Brock, V.E., 1954. A preliminary report on a method of estimating reef fish populations. J. Wildl. Manage., 18: 297-308

Buranapratheprat, A., Bunpapong, M., 1998. A two dimensional hydrodynamic model for the Gulf of Thailand. *Proc. of JICA seminar*. 469-478

Caley, M.J., 1993. Predation, recruitment and the dynamicsof communities of coral-reef fishes. *Mar. Biol.* 117:33-43

Caley, M.J., 1995. Reef-fish community structure and dynamics: an interaction between local and large-scale processes? *Mar. Ecol. Progr. Ser.* 129:19-29

Chesson, P., 1998. Spatial scales in the study of reef fishes: A theoretical perspective.

Aust. J. Ecol. 23:209-215

Clarke, K.R., Green, R.H., 1988. Statistical design and analysis for a "biological effects" study. Mar. Ecol. Progr. Ser. 46:213-226

Clarke, K.R., Warwick, R.M. 1994. Change in marine communities: An approach to statistical Analysis and Interpretation. Plymouth: Plymouth Marine Laboratory, 144 pp.

Crowder, L.B., Lyman, S.J., Figueira, W.F., Priddy, J., 2000. Source-sink population dynamics and the problem of sitting marine reserves. Bull. Mar. Sci. 66(3):799-820

Doherty, P.J., 1981. Coral reef fishes: recruitment-limited assemblages? Proc.4th Int. Coral Reef Symp. 2,465-470

Doherty, P.J., 1982. Some effects of density on the juveniles of two species of tropical, territorial damselfishes. J. Exp. Mar. Biol. Ecol. 65:249-261

Doherty, P.J., 1991. Spatial and temporal patterns in recruitment, pp. 261-293, In: Sale, P.F. (ed.) The ecology of fishes on coral reefs. Academic Press, San Diego

วิภูมิต (2544) การผันแปรตามเวลาและการทดแทนประชากรของปลาแนวปะการังบริเวณหมู่เกาะสีซัง (ส่วนในสุดของต่าวไทย)

Doherty, P.J., Williams, D.M., 1988. The replenishment of coral reef fish populations.

Oceanogr. Mar. Biol. Ann. Rev. 26:487-551

English, S., Wilkinson, C., Baker, V., 1994. Survey manual for tropical marine resources: ASEAN-Australia Marine Science Project. Australian Institute of Marine Science, Townsville

Fowler, A.J., 1987. The development of sampling strategies for population studies of coral reef fishes. A case study. Coral Reefs, 6: 49-58

Fowler, A.J., 1990. Spatial and temporal patterns of distribution and abundance of chaetodontid fishes at One Tree Reef, southern GBR. Mar. Ecol. Prog. Ser., 64: 39-53

Fowler, A.J., Doherty, P.J., Williams D.McB., 1992. Multi-scale analysis of recruitment of coral reef fish on the Great Barrier Reef. Mar. Ecol. Prog. Ser., 82: 131-141

Hanski, I.A., Gilpin, M.E., 1997. Metapopulation biology: ecology, genetics and evolution.

Academic Press. California. 512+xvi

Harmelin-vivien, M.L., 1981. Trophic relationships of reef fishes in Tulear (Madagascar).

Oceanologica Acta 3:365-374

Hixon, M.A., 1991. Predation as a process structuring coral reef fish communities. pp. 475-508, In: Sale, P.F. (ed.) The ecology of fishes on coral reefs. Academic Press, San Diego

Hixon, M.A., 1998. Population dynamics of coral-reef fishes: Controversial concepts and hypotheses. Aust. J. Ecol. 23:192-201

Hixon, M.A., Beets, J.P., 1993. Predation, Prey refuges, and the structure of coral reef fish assemblages. Ecol. Monogr., 63(1): 77-101

Hixon, M.A., Menge, B.A., 1991. Species diversity: preyrefuges modify the interactive effects of predation and competition. *Theor. Popul. Biol.* 39:178-200

Jones, G.P., 1987. Some interactions betweenresidents and recruits in two coral reef fishes. J. Exp. Mar. Biol. Ecol. 114:169-182

Jones, G.P., 1991. Postrecruitment processes in the ecology of coral reef fish populations: A Multi-factorial perspectives. pp. 294-328, In: Sale, P.F. (ed.) The ecology of fishes on coral reefs. Academic Press, San Diego

Keough, M.J., Mapstone, B.D., 1995. Protocols for designing marine ecological monitoring programs associated with BEK mills. National Pulp Mills Research Program Technical Report No. 11. Canberra: CSIRO, 185pp.

Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. *Bull. Entomol. Soc. Am.*, 15:237-240

Lewis, A.R., 1997. Recruitment and post-recruit immigration affect the local population size of coral reef fishes. Coral Reefs 16: 139-149

Leis, J.M., Trnski, T., Doherty, P.J., Dufour, P., 1998. Replenishment of fish populations in the enclosed lagoon of Taiaro Atool: (Tuamoto Archipilago, French Polynesia) evidence from eggs and larvae. Coral Reefs 17(1)1-8

MacArthur, R.H., Wilson, E.O., 1967. The theory of island biogeography. Princeton University Press. Princeton, NJ

Manthachitra, V., 1992. Coral reef fishes and their relationship with condition of coral communities in Chonburi Province. Proceedings of the 3rd Technical Conference on Living Aquatic Resources. Chulalongkorn University, 43-53.

Manthachitra, V., 1996. Reef Fish Assemblages on Near-Shore Coral Reefs: The Effects of Habitat Structure, Degradation and Rehabilitation. Unpublished Ph.D. Thesis submitted to James Cook University

Manthachitra, V., Sudara, S., 1991. Status of coral reef fishes along the west coast of the Gulf of Thailand. Proc. of the 1st Regional Symposium of CLRP. Manila, 129-134 Manthachitra, V., Sudara, S., Saturnanatpan, S., 1991. Chaetodon octofasciatus as indicator species for reef condition. Proc. of the 1st Regional Symposium of CLRP. Manila, 135-139

Meekan, M.G., Milicich, M.J., Doherty, P.J., 1993. Larval production drives temporal patterns of larval supply and recruitment of a coral reef damselfish. Mar. Ecol. Prog. Ser., 93: 217-225

Menasveta, P., Wongratana, T., Chaitanawisuiti, Rungsupa, S., 1986. Species composition and standing crop of coral reef fishes in the Sichang Island, Gulf of Thailand. Galaxea, 5 (1): 115-121

Milicich, M.J., Doherty, P.J., 1994. Larval supply of coral reef fish populations: magnitude and synchrony of replenishment to Lizard Island, Great Barrier Reef. Mar. Ecol. Prog. Ser., 110: 121-124

Milicich, M.J., Meekan, M.G., Doherty, P.J., 1992. Larval supply: a good predictor of recruitment of three species of reef fish (Pornacentridae). *Mar. Ecol. Prog. Ser.*, 86: 153-166

Mongkolprasit, S., 1981. Investigation of coral reef fishes in that waters. Proc. 4th Int. coral Reef Symp., Manila (2): 491-496

Mongkolprasit, S. and Sonthirat, S., 1980. Systematic studies of coral reef fishes from the indian ocean, Phuket (Thailand). Kasetsart University Fisheries Research Bullatin 11:1-15

Mongkolprasit, S., Songsirikul, T., 1988. Systematic studies of fishes from Ko Samet and adjacent areas, Gulf of Thailand, with some new record species. *Thai Fisheries Gazette*, 41 (1): 45-53

Parrish, J.D., Callahan, M.W., Norris, J.E. 1985. Fish trophic relationships that structure reef communities. Proc 5th Int. Coral Reef Congress . 4:73-78

Mongkolprasit, S., Sonthirat, S., Songsirikul, T., 1978. Survey on coral reef fishes in Thai water. Report submitted to National Research Council of Thailand, 44 pp.

Ogden, J.C., Ebersole, J.P., 1981. Scale and community structure of coral ref fishes: A long term study of a large artificial reef. Mar. Ecol. Prog. Ser., 4: 97-104

Pielou, E.C., 1974. Population and community ecology: Principles and methods. Gordon and Breach Science Publishers, New York

Planes, S., Romans, P., Lecomte-Finiger, R., 1998. Genetic evidence if closed life-cycles for some coral reef fishes within Taiaro Lagoon (Tuamotu Archipelago, French Polynesia). Coral Reefs 17(1):9-14

Polunin, N.V.C., Roberts, C.M., 1993. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. *Mar. Ecol. Prog. Ser.* 100:167-176

Pullium, H.R., 1988. Sources, sink and population regulation. Am. Nat. 132:167-176

Randall, J.E., Satapoomin, U., 1999. Archamia ataenia, a new species of cardinalfish (Perciformes: Apogonidae) from the Andama Sea and Mentawai Islands. *Phuket mar. Biol. Cent. Res. Bull.* 62:1-8

Randall, J.E., Satapoomin, U., 2000.

