Project title: บทบาทของเอนไซม์เอ็นเอดีพีเอชออกซิเดส ในกระบวนการตายของเซลล์ออสติโอบลาสต์เนื่องจากเหล็ก

และศักยภาพของสารยับยั้งเอนไซม์เอ็นเอดีพีเอชออกซิเดส ในการรักษาภาวะกระดูกพรุนในผู้ป่วย

ธาลัสซีเมียและผู้มีภาวะเหล็กเกิน

The role of NADPH oxidases in iron-mediated osteoblastic cell death and the therapeutic potential

of NOXs inhibitors in iron overload and thalassemia-induced osteoporosis

Project duration: 2 years (from 2nd July 2018 to 1st July 2020)

Principal investigator: Assistant professor Dr. Kornkamon Lertsuwan, Ph.D.

Mentor: Professor Dr. Narattaphol Charoenphandhu, M.D., Ph.D.

Abstract

The association between iron overload and osteoporosis has been found in many diseases, such as hemochromatosis, β-thalassemia and sickle cell anemia with multiple blood transfusion. One of the contributing factors is iron toxicity to osteoblasts. Herein, ferric ammonium citrate (FAC) and ferrous ammonium sulfate (FAS) were used as ferric and ferrous donors. Our results showed that both iron species suppressed cell survival and proliferation. Both also induced osteoblast cell death consistent with the higher levels of cleaved caspase 3 and caspase 7 in osteoblasts indicating that iron-induced osteoblast apoptosis. By using ferroptosis inhibitor, ferrostatin-1 as well as the determination of glutathione peroxidase 4 expression, our data showed that iron-induced osteoblasts also relied on ferroptosis. Additionally, both iron species could induce G0/G1 cell cycle arrest in osteoblasts with the stronger effects from ferric than ferrous. Downregulation of osteoblast differentiation genes was observed in osteoblasts exposed to ferric and ferrous. Decreased alkaline phosphatase (ALP expression), ALP activity and mineralization in osteoblasts under iron overload were also shown with the stronger effects from ferric than ferrous. Cellular ROS production was significantly increased in osteoblasts exposed to ferric and ferrous, but antioxidant agent (N-acetyl cysteine; NAC) could not alleviate osteoblast cell death. In addition, the expression of NADPH oxidases (NOX1 and NOX4) was also significantly increased in iron treated osteoblasts, but NOX inhibitor (diphenylene iodonium; DPI) failed to rescued iron-osteoblast cell death suggesting that iron-induced osteoblast cell death did not depend on NOX expression or activity. Iron treatments led to the elevated intracellular iron in osteoblasts as determined by flame atomic absorption spectrophotometry. Iron chelator (deferiprone; DFP); however, could not rescue iron-induced osteoblast cell death. As the common treatment for calcium malabsorption, effects of 1,25 dihydroxyvitamin D₃ [1,25(OH)₂D₃] and exogenous calcium on osteoblast cell viability and iron uptake capacity in osteoblasts under iron overload were investigated. While 1,25 dihydroxyvitamin D₃ [1,25(OH)₂D₃] treatment led to increased levels of intracellular iron in osteoblasts exposed to iron, it did not affect osteoblast cell viability under iron overload. These results confirmed the independence of intracellular iron level or iron uptake capacity in iron-induced osteoblast cell death. Interestingly, our results showed that exogenous treatment of calcium improved osteoblast cell viability under iron overload suggesting the potential therapeutic application of exogenous calcium treatment in iron overload-induced osteoporosis. In conclusion, ferric and ferrous differentially compromised the osteoblast functions and viability, which can be alleviated by an increase in extracellular ionized calcium, but not 1,25(OH)2D3 or iron chelator DFP. This study has provided the invaluable information for therapeutic design targeting specific iron specie(s) in iron overload-induced osteoporosis. Moreover, an increase in extracellular calcium could be beneficial for this group of patients. Results from this project have been published and accepted in 2 international peer-reviewed journals including Biometals (impact factor 2.478, Q1) and PLoS One (impact factor 2.776, Q1) Moreover, results have been presented (both oral and poster presentation) and published in 4 international conferences both in Thailand and abroad

