปา เมื่อตรวจสอบความถูกต้องและความแม่นยำของวิธีโดยทำการเติมสารละลายมาตรฐานไอออนตะกั่ว (II) และไอออน-แแคดเมียม (II) พบว่ามีค่าร้อยละการกลับคืน (%Recovery)

เป็นค่าที่อยู่ในช่วงยอมรับได้ ($100 \pm 10\%$) แสดงให้เห็นถึงความถูกต้องของวิเคราะห์ และมีค่าส่วนเบี่ยงเบนมาตรฐานสัมพัทธ์ (%RSD) เป็นค่าที่อยู่ในช่วงยอมรับได้ ($\leq 5\%$) ซึ่งแสดงให้เห็นถึงความแม่นยำของวิเคราะห์มากไปกว่านั้นสารรบกวน เช่นไอออนต่างๆ ในตัวอย่างน้ำแร่ยังไม่รบกวนต่อการตรวจวัดไอออนตะกั่วและไอออนแแคดเมียม ดังนั้น อิเล็กโทรดไส้ดินสอพลาสติก (III) / บิสมัท (III) พิล์ม ที่เตรียมได้สามารถนำประยุกต์ใช้ในการวิเคราะห์หาระบิมาณตะกั่ว (II) และแแคดเมียม (II) ในตัวอย่างน้ำจิริได้อย่างมีประสิทธิภาพ

ตารางที่ 2 ปริมาณไอออนตะกั่วและไอออนแแคดเมียมในตัวอย่างน้ำประปา

Sample	Added (ppb)		Found (ppb)		%RSD		%Recovery	
	Pb ²⁺	Cd ²⁺						
Tap	-	-	< LOD	< LOD	-	-	-	-
water	20	20	21.7 \pm 0.39	21.34 \pm 0.37	1.81	1.74	108.6	106.7
	30	30	31.8 \pm 0.49	32.2 \pm 0.53	1.54	1.65	105.6	107.3
Mineral	-	-	< LOD	< LOD	-	-	-	-
drinking	20	20	20.8 \pm 0.58	21.2 \pm 0.39	2.77	1.84	103.8	104.1
water	30	30	31.2 \pm 0.59	31.5 \pm 0.70	1.88	2.21	104.1	105.1

4. วิจารณ์และสรุปผลการทดลอง

อิเล็กโทรดไส้ดินสอตัดแปรด้วยพลาสติก (III) / บิสมัท (III) พิล์ม โดยวิธีอิน-ซิทู เป็นการปรับปรุงเพื่อเพิ่มสัญญาณการตรวจวัดตะกั่ว (II) และแแคดเมียม (II) ได้ดีและมีประสิทธิภาพ สามารถในการทดลองที่เหมาะสมคือ สารละลายอิเล็กโทรลิต-อะซิเตตบัฟเฟอร์ พีเอช 4.5 ศักย์ดิโพลิชันที่ -1.2 โวลต์ และช่วงเวลาดิโพลันที่ 120 วินาที โดยมีช่วงความสัมพันธ์เชิงเส้นตรงในการตรวจวัดตะกั่ว (II) และแแคดเมียม (II) อยู่ในช่วงกว้าง มีขีดจำกัดในการตรวจวัดตะกั่ว (II) และแแคดเมียม (II) ต่ำกว่า 1 พีพีบี และสามารถนำอิเล็กโทรดที่ได้มาวิเคราะห์ปริมาณตะกั่ว (II) และแแคดเมียม (II) พร้อมกันในน้ำตัวอย่างน้ำจิริ

5. กิตติกรรมประกาศ

ขอขอบคุณพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ สัญญาเลขที่ MRG6180072 จากสำนักงานคณะกรรมการอุดมศึกษา (สกอ.) และสำนักงานกองทุนสนับสนุนงานวิจัย (สกว.) ในการสนับสนุนทุนวิจัยครั้งนี้

6. เอกสารอ้างอิง

- Cooksey, C., 2012, "Health Concerns of Heavy Metals and Metalloids," *Science progress*, 95 (1), pp. 73–88.
- Egorova, K.S. and Ananikov, V.P., 2017, "Toxicity of Metal Compounds: Knowledge and Myths,"

Organometallic, 36 (21), pp. 4017-4090.

3. Jarup, L. and Akesson, A., 2009, "Current Status of Cadmium as an Environmental Health Problem," *Toxicology and Applied Pharmacology*, 238, pp. 201–208.

4. Assubaie, F.N., 2015. "Assessment of the Levels of some Heavy Metals in Water in Alahsa Oasis Farms, Saudi Arabia, with Analysis by Atomic Absorption Spectrophotometry," *Arabian Journal of Chemistry*, 8 (2), pp. 240-245.