Roberts, C.M., 1997. Connectivity and management of Caribbean coral reefs. Science 278:1454-1457

Russ, G.R., 1991, Coral reef fisheries: Effects and yields. pp. 601-635. In: Sale P.F. (ed.)

The ecology of fishes on coral reefs. Academic Press, San Diego

Russ, G.R., Alcala, A.C., 1996. Marine reserves: rate and patterns of recovery and decline of large predatory fish. *Ecol. Appl.* 6:947-961

Sale, P.F., 1977. Maintenance of high diversity in coral reef fish communities. Am. Nat., 111: 337-359

Sale, P.F., 1991. Reef fish communities: Open nonequilibrium systems. pp. 564-598. In: Sale P.F. (ed.) The ecology of fishes on coral reefs. Academic Press, San Diego

Sale, P.F., 1998. Appropriate scales for studies of reef-fish ecology. Aust. J. Ecol. 23:202-208

Sale, P.F., Douglas, W.A., 1984. Temporal variability in the community structure of fish on coral patch reefs and the relation of comunity structure to reef structure. *Ecology*, 65: 409-422

Sale, P.F., Guy, J.A., 1992. Persistance of community structure: what happens when you change taxonomic scale? Coral Reefs 11:147-154

Sale, P.F., Steel, W.J.,1986. Random placement and the structure of reef fish communities. Mar. Ecol. Prog Ser., 28: 165-174

Sale, P.F., Steel, W.J., 1989. Temporal variability in patterns of association among fish species on coral patch reefs. Mar. Ecol. Prog. Ser., 51: 35-47

Sale, P.F., Guy, J.A., 1992. Persistence of community structure: what happens when you change taxonomic scale? Coral reefs, 11: 147-154

Sano, M., Shimizu, M., Nose, Y., 1987. Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at triomote Island, Japan. Mar. Ecol. Prog. Ser. 37, 191-199

Satapoomin, U., 1993. Updated list of reef fishes and their distribution along the west coast of Thailand, Andaman Sea. Phuket Mar. Biol. Cent. Spec. Publ., 12: 67-91

Satapoomin, U., 2000. A preliminary checklist of coral reef fishes of the Gulf of Thailand, South China Sea. Raffles Bull. Zoo. 48(1):31-53 Satapoomin, U., Chansang, H., 1992. Distribution and abundance of fishes on coral reefs of Phuket Island, Thailand. Proceedings of the 3rd ASEAN science and technology week Vol. 6. Marine Science: Living coastal resources. Singapore, 167 (Abstract)

Saturnanapan, S., Sudara, S., Sookchanuluk, C., 1992. Comparison of reef fish communities from various reef conditions and structures in the Gulf of Thailand. Proceedings of the 3rd ASEAN science and technology week Vol. 6. Marine Science: Living coastal resources. Singapore, 125-130

Saturnanapan, S., Sudara, S., 1992. Reef fish communities in the Gulf of Thailand. Proceedings of the 3rd ASEAN science and technology week Vol. 6. Marine Science: Living coastal resources. Singapore, 145-150

Sebens, K.P., 1994. Biodiversity of coral reefs: What are we losing and why? Amer. Zool., 34: 115-133

Smith, C.L., Tyler, J.C., 1972. Space resource sharing in coral reef fish community. Bull. Nat. Hist. Mus. Los Angeles Country,14: 125-170

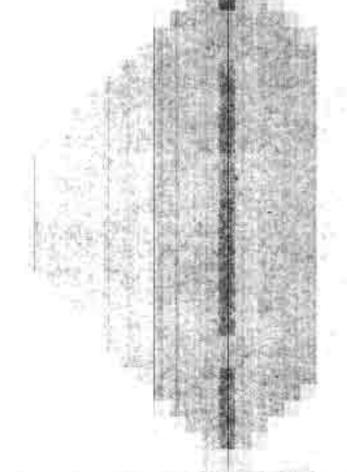
Sojisuporn, P., Putikiattikakorn, P., 1998. Eddy Circulation in the upper Gulf of Thailand from 2-D tidal model. *Proc. Of the JICA* 515-522

Tabachnick, B.G., Fidell, L.S., 1989. Using multivariate statistics, 2rd edition. Harper Collins Publishers, Inc. New York

Talbot, F.H., Russell, B.C., Anderson, G.R.V., 1978. Coral reef fish communities: Unstable, high-diversity systems? *Ecol. Monogr.*, 48:425-440

Thapanand, T., Chunhabandit, S., Sopon, A., 1996. Species composition fishes caught by entaging net around Khang Khao Island, Gulf of Tahiland. *Thai Fisheries Gazette*, 49(1): 37-44

Victor, B.C., 1983. Recruitment and population dynamics of coral reef fish. Science, 219: 419-420.

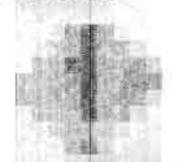

Victor, B.C., 1983. Recruitment and population dynamics of coral reef fish. Science 219: 419-420

Victor, B.C., 1986. Duration of the planktonic larval stage of one hundred species of Pacific and atlantic wrasses (family Labridae). *Mar Biol.* 90:317-326

Williams, D.M., 1983. Daily, monthly and yearly variability in recruitment of a guild of coral reef fishes. Mar. Ecol. Prog. Ser. 10:231-237

Williams, D.M. and Hatcher, A.L., 1983. Structure of fish communities on outer slopes of inshore, mid-shelf and outer reefs of the Great Barrier Reef. Mar. Ecol. Prog. Ser. 10:239-250

Wongratana, T., Chaitanawisuti, N., Menasveta, P., 1990. The predatory fishes around Khang Khao Island and the adjacent area. Galaxea, 8: 311-319

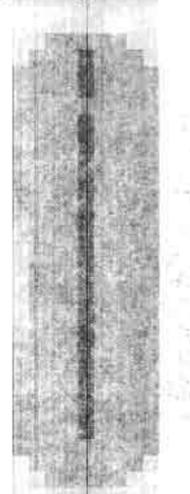


ภาคผนวกที่ **1**

Paper submitted to Coral Reefs

Community structure of coral reef fishes at a sink reef in the inner Gulf of Thailand

V. Manthachitra and S. Sudara


Keywords: reef fishes, community structure, connectivity, Gulf of Thailand

- Department of Aquatic Science,

 Burapha University,

 Bangsean, Chonburi 20131, Thailand

 E-mail: vipoosit@bucc4.buu.ac.th
- ² Department of Marine Science, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Reef fish assemblages in the inner Gulf of Thailand exist in a low salinity, high sediment environment with limited connection to other reefs. Monitoring of reef fish assemblages at Khangkao Island from October 1997 to November 1998 revealed 83 species from 28 families. Pomacentridae was dominant in terms of both numbers of species and abundance. Small water column feeders (13 species, 40% abundance) and small herbivores (4 species, 39% abundance) dominated the assemblages. Invertebrate feeders and piscivores were less prominent, with a moderate number of species in low abundance. Canonical Discriminant Analysis (CDA) indicated that differences in species composition between sites arose because habitat is a major source of variation while the time of year of sampling and reef orientation with reference to seasonal winds were less important. Variation among stations was detected only in fish assemblages of the reef slope. Temporal variation was also detected but mainly on dominant fish taxa in each study site. Community parameters indicated pattern similar to the CDA where habitat is a major source of variation in species composition. The results suggested that fish assemblages on reef slopes had higher species and abundance than other habitats. The present structure of the fish assemblage of Khangkao Island illustrated a dramatic shift from the structure 10 years ago. Benthic invertebrate feeders declined severely while small plankton feeders and herbivores increased. This may reflect a pattern of increasing disturbance affecting reef fish assemblages in the inner Gulf of Thailand.

Keywords: reef fishes, community structure, connectivity, Gulf of Thailand

วิภูษิด (2544) การนั้นแปรดามเวลาและการทดแทนประชากรของปลาแนวปะการังเกี่ยวถสมุนกาะสีรัง (ด่วนในคุดของอ่าวไทย)

Introduction

Many marine organisms including reef fishes are assumed to have an open population (Johannes 1978). For coral reefs, this assumption leads to the concept of connectivity where source reefs facilitate seeding of sink reefs (Veron 1995). This concept also leads to the question of how different reefs maintain their populations and community of reef organisms. This question may also relate to disturbances influencing different reefs. The study of ecosystems at their environmental limits is ideal for examining ecological processes regulating population and community of reef organisms (Harriott and Simpson 1997).

