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Abstract:

Let E € Q7 and T be a set-valued map from E to Q,'. We prove that if T is p-
adic semi-algebraic, lower semi-continuous (that is, for every x, € X, yo € T(x,) and a
neighborhood V of y,, there is a neighborhood U of x,, such that for every x € U, T(x) N
V # @) and T(x) is closed for every x € E, then there is a p-adic semi-algebraic
continuous function f: E — Q" that is a selection of T (that is, f(x) € T(x) for all x €
E.) In addition, we strengthen the result and obtain that if T is p-adic semi-algebraic and
has a continuous selection, then T has p-adic semi-algebraic continuous selection.
Moreover, we obtain three applications of this result.

First, consider the equation:
) F@1u GV Ym) = 0,
where g4, ..., g E = Qp and F: Q};*m — @, are p-adic semi-algebraic and continuous
and y1, ..., Ym: E = Q, are unknown continuous functions. We prove that if there are
continuous functions yq, ..., Y E = Qp solving (*), then there are also p-adic semi-
algebraic continuous functions y, ..., ym: E = @, that satisfy (*). Next, let E' be closed
in Qg. We give a characterization of the restriction of p-adic semi-algebraic continuous
functions to E. Finally, let (G,°) be the monoid where G is the set of p-adic semi-algebraic
continuous functions from Q{," to Q{," with the composition o. Here, we obtain a
characterization of right invertible elements and a characterization of left invertible

elements.

Keywords : p-adic fields, semi-algebraic functions, selections
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Executive Summary

1. Introduction to Research

A set-valued map from a set X to another set Y is a map from X to the power of
Y. For a set-valued map T from X to Y, a selection of T isamap f from X toY such
that f(x) € T(x) for every x € X. E. Michael is one of pioneers on the question of the
existence of continuous selections of set-valued maps. Michael's Selection Theorem [11],
which is an important tool in many branches of mathematics (see e.g. [10] and [12])

asserts that:

Let X be a paracompact topological space, Y be a Banach space and T be a set-
valued map from X to Y. If T (x) is closed and convex for every x € X and T is lower semi-
continuous (that is, for every x, € X, y, € T(x,) and a neighborhood V of y,, there is a
neighborhood U of x, such that for every x € U, T(x) NV # @), then T has a continuous

selection.

The give construction involves an infinitary process that can produce a continuous

selection that is far removed from how T arises. This gives rise to the following question:

Let T be a set-valued map. Suppose we know that T has a continuous selection. If
T is well behaved in some prescribed sense, does T has a continuous selection that is

similarly well behaved?

To make this question precise, we employ notions from first-order logic: definability

in expansions of the p-adic field. We now restate the question as follows:

Let T be a set-valued map from a subset of Q. to Q*. If T has a continuous

selection, does T have a continuous selection that is definable in (Qp, +,, T) ?

In this research, we study the above question in the context of p-adic semi-
algebraic sets. In particular, if T is p-adic semi-algebraic and has a continuous selection,

does T has a p-adic semi-algebraic continuous selection?



2. Literature Review

To answer the main question, we first ask whether there is a definable version of
Michael's Selection Theorem in the p-adic semi-algebraic context. In [2], M.
Aschenbrenner and A. Thamrongthanyalak prove analogues of Michael's Selection
Theorem in o-minimal structures. The constructions involve the existence of the least
norm selections, definable Tietze Extension Theorem and Cell Decomposition Theorem
in o-minimal structures. The definable Tietze Extension Theorem asserted that every
function on a closed set that is definable in a definably complete expansion of a real
closed field has a continuous extension to the whole space that is also definable in the
same structure (see [1]). Next, the Cell Decomposition Theorem is an important tool in
the study of geometry of o-minimal sets. This theorem implies that every definable set in
an o-minimal expansion of an ordered divisible abelian group has only finitely many
connected components. We refer to [6] for more on o-minimal structures. In addition, the
convexity of valued of maps also plays an important role in the construction in [2]. In [5],
M. Czapla and W. Pawlucki relaxed the convexity condition when the dimension of the
domain is 1. Another generalization in o-minimal expansions of the real field was studied
in [14]. From [16], we know that a definable version of Michael’s Selection Theorem also
holds in d-minimal expansions of the real field (which is a generalization of o-minimal
structures).

In [6] and [9], the model theory of the p-adic field were introduced. Definable sets
in this context possess good geometric properties. A subset of Q;} is called p-adic semi-
algebraic if it is definable in the p-adic field structure. One of important tools in the study
of p-adic semi-algebraic sets is the p-adic Cell Decomposition Theorem. In particular,
every p-adic semi-algebraic set can be decomposed into finitely many p-adic cells. This
result can be considered as an analogue of Cell Decomposition Theorem in o-minimal
structures. Later, R. Cluckers prove an p-adic analytic version of the p-adic Cell
Decomposition Theorem in [3].

In [15], A. Thamrongthanyalak proved that every p-adic semi-algebraic continuous
function on a closed subset of Qg has a p-adic semi-algebraic continuous extension to
the ambient space Q{}. This result can be considered as a p-adic semi-algebraic version
of Tietze Extension Theorem.

Equipping Qp by the usual ultrametric, we obtain that every point in a ball is its
center (see [13]). Therefore, the least norm selection does not exist in the p-adic context.

Note that in the reals, the least norm selection of convex sets is a 1-Lipschitz map. In [4],



R. Cluckers and F. Martin prove that every p-adic semi-algebraic Lipschitz function on a
subset of Q,’} is the restriction of a p-adic semi-algebraic Lipschitz function on Q{} with the
same Lipschitz constant. This provides controls on oscillations of p-adic semi-algebraic
functions.

In [8], C. Fefferman and J. Kollar raised the following question:
Let g1, ..., gk: R™ = R be polynomials in n indeterminates. Consider Suppose that there
are continuous functions f,y;,...,V, such that f = g;y, + -+ gxYx- Are there
polynomials f, V4, ..., Yx that solves this equation?

They found that the answer is 'no’. However, this equation admits a solution that

are rational functions.

