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Abstract

Project Code: MRG80107

Project Title: Role of O-GIcNAcylation in cancer stem cells
Investigator: Assistant Professor Dr. Atit Silsirivanit

E-mail Address: atitsil@kku.ac.th

Project Period: May 1, 2018 — April 30, 2020

Cancer stem cell (CSC) was found to play important roles in tumor recurrence and
therapeutic resistance. To understand the roles of CSC, several biological and molecular studies
need to be conducted in the isolated CSCs. We have successfully isolated cancer stem-like cells
from cancer cell lines of glioma and cholangiocarcinoma. This study is aimed to 1) characterize
the newly isolated CSCs and 2) study the roles of O-GIlcNAcylation in CSC. The glioma stem-
like cell (GSC) and cholangiocarcinoma stem-like cell (CCSC) were found to exhibit stem cell
characteristics, such as expression of stem cell markers (such as SOX2 and OC3/4), self-renewal
and multi-lineage differentiation under the treatment with fetal bovine serum and specific
differentiating media. The CSCs had slower proliferation rate, but exhibited higher chemoresistant
ability, comparing with their parental cancer cell lines. In addition, O-GlcNAcylation, a reversible
O-linked glycosylation with a single molecule of N-acetyl glucosamine (GIcNAc), was highly
detected in CSCs and dramatically reduced after FCS-induced differentiation. Suppression of O-
GIcNAcylation, by specific inhibitors, significantly reduced the sphere forming ability and
proliferation of GSCs. The enhancement of O-GIcNAcylation, by treatment with glutamine and
glucosamine, could significantly suppress FCS-induced differentiation of the GSCs. These
evidences suggested the involvement of O-GIcNAcylation in stemness maintenance and

differentiation of GSCs, which possibly used as a target for glioma treatment in the future.

Keywords: cancer, cancer stem cell, glycosylation, glioma, cholangiocarcinoma
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Abstract: Background and objectives: Sialylation plays important roles in tumor progression. Our present
study aimed to demonstrate the alteration of sialylation and its role in cholangiocarcinoma
(CCA). Materials and Methods: The «2,3- and «2,6-sialylation in CCA tissue was analyzed by
lectin-histochemistry using Maackia amurensis lectin-II (MAL-II) and Sambucus nigra agglutinin
(SNA). CCA cell lines were treated with the pan-sialylation inhibitor 3Fax-peracetyl-Neu5Ac (3F-Sia)
followed by proliferation and chemosensitivity assays. Results: MAL-II binding «2,3-Sialylated
Glycan (MAL-SG) and SNA binding «2,6-Sialylated Glycan (SNA-SG) were both elevated in CCA
compared with hyperplastic/dysplastic (HP/DP) and normal bile ducts (NBD). The positive staining
for MAL-5G or SNA-SG were found in 82% (61/74) of the CCA cases. Higher expression of MAL-5G in
CCA was associated with shorter survival of the patients. The median survival of patients with high
and low MAL-SG were 167 and 308 days, respectively, with overall survival of 233 days, suggesting
the involvement of MAL-SG in CCA progression. MAL-5G expression of CCA cell lines was markedly
decreased after treatment with 3F-Sia for 48 to 72 h. While proliferation of CCA cells were not
affected by 3F-Sia treatment, their susceptibility to 5-fluorouracil (5-FU) was significantly enhanced.
These results suggest that sialylation is involved in the development of 5-FU resistance and the
sialylation inhibitor 3F-Sia can be used as a chemosensitizer for CCA. Conclusions: Sialylation is
critically involved in the development of chemoresistance of CCA, and sialylation inhibitors may be
used as a chemosensitizer in CCA treatment.