Differences in reef fish assemblage structure have been recognized over different areas with different underlying causes. Different zoogeographic regions demonstrate very large-scale spatial variation due to evolutionary history and larval dispersal (Gladfelter et al. 1980; Findley and Findley 1985). The influence from land relating to reef development such as run-off water has been demonstrated for the Great Barrier Reef (Williams 1982; Williams and Hatcher 1983; Russ 1984) and Red Sea (Roberts et al. 1992). At smaller spatial scales, reef habitat variation due to geomorphological differences (Russ 1984; Galzin 1987) and also human disturbance (Parrish et al. 1988) are known. There has been little work, however, documenting the community structure of assemblages of individual reefs with limited connectivity in a low salinity and nutrient rich environment.

The inner part of the Gulf of Thailand (inner Gulf) is the northwest apex of the Gulf of Thailand. It has a squarish shape covering an area of 10,360 km² fringed by 300 km of coastline (3.2% of the total area and 4.3% of the coastline of the entire Gulf of Thailand). Coral formations are found only on the East Coast of the inner Gulf where a chain of islands known as Sichang Islands are located inner most. One of these,

Khangkao Island, located in the southern most part of the Sichang Islands has the bestdeveloped and largest area of coral formations. These coral formations are classified as
coral assemblages and are characterized by poorly developed or no reef framework
(Sakai et al. 1989). Primary factors limiting reef development here are low salinity and
high nutrient concentrations maintained by runoff from four majors rivers (Siripong
1990). Water circulation is also limited where tidal currents cause north-south
movements of water mass in the area (Hydrographic Department 1995). The connection
to other reefs is limited as the nearest coral reefs are found only in the south. These
coral formations at Khangkao Island can be considered as sink reefs from their position
at downstream end. This raises the question of how these reefs maintain their
populations and community structure. Furthermore, their sensitivity to any sources of
disturbance is also in doubt.

In this study we investigated reef fish assemblages on such a reef system in a low salinity environment with limited larval supply from other reefs. A description of reef fish assemblages at Khangkao Island was first provided by Menasveta et al. (1986). To date, there is little new information on fish assemblages from this area. During this time, anthropogenic disturbances to this area had increased especially from port construction, rock mining and tapioca dust. The intention is to provide an updated description of the community structure of reef fishes and to determine their spatial and temporal variations.

Materials and methods

Study sites

Khangkao Island (13006χ30χN, 100048χE) is located in the southern most part of the Sichang Islands in the inner Gulf of Thailand (Fig. 1). It is 7 km off the East Coast of Sriracha District, Chonburi Province and 30 km south of Bangpakong River. It is a small island (1.5 km x 0.8 km) with narrow strips of coral assemblages, generally 30-100 m in width and 3-5 m in depth. Reef development is generally limited. Structures of coral assemblages here were described by Sakai et al. (1986). Four localities around the island were selected for study, North reef (N), Northeast reef (NE), Southeast reef (SE), and Southwest reef (SW). The coral assemblages on each locality are subjected to different wind and wave action. The SW reef is exposed to the SW-monsoon and experiences the strongest wave action, while N and NE reefs are exposed to the NE-monsoon and receive only moderate wind and wave action. The SE reef is sheltered and relatively free from monsoonal influence.

Sampling procedures

This study was conducted from October 1997 to November 1998. Fishes were censured on 11 occasions spanning 14 months at 4 localities. These localities had 2 habitats, reef flat and reef slope, which differed in substrate types, depth and influence from wave action. The term "site" will be used to represent sampling of each habitat at each locality. At each site fishes were counted along 5 random transects each 30m long and 5m width. Transects were positioned with their long axis parallel to the shoreline and were separated by approximately 10-15m. Instantaneous visual census (Fowler 1987) was employed by a SCUBA diver who identified and counted fishes during the deployment of the measuring tape simultaneously. However, small and cryptic species, e.g. gobies and blennies were excluded from the census, as they were difficult to see and count accurately. Menasveta et al. (1986) showed the proportion of these groups at Khangkao Island was small, and we considered them to be only a minor component.

วิภษิต (2544) การผับแปรดาแรวตาและการทดแทนประชากรของปลาแนวปะการัสเดียวณหมูเกาะดีรัง (ส่วนในสุดของข่าวไทย)

Fish community structure was categorized according to feeding niche of each species. These categories were defined on the basis of both visual observation and from a number of references (Williams and Hatcher 1983; Sano et al. 1987; Lewis 1997). The following categories are used:

- A) Herbivores: Species feeding on algae or other plant materials and there were
 3 recognized groups:
- Site attached. Small species which feed within a small area, e.g.
 Pomacentrus cuneatus, P. chrysurus.
- Gardener. Species which defend territories and feed on algae within their territories, e.g. Hemiglyphidodon plagiomatopon, Stegates obreptrus
- Home range. Usually moderate to large species which feed over a large area,
 e.g. Siganids, Mugillids, Kyphosids
- B) Omnivores: Species feeding on both plant and animal materials. They are organized into 2 groups:
- Plankton feeders. The fishes of this group were usually small and had short home ranges. They hover over the substratum and feed on plankton or suspended materials in water column, e.g. Abudefuf spp., Amblyglyphidodon spp., Neopomacentrus spp.
- Pelagic. Species of moderate size feeding on suspended materials and always swimming over large areas, e.g. Caesionids, Carangids
- C) Carnivores: Species that feed exclusively on benthic invertebrates. Two groups were categorized based on their daily activities:
- Diurnal feeders. Species feeding only during daytime e.g. Labrids, Chaetodontids, Pomacanthus spp., Scolopsis spp.

- Nocturnal feeders. Species feeding only at night, e.g. Holocentrids,
 Apogonids and Pempherids
- D) Piscivores: Species feeding primarily on other fishes.
- Site attached. Small piscivores which have a limited home range, e.g.
 Serranids
- Home range. Moderate to large piscivores which are restricted to a particular area or moving over a large area, e.g. Lutjanids, Haemulids

Data analyses

Canonical Discriminant Analysis (CDA) was employed to test the hypothesis that key dependent variables (fishes) were influenced by the factors in question. A priori tests were performed on the data matrix to verify that data satisfy the assumptions of parametric statistical methods (Clarke and Green 1988). Log (x+1) transformation, therefore, was applied to stabilize the variance of the data set. This transformation was also used to reduce the chance that a few extremely dominant species would skew the results of CDA. The CDA analysis was performed on the centered data matrix using SPSS 7.5 for Windows (SPSS Inc. 1997). The canonical structure of each species was used as the "responsive" factor for the discrimination of sites (i.e. the interpretation indicates species would be most different for two centroids). Angular interpretation was thus used to interpret the ordination plot produced by CDA.

Four parameters were considered as community characteristics; total abundance, species richness, diversity and evenness indexes. The abundance of all fishes at each site was calculated as the mean abundance from five replicates. Therefore, mean abundance of all fishes was expressed as individuals per 150 m². Species richness was a count of total species found in each site. A Shannon-Wiener diversity index (H = -6

pilogepi) and evenness index (E = H'/logeS) were calculated using natural logarithms throughout (Pielou 1974; Magurran 1988). Computation of these community parameters (except total abundance) was executed on mean abundance of each site rather than abundance of each transect. These parameters were considered as semi-quantitative variables rather than quantitative. For example, mean number of species of each site calculated from replicate transects tends to underestimate the actual number of species found at each site. The actual number of species of each site, therefore, should be the accumulative total from each replicate rather than averaged. This is also the problem when calculating the species diversity and evenness indices.

ANOVA was used to test the hypothesis that there are influences on community parameters by occasion (A), locality (B) and habitat (C). Full factorial three-way ANOVA was applied to the total abundance, while three-way ANOVA without replicates was applied to species richness, species diversity and evenness indexes. This is because these community parameters are calculated from mean of each site, and therefore lack replication. In this case, error mean square was assumed to be zero and then second order interaction MS is used as F-denominator (Sokal and Rohlf 1995). For statistical hypothesis testing, a significance level of 0.05 was used throughout the study, but the lowest level was also reported where appropriate.

Results

Assemblage structure

A total of 139,764 fishes were counted during study period. Species and mean abundance associated with each habitat at four localities around Khangkao Island are presented in Table 1. Eighty-three species belonging to 29 families were found.

