LWL RTUANY T

Tas9ns
miaammuéﬁmuqmmuNauﬁ'm%'umiﬁ'ﬂﬁﬁmwmﬁmmw
wazaManIaunweaslasTiglsamnfisasuuradgan
ﬁﬁéfwﬁwﬁwmsmu@:uuﬂajmima%

Hybrid controller design for stabilization and synchronization

in delayed cellular neural networks with mixed uncertain couplings
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Abstract
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This paper presents the problem of mixed H_/passive exponential function
projective synchronization of delayed neural networks with constant discrete and distributed
delay couplings under pinning sampled-data control scheme. The aim of this work is to focus
on designing of pinning sampled-data controller with an explicit expression by which the
stable synchronization error system is achieved and a mixed H_/ passive performance level
is also reached. Particularly, the control method is designed to determine a set of pinned
nodes with fixed coupling matrices and strength values, and to select randomly pinning
nodes. To handle the Lyapunov functional, we apply some new techniques and then derive
some sufficient conditions for the desired controller existence. Furthermore, numerical

examples are given to illustrate the effectiveness of the proposed theoretical results.

Keywords: mixed H_/passive; exponential function projective synchronization; neural

networks; hybrid coupling; pinning sampled-data control



Contents

UNARED
Abstract
Chapter 1  Executive Summary
1.1 Introduction
1.2 Model description and preliminaries
Chapter 2 Main Results
2.1 Mixed H_ and passive performance analysis

2.2 Mixed H_ and passive controller design

Appendix

10
10
12
14



CHAPTER 1

Executive Summary

1.1 Introduction

In the recent decades, neural networks have been extensively investigated
and widely applied in various research fields, for instance, optimization prob-
lem, pattern recognition, static image processing, associative memory, and signal
processing [1-3]. In many engineer applications, time delay is one of the typical
characteristics in the processing of neurons and plays an important role in causing
the poor performance and instability or leading some dynamic behaviours such
as chaos, instability, divergence, and others [4-8]. Therefore, time-delay neural
networks have been received considerable attention in many fields of application.

Amongst all kinds of neural networks behaviours, synchronization is a
significant and attractive phenomenon, and has been studied in various fields of
science and engineering [9,10]. The synchronization in the network is categorized
into two types namely inner and outer synchronization. For inner synchroniza-
tion, it is a collective behaviour within the network and most of the researches
are focused on this type [11,12]. For outer synchronization, it is a collective be-
haviour between two or more networks [13-15]. Moreover, the drive and response
system could be synchronized up to a scaling factor viewed as projective synchro-
nization. In [16-18], function projective synchronization was studied in which the
synchronization between master and slave systems could behave towards a scal-
ing function. Since one property of the scaling function is unpredictability, the
improvement of safety communication is obtained.

Passivity theory is an excellent way to determine the stability of a dy-
namical system. It uses only the general characteristics of the input-output dy-

namics to present solutions for the proof of absolute stability. Passivity theory



formed a fundamental aspect of control systems and electrical networks, in fact
its roots can be traced in circuit theory. Recently, a lot of research has been
conducted in relation to designing a passive filter for different kinds of systems,
for example time varying uncertain systems, nonlinear systems and switched sys-
tems [19-21].The mixed H,, and passive filtering problem for the continuous
time singular system has been investigated [22-25]. The deterministic input is
presented with bounded energy through the H., setting together with the pas-
sivity theory. As stated above, a lot of research has been conducted in this area.
However, relatively little research has been conducted into the problem of mixed
H,, and passive filtering design in discrete time domain. Consequently, this pa-
per attempts to highlight the benefits of the mixed H,, and passive filters for
discrete time impulse NCS with the plant being a Markovian jump system.

Nowadays, continuous-time control, for instance, feedback control, adap-
tive control, etc., has been mainly used for synchronization analysis. Because
the control input must be continuous, continuous-time controllers are imposed to
always ensure getting the continuous control input in real-time situations. More-
over, due to advanced digital technology in measurement, the continuous-time
controllers could be represented discrete-time controllers to achieve more stabil-
ity, performance, and precision. So, plentiful researches in sampled-data control
theory have been conducted. By using sampled-data controller, the sum of trans-
ferred information is dramatically decreased and bandwidth usage is consistent.
It leads to obtain the the control being more reliable and handy in reality [26-30].
While, pinning control has been introduced to deal with the problem of large num-
ber of controllers added to large size of neural network structure [31-35].In [36],
Pinning stochastic sampled-data control for exponential synchronization of di-
rected complex dynamical networks with sampled-data communications has been
addressed. The problem of exponential H,, synchronization of Lur’e complex
dynamical networks using pinning sampled-data control has been investigated
in [37]. However, pinning sampled-data control technique has not yet been im-
plemented for neural networks with inertia and reaction-diffusion terms. These
motivate us to further study of the present our work.

As discussions mentioned above, this is the first time that mixed H,, /passive



exponential function projective synchronization of delayed neural networks with
hybrid coupling based on pinning sampled-data control has been studied. There-
fore, we focus on this topic in order to make clearly comprehension and purposes

of this paper are given as follows:

- To solve the synchronization control problem for neural networks, we intro-
duce a simple actual mixed H,,/passive performance index and we make a

comparison with a single H,, design.

- For exponential function projective synchronization problem, using pinning
sampled-data controller as external disturbances and two types of time-
varying, namely mixed, and discrete and distributed time-varying delays,
are simultaneously considered in both the neural networks nodes and hy-
brid asymmetric coupling. Our considered exponential function projective

synchronization problem is different from the time-delay case in [28,30].

- For our control method, the exponential function projective synchronization
is deeply studied via mixed nonlinear and pinning sample-data controls

which is different from the previous works [28,36,37].

Based on constructing the Lyapunov-Karsovskii functional, the param-
eter update law and the method of handling Jensen’s and Cauchy inequalities,
some novel sufficient conditions for the existence of the exponential function pro-
jective synchronization of neural networks with mixed time-varying delays are
achieved. Finally, numerical examples are given to present the benefit of using

pinning sample-data controls.



1.2 Model description and preliminaries

Notations:

The notations used throughout this work are given as follows: R"™ denotes
the n—dimensional space; A matrix A is symmetric if A = AT where superscirpt
T stands for transpose matrix; Apax(A) and A\yin(A) stand for the maximum and
the minimum eigenvalues of matrix A, respectively. z; denotes the unit column
vector having one element on its ith row and zeros elsewhere; C([a, b], R™) denotes
the set of continuous functions mapping the interval [a, b] to R™; £5]0, 00) denotes
the space of functions ¢ : RT™ — R™ with the norm |¢[|z, = [[;* [¢(0)|* d6] %;

1/2
For z € R", the norm of z denoted by ||z||, is defined by ||z|| = [Z?:l |z,|2} ;
12(t + )l = max{ sup l=(t + €)II%, sup 1t + )lI°}; In

— max{71,72,h}<e<0 — max{71,72,h}<e<0
denotes an N —dimensional identity matrix; the symbol * denotes the symmetric

block in a symmetric matrix. The symbol ® denotes the Kronecker product.
Given delayed neural networks containing /N identical nodes with hybrid

couplings as follows:

([ 4i(t) = —Da(t) + Af (x:(t) + Bf (z:(t — 7)) + C [ ey F(@i(6))d0

) )
+c1 Z Gij lej (t) +co z 9ij L2xj (t - Tl(t))
7=l =1 (1.1)
L @ '
+63 Z gij Lg ft—Tg(t) l'j(g)d@ + Ul(t) + wi(t),
j=1
yz<t> = JZEZ(t), 7 = 1, 2, Ce ,N,

\

where z;(t) € R"™ and u;(t) € R" are the state variable and the control input of
the node i, respectively. y;(t) € R' are the outputs, D = diag(d;,ds, . ..,d,) > 0
denotes the rate with which the cell ¢ resets its potential to the resting state
when being isolated from other cells and inputs. A, B and C' are connection
weight matrices. 71(t) and 7»(t) are the time-varying delays.

f(x:() = (filxin(4), f2(zi2()), - -+, falwin(+))]T denotes the neuron activation
function vector, the positive constants ci,co and c3 are the strengths for the
constant coupling and delayed couplings, respectively, w;(t) is the system external
disturbance which belongs to £[0,00), J is a known matrix with appropriate

dimension, Ly, Ly, Ly € R™ "™ are inner-coupling matrices with constant elements



and Ly, Ly, L3 are assumed as positive definite matrices, G@ = (gg-z)) Nxn (g =

1,2, 3) are the outer-coupling matrices and satisfy the following conditions

gfj Z%J, q=1,2,3,
1.2
gzz - Z gz]) 2.7':1727-"7]\[7 q:17273 ( )
J=1j#i

The following assumptions are made throughout this paper.

Assumption 1. The discrete delay 71 (t) and distributed delay 15(t) are satisfactory
to the following conditions 0 < 1 (t) < 7, T1(t) < 71, and 0 < (1) < 75.

Assumption 2. The activation functions f;(-), i = 1,2, ...,n, satisfy Lipschitzian
with the Lipschitz constants f; > 0:

1fi(x(0)) = fila@®)y@))| < Fllz(0) — at)y(0)]],
where F' is positive constant matriz and F = diag{f;, i=1,2,...,n}.