Keywords: cancer; chemotherapy; glycosylation; lectin; sialylation

1. Introduction

Cholangiocarcinoma (CCA), a malignant tumor originated from bile duct epithelia, is highly
endemic in the Northeastern Thailand and also arising worldwide [1]. Because clinical symptoms of
CCA are not specific, most of the patients are detected at the advanced stage where metastasis and
multi-drug resistance has already been developed. Many recent studies demonstrate the association
between aberrant glycosylation and CCA progression [2-5].
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Sialylation is a process of adding a terminal sialic acid (Sia) to the subterminal monosaccharide
of carbohydrate chains on glycoproteins or glycolipids. It plays many roles in normal physiology,
for example, neural differentiation [6], tissue regeneration [7,8], and resistance to influenza virus
infection [9,10]. The increase of sialylation and sialylated-glycans were associated with development
and progression of human diseases including cancer [10-15]. Sialylation plays important roles in tumor
metastasis of many types of cancer such as colon [16], thyroid [14], and melanoma [17]. In addition,
sialylation is involved in chemoresistance of ovarian [18,19], gastric [20], and colon [21] cancers.

Sialic binding lectins, such as Maackia amurensis lectin-II (MAL-II, «2,3-sialylated glycan binding
lectin) and Sambucus nigra agglutinin (SNA, «2,6-sialylated glycan binding lectin), have been used for
detecting and studying biological roles of sialylated-glycans in human diseases [9,11,12,14,15,17,22-25].

In this study, we have determined the expression of MAL-II binding «2,3-Sialylated Glycan
(MAL-SG) and SNA binding «2,6-Sialylated Glycan (SNA-SG) in CCA tissue using lectin histochemistry.
Correlation of MAL-SG and SNA-SG levels with clinical parameters and survival of the patients was
evaluated. In addition, roles of sialylation in CCA progressions were determined using CCA cell lines.

2. Materials and Methods

2.1. CCA Tissues from Patients

Paraffin-embedded CCA tissue (n = 74) were obtained from the specimen bank of the
Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand. Informed consent was
obtained individually from each subject and the experimental protocols were approved by the Human
Ethics Committee of Khon Kaen University (HE571283 and HE591308).

2.2. Cholangiocyte and CCA Cell Lines

MMNK, an immortalized cholangiocyte cell line [26], was obtained from the Japanese Collection of
Research Bioresources Cell Bank (JCRB) through the Cholangiocarcinoma Research Institute, Khon Kaen
University, Thailand. CCA cell lines, KKU-213 and KKU-214, were established from a primary tumor
of CCA patients and deposited in JCRB. KKU-213L5 and KKU-214L5 were the lung metastatic CCA
cell lines derived from KKU-213 and KKU-214 as previously described [27,28]. All cell lines were
cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) and antibiotic-antimycotic in a 5% CO, incubator at 37 °C.

2.3. Lectin-Histochemistry Staining

Lectin-histochemistry staining to detect MAL-SG and SNA-SG in CCA tissue was processed as
previously described [3]. In brief, CCA tissue sections were de-paraffinized, re-hydrated, and incubated
with 40 pg/mL of biotinylated-MAL-II and 1 pug/mL biotinylated-SNA (Vector Laboratories, Burlingame,
CA, USA), respectively. Negative control slides were incubated with phosphate buffer saline (PBS)
instead of biotinylated-lectin. Expression of MAL-SG and SNA-SG in CCA tissues was semi-quantified
as a MAL-SG score and a SNA-SG score, according to their staining intensity (0, negatively stained;
14, weakly stained; 2+, moderately stained; and 3+, strongly stained) and frequency of each intensity
(% of total area) based on the H-Score system [29].

2.4. Lectin-Cyto-Fluorescence Staining

Lectin-cyto-fluorescence staining was used to detect MAL-SG in cultured cell lines. After treatment
with a sialyltransferase inhibitor, cells were washed twice with ice-cold PBS and fixed with methanol
for 30 min. PBS containing 3% bovine serum albumin (BSA) was used as a blocking buffer. Cells were
incubated overnight at 4 °C with 80 pug/mL of biotinylated-MAL-II (Vector Laboratories, Burlingame,
CA, USA) followed by 40 min incubation with 1:500 Alexa488-conjugated streptavidin (Invitrogen,
Carlsbad, CA, USA) in PBS at room temperature. Nucleus was counter-stained with 1:10,000 diluted
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Hoechst33342 (Invitrogen, Carlsbad, CA, USA) and the signal was observed under a ZEISS LSM 800
Confocal Laser Scanning Microscope (Zeiss, Oberkochen, Germany).