วิภูษิต (2544) การมีนแปรดามเวลาและการตดแทนประชากรของปลาแมวปะการังบริเวณหมูเกาะสีรัง (ส่วนในสุดของช่าวไทย)

Pomacentridae dominated this assemblage with 20 species and represented 76.87% of total abundance (Table 2). Five families were represented as minor components; Labridae, Apogonidae, Nemipteridae, Carangidae and Chaetodontidae, each family contributed 2-6 species and represented 2-6% of total abundance. The families Serranidae, Siganidae and Lutjanidae were each represented by 5-6 species. Only 1 or 2 species from each of several families were recorded. The relative abundance of these poorly represented families was less than 1%.

According to ecological categories (Table 3), omnivores and herbivores dominated the assemblage accounting for 82% of total abundance and represented by 32 species. Within these categories, small site-attached herbivores (39%) and water column feeders (40%) were the most dominant groups. Remarkably, small site-attached fish was represented by only 4 species dominated solely by Pomacentrus cuneatus. In comparison, water column feeders were represented by 13 species, dominated by Neopomacentrus filamentosus, N. anabantoides and N. cyanomos. Invertebrate feeders had the highest species number, 35 species but representing only about 18% of total abundance. Among this group, Scolopsis spp. and Halichoeres spp. were the most abundant. For the piscivores, 16 species were sighted but their abundance was low, representing less than 1%. Most of the piscivores found were small, certainly under 15 cm. in total length e.g. Cephalopholis boenack

Species composition

The results from CDA illustrated spatio-temporal variability in community structure of fish in the study area (Fig. 2). The first two discriminant functions explained 63.9% of total variance in the data set. It was clear that community structure of fish on the reef flat and the reef slope is distinct. Community structure of fish on the

reef flat at all localities showed less variation and species characterizing this habitat were *Pomacentrus chrysurus* (POMCHR), *Abudefduf bengalensis* (ABUBEN) and *Gerres filamentosus* (GERFIL).

On the reef slope, by contrast, there were variations between localities where N and NE had similar structure while SW and SE had different structures. Fishes characterizing reef slopes of N and NE reefs were Halichoeres purpurescens (HALPUR), Neopomacentrus filamentosus (NPOFIL), N. cyanomos (NPOCYA), N. bankerii (NPOBAN), N. anabantoides (NPOANA), Cheilodipterus quinquelineatus (CDIQUI) and Diploprion bifasciatus (DIPBIF). The SE reef slope is characterized by Neoglyphidodon nigroris (NEONIG), Hemiglyphidodon plagiometopon (HEMPLA) and Pomacentrus moluccensis (POMMOL). Apogon doederleini (APODAF), A. cyanosoma (APOCYA) and Halichoeres nigrescens (HALNIG) dominate the reef slope of SW reef.

CDA of species composition over the entire sampling period showed a consistent pattern of the same site aggregated in the same group on different occasions. This result suggests that community structure of each site vary temporally in the major fish components.

Community parameters

Total abundance varies over test factors as there was significant Time x Locality x Habitat interaction (Table 4). Habitat, however, was a major source of variation accounting for 61.6% while Locality and Time explained less variation. As variation between localities was not prominent, total abundance was averaged across localities (Fig. 3a). Fishes on reef slopes (300-600 indiviuals/150m²) were more abundant than those on reef flats (200 indiviuals/150m²). However, fish abundance on reef slopes

exhibited fluctuations over sampling occasions while fish abundance on reef flat remained relatively stable. Total abundance of fish on reef slopes was highest in December-January and in July-September, both maxima followed the influx of recruits the previous month (Manthachitra unpublished data).

Results from ANOVA suggested some variation on species richness over test factors, significantly Time x Locality and Locality x Habitat interactions. The variance components, however, indicated that Habitat (24.9%) and Time (22.2%) were the major contributing source of variation while other sources contributed less than 10%. Locality, therefore, was dropped and mean was illustrated for Time and Habitat (Fig. 3b). It is clear that species richness on reef slopes (22-32 species) was higher than that on reef flats (15-20 species). The number of species at both habitats over time had a similar pattern (non-significant interaction among Time x Habitat). There was some fluctuation over sampling occasion with species richness being highest in December, kept stable until dropping sharply in May, before increasing again with little fluctuation.

Habitat was also a major source of variation in species diversity and evenness indices, with their variance components representing 80.6% and 69.8% of total variance respectively (Table 3). There was significant effect from Locality x Habitat interaction on species diversity and evenness indices (Table 1). Fig. 3b and 3c illustrated that reef slope had higher fish diversity and more evenness than the reef flat. Species diversity at both habitats showed the same pattern of fluctuation over time. Species diversity index increased from October to a peak in January before decreasing slightly to July and then increasing again. For evenness index, the fluctuation over time was less prominent (no significant effects relevant to Time were detected).

Discussion

The prominent features of Khangkao's reef fish assemblages, in general, are low species diversity and absence of many reef fish taxa e.g. Acanthuridae. Considering the previous records of fishes at Khnagkao Island, Monkolprasit (unpublished report) recorded 40 species from – families. Menasveta et al. (1986) reported 70 species from 31 families including some cryptic species. Thus, species pool at Khangkao Island is estimated at 100 species. The reason for this low diversity is its geographic location in the innermost of the Gulf of Thailand. The location of this reef is comparable to near-shore reefs where the structure of reef fish assemblages is less complicated when compared with offshore reef (Williams and Hatcher 1983; Russ 1984). Furthermore, this reef also has limited connection to nearby reefs. The area of reef is also important, estimated at only 0.5 km² while the total reef area of the Sichang Islands is less than 1 km². Species and area relationship has been pointed out as one of the important ecological factors (Connor and McCoy 1979; Cornell and Karlson 2000).

Most significant in the reef fish assemblages at Khangkao Island is the domination of individuals from the family Pomacentridae. Which is consistent with the earlier investigation of Menasveta et al. (1986). However, the representation of other families differed in the two studies. Individuals from Pomacentridae and Labridae were more abundant in the present study while those from Apogonidae, Chaetodontidae, Pempheridae, Atherinidae and Serranidae were less abundant (Table 3). This result also suggested a shift in trophic structure from benthic invertebrate feeders to small herbivorous and plankton feeders.

Several studies reported spatial variability of fish assemblage structure. Williams and Hatcher (1983) illustrated cross-shelf variability of fish assemblage structure across the central Great Barrier Reef. They reported that for fish assemblages of inshore reefs planktivores and benthivores form the major component while algal feeders represent less than 10%. In contrast, Parrish et al. (1985) studying fish assemblages from pristine reefs of Hawaii found that benthic invertebrate feeders were the major component (57%) while algal and plankton feeders represented 22% and 10% respectively. They also reported that the three most species-rich families were Labridae, Acanthuridae and Chaetodontidae, and the three most abundant families were Gobiidae, Apogonidae and Pomacentridae. Parrish et al. (1985) illustrated that food availability is a factor structuring fish assemblage in each reef system. The assemblage structure of fish at Khangkao Island is quite different from the above studies. The geographical position and influence from land may contribute to this difference.

Spatial variation

Zonation patterns of fish assemblages on coral reefs are common (Russ 1984; Meekan et al. 1995). This study indicated that reef habitat is the main contributing factor to zonation patterns. Although the reef framework is less developed and distance and depth among habitats are relatively short, the assemblages of fish on the reef flat are distinct from those on the slope when considering both species composition and community parameters. Results from CDA illustrated that patterns of species composition of fish on the reef flat were similar over four localities. Locality variation was detected only for total abundance and species richness, but this factor contributes less variation than habitat and time.

In general, the assemblages of fish on the reef flat have relatively low individuals and number of species which agree with several studies (Russ 1984; Meekan et al. 1995). Low species diversity and evenness indices suggested that fish

assemblages on the reef flat are dominated by a few species. This is shown by data on species composition where only *P. cuneatus* was the most abundant fish on the reef flat (80-150 individual/150m²), but is not detected by CDA because of its wide distribution over both habitats. Fishes characterizing the reef flat were *Pomacentrus chrysurus* and *P. tripunctatus*, but their abundances were relatively low (<10 individual/150m²). However *P. chrysurus* was also found on both habitats of SW reef which has the narrowest reef area. Meekan et al. (1995) found that *Pomacentrus bankanensis/chrysurus* characterized reef flat and crest zones of damselfishes at Lizard Island, GBR. *Abudefduf bengalensis* and *Gerres filamentosus* (*punctatus*) also characterized reef flats by their higher abundance.

The consistent pattern of fish assemblages on the reef flat over four localities can be explained by habitat structure as all localities have a sand stone platform with boulders except North reef with some sandy bottom (Sakai et al. 1986). Coral cover is relatively low and dominated by massive or submassive forms especially *Porites lutea* and *Pavona* spp.. This also suggests that wind and wave action from moonsoons have less influence on variability of fish assemblage on reef flats.

