

รายงานวิจัยฉบับสมบูรณ์

โครงการ

Roles of O-GlcNAcylation in cancer stem cells

บทบาทของโอoglุคแэнกซิลเลชั่นในเซลล์ต้นกำเนิดมะเร็ง

โดย

ผศ. ดร. อาทิตย์ ศิลป์ศิริวนิชย์ และคณะ

พฤษภาคม 2563

รายงานวิจัยฉบับสมบูรณ์

โครงการ

Roles of O-GlcNAcylation in cancer stem cells บทบาทของโอกลุคแอกซิลเลชันในเซลล์ต้นกำเนิดมะเร็ง

ผู้วิจัย

ผศ. ดร. อากิตต์ ศิลป์ศิริวนิชย์

สังกัด

ภาควิชาชีวเคมี คณะแพทยศาสตร์
มหาวิทยาลัยขอนแก่น

นักวิจัยที่ปรึกษา

ศ. ดร. โสพิศ วงศ์คำ

ภาควิชาชีวเคมี คณะแพทยศาสตร์
มหาวิทยาลัยขอนแก่น

สนับสนุนโดย

สำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สาว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยนี้ได้รับการสนับสนุนเงินทุนวิจัย ภายใต้โครงการพัฒนาศักยภาพในการทำงานวิจัย ของอาจารย์รุ่นใหม่ ประจำปี พ.ศ. 2561 จากสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) โดยมีระยะเวลาดำเนินการ 2 ปี (2561 - 2263) ระหว่าง ดำเนินการวิจัย ได้เผยแพร่ผลงานวิจัยในการประชุมวิชาการระดับนานาชาติ 2 เรื่อง และระดับชาติ 1 เรื่อง พร้อมตีพิมพ์ผลงานในวารสาร *Medicina (Kaunas)* ปี 2019 และอยู่ระหว่างการทำวิจัยเพิ่มเติมเพื่อ จัดเตรียมเป็นบทความวิจัย สำหรับตีพิมพ์ในสารวิจัยนานาชาติอีก 1-2 เรื่อง

ผู้วิจัยขอขอบพระคุณ สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) และสำนักงานกองทุน สนับสนุนการวิจัย (สกว.) ที่สนับสนุนทุนวิจัยแก่โครงการนี้ ทราบขอบพระคุณ ศาสตราจารย์ ดร. โสพิศ วงศ์คำ นักวิจัยที่ปรึกษาที่อนุเคราะห์อุปกรณ์และเครื่องมือวิจัย พร้อมทั้งคำแนะนำที่มีประโยชน์อย่างยิ่ง ต่อการวิจัย ขอบพระคุณภาควิชาชีวเคมี ฝ่ายวิจัยฯ คณะแพทยศาสตร์ และมหาวิทยาลัยขอนแก่น ที่ อนุเคราะห์สถานที่ทำวิจัยครั้งนี้

ผศ. ดร. อาทิตย์ ศิลป์ศิริวนิชย์

ผู้วิจัย

พฤษภาคม 2563

บทคัดย่อ

สัญญาเลขที่: MRG6180107

ชื่อโครงการ: บทบาทของโอกลุคแอกซิลเลชันในเซลล์ต้นกำเนิดมะเร็ง

ผู้วิจัย: ผศ. ดร. อาทิตย์ ศิลป์ศิริวนิชย์

Email address: atitsil@kku.ac.th

ระยะเวลาดำเนินโครงการ: 1 พฤษภาคม 2561 – 30 เมษายน 2563

เซลล์ต้นกำเนิดมะเร็ง (Cancer stem cell, CSC) มีบทบาทสำคัญในการกลับเป็นข้ามและการดื้อต่อการรักษาของโรคมะเร็ง เพื่อให้เข้าใจบทบาทของเซลล์ต้นกำเนิดมะเร็งในมะเร็ง การศึกษาชีววิทยาทั้งระดับพื้นฐานและระดับโมเลกุลของเซลล์ต้นกำเนิดมะเร็งจึงมีความจำเป็นอย่างยิ่ง การศึกษาเกี่ยวกับน้ำของผู้วิจัยได้ประสบความสำเร็จในการแยกเซลล์ต้นกำเนิดมะเร็งจากเซลล์เพาะเลี้ยงมะเร็ง (cancer cell lines) 2 ชนิด ได้แก่ มะเร็งสมองชนิดไกโลมา (glioma) และมะเร็งท่อน้ำดี (cholangiocarcinoma) และในการศึกษาครั้งนี้มีวัตถุประสงค์เพื่อ 1) ศึกษาคุณสมบัติของเซลล์ต้นกำเนิดมะเร็งที่แยกได้ และ 2) ศึกษาบทบาทของกระบวนการโอกลุคแอกซิลเลชัน (O-GlcNAcylation) ในเซลล์ต้นกำเนิดมะเร็ง จากการศึกษาพบว่าเซลล์ต้นกำเนิดมะเร็งสมอง (glioma stem-like cell, GSC) และเซลล์ต้นกำเนิดมะเร็งท่อน้ำดี (cholangiocarcinoma stem-like cell, CCSC) แสดงคุณสมบัติการเป็นเซลล์ต้นกำเนิด โดยพิจารณาแสดงออกของตัวบ่งชี้ความเป็นเซลล์ต้นกำเนิด (stem cell marker) เช่น SOX2 และ OCT3/4 นอกจากนี้ เซลล์ต้นกำเนิดมะเร็งทั้งสองชนิดยังสามารถเกิดการพัฒนาเปลี่ยนแปลงไปเป็นเซลล์ได้หลากหลายชนิด (multi-lineage differentiation) เมื่อเปรียบเทียบอัตราการแบ่งตัวและการดื้อต่อยาเคมีบำบัด พบว่า แม้ว่า เซลล์ต้นกำเนิดมะเร็งจะมีอัตราการแบ่งตัวมากกว่าเซลล์เพาะเลี้ยงมะเร็ง แต่มีการอัตราดื้อต่อยาเคมี บำบัดสูงกว่าเซลล์เพาะเลี้ยงมะเร็ง นอกจากนี้ยังพบว่าในเซลล์ต้นกำเนิดมะเร็งจะมีกระบวนการโอกลุค แอกซิลเลชันที่สูงกว่าเซลล์ที่ถูกกระตุ้นด้วยซีรัมจากฟีตัลบัวโนวัว (fetal bovine serum) ในมีการพัฒนาเปลี่ยนแปลง (differentiation) และเมื่อทำการยับยั้งกระบวนการโอกลุคแอกซิลเลชันด้วยตัวยับยั้ง จำเพาะ พบว่า การแบ่งตัวของเซลล์ต้นกำเนิดมะเร็งสมองลดลงอย่างมีนัยสำคัญ ในทางกลับกันการกระตุ้นกระบวนการโอกลุคแอกซิลเลชัน ด้วย กลูตามีน (glutamine) และกลูโคซามีน (glucosamine) สามารถยับยั้งการพัฒนาเปลี่ยนแปลงของเซลล์ได้ โดยสรุปผลการศึกษาครั้งนี้ บ่งชี้ว่า กระบวนการโอกลุคแอกซิลเลชันมีความสำคัญต่อการรักษาคุณสมบัติการเป็นเซลล์ต้นกำเนิดมะเร็ง ซึ่งอาจจะใช้เป็นเป้าหมายในการรักษามะเร็งโดยมุ่งเป้าที่เซลล์ต้นกำเนิดมะเร็งได้

Keywords: cancer, cancer stem cell, glycosylation, glioma, cholangiocarcinoma

Abstract

Project Code: MRG80107

Project Title: Role of O-GlcNAcylation in cancer stem cells

Investigator: Assistant Professor Dr. Atit Silsirivanit

E-mail Address: atitsil@kku.ac.th

Project Period: May 1, 2018 – April 30, 2020

Cancer stem cell (CSC) was found to play important roles in tumor recurrence and therapeutic resistance. To understand the roles of CSC, several biological and molecular studies need to be conducted in the isolated CSCs. We have successfully isolated cancer stem-like cells from cancer cell lines of glioma and cholangiocarcinoma. This study is aimed to 1) characterize the newly isolated CSCs and 2) study the roles of O-GlcNAcylation in CSC. The glioma stem-like cell (GSC) and cholangiocarcinoma stem-like cell (CCSC) were found to exhibit stem cell characteristics, such as expression of stem cell markers (such as SOX2 and OC3/4), self-renewal and multi-lineage differentiation under the treatment with fetal bovine serum and specific differentiating media. The CSCs had slower proliferation rate, but exhibited higher chemoresistant ability, comparing with their parental cancer cell lines. In addition, O-GlcNAcylation, a reversible O-linked glycosylation with a single molecule of N-acetyl glucosamine (GlcNAc), was highly detected in CSCs and dramatically reduced after FCS-induced differentiation. Suppression of O-GlcNAcylation, by specific inhibitors, significantly reduced the sphere forming ability and proliferation of GSCs. The enhancement of O-GlcNAcylation, by treatment with glutamine and glucosamine, could significantly suppress FCS-induced differentiation of the GSCs. These evidences suggested the involvement of O-GlcNAcylation in stemness maintenance and differentiation of GSCs, which possibly used as a target for glioma treatment in the future.

Keywords: cancer, cancer stem cell, glycosylation, glioma, cholangiocarcinoma

Executive Summary

1. ความสำคัญและที่มาของปัญหา

เซลล์ต้นกำเนิดมะเร็ง (cancer stem cell, CSC) มีบทบาทสำคัญในการกลับเป็นข้ามและการดื้อต่อการรักษาของโรคมะเร็ง CSC มีคุณสมบัติหลายประการคล้ายเซลล์ต้นกำเนิดปกติ (normal stem cell) เช่น self-renewal และ multi-lineage differentiation และมีคุณสมบัติพิเศษที่เอื้อต่อการกลับเป็นข้ามและการดื้อต่อการรักษา เช่น metastasis chemoresistance radioresistance และ immune evasion เป็นต้น เพื่อให้เข้าใจบทบาทของ CSC ไม่เร็วมากขึ้น การศึกษาชีววิทยาของ CSC ทั้งในระดับพื้นฐาน และระดับโมเลกุลจึงจำเป็นอย่างยิ่ง ซึ่งผลที่ได้จากการศึกษาเชิงลึกนี้ จะนำไปสู่การพัฒนาวิธีการรักษาที่มุ่งเป้าไปยัง CSC ได้อย่างมีประสิทธิภาพ งานวิจัยก่อนหน้านี้ กลุ่มของผู้วิจัยได้ประสบความสำเร็จในการแยกเซลล์ที่มีคุณสมบัติคล้าย CSC (cancer stem-like cells) จากเซลล์เพาะเลี้ยงมะเร็ง (cancer cell lines) 2 ชนิด ได้แก่ มะเร็งสมองชนิดไกโลมา (glioma) และมะเร็งท่อน้ำดี (cholangiocarcinoma) ซึ่งเข้าใจว่า cancer stem-like cells จะเป็นแทนตัวแทนที่ดีของ CSC ได้ ดังนั้น ในการศึกษาครั้งนี้จึงมีวัตถุประสงค์เพื่อ 1) ศึกษาคุณสมบัติของเซลล์ต้นกำเนิดมะเร็งที่แยกได้ และ 2) ศึกษาบทบาทของกระบวนการโอไกลคูแนกชิลเลชัน (O-GlcNAcylation) ใน CSC โดยได้ทำการศึกษาคุณสมบัติของ glioma stem-like cell (GSC) และ cholangiocarcinoma stem-like cell (CCSC) ในด้านต่างๆ เช่น การแสดงออกของ stem cell markers และ differentiation markers การเกิด multi-lineage differentiation proliferation และ chemoresistance เทียบกับ differentiated cancer cells จากนั้นได้ศึกษาบทบาทของกระบวนการ O-GlcNAcylation ต่อกระบวนการ self-renewal และ multi-lineage differentiation ของ CSC โดยมุ่งหวังว่า จะทราบบทบาทและความสำคัญของกระบวนการ O-GlcNAcylation ใน CSC อันจะนำไปสู่การพัฒนาวิธีการรักษาที่มุ่งเป้าไปยัง CSC ได้อย่างมีประสิทธิภาพต่อไปในอนาคต

2. วัตถุประสงค์

- 2.1 เพื่อศึกษาคุณสมบัติของ cancer stem-like cells ใหม่ที่แยกได้จาก cancer cell lines
- 2.2 เพื่อศึกษาบทบาทของกระบวนการ O-GlcNAcylation ใน cancer stem-like cell เช่น บทบาทใน self-renewal, proliferation, และ differentiation เป็นต้น

3. ระเบียบวิธีวิจัย

การศึกษานี้ มีวัตถุประสงค์เพื่อศึกษาคุณสมบัติของ cancer stem-like cells และศึกษาแบบแผนและบทบาทของกระบวนการ O-GlcNAcylation ใน cancer stem-like cell ดังนั้น จึงได้แบ่งการศึกษาออกเป็น 2 ระยะ ดังนี้

ระยะ 1: การศึกษาคุณสมบัติของ cancer stem like cells

จะทำการศึกษาคุณสมบัติของ cancer stem-like cells (U87-GSC, U373-GSC, KKU-055-SC) ที่แยกได้ดังนี้

- ศึกษาการแสดงออกของ stem cell markers and differentiation markers เช่น CD133 SOX2 Oct3/4 Nestin CD44 และ GFAP เป็นต้น ใน CSCs เทียบกับ parental cancer cell lines หรือ FCS-induced differentiated cells โดยวิธี Western blotting หรือ Immunocyto staining

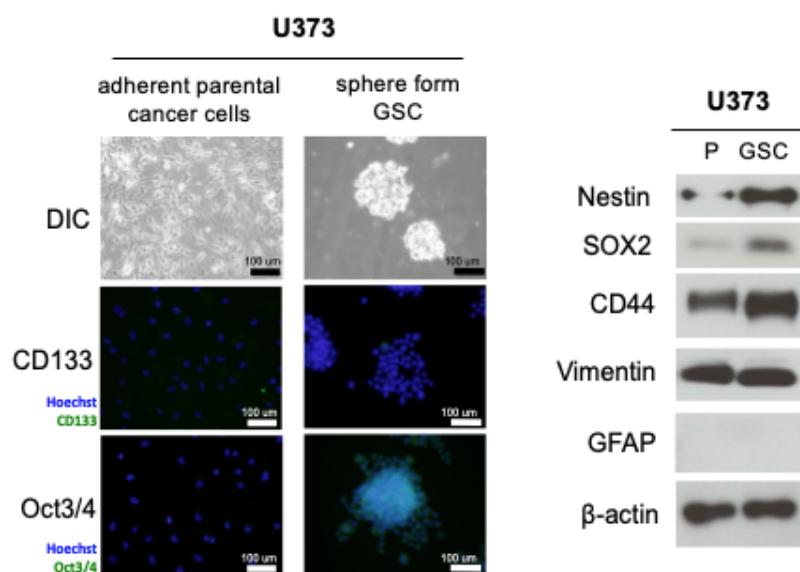
- ศึกษาคุณสมบัติต่างๆ ของ CSCs ในกระบวนการ self-renewal differentiation และ chemoresistance เป็นต้น โดยได้ทำการศึกษาในหลอดทดลอง (*in vitro* functional assays) เปรียบเทียบระหว่าง CSCs กับ parental cancer cell lines หรือ FCS-induced differentiated cells