2.5. Cell Proliferation and Chemosensitivity Assay

Roles of sialylation in cell proliferation and chemosensitivity were investigated using CCA cell
lines. Cells were seeded in a 96-well culture plate, cultured overnight, and then treated with 50 uM
of the pan-sialyltransferase inhibitor 3Fax-peracetyl-Neu5Ac (3F-Sia, Merck Millipore, Billerica, MA,
USA) for 48-72 h. To determine the effects of 3F-Sia on CCA cell proliferation, cell number was
measured at 0 h and 72 h after 3F-Sia treatment using Cell Counting Kit-8 (CCK-8, Dojindo Laboratories,
Kumamoto, Japan) according to the manufacturer’s recommendation. To determine the effect of 3F-Sia
on chemosensitivity to 5-fluorouracil (5-FU; Sigma Aldrich, Irvine, UK) of CCA cell lines, cells were
treated with 50 uM 3F-Sia for 48 h, and then treated with 10 uM of 5-FU for an additional 48 h.
Cell viability was measured at 0 and 48 h after 5-FU treatment. Cells treated with dimethyl sulfoxide
(DMSO), instead of 3F-Sia, were used as a control. Experiments were performed in 5 replicates and
repeated at least twice; the data presented in this study were from a representative experiment.

2.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism® 8.0 (GraphPad software, Inc., La Jolla,
CA, USA) and SPSS 17.0 (SPSS, Chicago, IL, USA). A Student’s t-test was used to evaluate the
expression of MAL-SG and SNA-SG in CCA tissue, and the effect of 3F-Sia on CCA cell proliferation
and chemosensitivity. The correlation of MAL-SG and SNA-SG expression and clinical parameters
of CCA patients were analyzed using a x? (chi-square) test. Survival analysis was performed using
Log-rank test and a Kaplan-Meier plot. Significant differences were considered by p < 0.05.

3. Results

3.1. MAL-SG and SNA-SG Were Elevated in CCA Compared with Normal Bile Ducts and HP/DP

Expression of MAL-SG and SNA-SG in 74 histologically proven CCA tissues were examined.
MAL-SG was undetectable in hepatocytes and normal bile ducts (NBD) in the normal tissues adjacent
to CCA. It was slightly expressed in hyperplastic/dysplastic bile ducts (HP/DP, median MAL-SG score
= 0) and highly expressed in CCA (median MAL-SG score = 50; p < 0.05, Student’s t-test; Figure 1a,b).
The staining intensity of MAL-SG in CCA varied from negative to strongly positive (3+) as shown
in Figure 1a. The positive staining of MAL-SG was found in 82% (61/74) of CCA patients, with 38%
(28/74) having s high MAL-SG score (101-300), 34% (25/74) a moderate MAL-SG score (11-100), and
28% (21/74) a negative to low MAL-5G score (0-10). SNA-SG was weakly expressed in NBD (median
SNA-5G score = 5) and was moderately expressed in HP/DP (median SNA-SG score = 10) and CCA
(median SNA-SG score = 20; p < 0.05, Student’s ¢-test; Figure 1a,c). Positive signal of SNA-SG was
found in 82% (61/74) of CCA. Among them, 14% (10/74) had a high SNA-S5G score (101-300), 45%
(33/74) a moderate SNA-5G score (11-100), and 42% (31/74) a negative to low SNA-SG score (0-10).

3.2. High Level of MAL-SG in CCA Was Associated with Shorter Survival of CCA Patients

Correlation of MAL-SG and SNA-SG expression in CCA tissue with the clinical parameters of
CCA patients was analyzed using a x2 (chi-square) test. The patients were divided into high and low
expression groups based on the median MAL-SG or SNA-5G scores in CCA tissues. Our data showed
that expressions of MAL-SG or SNA-SG was not correlated with any age, histological types, or tumor
stages of CCA patients (Table 1). High SNA-SG levels were more frequently observed in females than
in males (p = 0.022).
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Figure 1. Expression of MAL-II binding «2,3-Sialylated Glycan (MAL-SG) and SNA binding
«2,6-Sialylated Glycan (SNA-SG) in CCA tissues. (a) Lectin-histochemistry staining by Maackia amurensis
lectin-II (MAL-II) and Sambucus nigra agglutinin (SNA) were performed in 74 histological-proven CCA
tissues. (b,c) Expression of MAL-SG and SNA-SG were presented as lectinhistochemistry (LHC) score
base on the staining frequency and intensity. (d,e) Survival analysis of CCA patients was performed
using Kaplan-Meier plots and Log-rank tests according to MAL-SG and SNA-SG scores in tumor area.
**significant difference, p < 0.001.