For reef slopes, in contrast, fish assemblages have relatively higher community parameter values than on reef flats. Overall, locality difference influenced species richness and abundance but was not significant. Species composition, however, was a more obvious indication of locality difference. Species composition on reef slope at North and Northeast reefs were similar where Halichoeres purpurescens and Neopomacentrus spp. had the greatest abundance. Both reefs have the highest wave influence during the NE monsoon in winter. Southeast reef receives waves from the south wind during summer. Fishes characterizing reef slope assemblages were Neoglyphidodon melas and Hemiglyphidodon plagiometopon. Southwest reef receives

วิภูษิด (2544) การกับแปรดามเวลาและการทดแทนประชากรของปลาแบวปะการังบริเวณหมูเกาะสีรัง (ส่วนในสุดของอำวุโทช)

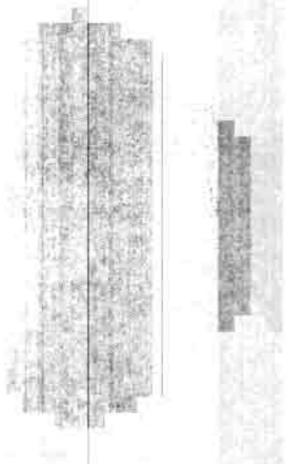
wave from the influence of SW monsoon during summer and its reef slope had more Apogon doederleini, A. cyanosoma and Scolopsis ciliatus than other reefs.

Temporal variation

There were no dramatic changes on the fish assemblages during 14 months of this study. It should be noted that widespread coral reef bleaching occurred in the Gulf of Thailand during the study (April – June 1998). At Khangkao Island, bleaching resulted in the decline of living coral especially Acropora spp. and Porites lutea. About 40% of living coral died after 6 months of the bleaching event (unpublished data). The impact on coral feeders was not prominent, as their diversity and abundance in the study area were already low. There was also no prominent change on other groups of fish. This can be explained as the effect was relatively short and physical structure of habitat did not change during the study period. Sano et al. (1987) illustrated that two years after the destruction of corals by Acanthaster planci, coral feeders disappeared completely from the impact area due to shortage of food supply, while other fishes decreased in both numbers of species and abundance due to destruction of habitat structure. The effect from coral reef bleaching is likely to be comparable to the effect from A planci infestation. However, long term monitoring is needed to clarify the effect of habitat structure on fish assemblage at Khangkao Island.

The most prominent fluctuation, however, was in total abundance of reef slope fishes. Less fluctuations of species richness, species diversity and evenness suggested that seasonal variability were relatively similar. Less variation of species diversity and evenness also indicated that the abundance of most species varied through time but with different magnitude. In general, seasonal variability has two peaks, first during early summer (high temperature) and then during rainy season (high nutrients). Higher

วิภูษิด (2544) การนั้นแปรดามเวลาและการทดแทนประชากรของปลาแนวปะการังบริเวณหมูเกาะดีซึ่ง (ส่วนในสุดของช่าวไทย)


abundance of fishes resulted from the increased sub-adult population, following recruitment. This may indicate the role of recruitment on the structure of fish assemblage in the study area. However, the relative importance of recruitment on populations and assemblages of coral reef fishes at Khangkao is not known.

Most studies revealed that the extent of population change through time in reef fishes is species specific (Jones 1988) and some found less significance than spatial variability (Fowler 1990). In this study, members of two genera of the family Pomacentridae, Pomacentrus and Neopomacentrus mostly contributed a change in total abundance at the reef slope. This result agrees with the conclusion made from CDA that the variation of total abundance over time is the result of fish dominating in each site.

In conclusion, small site attached herbivores and small water column feeders dominate the assemblage structure of fish on coral reef at Khangkao Island. Pomacentrids characterized these fish assemblages with the highest number of species and abundance. This indicates the influence from terrestrial runoff, which supply nutrients and suspended food materials to the reef area. Habitat or reef zonation is the main contributing factor to variability of fish assemblage structure. Spatial and seasonal variations are less prominent. The absence or rare presence of piscivores may indicate intense fishing pressure and also limited recruitment. Community parameters suggested the fish assemblages to be relatively stable, although the present structure is different from that of earlier reports. This indicates a shift in the status of present fish assemblages over the past 10 -15 years as the pressure of disturbances increased. Processes determining this shift include habitat structure, food supply, predation and recruitment. There is little information on the recruitment of reef fishes in this area.

this area is necessary to show whether or not the larvae supply is limited by it geographical position. This study is the first to describe the spatio-temporal variability in the structure of reef fish assemblages at Khangkao Island. The present reef fish assemblage illustrated a simple structure under limited reef development and environmental constraints.

Acknowledgements: The study was a part of the project supported by Thailand Research Funds under the Post Doctoral Research Fellows to the first author (Grant No. PDF/14/2540). We appreciate Professor Piamsak Menasveta, Former Director of the Institute of Aquatic Resources, Chulalongkorn University for providing logistic support at SMART. We appreciate Professor Bill Beamish, Dr. Chou Loke Ming and James True for reviewing the manuscripts. We thank numerous students who assisted with fieldwork.

วิภูษิด (2544) การนับแปรดามเวลาและการทดแทนประชากรของปลาแบวปะการังบริเวณหมูเกาะสีจัง (ส่วนในสุดของข่าวไทย)

References

Caselle J (1997) Small-scale spatial variation in early life history characteristics of a coral reef fish: inplications for dispersal hypotheses. Proc 8th Int Coral Reef Sym 2: 1161-1166

Clarke KR and Green RH (1988) Statistical design and analysis for a "Biological effects" study. Mar. Ecol. Prog. Ser. 102:153-160

Connor EF and McCoy ED (1979) The statistics and biology of the species arearelationship. Am. Nat. 113:791-833

Cornell HV and Karlson RH (2000) Coral species richness: ecological versus biogeographical influences. Coral Reefs 19:37-49

Fowler AJ (1990) Spatial and temporal patterns of distribution and abundance of chaetodontid fishes at One Tree Reef, southern GBR. Mar. Ecol. Prog. Ser. 64:39-53

Findley JS and Findley MT (1985) A search for pattern in butterfly fish communities.

The American Naturalist 126(6):800-816

Gladfelter WB, Ogden JC and Gladfelter EH (1980). Similarity and diversity among coral reef fish communities: A comparison between tropical western Atlantic (Virgin Islands) and tropical central Pacific (Marshall Islands) patch reefs. Ecology 61(5):1156-1168

Harriott VJ and Simpson CJ (1997) Coral recruitment on tropical and substropical reefs in Western Australia. Proc 8th Int Coral Reef Sym 2: 1191-1196

Hydrographic Department (1995) Report on oceanographic data processing of the central Gulf of Thailand, 1982-1993. Royal Thai Navy. 268 pp.

Johannes RE (1978) Reproductive strategies of coastal marine fishes in the tropics. Env. Biol. Fish 3: 65-84

Lewis AR (1997) Effects of experimental coral disturbance on the structure of fish communities on large patch reefs. Mar. Ecol. Prog. Ser. 161:37-50

Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London, p. 179+X

Meekan MG, Steven ADL and Fortin MJ (1995) Spatial patterns in the distribution of damselfishes on a fringing coral reef. Coral Reefs 14:151-161

Menasveta P, Wongratana T, Chaitanawisuti N, and Rungsupa S (1986) Species composition and standing crop of coral reef fishes in the Sichang Islands, Gulf of Thailand. Galaxea 5:115-121

Pielou EC (1974) Population and community ecology: principles and methods. Gordon and Breach Science Publishers, New York, p.

Roberts CM, Dawson Shepherd, AR and Ormond, RFG (1992) Large-scale variation in assemblage structure of Red Sea butterflyfishes and angelfishes. J. of Biogeoraphy 19:129-250

Russ G (1984) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I. Levels of variability across the entire continental shelf. Mar. Ecol. Prog. Ser. 20: 23-34

Russ G (1984) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II. Patterns of zonation of mid-shelf and outer-shelf reefs. Mar. Ecol. Prog. Ser. 20: 35-44

Sakai K, Snidvongs A, Yeemin T, Nishihira M and Yamazato K (1986) Distribution and community structure of hermatypic corals in the Sichang Islands, inner part of the Gulf of Thailand. Galaxea 5(1):27-74

Sakai K, Snidvongs A and Nishihira M (1989) A mapping of a coral-based, non-reefal community at Khang Khao Island, inner part of the Gulf of Thailand: Interspecific competition and community structure. Galaxea 8:185-216

Sano M, Shimizu M and Nose Y (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island, Japan. Mar. Ecol. Prog. Ser. 37:191-199

วิภูษิต (2544) การมีนแปรตามเวลาและการทดแทนประชากรของปลาแนวปะการังบริเวณหมูเกาะสีซึ่ง (ต่วนในสุดของช่าวไทย)

Siripong A (1990) The causes of circulation in the Gulf of Thailand, Proceedings of the First ASEAM Symposium on Southeast Asian Marine Science and Environmental Protection. UNEP Regional Sea Reports and Studies No. 116, pp. 21-35

Sokal RR and Rohlf FJ (1995) Biometry 3rd edition. W.H. Freeman and Company.