- ศึกษาแบบแผนกระบวนการ O-GlcNAcylation (OGT, OGA, GlcNAcylated proteins) ใน CSC เทียบกับ parental cancer cell lines หรือ FCS-induced differentiated cells ด้วยวิธี real-time PCR หรือ Western blotting

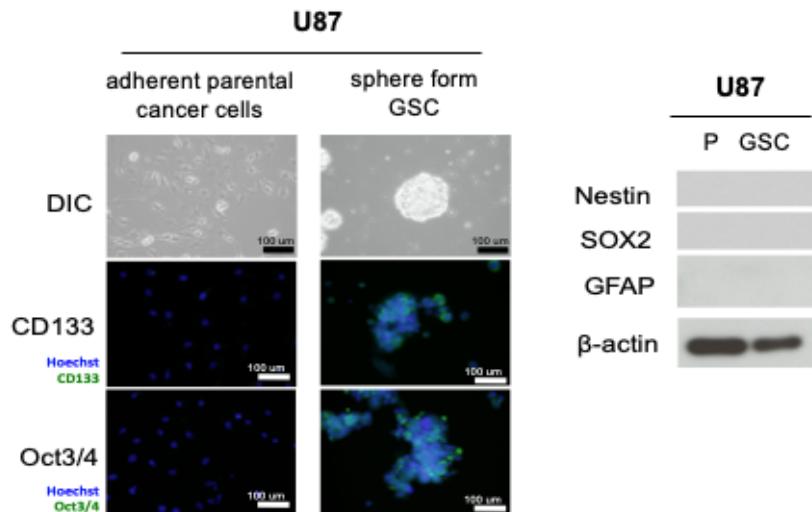
ระยะ 2: ศึกษาบทบาทของกระบวนการ O-GlcNAcylation ใน cancer stem-like cells

เป็นการศึกษาบทบาทของกระบวนการ O-GlcNAcylation ใน cancer stem-like cells โดยได้เลือกศึกษาใน GSC ก่อนเนื่องจากมี GSC หลายตัวให้ศึกษา ได้แก่ GSC-03A, GSC-03U, GSC-07U ที่แยกได้จากเนื้อเยื่อผู้ป่วยโดยการศึกษา ก่อนหน้านี้ โดย Nambu *et al* (2013) และ U87-GSC และ U373-GSC ที่แยกได้ใหม่โดยผู้วิจัย โดยได้ทำการศึกษาในหลอดทดลอง (*in vitro* functional assays) ด้วยการยับยั้งกระบวนการ O-GlcNAcylation หรือกระตุ้นกระบวนการ O-GlcNAcylation แล้วศึกษาคุณสมบัติต่างๆ ของ GSC เช่น proliferation และ differentiation เป็นต้น

4. แผนการดำเนินงานวิจัยตลอดโครงการในแต่ละช่วง 6 เดือน

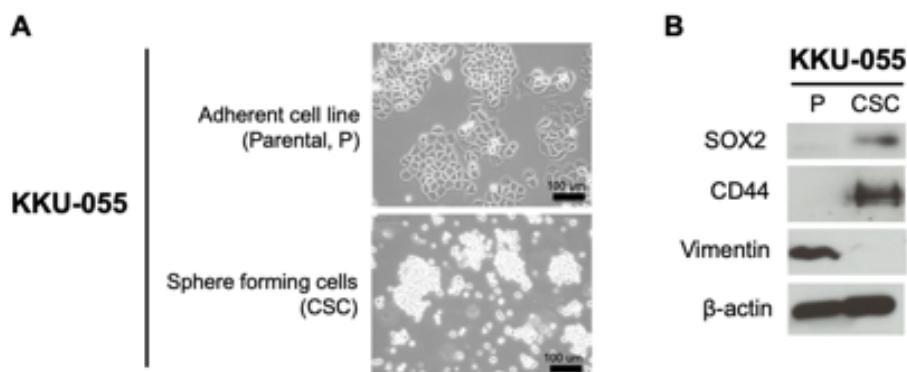

Activities	Month				Expected outcome
	1-6	7-12	13-18	19-24	
4.1 ศึกษาการแสดงออกของ stem cell markers and differentiation markers	/				New CSCs that useful for study of CSC biology
4.2 ศึกษาคุณสมบัติต่างๆ ของ CSCs เช่น stemness-maintenance, differentiation และ chemoresistance เป็นต้น	/	/			
4.3 ศึกษาแบบแผน O-GlcNAcylation ใน CSC เทียบกับ parental cancer cell lines		/			
4.4 ศึกษาบทบาทของ O-GlcNAcylation ใน GSCs โดยการยับยั้ง หรือ กระตุ้น O-GlcNAcylation แล้วศึกษาคุณสมบัติต่างๆ ของ GSC เช่น proliferation และ differentiation เป็นต้น			/	/	Roles of O-GlcNAcylation in CSCs
4.5 Final report and manuscript preparation				/	Final report and manuscript

ผลการวิจัย


การศึกษาเกี่ยวกับหน้าที่ของผู้วิจัยได้พัฒนา cancer stem-like cells (CSC) จากเซลล์เพาะเลี้ยงมะเร็งสมอง (glioma cell lines) 2 ชนิด คือ U373 และ U87 โดยให้ชื่อว่า U373-glioma stem-like cell (U373-GSC) และ U87-glioma stem-like cell (U87-GSC) ตามลำดับและ CSC จากเซลล์เพาะเลี้ยงมะเร็งท่อน้ำดี (CCA cell line) ได้แก่ KKU-055 โดยให้ชื่อว่า KKU-055-cholangiocarcinoma stem-like cell (KKU-055-CSC) โดยในการวิจัยครั้งนี้จะทำการศึกษาคุณสมบัติของเซลล์ที่แยกได้ในการแสดงออกของ stem cell markers และ differentiation markers การเจริญ (proliferation) การดื้อต่อยาเคมีบำบัด (chemoresistance) การพัฒนาเปลี่ยนแปลงเซลล์ให้เป็นเซลล์ได้หลากหลายชนิด (multi-lineage differentiation) พร้อมกันนี้ได้ศึกษาการเปลี่ยนระดับของ O-GlcNAcylation พร้อมทั้งบทบาทของกระบวนการ O-GlcNAcylation ใน GSCs โดยได้เริ่มทำการศึกษาดังนี้

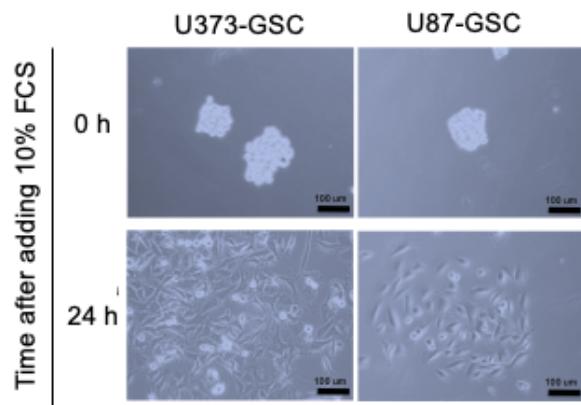
การแสดงออกของ stem cells markers and differentiation markers ใน CSCs

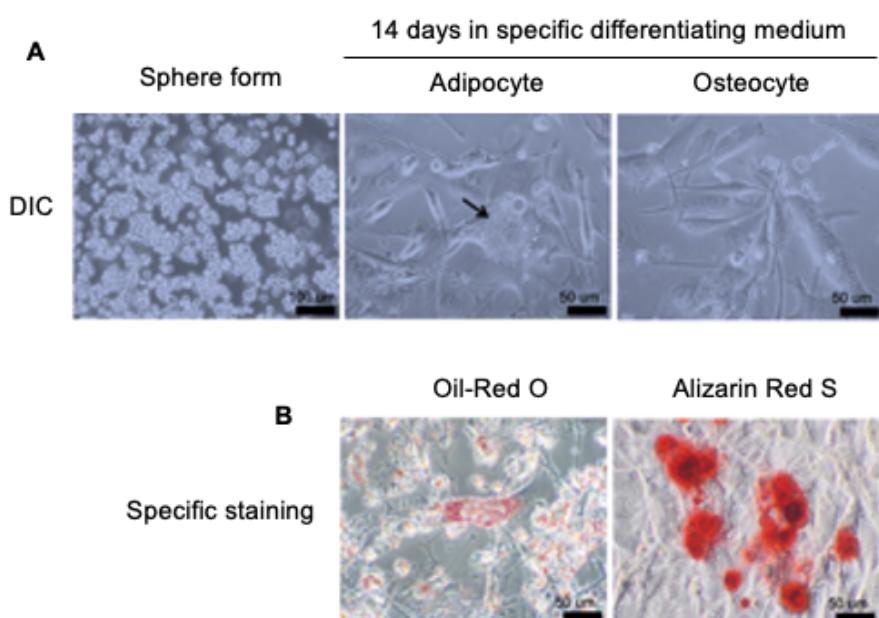
ศึกษาการแสดงออกของ markers ของ stem cells (CD133, Oct3/4, SOX2 และ Nestin) และ differentiation ใน glioma stem-like cells U373-GSC และ U87-GSC พบว่าเซลล์แต่ละชนิดมีการแสดงออกของ marker ที่แตกต่างกัน โดย U373-GSC มีการแสดงออกของ Oct3/4, SOX2 และ Nestin ส่วน U87-GSC มีการแสดงออกของ CD133 และ Oct3/4 ดังแสดงในรูปที่ 1 และ รูปที่ 2 ซึ่งการแสดงออกของ stem markers ที่แตกต่างกันของ GSC ทั้ง 2 ชนิดอาจเนื่องมาจากระยะ (stage) ของ stem cells เป็นคนละระยะกัน มีความเข้าใกล้ pluripotent stem cell ต่างกันทำให้มีการแสดงออกของ stem markers ต่างกัน



รูปที่ 1 การแสดงออก stem cell markers ของ U373-GSC เทียบกับ adherent parental U373 glioma cell line, DIC = differential interface contrast

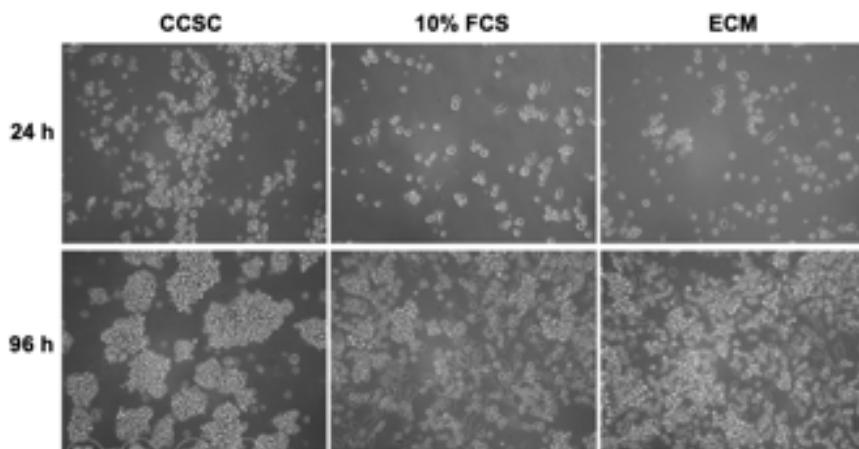
รูปที่ 2 การแสดงออก stem cell markers ของ U87-GSC เทียบกับ adherent parental U87 glioma cell line, DIC = differential interface contrast


การศึกษาการแสดงออกของ stem cell marker CD44 และ SOX2 ใน CSC ของ KKU-055-cholangiocarcinoma stem like cells (KKU-055-CSC) พบว่า เซลล์ KKU-055-CSC มีการแสดงออกของ stem cell marker CD44 และ SOX2 สูงกว่า adherent parent KKU-055 CCA cell line ดังแสดงในรูปที่ 3

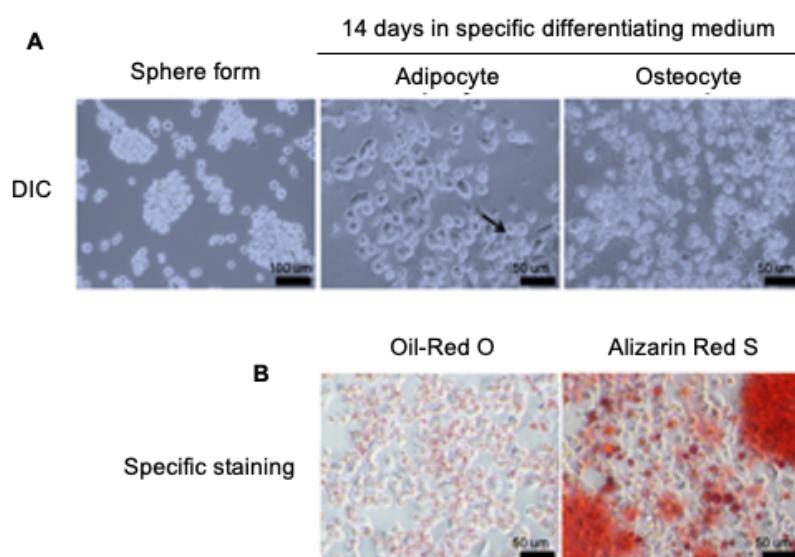

รูปที่ 3 CCSCs ที่พัฒนาจาก KKU-055 CCA cell line (A) รูปร่าง KKU-055 parental CCA cell line และ sphere forming KKU-055-CCSC และ (B) การแสดงออกของ stem cell markers ในเซลล์ทั้งสองชนิด

ความสามารถในการพัฒนาการเปลี่ยนแปลงเป็นเซลล์หลักหลายชนิด (multi-lineage differentiation) ของ CSCs

ได้ทดสอบความสามารถของ CSCs (U373GSC และ U87GSC) ในการ differentiation (DIF) โดยการกระตุ้นด้วย 10% fetal bovine serum พบว่าเซลล์สามารถ differentiate ได้ภายใน 24 ชั่วโมง ดังแสดงในรูปที่ 4 โดยสามารถ differentiate เป็น adipocyte และ osteocyte ได้โดยการกระตุ้นด้วย specific adipocyte differentiating medium และ osteocyte differentiating medium ดังแสดงในรูปที่ 5

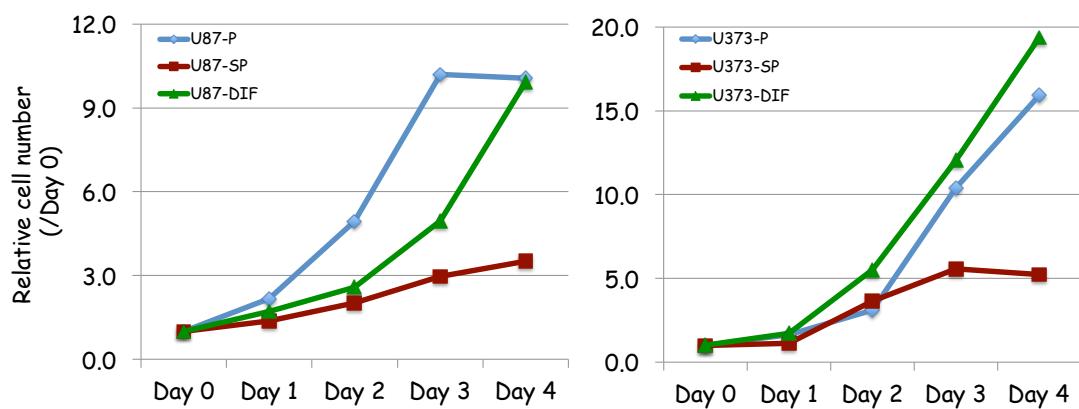


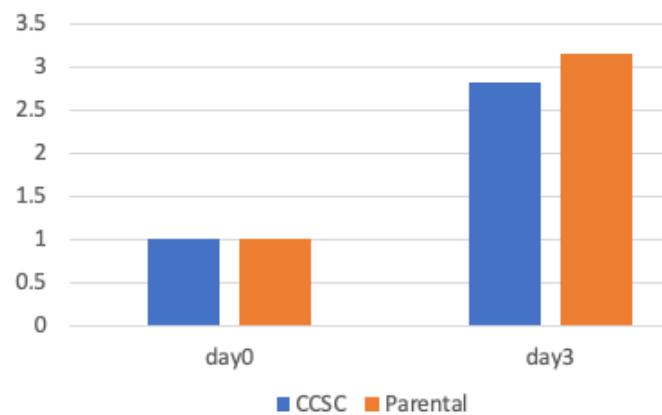
รูปที่ 4 การ differentiation ของ U373-GSC และ U87-GSC เมื่อกระตุ้นด้วย 10% fetal bovine serum เป็นเวลา 24 ชม.


