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บทคดัย่อ: 

ให ้𝐸 ⊆ 𝑄𝑝
𝑛 และ 𝑇 เป็นฟังกช์นัค่าเซตจาก 𝐸 ไปยงั 𝑄𝑝

𝑚. เราพสิูจน์ว่าถา้ 𝑇 เป็นฟังกช์นั
กึง่พชีคณติ p-adic และกึง่ต่อเนื่องจากดา้นล่าง (นัน่คอื, ส าหรบัทุก 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑇(𝑥0) และ
ยา่นใกลเ้คยีง 𝑉 ของ 𝑦0, มยี่านใกลเ้คยีง 𝑈 ของ 𝑥0 ซึง่ T(𝑥) ∩ 𝑉 ≠ ∅ ส าหรบัทุก 𝑥 ∈ 𝑈) และ 
𝑇(𝑥) เป็นเซตปิดส าหรบัทุก 𝑥 ∈ 𝐸 แลว้จะมฟัีงก์ชนักึง่พชีคณติ p-adic ทีต่่อเนื่อง 𝑓: 𝐸 → 𝑄𝑝

𝑚 
ซึง่มกีารเลอืกของ 𝑇 (นัน่คอื 𝑓(𝑥) ∈ 𝑇(𝑥) ส าหรบัทุก 𝑥 ∈ 𝐸.) ยิง่ไปกว่านัน้เราไดพ้ฒันา
ผลลพัธแ์ละไดผ้ลลพัธท์ีด่ขี ึน้ คอื ถา้ 𝑇 เป็นฟังกช์นัค่าเซตกึง่พชีคณติ p-adic ซึง่มกีารเลอืก
แบบต่อเนื่องแลว้ 𝑇 มกีารเลอืกกึง่พชีคณติ p-adic แบบต่อเนื่อง นอกจากนี้เราสามารถน า
ผลลพัธน์ี้ไปประยกุตใ์ชไ้ดด้งันี้  

อนัดบัแรก พจิารณาสมการ: 
(*)  𝐹(𝑔1, … , 𝑔𝑘, 𝑦1, … , 𝑦𝑚) = 0 
โดยที ่𝑔1, … , 𝑔𝑘: 𝐸 → 𝑄𝑝 และ 𝐹: 𝑄𝑝

𝑘+𝑚 → 𝑄𝑝 เป็นฟังกช์นักึ่งพชีคณติ p-adic แบบต่อเนื่อง 
และ 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝 เป็นฟังกช์นัต่อเนื่องทีไ่มท่ราบค่า เราพสิจูน์ว่าถา้มฟัีงกช์นัต่อเนื่อง 
𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝 ทีเ่ป็นค าตอบของสมการ (*) แลว้จะมฟัีงกช์นักึ่งพชีคณติ p-adic 
แบบต่อเนื่อง 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝  ทีเ่ป็นค าตอบของสมการ (*) ดว้ย  ในล าดบัถดัไป ให ้𝐸 เป็น
สบัเซตปิดของ 𝑄𝑝

𝑛 เราคน้พบการก าหนดลกัษณะของการจ ากดัของฟังกช์นักึง่พชีคณิต p-adic 
แบบต่อเนื่องลงไปที ่𝐸 นอกจากนี้ ให ้(𝐺,∘) เป็นโมนอยดซ์ึง่ 𝐺 เป็นเซตของฟังก์ชนักึง่พชีคณติ 
p-adic แบบต่อเนื่องจาก 𝑄𝑝

𝑚 ไปยงั 𝑄𝑝
𝑚 ทัง้หมด และ ∘ เป็นการประกอบ ในทีน่ี้เราคน้พบการ

ก าหนดลกัษณะของฟังก์ชนัทีม่ตีวัผกผนัทางขวา และการก าหนดลกัษณะของฟังกช์นัทีม่ตีวั
ผกผนัทางซา้ย 
 
ค าหลกั : ฟีลด ์p-adic, ฟังกช์นักึง่พชีคณติ, การเลอืก   
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Abstract: 

Let 𝐸 ⊆ 𝑄𝑝
𝑛 and 𝑇 be a set-valued map from 𝐸 to 𝑄𝑝

𝑚. We prove that if 𝑇 is p-
adic semi-algebraic, lower semi-continuous (that is, for every 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑇(𝑥0) and a 
neighborhood 𝑉 of 𝑦0, there is a neighborhood 𝑈 of 𝑥0 such that for every 𝑥 ∈ 𝑈, T(𝑥) ∩

𝑉 ≠ ∅) and 𝑇(𝑥) is closed for every 𝑥 ∈ 𝐸, then there is a p-adic semi-algebraic 
continuous function 𝑓: 𝐸 → 𝑄𝑝

𝑚 that is a selection of 𝑇 (that is, 𝑓(𝑥) ∈ 𝑇(𝑥) for all 𝑥 ∈

𝐸.) In addition, we strengthen the result and obtain that if 𝑇 is p-adic semi-algebraic and 
has a continuous selection, then 𝑇 has p-adic semi-algebraic continuous selection. 
Moreover, we obtain three applications of this result.  

First, consider the equation: 
(*)  𝐹(𝑔1, … , 𝑔𝑘, 𝑦1, … , 𝑦𝑚) = 0, 
where 𝑔1, … , 𝑔𝑘: 𝐸 → 𝑄𝑝 and 𝐹: 𝑄𝑝

𝑘+𝑚 → 𝑄𝑝 are p-adic semi-algebraic and continuous 
and 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝 are unknown continuous functions. We prove that if there are 
continuous functions 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝  solving (*), then there are also p-adic semi-
algebraic continuous functions 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝  that satisfy (*). Next, let 𝐸 be closed 
in 𝑄𝑝

𝑛. We give a characterization of the restriction of p-adic semi-algebraic continuous 
functions to 𝐸. Finally, let (𝐺,∘) be the monoid where 𝐺 is the set of p-adic semi-algebraic 
continuous functions from 𝑄𝑝

𝑚 to 𝑄𝑝
𝑚 with the composition ∘. Here, we obtain a 

characterization of right invertible elements and a characterization of left invertible 
elements. 
 
Keywords : p-adic fields, semi-algebraic functions, selections  
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Executive Summary 
 
 
1. Introduction to Research 

A set-valued map from a set 𝑋 to another set 𝑌 is a map from 𝑋 to the power of 
𝑌. For a set-valued map 𝑇 from 𝑋 to 𝑌, a selection of 𝑇  is a map 𝑓  from 𝑋  to 𝑌  such 
that 𝑓(𝑥) ∈ 𝑇(𝑥)  for every 𝑥 ∈ 𝑋. E. Michael is one of pioneers on the question of the 
existence of continuous selections of set-valued maps. Michael’s Selection Theorem [11], 
which is an important tool in many branches of mathematics (see e.g. [10] and [12]) 
asserts that: 

Let 𝑋 be a paracompact topological space, 𝑌 be a Banach space and 𝑇 be a set-
valued map from 𝑋 to 𝑌. If 𝑇(𝑥) is closed and convex for every 𝑥 ∈ 𝑋 and 𝑇 is lower semi-
continuous (that is, for every 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑇(𝑥0) and a neighborhood 𝑉 of 𝑦0, there is a 
neighborhood 𝑈 of 𝑥0 such that for every 𝑥 ∈ 𝑈, 𝑇(𝑥) ∩ 𝑉 ≠ ∅), then 𝑇 has a continuous 
selection.    

The give construction involves an infinitary process that can produce a continuous 
selection that is far removed from how 𝑇 arises. This gives rise to the following question: 

Let  𝑇 be a set-valued map. Suppose we know that 𝑇 has a continuous selection. If  
𝑇 is well behaved in some prescribed sense, does 𝑇 has a continuous selection that is 
similarly well behaved? 