The isolated node of network (1.1) is given by the following delayed neural

network:

{ $(t) = —Ds(t)+ Af(s(t) + Bf(s(t — ma()) + C [, F(s(60))db,
ya(t) = Js(b),

where s(t) = (s1(t),s52(¢),...,5,(t))" € R™ and the parameters D, A, B and C

and the nonlinear functions f(-) have the same definitions as in (1.1).

(1.3)

The network (1.1) is said to achieve function projective synchronization

if there exists a continuously differentiable positive function «(t) > 0 such that

where ||.|| stands for the Euclidean vector norm and s(t) € R"™ can be an equilib-

rium point. Let z;(t) = z;(t) — a(t)s(t), be the synchronization error. Then, by



substituting it into (1.1), it is easy to get the following:

Zi(t) = @i(t) — a(t)s(t) — a(t)s(t),
= —Dzi(t) + Alf (:(t)) — a(t) f(s()] + Blf (z:(t — (1))
—a(t)f(s(t = ()] + C i, [f (@:(0)) — a(t) f(s(9))] db

N N
o1 Y0 00 Lizi(t) + 0 3 98 Lozt — 7u(t)) (1.4)
=1 i=1

’

N

e ) 9 Ls [ 2(0)d0 — G(t)s(t) + wi(t) + wilt),
=

| 3i(t) = Jz(t),

where §i(t) = yi(t) — ys(0).
Regarding to the pinning sampled-data control scheme, without loss of

generality, the first [ nodes are chosen and pinned with sampled-data control

u;(t), expressed as the following form
wi(t) = un (t) + up(t), i=1,2,.., N, (1.5)
where
un(t) = a(t)st) — Alf(a(t)s(t)) — at(t)f(s(ﬂ)} — Blf(a(t)s(t — 7 (1))
—a(t)f(s(t = m(2))] - C /w(t) [f(a(t)s(8)) — a(t) f(s(6))] db,

i=1,2,...,N,

Kizi(ty), te <t <tpe, i=12 .1,
upp(t) = lfe) * b

0, i=1+1,1+2,...,N,

where K; is a set of the sampled-data feedback controller gain matrices to be
designed, for every i = 1,2,..., N, z;(tx) is discrete measurement of z;(¢) at the
sampling interval £,. Denote the updating instant time of the zero-order-hold
(ZOH) by t, satisty

0:t0<t1<---<tk<limk_>+ootk=+oo,
tppr —te = hiy < h, VE >0,

where h > 0 represents the largest sampling interval.
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By substituting (1.5) into (1.4), it can be derived that

( 4(t) = =Dzi(t) + Af(2(1) + Bf (z:(t = 1a(8) + C [, ) [(2:(0))d8
ter Y 9l iz () + 2 3 037 Loz (= 7u(8)) + wilt)
+e3 % 0D Ls [! 0 2(0)d0 + Kzt — h(t), i=1,2,3,....1,
(1) = =Dzt) + Af(z(0) + Bf (2t = (1) + C [,y J(z:(6))db

N N
o1 Y g Lizi(t) +ea X 92 Lozi(t — m1(1)) + wi(t)
7=1 =1

(1.6)

N
tes Y g Ly S 2i(0)d0, i=1+1,14+21+3,... N,
=1

\

where h(t) =t — t; satisfies 0 < h(t) < h, and

F(t) = fla(t) — flaf
fllt—n() = flz(t—n(t))
F(0) = f(x:(0) — fla(t)s(0)).

where 0 = max{7, 7, h} and ¢;(0) € C([-0,0],R"), i =1,2,...,N.
Let us define

K = diag{ Ky, Ks,...,, K, Op, ...,0,},
\ g S ———

| times N—I times
4 (1) F1() n(t)
=] 29 feo = | B e = | e

Zn(t) flan () wn (1)



Then, with Kronecker product, we can reformulate the system (1.6) as follows

(

£(t) = —(Iy ® D)2(t) + (Iy ® A)f(2(t)) + (In ® B) f(2(t — 71(t)))
+(In ® C) [, [(2(8)) d6 + e (GM @ Ly)=(t)

+6(G? @ Ly)(t —7i() + e5(G® @ Ly) f). ) =(0)d8 (1.8)
VR (- h(t)) + w(t),
y(t) = Jz(0).

\

So far the following definitions and lemmas are introduced to be served for the

proof of the main results.

Definition 1.2.1. ( /30]). The network (1.1) with w(t) = 0 is exponential function
projective synchronization, if there exist two constants p > 0 and @w > 0 such
that

2@ < pe™="z(e)[la-

Definition 1.2.2. ( /28]). For given scalar o € [0, 1], the error system (1.8) is ex-
ponential function projective synchronization and meets a predefined H, /passive
performance index v, if the following two conditions can be guaranteed simulta-

neously:

(i) the error system (1.8) is exponential function projective synchronization in
view of Definition 1.2.1.

(i1) under zero original condition, there exists a scalar v > 0 such that the

following inequality s satisfied:

Tp To
| [= o 0o +20 - oni @u] i = —2 [ o w(v)] @)
for any T, > 0 and any non-zero w(t) € L4[0, 00).

Lemma 1.2.3. ( /5], Cauchy inequality). For any symmetric positive definite
matric N € M™" and x,y € R™ we have

+27y < 2T Na+y"' N7y



Lemma 1.2.4. ( [5]). For any constant symmetric matric M € R™™, M =
MT > 0, b > 0, vector function z : [0,b] — R™ such that the integrations

concerned are well defined, one has

(/Osz(SWS)TM (/ObZ(s)ds) < b/osz(s)Mz(s)ds.

Lemma 1.2.5. ( [8]). For a positive definite matriz S > 0 and any continuously
differentiable function x : [a,b] — R™ the following inequalities hold

b-T : I —rgo 3 —rq= 5 _rq=
(s)Sz(s)ds > b_a:15:1+b_a:25~ - =55 53,
/ / s)dsdf > 2={SZ,+4=LSE5 4+ 6285 g,
where
=1 = 2(b) — z(a),
Zo = z(b) + 2(a) — 7% fabz(s)ds,
S5 = 2(b) — z(a) + = f:z(s f fg s)ds db,
Ey=2(b) — 57 sz(s)ds,
=5 = 2(b) + afa z(s)ds— (b p f fg s)ds db,
6 = 2(b) — bif z(s)ds + = (b_ f fe s)ds df — = a)3 f fe f A)d\ds db.

Lemma 1.2.6. ( /5], Schur complement lemma). Given constant symmetric ma-
trices X,Y, Z with appropriate dimensions satisfying X = X7, Y =Y7T > 0, one
has X + ZTY =17 < 0 if and only if

X zZT -Y Z
<0 or < 0.
7 =Y 7T X



CHAPTER 2
Main Results

In this section, we present control scheme to synchronize the neural net-
works (1.1) to the homogenous trajectory (1.3). Then, we will give some suffi-
cient conditions in the exponential function projective synchronization of neural
networks with mixed time-varying delays and hybrid coupling. To simplify the

representation, we introduce some notations as follows:

X(t) = [ZT<t), / / / s)dsde, / / / Ndrdsdd]

n(t) = [ZT(t), A(t—n(), 2 (t—n), 2 (t—h(t), 2 (t—h), (),

/ / / 5)ds df. /// ) dAdsdo,
/ /th/ ) ds b, /th// ) dhdsds,
| s W]

where z; € R is defined as z; = [Onx(i—1)ns Iny Onx(a—in] for i =1,2,...,14.
2.1 Mixed H,, and passive performance analysis
Theorem 2.1.1. Given constants 1y, 7e, 71, h,y and o € [0,1], if real positive ma-

trices P € R™ " Qo,Qi, S0 Siy, Ry € R™"™ (i = 1,2,3), positive constants &;
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= 1,2,...,6), and real matrices Ty, Ty with appropriate dimensions, such that:

Ty Yo Yz Y Y5 Tig Tip |
x —1 0 0 0 0 0
* * —eol 0 0 0 0

T = * * x —e3l 0 0 0 <0, (2.10)
* * * * —eqd 0 0
* * * * * —e5l 0
* * * * * x  —egl |

where

(

T = Ele I, Tip=In®@TA Ti3s=Iy®T\B, Tiy=Iy®T\C,

Tis =In Q@A Tig=InQ@TeB, Ti; =1y ®T5C,

1, = 0T PO, + 0T PO, — 015,05 — 075,04 + 21 Sg21 — 21 Spzs,

I = 2{(Qo + Q2)z1 + 2 FT(Q1 + Q) Fz1 — 25 Qozs — (1 = 71) 23 Qa2
— 20 (FTQ1F)z3 — (1 — 7123 (FTQ3F ) 22,

I3 = 7220 (FTRiF) 2 — 2, (FT R F) 213,

[Ty, = h?2E(Sy + 0.5Ry) 26 — O1' 5,05 — 307 5,04 — 5071 5,0
—20T R0, — 40T, Ry05 — 601, R,0,3,

[l = 7222 (S5 + 0.5R3) 26 — O 5305 — 3015504 — 507,530, (2.11)
—207,R301, — 40T, R30,5 — 607 R304,

Il = 2{ T0Co + CET 21 + 2 ToCo + CL T 26 + 2T T1 K2y 4+ 2 KT T
+26TT2KZ4 + 2P KTTT 26 + 21T 20 + 25T 2 — 21T 26 — zﬁTTszl
+2d Tozy + 28, T 26 — 28 Tozg — 2L T3 26,

Iy = (e1 +ed)z{ (In ® FTF)z1 + (e2 + €5)23 (In @ FTF)z,
+(e3 +€6) 215 (In @ FTF) 23,

g = 0(J21)T(Jz1) — (1 —o)y(J21) 214 — (1 — o)v2Ly(J21) — 22l 214,

Co = [c1(GV @ Ly) — (Iy ® D)]z1 + c2(G® @ La)zy + ¢c3(G® @ Ls) 213,
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with
_[,T T T TN _[,T T _ T T_ T 2.7 _ TIT
O1 =21 ,27 .28 , 20", ©2 =25, 21 — 23, Tz} — 27, 0.5772] — 23],
O3 =21 — 24, Oy = z4 — 25, O5 =21 — zs,
_ 2 _ 6 12 _
O =21+ 25 — 5210, O7 =21 — 25+ 3210 — 32211, Os =21 — 23,
_ 2 _ 6 12 _ 1
Oy =21+ 23— 2, @10—21—2’34‘;27—?28, Ou =21 — 32,

_ 2 6 _ 3 24 60 _ 1
O12 =21+ 525 — 37210, ©O13 =21 — 325 + 35210 — 33211, O =21 — 2,
60

— 2, 6 — 5 3 24, _ 60
O =21+ 27 7278 O =21 — a7 + 7248 ~ 1379
then, the error system (1.8) is exponential function projective synchronization

and meets a predefined Ho, /passive performance indez .