3. Objectives
3.1 To prove that if T is a p-adic semi-algebraic set valued-map from a subset of QZ}
to Q{," that has a continuous selection, then T has a p-adic semi-algebraic
continuous selection.
3.2 To find other criterions that guarantee the existence of definable continuous
selections.
3.3 To use the positive answer to the main question to solve Fefferman and Kollar’s

question on continuous solutions of linear equations.

4. Research Methodology

4.1 Review related literatures.

4.2 Modify techniques used in the proof of definable Michael’s Selection Theorem in
o-minimal structures.

4.3 Prove that if T is a p-adic semi-algebraic set valued-map from a subset of Q{,‘ to
Q{,” that has a continuous selection, then T has a p-adic semi-algebraic
continuous selection.

4.4 Use the answer to the main question to solve C. Fefferman and J. Kollar's question

on continuous solutions of linear equations.



Result and Conclusion

Throughout, let p be a fixed, but arbitrary, prime number. We equip the p-adic field
with the usual p-adic valuation v. A p-adic semi-algebraic set is a subset of Qg that is a
finite boolean combination of sets of the forms {(x, ..., x,) € Q}:q(xy, ..., x,,) = 0} and
{1y e xy) € Qpix; = Ay for some y € Qp} where is a polynomial over Q,, A € Q,,
k€Nandi = 1,..,n. Let E € Q7. We say that a function f: E — Q" is p-adic semi-
algebraic if the set {(x,y) € E X Qp*: f(x) = y} is p-adic semi-algebraic. Similarly, a
set-valued map T from E to Q" is p-adic semi-algebraic if the set {(x,y) € E X Q":y €
T (x)} is p-adic semi-algebraic.

From now, we fix E C Qg and a set-valued map T from E to Q. As consequences

of the p-adic Cell Decompostion Theorem, we have:

Lemma1 Let f:E — Q{)” be semi-algebraic. Then there is a semi-algebraic set X € E

such that dim(E \ X) < dim(E) and the restriction f I X is continuous.

Lemma2LletA C Q{}“ be semi-algebraic and : Q5 *™ — Q} be the projection onto the
first n coordinates. Then there exists a semi-algebraic function f: A — QZ} such that the

graph of f is contained in A.
By these two lemmas, we obtain that:

Lemma 3 Let A C Q{,’“ be semi-algebraic and : Q;*™ — Q} be the projection onto the
first n coordinates. Then there exist a semi-algebraic set X € mA and a semi-algebraic
continuous map f: X — Qp* such that dim(mwA \ X) < dim(wA) and the graph of f is

contained in A.

Let Y € Qp'. Amap f: Q" = Qp" is a retraction from Q" to Y if f is continuous,
the range of f is Y and the restriction of f to Y is the identity map on Y; and a map

g:Y = Yis nonexpansive if v(g(x) — g(y) =2 v(x —y) forallx,y €Y.

Lemma 4 Let 7:E X Q' = Q' be a semi-algebraic map such that r(x,—) is
nonexpansive for every x € E. There is a semi-algebraic set Ey € E such that

dim(E \ E;) < dimE andr | (EO X Q{,”) is continuous.

Recall that a selection of T is a map f: E — Q" such that f(x) € T'(x) for all x €

E. Now we obtain the following theorem.



Theorem 5 If T is p-adic semi-algebraic and lower semi-continuous (that is, for every x, €
X, vy € T(x,) and a neighborhood V of y,, there is a neighborhood U of x,, such that for
every x €U, T(x) NV # @) and T(x) is closed for every x € E, then T has a p-adic

semi-algebraic continuous selection.
In addition, we study generalization of this theorem.

The Glaeser refinement of T is a set-valued map T’ from E to Qp defined by
T'(xy) ={y € T(xo):v(y,T(x)) —oasE 3 x = xy}forx, EE.
Next we define a sequence (T(k))kav inductively by T(® := T and T*+D = (T(k))’.
We found that:

Lemma 6 /f T is p-adic semi-algebraic, then TM js p-adic semi-algebraic and lower semi-

continuous.
Lemma 7 If T has a continuous selection, then TM % @ forallx € E.
We obtain the following characterization.

Theorem 8 Suppose T is p-adic semi-algebraic and T (x) is closed for every x € E. Then
the following are equivalent:

1. T has a continuous selection;

2. TW =@ forallx € E;

3. T has a p-adic semi-algebraic continuous selection.
When dim E = 1, we can show that:

Theorem 9 Suppose dim E = 1 and T is p-adic semi-algebraic. Then T has a continuous

selection if and only if T has a p-adic semi-algebraic continuous selection.
In addition to these main theorems, we found three applications of these results.

First, consider the equation:
) F@1u GV Ym) = 0,
where gy, ..., gkt E = Qp and F: Q;,f*’m — @, are p-adic semi-algebraic and continuous
and yq, ..., Ym: E = @, are unknown continuous functions. By Theorem 9, we can show

that:



Proposition 10 If there are continuous functions yy, ..., Ym: E = Qp solving (*), then there

are also p-adic semi-algebraic continuous functions ys, ..., ym: E = Q) that satisfy (*).

Next, let E be closed in @y and f:E — Q' be p-adic semi-algebraic. Define a
set-valued map T from Q to Q7 by Tr(x): = {f(x)}if x € E; and Tf(x) :== Qp' ifx €
Qp' \ E. We obtain that:

Proposition 11 The function f is the restriction of a continuous function from Qp to Qp' if

and only if (Tf)(n) (x) # @ foreveryx € Qj.

Finally, let (G,o) be the monoid where G is the set of p-adic semi-algebraic
continuous functions from Q;," to Qz’,” and the group operation o is the composition
operation. Let h € G. Define the set-valued map h™! from Qp' to Qp' by h™1(x) is the
pre-image of { x } under h. Here, we give a characterization of right invertible elements

and a characterization of left invertible elements.

Proposition 12 Let h € G. Then h is right invertible under o if and only if h is surjective
and (h™)™(x,) # @ for every x, € Q"

Proposition 13 Let h € G. Then h is left invertible under o if and only if h is injective and
(Th—1)(")(xo) + @ for every Xy € Qp'.