บทคัดย่อ

ภาวะกระดูกพรุนถูกพบเป็นภาวะแทรกซ้อนได้มากในโรคหลายชนิดที่เกิดภาวะเหล็กเกิน (iron overload) ร่วมด้วย เช่น โรคธาลัสซีเมียชนิดเบต้า โรค sickle cell anemia ที่อาจมีภาวะเหล็กเกินจากการรับเลือดอย่างต่อเนื่อง หนึ่งในปัจจัยที่ ทำให้เกิดภาวะกระดูกพรุนแทรกซ้อนกับภาวะเหล็กเกินได้แก่ ภาวะที่เหล็กทำให้เกิดการตาย หรือยับยั้งการทำงานของเซลล์ สร้างกระดูก (เซลล์ออสติโอบลาสต์; osteoblast) ในการศึกษานี้เฟอร์ริกแอมโมเนียมซิเตรท และเฟอร์รัสแอมโมเนียมซัลเฟต ถูกใช้เป็นตัวแทนของเหล็กเฟอร์ริกและเฟอร์รัสตามลำดับ ผลการศึกษาพบว่าเหล็กทั้งสองรูปแบบสามารถความสามารถใน การแบ่งเซลล์ และทำให้เกิดการตายของเซลล์ออสติโอบลาสต์ได้ เหล็กทั้งสองชนิดสามารถทำให้เกิดการเพิ่มขึ้นของ cleaved caspase 3 และ cleaved caspase 7 บ่งชี้ว่าภาวการณ์ตายของเซลล์ออสติโอบลาสต์ภายใต้ภาวะเหล็กเกินนั้นเกิดผ่าน กระบวนการอะพอพโตซิส (Apoptosis) นอกจากนี้เมื่อทำการทดลองโดยใช้สารยับยั้งกระบวนการตายแบบเฟอร์รอพโตซิส (Ferroptosis) ได้แก่สาร Ferrostatin-1 ร่วมกับการติดตามการแสดงออกของโปรตีน Glutathione peroxidase 4 (GPX4) ทำ ให้ได้ข้อมูลเพิ่มเติมว่าการตายของเซลล์ออสติโอบลาสต์ภายใต้ภาวะเหล็กเกินยังเกิดผ่านกระบวนการเฟอร์รอพโตซิสอีกด้วย ็นอกจากนี้เหล็กทั้งสองรูปแบบยังทำให้เกิด cell cycle arrest ที่ระยะ G0/G1 ซึ่งนำไปสู่การยับยั้งกระบวนการแบ่งเซลล์และ ทำให้เกิดการตายของเซลล์ได้ การยับยั้งการแสดงออกของยืนที่เกี่ยวข้องกับการพัฒนาของเซลล์ออสติโอบลาสต์ อีกทั้งการ ลดลงของการแสดงออกและกิจกรรมของเอนไซม์อัลคาไลน์ฟอสฟาเตส (Alkaline phosphatase; ALP) และการสะสม แคลเซียมของเซลล์ออสติโอบลาสต์ที่ได้รับเหล็ก บ่งชี้ว่าเหล็กทั้งสองรูปแบบยับยั้งการพัฒนาและความสามารถในการสะสม แคลเซียมของเซลล์ออสติโอบลาสต์ อย่างไรก็ดีผลการทดลองทั้งหมดพบว่าเหล็กในรูปแบบเฟอร์ริกมีความเป็นพิษต่อเซลล์ ออสติโอบลาสต์มากกว่าเฟอร์รัส นอกจากนี้ยังพบว่าเซลล์ออสติโอบลาสต์ที่ได้รับเหล็กมีการสร้าง Reactive oxygen species (ROS) เพิ่มขึ้นในเซลล์ออสติโอบลาสต์ แต่การได้รับสาร antioxidant ได้แก่ N-acetyl cysteine (NAC) ก็ไม่สามารถยับยั้งการ ตายของเซลล์ออสติโอบลาสต์ และการแสดงออกของเอนไซม์เอ็นเอดีพีเอชออกซิเดส (NADPH