New York, p.850+XIX

SPSS Inc (1997) SPSS® Base 7.5 Applications Guide. SPSS Inc. USA

Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. UNSW Press, Australia, 321 pp.

Williams DMcB (1982) Patterns in the distribution of fish communities across the central Great Barrier Reef. Coral Reefs 1:35-43

Williams DMcB and Hatcher AI (1983) Structure of fish communities on outer slopes of inshore, middle-shelf and outer-shelf reefs of the Great Barrier Reef. Mar. Ecol. Prog. Ser. 10:239-250

Wongratana Y, Chaitanawisuti N and Menasveta P (1990) The predatory fishes around Khang Khao Island and the adjacent area. Galaxea 8:311-319

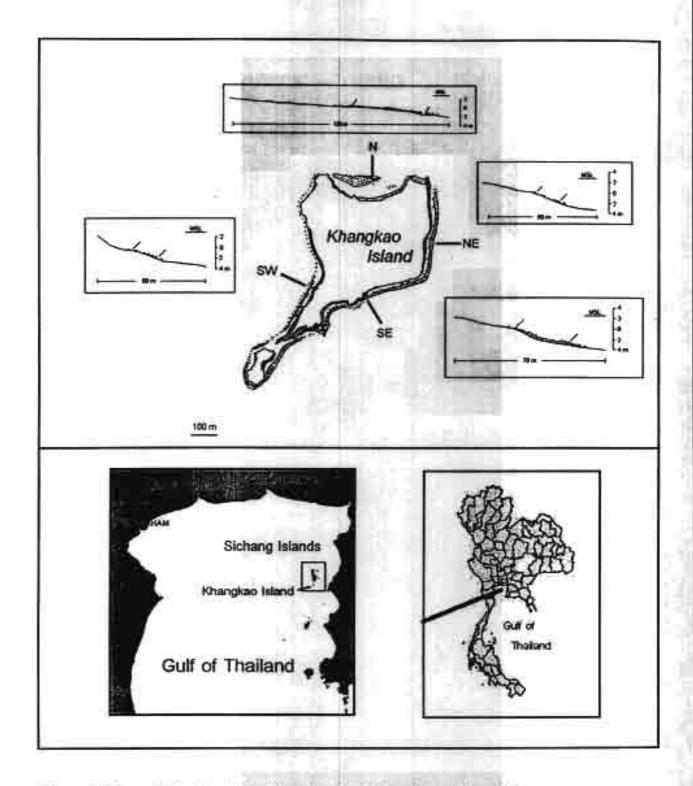


Figure 1. Map of Khangkao Island showing 4 study localities with profiles indicated 2 sampling habitats.

Table 1. Mean abundance ±SE (no./150m²) by species of reef fishes observed on 2 habitats of 4 localities at Khangkao Island, inner Gulf of Thailand, during 1997-1998.

100		Trophic		Z	-	RE		SE	2.0	SW	34
Species	Abbreviation	category	Residency	Flat	Slope	Flat	Slope	Flat	Slope	Flat	Slope
Pomacentridae			-								
Abudefduf bengalensis	ABUBEN	4	a.	3.6 ± 0.5	3.8 ± 0.4	10.6 ± 1.3	7.0 ± 0.9	24.4±2.7	72±1.4	30,4 ± 3.1	26.4 + 2.5
Abudefduf sexfasciatus	ABUSEX	4	Δ,	0.9 ± 0.3	0.51 ± 0.2	ř	0.4 ± 0.2	< 0.1	0.2 ± 0.1	3.5 + 0.9	4.0 + 1.0
Abudefduf vaigiensis	ABUVAI	4	۵,	•	a.	į		× 0.1		0.1 + 0.1	0.3 + 0.1
Amblyghphidodon curacao	AMBCUR	च	۵,	0.2 ± 0.1	0.2 ± 0.1	< 0.1	0.3 ± 0.1	0.2 ± 0.1	0.4 ± 0.1	< 0.1	
Amphiprion perideration	AMPPER	9	۵,	0.1 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	03 ± 02	0.4 ± 0.1	0.3 ± 0.2	0.5 ± 0.1	0.3 ± 0.1
Chromis cinerascens	CHRCIN	4	0.	0.9±0.9	9.8 ± 4.8	•	0.8 ± 0.5		8.0 + 6.0		•
Hemiglyphidodon plagiometopon	HEMPLA	7	4	0.2 ± 0.1	0.4 ± 0.1	0.1 ± 0.03	0.7 ± 0.1	0.5 ± 0.1	1.4±0.2	7.0	,
Neoghphidodon melas	NEOMEL	9	р.	0.1 ± 0.1	< 0.1	•	•	0.2 ± 0.1	< 0.1	< 0.1	0.2 ± 0.1
Neoghphidodon nigroris	NEONIG	9	۵.	0:1 ± 0.1	0.4 ± 0.1	< 0.1	0.4 ± 0.1	0.5 ± 0.1	3.3 ± 0.3	<0.1	0.1 ± 0.1
Neopomacentrus anabatoides	NPOANA	4	۵.	12.0 ± 4.4	72.4 ± 12.7	2.0±0.9	61.2 + 14.2	0.2 ± 0.2	94.6 ± 16.5	1.8+1.3	46.1 +9.5
Neopomocentrus cyanomos	NPOCYA	4	۵.	0.6 ± 0.6	34.0±63	9.0 ₹ 9.0	44.1±6.7		27.9 ± 5.9		15.1 +4.6
Neopomacentrus bankieri	NPOBAN	*	۵.	0.4 ± 0.4	23.2 ± 3.5		18.0 ± 3.3		32.6±43	-	2.5 ± 0.6
Neapomacentrus flamentosus	NPOFIL	4	4	223 ± 4.7	156.2+19.7	2.4 ± 1.3	90.6 ± 10.4		70.0 ± 13.2	< 0.1	16.2 + 3.8
Pomacentrus cuneatus	POMCUN	-	۵.	115.6±72	139.2 ± 8.7	120.0 + 3.8	83.4 ± 5.7	99.1 ± 5.1	129.5 ± 6.8	129.5 ± 6.8 135.5 ± 6.3	155.6+10.0
Pomacentrus chrysurus	POMCHR	-	p.	1.8 ± 0.2	0.1 ± 0.1	0.1 ± 0.1	122±53	3.8 + 0.4	< 0.1	0.5 ± 0.2	0.5 ± 0.3
Pomacentrus moluccensis	POMMOL	-	۵,	V	0.1 ± 0.1	•	0.7 ± 0.2		0.9 ± 0.2) (4)	ρe
Pomacentrus tripunciatus	POMTRI	4	p.	0.2 ± 0.2	•1	0.1 ± 0.1	T	0.1 ± 0.1		< 0.1	
Plectroghyhidodon lacrymatus	PTOLAC	9	۵.	÷	< 0.1	(/ . *)		e			ϵ
Cheiloprion labiatus	CHILAB	9	۵.	ě	-1		<0.1		17.	< 0.1	
Stegastes obreptus	STEOBR	7	Д	<0.1	0.4 ± 0.1	0.2 ± 0.1	< 0.1	0.4 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	•
Labridae											
Halichoeres chloropterus	HALCHL	9	ď	10.8 ± 0.8	8.6 + 0.8	6.0 ± 9.6	9.7±0.7	8.5 ± 0.8	9.9 ± 0.7	9.4+0.7	11.2 ± 0.8
Hallchoeres purpurascens	HALPUR	9	a.	13+0.2	5.4 ± 0.5	0.2 + 0.1	3.2+0.4	0.3+0.1	5.0+0.5	0.2+0.1	34+04

วิถูสิต (2544) การถึงแปรตามเกลาและการพลแทนประชากรของปลายนาปะการังบริเวณหมูเกาะที่จัง (ด้วนในกุลของคำวโทย)

Table 1. Continued.