To make this question precise, we employ notions from first-order logic: definability 
in expansions of the p-adic field. We now restate the question as follows: 

Let  𝑇 be a set-valued map from a subset of 𝑄𝑝
𝑛. to 𝑄𝑝

𝑚. If 𝑇 has a continuous 
selection, does 𝑇 have a continuous selection that is definable in (𝑄𝑝, +,⋅, 𝑇)? 

In this research, we study the above question in the context of p-adic semi-
algebraic sets. In particular, if 𝑇 is p-adic semi-algebraic and has a continuous selection, 
does 𝑇 has a p-adic semi-algebraic continuous selection?  
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2. Literature Review 
To answer the main question, we first ask whether there is a definable version of 

Michael’s Selection Theorem in the p-adic semi-algebraic context. In [2], M. 
Aschenbrenner and A. Thamrongthanyalak prove analogues of Michael’s Selection 
Theorem in o-minimal structures. The constructions involve the existence of the least 
norm selections, definable Tietze Extension Theorem and Cell Decomposition Theorem 
in o-minimal structures. The definable Tietze Extension Theorem asserted that every 
function on a closed set that is definable in a definably complete expansion of a real 
closed field has a continuous extension to the whole space that is also definable in the 
same structure (see [1]). Next, the Cell Decomposition Theorem is an important tool in 
the study of geometry of o-minimal sets. This theorem implies that every definable set in 
an o-minimal expansion of an ordered divisible abelian group has only finitely many 
connected components. We refer to [6] for more on o-minimal structures. In addition, the 
convexity of valued of maps also plays an important role in the construction in [2]. In [5], 
M. Czapla and W. Pawlucki relaxed the convexity condition when the dimension of the 
domain is 1. Another generalization in o-minimal expansions of the real field was studied 
in [14]. From [16], we know that a definable version of Michael’s Selection Theorem also 
holds in d-minimal expansions of the real field (which is a generalization of o-minimal 
structures). 

In [6] and [9], the model theory of the p-adic field were introduced. Definable sets 
in this context possess good geometric properties. A subset of 𝑄𝑝

𝑛 is called p-adic semi-
algebraic if it is definable in the p-adic field structure. One of important tools in the study 
of p-adic semi-algebraic sets is the p-adic Cell Decomposition Theorem. In particular, 
every p-adic semi-algebraic set can be decomposed into finitely many p-adic cells. This 
result can be considered as an analogue of Cell Decomposition Theorem in o-minimal 
structures. Later, R. Cluckers prove an p-adic analytic version of the p-adic Cell 
Decomposition Theorem in [3]. 

In [15], A. Thamrongthanyalak proved that every p-adic semi-algebraic continuous 
function on a closed subset of 𝑄𝑝

𝑛 has a p-adic semi-algebraic continuous extension to 
the ambient space 𝑄𝑝

𝑛. This result can be considered as a p-adic semi-algebraic version 
of Tietze Extension Theorem. 

Equipping 𝑄𝑝 by the usual ultrametric, we obtain that every point in a ball is its 
center (see [13]). Therefore, the least norm selection does not exist in the p-adic context. 
Note that in the reals, the least norm selection of convex sets is a 1-Lipschitz map. In [4], 
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R. Cluckers and F. Martin prove that every p-adic semi-algebraic Lipschitz function on a 
subset of 𝑄𝑝

𝑛 is the restriction of a p-adic semi-algebraic Lipschitz function on 𝑄𝑝
𝑛 with the 

same Lipschitz constant. This provides controls on oscillations of p-adic semi-algebraic 
functions.  

In [8], C. Fefferman and J. Kollar raised the following question: 
Let 𝑔1, … , 𝑔𝑘: 𝑅𝑛 → 𝑅 be polynomials in n indeterminates. Consider Suppose that there 
are continuous functions 𝑓, 𝑦1, … , 𝑦𝑘  such that 𝑓 = 𝑔1𝑦1 + ⋯ + 𝑔𝑘𝑦𝑘. Are there 
polynomials 𝑓, 𝑦1, … , 𝑦𝑘   that solves this equation? 

They found that the answer is `no’. However, this equation admits a solution that 
are rational functions.  
 
3. Objectives 

3.1 To prove that if 𝑇 is a p-adic semi-algebraic set valued-map from a subset of 𝑄𝑝
𝑛 

to 𝑄𝑝
𝑚 that has a continuous selection, then T has a p-adic semi-algebraic 

continuous selection. 
3.2 To find other criterions that guarantee the existence of definable continuous 

selections. 
3.3 To use the positive answer to the main question to solve Fefferman and Kollar’s 

question on continuous solutions of linear equations. 
 

4. Research Methodology 
4.1 Review related literatures. 
4.2 Modify techniques used in the proof of definable Michael’s Selection Theorem in 

o-minimal structures. 
4.3 Prove that if 𝑇 is a p-adic semi-algebraic set valued-map from a subset of 𝑄𝑝

𝑛 to 
𝑄𝑝

𝑚 that has a continuous selection, then T has a p-adic semi-algebraic 
continuous selection. 

4.4 Use the answer to the main question to solve C. Fefferman and J. Kollar’s question 
on continuous solutions of linear equations. 
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Result and Conclusion 
 

Throughout, let p be a fixed, but arbitrary, prime number. We equip the p-adic field 
with the usual p-adic valuation 𝑣. A p-adic semi-algebraic set is a subset of 𝑄𝑝

𝑛 that is a 
finite boolean combination of sets of the forms {(𝑥1, … , 𝑥𝑛) ∈ 𝑄𝑝

𝑛: 𝑞(𝑥1, … , 𝑥𝑛) = 0} and 
{(𝑥1, … , 𝑥𝑛) ∈ 𝑄𝑝

𝑛: 𝑥𝑖 = λ𝑦𝑘 for some 𝑦 ∈ 𝑄𝑝} where is a polynomial over 𝑄𝑝, λ ∈ 𝑄𝑝, 
𝑘 ∈ 𝑁 and 𝑖 =  1, … , 𝑛. Let 𝐸 ⊆ 𝑄𝑝

𝑛. We say that a function 𝑓: 𝐸 → 𝑄𝑝
𝑚 is p-adic semi-

algebraic if the set {(𝑥, 𝑦) ∈ 𝐸 × 𝑄𝑝
𝑚: 𝑓(𝑥) = 𝑦} is p-adic semi-algebraic. Similarly, a 

set-valued map 𝑇 from 𝐸 to 𝑄𝑝
𝑚 is p-adic semi-algebraic if the set {(𝑥, 𝑦) ∈ 𝐸 × 𝑄𝑝

𝑚: 𝑦 ∈

𝑇(𝑥)} is p-adic semi-algebraic.  
From now, we fix E ⊆ Qp

n and a set-valued map 𝑇 from 𝐸 to 𝑄𝑝
𝑚. As consequences 

of the p-adic Cell Decompostion Theorem, we have: 

Lemma 1 Let 𝑓: 𝐸 → 𝑄𝑝
𝑚  be semi-algebraic. Then there is a semi-algebraic set 𝑋 ⊆ 𝐸 

such that 𝑑𝑖𝑚(𝐸 ∖ 𝑋) < 𝑑𝑖𝑚(𝐸) and the restriction 𝑓 ↾ 𝑋 is continuous. 

Lemma 2 Let 𝐴 ⊆ 𝑄𝑝
𝑛+1 be semi-algebraic and 𝜋: 𝑄𝑝

𝑛+𝑚 → 𝑄𝑝
𝑛 be the projection onto the 

first 𝑛 coordinates. Then there exists a semi-algebraic function 𝑓: 𝜋𝐴 → 𝑄𝑝
𝑛  such that the 

graph of 𝑓 is contained in 𝐴. 