Kaplan-Meier plots and Log-rank test were used to analyze the correlation of MAL-SG and
SNA-SG levels with the survival of CCA patients. The data showed that survival of patients with high
MAL-SG (MAL-5SG score > 50) was shorter than those with low MAL-SG (MAL-5SG score < 50) (p <
0.05, Figure 1d). The median survival of patients with high MAL-SG was 167 days (95% CI, 94-239
days), whereas that of patients with low MAL-SG was 308 days (95% CI, 252-363 days). Different
from MAL-SG, the SNA-SG expression level was not correlated with the survival of CCA patients
(Figure 1e), as median survivals of patients with high SNA-SG (SNA-5G score > 20) and low SNA-SG
score (<20) were 233 days (95% CI, 158-307 days) and 236 days (95% CI, 90-381 days), respectively.
Overall survival of CCA patients was 233 days with 95% CI of 165-300 days. Multivariate survival
analysis using the Cox-proportional hazard model revealed that a high level of MAL-SG independently
predicts the shorter survival of CCA patients regardless of age, sex, histological types, and tumor
stages (p < 0.05). The hazard ratio of patients with high MAL-5G was 1.9 times higher than those with
low MAL-SG (Table 2).
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Table 1. Correlation of MAL-SG and SNA-SG expression and clinical data of CCA patients.

MAL-SG SNA-SG
Variables n Low High p Low High
(<50) (=50) (<200 (=20)

Histological type (n = 74)

Papillary 2 13 9 UM g3 9 gum
Non-papillary 52 23 29 26 26
Age (years) (n = 74)
<56 34 18 16 0.496 17 17 0.668
>56 40 18 22 22 18
Gender (n = 74)
Female 26 13 13 0.864 9 17 0.022
Male 48 23 25 30 18
Tumor size (n = 73)
<5 cm 13 6 7 0.887 5 8 0.233
>5cm 60 29 31 34 26
Tumor stage (n = 74) 0.963
I-11T 29 15 14 15 14
IVA 35 17 18 0.814 19 16
IVB 10 4 6 5 5

Table 2. Cox-proportional hazard model for multivariate survival analysis of MAL-SG in CCA patients.

Variables n Hazard Ratio (HR) 95% (CI) P
Histological type (n=74)
Papillary 22 1 1.117-3.572  0.020
Non-papillary 52 1.997
Age (years) (n = 74)
<56 34 1 0.844-2.288  0.195
>56 40 1.390
Gender (n = 74)
Female 26 1 0.691-1.873  0.613
Male 48 1.137
Tumor stage (n = 74)
I-III 29 1 0.092
IVA 35 0.840 0.499-1.415 0513
IVB 10 2.005 0.930-4.322  0.076
MAL-II expression (n = 74) 1.139-3.246 0.014
Low 36 1
High 38 1.923