รูปที่ 5 Multi-lineage differentiation ของ U373-GSC (A) เมื่อกระตุ้นด้วย adipocyte และ osteocyte differentiating media เป็นเวลา 14 วัน (DIC) และ B) ย้อมด้วยสี Oil- Red O (ย้อม lipid ใน adipocyte) และ Alizarin Red S(ย้อม calcium ใน osteocyte)

การทดสอบความสามารถในการเกิด multi-lineage differentiation ของ KKU-055-CSC โดยการกระตุ้นการ differentiate ด้วย fetal bovine serum (FBS) และ extracellular matrix (ECM, MatriTMgel) พบว่าเซลล์ KKU-CCSC สามารถ differentiate โดยมีการแผ่ขยาย (spread) และยึดเกาะ (adhere) บน culture plate ได้ในเวลา 24-96 ชม. ดังแสดงใน **รูปที่ 6**

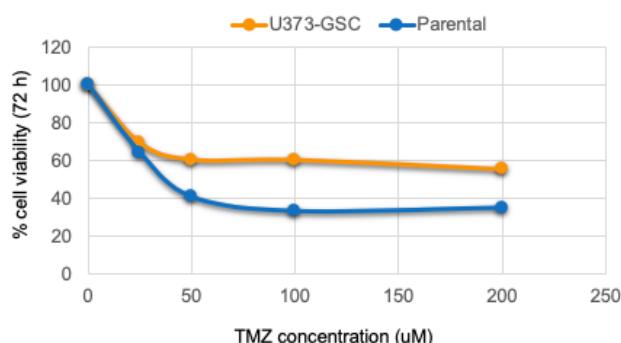
รูปที่ 6 การเกิด differentiation ของ KKU-055-CSC จากการกระตุ้นด้วย 10% FBS และ extracellular matrix (ECM) ที่เวลา 24 และ 96 ชม. (h) หลังการกระตุ้น

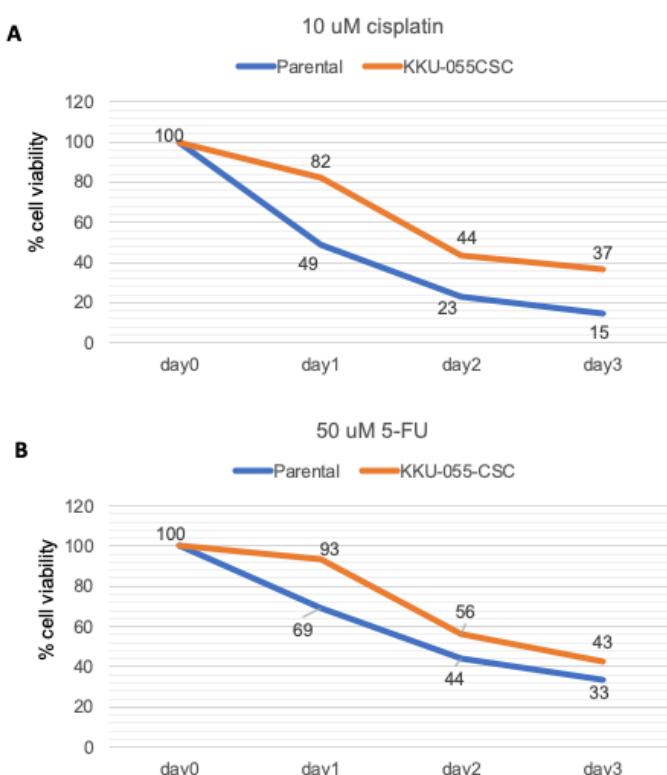

การทดสอบความสามารถในการ differentiate เป็น adipocyte และ osteocyte โดยใช้ specific differentiation inducing media พบว่าเซลล์ KKU-055-CSC สามารถ differentiate เป็น adipocyte และ osteocyte ได้ โดยใช้ระยะเวลาในการกระตุ้น 14 วัน จากนั้นยืนยันผลการ differentiation ด้วยการย้อมสี พิเศษ ได้แก่ Oil Red O เพื่อยืนยันการ differentiate เป็น adipocyte และย้อมด้วยสี Alizarin Red S เพื่อยืนยันการ differentiate เป็น osteocyte ดังแสดงใน **รูปที่ 7**


รูปที่ 7 การเกิด Multilineage differentiation ของ KKU-055-CSC เป็น adipocyte และ osteocyte จากการกระตุ้นด้วย adipocyte และ osteocyte differentiation inducing media

อัตราการเจริญ (proliferation) ของ CSCs เทียบกับ FBS-induced differentiating cells และ parental cancer cells

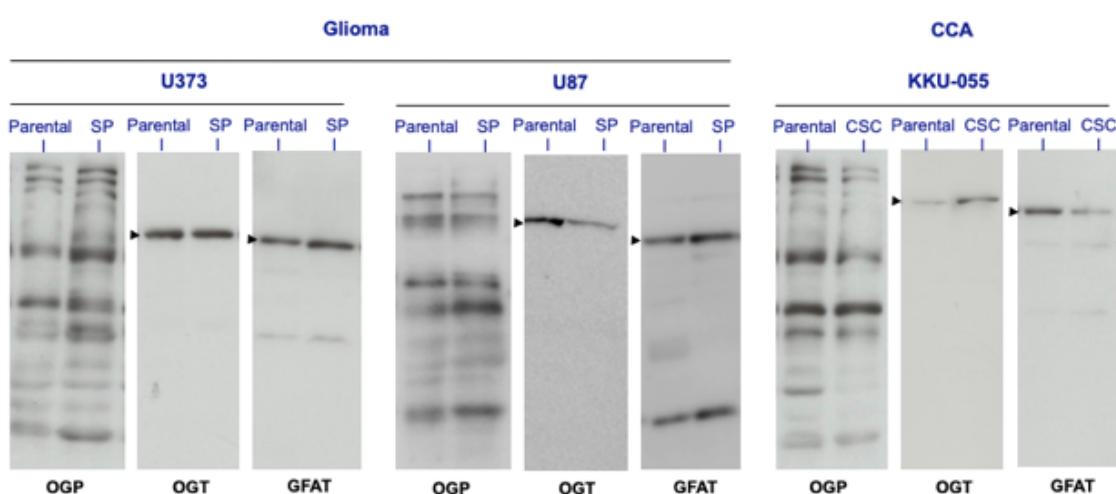
การทดสอบความสามารถในการเจริญของเซลล์โดยวิธี WST proliferation assay และ Trypan-Blue cell counting assay เปรียบเทียบอัตราการเจริญของ CSCs (U87-GSC, U373-GSC, และ KKU-055-CCSC) กับ FBS-induced differentiating cells และ parental cancer cells พบว่า CSCs มีอัตราการเจริญมากกว่า FBS-induced differentiating cells และ parental cancer cells ตรงตามหลักการของ stem cell ที่จะมีอัตราการเจริญ (proliferation rate) มากกว่า differentiated cells ดังแสดงในรูปที่ 8 และ รูปที่ 9


รูปที่ 8 อัตราการเจริญ (proliferation rate) ของ U373-GSC and U87-GSC เทียบกับ 10% FBS-induced differentiating cells (DIF) และ parental cancer cells (P) วัดด้วย WST proliferation assay (ซ้าย U87, ขวา U373)

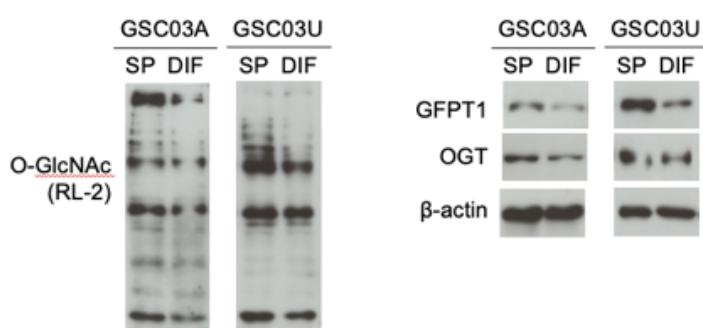

รูปที่ 9 อัตราการเจริญ (proliferation rate) ของ KKU-055-CSC และ adherent parental KKU-055 CCA cell line วัดด้วยวิธี Trypan-Blue cell counting assay ที่ 72 ชั่วโมง (3 วัน)

ความไวต่อยาเคมีบำบัด (chemosensitivity) ของ CSCs เทียบกับ parental cancer cells

การทดสอบความความไวต่อยาเคมีบำบัด (chemosensitivity) ของ CSCs เทียบกับ parental cancer cells พบว่า U373-GSC มีความไวต่อยา temozolomide น้อยกว่า U373 parental glioma cells ดังแสดงในรูปที่ 10 และ KKU055-CCSC มีความไวต่อยา 5-FU และ cisplatin น้อยกว่า KKU055 parental cancer cells รูปที่ 11 จากข้อมูลนี้บ่งชี้ว่า CSCs ที่แยกได้มีอัตราการดื้อต่อยาเคมีบำบัดสูงกว่า parental cancer cells

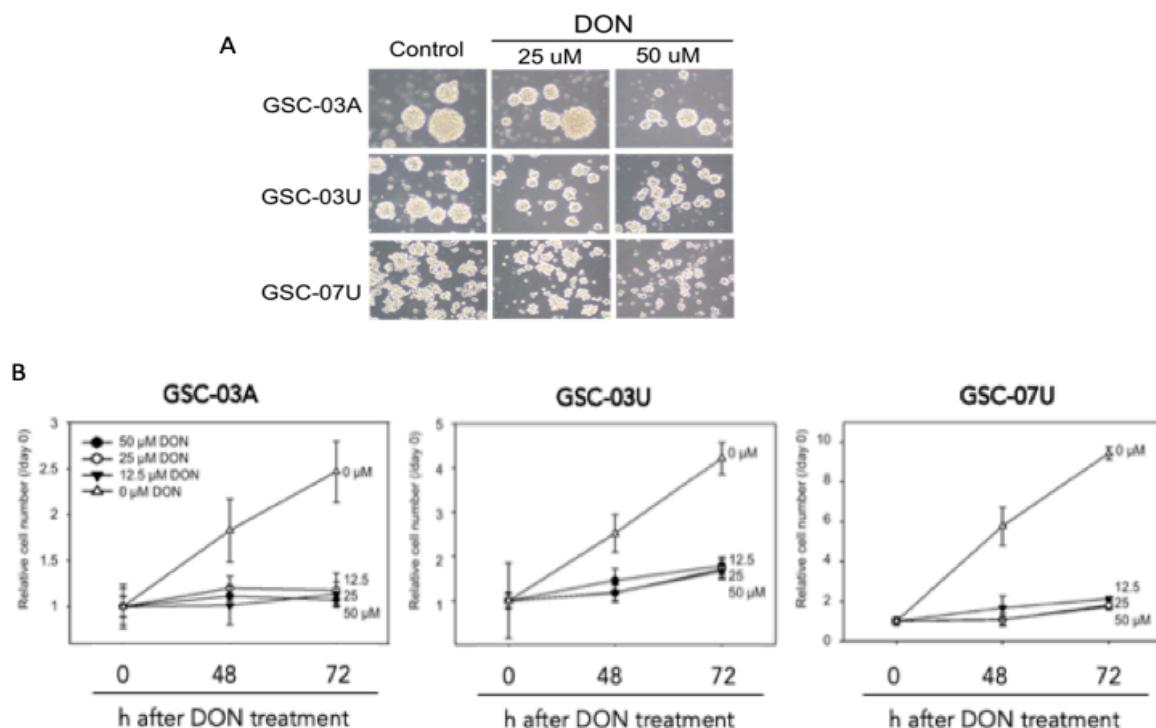

รูปที่ 10 ความไวต่อยา Temozolomide ของ U373-GSC เทียบกับ U373 parental cancer cells วัดด้วยวิธี Trypan-Blue cell counting assay หลังจาก treat ยา Temozolomide 10 uM และยา 5-FU 50 uM เป็นเวลา 72 ชั่วโมง (3 วัน)

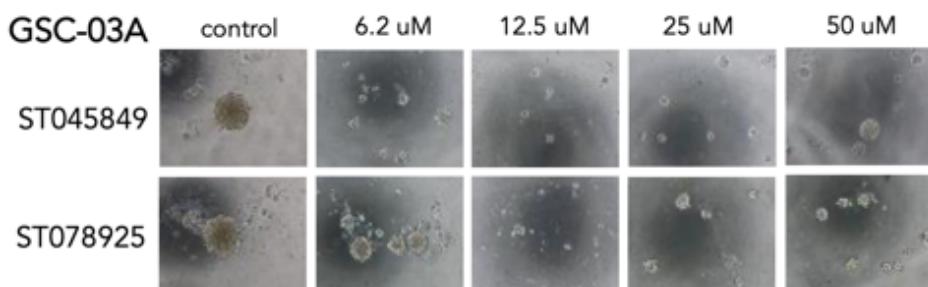
รูปที่ 11 ความไวต่อยา cisplatin และ 5-FU ของ KKU055-CSC เทียบกับ KKU055 parental cancer cells วัดด้วยวิธี Trypan-Blue cell counting assay หลังจาก treat ยา (A) cisplatin 10 uM และ (B) ยา 5-FU 50 uM เป็นเวลา 72 ชั่วโมง (3 วัน)


O-GlcNAcylation status ใน CSCs เทียบกับ FBS-induced differentiating cells และ parental cancer cells