2.2 Mixed H,, and passive controller design

Based on Theorem 2.1.1, the pinning sampled-data controller design, to ensure
the exponential function projective synchronization of delayed neural networks

(1.1), is explained.

Theorem 2.2.1. Given constants 11,72, 71, h,y and o € [0,1], if real positive ma-
trices P € R™ 4 Qo,Q;, S Si, Ry € R™™ (i = 1,2,3), positive constants ¢;

(1=1,2,...,6), and real matrices Y, Z with appropriate dimensions, such that:

Yu Tiz Tz Tu Tis T Tir ]
*x —el 0 0 0 0 0

* * —eol 0 0 0 0

T=| %« x x —e3l 0 0 0 | <o, (2.12)
* * * * —eqd 0 0
* * * * * —esl 0

* * * * * * —eel |
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where

(

\

Yo=Y, 1L

Yio=In®BYA, Y5 =In® Y B, Yiu=Iv®pYC,

Yis = Iy ® Y A, Y6 = Iy ® BoY B, Yi; = Iy ® 3YC,

I, — 67 PO, + 6T PO, — O75,0, — O75,0, + 27 Syz — 2T Sz,

Iy = 2{ (Qo + Q2)21 + 2] FT(Q1 + Q3)Fz1 — 25 Qozs — (1 — 71)23 Q220
—z3 (FTQ1F)zs — (1 = 71)23 (FTQ3F) s,

I3 =722l (FTR F)z; — 25(FT Ry F) 213,

M, = h2:T(S, + 0.5Ry)z — 075,05 — 3075,05 — 567.5,0+
207, RyO11 — 467, RyO15 — 667, RyO1s,

My — 72:7(Sy + 0.5Rs) 26 — O7 5305 — 367550, — 507, 5,01, (2.13)
207, RyO14 — 467, RyO15 — 607, Ry,

g = 12T YCo + B1CIY T2y + BozlYCo + BoCEY T 26 + 8121 Z 24
+0128 2T 2 + Bozl Z2y + o2l ZT 26 + Br2] Y 214 + B2, Y T2y
—B12lY zg — B128 Y 21 + Bo2d Y zua + BozlyY T 26 — oz Y 2
—Bazg Y 2,

[; = (g1 +e4)2l (In @ FTF)z + (69 + €5)23 (Iy @ FTF) 2y
+(e3 +e6) 215 (In @ FTF) 23,

Mg = o(J21)T(Jz1) — (1 —o)y(J21) 214 — (1 — 0)v2Ly(J21) — 22l 214,

Co = [c1(GV @ Ly) — (In ® D)]z1 + c2(G® @ Ly)zy + c3(G® @ Ls) 213,

with
_[,T T T ,TNT _[,T T _ T T_ T 2.7 _ TIT
O1 =21 ,27 .28 , 20", ©2 =25, 2 — 23, T2y — 27, 0.5772] — 23],
O3 =21 — 24, Oy = 24 — 25, O5 =21 — zs,
_ 2 _ 6 12 _
O =21+ 25 — 5210, O7 =21 — 25+ 3210 — 32211, Os =21 — 23,
_ 2 _ 6 12 _ 1
Oy =21+ 23 — 2, @10—21—2’34‘;27—?28, Ou =21 — 32,

_ 2 6 _ 3 24 60 _ 1
O =21+ 325 — 35210, O13 =21 — 35 + 32210 — g2, O =21 — 27,

— 2, 6 — 5 3 24, _ 60
O =21+ 27 72285 O16 = 21 e g i R s BT

then, the synchronization error system (1.8) is exponentially stable and meets a

predefined Hoo /passive performance index v. Meanwhile, the designed controller

gains are given in the following:

K=Y1Z
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Abstract

This paper presents the problem of mixed Huo/passive exponential function
projective synchronization of delayed neural networks with constant discrete and
distributed delay couplings under pinning sampled-data control scheme. The aim of
this work is to focus on designing of pinning sampled-data controller with an explicit
expression by which the stable synchronization error system is achieved and a mixed
Heo/passive performance level is also reached. Particularly, the control method is
designed to determine a set of pinned nodes with fixed coupling matrices and
strength values, and to select randomly pinning nodes. To handle the Lyapunov
functional, we apply some new techniques and then derive some sufficient
conditions for the desired controller existence. Furthermore, numerical examples are
given to illustrate the effectiveness of the proposed theoretical results.

Keywords: Mixed H../passive; Exponential function projective synchronization;
Neural networks; Hybrid coupling; Pinning sampled-data control

1 Introduction

In the recent decades, neural networks (NNs) have been extensively investigated and
widely applied in various research fields, for instance, optimization problem, pattern
recognition, static image processing, associative memory, and signal processing [1-4]. In
many engineering applications, time delay is one of the typical characteristics in the pro-
cessing of neurons and plays an important role in causing the poor performance and in-
stability or leading to some dynamic behaviors such as chaos, instability, divergence, and
others [5-9]. Therefore, time-delay NNs have received considerable attention in many
fields of application.

In the research on stability of neural networks, exponential stability is a more desired
property than asymptotic stability because it provides faster convergence rate to the equi-
librium point and gives information about the decay rates of the networks. Hence, it is
especially important, when the exponential stability property guarantees that, whatever
transformation happens, the network stability to store rapidly the activity pattern is left
invariant by self-organization [10, 11].
© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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Amongst all kinds of NN behaviors, synchronization is a significant and attractive phe-
nomenon, and it has been studied in various fields of science and engineering [12—14].
The synchronization in the network is categorized into two types namely inner and outer
synchronization. For inner synchronization, it is a collective behavior within the network
and most of the researchers have focused on this type [15, 16]. For outer synchronization,
it is a collective behavior between two or more networks [17—-19].

Furthermore, function projective synchronization (FPS), a generalization of projective
synchronization (PS), is one of the synchronization techniques, where two identical (or
different) chaotic systems can synchronize up to a scaling function matrix with different
initial values. The technique has been widely studied to get a faster chemical rate with
its proportional property. Apparently, the unpredictability of the scaling function in FPS
can additionally improve the rate of chemical reaction. Recently, many researchers have
focused on the exponential stability on function projective synchronization of neural net-
works [20-22].

Passivity theory is an excellent way to determine the stability of a dynamical system. It
uses only the general characteristics of the input—output dynamics to present solutions for
the proof of absolute stability. Passivity theory formed a fundamental aspect of control sys-
tems and electrical networks, in fact its roots can be traced in circuit theory. Recently, a lot
of research has been conducted in relation to designing a passive filter for different kinds
of systems, for example time-varying uncertain systems, nonlinear systems and switched
systems [10, 11, 23]. On the other hand, the problem of H., control has been many dis-
cussed for neural networks with time delay because the H., controller design looks to
reduce of the effects of external inputs and minimizes the frequency response peak of the
system. Recently, [24] was published. For these reasons, lately the passive control prob-
lem and H, control problem came to be solved in a unified framework. Then the mixed
H and passive filtering problem for the continuous-time singular system has been inves-
tigated [25-27]. The deterministic input is presented with bounded energy through the
H, setting together with the passivity theory [27, 28]. As stated above, a lot of research
has been conducted in this area. However, relatively little research has been conducted
into the problem of mixed Hy, and passive filtering design in discrete-time domain. Con-
sequently, this paper attempts to highlight the benefits of the mixed H., and passive filters
for discrete-time impulse NCS with the plant being a Markovian jump system.

Nowadays, continuous-time control, for instance, feedback control, adaptive control,
has been mainly used for synchronization analysis. The main point in implementing such
continuous-time controllers is that the control input must be continuous, which we can-
not always ensure in real-time situations. Moreover, due to advanced digital technology in
measurement, the continuous-time controllers could be represented discrete-time con-
trollers to achieve more stability, performance, and precision. So, plentiful research in
sampled-data control theory has been conducted. By using a sampled-data controller, the
sum of transferred information is dramatically decreased and bandwidth usage is con-
sistent. It renders the control more reliable and handy in real world problems. In [29],
one studied dissipative sampled-data control of uncertain nonlinear systems with time-
varying delays, and so on [30-34]. Meanwhile, pinning control has been introduced to
deal with the problem of large number of controllers added to large size of neural net-
work structure [35-39]. In [40], pinning stochastic sampled-data control for exponential

synchronization of directed complex dynamical networks with sampled-data communi-
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cations has been addressed. The problem of exponential H,, synchronization of Lur’e
complex dynamical networks using pinning sampled-data control has been investigated in
[41]. However, a pinning sampled-data control technique has not yet been implemented
for NNs with inertia and reaction—diffusion terms. These motivate us to further study this
in the present work.