5. Cengiz, M.F., Kilic, S., Yalcin, F., Kilic, M., and Yalcin, M.G., 2017, "Evaluation of Heavy Metal Risk Potential in Bogacayi River Water (Antalya, Turkey)," *Environmental Monitoring and Assessment*, 189 (248), pp.1-12

6. Okoye, C.O.B., Chukwuneke, A.M., Ekere, N.R. and Ihedioha, J.N., 2013, "Simultaneous Ultraviolet-visible (UV–VIS) Spectrophotometric Quantitative Determination of Pb, Hg, Cd, As and Ni Ions in Aqueous Solutions using Cyanidin as a Chromogenic Reagent," *International Journal of Physical Sciences*, 8 (3), pp. 98-102.

7. Liu, X., Li, Z., Ding, R., Ren, B. and Li, Y., 2016, "A Nanocarbon Paste Electrode Modified with Nitrogen-doped Graphene for Square Wave Anodic Stripping Voltammetric Determination of Trace Lead and Cadmium," *Microchimica Acta*, 183 (2), pp. 709–714.

8. Dimovasilis, P.A. and Prodromidis, M.I., 2016, "Preparation of Screen-Printed Compatible Bismuth-Modified Sol-Gel Microspheres: Application to the Stripping Voltammetric Determination of Lead and Cadmium," *Analytical Letters*, 49 (7), pp. 979-989.

9. Fischer, E. and Berg, M.G., 1999, "Anodic Stripping Voltammetry of Lead and Cadmium using a Mercury Film Electrode and Thiocyanate," *Analytica Chimica Acta*, 385 (1–3), pp. 273–280.

10. Economou, A., 2005, "Bismuth-Film Electrodes: Recent Developments and Potentialities for Electroanalysis," *Trends in Analytical Chemistry*, 24 (4), pp. 334–340.

11. Wang, J., 2005, "Stripping Analysis at Bismuth Electrodes: A Review," *Electroanalysis*, 17 (15-16), pp. 1341–1346.

12. Hocevar, S.B., Švancara, I., Ogorevc, B. and Vytřas, K., 2007, "Antimony Film Electrode for Electrochemical Stripping Analysis," *Analytical Chemistry*, 79 (22), pp. 8639-8643.

13. Jiao, Y.W., Yang, L., Gu, R., Hong, Q.L. and Nian, B.L., 2012, "Determination of Cadmium (II) by Square Wave Anodic Stripping Voltammetry using Bismuth-antimony Film Electrode," *Sensors and Actuators B: Chemical*, 166– 167, pp. 544-548.

14. Ashrafi, A.M. and Vytras, K., 2013, "Codeposited Antimony-Bismuth Film Carbon Paste Electrodes for Electrochemical Stripping Determination of Trace Heavy Metals," *International Journal of Electrochemical Science*, 8, pp. 2095-2103.

15. Qureshi, A., Kang, W.P., Davidson, J.L. and Gurbuz, Y., 2009, "Review on Carbon-derived, Solid-state, Micro and Nano Sensors for Electrochemical Sensing Applications," *Diamond and Related Materials*, 18 (12), pp. 1401-142.

16. Yang, D., Wang, L., Chen, Z., Megharaj, M., and Naidu, R., 2014, "Voltammetric Determination of Lead (II) and Cadmium (II) using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles," *Electrochimical Acta*, 132, pp. 223–229.

17. Intarakamhang, S., Schuhman, W. and Schulte, A., 2013, "Robotic Heavy Metal Anodic Stripping Voltammetry: Ease and Efficacy for Trace Lead and Cadmium Electroanalysis," *Journal Solid State Electrochemical*, 17, pp. 1535-1542.

18. Robert, M.C. and Saravanan, R., 2010, "Triple

Phase Structure and Electron Density Analysis of the Thermoelectric Material $\text{Bi}_{80}\text{Sb}_{20}$,” *Powder Technology*, 197, pp. 159-164.

19. Baldrianova, L., Svancara, I., Economou, A. and Sotiropoulos, S. “Anodic Stripping Voltammetry at *In Situ* Bismuth-plated Carbon and Gold Microdisc Electrodes in Variable Electrolyte Content Unstirred Solutions,” *Analytica Chimica Acta*, 580 (1), pp. 24-31.

20. Theanponkrang, S., Intarakamhang, S. and Schulte, A., 2015, “Robotic Ascorbic Acid Electroanalysis: Quality Gain via Carbon Nanotube Working Electrode Coatings,” *KMUTT Research and Development Journal*, 38 (1), pp. 101-109.

21. Leyla, K., Sevinc, K., Bengi, U. and Sibel, A.U., 2017 “Electrochemical DNA Biosensors in Drug Analysis,” *Current Pharmaceutical Analysis*, 13 (3), pp. 195-207.

22. [EPA] United states Environmental Protection Agency. <https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic>. [May 2018].