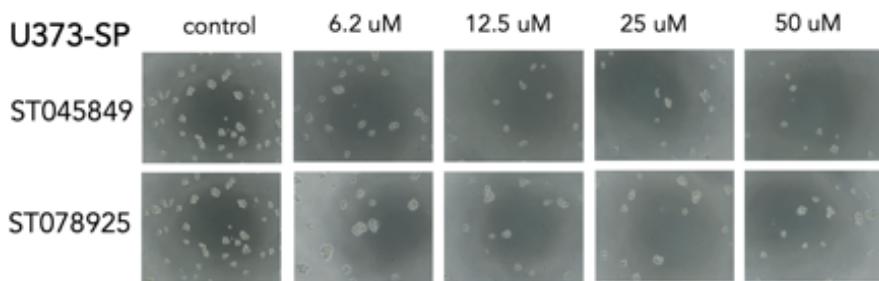
ได้ศึกษากระบวนการ O-GlcNAcylation ใน CSCs เทียบกับ parental cancer cells โดยทำการศึกษาการแสดงออกของ O-GlcNAcylated proteins (OGP) เอนไซม์ O-GlcNAc transferase (OGT) ที่ทำหน้าที่เติมหมู่ GlcNAc ให้กับโปรตีน และเอนไซม์ glutamine-fructose amidotransferase (GFAT) ซึ่งเป็นเอนไซม์สำคัญในกระบวนการสังเคราะห์ UDP-GlcNAc ด้วยวิธี Western blot analysis พบว่า ระดับ O-GlcNAcylation ใน CSCs มีสูงกว่า parental cell โดยจะพบการสูงขึ้นของ OGT หรือ GFAT ร่วมด้วย ดังแสดงในรูปที่ 12

รูปที่ 12 O-GlcNAcylation status ของ CSCs เทียบกับ parental cancer cells ด้วยวิธี Western blot analysis ของ OGP, OGT และ GFAT ใน CSCs (U373-SP, U87-SP และ KKU-055-CSC) เทียบกับ adherent parental cancer cell lines (► = ตำแหน่งของเอนไซม์ OGT หรือ GFAT)

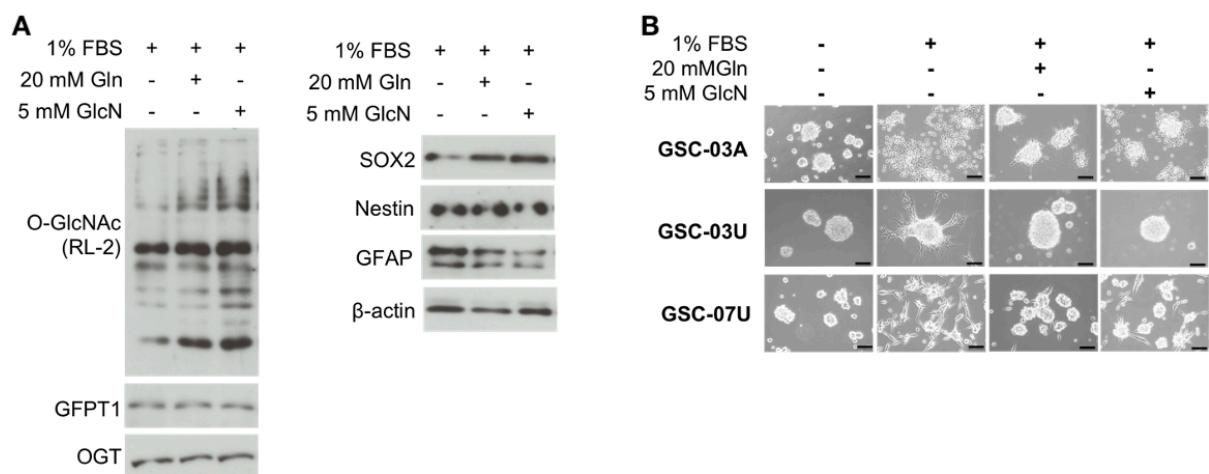

นอกจากนี้จากการศึกษาการแสดงออกของ OGP, OGT, และ GFAT ใน GSC ที่แยกได้จากเนื้อเยื่อผู้ป่วยได้ก่อนหน้านี้ ได้แก่ GSC-03A และ GSC-03U พบว่า มีการระดับของ O-GlcNAcylation ใน GSCs สูงกว่า differentiated forms (DIF) อย่างชัดเจน ดังแสดงในรูปที่ 13


รูปที่ 13 O-GlcNAcylation status ของ GSC-03A และ GSC-03U ด้วยวิธี Western blot analysis ของ OGP, OGT และ GFAT ใน GSCs (SP) เทียบกับ FBS-induced differentiations (DIF)

บทบาทของการบวนการ O-GlcNAcylation ใน GSCs


การศึกษาผลการบวนการ O-GlcNAcylation โดยการบันยั่งเงินไชฟ์ GFAT ด้วย 6-diazo-5-oxo-L-norleucine (DON, GFAT inhibitor) และ OGT ด้วย ST045849 และ ST078925 (OGT inhibitor) ต่อการเจริญ (proliferation) และ sphere forming ability ของ GSCs พบว่า proliferation และ sphere-forming ability ของ GSC-03A และ GSC-03U ลดลงอย่างเห็นได้ชัด โดยไม่ส่งผลให้เกิดการ differentiation ดังแสดงในรูปที่ 14-16

รูปที่ 14 ผลของ DON (GFAT inhibitor) ต่อ GSCs (A) Morphology ของ cells และ (B) Proliferation วัดด้วยวิธี WST proliferation assay โดย treat GSC-03A, GSC-03U และ GSC-07U ด้วย DON ที่ความเข้มข้น 12.5, 25, และ 50 uM เป็นเวลา 0, 48, และ 72 ชั่วโมง (h)



รูปที่ 15 ผลของ OGT inhibitors ต่อ sphere forming ability ของ GSC-03A โดยใช้ ST045849 และ ST078925 ที่ความเข้มข้น 0 (control), 6.2, 12.5, 25, และ 50 uM เป็นเวลา 72 ชั่วโมง.

รูปที่ 16 ผลของ OGT inhibitors ต่อ sphere forming ability ของ U373-SP โดยใช้ ST045849 และ ST078925 ที่ความเข้มข้น 0 (control), 6.2, 12.5, 25, และ 50 uM เป็นเวลา 72 ชม.

การศึกษาผลการกระตุ้นกระบวนการ O-GlcNAcylation ด้วยการเติม glutamine (Gln) และ glucosamine (GlcN) พบว่า O-GlcNAcylation ไม่ลดลงเมื่อเติม fetal bovine serum (FBS) พร้อมกันนี้ ยังสามารถยับยั้งกระบวนการ differentiation ของ GSCs ได้ (รูปที่ 17) ผลการศึกษานี้บ่งชี้ว่า กระบวนการ O-GlcNAcylation มีความสำคัญต่อกระบวนการ self-renewal ของ GSCs โดยทั่วไปเมื่อ เชลล์จะเกิดการ differentiation ปริมาณ O-GlcNAcylation จะลดลง แต่หากระหว่างการ differentiation ของ GSC มีการยับยั้งการลดลงของ O-GlcNAcylation ด้วยการเติม glutamine (Gln) และ glucosamine (GlcN) ก็จะส่งผลให้ GSC ไม่สามารถ differentiation ได้

รูปที่ 14 ผลของ glutamine (Gln) และ glucosamine (GlcN) ต่อกระบวนการ O-GlcNAcylation และ differentiation ของ GSCs (A) Western blotting สำหรับ O-GlcNAcylation และ markers สำหรับ stem cell และ differentiation และ (B) Morphology ของ cells หลังจากการเติม 20 mM Gln หรือ 5mM GlcN ระหว่างการกระตุ้นการ differentiation ด้วย fetal bovine serum (FBS)

บทสรุปและวิจารณ์

Cancer stem cell (CSC) มีคุณสมบัติพิเศษที่เอื้อต่อการกลับเป็นช้าและดื้อต่อการรักษาของโรคมะเร็ง เช่น metastasis chemoresistance radioresistance และ immune evasion เป็นต้น การเข้าใจบทบาทของ CSC ในมะเร็ง จะนำไปสู่การพัฒนาวิธีการรักษาโรคมะเร็งที่มีประสิทธิภาพ การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาคุณสมบัติของ cancer stem-like cells ที่แยกจาก cancer cell lines ของ glioma (U373-GSC และ U87-GSC) และ cholangiocarcinoma (KKU-055CSC) และเพื่อศึกษาการเปลี่ยนแปลงและบทบาทของกระบวนการ O-GlcNAcylation ใน CSCs

การศึกษาคุณสมบัติของ glioma stem-like cell (GSC) และ cholangiocarcinoma stem-like cell (CCSC) ในหลอดทดลอง พบว่า U373-GSC U87-GSC และ KKU-055CSC ที่แยกได้จาก glioma cell lines (U373 และ U87) และ CCA cell line (KKU055) แสดงคุณสมบัติของการเป็นเซลล์ต้นกำเนิด ได้แก่ มีการแสดงออกของ stem cell markers เช่น SOX2, OCT3/4 ที่สูง และสามารถเกิดการ multi-lineage differentiation มีอัตราการ proliferation ที่ช้า adherent parental cancer cells และ differentiated cells แต่มี chemoresistance ที่สูงกว่า ผลการศึกษาเหล่านี้บ่งชี้ว่า GSCs และ CCSC ที่แยกได้มีคุณสมบัติการเป็น CSC และสามารถใช้เป็นตัวแทน ในการศึกษาชีววิทยาของ CSC ได้ ซึ่งเซลล์เหล่านี้จะเป็นเครื่องมือที่สำคัญให้นักวิจัยที่สนใจศึกษาเรื่องมะเร็ง สามารถทำการวิเคราะห์และศึกษากลไกต่างๆ ของ CSC ได้ อย่างไร ข้อมูลในปัจจุบันที่พบว่า CSCs ของมะเร็งแต่ละชนิดมีความหลากหลาย และมีกลไกที่สัมพันธ์กับการดื้อยาและการกลับเป็นช้าแตกต่างกัน การมีเซลล์ GSCs และ CCSC ที่หลากหลาย จะทำให้การศึกษาเรื่อง CSC ของมะเร็งทั้งสองชนิดมีความแม่นยำ และมีโอกาสจะประสบความสำเร็จมากขึ้น แต่เนื่องจากในปัจจุบันจำนวน GSCs และ CCSC ที่แยกได้ยังมีน้อย ซึ่งอาจจะไม่ครอบคลุมทั้งหมด ดังนั้นการพัฒนาแยก GSCs และ CCSC เพิ่มเติมจากเนื้อเยื่อผู้ป่วยหรือ cancer cell lines จะทำให้ได้ตัวแทน CSC ที่มีความหลากหลาย ให้ผลการศึกษาที่แม่นยำมากขึ้น

การศึกษาบทบาทของ O-GlcNAcylation ใน GSCs พบว่าระดับของ O-GlcNAcylation ใน GSCs จะสูงลดลงระหว่างการ differentiation การรับกวนสมดุลของกระบวนการ O-GlcNAcylation จะส่งผลต่อ stemness maintenance และ differentiation ของ GSCs ผลจากการศึกษาระงับนี้บ่งชี้ว่ากระบวนการ O-GlcNAcylation มีความสำคัญต่อ GSC ซึ่งอาจจะใช้เป็นเป้าหมายในการรักษา glioma โดยมุ่งเป้าที่ GSCs ได้ อย่างไรก็ตามกลไกการควบคุม stemness maintenance และ differentiation ของ GSCs โดยกระบวนการ O-GlcNAcylation ยังไม่เป็นที่เข้าใจดีนัก ดังนั้น การศึกษาเชิงลึกเพื่อให้เข้าใจกลไกต่างกัน ยังเป็นเรื่องที่ท้าทายและต้องการการพิสูจน์ต่อไป การค้น O-GlcNacylated proteins และ Molecular pathway ที่สัมพันธ์กับกระบวนการ O-GlcNAcylation ใน CSC เป็นอีกหนึ่งแนวทางการศึกษาที่นำไปสู่การพัฒนาวิธีการรักษา ที่จำเพาะต่อ CSC โดยไม่กระทบต่อเซลล์ปกติอื่นๆ เป็นผลให้การรักษามีประสิทธิภาพมากขึ้น ยังผลให้ผู้ป่วยมีคุณภาพชีวิตที่ดี อัตราการรอดชีวสูงยิ่งขึ้น

เอกสารอ้างอิง

Butkinaree, C., Park, K., and Hart, G. W. (2010). O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. *Biochim Biophys Acta* 1800(2), 96-106.

Caldwell, S. A., Jackson, S. R., Shahriari, K. S., Lynch, T. P., Sethi, G., Walker, S., Vosseller, K., and Reginato, M. J. (2010). Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. *Oncogene* 29(19), 2831-42.

Chen, Y. X., Du, J. T., Zhou, L. X., Liu, X. H., Zhao, Y. F., Nakanishi, H., and Li, Y. M. (2006). Alternative O-GlcNAcylation/O-phosphorylation of Ser16 induce different conformational disturbances to the N terminus of murine estrogen receptor beta. *Chem Biol* 13(9), 937-44.

Cheng, X., Cole, R. N., Zaia, J., and Hart, G. W. (2000). Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. *Biochemistry* 39(38), 11609-20.

Cheng, X., and Hart, G. W. (2001). Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. *J Biol Chem* 276(13), 10570-5.

Chou, T. Y., Dang, C. V., and Hart, G. W. (1995). Glycosylation of the c-Myc transactivation domain. *Proc Natl Acad Sci U S A* 92(10), 4417-21.

Goldberg, H. J., Scholey, J., and Fantus, I. G. (2000). Glucosamine activates the plasminogen activator inhibitor 1 gene promoter through Sp1 DNA binding sites in glomerular mesangial cells. *Diabetes* 49(5), 863-71.

Hart, G. W., Slawson, C., Ramirez-Correa, G., and Lagerlof, O. (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. *Annu Rev Biochem* 80, 825-58.

Hu, P., Shimoji, S., and Hart, G. W. (2010). Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. *FEBS Lett* 584(12), 2526-38.

Ji, S., Kang, J. G., Park, S. Y., Lee, J., Oh, Y. J., and Cho, J. W. (2010). O-GlcNAcylation of tubulin inhibits its polymerization. *Amino Acids* 40(3), 809-18.

Jiang, W., Peng, J., Zhang, Y., Cho, W. C., and Jin, K. (2012). The implications of cancer stem cells for cancer therapy. *Int J Mol Sci* 13(12), 16636-57.

Krzeslak, A., Forma, E., Bernaciak, M., Romanowicz, H., and Brys, M. (2011). Gene expression of O-GlcNAc cycling enzymes in human breast cancers. *Clin Exp Med*.

Krzeslak, A., Pomorski, L., and Lipinska, A. (2010). Elevation of nucleocytoplasmic beta-N-acetylglucosaminidase (O-GlcNAcase) activity in thyroid cancers. *Int J Mol Med* 25(4), 643-8.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227(5259), 680-5.

Lefebvre, T., Pinte, S., Guerardel, C., Deltour, S., Martin-Soudant, N., Slomianny, M. C., Michalski, J. C., and Leprince, D. (2004). The tumor suppressor HIC1 (hypermethylated in cancer 1) is O-GlcNAc glycosylated. *Eur J Biochem* 271(19), 3843-54.

Mi, W., Gu, Y., Han, C., Liu, H., Fan, Q., Zhang, X., Cong, Q., and Yu, W. (2011). O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. *Biochim Biophys Acta* 1812(4), 514-9.