3.3. Suppression of Sialylation by a Sialyltransferase Inhibitor Altered the Expression of MAL-SG

As only the expression of MAL-SG was associated with poor clinical outcome of CCA patients,
further experiments were focused on MAL-SG only. Expression of MAL-SG in normal cholangiocyte
(MMNKT1) and CCA cell lines (KKU-055, KKU-213, KKU-213L5, KKU-214, KKU-214L5) was determined
using MAL-II lectin-cyto-fluorescence. The expression of MAL-SG varied among MMNK1 and CCA
cell lines. MMNK1 and KKU-055 expressed a low level of MAL-SG, whereas KKU-213, KKU-213L5,
KKU-214, and KKU-214L5 exhibited a high expression of MAL-5G (Figure 2). To see the roles of
sialylation in CCA cell proliferation, 50 M of 3F-Sia sialyltransferase inhibitor was used to inhibit the
sialylation of high MAL-SG expressed KKU213, KKU213-L5, KKU214, and KKU214-L5 cell lines. The
expression of MAL-SG in CCA cell lines was dramatically decreased after treatment with 3F-5Sia for 48
h, and the suppressive effect persisted until 72 h (Figure 3a). In contrast, proliferation of 3F-Sia-treated
CCA cell lines was comparable with that of DMSO-treated control cells (Figure 3b).
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Figure 2. Expression of MAL-SG in CCA cell lines. MAL-SG expression in MMNKI1 and CCA cell lines
(KKU-213, KKU-214, KKU213-L5, and KKU214-L5) was determined by MAL-II lectin-cyto-fluorescent
staining. The signal of Alexa-448 represented MAL-SG (green) and nucleus was stained by
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Figure 3. Effect of 3Fax-peracetyl-Neu5Ac (3F-Sia) on MAL-SG expression. 3F-5ia, a sialyltransferase
inhibitor, was used to suppress the expression of MAL-SG in CCA cell lines. After 48 h of 50 uM 3F-Sia
treatment, (a) MAL-SG was determined by lectin-cyto-fluorescent staining, the signal of MAL-SG was
shown by Alexa-448 (green), and nucleus was stained by Hoechst-33342 (blue). (b) Proliferation of
CCA cell lines was measured at 0 and 72 h after 3F-Sia treatment by Cell Counting Kit-8. After 3F-Sia
treatment, the cells were treated with 10 uM of 5-FU for another 48 h. (c) Cytotoxicity was measured at
0 and 48 h after 5-FU treatment by WST assay.
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3.4. Suppression of Sialylation Enhances the 5-FU Susceptibility of CCA Cell Lines

To elucidate the role of sialylation on 5-FU susceptibility of CCA cell lines, they were treated
with 50 uM 3F-Sia for 48 h. By this treatment, MAL-SG expression obviously decreased compared
with 1% DMSO-treated control cells. Then, the cells were treated with 10 uM 5-FU and cell viability
was measured 48 h later. The results showed that, after 5-FU treatment, the viability of 3F-Sia-treated
(sialylation suppressed) cells was significantly lower than those of DMSO-treated (high sialylation)
controls (p < 0.05, Student’s t-test; Figure 3c).

4. Discussion

Aberrant sialylation, either «2,3- or «2,6-sialylation, has been reported in various cancers, such as
oral [30], ovary [31], prostate [32], and gastric [33] cancer. In CCA, sialyl Lewis-A (sLe?) or CA19-9
and total sialic acids were elevated in the patients’ sera, and it is currently used as a tumor marker
for detection of CCA [34,35]. Cell surface sLe* was found to play important roles in CCA metastasis,
because the neutralization of sLe® by a specific antibody could suppress in vitro metastatic ability
of CCA cells [2]. These data suggested the possible increase of sialylation in CCA, although the
direct evidence has never been documented. In this study, 2,3 and «2,6-sialylation status of NBD,
HP/DP and CCA were investigated using lectin-histochemistry. The results showed that both MAL-SG
(02,3-sialylated glycan) and SNA-SG (x2,6-sialylated glycan) expression were higher in CCA compared
to NBD and HP/DP, suggesting the possible association between the increase of sialylation and CCA
development. Although the mechanisms underlying the increase of sialylation in CCA were not yet
clearly defined, it is possible to be triggered by the increase of sialic acid synthesis or sialyltransferases
and/or the decrease of sialidases, as was shown previously in other cancers [33,36,37].

As was previously shown, the serum CA19-9 and total sialic acids levels were increased in CCA
patients compared with healthy persons, as such serum sialic acids have been used as the biomarkers
for the diagnosis of CCA [34,35]. In this study, MAL-SG and SNA-SG was highly detected in CCA
whereas they were very low in NBD, this information suggests the possibility of MAL-SG and SNA-5G
as tumor markers for CCA. Thus, further experiments are necessary to investigate the possibility
of detecting MAL-SG or SNA-SG in serum samples, as well as their diagnostic values for CCA.
Identification of carrier proteins for MAL-SG and SNA-SG in patients” tissue and sera is also important
for understanding the biology of MAL-SG and SNA-SG in CCA. Development of lectin-based ELISA
to measure MAL-SG and SNA-SG in clinical samples is necessary to evaluate their diagnostic values
for CCA.