By these two lemmas, we obtain that: 

Lemma 3 Let 𝐴 ⊆ 𝑄𝑝
𝑛+1 be semi-algebraic and 𝜋: 𝑄𝑝

𝑛+𝑚 → 𝑄𝑝
𝑛 be the projection onto the 

first 𝑛 coordinates. Then there exist a semi-algebraic set 𝑋 ⊆ 𝜋𝐴 and a semi-algebraic 
continuous map 𝑓: 𝑋 → 𝑄𝑝

𝑚 such that 𝑑𝑖𝑚(𝜋𝐴 ∖ 𝑋) < 𝑑𝑖𝑚(𝜋𝐴) and the graph of 𝑓 is 
contained in 𝐴. 

Let 𝑌 ⊆ 𝑄𝑝
m. A map 𝑓: 𝑄𝑝

𝑚 → 𝑄𝑝
𝑚 is a retraction from 𝑄𝑝

𝑚 to 𝑌 if 𝑓 is continuous, 
the range of 𝑓 is 𝑌 and the restriction of 𝑓 to 𝑌 is the identity map on 𝑌; and a map 
𝑔: 𝑌 → 𝑌 is nonexpansive if 𝑣(𝑔(𝑥) − 𝑔(𝑦) ≥ 𝑣(𝑥 − 𝑦) for all 𝑥, 𝑦 ∈ 𝑌.  

Lemma 4 Let 𝑟: 𝐸 × 𝑄𝑝
𝑚 → 𝑄𝑝

𝑚 be a semi-algebraic map such that 𝑟(𝑥, −) is 
nonexpansive for every 𝑥 ∈ 𝐸. There is a semi-algebraic set 𝐸0 ⊆ 𝐸 such that 
𝑑𝑖𝑚(𝐸 ∖ 𝐸0) < 𝑑𝑖𝑚𝐸 and 𝑟 ↾ (𝐸0 × 𝑄𝑝

𝑚) is continuous. 

Recall that a selection of 𝑇 is a map 𝑓: 𝐸 → 𝑄𝑝
𝑚 such that 𝑓(𝑥) ∈ 𝑇(𝑥) for all 𝑥 ∈

𝐸. Now we obtain the following theorem.  
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Theorem 5  If 𝑇 is p-adic semi-algebraic and lower semi-continuous (that is, for every 𝑥0 ∈

𝑋, 𝑦0 ∈ 𝑇(𝑥0) and a neighborhood 𝑉 of 𝑦0, there is a neighborhood 𝑈 of 𝑥0 such that for 
every 𝑥 ∈ 𝑈, 𝑇(𝑥) ∩ 𝑉 ≠ ∅) and 𝑇(𝑥) is closed for every 𝑥 ∈ 𝐸, then 𝑇  has a p-adic 
semi-algebraic continuous selection.  

In addition, we study generalization of this theorem.  

The Glaeser refinement of 𝑇 is a set-valued map 𝑇′ from 𝐸 to 𝑄𝑝
𝑛 defined by 

𝑇′(𝑥0) ≔ {𝑦 ∈ 𝑇(𝑥0): 𝑣(𝑦, 𝑇(𝑥)) → ∞ as 𝐸 ∋ 𝑥 → 𝑥0} for 𝑥0 ∈ 𝐸. 
Next we define a sequence (𝑇(𝑘))

𝑘∈𝑁
 inductively by 𝑇(0) ≔ 𝑇 and 𝑇(𝑘+1) ≔ (𝑇(𝑘))

′. 
We found that: 

Lemma 6 If 𝑇 is p-adic semi-algebraic, then 𝑇(𝑛) is p-adic semi-algebraic and lower semi-
continuous. 

Lemma 7 If 𝑇 has a continuous selection, then 𝑇(𝑛)  ≠ ∅  for all 𝑥 ∈ 𝐸. 

We obtain the following characterization. 

Theorem 8 Suppose 𝑇 is p-adic semi-algebraic and 𝑇(𝑥) is closed for every 𝑥 ∈ 𝐸. Then 
the following are equivalent: 

1. 𝑇 has a continuous selection; 
2. 𝑇(𝑛)  ≠ ∅  for all 𝑥 ∈ 𝐸; 
3. 𝑇 has a p-adic semi-algebraic continuous selection. 

When 𝑑𝑖𝑚 𝐸 = 1, we can show that: 

Theorem 9 Suppose 𝑑𝑖𝑚 𝐸 = 1 and 𝑇 is p-adic semi-algebraic. Then 𝑇 has a continuous 
selection if and only if 𝑇 has a p-adic semi-algebraic continuous selection. 

In addition to these main theorems, we found three applications of these results. 

First, consider the equation: 
(*)  𝐹(𝑔1, … , 𝑔𝑘, 𝑦1, … , 𝑦𝑚) = 0, 
where 𝑔1, … , 𝑔𝑘: 𝐸 → 𝑄𝑝 and 𝐹: 𝑄𝑝

𝑘+𝑚 → 𝑄𝑝 are p-adic semi-algebraic and continuous 
and 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝 are unknown continuous functions. By Theorem 9, we can show 
that: 
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Proposition 10 If there are continuous functions 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝  solving (*), then there 
are also p-adic semi-algebraic continuous functions 𝑦1, … , 𝑦𝑚: 𝐸 → 𝑄𝑝  that satisfy (*).  

Next, let 𝐸 be closed in 𝑄𝑝
𝑛 and 𝑓: 𝐸 → 𝑄𝑝

𝑚 be p-adic semi-algebraic. Define a 
set-valued map 𝑇𝑓 from 𝑄𝑝

𝑛 to 𝑄𝑝
𝑚 by 𝑇𝑓(𝑥): = {𝑓(𝑥)} if 𝑥 ∈ 𝐸; and 𝑇𝑓(𝑥) ≔ 𝑄𝑝

𝑚 if 𝑥 ∈

𝑄𝑝
𝑚 ∖ 𝐸. We obtain that: 

Proposition 11 The function 𝑓 is the restriction of a continuous function from 𝑄𝑝
𝑛 to Qp

m if 

and only if (𝑇𝑓)
(𝑛)

(𝑥) ≠  ∅ for every x ∈ Qp
n . 

Finally, let (𝐺,∘) be the monoid where 𝐺 is the set of p-adic semi-algebraic 
continuous functions from 𝑄𝑝

𝑚 to 𝑄𝑝
𝑚 and the group operation ∘ is the composition 

operation. Let h ∈ G. Define the set-valued map h−1 from Qp
m to Qp

m by h−1(𝑥) is the 
pre-image of { x } under h. Here, we give a characterization of right invertible elements 
and a characterization of left invertible elements. 

Proposition 12 Let h ∈ G. Then h is right invertible under ∘ if and only if h is surjective 
and (h−1)(m)(x0) ≠ ∅ for every x0 ∈ Qp

m. 

Proposition 13 Let h ∈ G. Then h is left invertible under ∘ if and only if h is injective and 
(𝑇ℎ−1)(𝑛)(x0) ≠ ∅ for every x0 ∈ Qp

m. 
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Future Researches 
 

In the future works, we know that the concept of p-adic semi-algebraic sets can be 
generalized to sets definable in P-minimal expansions of a p-adically closed field.  
Therefore, it is very interesting to know whether analogues of our results hold in this 
context. 
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Let E ⊆ Qn
p and T be a set-valued map from E to Qm

p . We prove that if T is p-adic semi-algebraic, lower semi-
continuous and T (x) is closed for every x ∈ E , then T has a p-adic semi-algebraic continuous selection. In
addition, we include three applications of this result. The first one is related to Fefferman’s and Kollár’s question
on existence of p-adic semi-algebraic continuous solution of linear equations with polynomial coefficients. The
second one is about the existence of p-adic semi-algebraic continuous extensions of continuous functions. The
other application is on the characterization of right invertible p-adic semi-algebraic continuous functions under
the composition.

C© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In 1956, Michael presented a series of papers on the existence of continuous selections of set-valued maps [14–16].
For sets X and Y , a set-valued map from X to Y (denoted by T : X ⇒ Y ) is a map from X to the power set of
Y . Suppose we equip X and Y with topologies and let T : X ⇒ Y . A continuous selection of T is a continuous
map f : X → Y such that f (x) ∈ T (x) for every x ∈ X . We say that T is lower semi-continuous if for every
x0 ∈ X , y0 ∈ T (x0) and a neighborhood V of y0, there is a neighborhood U of x0 such that for every x ∈ U ,
T (x) ∩ V �= ∅. In [15, Theorem 1.2], Michael asserted “if X is a zero-dimensional paracompact space, Y is a
complete metric space, and T (x) is closed and nonempty for every x ∈ X , then T has a continuous selection.”
The given construction involves an infinite iterated procedure which makes the selection far removed from how
the set-valued map arose. Therefore, this gives rise to the following question:

Question 1.1 If T is well behaved in some prescribed sense, is it possible to find a continuous selection that
is similarly well behaved?

This paper discusses the above problem in the p-adic semi-algebraic context. (Note that similar questions in
the context of the reals were discussed in [2, 3, 7, 21].)

Throughout, let p be a fixed prime number, Qp be the set of p-adic numbers with the p-adic valuation
v : Qp → Z ∪ {+∞} and E denote a subset of some Qn

p. We equip Qp with the topology induced by the p-adic
valuation. Let T : E ⇒ Qm

p . To make the question precise, we employ first-order logic. Our language of valued
fields is the language {+, ·,−, 0, 1} of rings augmented by a binary relation symbol Div. For x, y ∈ Qp, we let
x Div y if and only if v(x) ≥ v(y). The question can now be restated as follows.

Question 1.2 If T has a continuous selection, does it also have a continuous selection that is definable
in (Qp; +, ·,−, 0, 1, Div, T ) where (Qp; +, ·,−, 0, 1, Div, T ) is the expansion of the p-adic valued field by a
predicate T and the word “definable” means “definable possibly with parameters”?

In this paper, we restrict the class of set-valued maps under consideration to p-adic semi-algebraic set-valued
maps. A subset of Qn

p is called p-adic semi-algebraic (or semi-algebraic for short) if it is a boolean combination
of sets of the form {x ∈ Qn

p : there exists y ∈ Qp such that f (x) = yk} where f (X) is a polynomial with p-adic
coefficients and indeterminates X = (X1, . . . , Xn) and k ∈ N. It is known that the class of semi-algebraic sets is
the same as the class of definable sets in (Qp; +, ·,−, 0, 1, Div). We say that a set-valued map T : E ⇒ Qm

p is

∗ E-mail: athipat.th@chula.ac.th
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p-adic semi-algebraic if the graph of T , {(x, y) ∈ E × Qm
p : y ∈ T (x)}, is semi-algebraic. Similarly, a function

f : E → Qm
p is p-adic semi-algebraic if the graph of f , {(x, f (x)) : x ∈ E}, is semi-algebraic. The following is

a main result.

Theorem 1.3 If T is semi-algebraic and lower semi-continuous, and T (x) is closed and nonempty for every
x ∈ E, then T has a semi-algebraic continuous selection.

In addition, by using the same techniques, we have an analogue of Theorem 1.3 in the p-adic subanalytic
context, i.e., if T is subanalytic and and lower semi-continuous, and T (x) is closed and nonempty for every
x ∈ E , then T has a subanalytic continuous selection. We further investigate the main question when T is not
necessarily lower semi-continuous and obtain the following.

Theorem 1.4 If T is semi-algebraic and has a continuous selection, and T (x) is closed for every x ∈ E, then
T has a semi-algebraic continuous selection.

In addition, we show that the closeness assumption is not necessary when dim E = 1.

Theorem 1.5 Suppose dim E = 1 and T is semi-algebraic. Then T has a continuous selection if and only if
T has a semi-algebraic continuous selection.

As consequences of the proofs of the above theorems, we also know that analogous results hold for finite field
extensions of Qp. We also include two applications to illustrate some uses of our main results. The first application
is related to a result of Fefferman and Kollár. In [10], they showed (using algebraic-geometric techniques) that
if the equation f = g1 y1 + · · · + gm ym , where f, g1, . . . , gm are polynomials with p-adic coefficients and n
indeterminates, has a continuous solution (i.e., there are continuous functions y1, . . . , ym : Qn

p → Qp that satisfy
the equation), then it also has a semi-algebraic continuous solution. Using our main results, we introduce a new
approach and obtain the following generalization.

Corollary 1.6 Let g1, . . . , gk : Qn
p → Qp and F : Qk+m

p → Qp be semi-algebraic and continuous. If there
are continuous functions y1, . . . , ym : Qn

p → Qp such that

F(g1, . . . , gk, y1, . . . , ym) = 0, (*)

then there are semi-algebraic continuous functions y1, . . . , ym that satisfy (∗).

Observe that when F(z0, z1, . . . , zm, y1, . . . , ym) = z0 − z1 y1 − z2 y2 − · · · − zm ym , the equation (∗) is equiv-
alent to the linear equation under consideration in [10]. Next, let E ⊆ E ′ ⊆ Qn

p be semi-algebraic and f : E → Qm
p

be semi-algebraic. Recall that an extension of f to E ′ is a map g : E ′ → Qm
p such that g(x) = f (x) for every

x ∈ E . By [20], we know that if E is closed in E ′ and f is continuous, then f admits a semi-algebraic continuous
extension to E ′. Therefore, it is natural to ask how to determine whether f admits a semi-algebraic continuous
extension to E ′ (when E is not necessarily closed in E ′).

For all x = (x1, . . . , xn) ∈ Qn
p, let v(x) = min{v(xi ) : i ∈ {1, . . . , n}}. Note that v induces the usual topology

on Qn
p and satisfies the ultrametric inequality, i.e., for all x, y, z ∈ Qn

p, we have that v(x − y) ≥ min{v(x −
z), v(z − y)}. For Y ⊆ Qn

p and x ∈ Qn
p, let v(x, Y ) = inf{v(x − y) : y ∈ Y }. For each δ ∈ Z and x ∈ Qn

p, let Bδ(x)
denote the box {y : v(x − y) > δ}. Let T : E ⇒ Qm

p be a set-valued map. Let x0 ∈ E and y ∈ Qm
p . We say that

v(y, T (x)) → ∞ as E 
 x → x0 if for every t ∈ Qp\{0} there is s ∈ Qp\{0} such that for all x ∈ E ∩ Bv(s)(x0),
v(y, T (x)) > v(t). The Glaeser refinement of T is the set-valued map T ′ : E ⇒ Qm

p defined by

T ′(x0) := {y ∈ T (x0) : v(y, T (x)) → ∞ as x → x0}
for x0 ∈ E . For each k ∈ N, let T (k) : E ⇒ Qm

p be the k-th time Glaeser refinement of T . Let T f : E ′ ⇒ Qm
p be

defined by

T f (x) =
{

{ f (x)}, if x ∈ E,

Qm
p , if x ∈ E ′\E,

for every x ∈ E ′. We show the following consequence.

Corollary 1.7 The function f admits a semi-algebraic continuous extension to E ′ if and only if (T f )(n)(x) �= ∅

for every x ∈ E ′.
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The other application is on the characterization of semi-algebraic continuous functions that are right invertible
under the composition operation. Let n be a positive integer. Recall that the set of semi-algebraic continuous
functions from Qn

p to Qn
p with the composition operation is a monoid but is not a group. For any map h : Qn

p → Qn
p,

let h−1 : Qn
p ⇒ Qn

p be a set-valued map defined by h−1(x) is the pre-image of {x} under h. Now, we obtain the
following result.