As discussed above, this is the first time that mixed Hy/passive exponential function
projective synchronization (EFPS) of delayed NNs with hybrid coupling based on pinning
sampled-data control has been studied. Therefore, as a first attempt, this paper is meant
to address this problem and the main contributions are summarized now:

- To solve the synchronization control problem for NNs, we introduce a simple actual
mixed Ho/passive performance index and we make a comparison with a single Hy
design.

- We deal with the EFPS problem for NNs, which is both discrete and distributed
time-varying delays consider in hybrid asymmetric coupling, is different from the
time-delay case in [25, 28].

- For our control method, the EFPS is carefully studied via mixed nonlinear and pinning
sample-data controls, which is different from previous work [34, 40, 41].

Based on constructing the Lyapunov—Karsovskii functional, the parameter update law
and the method of handling Jensen’s and Cauchy inequalities, some novel sufficient con-
ditions for the existence of the EFPS of NNs with mixed time-varying delays are achieved.
Finally, numerical examples are given to present the benefit of using pinning sample-data
controls.

The rest of the paper is organized as follows. Section 2 provides some mathematical
preliminaries and a network model. Section 3 presents the EFPS of NNs with hybrid cou-
pling based on pinning sampled-data control. Some numerical examples with theoretical

results and conclusions are given in Sects. 4 and 5, respectively.

2 Problem formulation and preliminaries

Notations: The notations used throughout this work are as follows: R” denotes the n-
dimensional space; A matrix A is symmetric if A = AT where the superscript T stands for
transpose matrix; Amax(A) and Apin(A) stand for the maximum and the minimum eigen-
values of matrix A, respectively. z; denotes the unit column vector having one element
on its ith row and zeros elsewhere; C([a, b], R") denotes the set of continuous functions
mapping the interval [a, b] to R"; L,[0,00) denotes the space of functions ¢ : R* — R”
with the norm ||¢]|z, = [foOO |¢(9)|2d9]%; For z € R”, the norm of z is defined by |z|| =
2 121725 12t + €)lla = Max{SUp_ ey o <e <o 12(E + 1% SUP_ paiey iy <e <o 12(E +
€)|1?}; In denotes an N-dimensional identity matrix; the symbol * denotes the symmet-
ric block in a symmetric matrix. The symbol ® denotes the Kronecker product.

Delayed NNs containing N identical nodes with hybrid couplings are given as follows:

#i(t) = —Dxi(t) + Af (x:(8)) + Bf (it = 11 (9)) + C [ f (x:(0)) O
ta Zﬁlgi(,’l)lej(t) +co Z,I»\il gi(lz)szj(t - 7(2))
ves YN g0 Ls [ 0 %(0)d6 + ui(e) + (D),

yi(t) = Jxi(t), i=1,2,...,N,
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where x;(t) € R" and u;(t) € R" are the state variable and the control input of the node i,
respectively. y;(t) € R! are the outputs, D = diag(dy,d>,...,d,) > 0 denotes the rate with
which the cell i resets its potential to the resting state when being isolated from other cells
and inputs. A, Band C are connection weight matrices. 71 (¢) and 7,(¢) are the time-varying
delays. £(x;(-)) = (A (xi1 (), o(xi2()), - .., fu(®in(-))]T denotes the neuron activation function
vector, the positive constants ¢, ¢ and c3 are the strengths for the constant coupling and
delayed couplings, respectively, w;(¢) is the system’s external disturbance, which belongs
to L[0,00), J is a known matrix with appropriate dimension, Ly, Ly, L3 € R"*" are inner-
coupling matrices with constant elements and L;, L,, L3 are assumed as positive diagonal
matrices, G = (gi(jq))J\[X ~ (g =1,2,3) are the outer-coupling matrices and satisfy the fol-

lowing conditions:

g’ >0, i4j,g=1,23,
@_ _yN g9 ii-1,2,...,Nq=123 @
i = j=1,j¢ig,7 , Lj=L12,...,N,q=1,2,3.

The following assumptions are made throughout this paper.

Assumption 1 The discrete delay 7;(¢) and distributed delay 7,(¢) satisfy the conditions

0<ti(t) <7, t1(t) < T1,and 0 < 1o (t) < 7o.

Assumption 2 The activation functions f;(-), i = 1,2,..., n, satisfy the Lipschitzian condi-

tion with the Lipschitz constants A; > 0:

’

fi (x(0)) —fi((@)y(©)) | < Ai]|x(6) — a(t)y(0)

where A is positive constant matrix and A = diag{x;,i=1,2,...,n}.

The isolated node of network (1) is given by the following delayed neural network:

5(6) = ~Ds(0) + AF(0) + BFs(t — 1) + C J1  F(5(6)) B,
j/s(t) = ]S(t):

®3)

where s(£) = (s1(£),82(2),...,5,(£))" € R" and the parameters D, A, B and C and the non-
linear functions f(-) have the same definitions as in (1).
The network (1) is said to achieve FPS if there exists a continuously differentiable posi-

tive function «(¢) > 0 such that

, i=1,2,...,N,

Jim [z:(6)]| = lim [[i(e) - ec®)s(2)

where || - || stands for the Euclidean vector norm and s(¢) € R” can be an equilibrium point.

Let z;(t) = x:(¢£) — a(¢)s(t), be the synchronization error. Then, by substituting it into (1), it
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is easy to get the following:

£(t) = (1) - &(8)s(8) — (D)5(0)
= ~Dzi(t) + A[f(x:(8)) - ¢ (O)f (s(2)] + BIf (xit — 71(£))
—a@f (st - @))] + C [L  [fx:(0)) - ()f (s(0))] dO
+a Zj\:[lgi(jl)l‘lzj(t) +e Y gi(,-z)Lzzj(t - 11(8))
res YN 80 s [ 0 5(0) d0 — G(D)s(t) + ui(8) + wi(D),
3i(t) = Jzi(t),

(4)

where §;(¢) = yi(8) - y,(2).

Remark 1 If the scaling function «(t) is a function of the time ¢, then the NNs will realize
FPS. The FPS includes many kinds of synchronization. If «(f) = « or «(f) = 1, then the
synchronization will be reduced to the projective synchronization [17, 18, 26] or common

synchronization, [36, 37], respectively. Therefore, the FPS is more general.

Regarding to the pinning sampled-data control scheme, without loss of generality, the
first [ nodes are chosen and pinned with sampled-data control u;(¢), expressed in the fol-

lowing form:
ui(t) =un(t) + up(t), i=12,...,N, (5)
where

uin(t) = 6(t)s(e) — A[f (e (2)s(2)) — a(£)f (s(2)) ]
= B[f (a(®)s(t - 11 (1)) — (8)f (s(t — 11 (2))) ]

t

-C ( )[f(a(t)s(@)) - a(t)f(s(@))] do,

-1
i=1,2,...,N,
Kizi(ty), tr<t<tw1,i=12,...,1
up(t) =

0, i=l+1,l+2,...,N,

where K; is a set of the sampled-data feedback controller gain matrices to be designed,
for every i =1,2,...,N, zi(f) is discrete measurement of z;(£) at the sampling interval #.

Denote the updating instant time of the zero-order-hold (ZOH) by #; satisfying

O=fy<ti<---<tr< lim £ =+00,
k—+00

b1 —tk=hy <h, Vk=>0,

where /1 > 0 represents the largest sampling interval.
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By substituting (5) into (4), it can be derived that

&i(t) = ~Dzi(t) + Af (z:(t) + Bf za(t - i) + C [, F(@:(0)) db

+c1 Zﬁlg};)lej(t) +¢ Zﬁlgf]g)ngj(t —11(8)) + w;(¢)

res YN g Ls [ 0 5(0)do + Kzt - h(®)), i=1,2,3,...,1, ©
&(t) = —Dzi(t) + Af (z:(8)) + Bf (zi(t - 11 (1)) + C [, F(2:(0)) do

+c1 Zﬁlgfjl)lej(t) +Cy Z?:I1gi(,'2)L22j(t —11(2)) + wi(t)

+03 Zﬁlgi(ls)Lg f;rz(t) z(0)do, i=1+1,1+2,01+3,...,N,

where h(t) = t — t; satisfies 0 < h(t) <}, and

F(z(®) = f(x:0) —f(®)s(0)),
Fla(t- 1)) =f(x(t - ®)) - £ (€@s(t - 0 (),
F(@(0)) =f (%:(0)) ~ f ((8)s(0)).

The initial condition of (6) is defined by
Zi(e) = ¢l(9)’ _9_ =< 0 =< 0, (7)

where 8 = max{ty, 72, 4} and ¢;(0) € C([-0,0],R"), i=1,2,...,N.
Let us define

K =diag{Ki,K3,...,K;,0y,...,0,},
—_— —

limes N~ tmes
210 J@() 1 (0)
o Z2:(t) ) - f(zZ:(o) e | @Y
2x(0) Flon() o)

Then, with the Kronecker product, we can reformulate the system (6) as follows:

2(t) = —(Iy ® D)z(t) + (Iy ® A)f (2(t)) + (In ® B)f (z(t — 11(1)))
+(In®C) [, [(2(6)d6 +c1(GV @ L1)z(2)
+6(G? @ Ly)z(t - (1) + cs(GY ® Ly) [, 2(0) do ©)
+ Kz(t = h(t)) + o(t),

y(t) = Jz(2).