An association between the increased sialylation and cancer progression has been
demonstrated in various cancers as it plays important roles in metastasis, immune evasion,
radioresistance, and chemoresistance [21,37-39]. Elevation of «?2,3-sialylated-glycans via increase
of «2,3-sialyltransferase was associated with metastasis of gastric cancer [33] and the advanced
stage of ovarian cancer [31]. Progression of prostate cancer was promoted by the increase of
«2,6-sialylated-glycans via the overexpression of ST6GAL1 [40]. In this study, higher expression of
MAL-SG in CCA was associated with shorter survival of the patients. To elucidate the roles of sialylation
in CCA progression, we have suppressed sialylation of CCA cell lines by 3F-Sia, a pan-sialyltransferase
inhibitor [41]. 5-FU has been used clinically as a backbone for treatment of CCA as it is an inexpensive
chemotherapeutic drug. The use of 5-FU in combination with other agents is known to improve its
effectiveness on CCA treatment, although the responsive rate varies between 7—43% [42]. Therefore,
in this study we investigated the possibility of using 5-FU in combination with 3F-Sia to improve
the CCA treatment. The results showed that suppression of sialylation by 3F-Sia augmented the
chemosensitivity of CCA cell lines to 5-FU. These results suggest for the first time a role of sialylation in
5-FU resistance of CCA. The role of sialylation in chemoresistance has already been reported in many
cancers [18,19,21]. Not only against 5-FU, sialylation was involved also in the resistance to paclitaxel
and cisplatin of ovarian cancer cells [18,43]. Moreover, gefitinib resistance of ovarian cancer [18]
and colon cancer [21] was promoted by sialylation. Taking all these and our present data together,
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sialylation inhibitor(s) can be used as a chemosensitizer in the new therapeutic strategy for CCA
treatment. The mechanisms by which sialylation regulates chemoresistance of cancer cells are not
well documented. It was reported that glycosylation is important for the function of membrane drug
transporters [44-46]. It is speculated that aberrant glycosylation of ABC transporters may increase their
activity and contribute to the resistance to chemotherapeutic drugs of cancer cells [44,46]. Taking this
information together with our present data, the possible mechanisms of sialylation in 5-FU resistance
of CCA cells can be explained as such that hypersialylation of ABC transporters increases their activity
to export the chemotherapeutic drugs out of the cells. Further in vitro and in vivo studies are needed
to address this hypothesis.

5. Conclusions

We have demonstrated here the increase of «2,3- and «2,6-sialylation in CCA using
lectin-histochemistry for MAL-SG and SNA-SG. The higher expression of MAL-SG was associated
with shorter survival of the patients, suggesting that MAL-SG can be a candidate of a poor prognostic
marker for CCA. Functional analysis suggested that sialylation is involved in chemosensitivity of CCA,
because sialylation inhibition could increase chemosensitivity of CCA to 5-FU. The present results
provide the evidence of the increase of sialylation in CCA, which might be a target for improvement of
CCA chemotherapy to bring better quality of life for CCA patients.
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ROLE OF O-GLCNACYLATION IN CANCER STEM CELLS
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Cancer stem cell (CSC) was found to play important roles in tumor recurrence
and therapeutic resistance. To understand the roles of CSC, several biological and
molecular studies need to be conducted in the isolated CSCs. We have successfully
isolated cancer stem-like cells from cancer cell lines of glioma and
cholangiocarcinoma. The glioma stem-like cell (GSC) and cholangiocarcinoma stem-
like cell exhibited stem cell characteristics, such as expression of stem cell markers
(such as SOX2 and OC3/4), self-renewal and multi-lineage differentiation. In addition,
O-GIcNAcylation, a reversible O-linked glycosylaiton with a single molecule of N-acetyl
glucosamine (GIcNAc), was highly detected in GSCs and dramatically reduced after
FCS-induced differentiation. Suppression of O-GIcNAcylation significantly reduced
the proliferation of GSCs, while enhancement of O-GIcNAcylation could suppress
FCS-induced differentiation of the GSCs. These evidences suggested the
involvement of O-GlcNAcylation in stemness maintenance of GSCs, which possibly
used as a target for glioma treatment in the future.
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