Corollary 1.8 Let h : Qn
p → Qn

p be semi-algebraic and continuous. Then h is right invertible under the

composition operation ◦ if and only if h is surjective and (h−1)(n)(x) �= ∅ for every x ∈ Qn
p.

We fix our conventions and notations: Throughout this paper, d, k, m, and n will range over the set N =
{0, 1, 2, 3, . . . } of natural numbers. For a set S ⊆ Qn

p we denote by cl S the closure of S.

2 p-adic semi-algebraic sets and the proof of Theorem 1.3

In this section, we recall some properties of p-adic semi-algebraic sets used in our proof of Theorem 1.3. For
E ⊆ Qn

p, let dim E denote the largest k such that there is a coordinate projection from Qn
p to Qk

p where the image
of E has nonempty interior. Obviously, we have dim E = n if and only if E has nonempty interior. It is known that
(1) if E1, E2 ⊆ Qn

p are semi-algebraic, then dim(E1 ∪ E2) = max{dim E1, dim E2}; (2) if E is semi-algebraic and
dim E = 0, then E is finite; and (3) if E is semi-algebraic, then dim(cl E\E) < dim E and dim E = dim(cl E);
cf., e.g., [12].

Throughout this paper, we assume E ⊆ Qn
p and T : E ⇒ Qm

p unless stated otherwise. The concept of cells is a
corner stone of the study of semi-algebraic sets. Cell Decomposition Theorem (cf. [8, 18] for more information)
provides that every semi-algebraic set is a finite disjoint union of cells. As consequences, we have:

Lemma 2.1 Let f : E → Qm
p be semi-algebraic. Then there is a semi-algebraic set X ⊆ E such that

dim(E\X) < dim(E) and the restriction f �X is continuous.

Lemma 2.2 Let A ⊆ Qn+m
p be semi-algebraic and π : Qn+m

p → Qn
p be the projection onto the first n coordi-

nates. Then there exists a semi-algebraic map f : π A → Qm
p such that the graph of f is contained in A.

The following corollary follows immediately from Lemmas 2.1 & 2.2.

Lemma 2.3 Let A ⊆ Qn+m
p be semi-algebraic and π : Qn+m

p → Qn
p be the projection onto the first n coordi-

nates. Then there exist a semi-algebraic set X ⊆ π A and a semi-algebraic continuous map f : X → Qm
p such

that dim(π A\X) < dim(π A) and the graph of f is contained in A.

Let Y ⊆ Qm
p . A map f : Qm

p → Qm
p is a retraction from Qm

p to Y if f is continuous, the range of f is Y
and the restriction of f to Y is the identity map on Y (i.e., f (x) = x for every x ∈ Y ); and a map g : Y → Qm

p
is nonexpansive if v(g(x) − g(y)) ≥ v(x − y) for every x, y ∈ Y . Let r : E × Qm

p → Qm
p . For each x ∈ E , let

r(x,−) denote the map from Qm
p to Qm

p : y �→ r(x, y) for every y ∈ Qm
p .

In [6], Cluckers and Martin proved the following result.

Lemma 2.4 (Cluckers & Martin; [6, Theorem 20]) If T is semi-algebraic and T (x) is closed for every x ∈ E,
then there exists a semi-algebraic map r : E × Qm

p → Qm
p such that for each x ∈ E, r(x,−) is a nonexpansive

retraction from Qm
p to T (x).

As a result, we obtain:

Lemma 2.5 Let r : E × Qm
p → Qm

p be a semi-algebraic map such that r(x,−) is nonexpansive for every
x ∈ E. There is a semi-algebraic set E0 ⊆ E such that dim(E\E0) < dim E and r�(E0 × Qm

p ) is continuous.

P r o o f . Let E ′ := {x ∈ E : r is not continuous at (x, y) for some y ∈ Qm
p }. It is enough to show that

dim E ′ < dim E . Suppose to the contrary that dim E ′ = dim E . Since every coordinate projection is semi-
algebraic, we may reduce to the case dim E = n. By 2.3, there exist a semi-algebraic open set U ⊆ E ′ and
semi-algebraic continuous functions g, G : U → Qm

p such that G(x) = r(x, g(x)) and r is not continuous at

www.mlq-journal.org C© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(x, g(x)) for every x ∈ U . Fix x0 ∈ U . We shall show that G is not continuous at x0. Since r is not continuous at
(x0, g(x0)), there is t ∈ Qp\{0} such that ε = v(t) ∈ Z and

∀s ∈ Qp\{0} ∃(x, y) ∈ Bv(s)(x0, g(x0)), v(r(x, y) − r(x0, g(x0))) < ε.

Since g is continuous, there is s0 ∈ Qp\{0} such that v(g(x0) − g(x)) > ε for every x ∈ Bv(s0)(x0). Let s ∈ Qp\{0}
such that δ = v(s) > max{ε, v(s0)}. Then there exists (x, y) ∈ Bδ(x0, g(x0)) such that

v(r(x, y) − r(x0, g(x0))) < ε.

Since v(y − g(x0)) > ε and v(g(x) − g(x0)) > ε, by the ultrametric inequality, v(y − g(x)) > ε. Since r(x,−)
is nonexpansive, again by the ultrametric inequality, v(r(x, y) − r(x, g(x))) > ε. Therefore

v(G(x) − G(x0)) = v(r(x, g(x)) − r(x0, g(x0))) = v(r(x, y) − r(x0, g(x0))) < ε.

Hence, G is not continuous at x0 which is absurd. �

Observe that if T (x) is a singleton on a closed subset A of T , i.e., the restriction of T to A canonically induces a
function from A to Qm

p , then our main question becomes: “Is there a semi-algebraic continuous extension of T �A
that is contained in the graph of T ?” We can see that this problem on the existence of semi-algebraic continuous
extensions has a connection with our main question.

Lemma 2.6 (Thamrongthanyalak; [20, Theorem 1.1]) Let E and E ′ be semi-algebraic. Suppose E ⊆ E ′, E is
closed in E ′ and f : E → Qn

p is semi-algebraic and continuous. Then there is a semi-algebraic continuous map
g : E ′ → Qn

p such that g�E = f .

P r o o f o f T h e o r e m 1.3. We proceed by induction on d := dim E . The case d = 0 is clear. Suppose
the result holds for every semi-algebraic set-valued map whose domain has dimension < d. By 2.4, let r :
E × Qm

p → Qm
p be semi-algebraic such that r(x,−) is a nonexpansive retraction from Qm

p → T (x) for every
x ∈ E . In addition, by 2.5, there is a semi-algebraic set E0 ⊆ E such that dim(E\E0) < dim E and r�(E0 × Qm

p )
is continuous. Replacing E0 by E0\ cl(E\E0) if necessary, we may assume that E\E0 is closed in E . By the
inductive hypothesis, let f : E\E0 → Qm

p be a semi-algebraic continuous selection of T �(E\E0). By 2.6, let
g : E → Qm

p be a semi-algebraic continuous extension of f .
Define h : E → Qm

p by h(x) = r(x, g(x)) ∈ T (x). Obviously h is semi-algebraic and continuous on E0,
and h�(E\E0) = f . It is enough to prove that h is continuous at x0 for every x0 ∈ E\E0. Let x0 ∈ E\E0 and
t ∈ Qp\{0}. Set ε = v(t) ∈ Z. Then there exists s ∈ Qp\{0} such that δ = v(s) < ε and for every x ∈ Bδ(x0),
v(g(x0) − g(x)) > ε and T (x) ∩ Bε(g(x0)) �= ∅. Let x ∈ Bδ(x0) and y ∈ T (x) ∩ Bε(g(x0)). By the ultrametric
inequality, we have v(y − g(x)) > ε. Note that y = r(x, y) because y ∈ T (x) and r(x,−) is a retraction from
Qm

p → T (x). Therefore,

v(h(x0) − h(x)) = v(g(x0) − r(x, g(x)))

≥ min{v(g(x0) − y), v(y − r(x, g(x)))}
≥ min{ε, v(r(x, y) − r(x, g(x)))}
≥ min{ε, v(y, g(x))}
≥ ε.