The following definitions and lemmas are introduced to serve for the proof of the main

results.

Definition 2.1 ([33]) The network (1) with w(£) = 0 is an exponential function projective
synchronization (EFPS), if there exist two constants ¢ > 0 and @ > 0 such that

|2@)]” < ne™|=(e)]

Page 6 of 26
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Definition 2.2 ([34]) For given scalar o € [0, 1], the error system (8) is EFPS and meets
a predefined Hy/passive performance index y, if the following two conditions can be
guaranteed simultaneously:
(i) the error system (8) is EFPS in view of Definition 2.1;
(ii) under the zero original condition, there exists a scalar y > 0 such that the following
inequality is satisfied:

Tp Tp
/0 [-o7" ©3(8) + 2(1 - 0)y¥ (D (t)] dt = —y* /0 [0 (H)o(8)] dt, (9)
for any 7, > 0 and any non-zero w(t) € £3[0, 00).

Lemma 2.3 ([6], Cauchy inequality) For any symmetric positive definite matrix N € M"*"
and x,y € R" we have

+2xTy <x"Nx+y"N1y.

Lemma 2.4 ([6)). For any constant symmetric matrix M € R"™", M = MT >0, b >0, vec-
tor function z : [0,b] — R such that the integrations concerned are well defined, one has

b T b b
(/0 ZL(s) ds) M(/(; z(s) ds) < b./o 2% (s)Mz(s) ds

Lemma 2.5 ([9]) For a positive definite matrix S > 0 and any continuously differentiable
function x : [a,b] — R" the following inequalities hold:

b
1 3 5
/ 2T (s)Sz(s) ds > ElsE + ESSE, + - glsE,,

f / (5)Sz(s) ds do >2S4TSH4+4_‘5 Su5+6u6 SZ,

- 6 [*
E3 =2z(b) — z(a) + m z(s)d (b e / / s)dsdo,

1 b
By =2z(b) - f z(s) ds,
b-a

Es =z(b) + m (s)ds 7 a) f f s)dsdb,
—z(b)——/ s)ds+ - )2/ / z(s)dsdo
_(bfioa)sfg /0 f 2() di.dsde.

[I]
I
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Lemma 2.6 ([6], Schur complement lemma) Given constant symmetric matrices X, Y, Z

with appropriate dimensions satisfying X = X*,Y = YT >0, onehas X + Z'Y'Z < O if and
only if

x zT -Y Z
<0 or <0.
Z -Y VAR '¢

Remark 2 The condition in Definition 2.2 includes Hy, performance index y and passivity
performanceindex y.If o = 1, then the condition will reduce to the H,, performance index
y and if o = 0, then the condition will reduce to the passivity performance index y. The

condition corresponds to mixed Hy, and passivity performance index y for o in (0, 1).

3 Main results

In this section, we present a control scheme to synchronize the NNs (1) to the homo-
geneous trajectory (3). Then we will give some sufficient conditions in the EFPS of NNs
with mixed time-varying delays and hybrid coupling. To simplify the representation, we

introduce some notations as follows:

x(t) = [ZT(t),/ttr Z¥(s)ds, ./:r /{;tzT(s) dsd@,/;: /et/StzT(k)d)\dsdG}T,

n(t) = [ZT(t),zT(t 1),z  (t - 1), 2" (t - h(t)), 2" (¢ - h), 2(8),

t t t t t t
/ ZL(s)ds, / / zL(s)dsdo, / / / zT(\) drdsdb,
t-11 t-11 JO t-11 J6O s

t t t t t t
/ zT(s)ds,/ / ZL(s) dsd@,f f / zf(\)drdsdo,
t-h t-hJo t-hJo Js

t T
f ZL(s) ds,wT(t)] ,

~12(t)

where z; € R4 is defined as z; = [0yx(i-1)n> Ln» Oux(14_iyn] fori=1,2,...,14.

Theorem 3.1 Given constants 11, Ta, T1, 1, ¥y and o € [0,1], if real positive matrices P €
R (g, Q;, So SiyR; € R™" (i = 1,2,3), positive constants &; (i = 1,2,...,6), and real

matrices Ty, T, with appropriate dimensions, such that

Tl 1 Tl 2 Tl 3 Tl4 Tl 5 Tl 6 Tl 7

* -l 0 0 0 0 0
* * —&51 0 0 0 0
T=| % * * —&3l 0 0 0 |[<0, (10)
* * * * —&ql 0 0
* * * * * —&51 0
* * * * * * —eel
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where

Tu=Yo,1T, Yu=IN®TiA, Ti3=IN®T\B, TYu=I®TiC,
Y15 =Iny ® THA4, Ti6 = Iy ® T2 B, Y17 =Iy ® TLC,
T, = O7PO, + OI PO, - O8,0; — OL 8104 + 27 Soz1 — 2L Sozs,
Ty =21 (Qo + Q2)z1 + 2l AT(Q1 + Q3)Az1 — 22 Qozs — (1 - T1)z] Qoza
25 (ATQiA)z3 — (1 - 71)2] (AT Q3 A)z,,
I3 = t2zF (ATRy A)zy — 25 (ATR A)zy3,
[Ty = 1221 (Sy + 0.5R,)z6 — OF $,05 — 307 5,04 — 567 5,6,
—20[1R,011 —4OL R, 015 — 6O ,R, 013,
5 = 1221 (S5 + 0.5R3)z — OF S305 — 30 S309 — 50],5;019 (11)
—20% R0 — 40L.R3015 — 60LR;O16,
He =2z T1Co+ C{ T{ 21 + 2L ToCo + CL TF 26 + 2l T1Kzy + 2L KT T{ 7
+ 2l ToKzy + 2L KT T3 26 + 2] Thz1a + 214 T{ 21 — 2 T1z6 — 2L T{ 21
+ 2l Tozia + 2, T 2 — 2L Thze — 2zE T z,
IT; = (61 + e4)z Iy @ AT A)zy + (62 + £5)28 (In @ AT A)zy
+ (83 + £6)2{3(Iv ® AT A)zi3,
Mg =0 (Jz21)" Jz1) = (1 - 0)y Uz1) 214 — (1 - 0)y 2[,Uz1) — v *2] 4214,
Co = [c1(GY ® L1) - (In ® D)]z1 + 2(G? @ Lo)zs + ¢3(G®) @ L3)z13,

with
T 1 71 1717 T T __T T _ T 2.1 1T
O1=z{,27,24,25 | O, =z¢,21 —273,117, —21,0.5t}z] —z3 |,
O3 =21 — 24, Oy =24 - z5, Os =21 - z5,
2 6 12
O =21 + 25 — 210, O7 =21 25+ 7210 — 75211 Og =z - z3,
h h h
2 6 12 1
Og =21 +23— —27, O =21-23+ —27 — 5% Ou =21 - 25
T T 7 h
o o 3 24 60 o
J12 =21+ 725 — 75210 J13 =21~ 725+ 75210~ 73211 J14 =21 - %7
h w h h? W n
3 24 60
O15 =21+ —27 — —5%s, Or6 =21 — —27 + =528 — —3%9
71 T 71 T 151

then the error system (8) is EFPS and meets a predefined H./passive performance index y .

Proof We consider a candidate Lyapunov—Krasovskii functional:
5
V() = 3 Vi), (12)
k=1

where

Vi) = xT()Px (¢) + /th 27 (5)Soz(s) ds + /th/:éT(s)Sle(s) dsdb,
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Valt) = [ [ 6)Quzts) 7 (o) Quf (a) s
+ / ( )[zT(s) Qoz(s) + 7 (2(5)) Qsf (2(s)) | ds

Vs(¢) = T2/ /fT (2(s))Ruf (2(s)) ds do,

Vi) = h /t_h /e 27(5)Sy2(s) ds do + /t_h /9 / téT(A)Rzé(A)dAdsde,
Vslt) = 1 /tt fe téT(s)Sgé(s) dsdo + /tt [9 t / téT(A)Rgé(A)dAdsdG.