Niibori-Nambu, A., Midorikawa, U., Mizuguchi, S., Hide, T., Nagai, M., Komohara, Y., Nagayama, M., Hirayama, M., Kobayashi, D., Tsubota, N., Takezaki, T., Makino, K., Nakamura, H., Takeya, M., Kuratsu, J., and Araki, N. (2013). Glioma initiating cells form a differentiation niche via the induction of extracellular matrices and integrin alphaV. *PLoS One* 8(5), e59558.

Oishi, N., and Wang, X. W. (2011). Novel therapeutic strategies for targeting liver cancer stem cells. *Int J Biol Sci* 7(5), 517-35.

Sayat, R., Leber, B., Grubac, V., Wiltshire, L., and Persad, S. (2008). O-GlcNAc-glycosylation of beta-catenin regulates its nuclear localization and transcriptional activity. *Exp Cell Res* 314(15), 2774-87.

Wang, Y. J., Zhang, Y. K., Kathawala, R. J., and Chen, Z. S. (2014). Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance. *Cancers (Basel)* 6(4), 1925-52.

Wells, L., Slawson, C., and Hart, G. W. (2010). The E2F-1 associated retinoblastoma-susceptibility gene product is modified by O-GlcNAc. *Amino Acids* 40(3), 877-83.

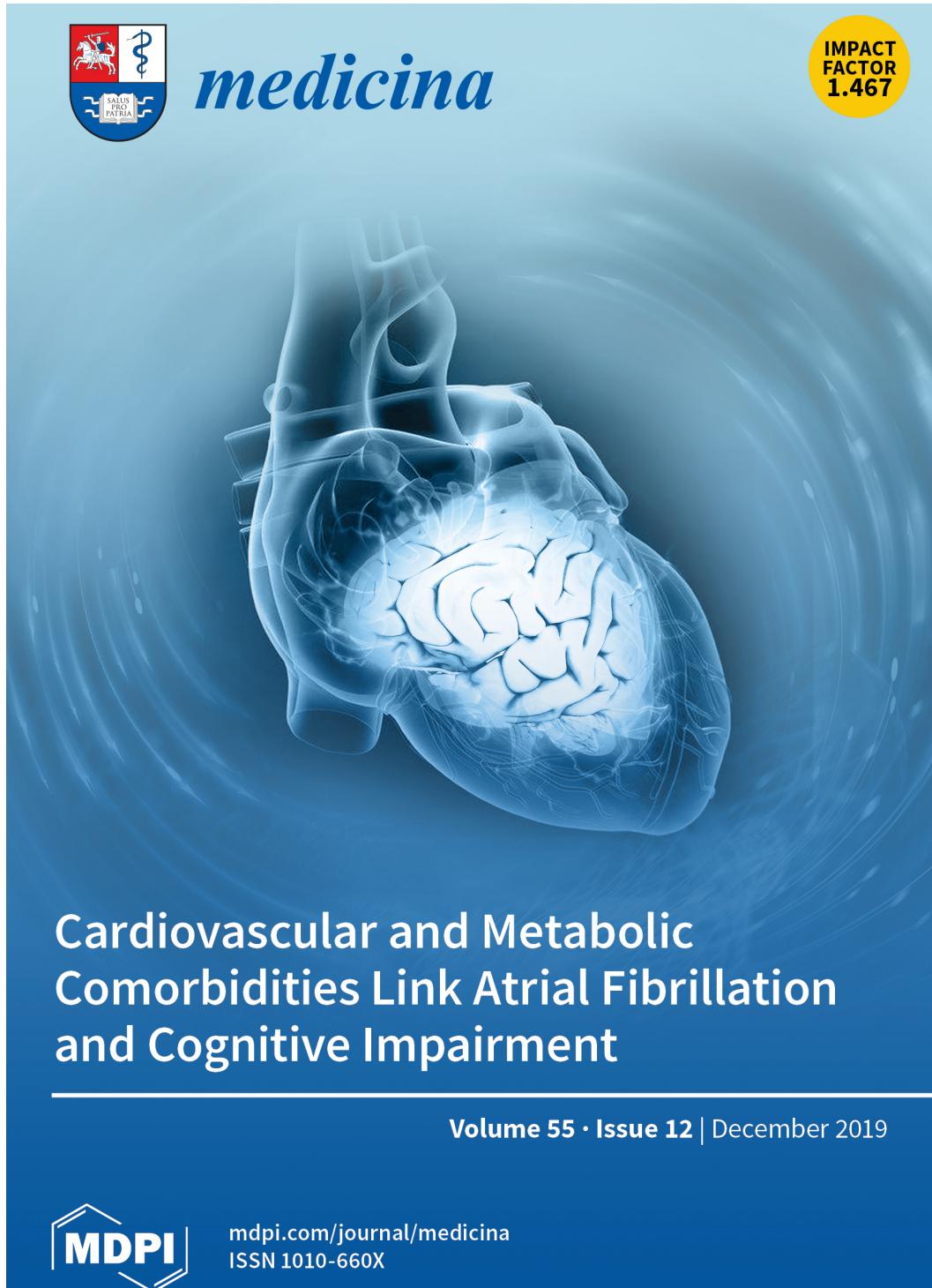
Zachara, N. E., O'Donnell, N., Cheung, W. D., Mercer, J. J., Marth, J. D., and Hart, G. W. (2004). Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. *J Biol Chem* 279(29), 30133-42.

Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., and Kudlow, J. E. (2003). O-GlcNAc modification is an endogenous inhibitor of the proteasome. *Cell* 115(6), 715-25.

Zhu, Q., Zhou, L., Yang, Z., Lai, M., Xie, H., Wu, L., Xing, C., Zhang, F., and Zheng, S. (2011). O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. *Med Oncol*.

Output ที่ได้จากการวิจัย

1. ผลงานตีพิมพ์ในวารสารนานาชาติ 1 เรื่อง
Wattanavises S, **Silsirivanit A***, Sawanyawisuth K, Cha'on U, Waraasawapati S, Saentaweesuk W, Luang S, Chalermwat C, Wongkham C, Wongkham S. Increase of MAL-II Binding Alpha2,3-Sialylated Glycan Is Associated with 5-FU Resistance and Short Survival of Cholangiocarcinoma Patients. *Medicina (Kaunas)*. 2019 Nov 28;55(12) pii: E761. (*correspondence)


2. การนำเสนอผลงานวิจัยในที่ประชุมวิชาการระดับนานาชาติ 2 เรื่อง
Orasa Panawan, Siyaporn Putthisen, Sukanya Luang, Sopit Wongkham, Norie Araki, **Atit silsirivanit***. Butea monosperma agglutinin-binding glycan as a cancer stem cell marker for glioma. The 11th ACGG (Asian Community of Glycoscience and Glycotechnology) Conference. November 11-14, 2019, Busan, Korea (*correspondence)
Siyaporn Putthisen, Orasa Panawan, Sukanya Luang, Sopit Wongkham, Norie Araki, **Atit silsirivanit***. Roles of sialylation in glioma and glioma stem cells. The 11th ACGG (Asian Community of Glycoscience and Glycotechnology) Conference. November 11-14, 2019, Busan, Korea (*correspondence)

3. การนำเสนอผลงานวิจัยในที่ประชุมวิชาการระดับชาติ 1 เรื่อง
Atit silsirivanit*, Orasa Panawan, Siyaporn Putthisen, Sukanya Luang, Norie Araki, Sopit Wongkham. ROLE OF O-GLCNACYLATION IN CANCER STEM CELLS. The 1st Annual Conference of Multi Mentoring System-6. March 14-15, 2020, Science Park, Khon Kaen University, Thailand (*correspondence)

ภาคผนวก

Wattanavises S, **Silsirivanit A***, Sawanyawisuth K, Cha'on U, Waraasawapati S, Saentaweesuk W, Luang S, Chalermwat C, Wongkham C, Wongkham S. Increase of MAL-II Binding Alpha2,3-Sialylated Glycan Is Associated with 5-FU Resistance and Short Survival of Cholangiocarcinoma Patients. *Medicina (Kaunas)*. 2019 Nov 28;55(12) pii: E761. (*correspondence)

medicina

IMPACT FACTOR 1.467

Cardiovascular and Metabolic Comorbidities Link Atrial Fibrillation and Cognitive Impairment

Volume 55 • Issue 12 | December 2019

MDPI

mdpi.com/journal/medicina
ISSN 1010-660X

Article

Increase of MAL-II Binding Alpha2,3-Sialylated Glycan Is Associated with 5-FU Resistance and Short Survival of Cholangiocarcinoma Patients

Sasiprapa Wattanavises ^{1,2}, Atit Silsirivanit ^{1,2,*}, Kanlayanee Sawanyawisuth ^{1,2}, Ubon Cha'on ¹, Sakda Waraasawapati ^{2,3}, Waraporn Saentaweesuk ⁴, Sukanya Luang ^{1,2}, Chalongchai Chalermwat ¹, Chaisiri Wongkham ^{1,2} and Sopit Wongkham ^{1,2}

¹ Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; w_sasiprapa@kku.edu.th (S.W.); kanlayanee@kku.edu.th (K.S.); ubocha@kku.ac.th (U.C.); sukany@kku.ac.th (S.L.); cchanl@kku.ac.th (C.C.); chaisiri@kku.ac.th (C.W.); sopit@kku.ac.th (S.W.)

² Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; sakdawa@kku.ac.th

³ Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

⁴ Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand; waraporn.sa@msu.ac.th
* Correspondence: atitsil@kku.ac.th; Tel.: +66-43-363-265

Received: 3 November 2019; Accepted: 24 November 2019; Published: 28 November 2019

Abstract: *Background and objectives:* Sialylation plays important roles in tumor progression. Our present study aimed to demonstrate the alteration of sialylation and its role in cholangiocarcinoma (CCA). *Materials and Methods:* The α 2,3- and α 2,6-sialylation in CCA tissue was analyzed by lectin-histochemistry using *Maackia amurensis* lectin-II (MAL-II) and *Sambucus nigra* agglutinin (SNA). CCA cell lines were treated with the pan-sialylation inhibitor 3Fax-peracetyl-Neu5Ac (3F-Sia) followed by proliferation and chemosensitivity assays. *Results:* MAL-II binding α 2,3-Sialylated Glycan (MAL-SG) and SNA binding α 2,6-Sialylated Glycan (SNA-SG) were both elevated in CCA compared with hyperplastic/dysplastic (HP/DP) and normal bile ducts (NBD). The positive staining for MAL-SG or SNA-SG were found in 82% (61/74) of the CCA cases. Higher expression of MAL-SG in CCA was associated with shorter survival of the patients. The median survival of patients with high and low MAL-SG were 167 and 308 days, respectively, with overall survival of 233 days, suggesting the involvement of MAL-SG in CCA progression. MAL-SG expression of CCA cell lines was markedly decreased after treatment with 3F-Sia for 48 to 72 h. While proliferation of CCA cells were not affected by 3F-Sia treatment, their susceptibility to 5-fluorouracil (5-FU) was significantly enhanced. These results suggest that sialylation is involved in the development of 5-FU resistance and the sialylation inhibitor 3F-Sia can be used as a chemosensitizer for CCA. *Conclusions:* Sialylation is critically involved in the development of chemoresistance of CCA, and sialylation inhibitors may be used as a chemosensitizer in CCA treatment.

Keywords: cancer; chemotherapy; glycosylation; lectin; sialylation

1. Introduction

Cholangiocarcinoma (CCA), a malignant tumor originated from bile duct epithelia, is highly endemic in the Northeastern Thailand and also arising worldwide [1]. Because clinical symptoms of CCA are not specific, most of the patients are detected at the advanced stage where metastasis and multi-drug resistance has already been developed. Many recent studies demonstrate the association between aberrant glycosylation and CCA progression [2–5].

Sialylation is a process of adding a terminal sialic acid (Sia) to the subterminal monosaccharide of carbohydrate chains on glycoproteins or glycolipids. It plays many roles in normal physiology, for example, neural differentiation [6], tissue regeneration [7,8], and resistance to influenza virus infection [9,10]. The increase of sialylation and sialylated-glycans were associated with development and progression of human diseases including cancer [10–15]. Sialylation plays important roles in tumor metastasis of many types of cancer such as colon [16], thyroid [14], and melanoma [17]. In addition, sialylation is involved in chemoresistance of ovarian [18,19], gastric [20], and colon [21] cancers.

Sialic binding lectins, such as *Maackia amurensis* lectin-II (MAL-II, α 2,3-sialylated glycan binding lectin) and *Sambucus nigra* agglutinin (SNA, α 2,6-sialylated glycan binding lectin), have been used for detecting and studying biological roles of sialylated-glycans in human diseases [9,11,12,14,15,17,22–25].

In this study, we have determined the expression of MAL-II binding α 2,3-Sialylated Glycan (MAL-SG) and SNA binding α 2,6-Sialylated Glycan (SNA-SG) in CCA tissue using lectin histochemistry. Correlation of MAL-SG and SNA-SG levels with clinical parameters and survival of the patients was evaluated. In addition, roles of sialylation in CCA progressions were determined using CCA cell lines.

2. Materials and Methods

2.1. CCA Tissues from Patients

Paraffin-embedded CCA tissue ($n = 74$) were obtained from the specimen bank of the Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand. Informed consent was obtained individually from each subject and the experimental protocols were approved by the Human Ethics Committee of Khon Kaen University (HE571283 and HE591308).

2.2. Cholangiocyte and CCA Cell Lines

MMNK, an immortalized cholangiocyte cell line [26], was obtained from the Japanese Collection of Research Bioresources Cell Bank (JCRB) through the Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand. CCA cell lines, KKU-213 and KKU-214, were established from a primary tumor of CCA patients and deposited in JCRB. KKU-213L5 and KKU-214L5 were the lung metastatic CCA cell lines derived from KKU-213 and KKU-214 as previously described [27,28]. All cell lines were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and antibiotic-antimycotic in a 5% CO₂ incubator at 37 °C.

2.3. Lectin-Histochemistry Staining

Lectin-histochemistry staining to detect MAL-SG and SNA-SG in CCA tissue was processed as previously described [3]. In brief, CCA tissue sections were de-paraffinized, re-hydrated, and incubated with 40 μ g/mL of biotinylated-MAL-II and 1 μ g/mL biotinylated-SNA (Vector Laboratories, Burlingame, CA, USA), respectively. Negative control slides were incubated with phosphate buffer saline (PBS) instead of biotinylated-lectin. Expression of MAL-SG and SNA-SG in CCA tissues was semi-quantified as a MAL-SG score and a SNA-SG score, according to their staining intensity (0, negatively stained; 1+, weakly stained; 2+, moderately stained; and 3+, strongly stained) and frequency of each intensity (% of total area) based on the H-Score system [29].