		Trophic		Z		S		SE	1:50	SW	
Species	Abbreviation	category	Residency	Flar	Slope	Flat	Slope	Flat	Slope	Flat	Slope
Halichoeres nigrescens	HALNIG	9	а,	3.6 ± 0.4	5.1 ± 0.5	6.3 + 0.5	4.9 ± 0.3	4.1 ± 0.3	4.3 + 0.4	6.7 ± 0.5	9.7+0.7
Hallchoeres vrolikli	HALVRO	9	о.	0.3 ± 0.2	0.6 ± 0.2			0.1 + 0.1	0.9+0.3		0.3+0.1
Halichoeres poecilopterus	HALPOE	9	e,	0.3 ± 0.1	0.1 ± 0.1		< 0.1	j.,	0.1 + 0.1		0.3 + 0.1
Hemigymnus melapterus	HEMMEL	9	Д.			î	< 0.1	< 0.1	<0.1	99	
Cheilinus fasciatus	CHIFAS	9	a.	÷	×	•	3.	8.	× 0.1	Œ.	35
Choerodon schoenleinii	CHESCH	9	۵.	7		Ŷ	÷	,	•	(4)	< 0.1
Apogonidae				4							Ī
Apogon doederleini	APODOE		۵.	0.6± 0.4	1.6 ± 0.9		5.6±22		22+1.1	0.6 + 0.6	35.5+6.3
Ародон суологота	APOCYA	-	۵.	•	53±22		2.6 ± 1.0		0.6 ± 0.6	0.1 + 0.1	11.8 + 3.0
Archamia fucata	ARCFUC	7	۵.	•		,	0.3±0.2		0.1 ± 0.1	•	(•
Cheilodipterus quinquelineatus	CDIQUI	1	a.	0.1 ± 0.1	10.7 ± 1.8		4.0+0.9		6.8 + 1.6		112+4.6
Chellodipterus macrodon	CDIMAC	7	۵.		3.3 ± 1.0	,	0.3 ± 0.2		1.8 + 0.9		
Chellodipterus artus	CDIART	1	a		3.4 ± 1.7		0.4+0.4			4	0
Serranidae											
Cephalopholis boenak	CEPBOE	00	۵	0.9 ± 0.2	1.3 ± 0.2	1.8 + 0.3	0.3 ± 0.1	0.6 + 0.1	1.5+0.2	2.1+0.3	2.8 + 0.3
Cephalopholis formosa	CEPFOR	80	O.	< 0.1	0.4 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	< 0.1	0.4 + 0.1	< 0.1	0.4 + 0.1
Cephalopholis cyanostigma	CEPCYA	*	e.		1	i i i	•	< 0.1	000 to 100 to 10	0	
Epinephelus merra	EPIMER	80	a.	< 0.1	1.0	9.5		< 0.1	12	< 0.1	< 0.1
Epimephelus fasciatus	EPIFAS	80	g.	٠		12	9			ì	< 0.1
Epinephelus malabricus	EPIMAL	80	n.		< 0.1	٠	< 0.1	×	æ	Ġ	2.
Signnidae											
Siganus guttatus	SIGGUT	en	^	0.6±0.2	2.2 ± 0.5	0.3 ± 0.1	53±1.0	2.5 ± 0.9	3.1 ± 0.5	0.5 ± 0.2	1.2 + 0.6
Siganus javus	SIGIAV	m	>	< 0.1	1.0 ± 0.1	< 0.1	0.7 ± 0.3	1.2 ± 0.9	0.1 ± 0.1	0.2 ± 0.1	23+1.0
Siganus virgatus	SIGVIR	m	>	٠			< 0.1	< 0.1		,	

วิภูมิค (2544) การสันนประหายกรานควากรหคนทรมโรวชากราคงปลาแนวปรากรังเกิดกลุกมารสีรัง (ส่วนในสุดของอำราทย)

Table 1. Continued.

		Trophic		Z		æ		SE		SW	
Species	Abbreviation	category	Residency	Flat	Slope	Flat	Slope	Flat	Slope	Flat	Slope
Siganus canaliculatus	SIGCUN	m	>	4:	•	ž	0.6 ± 0.3	0.3 ± 0.3	0.6 ± 0.4	< 0.1	0.1+0.1
Siganus covallinus	SIGCOR	m	>	6		< 0.1	,	t	< 0.1	£.	ं
Lutjanidae											
Lutjanus argentimaculatus	LUTARG	6	d	33	2.	ě		j (P	< 0.1		
Lutjanus russelli	LUTRUS	6	d.	(9)	0.4 ± 0.2	ţ	0.5 ± 0.3	10.2	2.9 + 1.9	< 0.1	< 0.1
Lutjames vitta	LUTVIT	0	4	٠	0.1 ± 0.1	9	1.8 ± 0.7	÷	1.3 + 0.7	į.	0.5+0.2
Lutjanus carponotatus	LUTCAR	6	a.		0.1 ± 0.1		2(4)	,	0.5+0.2		
Lutjanus fulviflamma	LUTFUL	6	•	< 0.1	< 0.1		٠		× 0.1		,
Nemipteridae											
Scolopris dubiorus	SCODUB	9	^	1.0 ± 0.2	0.6±0.2	0.1 ± 0.1	1.1 ± 0.3	0.4 + 0.1	0.3 + 0.1	0.4+0.1	0.9+0.2
Scolopsis margaritifer	SCOMAR	9	^	22±0.4	12±02	2.3 ± 0.4	1.7±0.3	1.4 ± 0.3	1.5+0.3	0.2 ± 0.1	1.1+0.3
Scolopsis ciliatus	SCOCIL	9	۸	5.7 ± 1.0	5.7 ± 1.0	4.0±0.5	20.0+2.9	1.2+0.3	8.6+1.4	5.5 + 0.8	17.1+1.9
Scolopsis vosmeri	sooos	9	۸	34.6			0.02 + 0.02	100 *	0.04 + 0.03		
Carangidae											
Ande mate	ATUMAT	٠,	۸	8.0+8.1	4.5 ± 1.4	0.5±0.3	45+13	1.6 + 1.0	6.7+23	1.5+0.7	17.4+4.5
Selaroides leptolepls	SELLEP	v	>	0.3 ± 0.2	1.2 ± 1.0	× 0.1	0.1 ± 0.1		0.3 + 0.2	0.3+0.2	2.0 + 1.0
Gnathanodon speciasus	GNASPE	8	>	< 0.1	.(*	٠		9	•	× 0.1	0 0
Haemulidae	1			8							1000
Plectorhynchus chaetodonoides	PLECHE	0	۵.	3			<0.1	22	< 0.1	64	2
Plectorhynchus gibbosus	PLEGIB	6	d.	×	0.1 ± 0.1		< 0.1	œ	< 0.1	13	72
Diagramma pictum Chaetodontidae	DIAPIC	٥	Д.	96	0.2 ± 0.1	٠	< 0.1	÷	<0.1	4.	< 0.1
Chaetodon octofasciatus	CHEOCT	9	94	8.0 ± 1.6	7.6 ± 0.9	6.0 ± 0.7	6.5 ± 0.7	6.6 ± 0.6	6.0 + 0.6	52+0.5	6.5 + 0.7
Chelmon rostratus	CELROS	9	۵.	0.2 ± 0.1	0.3 ± 0.1		0.1+0.1	0.2 + 0.1	0.2 + 0.1	0.1+0.1	0.3 + 0.1

วิภูษิต (2544) การสังแปรตามเวลาและการหลบพรประชากรของปลายมาปะการังบริเวณหมูเกาะสีจัง (ส่วนในลูลของสำวาไทย)

Table 1. Continued.