The time derivatives of V(¢) along the trajectories of the error system (8) can be calculated
as

Vi) = 2x T(0)Px () + 25 (£)Soz(t) — 2T (¢ — h)Soz(t — ) + hzT (£)S,2(¢)
-h Cyr S14(s) ds, 13
/t S ds (13)

Va(t) < 2" (0)(Qo + Q2)z(0) + 7 (2(0)(Q1 + Qa)f (2(8)) — 2" (¢ = 11)Qoz(t - 1)
T (2t - 1)) Quf (2(t = 7)) = (1 = )27 (£ = 71(8)) Quz(t — T (1))
— (=AY (el - 10)Qf ele -1 (0)
< 21 (£)(Qo + Q2)2(8) + 2(£) AT(Qu + Q3) Az(t) - 2" (¢t — 11)Qoz(t — 1)
—z(t - 1) (ATQuA)z(t - 11) - (1 - )z (£ — 71 (8)) Qaz(t — T (1))
— (1 -zt - 1) (AT Qs A)z(t — 71 (2))

= 0" ()T (2), (14)

V) = T GORY ((0) 7 | fT )R (209) ds
%) /

-

(
< rzzz(t)ATRlAz(t) - t fr (z(s))R]f(z(s)) ds, (15)
Va(t) = K227 (£)(Sy + 0.5R,)z(¢) — h/ T(5)S,2(s) ds
/ / 2T (s)Ry2(s) ds do, (16)
t—h
Vs(t) = T1 ( )(S3 + 0.5R3)z(t) — 17 /t éT(s)Sgé(s) ds

—/t /téT(s)Rgé(s) dsdb, (17)
t-11 J6O

where [T, is defined in (11). Applying Lemma 2.4 and Lemma 2.5, it can be shown that
t
~h / 2T (s)S12(s) ds
t—h

t t—h(t)
= —h/ 27(5)S12(s) ds — h/ 27 (5)S12(s) ds
t~h(t) t—h

Page 10 of 26
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< —[2(6) - 2(¢ = ()] $1[2(6) - 2(¢ - ()]
—[2(¢ - n(®)) - 2t = W] S1[2(¢ - h(®)) - (2 - W], (18)

- / FT (&) Rf (2(5)) ds

== [ fEOR(el) s

el

= _/t fT(Z(S)) dsR, /t f(z(s)) ds

~72(t) t=12(t)
t t
<- f z"(s)ds(AT R, A) / 2(s) dis, (19)
t—1o(t) t-12(t)
t
~h / 21(5)Sy2(s) ds < —OF $,05 — 30{ $,06 — 50 $,05, (20)
t-h
t t
- / / 2T ()Ro2(s) ds db
t-h Jo
< 20/ R0y, —4O R, 015 — 60 R, 013, (21)
t
-7 / 27 (5)S32(s) ds < —OF S305 — 304 S309 — 5015301, (22)
t-11
t t
- f / 21 (s)Rs(s) ds db
t-11 J6O
< -20LR3014 —4OLR;015 - 60 LR3016. (23)

From (13)—(23), we obtain
Vi(8) + Va(t) + Va(t) + Vs(t) = n" (€)1 + 5 + Iy + H5]n(2), (24)

where IT;, i = 1,3,4, 5, are defined in (11).
Based on the error system (8), given any matrices 77 and T, with appropriate dimen-
sions, it is true that

0=2[z")T1 + 2" (1) T»] [—(IN ® D)z(t) + (Iy ® A)f (2(2)) + Iy ® B)
xf(z(t -1u(®))+Un®C) f(z(@)) do + ¢ (G(l) ® L1)z(t)
t-1(t)

+c (G(2) ® Lz)Z(t - Tl(t)) +c3 (G(S) ® Lg) / 2(0)d6 + Kz(t - h(t))

t-2(8)

ro-x0| (25)
Applying Lemma 2.3 and Lemma 2.4, we have

2O Uy ® TIA)f (2(t))

< ZLSIZT(L‘)(IN ® TIAATTlT)z(t) n %]?T(Z(t))(IN ®In)j?(z(t))

Page 11 of 26



Botmart et al. Advances in Difference Equations (2019) 2019:383

1
< 52 Oy ® TAATT])(e) + S O ® AT 4)z()
1

= %ZT(t)(IN ® T1A)er! (In @ ATT )z(t) + %ZT(t) (In ® AT A)z(2),

2ty ® TIB)f(z(t -7 (t)))

1
< 2—zT(t) (In ® T\BB" T} )z(2)
1Y)

+ ZF7 (6 1)) Uy © LF (2l - 1 (0)

< izT(t) (In ® T1BB" T} )z(2)
282
+ 22 (- 1) Iy ® AT A)z(t - 71 (1)

1
= 5zT(t)(lN ® T1B)e;" (Iy ® B T )z(t)

" %ZZT(t — 1) (Iv ® AT A)z(t - 7(2),
21 () Iy ® T:C) Y f(2(0))do
< Lo (In ® T1CCTT] ) 2(2)
283
T

& ' T L
i) ( /t_rz(t)f (2(9))019) (IN®I;4)< /Hz(t)f(z(e)) de)

1
< 2—ZT(t) (In ® T1CCTTT ) 2(2)
€3

t T t
i T d9> T ( 0 d@)
) </”2(t)z ) (In® AT A) /Hz(t)z( )

1
= 5zT(t)(JN ® T10)e3" (I ® CT T )z(t)

¢ T t
(o) o[ o)

* 2 (/t—rz(t)z (©)d6 (IN®A A) v/t.—fz(t)Z(e) °)
LIy ® TLA)f (2(0))

= ZL&LéT(t)(IN ® TZAATTZT)é(t) n %}T(Z(t))(lN ®In)]_’(z(t))
< %éT(t)(IN ® TLAAT T} )2(t) + i;zf(t)(lN ® AT A)z(t)
4
2

£ (O)(Iy ® TuB)f (2(¢ - 11 (2)))

1
< géT(z) (Iv ® T-BBT T )3(t)
5

+ SFT (6 1)) Uy © L (2l - 1 (0)

1
< Z—éT(t) (In ® T-BB" T} )i(2)
€5

= 1éT(t)(IN ® ToA)e; ' (In ® AT T )i(t) + %ZT(t) (In ® AT A)z(2),

(26)

(27)

(28)

(29)

Page 12 of 26
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+ %SZT(t ~1@)(In ® AT A)z(t - 71 (1))

1
= 5éT(t)(IN ® ToB)es' (Iy ® B" T )4(t)

¥ %ZT@ —1(0) (Iy ® AT A)z(t - (1), (30)

1 (H)In ® T>C) f(z(0))do

t-15(t)

1
< ng(t) (In ® T,CC'T; ) 2(t)
6

6 (
i
2
1
< ng(t) (In ® T,CCTT])2(t)
6

t T .
i T r
i) ( /tw)z (O)de) (Iv® A A)( /mmz(e)de)

1
= 5éT(t)(IN ® T2C)eg' (I ® CT T )2(t)

+‘9—6</t zT(G)d9>T(IN®ATA)<[t z(9)d9). (31)
2 \Ji—n00) PO

Then, from (14), (24) and (25)—(31), we obtain

/t t fT(z(O))d0>T(IN®IH)</t t f(z(e))d9>

-72(t) -12(t)

7
V() <n" () { D M+ 2" () Un ® ThiA)er (In @ ATTY)

i=1
+(In ® T1B)e; (In @ B T) + Iy ® T1 C)e5* (In ® CT T ) ()

+27()[Un ® ToA)e; ' (In ® AT T ) + (Iy ® TaB)e;' (In ® B' T

+(In ® ToC)eg (In ® CT T, ) |2(2) } n(t), (32)

where ITs and IT; are defined in (11). Applying the Schur complement of Lemma 2.6, and
defining 2(¢) = o7 (t)9(2) — 2(1 — 0)yy! (t)o(t) — 2T (£)w(t), we have

V(e)+ 20 < n" (0T,
where 7 is defined in (10). If we have 7" < 0, then
V(t)+ 2(t) <0. (33)

Thus, under the zero original condition, it can be inferred that for any 7,

Tp Tp )
/ () dt < / [2@®) +V(©)]dt<o,
0 0

Page 13 of 26
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which indicates that

T

Ty »
[ o7 w50 - 20003 O] de < [ o ot de

0

In this case, the condition (9) is ensured for any non-zero w(f) € £,[0,00). If w(t) =0, in
view of (33), there exists a scalar § such that

V(t) < 5]z (34)

We are now ready to deal with the EFPS of error system (8). Consider the Lyapunov—
Krasovskii functional e2** V(¢), where « is a constant. By (34), we have

%ezat\/(t) = V() + 20™ V(£) < e [-8 + 20 M] | 2(t + €)|

(35)

cl’

where

M= (1 +1+ le + rf)kmax(P) + Mmax (So) + H2 A max (S1)
+ Thmax (Qo + ATQuA + Qy + ATQ34) + Tyhmax (AT R1 A)

+ hB)\max(SZ + R2) + fl?))\max(SB + RS)

From now on, we take « to be a constant satisfying o < ﬁ, and then obtain from (35)

d
EeMV(t) <0, (36)

which, together with (12) and (36), implies that

5
V() < V(0) = Y Vi(0) < Mz(e)|

i=1

(37)

o’

and therefore
V(t) < Me 2 ||z(e) ||Cl.
Noticing Amin(P)||z()[|> < V/(¢), we obtain

I

=) R Ol (38)

E —_—
)\min (P)

M

Letting u = pw—) and @ = 2a, we can rewrite (38) as

mm(
@) < we™ (e

Hence, the error system (8) is EFPS. Thus, according to Definition 2.2, the error system (8)
isan EFPS with a mixed H., and passivity performance index y. The proof is completed. [J

Based on Theorem 3.1, the pinning sampled-data controller design, ensuring the EFPS
of delayed NN (1), is explained.
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Theorem 3.2 Given constants 11, Ty, 71, 1, ¥y and o € [0, 1], if real positive matrices P €
R o, Qiy So SiyR; € R™ (i = 1,2,3), positive constants &;, i = 1,2,...,6, and real
matrices Y, Z with appropriate dimensions, such that
Tu T Tz YTu Tis T Ty
*  —&1l 0 0 0 0 0
* * —&51 0 0 0 0
*
*
*
E3

T = * x —e3l 0 0 0 |<o, (39)
* * * —&4l 0 0
* * * * —&5] 0
* * * * * —ggl
where
’f‘ll = Zil ﬁir