oxidases; NOXs) ได้แก่ NOX1 และ NOX4 ก็เพิ่มขึ้นในเซลล์กลุ่มนี้ แต่การใช้สารยับยั้งการทำงานของเอนไซม์ดังกล่าวได้แก่ Diphenylene iodonium (DPI) ก็ไม่สามารถป้องกันการตายของเซลล์ออสติโอบลาสต์ได้ นอกจากนี้เมื่อทำการวัดความสามารถในการนำเหล็กเข้า เซลล์ (Iron uptake) ของเซลล์ออสติโอบลาสต์ในภาวะเหล็กเกิน พบว่าเซลล์ออสติโอบลาสต์มีการนำเหล็กเข้าสู่เซลล์ที่เพิ่มขึ้น ในภาวะเหล็กเกิน แต่การลดระดับของเหล็กภายในเซลล์โดยใช้ Iron chelator ได้แก่ Deferiprone (DFP) ก็ไม่สามารถช่วย ้ป้องกันการตายของเซลล์ออสติโอบลาสต์ภายใต้ภาวะเหล็กเกินได้ เป็นการยืนยันว่าการตายของเซลล์ออสติโอบลาสต์ภายใต้ ภาวะเหล็กเกินไม่ขึ้นกับปริมาณของเหล็กที่เซลล์ออสติโอบลาสต์นำเข้าสู่เซลล์ เนื่องจากวิตามินดี และแคลเซียมเสริมเป็นอีก หนึ่งหนทางในการรักษาผู้ป่วยที่อาจเกิดภาวะกระดูกพรุนได้ ผลของสารทั้งสองต่อการตายของเซลล์ออสติโอบลาสต์ภายใต้ ภาวะเหล็กเกินจึงถูกทำการศึกษา ผลการศึกษาพบว่าวิตามินดีทำให้เกิดการนำเข้าเหล็กสู่เซลล์ออสติโอบลาสต์มากขึ้นแต่ไม่ ้มีผลต่อการตายของเซลล์ออสติโอบลาสต์ภายใต้ภาวะเหล็กเกิน ในขณะที่การให้แคลเซียมในรูปของ CaCl, สามารถป้องกัน การตายของเซลล์ออสติโอบลาสต์ภายใต้ภาวะเหล็กเกินได้ โดยสรุปแล้ว ผลการศึกษาครั้งนี้พบกว่าเหล็กทั้งรูปแบบเฟอร์ริก และเฟอร์รัสสามารถทำให้เกิดการตาย และยับยั้งการทำงานของเซลล์ออสติโอบลาสต์ได้ โดยกระบวนการดังกล่าวไม่ถูก ยับยั้งได้โดยการใช้ DFP หรือวิตามินดี แต่จะถูกยับยั้งได้โดยการใช้แคลเซียมเสริม ผลการศึกษานี้ได้ให้ข้อมูลสำคัญเพื่อ ประกอบการออกแบบการรักษาผู้ป่วยที่มีภาวะกระดูกพรุนจากการมีเหล็กเกิน (Iron-induced osteoporosis) เช่นผู้ป่วยธาลัส-ซีเมียได้ ผลที่ได้การศึกษาได้ถูกเผยแพร่ (Published) และได้รับการตอบรับ (accepted) ใน international peer-reviewed journals 2 เรื่องในวารสาร Biometals (Impact factor 2.478, Q1) และวารสาร PLoS One (Impact factor 2.776, Q1) นอกจากนี้ผลการศึกษาที่ได้ยังได้ถูกเผยแพร่ทั้งในรูปแบบของโปสเตอร์ การบรรยาย และ proceedings ในงานประชุม วิชาการระดับนานาชาติทั้งสิ้น 4 งานทั้งในและต่างประเทศ

Keywords: osteoblasts, iron overload, osteoporosis คำสำคัญ: ออสติโอบลาสต์, ภาวะเหล็กเกิน, โรคกระดูกพรุน