Future Researches

In the future works, we know that the concept of p-adic semi-algebraic sets can be
generalized to sets definable in P-minimal expansions of a p-adically closed field.
Therefore, it is very interesting to know whether analogues of our results hold in this

context.
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Let E € Q) and T be a set-valued map from E to Q). We prove that if T is p-adic semi-algebraic, lower semi-
continuous and 7 (x) is closed for every x € E, then T has a p-adic semi-algebraic continuous selection. In
addition, we include three applications of this result. The first one is related to Fefferman’s and Kollar’s question
on existence of p-adic semi-algebraic continuous solution of linear equations with polynomial coefficients. The
second one is about the existence of p-adic semi-algebraic continuous extensions of continuous functions. The
other application is on the characterization of right invertible p-adic semi-algebraic continuous functions under
the composition.

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In 1956, Michael presented a series of papers on the existence of continuous selections of set-valued maps [14-16].
For sets X and Y, a set-valued map from X to Y (denoted by T : X =2 Y) is a map from X to the power set of
Y. Suppose we equip X and Y with topologies and let T : X == Y. A continuous selection of T is a continuous
map f : X — Y such that f(x) € T(x) for every x € X. We say that T is lower semi-continuous if for every
X0 € X, yo € T(x0) and a neighborhood V of yy, there is a neighborhood U of xy such that for every x € U,
T(x) NV # &. In [15, Theorem 1.2], Michael asserted “if X is a zero-dimensional paracompact space, Y is a
complete metric space, and T'(x) is closed and nonempty for every x € X, then T has a continuous selection.”
The given construction involves an infinite iterated procedure which makes the selection far removed from how
the set-valued map arose. Therefore, this gives rise to the following question:

Question 1.1 If T is well behaved in some prescribed sense, is it possible to find a continuous selection that
is similarly well behaved?

This paper discusses the above problem in the p-adic semi-algebraic context. (Note that similar questions in
the context of the reals were discussed in [2, 3, 7, 21].)

Throughout, let p be a fixed prime number, Q, be the set of p-adic numbers with the p-adic valuation
v:Q, = ZU{+o0} and E denote a subset of some Q. We equip Q,, with the topology induced by the p-adic
valuation. Let T : E = Q). To make the question precise, we employ first-order logic. Our language of valued
fields is the language {+, -, —, 0, 1} of rings augmented by a binary relation symbol Div. For x, y € Q,, we let
x Div y if and only if v(x) > v(y). The question can now be restated as follows.

Question 1.2 If T has a continuous selection, does it also have a continuous selection that is definable
in (Qp;+, -, —,0,1,Div, T) where (Q,;+, -, —, 0, 1, Div, T') is the expansion of the p-adic valued field by a
predicate T and the word “definable” means “definable possibly with parameters”?

In this paper, we restrict the class of set-valued maps under consideration to p-adic semi-algebraic set-valued
maps. A subset of QZ is called p-adic semi-algebraic (or semi-algebraic for short) if it is a boolean combination

of sets of the form {x € Q, : there exists y € Q,, such that f(x) = y*} where f(X) is a polynomial with p-adic
coefficients and indeterminates X = (X, ..., X,) and k € N. It is known that the class of semi-algebraic sets is
the same as the class of definable sets in (QP; +,-,—,0, 1, Div). We say that a set-valued map T : E = Q’,’} is

* E-mail: athipat.th@chula.ac.th
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p-adic semi-algebraic if the graph of T, {(x, y) € E x Q7 : y € T(x)}, is semi-algebraic. Similarly, a function
[+ E — Q} is p-adic semi-algebraic if the graph of f, {(x, f(x)) : x € E}, is semi-algebraic. The following is
a main result.

Theorem 1.3 [f T is semi-algebraic and lower semi-continuous, and T (x) is closed and nonempty for every
x € E, then T has a semi-algebraic continuous selection.

In addition, by using the same techniques, we have an analogue of Theorem 1.3 in the p-adic subanalytic
context, i.e., if T is subanalytic and and lower semi-continuous, and 7 (x) is closed and nonempty for every
x € E, then T has a subanalytic continuous selection. We further investigate the main question when 7 is not
necessarily lower semi-continuous and obtain the following.

Theorem 1.4 If T is semi-algebraic and has a continuous selection, and T (x) is closed for every x € E, then
T has a semi-algebraic continuous selection.

In addition, we show that the closeness assumption is not necessary when dim £ = 1.

Theorem 1.5 Suppose dim E = 1 and T is semi-algebraic. Then T has a continuous selection if and only if
T has a semi-algebraic continuous selection.

As consequences of the proofs of the above theorems, we also know that analogous results hold for finite field
extensions of Q,,. We also include two applications to illustrate some uses of our main results. The first application
is related to a result of Fefferman and Kolldr. In [10], they showed (using algebraic-geometric techniques) that
if the equation f = gy1 + -+ guYm, Where f, g1, ..., g, are polynomials with p-adic coefficients and n
indeterminates, has a continuous solution (i.e., there are continuous functions yy, ..., y,, : Qi}, — Q, that satisfy
the equation), then it also has a semi-algebraic continuous solution. Using our main results, we introduce a new
approach and obtain the following generalization.

Corollary 1.6 Ler g1, ..., 8 : Q) - Q, and F : Q’l‘f’" — Q, be semi-algebraic and continuous. If there
are continuous functions yi, ..., Vu : QZ — Q,, such that
F(g1,- o & Yiseosym) =0, )
then there are semi-algebraic continuous functions yy, ..., y,, that satisfy (x).
Observe that when F (2o, Z1, - -+ Zms Y1s - - «» Ym) = 20 — Z1¥1 — Z2¥2 — ** * — Zm Ym, the equation (x) is equiv-

alent to the linear equation under considerationin [10]. Next,let E C E’ C Q’; be semi-algebraicand f : E — Q;’}
be semi-algebraic. Recall that an extension of f to E'is amap g : E' — Q) such that g(x) = f(x) for every
x € E. By [20], we know that if E is closed in E’ and f is continuous, then f admits a semi-algebraic continuous
extension to E'. Therefore, it is natural to ask how to determine whether f admits a semi-algebraic continuous
extension to E’ (when E is not necessarily closed in E”).