2.4. Lectin-Cyto-Fluorescence Staining

Lectin-cyto-fluorescence staining was used to detect MAL-SG in cultured cell lines. After treatment with a sialyltransferase inhibitor, cells were washed twice with ice-cold PBS and fixed with methanol for 30 min. PBS containing 3% bovine serum albumin (BSA) was used as a blocking buffer. Cells were incubated overnight at 4 °C with 80 μ g/mL of biotinylated-MAL-II (Vector Laboratories, Burlingame, CA, USA) followed by 40 min incubation with 1:500 Alexa488-conjugated streptavidin (Invitrogen, Carlsbad, CA, USA) in PBS at room temperature. Nucleus was counter-stained with 1:10,000 diluted

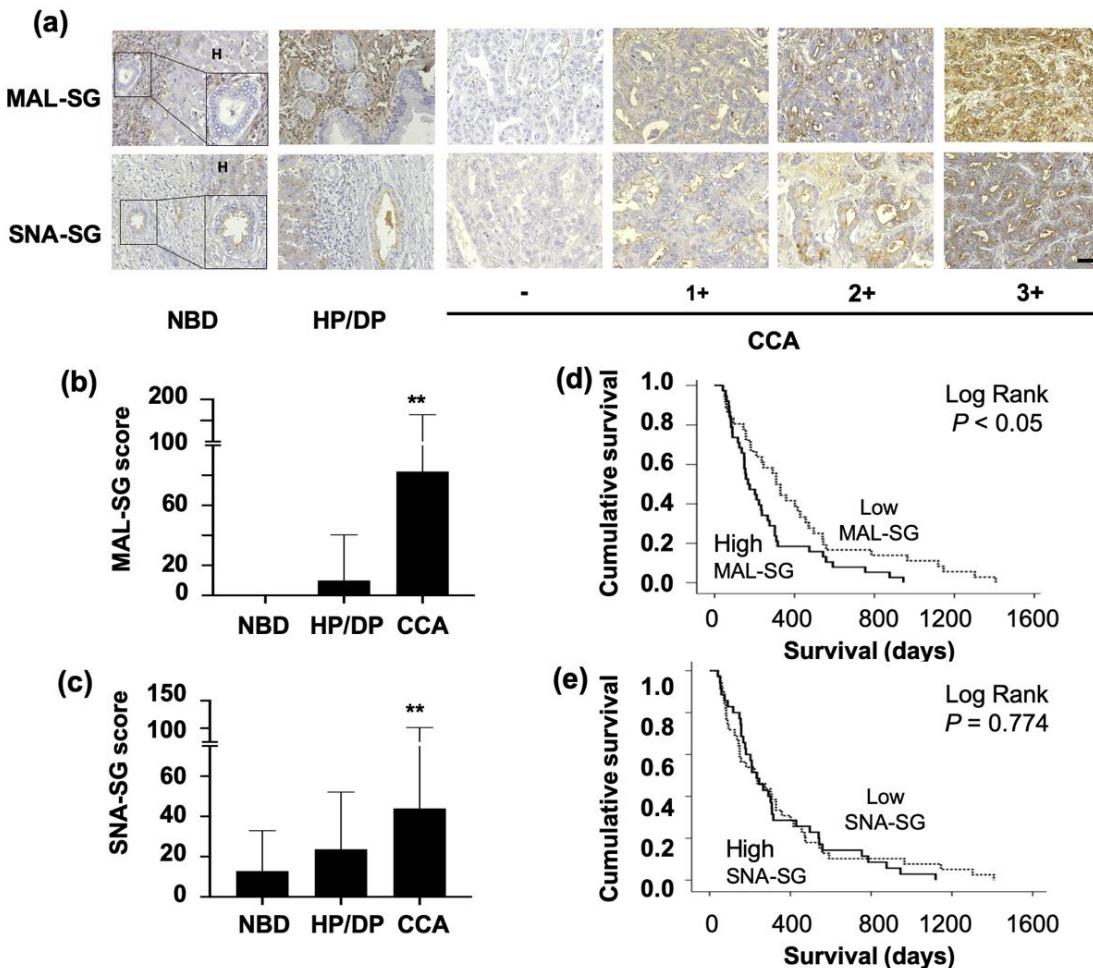
Hoechst33342 (Invitrogen, Carlsbad, CA, USA) and the signal was observed under a ZEISS LSM 800 Confocal Laser Scanning Microscope (Zeiss, Oberkochen, Germany).

2.5. Cell Proliferation and Chemosensitivity Assay

Roles of sialylation in cell proliferation and chemosensitivity were investigated using CCA cell lines. Cells were seeded in a 96-well culture plate, cultured overnight, and then treated with 50 μ M of the pan-sialyltransferase inhibitor 3Fax-peracetyl-Neu5Ac (3F-Sia, Merck Millipore, Billerica, MA, USA) for 48–72 h. To determine the effects of 3F-Sia on CCA cell proliferation, cell number was measured at 0 h and 72 h after 3F-Sia treatment using Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer's recommendation. To determine the effect of 3F-Sia on chemosensitivity to 5-fluorouracil (5-FU; Sigma Aldrich, Irvine, UK) of CCA cell lines, cells were treated with 50 μ M 3F-Sia for 48 h, and then treated with 10 μ M of 5-FU for an additional 48 h. Cell viability was measured at 0 and 48 h after 5-FU treatment. Cells treated with dimethyl sulfoxide (DMSO), instead of 3F-Sia, were used as a control. Experiments were performed in 5 replicates and repeated at least twice; the data presented in this study were from a representative experiment.

2.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism® 8.0 (GraphPad software, Inc., La Jolla, CA, USA) and SPSS 17.0 (SPSS, Chicago, IL, USA). A Student's *t*-test was used to evaluate the expression of MAL-SG and SNA-SG in CCA tissue, and the effect of 3F-Sia on CCA cell proliferation and chemosensitivity. The correlation of MAL-SG and SNA-SG expression and clinical parameters of CCA patients were analyzed using a χ^2 (chi-square) test. Survival analysis was performed using Log-rank test and a Kaplan-Meier plot. Significant differences were considered by $p < 0.05$.


3. Results

3.1. MAL-SG and SNA-SG Were Elevated in CCA Compared with Normal Bile Ducts and HP/DP

Expression of MAL-SG and SNA-SG in 74 histologically proven CCA tissues were examined. MAL-SG was undetectable in hepatocytes and normal bile ducts (NBD) in the normal tissues adjacent to CCA. It was slightly expressed in hyperplastic/dysplastic bile ducts (HP/DP, median MAL-SG score = 0) and highly expressed in CCA (median MAL-SG score = 50; $p < 0.05$, Student's *t*-test; Figure 1a,b). The staining intensity of MAL-SG in CCA varied from negative to strongly positive (3+) as shown in Figure 1a. The positive staining of MAL-SG was found in 82% (61/74) of CCA patients, with 38% (28/74) having a high MAL-SG score (101–300), 34% (25/74) a moderate MAL-SG score (11–100), and 28% (21/74) a negative to low MAL-SG score (0–10). SNA-SG was weakly expressed in NBD (median SNA-SG score = 5) and was moderately expressed in HP/DP (median SNA-SG score = 10) and CCA (median SNA-SG score = 20; $p < 0.05$, Student's *t*-test; Figure 1a,c). Positive signal of SNA-SG was found in 82% (61/74) of CCA. Among them, 14% (10/74) had a high SNA-SG score (101–300), 45% (33/74) a moderate SNA-SG score (11–100), and 42% (31/74) a negative to low SNA-SG score (0–10).

3.2. High Level of MAL-SG in CCA Was Associated with Shorter Survival of CCA Patients

Correlation of MAL-SG and SNA-SG expression in CCA tissue with the clinical parameters of CCA patients was analyzed using a χ^2 (chi-square) test. The patients were divided into high and low expression groups based on the median MAL-SG or SNA-SG scores in CCA tissues. Our data showed that expressions of MAL-SG or SNA-SG was not correlated with any age, histological types, or tumor stages of CCA patients (Table 1). High SNA-SG levels were more frequently observed in females than in males ($p = 0.022$).

Figure 1. Expression of MAL-II binding α 2,3-Sialylated Glycan (MAL-SG) and SNA binding α 2,6-Sialylated Glycan (SNA-SG) in CCA tissues. **(a)** Lectin-histochemistry staining by *Maackia amurensis* lectin-II (MAL-II) and *Sambucus nigra* agglutinin (SNA) were performed in 74 histological-proven CCA tissues. **(b,c)** Expression of MAL-SG and SNA-SG were presented as lectin histochemistry (LHC) score base on the staining frequency and intensity. **(d,e)** Survival analysis of CCA patients was performed using Kaplan-Meier plots and Log-rank tests according to MAL-SG and SNA-SG scores in tumor area. **significant difference, $p < 0.001$.

Kaplan-Meier plots and Log-rank test were used to analyze the correlation of MAL-SG and SNA-SG levels with the survival of CCA patients. The data showed that survival of patients with high MAL-SG (MAL-SG score ≥ 50) was shorter than those with low MAL-SG (MAL-SG score < 50) ($p < 0.05$, Figure 1d). The median survival of patients with high MAL-SG was 167 days (95% CI, 94–239 days), whereas that of patients with low MAL-SG was 308 days (95% CI, 252–363 days). Different from MAL-SG, the SNA-SG expression level was not correlated with the survival of CCA patients (Figure 1e), as median survivals of patients with high SNA-SG (SNA-SG score ≥ 20) and low SNA-SG score (< 20) were 233 days (95% CI, 158–307 days) and 236 days (95% CI, 90–381 days), respectively. Overall survival of CCA patients was 233 days with 95% CI of 165–300 days. Multivariate survival analysis using the Cox-proportional hazard model revealed that a high level of MAL-SG independently predicts the shorter survival of CCA patients regardless of age, sex, histological types, and tumor stages ($p < 0.05$). The hazard ratio of patients with high MAL-SG was 1.9 times higher than those with low MAL-SG (Table 2).

Table 1. Correlation of MAL-SG and SNA-SG expression and clinical data of CCA patients.

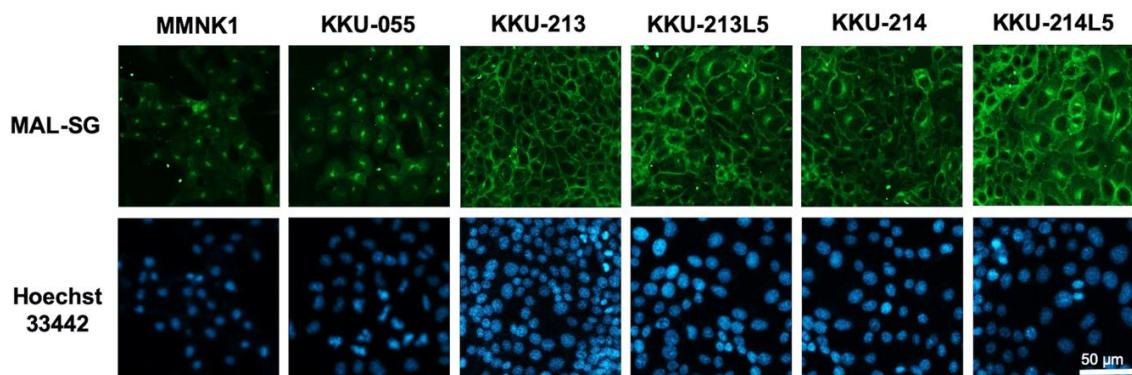
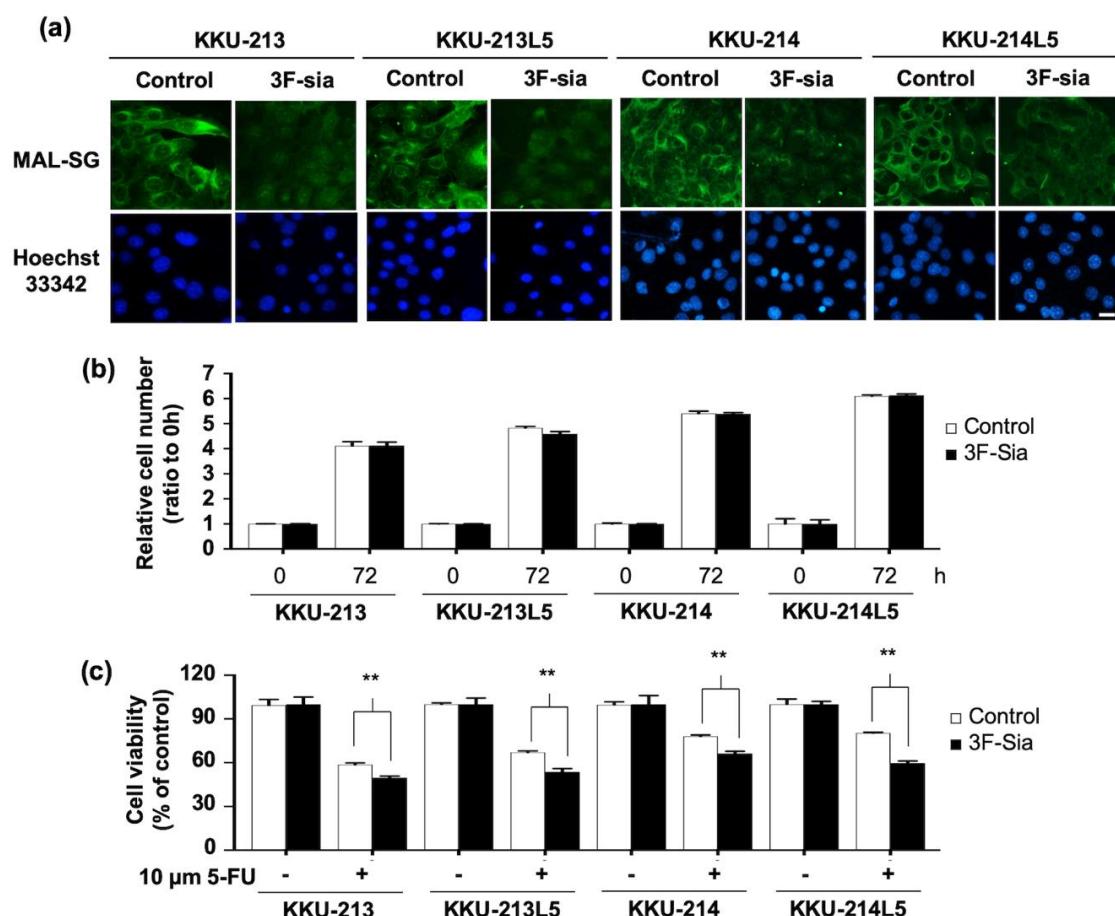

Variables	n	MAL-SG		p	SNA-SG		p
		Low (<50)	High (≥50)		Low (<20)	High (≥20)	
Histological type (n = 74)							
Papillary	22	13	9	0.242	13	9	0.474
Non-papillary	52	23	29		26	26	
Age (years) (n = 74)							
≤56	34	18	16	0.496	17	17	0.668
>56	40	18	22		22	18	
Gender (n = 74)							
Female	26	13	13	0.864	9	17	0.022
Male	48	23	25		30	18	
Tumor size (n = 73)							
<5 cm	13	6	7	0.887	5	8	0.233
≥5 cm	60	29	31		34	26	
Tumor stage (n = 74)							
I-III	29	15	14	0.814	15	14	
IVA	35	17	18		19	16	
IVB	10	4	6		5	5	

Table 2. Cox-proportional hazard model for multivariate survival analysis of MAL-SG in CCA patients.


