

บทคัดย่อ

พิล์มคาร์บอนถุกเคลือบบนกราฟฟิคด้วยวิธีการอาร์คเพื่อใช้เป็นขั้วเคาน์เตอร์ในเซลล์แสงอาทิตย์ชนิดสีย้อมไว้แสง คาร์บอนที่ผ่านการเผาภายใต้บรรยายกาศของไนโตรเจนทำให้ประสิทธิภาพเซลล์แสงอาทิตย์เพิ่มขึ้นเนื่องจากการเพิ่มขึ้นของคุณสมบัติการเป็นตัวเร่งปฏิกิริยา เซลล์แสงอาทิตย์ที่ใช้คาร์บอนเป็นขั้วเคาน์เตอร์ให้ประสิทธิภาพเป็น 2.37% และ 2.75% เมื่อใช้ I_3/T และ T_2/T เป็นอิเล็กโตรไลต์ตามลำดับ ภายหลังการเผาcarbonบนประสิทธิภาพของเซลล์แสงอาทิตย์เพิ่มขึ้นเป็น 8.04% สำหรับ I_3/T และ 4.74% สำหรับ T_2/T เมื่อทดสอบความเสถียรของเซลล์แสงอาทิตย์เป็นเวลา 50 วัน พบร่วมกันที่ใช้ไอโอดีดอิเล็กโตรไลต์ประสิทธิภาพลดลง 20%, 25% และ 35% เมื่อใช้ขั้วเคาน์เตอร์จากคาร์บอนที่ผ่านการเผา คาร์บอน และแพลตตินัม ตามลำดับ ในกรณีของไไอโอดีดอิเล็กโตรไลต์นั้นประสิทธิภาพของเซลล์แสงอาทิตย์ที่ใช้คาร์บอนที่ผ่านการเผาลดลง 8% สำหรับcarbon และแพลตตินัมลดลง 26% and 39% ตามลำดับ

พิล์มคอมโพสิตนิเกลชัลไฟร์ (Ni_3S_2) ถูกปลูกบนท่อนาโนคาร์บอน (MWCNTs) และเคลือบบนกราฟฟิคด้วยกระบวนการไฮโดรเทอร์มอลที่อุณหภูมิ 170°C พิล์ม $Ni_3S_2@MWCNTs$ ถูกใช้เป็นขั้วเคาน์เตอร์สำหรับเซลล์แสงอาทิตย์ชนิดสีย้อมไว้แสง ในงานวิจัยนี้ศึกษาโครงสร้างทางกายภาพ โครงสร้างผลึก คุณสมบัติการเร่งปฏิกิริยาและการส่งผ่านอิเล็กโตรอน ยิ่งไปกว่านั้นพื้นที่ผิวสัมผัสของขั้วเคาน์เตอร์ถูกวิเคราะห์เปรียบเทียบ ประสิทธิภาพการแปลงพลังงานของเซลล์แสงอาทิตย์ที่ใช้ $Ni_3S_2@MWCNTs$ เป็นขั้วเคาน์เตอร์เพิ่มขึ้นเป็น 7.48% เมื่อเทียบกับ Ni_3S_2

คำสำคัญ: เซลล์แสงอาทิตย์ชนิดสีย้อมไว้แสง, ขั้วเคาน์เตอร์, คาร์บอน, ท่อนาโนคาร์บอน, Ni_3S_2

Abstract

Carbon films were deposited by an arc evaporation method onto conductive glass and applied as counter electrodes in dye sensitized solar cells (DSSCs). Annealing the carbon films in a N₂ atmosphere contributed to the enhancement of DSSC efficiency because their electrocatalytic activities were significantly enhanced. The efficiency of solar cells with carbon films was 2.37 % and 2.75% with an I₃⁻/I⁻ and T₂/T⁻ electrolyte, respectively. Whilst, that of DSSCs with annealed carbon was increased to 8.04% using I₃⁻/I⁻ and to 4.74% for T₂/T⁻. The stability of iodide-based DSSCs was not as high as that of thiolate-based units. Within 50 days, the efficiency of iodide-based DSSC with annealed carbon, Pt and as-deposited carbon dwindled by 20%, 25% and 35%, respectively. After 50 days, the efficiency of DSSCs with annealed carbon employing a disulfide/thiolate electrolyte remained constant, whilst that of DSSCs with as-evaporated carbon and Pt dropped by 26% and 39%, respectively.

Composite films nickel sulfide (Ni₃S₂) nanoparticles were grown on multiwall carbon nanotubes (MWCNTs) and in situ coated onto conducting glass substrates by the hydrothermal process at 170 °C. These Ni₃S₂@MWCNTs films were applied for counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). In this work, nanostructure, crystalline structure, electrochemical activities and electron-charge transfer resistance of CEs were studied. In addition, the effective surface areas of CEs were analyzed and discussed as well. The power conversion efficiency (PCE) enhancement of up to 7.48%, compared with that of Ni₃S₂-DSSC, was demonstrated for a Ni₃S₂@MWCNTs DSSC.

Keyword: Dye-sensitized solar cells, Counter electrodes, Carbon, Carbon nanotubes, Ni₃S₂.