Forall x = (x1,...,x,) € Q) let v(x) = min{v(x;) : i € {1,..., n}}. Note that v induces the usual topology
on Q) and satisfies the ultrametric inequality, i.e., for all x, y, z € Q, we have that v(x —y) > min{v(x —
z),v(z — y)}.ForY € Q) andx € Q),letv(x,Y) = inf{v(x —y) : y € Y}.Foreach$ € Zandx € Q,let B5(x)
denote the box {y :v(x —y) > 8}. Let T : E = Q’p" be a set-valued map. Let xo € E and y € Q’p”. We say that
v(y, T(x)) = ooas E 3 x — xgif forevery t € Q,\{0} thereis s € Q,\{0} such that forall x € E N By,)(xo),
v(y, T(x)) > v(t). The Glaeser refinement of T is the set-valued map T’ : E = Q) defined by

T'(x0) :={y € T(x0) : v(y, T(x)) — 00 as x — xo}
forxo € E.Foreachk e N, let T¥) : E = Q;” be the k-th time Glaeser refinement of 7. Let Ty : E' = Q'p” be
defined by

_ {f(x)}, ifxekE,

uag 1 /
" if x € E'\E,

Ty(x)

for every x € E’. We show the following consequence.

Corollary 1.7 The function f admits a semi-algebraic continuous extension to E' if and only if (Tf)<”) (x) £ o
for every x € E'.
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The other application is on the characterization of semi-algebraic continuous functions that are right invertible
under the composition operation. Let n be a positive integer. Recall that the set of semi-algebraic continuous
functions from Q' to 7, with the composition operation is a monoid but is not a group. For any map i : Q) — Q7.
leth': Q), = Q) be a set-valued map defined by h~!(x) is the pre-image of {x} under 4. Now, we obtain the
following result.

Corollary 1.8 Let h: Q) — Q) be semi-algebraic and continuous. Then h is right invertible under the
composition operation o if and only if h is surjective and (h=")") (x) # @ for every x € Q.

We fix our conventions and notations: Throughout this paper, d, k, m, and n will range over the set N =
{0, 1, 2,3, ...} of natural numbers. For a set § C QZ we denote by cl S the closure of S.

2 p-adic semi-algebraic sets and the proof of Theorem 1.3

In this section, we recall some properties of p-adic semi-algebraic sets used in our proof of Theorem 1.3. For
E < @), letdim E denote the largest k such that there is a coordinate projection from Q' to Q’; where the image
of E has nonempty interior. Obviously, we have dim E = # if and only if E has nonempty interior. It is known that
(HifEy, E, C Q’[‘, are semi-algebraic, then dim(E; U E;) = max{dim E, dim E,}; (2) if E is semi-algebraic and
dim E = 0, then E is finite; and (3) if E is semi-algebraic, then dim(cl E\E) < dim E and dim E = dim(cl E);
cf., e.g., [12].

Throughout this paper, we assume £ € Q) and 7' : E = Q] unless stated otherwise. The concept of cells is a
corner stone of the study of semi-algebraic sets. Cell Decomposition Theorem (cf. [8, 18] for more information)
provides that every semi-algebraic set is a finite disjoint union of cells. As consequences, we have:

Lemma 2.1 Let f: E — Qg be semi-algebraic. Then there is a semi-algebraic set X C E such that
dim(E\X) < dim(E) and the restriction f|X is continuous.

Lemma 2.2 Let A C (@’;*m be semi-algebraic and 7 : Q’]’f’” — QY be the projection onto the first n coordi-
nates. Then there exists a semi-algebraic map f : w A — Q) such that the graph of f is contained in A.

The following corollary follows immediately from Lemmas 2.1 & 2.2.

Lemma 2.3 Let A C Q’;*’” be semi-algebraic and m : Q’]‘f’” — ), be the projection onto the first n coordi-
nates. Then there exist a semi-algebraic set X C w A and a semi-algebraic continuous map f : X — Q) such
that dim(w A\X) < dim(z A) and the graph of f is contained in A.

Let Y C Q;". A map f: Q;" — Q’; is a retraction from Q’;} to Y if f is continuous, the range of f is ¥
and the restriction of f to Y is the identity map on Y (i.e., f(x) = x forevery x € Y);andamap g : ¥ — Q,
is nonexpansive if v(g(x) — g(y)) > v(x —y) forevery x,y € Y. Letr : E x Q) — Q. For each x € E, let
r(x, —) denote the map from Q' to Q): y > r(x, y) forevery y € Q).

In [6], Cluckers and Martin proved the following result.

Lemma 2.4 (Cluckers & Martin; [6, Theorem 20]) If T is semi-algebraic and T (x) is closed for every x € E,
then there exists a semi-algebraic map r : E x Q) — QY such that for each x € E, r(x, =) is a nonexpansive
retraction from Q' to T (x).

As a result, we obtain:

Lemma 2.5 Let r: E x Q) — QY be a semi-algebraic map such that r(x, —) is nonexpansive for every
x € E. There is a semi-algebraic set Eg C E such that dim(E\Ey) < dim E and r[(Eo x Q) is continuous.

Proof. Let E':={x € E : risnot continuous at (x, y) for some y € QZ‘}. It is enough to show that
dim E’ < dim E. Suppose to the contrary that dim E’ = dim E. Since every coordinate projection is semi-
algebraic, we may reduce to the case dim E = n. By 2.3, there exist a semi-algebraic open set U C E’ and
semi-algebraic continuous functions g, G : U — Q) such that G(x) = r(x, g(x)) and r is not continuous at
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(x, g(x)) forevery x € U. Fix xo € U. We shall show that G is not continuous at x,. Since r is not continuous at
(x0, g(x0)), there is t € Q,\{0} such that ¢ = v(¢) € Z and

Vs € Qy\{0}3(x, y) € By(s) (x0, 8(x0)), v(r(x,y) —r(x0.&(x0))) < e

Since g is continuous, thereis so € Q,,\{0} suchthat v(g(xo) — g(x)) > eforevery x € By(y,)(xo).Lets € Q,\{0}
such that § = v(s) > max{e, v(so)}. Then there exists (x, y) € Bs(xo, g(x0)) such that

v(r(x,y) —r(xo, g(x0))) <e.