Variables	n	Hazard Ratio (HR)	95% (CI)	p
Histological type (n=74)				
Papillary	22	1	1.117–3.572	0.020
Non-papillary	52	1.997		
Age (years) (n = 74)				
≤56	34	1	0.844–2.288	0.195
>56	40	1.390		
Gender (n = 74)				
Female	26	1	0.691–1.873	0.613
Male	48	1.137		
Tumor stage (n = 74)				
I-III	29	1		0.092
IVA	35	0.840	0.499–1.415	0.513
IVB	10	2.005	0.930–4.322	0.076
MAL-II expression (n = 74)				
Low	36	1	1.139–3.246	0.014
High	38	1.923		

3.3. Suppression of Sialylation by a Sialyltransferase Inhibitor Altered the Expression of MAL-SG

As only the expression of MAL-SG was associated with poor clinical outcome of CCA patients, further experiments were focused on MAL-SG only. Expression of MAL-SG in normal cholangiocyte (MMNK1) and CCA cell lines (KKU-055, KKU-213, KKU-213L5, KKU-214, KKU-214L5) was determined using MAL-II lectin-cyto-fluorescence. The expression of MAL-SG varied among MMNK1 and CCA cell lines. MMNK1 and KKU-055 expressed a low level of MAL-SG, whereas KKU-213, KKU-213L5, KKU-214, and KKU-214L5 exhibited a high expression of MAL-SG (Figure 2). To see the roles of sialylation in CCA cell proliferation, 50 μ M of 3F-Sia sialyltransferase inhibitor was used to inhibit the sialylation of high MAL-SG expressed KKU213, KKU213-L5, KKU214, and KKU214-L5 cell lines. The expression of MAL-SG in CCA cell lines was dramatically decreased after treatment with 3F-Sia for 48 h, and the suppressive effect persisted until 72 h (Figure 3a). In contrast, proliferation of 3F-Sia-treated CCA cell lines was comparable with that of DMSO-treated control cells (Figure 3b).

Figure 2. Expression of MAL-SG in CCA cell lines. MAL-SG expression in MMNK1 and CCA cell lines (KKU-213, KKU-214, KKU213-L5, and KKU214-L5) was determined by MAL-II lectin-cyto-fluorescent staining. The signal of Alexa-448 represented MAL-SG (green) and nucleus was stained by Hoechst-33342 (blue).

Figure 3. Effect of 3Fax-peracetyl-Neu5Ac (3F-Sia) on MAL-SG expression. 3F-Sia, a sialyltransferase inhibitor, was used to suppress the expression of MAL-SG in CCA cell lines. After 48 h of 50 μ M 3F-Sia treatment, (a) MAL-SG was determined by lectin-cyto-fluorescent staining, the signal of MAL-SG was shown by Alexa-448 (green), and nucleus was stained by Hoechst-33342 (blue). (b) Proliferation of CCA cell lines was measured at 0 and 72 h after 3F-Sia treatment by Cell Counting Kit-8. After 3F-Sia treatment, the cells were treated with 10 μ M of 5-FU for another 48 h. (c) Cytotoxicity was measured at 0 and 48 h after 5-FU treatment by WST assay.

3.4. Suppression of Sialylation Enhances the 5-FU Susceptibility of CCA Cell Lines

To elucidate the role of sialylation on 5-FU susceptibility of CCA cell lines, they were treated with 50 μ M 3F-Sia for 48 h. By this treatment, MAL-SG expression obviously decreased compared with 1% DMSO-treated control cells. Then, the cells were treated with 10 μ M 5-FU and cell viability was measured 48 h later. The results showed that, after 5-FU treatment, the viability of 3F-Sia-treated (sialylation suppressed) cells was significantly lower than those of DMSO-treated (high sialylation) controls ($p < 0.05$, Student's *t*-test; Figure 3c).

4. Discussion

Aberrant sialylation, either α 2,3- or α 2,6-sialylation, has been reported in various cancers, such as oral [30], ovary [31], prostate [32], and gastric [33] cancer. In CCA, sialyl Lewis-A (sLe^a) or CA19-9 and total sialic acids were elevated in the patients' sera, and it is currently used as a tumor marker for detection of CCA [34,35]. Cell surface sLe^a was found to play important roles in CCA metastasis, because the neutralization of sLe^a by a specific antibody could suppress in vitro metastatic ability of CCA cells [2]. These data suggested the possible increase of sialylation in CCA, although the direct evidence has never been documented. In this study, α 2,3 and α 2,6-sialylation status of NBD, HP/DP and CCA were investigated using lectin-histochemistry. The results showed that both MAL-SG (α 2,3-sialylated glycan) and SNA-SG (α 2,6-sialylated glycan) expression were higher in CCA compared to NBD and HP/DP, suggesting the possible association between the increase of sialylation and CCA development. Although the mechanisms underlying the increase of sialylation in CCA were not yet clearly defined, it is possible to be triggered by the increase of sialic acid synthesis or sialyltransferases and/or the decrease of sialidases, as was shown previously in other cancers [33,36,37].

As was previously shown, the serum CA19-9 and total sialic acids levels were increased in CCA patients compared with healthy persons, as such serum sialic acids have been used as the biomarkers for the diagnosis of CCA [34,35]. In this study, MAL-SG and SNA-SG was highly detected in CCA whereas they were very low in NBD, this information suggests the possibility of MAL-SG and SNA-SG as tumor markers for CCA. Thus, further experiments are necessary to investigate the possibility of detecting MAL-SG or SNA-SG in serum samples, as well as their diagnostic values for CCA. Identification of carrier proteins for MAL-SG and SNA-SG in patients' tissue and sera is also important for understanding the biology of MAL-SG and SNA-SG in CCA. Development of lectin-based ELISA to measure MAL-SG and SNA-SG in clinical samples is necessary to evaluate their diagnostic values for CCA.

An association between the increased sialylation and cancer progression has been demonstrated in various cancers as it plays important roles in metastasis, immune evasion, radioresistance, and chemoresistance [21,37–39]. Elevation of α 2,3-sialylated-glycans via increase of α 2,3-sialyltransferase was associated with metastasis of gastric cancer [33] and the advanced stage of ovarian cancer [31]. Progression of prostate cancer was promoted by the increase of α 2,6-sialylated-glycans via the overexpression of ST6GAL1 [40]. In this study, higher expression of MAL-SG in CCA was associated with shorter survival of the patients. To elucidate the roles of sialylation in CCA progression, we have suppressed sialylation of CCA cell lines by 3F-Sia, a pan-sialyltransferase inhibitor [41]. 5-FU has been used clinically as a backbone for treatment of CCA as it is an inexpensive chemotherapeutic drug. The use of 5-FU in combination with other agents is known to improve its effectiveness on CCA treatment, although the responsive rate varies between 7–43% [42]. Therefore, in this study we investigated the possibility of using 5-FU in combination with 3F-Sia to improve the CCA treatment. The results showed that suppression of sialylation by 3F-Sia augmented the chemosensitivity of CCA cell lines to 5-FU. These results suggest for the first time a role of sialylation in 5-FU resistance of CCA. The role of sialylation in chemoresistance has already been reported in many cancers [18,19,21]. Not only against 5-FU, sialylation was involved also in the resistance to paclitaxel and cisplatin of ovarian cancer cells [18,43]. Moreover, gefitinib resistance of ovarian cancer [18] and colon cancer [21] was promoted by sialylation. Taking all these and our present data together,

sialylation inhibitor(s) can be used as a chemosensitizer in the new therapeutic strategy for CCA treatment. The mechanisms by which sialylation regulates chemoresistance of cancer cells are not well documented. It was reported that glycosylation is important for the function of membrane drug transporters [44–46]. It is speculated that aberrant glycosylation of ABC transporters may increase their activity and contribute to the resistance to chemotherapeutic drugs of cancer cells [44,46]. Taking this information together with our present data, the possible mechanisms of sialylation in 5-FU resistance of CCA cells can be explained as such that hypersialylation of ABC transporters increases their activity to export the chemotherapeutic drugs out of the cells. Further in vitro and in vivo studies are needed to address this hypothesis.

5. Conclusions

We have demonstrated here the increase of α 2,3- and α 2,6-sialylation in CCA using lectin-histochemistry for MAL-SG and SNA-SG. The higher expression of MAL-SG was associated with shorter survival of the patients, suggesting that MAL-SG can be a candidate of a poor prognostic marker for CCA. Functional analysis suggested that sialylation is involved in chemosensitivity of CCA, because sialylation inhibition could increase chemosensitivity of CCA to 5-FU. The present results provide the evidence of the increase of sialylation in CCA, which might be a target for improvement of CCA chemotherapy to bring better quality of life for CCA patients.

Author Contributions: Conceptualization, A.S.; methodology, S.W. (Sasiprapa Wattanavises), A.S., K.S. and U.C.; formal analysis, S.W. (Sasiprapa Wattanavises), S.W. (Sakda Waraasawapati), W.S., C.C.; investigation, S.W. (Sasiprapa Wattanavises), W.S., S.L.; resources, S.W. (Sopit Wongkham), C.W., K.S., S.W. (Sakda Waraasawapati) and U.C.; data curation, A.S.; writing—original draft preparation, S.W. (Sasiprapa Wattanavises); writing—review and editing, A.S.; visualization, S.W. (Sasiprapa Wattanavises); supervision, S.W. (Sopit Wongkham), C.W.; funding acquisition, A.S., S.W. (Sopit Wongkham).

Funding: This research was funded by Faculty of Medicine (grant number IN61145), Khon Kaen University (grant number 6200020004) and Thailand Research Fund (grant number MRG6180107), Thailand.

Acknowledgments: We would to thank the core-facility unit of Faculty of Medicine and Khon Kaen University. Thanks Yukifumi Nawa for English editing via Publication Clinic, Khon Kaen University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blehacz, B.; Gores, G.J. Cholangiocarcinoma: Advances in pathogenesis, diagnosis, and treatment. *Hepatology* **2008**, *48*, 308–321. [[CrossRef](#)] [[PubMed](#)]
2. Juntavee, A.; Sripa, B.; Pugkhem, A.; Khuntikeo, N.; Wongkham, S. Expression of sialyl Lewis(a) relates to poor prognosis in cholangiocarcinoma. *World J. Gastroenterol.* **2005**, *11*, 249–254. [[CrossRef](#)] [[PubMed](#)]
3. Indramanee, S.; Silsirivanit, A.; Pairojkul, C.; Wongkham, C.; Wongkham, S. Aberrant glycosylation in cholangiocarcinoma demonstrated by lectin-histochemistry. *Asian Pac. J. Cancer Prev.* **2012**, *13*, 119–124. [[PubMed](#)]
4. Phoomak, C.; Silsirivanit, A.; Wongkham, C.; Sripa, B.; Puapairoj, A.; Wongkham, S. Overexpression of O-GlcNAc-transferase associates with aggressiveness of mass-forming cholangiocarcinoma. *Asian Pac. J. Cancer Prev.* **2012**, *13*, 101–105.
5. Phoomak, C.; Silsirivanit, A.; Park, D.; Sawanyawisuth, K.; Vaeteewoottacharn, K.; Wongkham, C.; Lam, E.W.; Pairojkul, C.; Lebrilla, C.B.; Wongkham, S. O-GlcNAcylation mediates metastasis of cholangiocarcinoma through FOXO3 and MAN1A1. *Oncogene* **2018**, *37*, 5648–5665. [[CrossRef](#)]
6. Wu, L.H.; Shao, X.T.; Guo, J.X.; Sun, H.; Chen, Q.; Pan, J.; Cai, Q.Q.; Dong, Y.W.; Chen, Z.Y.; Yan, X.M.; et al. Vimentin is important in the neural differentiation of PC12 cells promoted by sialylation. *Glycoconj. J.* **2017**, *34*, 51–59. [[CrossRef](#)]
7. Miyamoto, Y.; Tanabe, M.; Date, K.; Sakuda, K.; Sano, K.; Ogawa, H. Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site. *Glycoconj. J.* **2016**, *33*, 227–236. [[CrossRef](#)]

8. Sasaki, N.; Itakura, Y.; Toyoda, M. Sialylation regulates myofibroblast differentiation of human skin fibroblasts. *Stem Cell Res. Ther.* **2017**, *8*, 81. [[CrossRef](#)]
9. Us, D. Cytokine storm in avian influenza. *Mikrobiyoloji Bul.* **2008**, *42*, 365–380.
10. Qin, Y.; Zhong, Y.; Zhu, M.; Dang, L.; Yu, H.; Chen, Z.; Chen, W.; Wang, X.; Zhang, H.; Li, Z. Age- and sex-associated differences in the glycopatterns of human salivary glycoproteins and their roles against influenza A virus. *J. Proteome Res.* **2013**, *12*, 2742–2754. [[CrossRef](#)]
11. Shi, Y.Q.; He, Q.; Zhao, Y.J.; Wang, E.H.; Wu, G.P. Lectin microarrays differentiate carcinoma cells from reactive mesothelial cells in pleural effusions. *Cytotechnology* **2013**, *65*, 355–362. [[CrossRef](#)] [[PubMed](#)]
12. dos-Santos, P.B.; Zanetti, J.S.; Vieira-de-Mello, G.S.; Rego, M.B.; Ribeiro-Silva, A.A.; Beltrao, E.I. Lectin histochemistry reveals SNA as a prognostic carbohydrate-dependent probe for invasive ductal carcinoma of the breast: A clinicopathological and immunohistochemical auxiliary tool. *Int. J. Clin. Exp. Pathol.* **2014**, *7*, 2337–2349.
13. Vajaria, B.N.; Patel, P.S. Glycosylation: A hallmark of cancer? *Glycoconj. J.* **2017**, *34*, 147–156. [[CrossRef](#)] [[PubMed](#)]
14. Kaptan, E.; Sancar-Bas, S.; Sancakli, A.; Bektas, S.; Bolkent, S. The effect of plant lectins on the survival and malignant behaviors of thyroid cancer cells. *J. Cell. Biochem.* **2018**, *119*, 6274–6287. [[CrossRef](#)] [[PubMed](#)]
15. Maignien, C.; Santulli, P.; Chouzenoux, S.; Gonzalez-Foruria, I.; Marcellin, L.; Doridot, L.; Jeljeli, M.; Grange, P.; Reis, F.M.; Chapron, C.; et al. Reduced alpha-2,6 sialylation regulates cell migration in endometriosis. *Hum. Reprod.* **2019**, *34*, 479–490. [[CrossRef](#)] [[PubMed](#)]
16. Uemura, T.; Shiozaki, K.; Yamaguchi, K.; Miyazaki, S.; Satomi, S.; Kato, K.; Sakuraba, H.; Miyagi, T. Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4. *Oncogene* **2009**, *28*, 1218–1229. [[CrossRef](#)]
17. Kolasinska, E.; Przybylo, M.; Janik, M.; Litynska, A. Towards understanding the role of sialylation in melanoma progression. *Acta Biochim. Pol.* **2016**, *63*, 533–541. [[CrossRef](#)]
18. Schultz, M.J.; Swindall, A.F.; Wright, J.W.; Sztul, E.S.; Landen, C.N.; Bellis, S.L. ST6Gal-I sialyltransferase confers cisplatin resistance in ovarian tumor cells. *J. Ovarian Res.* **2013**, *6*, 25. [[CrossRef](#)]
19. Britain, C.M.; Holdbrooks, A.T.; Anderson, J.C.; Willey, C.D.; Bellis, S.L. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death. *J. Ovarian Res.* **2018**, *11*, 12. [[CrossRef](#)]
20. Santos, S.N.; Junqueira, M.S.; Francisco, G.; Vilanova, M.; Magalhaes, A.; Dias Baruffi, M.; Chammas, R.; Harris, A.L.; Reis, C.A.; Bernardes, E.S. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. *Oncotarget* **2016**, *7*, 83570–83587. [[CrossRef](#)]
21. Park, J.J.; Yi, J.Y.; Jin, Y.B.; Lee, Y.J.; Lee, J.S.; Lee, Y.S.; Ko, Y.G.; Lee, M. Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. *Biochem. Pharmacol.* **2012**, *83*, 849–857. [[CrossRef](#)]
22. Tatsuzaki, A.; Ezaki, T.; Makino, Y.; Matsuda, Y.; Ohta, H. Characterization of the sugar chain expression of normal term human placental villi using lectin histochemistry combined with immunohistochemistry. *Arch. Histol. Cytol.* **2009**, *72*, 35–49. [[CrossRef](#)] [[PubMed](#)]
23. Akasov, R.; Haq, S.; Haxho, F.; Samuel, V.; Burov, S.V.; Markvicheva, E.; Neufeld, R.J.; Szewczuk, M.R. Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. *Oncotarget* **2016**, *7*, 66119–66134. [[CrossRef](#)]
24. Arrighi, S.; Ventriglia, G.; Aralla, M.; Zizza, S.; Di Summa, A.; Desantis, S. Absorptive activities of the efferent ducts evaluated by the immunolocalization of aquaporin water channels and lectin histochemistry in adult cats. *Histol. Histopathol.* **2010**, *25*, 433–444. [[CrossRef](#)]
25. Wang, Q.; Chen, H.; Yang, Y.; Wang, B. Expression of Neu5Acalpha2,3Gal and Neu5Acalpha2,6Gal on the nasal mucosa of patients with chronic rhinosinusitis and its possible effect on bacterial biofilm formation. *Microb. Pathog.* **2018**, *123*, 24–27. [[CrossRef](#)] [[PubMed](#)]
26. Maruyama, M.; Kobayashi, N.; Westerman, K.A.; Sakaguchi, M.; Allain, J.E.; Totsugawa, T.; Okitsu, T.; Fukazawa, T.; Weber, A.; Stolz, D.B.; et al. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. *Transplantation* **2004**, *77*, 446–451. [[CrossRef](#)] [[PubMed](#)]
27. Uthaisar, K.; Vaeteewoottacharn, K.; Seubwai, W.; Talabnin, C.; Sawanyawisuth, K.; Obchoei, S.; Kraiklang, R.; Okada, S.; Wongkham, S. Establishment and characterization of a novel human cholangiocarcinoma cell line with high metastatic activity. *Oncol. Rep.* **2016**, *36*, 1435–1446. [[CrossRef](#)]