To=I®AYA, Tu=IN®AYB  Tu=I®AYC,
Tis=IN®BYA,  Tie=IN@BYB,  Tiy=IN®pYC,
T, = O] PO, + O] PO; — O] $103 — O] $104 + z{ Soz1 — 2L Sozs,
Iy = 27 (Qo + Q2)z1 + 27 AT(Q1 + Q3) Az — 22 Qozz — (1 - 71)z] Quzs
—Z (ATQ1A)z3 - (1 - T1)z (ATQ3 M)z,
I3 = t2zF (ATRy A)zy — 2L (ATRy A)zy3,
I, = K*zL (S5 + 0.5Ry)z6 — OF $,05 — 30! $,06 — 507 $,0;
- 2@1T1R2@11 - 4-@1T2R2@12 - 6@1T3R2@13,
5 = 1225 (S3 + 0.5R3)z6 — OF S305 — 304 $309 — 50153019 (40)
—20LR3014 — 4O R3015 - 60 R0,
s = przl YCo + BiCLY T2y + Bozl YCo + BoCL Y 26 + Pr2Y Zzy
+ P12 ZT 21 + Pozl Zza + Pozl ZT 26 + Prz] Yara + Bzl YTz
— Bzl Yzo — Br1zl Y721 + Bozl Yara + Bzl Y T 26 — Bozl Yze
— Bzl Y7z,
IT; = (1 + e4)zL (In @ AT A)zy + (62 + £5)2) (In @ AT A)zy
+(e3 + &6)zL(In ® AT A)zy3,
s =0 (Jz1)" (Jz1) = (1 - 0)y Uz1) 214 — (1 — 0)yz{,Uz1) — ¥ *2{,214s
Co = [c1(GY @ L) - (Iy ® D)]z1 + c2(G? ® Ly)zs + ¢3(G® ® L)z,

with
T 1,17 11T T T T T T 2T T
O1=z{,27,25,25 |,  Or=|z¢,2] —2z3, 117 —2;,05172{ -z |,
O3 =21 — z4, Oy =24 — 75, O5 =z1 -z,
2 6 12
O =21 + 25 — 7,210 O7 =21 —2z5 + 520~ A

2
O3 =z1 —z3, @9=21+23—I—Z7,
1

Page 15 of 26
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6 12 1
O =21 -23+ —27 — —5Zs On =z1 -~z
71 T h
o 2 o 3 24 60 o
D12 =21t 725 — 75210 D13 =21 — 725+ 75210 — 73211 D14 =21 — —27
h o h h? B n
3 24 60
O =21+ —27 - =28, Ol =21~ —27 + —528 =~ —3%9
71 7] T 7] 7]

then the synchronization error system (8) is exponentially stable and meets a predefined

Hoo/passive performance index y. Meanwhile, the designed controller gains are given as
follows:

K=Yz

Proof Denote

T, = B1Y, T, = BrY, (41)

then the LMIs (39) can be achieved. This completes the proof. d

Remark 3 In Theorem 3.2, we investigate the EFPS of NNs via mixed control. u;1(¢) is
a nonlinear control (not pinning sampled-data control). Based on the principle of EFPS,
u;1(t) needs to be applied for every node. And, based on the principle of pinning sampled-
data control, u;(t) is a pinning sampled-data control meant to apply for the first / nodes

0<i<l.

Remark 4 The advantage of this paper is that this is the first time hybrid couplings are
addressed containing constant, discrete and distributed delay couplings considered in the
problem of exponential function projective synchronization of delayed neural networks
including with mixed H,, and passivity. So, our conditions are more general than [33, 34]
where these couplings are not considered. Hence, we can see that their conditions cannot

be applied to our examples.

Remark 5 A challenging problem of this work that is this is the first time the control prob-
lem and the passive control problem of exponential function projective synchronization
for neural networks with hybrid coupling based on appropriate pinning sampled-data con-
trol are studied. The Lyapunov—Krasovskii functional V(¢) in (12) has effectively been ap-
plied to the entire information on three kinds of time-varying delays. Moreover, some
novel double and triple integral functional terms are constructed, for which Wirtinger-
based integral inequalities have been employed to give much tighter upper bound on

Lyapunov—Krasovskii functional’s derivative and reduce the conservatism effectively.

4 Numerical examples
Several numerical examples are given to present the feasibility of the proposed method

and the effectiveness of the above theoretical results.
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Figure 1 The trajectory of the isolated node (42)

0.8

5,0

Example 4.1 Consider the isolated node with both discrete and distributed delays:

where f(s;) = tanh(s;(2)), (i = 1,2), 7,(t) = —2

0.6
-1.8

s1(2)

Sz(t)_
-0.1
-1.0

2.0
-5.0

-0.1
1.5

S(s1(2)
S(s2(2))

Sflsi(e-1)) 42)

0.15
-0.12

| fls2(t-1))
JE o 61(6))do
JE o f(sa0)) de

and 15(¢) = 0.25sin?(¢). Then the trajectory

1+et

of the isolated node (42) with initial conditions s1(r) = 0.4 cos(£), s3(r) = 0.6 cos(¢), Vr €
[-1,0] is shown in Fig. 1. For mixed H,/passive EFPS of delayed NNs (1), choosing the

time-varying scaling function «(¢) = 0.6 + 0.25sin(=2*t), the coupling strength ¢; = 0.5,

0.5
15

¢y = 0.5, c3 = 0.5, and the inner-coupling matrices are given by

1 0
L=
01

0.5
) L=

0 05 0
) L3 = .
0.5 0 05

We consider the directed NNs as shown in Fig. 2. From Fig. 2, the outer-coupling matrices

are described by

-1

S O O = O =

0

-1 0
0 -1
1 0
1 0
0 1
0 o0

o 0 0 O
0o o0 o
0o o0 o
-2 0 0 0],
1 -2 0 O
1 0 -3 1
1 0 -2

Page 17 of 26
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Figure 2 Simple directed neural networks with
seven nodes

NZNA

G®

Table 1 Minimum allowable values of y for mixed Hs, and passivity analysis satisfied with different
values of h and o

Ymin h=0.05 h=0. h=0.15 h=02
o=0 0.2124 04151 0.6210 0.8754
o=05 04831 0.6434 0.9212 1.2420
o=1 0.6967 0.9772 1.3864 1.8464
1 o 0 0 1 0]
1 -1 0 0 0 0 O
1 0 -2 0 0 0
=1 1 0 -3 1 0 o],
0 1 0 0 -1 0 0O
0 0 1 0 -3 1
(00 0 1 1 0 -2
-1 0 o 0 0 0]
1 -1 0 0 0 0 O
0 1 -1 0 0 0 O
G¥%=0o 1 1 -3 1 0 o0
0 1 1 3 0 0
0 0 0 0 0 -1 1
(0 0 0 0 0 -1]

As presented in Fig. 2, according to the pinned-node selection, nodes 1, 3, 4, 5, and 6 are
chosen as controller. By applying our Theorem 3.2, the relation among the parameters #,
0, and y, are shown in Table 1. Moreover, the histogram referring to the obtained relation
is also plotted in Fig. 3. Table 2 gives the maximum allowable sampling period of % for
different values of @ . Thus, if we set @ = 0.3 and /4 = 0.5, then the gain matrices of the

designed controllers will be obtained as follows:

[-1.3426 -04325 o _|-09362 -05792
"T 105346 -1.6532| 706378 -0.8462 |

|-11431 -03214  _ | ~1:9403  ~0.9432
*7 104391 -0.789%6 | *71-0.8451 -1.2056|
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Figure 3 Relationamong h, o, and y 204
MW c=0 —
B oc=05
O o=1
1.5 4
£ 1
LE

0.0

0.05 0.01 0.015 0.2

Sampling period h

Table 2 Maximum allowable sampling period of h in Example 4.1

w 0.1 03 0.5 0.7 09
h 0.7543 06140 04814 03211 02034

a(t)s(t) i

XiZ(t)’ a(t)sz(l)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X, (0, a()s ()

Figure 4 The trajectory of the isolated node (42) and network (1) with the time-varying scaling function

~14232 -0.2142 00
Kg = . K=Ky =
~0.1674 -2.0543 00

Furthermore, the EFPS of chaotic behaviour for the isolated node «(t)s(¢) (42) and net-
work x;(£) (1) with the time-varying scaling function «(¢) is given in Fig. 4. Figure 5 shows
the state trajectories of the isolated node «(¢)s(t) (42) and network x;(¢) (1). Figure 6 shows
the EFPS errors between the states of the isolated node «(#)s(¢) (42) and network x;(£) (1)
where z;(£) = x;(£) — o;(¢)s;(t) for i = 1,2,...,7,j = 1,2 without pinning sampled-data con-
trol (5). Figure 7 shows the EFPS errors between the states of the isolated node «(£)s(t) (42)
and network x;(¢) (1) where z;(t) = x;(¢) — oj(¢)s;(¢) for i = 1,2,...,7,j = 1,2 with pinning
sampled-data control (5).