Since v(y — g(x0)) > e and v(g(x) — g(x0)) > &, by the ultrametric inequality, v(y — g(x)) > &. Since r(x, —)
is nonexpansive, again by the ultrametric inequality, v(r(x, y) — r(x, g(x))) > ¢. Therefore

v(G(x) — G(x0)) = v(r(x, g(x)) —r(x0, g(x0))) = v(r(x, y) — r(x0, g(x0))) <&
Hence, G is not continuous at xo which is absurd. O

Observe that if T (x) is a singleton on a closed subset A of T, i.e., the restriction of T to A canonically induces a
function from A to Q", then our main question becomes: “Is there a semi-algebraic continuous extension of 7'[A
that is contained in the graph of 7'7” We can see that this problem on the existence of semi-algebraic continuous
extensions has a connection with our main question.

Lemma 2.6 (Thamrongthanyalak; [20, Theorem 1.1]) Let E and E' be semi-algebraic. Suppose E C E', E is
closedin E' and f : E — Q), is semi-algebraic and continuous. Then there is a semi-algebraic continuous map
g: E' — Q) suchthat g|E = f.

Proof of Theorem 1.3. We proceed by induction on d := dim E. The case d = 0 is clear. Suppose
the result holds for every semi-algebraic set-valued map whose domain has dimension < d. By 2.4, let r :
E x Q) — Q) be semi-algebraic such that r(x, —) is a nonexpansive retraction from Q) — 7'(x) for every
x € E.In addition, by 2.5, there is a semi-algebraic set Eg C E such that dim(E\Eo) < dim E and r [(Eo x Q7))
is continuous. Replacing Ey by Eo\ cl(E\Ey) if necessary, we may assume that E\Ej is closed in E. By the
inductive hypothesis, let f : E\Ey — Q] be a semi-algebraic continuous selection of T [(E\Ey). By 2.6, let
g : E — QY be a semi-algebraic continuous extension of f.

Define h : E — Q) by h(x) =r(x, g(x)) € T(x). Obviously & is semi-algebraic and continuous on Ej,
and h|(E\E,) = f. It is enough to prove that 4 is continuous at x, for every xo € E\Ey. Let xo € E\E, and
t € Q,\{0}. Set ¢ = v(t) € Z. Then there exists s € Q,\{0} such that § = v(s) < ¢ and for every x € Bs(xo),
v(g(x0) — g(x)) > eand T(x) N B:(g(x0)) # @. Letx € Bs(xg)and y € T(x) N B:(g(x0)). By the ultrametric
inequality, we have v(y — g(x)) > e. Note that y = r(x, y) because y € T(x) and r(x, —) is a retraction from
Q) — T(x). Therefore,

v(h(x0) — h(x)) = v(g(xo) — r(x, g(x)))
> min{v(g(xo) = y), v(y = r(x, g(x)))}
> min{e, v(r(x, y) — r(x, g(x)))}
> minfe, v(y, g(x))}

> &

Hence 4 is continuous at xg. O

3 Glaeser refinement and the proof of Theorem 1.4

In this section, we introduce Glaeser refinements, which were first given by Glaeser [11]. This notion was used in
the study of Whitney’s extension problem (cf. [22] for the original question).
LetT : E = Q’;. Define 7’ : E = Q?, the Glaeser refinement of T, by

T'(x0) :=={y € T(xo) : v(y,T(x)) > c0cas E 5x — xo} forxye€kE.
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We say that T is stable under Glaeser refinement if T' =T .

Remark 3.1 If T is semi-algebraic, then so is 7'. If f : E — Q) is continuous and f(x) € T'(x) for every
x € E, then f(x) € T'(x) for every x € E. Furthermore, T is stable under Glaeser refinement if and only if T is
lower semi-continuous.

Lemma 3.2 [f T(x) is closed for every x € E, then T'(x) is closed for every x € E.

Proof. Letx, € E. To prove that T'(xo) is closed, let yo ¢ T'(xo). Fix t € Q,\{0} such that for every
s € Q,\{0} there is x € E N By(,)(xo) with v(yo, T(x)) < v(¢). It is routine to show that By (yo) N T'(xo) =

a. O
Next, we define a sequence (T %))y inductively by 7(® := T and T*+1) := (T®)) It is easy to see that for
eachk € N, T+ = (7)) = (T")¥) In o-minimal expansions of the real field, we know that this sequence of

iterated Glaeser refinements of set-valued maps is eventually stable (cf., e.g., [2 19]). Here, we shall show that
the same result also holds in the p-adic semi-algebraic context. To prove this, we first show that every p-adic
semi-algebraic set-valued map is almost lower semi-continuous.

Lemma 3.3 If T is semi-algebraic, then there is a semi-algebraic set E' C E such that dim(E\E') < dim E
and T [E' is lower semi-continuous.

Proof. Let K={(x,y): xeE,yeT(x) and 3teQ,\{0}Vs e Q,\{0}Fx" € By()(x)N
E, v(y, T(x")) < v(t)} be the set of witnesses of lower semi-discontinuity of 7. Let 7 : Q' x Q}} — Q' be the
coordinate projection onto the first n coordinates. Obviously, T [(E\7 K) is lower semi-continuous. Therefore,
it is enough to show that dim(w K) < dim E. Suppose to the contrary that dim(w K) = dim E. By 2.3, there
exist a semi-algebraic open subset U of Q' and a continuous semi-algebraic map f : U N E — Q7 such that
(x, f(x)) € K forevery x € UNE.Let x € U N E. Then there is t € Q,\{0} such that for every s € Q,\{0}
there is x” € By(s)(x) N U N E with v(f(x) — f(x’)) < v(¢). This contradicts the continuity of f at x. O

Lemma 3.4 If T is semi-algebraic, then T 9™ E) (x0) = 7" (x0) for some xy € E and k > dim E.