Hence h is continuous at x0. �

3 Glaeser refinement and the proof of Theorem 1.4

In this section, we introduce Glaeser refinements, which were first given by Glaeser [11]. This notion was used in
the study of Whitney’s extension problem (cf. [22] for the original question).

Let T : E ⇒ Qm
p . Define T ′ : E ⇒ Qm

p , the Glaeser refinement of T , by

T ′(x0) := {y ∈ T (x0) : v(y, T (x)) → ∞ as E 
 x → x0} for x0 ∈ E .
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We say that T is stable under Glaeser refinement if T ′ = T .

Remark 3.1 If T is semi-algebraic, then so is T ′. If f : E → Qm
p is continuous and f (x) ∈ T (x) for every

x ∈ E , then f (x) ∈ T ′(x) for every x ∈ E . Furthermore, T is stable under Glaeser refinement if and only if T is
lower semi-continuous.

Lemma 3.2 If T (x) is closed for every x ∈ E, then T ′(x) is closed for every x ∈ E.

P r o o f . Let x0 ∈ E . To prove that T ′(x0) is closed, let y0 /∈ T ′(x0). Fix t ∈ Qp\{0} such that for every
s ∈ Qp\{0} there is x ∈ E ∩ Bv(s)(x0) with v(y0, T (x)) < v(t). It is routine to show that Bv(t)(y0) ∩ T ′(x0) =
∅. �

Next, we define a sequence (T (k))k∈N inductively by T (0) := T and T (k+1) := (T (k))′. It is easy to see that for
each k ∈ N, T (k+1) = (T (k))′ = (T ′)(k) . In o-minimal expansions of the real field, we know that this sequence of
iterated Glaeser refinements of set-valued maps is eventually stable (cf., e.g., [2 19]). Here, we shall show that
the same result also holds in the p-adic semi-algebraic context. To prove this, we first show that every p-adic
semi-algebraic set-valued map is almost lower semi-continuous.

Lemma 3.3 If T is semi-algebraic, then there is a semi-algebraic set E ′ ⊆ E such that dim(E\E ′) < dim E
and T �E ′ is lower semi-continuous.

P r o o f . Let K = {(x, y) : x ∈ E, y ∈ T (x) and ∃t ∈ Qp\{0}∀s ∈ Qp\{0}∃x ′ ∈ Bv(s)(x) ∩
E, v(y, T (x ′)) < v(t)} be the set of witnesses of lower semi-discontinuity of T . Let π : Qn

p × Qm
p → Qn

p be the
coordinate projection onto the first n coordinates. Obviously, T �(E\π K ) is lower semi-continuous. Therefore,
it is enough to show that dim(π K ) < dim E . Suppose to the contrary that dim(π K ) = dim E . By 2.3, there
exist a semi-algebraic open subset U of Qn

p and a continuous semi-algebraic map f : U ∩ E → Qm
p such that

(x, f (x)) ∈ K for every x ∈ U ∩ E . Let x ∈ U ∩ E . Then there is t ∈ Qp\{0} such that for every s ∈ Qp\{0}
there is x ′ ∈ Bv(s)(x) ∩ U ∩ E with v( f (x) − f (x ′)) < v(t). This contradicts the continuity of f at x . �

Lemma 3.4 If T is semi-algebraic, then T (dim E)(x0) = T (k)(x0) for some x0 ∈ E and k ≥ dim E.

P r o o f . We proceed by induction on d = dim E . If d = 0, then T is lower semi-continuous and this case
is done by Remark 3.1. Suppose the result holds for every semi-algebraic set-valued map whose domain has
dimension < d. By 3.3, let E0 ⊆ E such that dim(E\E0) < dim E and T �E0 is lower semi-continuous. We
may assume further that E0 is open in E . Therefore T (x0) = T (k)(x0) for every x0 ∈ E0 and k ≥ 0; so we have
(T ′)(k)(x) = (T ′�E\E0)(k)(x) for every x ∈ E\E0 and k ≥ 0. Since dim(E\E0) < d and E0 is open in E , by
the inductive hypothesis, we have (T ′�E\E0)(d−1)(x) = (T ′�E\E0)(l)(x) for every x ∈ E and l ≥ d − 1. Let
x0 ∈ E\E0 and k ≥ d. Therefore

T (d)(x0) = (T ′)(d−1)(x0)

= (T ′�E\E0)
(d−1)(x0)

= (T ′�E\E0)
(k−1)(x0)

= (T ′)(k−1)(x0)

= T (k)(x0).

Hence, T (k)(x0) = T (d)(x0) for every x0 ∈ E and k ≥ d. �
Therefore, we have:

Lemma 3.5 If T is semi-algebraic, then T (dim E) is stable under Glaeser refinement.

Let T (∗) = T (dim E) . By Remark 3.1, we obtain

Lemma 3.6 If T is semi-algebraic, then T (∗) is semi-algebraic and T (∗) is lower semi-continuous.

Lemma 3.7 If T has a continuous selection, then T (∗)(x) �= ∅ for all x ∈ E.

To prove Theorem 1.4 , it is enough to prove
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Lemma 3.8 Suppose T is semi-algebraic and T (x) is closed for every x ∈ E. Then the following are
equivalent:

1. T has a continuous selection;
2. T (∗)(x) �= ∅ for all x ∈ E;
3. T has a semi-algebraic continuous selection.

P r o o f . We need only to prove (2) ⇒ (3). Assume T (∗)(x0) �= ∅ for all x0 ∈ E . By 3.5, we have T (∗) is
stable under Glaeser refinement and so lower semi-continuous. In addition, we also have that T (∗)(x) is closed
for every x ∈ E by 3.2. Hence, by Theorem 1.3 , let f : E → Qm

p be a semi-algebraic continuous selection of

T (∗) . Since T (∗)(x) ⊆ T (x) for every x ∈ E , f is also a semi-algebraic continuous selection of T . �

This completes the proof of Theorem 1.4.
Next, we consider the case n = 1.

Lemma 3.9 Let a ∈ E and b ∈ T (a). If T is lower semi-continuous and semi-algebraic, then there exist a
semi-algebraic open neighborhood B of a and a semi-algebraic continuous function f : E ∩ B → Qm

p such that
f (a) = b and f (x) ∈ T (x) for all x ∈ E ∩ B.

P r o o f . It is trivial if a is an isolated point. Suppose a is not an isolated point. Let

E1 = {x ∈ E : there exists y ∈ T (x) such that v(y − b) > v(x − a)}
and E2 = (E\{a})\E1. By [12, Lemma 4.4], if x ∈ E2, then there exists y ∈ T (x) such that v(y − b) ≥ v(z − b)
for every z ∈ T (x). Let

A = {(x, y) ∈E1 × Qm
p : y ∈ T (x) & v(y − b) > v(x − a)}

∪ {(x, y) ∈ E2 × Qm
p : y ∈ T (x) & v(y − b) ≥ v(z − b) for every z ∈ T (x)}.

Obviously, A is semi-algebraic. Therefore, there exist a finite set Z ⊆ E and a semi-algebraic continuous function
g : E\Z → Qm

p such that a ∈ Z and (x, g(x)) ∈ A for every x ∈ E\Z . Since Z is finite, there exists a semi-
algebraic open neighborhood B of a such that B ∩ Z = {a}. Define f : E ∩ B → Qm

p by

f (x) =
{

g(x), if x �= a,

b, if x = a.