28. Saentaweesuk, W.; Araki, N.; Vaeteewoottacharn, K.; Silsirivanit, A.; Seubwai, W.; Talabnин, C.; Muisuk, K.; Sripa, B.; Wongkham, S.; Okada, S.; et al. Activation of Vimentin Is Critical to Promote a Metastatic Potential of Cholangiocarcinoma Cells. *Oncol. Res.* **2018**, *26*, 605–616. [CrossRef]

29. Fitzgibbons, P.L.; Dillon, D.A.; Alsabeh, R.; Berman, M.A.; Hayes, D.F.; Hicks, D.G.; Hughes, K.S.; Nofech-Mozes, S. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the breast. *Arch. Pathol. Labor. Med.* **2014**, *138*, 595–601. [CrossRef]

30. Shah, M.; Telang, S.; Raval, G.; Shah, P.; Patel, P.S. Serum fucosylation changes in oral cancer and oral precancerous conditions: Alpha-L-fucosidase as a marker. *Cancer* **2008**, *113*, 336–346. [CrossRef]

31. Sung, P.L.; Wen, K.C.; Horng, H.C.; Chang, C.M.; Chen, Y.J.; Lee, W.L.; Wang, P.H. The role of alpha2,3-linked sialylation on clear cell type epithelial ovarian cancer. *Taiwan J. Obstet. Gynecol.* **2018**, *57*, 255–263. [CrossRef]

32. Pihikova, D.; Kasak, P.; Kubanikova, P.; Sokol, R.; Tkac, J. Aberrant sialylation of a prostate-specific antigen: Electrochemical label-free glycoprofiling in prostate cancer serum samples. *Anal. Chim. Acta* **2016**, *934*, 72–79. [CrossRef]

33. Shen, L.; Luo, Z.; Wu, J.; Qiu, L.; Luo, M.; Ke, Q.; Dong, X. Enhanced expression of alpha2,3-linked sialic acids promotes gastric cancer cell metastasis and correlates with poor prognosis. *Int. J. Oncol.* **2017**, *50*, 1201–1210. [CrossRef]

34. Wongkham, S.; Boonla, C.; Kongkham, S.; Wongkham, C.; Bhudhisawasdi, V.; Sripa, B. Serum total sialic acid in cholangiocarcinoma patients: An ROC curve analysis. *Clin. Biochem.* **2001**, *34*, 537–541. [CrossRef]

35. Kongtawelert, P.; Tangkijvanich, P.; Ong-Chai, S.; Poovorawan, Y. Role of serum total sialic acid in differentiating cholangiocarcinoma from hepatocellular carcinoma. *World J. Gastroenterol.* **2003**, *9*, 2178–2181. [CrossRef]

36. Miyagi, T.; Takahashi, K.; Moriya, S.; Hata, K.; Yamamoto, K.; Wada, T.; Yamaguchi, K.; Shiozaki, K. Altered expression of sialidases in human cancer. *Adv. Exp. Med. Biol.* **2012**, *749*, 257–267. [CrossRef]

37. Wen, K.C.; Sung, P.L.; Hsieh, S.L.; Chou, Y.T.; Lee, O.K.; Wu, C.W.; Wang, P.H. alpha2,3-sialyltransferase type I regulates migration and peritoneal dissemination of ovarian cancer cells. *Oncotarget* **2017**, *8*, 29013–29027. [CrossRef]

38. Wang, S.; Chen, X.; Wei, A.; Yu, X.; Niang, B.; Zhang, J. Alpha2,6-linked sialic acids on N-glycans modulate the adhesion of hepatocarcinoma cells to lymph nodes. *Tumour Biol.* **2015**, *36*, 885–892. [CrossRef]

39. Zhao, Y.; Li, Y.; Ma, H.; Dong, W.; Zhou, H.; Song, X.; Zhang, J.; Jia, L. Withdrawal: Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. *Mol. Cell. Proteom.* **2019**, *18*, 1269. [CrossRef]

40. Wei, A.; Fan, B.; Zhao, Y.; Zhang, H.; Wang, L.; Yu, X.; Yuan, Q.; Yang, D.; Wang, S. ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3beta/beta-catenin signaling pathway. *Oncotarget* **2016**, *7*, 65374–65388. [CrossRef]

41. Rillahan, C.D.; Antonopoulos, A.; Lefort, C.T.; Sonon, R.; Azadi, P.; Ley, K.; Dell, A.; Haslam, S.M.; Paulson, J.C. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. *Nat. Chem. Biol.* **2012**, *8*, 661–668. [CrossRef]

42. Marino, D.; Leone, F.; Cavalloni, G.; Cagnazzo, C.; Aglietta, M. Biliary tract carcinomas: From chemotherapy to targeted therapy. *Crit. Rev. Oncol./Hematol.* **2013**, *85*, 136–148. [CrossRef]

43. Wu, X.; Zhao, J.; Ruan, Y.; Sun, L.; Xu, C.; Jiang, H. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-beta1-induced EMT and confers paclitaxel resistance in ovarian cancer. *Cell Death Dis.* **2018**, *9*, 1102. [CrossRef]

44. Perego, P.; Gatti, L.; Beretta, G.L. The ABC of glycosylation. *Nature reviews. Cancer* **2010**, *10*, 523. [CrossRef]

45. Fletcher, J.I.; Haber, M.; Henderson, M.J.; Norris, M.D. ABC transporters in cancer: More than just drug efflux pumps. *Nature reviews. Cancer* **2010**, *10*, 147–156. [CrossRef]

46. da Fonseca, L.M.; da Silva, V.A.; Freire-de-Lima, L.; Previato, J.O.; Mendonca-Previato, L.; Capella, M.A. Glycosylation in Cancer: Interplay between Multidrug Resistance and Epithelial-to-Mesenchymal Transition? *Front. Oncol.* **2016**, *6*, 158. [CrossRef]

2. การนำเสนอผลงานวิจัยในที่ประชุมวิชาการระดับนานาชาติ

2 เรื่อง

Orasa Panawan, Siyaporn Putthisen, Sukanya Luang, Sopit Wongkham, Norie Araki, **Atit silsirivanit***. Butea monosperma agglutinin-binding glycan as a cancer stem cell marker for glioma. The 11th ACGG (Asian Community of Glycoscience and Glycotechnology) Conference. November 11-14, 2019, Busan, Korea (*correspondence)

Siyaporn Putthisen, Orasa Panawan, Sukanya Luang, Sopit Wongkham, Norie Araki, **Atit silsirivanit***. Roles of sialylation in glioma and glioma stem cells. The 11th ACGG (Asian Community of Glycoscience and Glycotechnology) Conference. November 11-14, 2019, Busan, Korea (*correspondence)

***Butea monosperma* agglutinin-binding glycan as a cancer stem cell marker for glioma**

Orasa Panawan^{1,2}, Siyaporn Putthisen¹, Sukanya Luang¹, Sopit Wongkham¹, Norie Araki², Atit silsirivanit^{1*}

¹Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Thailand; ² Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Japan; *corresponding author: atitsil@kku.ac.th

Gliomas are the most malignant and aggressive brain tumor with poor prognosis. The existence of glioma stem cells (GSCs) which capable of self-renewal, and multilineage differentiation contributes to tumor initiation and therapeutic resistance of gliomas. Targeting cancer stem cell marker of GSCs have been proposed as an effective strategy for treatment of gliomas. Many glycans and glycoproteins, such as CD133 and CD44, were identified as cancer stem cell markers. In our study, a lectin isolated from *Butea monosperma* seeds, namely *Butea monosperma* agglutinin (BMA), was used for detection of BMA-binding glycan (BMAG) in GSCs and the differentiated malignant glioma cells. Lectin cytofluorescent staining showed that BMAG was strongly expressed in GSCs; GSC-03A, GSC-03U, GSC-07U, U373-GSC; and it was faintly expressed in differentiated malignant glioma cells. This information suggested the potential of using BMAG as a GSC marker. However, the role of BMAG on stemness maintenance and/or differentiation of GSCs is needed to be further explored. The data on functional analyses of BMAG in GSCs and its potential as a target for glioma treatment will be presented.

Acknowledgements: We would like to thank the supports from **Research Publication Scholarship Fiscal Year of 2019**, Graduate Schools of Khon Kaen University (KKU) and DPST-program for Orasa Panawan, the grant supports from Mekong Health Science Research Institute (12/2561) and Thailand Research Fund (MRG6108107) for Atit silsirivanit.

Expression of MAL-II binding sialylated glycan is associated with differentiation of glioma stem cells

Siyaporn Putthisen¹, Orasa Panawan^{1,2}, Sukanya Luang¹, Sopit Wongkham¹, Norie Araki², Atit Silsirivanit^{1*}

¹Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand;

²Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto, 860-8556, Japan; *corresponding author: atitsil@kku.ac.th

Sialylation, a terminal process of adding sialic acid to oligosaccharide chain of glycoconjugates, is controlled by 3 groups of sialyltransferase (ST) including α 2,3-STs (ST3), α 2,6-STs (ST6), and α 2,8-STs (ST8). Aberrant sialylation has been reported to involve in tumorigenesis and progression of cancer. This study is aimed to analyze the sialylation status in gliomas and glioma stem cells (GSC). *Maackia amurensis* lectin II (MAL-II) and *Sambucus nigra* agglutinin (SNA) were used to determine the expression of α 2,3- and α 2,6- sialylated glycans, respectively, by lectin cytofluorescent staining. MAL-II binding glycan (MAL-SG) was faintly expressed in GSC cells (GSC-03A, GSC-03U, GSC-07U and U373GSC), while it was highly expressed in glioma cell lines (U373, U251, and U87). SNA binding glycan was undetectable in both GSCs and glioma cell lines. This information suggested the potential role of α 2,3-sialylation during glioma differentiation, which possibly the target for glioma treatment. Mechanism underlying MAL-SG expression as well as its role in GSCs and gliomas will be further explored to fulfill our knowledge on GSC biology which possibly used as the basic information for developing the new therapeutic strategies for gliomas in the future.

Acknowledgements: We would like to thank the supports from Research Publication Scholarship Fiscal Year of 2019, Graduate Schools of Khon Kaen University (KKU) and Faculty of Medicine for S.P., the grant supports from Mekong Health Science Research Institute (12/2561) and Thailand Research Fund (MRG6108107) for A.S.

Atit silsirivanit*, Orasa Panawan, Siyaporn Putthisen, Sukanya Luang, Norie Araki, Sopit Wongkham. ROLE OF O-GLCNACYLATION IN CANCER STEM CELLS. The 1st Annual Conference of Multi Mentoring System-6. March 14-15, 2020, Science Park, Khon Kaen University, Thailand (*correspondence)

The 1st Annual Conference of Multi Mentoring System-6

Academic Expo: New Researchers meet Senior Researchers & Progress for Success

March 14-15, 2020, Science Park, Khon Kaen University, Thailand

<input type="checkbox"/> Biology, Biotechnology, Agricultural Science	<input type="checkbox"/> Engineering, Computer Science, Mathematics, Chemistry, Materials Science, and Physics
<input checked="" type="checkbox"/> Biomedical Science, Health Science, Veterinary Science	<input type="checkbox"/> Humanities, Social Science, Education, History, Language, Economics, Architecture

ROLE OF O-GLCNACYLATION IN CANCER STEM CELLS

Atit Silsirivanit¹, Orasa Panawan¹, Siyaporn Putthisen¹, Sukanya Luang¹, Norie Araki², Sopit Wongkham¹

¹Department of Biochemistry and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; ²Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

Cancer stem cell (CSC) was found to play important roles in tumor recurrence and therapeutic resistance. To understand the roles of CSC, several biological and molecular studies need to be conducted in the isolated CSCs. We have successfully isolated cancer stem-like cells from cancer cell lines of glioma and cholangiocarcinoma. The glioma stem-like cell (GSC) and cholangiocarcinoma stem-like cell exhibited stem cell characteristics, such as expression of stem cell markers (such as SOX2 and OC3/4), self-renewal and multi-lineage differentiation. In addition, O-GlcNAcylation, a reversible O-linked glycosylation with a single molecule of N-acetyl glucosamine (GlcNAc), was highly detected in GSCs and dramatically reduced after FCS-induced differentiation. Suppression of O-GlcNAcylation significantly reduced the proliferation of GSCs, while enhancement of O-GlcNAcylation could suppress FCS-induced differentiation of the GSCs. These evidences suggested the involvement of O-GlcNAcylation in stemness maintenance of GSCs, which possibly used as a target for glioma treatment in the future.

Keywords: O-glycosylation, brain tumor, cancer, liver, cancer stem cells

Presenters E-mail address: atitsil@kku.ac.th