Proof. We proceed by induction on d = dim E. If d = 0, then T is lower semi-continuous and this case
is done by Remark 3.1. Suppose the result holds for every semi-algebraic set-valued map whose domain has
dimension < d. By 3.3, let Ey C E such that dim(E\Ej) < dim E and T [E, is lower semi-continuous. We
may assume further that E is open in E. Therefore T (xy) = T (xo) for every xo € Ep and k > 0; so we have
(T 9 (x) = (T'TE\Eo)® (x) for every x € E\Ey and k > 0. Since dim(E\E) < d and Ej is open in E, by
the inductive hypothesis, we have (T'[E\Ey)“~" (x) = (T'E\Ey)"") (x) for every x € E and [ > d — 1. Let
xo € E\Ey and k > d. Therefore

T (x0) = (1) (xo)
= (T'1E\E)"" " (x0)
= (T'1E\Eo)" " (xo)
= (1)* (x0)
=T" (xo).
Hence, T%) (x) = T'¥ (xo) for every xo € E and k > d. O
Therefore, we have:

(dm E) s stable under Glaeser refinement.

Lemma 3.5 [f T is semi-algebraic, then T
Let T = T(dmE) By Remark 3.1, we obtain

Lemma 3.6 If T is semi-algebraic, then T is semi-algebraic and T'*) is lower semi-continuous.
Lemma 3.7 If T has a continuous selection, then T*) (x) # @ for all x € E.

To prove Theorem 1.4 , it is enough to prove
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Lemma 3.8 Suppose T is semi-algebraic and T (x) is closed for every x € E. Then the following are
equivalent:

1. T has a continuous selection;
2. TW(x) # @ forall x € E;
3. T has a semi-algebraic continuous selection.

Proof. We need only to prove (2) = (3). Assume T (xo) # @ for all xy € E. By 3.5, we have 7™ i
stable under Glaeser refinement and so lower semi-continuous. In addition, we also have that 7*) (x) is closed
for every x € E by 3.2. Hence, by Theorem 1.3 , let f : E — Q7 be a semi-algebraic continuous selection of

7). Since T (x) C T(x) for every x € E, f is also a semi-algebraic continuous selection of T d

This completes the proof of Theorem 1.4.
Next, we consider the case n = 1.

Lemma 3.9 Leta € E and b € T(a). If T is lower semi-continuous and semi-algebraic, then there exist a
semi-algebraic open neighborhood B of a and a semi-algebraic continuous function f : E N B — (@’" such that
fla)=band f(x) € T(x) forallx € EN B.

Proof. Itistrivial if a is an isolated point. Suppose a is not an isolated point. Let
={x € E : thereexists y € T'(x) such that v(y — b) > v(x —a)}

and E; = (E\{a})\E;. By [12,Lemma4.4], if x € E,, then there exists y € T (x) such that v(y — b) > v(z — b)
for every z € T( ). Let

={(x,y) €E; x Q) :y e T(x)&v(y —b) > v(x —a)}
U{(x,y) € B2 x Q) 1y e T(x)&v(y —b) > v(z — b) forevery z € T(x)}.

Obviously, A is semi-algebraic. Therefore, there exist a finite set Z C E and a semi-algebraic continuous function
g :E\Z — Q) such that a € Z and (x, g(x)) € A for every x € E\Z. Since Z is finite, there exists a semi-
algebraic open neighborhood B of a such that BN Z = {a}. Define f : EN B — Q) by

Flx) = :g(x), ifx #a,

b, ifx =a.

We show thatg(x) — basE > x — a.Letr € Q,\{0}and sete = v(r). Since T is lower semi-continuous, there is
s € Q,\{0} such that § = v(s) > e and Bs(a) € Band T (x) N B.(b) # @ forall x € Bs(a).Letx € Bs(a)\{a}.
If x € Ey, then v(g(x) —b) > v(x —a) > § > &. Suppose x € E,. Since T (x) N B:(b) # &, there is z € T (x)
such that v(z — b) > &. Hence, we have v(g(x) — b) > v(z — b) > . This completes the proof. O

Proof of Theorem L5. Let f : E — Q7 be acontinuous selection of 7. Then we know that 7(*) (xo) #
& for all xg € E. Since dim E = 1, by 2.3, we have a semi-algebraic set X C E and a semi-algebraic function
g: E — Q7 such that E\X is finite, g[X is continuous and g(x) € T (x) for every x € E. If E\X = @,
then we’re done. Suppose that E\X # &. Write E\X = {a;,...,ay}. Leti € {l,..., N}. Observe that f(a;) €
T (a;). By lower semi-continuity of 7*) and 3.9, there exist s € Q,\{0} and a semi-algebraic continuous
function f; : E'N By(s)(a;) — Q) such that f;(a;) = f(a;) and fi(x) € T (x) forall x € E N By (a;).

Set A = max({v(a; —a;) : 1 <i < j < N}U{v(s)}). Define h : E — Q} by

filx), ifv(x—q;)> Aforsomei € {l,...,N};

h =
() g(x),  otherwise.

Note that {Ba(a;): 1 <i < N} is a finite pairwise disjoint collection of clopen sets. Then % is continuous.
Therefore, we can easily see that / is a semi-algebraic continuous selection of T'. U

Observe that by tracking the parameters throughout the proofs and applying semi-algebraic Skolem functions,
we have a version of Theorem 1.3 for definable families. In addition, the definition of Glaeser refinement can be
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extended to definable families of set-valued maps. Therefore, we now know that Theorem 1.4 is independent of
parameters.

Lemma 3.10 Let (T,),ey be a semi-algebraic family of set-valued maps Ty : E, = QZ‘. Suppose for every
y €Y, Ty is lower semi-continuous and T, (x) is closed and nonempty for every x € E,. Then there exists a
semi-algebraic family (fy)yey of functions f, : Ey — Q) such that f, is a continuous selection of T.