We show that g(x) → b as E 
 x → a. Let t ∈ Qp\{0} and set ε = v(t). Since T is lower semi-continuous, there is
s ∈ Qp\{0} such that δ = v(s) > ε and Bδ(a) ⊆ B and T (x) ∩ Bε(b) �= ∅ for all x ∈ Bδ(a). Let x ∈ Bδ(a)\{a}.
If x ∈ E1, then v(g(x) − b) > v(x − a) > δ > ε. Suppose x ∈ E2. Since T (x) ∩ Bε(b) �= ∅, there is z ∈ T (x)
such that v(z − b) > ε. Hence, we have v(g(x) − b) ≥ v(z − b) > ε. This completes the proof. �

P r o o f o f T h e o r e m 1.5. Let f : E → Qm
p be a continuous selection of T . Then we know that T (∗)(x0) �=

∅ for all x0 ∈ E . Since dim E = 1, by 2.3, we have a semi-algebraic set X ⊆ E and a semi-algebraic function
g : E → Qm

p such that E\X is finite, g�X is continuous and g(x) ∈ T (∗)(x) for every x ∈ E . If E\X = ∅,
then we’re done. Suppose that E\X �= ∅. Write E\X = {a1, . . . , aN }. Let i ∈ {1, . . . , N }. Observe that f (ai ) ∈
T (∗)(ai ). By lower semi-continuity of T (∗) and 3.9, there exist s ∈ Qp\{0} and a semi-algebraic continuous
function fi : E ∩ Bv(s)(ai ) → Qm

p such that fi (ai ) = f (ai ) and fi (x) ∈ T (∗)(x) for all x ∈ E ∩ Bv(s)(ai ).
Set � = max({v(ai − a j ) : 1 ≤ i < j ≤ N } ∪ {v(s)}). Define h : E → Qm

p by

h(x) =
{

fi (x), if v(x − ai ) > � for some i ∈ {1, . . . , N };
g(x), otherwise.

Note that {B�(ai ) : 1 ≤ i ≤ N } is a finite pairwise disjoint collection of clopen sets. Then h is continuous.
Therefore, we can easily see that h is a semi-algebraic continuous selection of T . �

Observe that by tracking the parameters throughout the proofs and applying semi-algebraic Skolem functions,
we have a version of Theorem 1.3 for definable families. In addition, the definition of Glaeser refinement can be
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extended to definable families of set-valued maps. Therefore, we now know that Theorem 1.4 is independent of
parameters.

Lemma 3.10 Let (Ty)y∈Y be a semi-algebraic family of set-valued maps Ty : Ey ⇒ Qm
p . Suppose for every

y ∈ Y , Ty is lower semi-continuous and Ty(x) is closed and nonempty for every x ∈ Ey. Then there exists a
semi-algebraic family ( fy)y∈Y of functions fy : Ey → Qm

p such that fy is a continuous selection of Ty.

Lemma 3.11 Let (Ty)y∈Y be a semi-algebraic family of set-valued maps Ty : Ey ⇒ Qm
p . Suppose for every

y ∈ Y , Ty has a continuous selection and Ty(x) is closed for every x ∈ Ey. Then there exists a semi-algebraic
family ( fy)y∈Y of functions fy : Ey → Qm

p such that fy is a continuous selection of Ty.

4 Applications

In this section, we provide three applications of the main theorems.

4.1 Semi-algebraic continuous solutions of semi-algebraic equations

Let g1, . . . , gk : E → Qp and F : Qk+m
p → Qp be semi-algebraic and continuous. We consider the equation:

F(g1, . . . , gk, y1, . . . , ym) = 0, (*)

in unknown continuous functions y1, . . . , ym : E → Qp. It is clear that the set

{(z1, . . . , zm) ∈ Qm
p : F(g1(x), . . . , gk(x), z1, . . . , zm) = 0}

is a closed subset of Qm
p for every x ∈ E . Applying Theorem 1.4 to the semi-algebraic set-valued map T : E ⇒ Qm

p
where

T (x) := {(z1, . . . , zm) ∈ Qm
p : F(g1(x), . . . , gk(x), z1, . . . , zm) = 0},

we have:

Lemma 4.1 If there are continuous functions y1, . . . , ym : E → Qp solving (∗), then there are also semi-
algebraic continuous functions y1, . . . , ym that satisfy (∗).

We can see that Corollary 1.6 still holds when we replace the equation (∗) by a finite system of equations of
the same kind as (∗). In addition, by Lemma 3.11, we obtain:

Lemma 4.2 Let g1, . . . , gk : QN+n
p and F : QN+k+m

p → Qp be semi-algebraic. Suppose for every c ∈ QN
p , the

functions g1(c,−), . . . , gk(c,−) : Qn
p → Qp and F(c,−) : Qk+m

p → Qp are continuous. Assume that for every
c ∈ QN

p there are continuous functions y1, . . . , ym : Qn
p → Qp such that

F(c, g1(c, x), . . . , gk(c, x), y1(x), . . . , ym(x)) = 0

for every x ∈ Qn
p. Then there exist semi-algebraic functions y1, . . . , ym : QN+n

p → Qp such that for every c ∈ QN
p ,

the functions y1(c,−), . . . , ym(c,−) : Qn
p → Qp are continuous and

F(c, g1(c, x), . . . , gk(c, x), y1(c, x), . . . , ym(c, x)) = 0

for every x ∈ Qn
p.

4.2 Semi-algebraic continuous extensions

The extension problem, one of classic problems in topology and analysis, asks: “Let A ⊆ X and f : A → Y . Is it
possible to find an extension of f to X that satisfies some prescribed properties?” (Readers can find more studies
of extension problems in, e.g., [4]).

Let E ⊆ E ′ ⊆ Qn
p and f : E → Qm

p be semi-algebraic. By 2.6, we know that if E is closed in E ′ and f is
continuous, then f has a semi-algebraic continuous extension to E ′. Observe that Qp\{0} is not closed in Qp and
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the map from Qp\{0} to Qp x �→ 1/x has no continuous extension to Qp. Therefore, this gives rise to the question:
“How do we determine whether f admits semi-algebraic continuous extensions to E ′?” Let T f : E ′ ⇒ Qm

p be
defined by, for each x ∈ E ′,

T f (x) =
{

{ f (x)}, if x ∈ E,

Qm
p , if x ∈ E ′\E .

We obtain that:

Lemma 4.3 The function f admits a semi-algebraic continuous extension to E ′ if and only if (T f )(∗)(x) �= ∅

for every x ∈ E ′

P r o o f . This follows immediately from 3.8 and the fact that a continuous function g : E ′ → Qm
p is an

extension of f if and only if g is a continuous selection of T f . �

4.3 Characterization of right invertible elements

For any map h : E → Qm
p , let h−1 : Qm

p ⇒ E be the set-valued map defined by h−1(x) is the pre-image of {x}
under h. Observe that if h : E → Qm

p is an open map, then h−1 : Qm
p ⇒ E is lower semi-continuous. Therefore,

we have:

Lemma 4.4 If h : Qn
p → Qm

p is semi-algebraic, surjective, continuous, and open, then there is a semi-algebraic
continuous map f : Qm

p → Qn
p such that h ◦ f is the identity map on Qm

p .

Let (G, ◦) be the monoid where G is the set of semi-algebraic continuous function from Qn
p to Qn

p and the
group operation ◦ is the composition operation. Obviously, the identity map on Qn

p is the identity element of this
monoid. The result 4.4 implies that every member of G that is surjective and open is right invertible in (G, ◦).
Therefore, a question arose naturally: “What is the characterization of right invertible element in (G, ◦)?”

We now give an answer to the above question.

Lemma 4.5 Let h ∈ G. Then h is right invertible under ◦ if and only if h is surjective and (h−1)(∗)(x0) �= ∅

for every x0 ∈ Qn
p.