Page 19 of 26
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>
=
=
g
Lt
o
T
=
= 1 I I I 1 I
s 0 20 40 60 80 100 120 140 160 180 200
Time t
cr\l
5
=
=}
<
s
o
2!
0
5_1;, 4 1 | | | | |
® 0 20 40 60 80 100 120 140 160 180 200
Time t

Figure 5 The state trajectory of the isolated node a(t)s(t) (42) and network x;(t) (1)

zil(t)=x“(t)—a(t) sl(t)

Xiz(l)—a(t) 52(t)

2,0

control (5)

Figure 6 The EFPS error between isolate node ot (1)s(t) (42) and network x;(t) (1) without sample-data pinning

Example 4.2 Consider the isolated node with both discrete and distributed delays:

51(2) 1 0| |s00) 1.8 —0.15 || f(s1(9)
=- +
$5(t) 0 1||s:t) 51 35 ||f(s:(t)
. -1.7 012 | | f(s1(¢-1)) @3)
024 15 || f(s2(-1))
[os 015 ure@nas
|2 01 Sty f(520)) do

where f(s;) = tanh(s;(2)), (i = 1,2), 71(t) = —= and 75(¢) = 1.2sin?(¢). Then the trajec-

1+et

tory of the isolated node (43) with initial conditions s;(r) = 0.5cos(t), s2(r) = 0.1cos(¢),
Vr € [-1.2,0] is shown in Fig. 8. Choosing the time-varying scaling function «(t) =
0.65+0.2 sin(f—st), the coupling strength ¢; = 0.1, ¢ = 0.1, ¢3 = 0.1, and the inner-coupling

Page 20 of 26
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z,,(0=x, (D-a(Vs, (1)

Time t

20

ziz(t)=xi2(l)—a(t)sz(t)

Time t

control (5)

20

Figure 7 The EFPS error between isolate node a(1)s(t) (42) and network x;(t) (1) with sample-data pinning

25

s,(t)
T

Figure 8 The trajectory of the isolated node (43)

matrices are given by

1 0 01 O 01 O
Ll = ) L2 = ’ L3 =
0 1 0 01 0 01

We consider the undirected NNs as shown in Fig. 9, and the outer-coupling matrices are

described by
-2 0 0 0 1]
0O -3 O 1 1
cn_|0 0 -3 Lo
1 1 -4 1 0
0 1 1 1 -3 0
1 1 0 0 -3

Page 21 of 26
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Figure 9 Simple undirected neural networks with
six nodes

e

c® c®

Table 3 Maximum allowable sampling period of h in Example 4.2

w 01 0.3 0.5 0.7 0.9
h 08367 07134 05941 04723 03781

-2 1 1 0 0 0
1 2 1 0 0 0

co_ |1 1 -5 1 1 1
o 0o 1 -3 1 1}
0 o0 1 -3 1
0 0 1 -3
2 1 0 0 o0 17
1 -3 1 0 0 1

co_|0 1 -2 1 0 0
0 0 1 -3 1 1
0 0 0 1 -2 1
|1 1 0 1 1 -4

As presented in Fig. 9, according to the pinned-node selection, nodes 3, 4, and 6 are cho-
sen as controller. Table 3 gives the maximum allowable sampling period of / for different
values of @w. Thus, if we set @ = 0.3 and / = 0.5, then the gain matrices of the designed
controllers will be obtained. Thus, if we set @ = 0.5 and 4 = 0.7, then the gain matrices of
the designed controllers will be obtained as follows:

| -32051 -1.3624 | 13465 -01384
571223479 —2.7312]° | -0.2478 -0.7543 |’

-2.4312 -1.0065 0 0
Ko = , Ki=Ky=K;5 = .
-0.9431 -1.457 0 0

Furthermore, the EFPS of chaotic behaviour for the isolated node «(¢)s(¢) (43) and network
x:(t) (1) with «(¢) is given Fig. 10. Figure 11 shows the state trajectories of the isolated node
a(t)s(t) (43) and network x;(£) (1). Figure 12 shows the EFPS errors between the states
of the isolated node a(£)s(t) (43) and network x;(¢) (1) where z;(t) = x;(£) — a;(t)s;(¢) for
i=1,2,...,6,j = 1,2 without pinning sampled-data control (5). Figure 13 shows the EFPS
errors between the states of the isolated node «(#)s(¢) (43) and network x;(¢) (1) where
zij(t) = x;5(t) — oj(t)s;(¢) for i = 1,2,...,6,j = 1,2 with pinning sampled-data control (5).
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X, (1), c(t)s, ()

X, (D, (t)s, (1)

Figure 10 The trajectory of the isolated node (43) and network (1) with the time-varying scaling function

..,6 and 5](1)

=1,23..

X, (0. i

..,6 and sz(l)

1,2.3,.

X, (0. i

Figure 11 The state trajectory of the isolated node a(t)s(t) (43) and network x;(t) (1)

Remark 6 The networks in both examples of our study and the ones in the literature [21,
32, 39] are different. In [21], the FPS of the network is achieved under pinning feedback
controller design but the concerned network is still undirected. In [39], the conditions
for pinning synchronization are suitable for directed network. In this paper, the pinning
synchronization suitable for both directed and undirected networks. So, the considered
networks are more general.

Remark7 Accordingly, it is worthwhile to focus on sampled-data control and it has caused
much attention recently [30—34]. In the sampled-data implementation, an important issue
is to reduce the data transmission load when using a sampled-data controller to realize the
stability, since the computation and communication resources are limited often. However,
itis interesting to extend this method to NN systems with even-triggered sampling control
in which the control packet can be lost due to several factors, for instance, communica-
tion interference, congestion or the transmission event is not triggered and the controller
is not updated except when its magnitude reaches the prescribed threshold. Hence, it is
necessary to design an event-triggered sampling control for NNs system, which can ef-
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z, (l)=x‘ ! (V-a(t)s ] (t)

x‘z(t)—a(t)sz(l)

z,(0)

o 20 40 60 80 100 120 140 160 180 200
Time t

Figure 12 The EFPS error between the isolate node a()s(t) (43) and network x;(t) (1) without sample-data
pinning control (5)

x‘ l(l) a(l)%] t)
S
)
)
ﬂ
|
l

S
=
T F
|

L‘l([) .

Time t

2,0=x ,(0-0(0s,()

Time t

Figure 13 The EFPS error between the isolate node a(t)s(t) (43) and network x;(t) (1) with sample-data
pinning control (5)

fectively save the communication bandwidth by only sending a necessary sampling signal
through the network; see [42, 43]. Nevertheless, considering the sampled-data controller
and the digital form controller, which uses only the sampled information of the system at
its instants, the important benefits in using a sampled-data controller are low-cost con-

sumption, reliability, easy installation and being handy in real world problems.

5 Conclusions

In this paper, mixed Hy,/passive EFPS of NNs with time-varying delays and hybrid cou-
pling are investigated. We have applied the using of nonlinear and pinning sampled-data
controls. Some sufficient conditions were derived to guarantee the EFPS by using of the
Lyapunov—Krasovskii function method. In order to manipulate the scaling functions, the
drive system and response systems could be synchronized up to the desired scaling func-

tions based on the pinning sampled-data control technique. Furthermore, numerical ex-
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amples are given to illustrate the effectiveness of the proposed theoretical results in this
paper as well.
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Abstract

This paper is presented with the problem of mixed H./passive function projective syn-
chronization of delayed neural networks with constant discrete and distributed delay couplings
under pinning sampled-data control scheme. The objective is focused on the design of pinning
sampled-data controller such that the resulting synchronization error system is stable and a
mixed H./passive performance level is satisfied. Particularly, the control method designed on
how to determine a set of pinned nodes with fixed coupling matrices and strength values and
randomly select pinning nodes. By using some new tools to deal with the Lyapunov functional,
some sufficient conditions for the existence of the desired controller are proposed. Based on
the conditions, an explicit expression for the desired controller is given. Finally, numerical
examples are given to illustrate the effectiveness of the proposed theoretical results.

Keywords: H . /passive function projective synchronization, neural networks, time-
varying delay, hybrid coupling, pinning sampled-data control.

*Corresponding author.
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Abstract: The design problem of delay-interval-dependent robust exponential stability for uncertain
neutral-type system with distributed and discrete time-varying delays, and nonlinear perturbations was
studied. We concentrated on norm-bounded uncertainties and nonlinear time-varying parameter
perturbations. By using mixed model transformation, Peng-Park’s integral inequality, Wirtinger-
basedintegral inequality, and proper Lyapunov-Krasovskii functional, new delay-interval-dependent
robust exponential stability criterion was received and formulated in the form of linear matrix
inequalities (LMIs). Moreover, exponential stability criterion was also suggested for a neutral-type
system with distributed and discrete time-varying delays, and nonlinear perturbations. Finally, numerical
examples showed that the recommended approach achieves the expected results and the predominance
of our results to those in the literature.

Keywords: Lyapunov-Krasovskii functional; Linear matrix inequality; Robust exponential stability;
Interval time-varying delay.
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Robust synchronization analysis of neural networks with leakage
delay and additive time-varying delays via pinning control

T.Botmart!, N.Yotha®* and W.Weera3
' Department of Mathematics, KhonKaen University, Thailand
*Department of Applied Mathematics and Statistics,
Rajamangala University of Technology Isan, Thailand
3Department of Mathematics, University of Pha Yao, Thailand

Abstract: This paper considers the robust synchronization analysis problem of neural networks with
both leakage delay and additive time-varying delays under pinning control scheme. By construction of a
suitable Lyapunov-Krasovskii's functional (LKF), Kronecker product properties and utilization of
Wirtinger's inequality, delay-dependent criteria for the robust synchronization of the networks are
established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective
optimization algorithms. An example is given to demonstrate the effectiveness of the obtained results.

Keywords: Synchronization; Neural networks; Leakage delay; Additive time-varying delays; Pinning
control.
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