Lemma 3.11 Let (Ty)yey be a semi-algebraic family of set-valued maps Ty : E,, = Q). Suppose for every
y €Y, T, has a continuous selection and Ty(x) is closed for every x € E. Then there exists a semi-algebraic
family (fy)yey of functions f, : E, — Q) such that f is a continuous selection of T,.

4 Applications

In this section, we provide three applications of the main theorems.

4.1 Semi-algebraic continuous solutions of semi-algebraic equations

Letgi,....8:E — Qp,and F : Q’;*’” — @, be semi-algebraic and continuous. We consider the equation:
F(gl""?gk?yl?"'?ym):()7 (*)
in unknown continuous functions yi, ..., y, : E — Q,. Itis clear that the set

{(le---sZm) e@;n : F(gl(-x)v"'vgk(-x),Zlv~~-»Zm) =O}

isaclosed subset of Q) forevery x € E. Applying Theorem 1.4 to the semi-algebraic set-valuedmap T : E = Q}
where

T(x):={(z1,....2m) € Q) : Fgi(x), ..., gc(x), 21, .., zm) = 0},
we have:
Lemma 4.1 If there are continuous functions yi, ..., ym : E — Q, solving (%), then there are also semi-
algebraic continuous functions yi, ..., y, that satisfy (x).

We can see that Corollary 1.6 still holds when we replace the equation (x) by a finite system of equations of
the same kind as (x). In addition, by Lemma 3.11, we obtain:

Lemmad.2 Let g, ..., g : Q)" and F : Qg*”m — Q, be semi-algebraic. Suppose for every c € QY, the
functions gi(c, =), ..., g(c, =) : Q) > Q, and F(c, —) : Q’I‘f’" — Q, are continuous. Assume that for every

ce Qg’ there are continuous functions yi, ..., ym : Q}, — Q, such that

Flerg1(eax). vy ge(ex). yi(x), ooy yn(x)) = 0

oreveryx € . Then there exist semi-algebraic functions yy, ..., Ym - — such that for every c € s
ry " Then th t Igeb y y 2””1 » such that ry N
the functions yi(c, =), ..., ym(c, =) : Q’Il, — Q, are continuous and

F(c,gi(c,x), ..., gr(c,x), yi(c,x), ..., ym(c,x)) =0

for every x € Q..

4.2 Semi-algebraic continuous extensions

The extension problem, one of classic problems in topology and analysis, asks: “Let A € X and f : A — Y.Isit
possible to find an extension of f to X that satisfies some prescribed properties?” (Readers can find more studies
of extension problems in, e.g., [4]).

Let EC E' C (@’; and f : E — Q’p” be semi-algebraic. By 2.6, we know that if E is closed in E’ and f is
continuous, then f has a semi-algebraic continuous extension to E’. Observe that Q,,\ {0} is not closed in Q,, and
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the map from Q,\{0} to Q, x — 1/x has no continuous extension to Q,. Therefore, this gives rise to the question:
“How do we determine whether f admits semi-algebraic continuous extensions to E'?” Let Ty : E' = Q' be
defined by, for each x € E’,

_ {f(x)}, ifxeE,

i if x € E'\E.

Ty(x)

We obtain that:

Lemma 4.3 The function f admits a semi-algebraic continuous extension to E' if and only if (Tf)(*> (x) £ o
for every x € E’

Proof. This follows immediately from 3.8 and the fact that a continuous function g : £’ — Q) is an
extension of f if and only if g is a continuous selection of 7. O

4.3 Characterization of right invertible elements

For any map h : E — Q) let h!: Q) = E be the set-valued map defined by h~!(x) is the pre-image of {x}
under h. Observe thatif 4 : E — Q7 is an open map, then h ' Q) = E is lower semi-continuous. Therefore,
we have:

Lemmad.4 Ifh : Q) — QY is semi-algebraic, surjective, continuous, and open, then there is a semi-algebraic
continuous map f : Q) — QY such that h o f is the identity map on Q'}.

Let (G, o) be the monoid where G is the set of semi-algebraic continuous function from Q’, to Q, and the
group operation o is the composition operation. Obviously, the identity map on Q' is the identity element of this
monoid. The result 4.4 implies that every member of G that is surjective and open is right invertible in (G, o).
Therefore, a question arose naturally: “What is the characterization of right invertible element in (G, 0)?”

We now give an answer to the above question.

Lemma 4.5 Let h € G. Then h is right invertible under o if and only if h is surjective and (h=")*) (xo) # @
for every xo € Q.

Proof. Suppose h is surjective and 2! is lower semi-continuous. Since / is continuous, 2! (x) is closed for
every x € Q. By 3.8, h~! has a semi-algebraic continuous selection f : Q), — Q). Hence, we have hi(f(x)) = x
for every x € Q, thatis i o f is the identity map on Q.

Conversely, suppose / is right invertible. Then there exists semi-algebraic and continuous f : Q) — Qf, such
that /2 o f'is the identity map on Q). Since h o f is surjective, h is also surjective. Observe that the function f is
contained in 4~ (as sets). Since f is continuous, (A~')*) contains f still. Therefore, (h~")*) (xo) # @ for every

Xp € QZ O

Let i € G. It is clear to see that & is left invertible under o if and only if /4 is injective and 2~ admits a
semi-algebraic continuous extension to Q. By Corollary 1.7, we obtain:

Lemma 4.6 Let h € G. Then h is left invertible under o if and only if h is injective and (T, 1) ¥ (x) # @ for
every xo € Q.

5 Concluding remarks

As mentioned in § 1, we also know that Theorem 1.3 holds in the p-adic subanalytic context. Therefore, a natural
question arises: To what extent can we generalize Theorem 1.3? Recall that for every P-minimal expansion % of
a p-adically closed field, . admits Cell Decomposition Theorem if and only if " admits definable Skolem func-
tions (cf. [18] for more details). In addition, by [13], there exist P-minimal expansions of (Q st — 0,1, Div)
that does not admit definable Skolem functions. We may ask whether Theorem 1.3 holds for all P-minimal ex-
pansions of p-adically closed fields that admit definable Skolem functions. From the above proof, we know that
Theorem 1.3 holds for every P-minimal structure that satisfies analogs of Theorems 2.4 & 2.6.
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Remark 5.1 Let EC E' C Q;‘) and f: E — (@’;}. Let T, be defined as in 4.2. Note that a variant of
Corollary 1.7 also holds when f is not semi-algebraic. Observe that for every x € E’, we have T,(x) is an affine
subspace of Q). By the same argument as the proof of [9, Lemma 2.2], we have (Tf)(zm+1> is stable under Glaeser
refinement; therefore, it is lower semi-continuous. Michael’s Selection Theorem (mentioned in the introduction)
implies that f admits a continuous extension to E’ if and only if (7)) (xo) # @ for every x € E'.