P r o o f . Suppose h is surjective and h−1 is lower semi-continuous. Since h is continuous, h−1(x) is closed for
every x ∈ Qn

p. By 3.8, h−1 has a semi-algebraic continuous selection f : Qn
p → Qn

p. Hence, we have h( f (x)) = x
for every x ∈ Qn

p, that is h ◦ f is the identity map on Qn
p.

Conversely, suppose h is right invertible. Then there exists semi-algebraic and continuous f : Qn
p → Qn

p such
that h ◦ f is the identity map on Qn

p. Since h ◦ f is surjective, h is also surjective. Observe that the function f is

contained in h−1 (as sets). Since f is continuous, (h−1)(∗) contains f still. Therefore, (h−1)(∗)(x0) �= ∅ for every
x0 ∈ Qn

p. �

Let h ∈ G. It is clear to see that h is left invertible under ◦ if and only if h is injective and h−1 admits a
semi-algebraic continuous extension to Qn

p. By Corollary 1.7 , we obtain:

Lemma 4.6 Let h ∈ G. Then h is left invertible under ◦ if and only if h is injective and (Th−1)(∗)(x0) �= ∅ for
every x0 ∈ Qn

p.

5 Concluding remarks

As mentioned in § 1, we also know that Theorem 1.3 holds in the p-adic subanalytic context. Therefore, a natural
question arises: To what extent can we generalize Theorem 1.3? Recall that for every P-minimal expansion K of
a p-adically closed field, K admits Cell Decomposition Theorem if and only if K admits definable Skolem func-
tions (cf. [18] for more details). In addition, by [13], there exist P-minimal expansions of (Qp; +, ·,−, 0, 1, Div)
that does not admit definable Skolem functions. We may ask whether Theorem 1.3 holds for all P-minimal ex-
pansions of p-adically closed fields that admit definable Skolem functions. From the above proof, we know that
Theorem 1.3 holds for every P-minimal structure that satisfies analogs of Theorems 2.4 & 2.6.
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Remark 5.1 Let E ⊆ E ′ ⊆ Qn
p and f : E → Qm

p . Let T f be defined as in 4.2. Note that a variant of
Corollary 1.7 also holds when f is not semi-algebraic. Observe that for every x ∈ E ′, we have T f (x) is an affine
subspace of Qm

p . By the same argument as the proof of [9, Lemma 2.2], we have (T f )(2m+1) is stable under Glaeser
refinement; therefore, it is lower semi-continuous. Michael’s Selection Theorem (mentioned in the introduction)
implies that f admits a continuous extension to E ′ if and only if (T f )(2m+1)(x0) �= ∅ for every x0 ∈ E ′.

Let (H, ◦) be the monoid where H is the set of continuous functions Qn
p → Qn

p and ◦ is the composition
operation. Let h ∈ H . By Remark 5.1, we obtain that h is left invertible under ◦ if and only if h is injective
and (Th−1)(2n+1)(x0) �= ∅ for every x0 ∈ E ′. Observe that if h is right invertible under ◦, then h is surjective and
(h−1)(k)(x0) �= ∅ for every x0 ∈ Qn

p and k ≥ 0. However, we don’t know whether the converse is true or not. The
difference here follows from the fact that we now do not know whether every set-valued map from Qn

p to Qn
p is

eventually stable under Glaeser refinement.
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Trace Problems

Let X,Y be metric spaces and F(X,Y ) be the set of all maps
from X to Y .
Suppose F ⊆ F(X,Y ) and S ⊆ X.

Definition
The trace of F to S is the set

F � S = {f � S : f ∈ F}.

Question
How can we completely describe the trace F � S?
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Trace Problems

Let f : S → Y .

Question
How to determine whether f is the restriction of some element
in F?
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Examples

1. F = C(X,Y ) and S is a closed subset of X:

Attributed to H. Tietze
A function f : S → Y is in the trace F � S if and only if f is
continuous.

2. F = Lip1(Rn,Rm) and S ⊆ Rn:

Attributed to M.D. Kirszbraun
A function f : S → Rm is in the trace F � S if and only if f is
1-Lipschitz.
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Selection Problems

Let T : X → P(Y ).

Definition
A function f : X → Y is a continuous selection of T if f is
continuous and f(x) ∈ T (x) for all x ∈ X.

In 1956, E. Michael asked the following:

Question
How to determine whether T has a continuous selection of T
that is in F?
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Question
How to determine whether T has a continuous selection of T
that is in F?
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p-adic Semialgebraic Sets

Definition
A p-adic semialgebraic set is a subset of Qn

p that is a finite
boolean combination of sets of the forms
{(x1, . . . , xn) ∈ Qn

p : q(x1, . . . , xn) = 0} and
{(x1, . . . , xn) ∈ Qn

p : xi = λyk for some y ∈ Qp} where q is a
polynomial over Qp, λ ∈ Qp, k ∈ N and i = 1, . . . , n.

Let S ⊆ Qn
p .

Definition
A function f : S → Qm

p is p-adic semialgebraic if the graph of
f , {(x, f(x)) ∈ Qn+m

p : x ∈ S}, is p-adic semialgebraic.
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Let S ⊆ Qn
p be p-adic semialgebraic and f : S → Qm

p be p-adic
semialgebraic.

Cell Decomposition Theorem (J. Denef)
There is a finite partition C of S such that f � C is continuous for
all C ∈ C.
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Main Questions

Let S ⊆ Qn
p be p-adic semialgebraic and F be the set of all

continuous p-adic semialgebraic maps from Qn
p to Qm

p

Question 1
How can we completely describe the trace F � S?

Let T : Qn
p → P(Qm

p ) be p-adic semialgebraic.

Question 2
How to determine whether T is a continuous selection that is
p-adic semialgebraic?
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Results

Theorem 1 (T.)
If S is closed, then a function f : S → Qm

p is in F � S if and only
if f is continuous.
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Results

The Glaeser refinement of T is the map T ′ : Qn
p → P(Qm

p )
defined by

T ′(x0) := {y ∈ T (x0) : d(y, T (x))→ 0 as x→ x0} for x0 ∈ Qn
p .

For each k ∈ N, let T (k) be the k-th time Glaeser refinement of
T .

Theorem 2 (T.)
The map T has a p-adic semialgebraic continuous selection if
and only if T (n)(x0) 6= ∅ for all x0 ∈ Qn

p .
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Results

For each f : S → Qm
p , let Tf : Qn

p → P(Qm
p ) be defined by

Tf (x) =

{
{f(x)}, if x ∈ S;
Qm

p , if x ∈ Qn
p \ S.

Theorem 3 (T.)

A function f : S → Qm
p is in F � S if and only if T (n)

f (x) 6= ∅ for all
x ∈ Qn

p .
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Applications

Let g1, . . . , gk : E → Qp and F : Qk+m
p → Qp be p-adic

semialgebraic and continuous. Consider

F (g1, . . . , gk, y1, . . . , ym) = 0, (∗)

in unknown continuous functions y1, . . . , ym : E → Qp.

Corollary 1 (T.)
If there are continuous functions y1, . . . , ym : E → Qp solving
(∗), then there are also p-adic semialgebraic continuous
functions y1, . . . , ym that satisfy (∗).
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Applications

Let (G, ◦) be the monoid where G is the set of p-adic
semialgebraic continuous function from Qn

p to Qn
p and the group

operation ◦ is the composition operation.

Corollary 2 (T.)
Let h ∈ G. Then h is right invertible under ◦ if and only if h is
surjective and (h−1)(n)(x0) 6= ∅ for every x0 ∈ Qn

p .

Corollary 3 (T.)
Let h ∈ G. Then h is left invertible under ◦ if and only if h is
injective and (Th−1)(n)(x0) 6= ∅ for every x0 ∈ Qn

p .
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