Let (H, o) be the monoid where H is the set of continuous functions Q}, — @', and o is the composition
operation. Let 7 € H. By Remark 5.1, we obtain that 4 is left invertible under o if and only if 4 is injective
and (T;,-1)>"+1) (xq) # @ for every xo € E'. Observe that if & is right invertible under o, then £ is surjective and
(h=")®) (xq) # @ for every xq € @), and k > 0. However, we don’t know whether the converse is true or not. The
difference here follows from the fact that we now do not know whether every set-valued map from Q/, to Q) is
eventually stable under Glaeser refinement.
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Trace Problems

Let X, Y be metric spaces and F(X,Y) be the set of all maps

from X to Y.
Suppose F C F(X,Y)and S C X.

Definition
The trace of F to S is the set

FIS={f15:feF}
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Trace Problems

Let X, Y be metric spaces and F(X,Y) be the set of all maps

from X to Y.
Suppose F C F(X,Y)and S C X.

Definition
The trace of F to S is the set

FIS={f15:feF}

How can we completely describe the trace F [ S?
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Trace Problems

Let f: S — Y.

How to determine whether f is the restriction of some element
in F?
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1. F=C(X,Y) and S is a closed subset of X:

Attributed to H. Tietze

A function f: S — Y isinthe trace F | S if and only if f is
continuous.
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1. F=C(X,Y) and S is a closed subset of X:

Attributed to H. Tietze
A function f: S — Y isinthe trace F | S if and only if f is
continuous.

2. F = Lipy(R",R™) and S C R™:

Attributed to M.D. Kirszbraun

A function f: S — R™is inthe trace F | S ifand only if f is
1-Lipschitz.
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Selection Problems

Let T: X — P(Y).

Definition

A function f: X — Y is a continuous selection of 7' if f is
continuous and f(z) € T'(z) forall z € X.
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Selection Problems

Let T: X — P(Y).

Definition
A function f: X — Y is a continuous selection of 7' if f is
continuous and f(z) € T'(z) forall z € X.

In 1956, E. Michael asked the following:

How to determine whether T' has a continuous selection of 7'
that is in F?
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p-adic Semialgebraic Sets

Definition

A p-adic semialgebraic set is a subset of Q) that is a finite
boolean combination of sets of the forms

{(z1,...,zn) € Q) : q(x1,...,2,) =0} and

{(21,...,2n) € Q1 : z; = Ay* for some y € Q,} where g is a
polynomial over Q,, A € Q,, ke Nandi=1,...,n.
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p-adic Semialgebraic Sets

Definition

A p-adic semialgebraic set is a subset of Q) that is a finite
boolean combination of sets of the forms

{(z1,...,zn) € Q) : q(x1,...,2,) =0} and

{(21,...,2n) € Q1 : z; = Ay* for some y € Q,} where g is a
polynomial over Q,, A € Q,, ke Nandi=1,...,n.

Let S C Q.

Definition

A function f: S — Q" is p-adic semialgebraic if the graph of
fi{(z, f(x)) € Qpt™ : z € S}, is p-adic semialgebraic.
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Let S C Q) be p-adic semialgebraic and f: S — Q}' be p-adic
semialgebraic.

Cell Decomposition Theorem (J. Denef)

There is a finite partition C of S such that f | C' is continuous for
allC eC.

Athipat Thamrongthanyalak Semialgebraic Trace Problems



Let S C Qp be p-adic semialgebraic and 7 be the set of all
continuous p-adic semialgebraic maps from Q; to Q}

How can we completely describe the trace F [ S?
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Let S C Qp be p-adic semialgebraic and 7 be the set of all
continuous p-adic semialgebraic maps from Q; to Q}

How can we completely describe the trace F [ S?

LetT: Q, — P(Q}') be p-adic semialgebraic.

How to determine whether T' is a continuous selection that is
p-adic semialgebraic?
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If S'is closed, then a function f: S — Q" isin F [ S if and only
if fis continuous.
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The Glaeser refinement of T is the map T": Q) — P(Q;")
defined by

T'(x0) :={y € T(xo) : d(y, T(x)) — 0 @as z — o} for zp € Q.

For each k € N, let T*) be the k-th time Glaeser refinement of
T.

The map T has a p-adic semialgebraic continuous selection if
and only if 7 () # 0 for all 25 € Q1.
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Foreach f: S — Q, let Ty: Q) — P(Q)') be defined by

_JH{f(@)}, ifzesS;
Tf(x)_{ mo ifzeqQr\ s

A function f: S — Q7 isin F | S if and only if T}”) (z) # 0 for all
z € Qp.
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Applications

Letgi,...,gx: E— Qpand F: Qit™ — Q, be p-adic
semialgebraic and continuous. Consider

F(glv"'vgkayla"'uym):07 (*)

in unknown continuous functions yi,...,ym: E = Q.

Corollary 1 (T.)

If there are continuous functions y, ..., y,: £ — Q, solving
(%), then there are also p-adic semialgebraic continuous
functions y1, . . ., y, that satisfy (x).
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Applications

Let (G, o) be the monoid where G is the set of p-adic
semialgebraic continuous function from Q} to Q) and the group
operation o is the composition operation.

Corollary 2 (T.)

Let h € G. Then h is right invertible under o if and only if i is
surjective and (h~1)™ (z) # 0 for every z € Q1.

Corollary 3 (T.)

Let h € G. Then h is left invertible under o if and only if h is
injective and (7j,-1)™ (z) # 0 for every z € Q1.
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