		Trophic		Z		NE		SE	540	SW	100
Species	Abbreviation category	category	Residency	Flat	Slope	Flat	Slope	Flat	Slope	Flat	Slope
Mugilidae											
Ellochelon vaigiensis	BLLVAI	•	>	(i)	٠	٠	0.1 ± 0.1	0.2 ± 0.2	4	0.1+0.	Š
Moolgarda seheli	MOLSEH	m	>	Ü	63	3	1.4 ± 0.7	0.4 ± 0.2	0.7 + 0.6	× 0.1	0.5 + 0.4
Pomacanthidae									•		n.
Pomacanthus annularis	POCANN	9	Δ.	250	< 0.1	į.		*	< 0.1	é	
Pomacanthus sexstriatus	POCSTR	9	α,	< 0.1	0.2 ± 0.1	< 0.1	< 0.1	0.2 ± 0.1	0.4 + 0.1		0.3+0.1
Dasyatidae								Local			•
Taeniura lymma	TAELYM	9	d	< 0.1	< 0.1		٠	2.5	•	.9	::
Gobiesocidae											
Diademaichthys lineatus	DIALIN	*		<0.1	0.6±0.1	< 0.1	0.1 ± 0.1	*	0.3 ± 0.1	< 0.1	1.0+9.0
Holocentridae						1			8		
Sargocentron rubrum	SARRUB	1	۵.	< 0.1	4.6±1.0	< 0.1	2.7 ± 0.8	< 0.1	0.2 ±0.1	0.2 ± 0.1	1.1 ± 0.3
Centropomidae											
Psammoperca walgiensis	PSAWAI	00	a.	< 0.1	< 0.1	< 0.1	< 0.1	. (*)	<0.1		
Grammistidae									0.00		
Diploprion hifasciatus Leiognathidae	DIPBIF	9	۵.	0.4 ± 0.1	1.7 ± 0.2	0.5 ± 0.2	1.7±0.2	0.2 ± 0.1	1.6 ± 0.3	0.1±0.1	1.8 ± 0.3
Leiognathus equalus	LOGEQU	9	>	P	٠	ž	¥	Y	*	<0.1	æ
Caesinnidae											
Caesio cuning	CAECUN	w)	>	0.1 ± 0.1	0.8 ± 0.4	ď	1.8 ± 0.8	0	3.7 ± 1.2	ř	7.1 + 1.9
Gerreidae											i i
Gerres filamentosus	GERFIL	9	>	< 0.1) <u>9</u>	0.2 ± 0.2	0.1 + 0.1	1.8 + 0.8	0.3 + 0.2	11.8 + 3.4	0.9 + 0.4
Mullidae							Construction Confidence		data Maria	1000000	4000 H 000 H
Upeneus tragula	UPETRA	9	>	0.2+0.1	< 0.1	0.2 + 0.1	4.3+20	02+01	0.1+0.1	02+01	10+50

ริญษีต (2544) การผันแปรตามเวลาและการทดแพนประชากรของปลาแหปะการังบริเภณหนูเกาะสีรั้ง (ส่วนในสุดของชาวใหม่)

Table 1. Continued.

		Trophic		z		SR		SE		SW	
Species	Abbreviation category Residency	category	Residency	Flat	Slope	Flat	Slope	Flat	Slope	Flat	Slope
Pempheridae	1 1 2 2										
Pempheris onalensis	PEMOUL	7	۵.	32	42+1.4	2	23+0.7	î.	53+13	13	96+90
Kyphosidae											
Kyphosus vaiglensis	KYPVAI	m	>	*	71	•	< 0.1	0.3 + 0.1	0.2+0.1	< 0.1	਼
Sphyraenidae								r:	ı		!
Sphyraena obtusata	SPYOBT	6	>	1.5 + 1.1	0.2 + 0.2	÷			9	9	8
Scaridae					· ·		y				g
Scarus ghobban	SCAGHO	3	۸		13	0		<0.1	<0.1		
Microdesmidse								0000	No.		
Pterelectris sp.	PTE	4	4	60 + 60	9.5+4.0	1.6+1.6	1.6+1.6 28.0+6.5	þ	i.	10+10	
Monacanthidae				R			200	9		THE SAME	
Monacanthus chinemis	MONCHI	10	>	< 0.1	<0.1	*				< 0.1	<0.1
Ostraciidae											
Ostracion cubicus	OSTCUB	9	n.	<0.1	< 0.1	× 0.1	0.14+0.06	٠	< 0.1	0.11+0.05 0.18+0.05	0.18+0.05
Diodontidae										•	
Diodon liturosus	DIOLIT	9	a	<0.1	•	< 0.1	< 0.1		,	37	10>

Table 2. Major coral reef fish families found at Khangkao Island during 1997-1998 compare with 1984 (Menasveta et al., 1986).

	19	97/98	19	984
Family	No. species	% abundance	No. species*	% abundance
Pomacentridae	20	76.9	10	54.1
Labridae	8	5.6	4	1.6
Apogonidae	6	4.2	5	15.5
Serranidae	6	0.5	2	2.9
Siganidae	5	0.9	VIII S	975 1 3 -1
Lutjanidae	5	0.3	4	<1
Nemipteridae	4	3.2		r 🚅
Carangidae	3	1.7	1	<1
Haemulidae	3	0.02		
Chaetodontidae	2	2.1	2	6.9
Mugilidae	2	0.1		33
Pomacanthidae	2	0.05	5.1	725
Others	17	4.5	42	ca. 19
Total	83	100	70	100

^{*} including cryptic species

Table 3. Composition of fish assemblage on coral reef of Khangkao Island classified based on ecological guild.

Ecological guilds	No. species	% abundance
A) Herbivores	15	39.7
1. Site attach	4	38.5
2. Gardener	2	0.2
3. Homerange	9	1.0
B) Omnivores	17	41.8
4. Water column	13	39.6
5. Pelagic	4	2.2
C) Invertebrate feeders	35	17.5
Substrate feeders	27	12.1
7. Nocturnal feeders	8	5.4
D) Predators	16	0.9
8. Site attach	7	0.6
9. Homerange	9	0.4
Total	83	100

วิภูษิต (2544) การผินแบ่งตามเวลาและการทดแทนประชากรของปลาแนวปะการังบริเวณหมูเกาะดีรัง (ส่วนในสุดของช่าวไทย)

a

พักษณะเหล

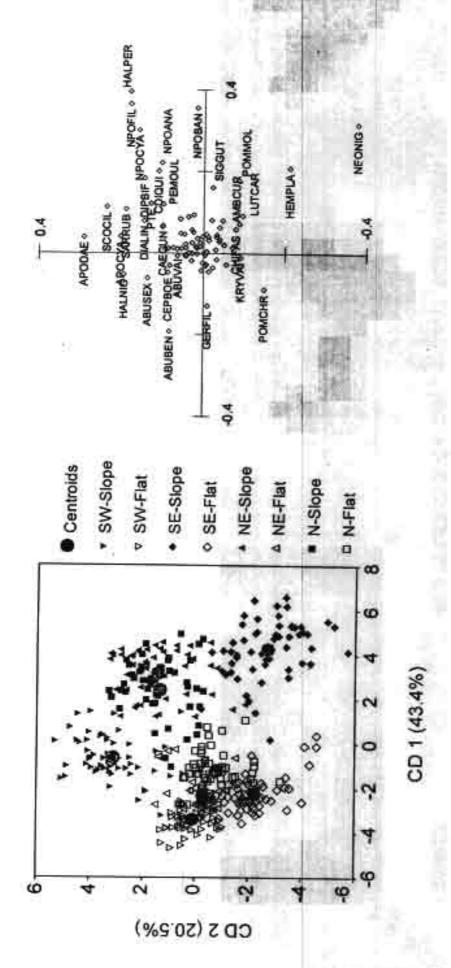


Figure 2. Ordination plots from Canonical Discriminant Analysis illustrated spatio-temporal variability of fish assemblages on coral reef at Khangkao Island; a) Site scores and b) Canonical structures of species (some species are presented due to overcrowd problem)

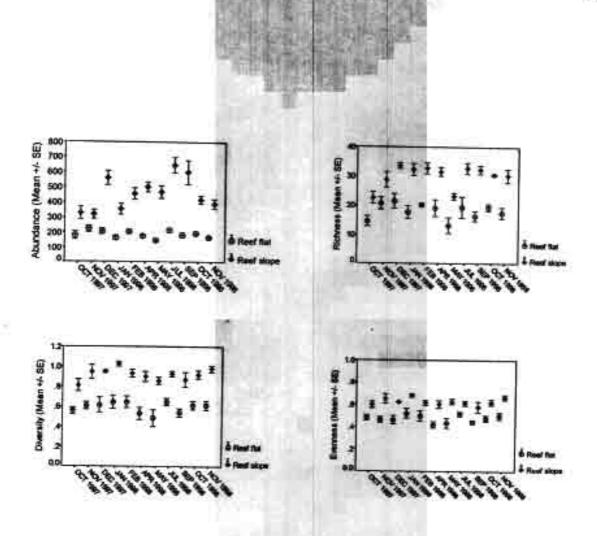


Figure 3. Community parameters of fish on coral reef at Khangkao Island indicated variation through time and between habitats.

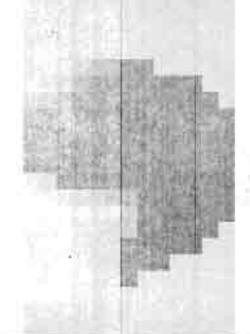


Table 4. ANOVA table showing testing factors effect on four community parameters. ABC interaction is used as F denominator for species richness, Diversity and Evenness Index. * significant at P <0.05 and ns - non-significant.

SOV		To	tal abundance		S	pecies richness			Diversity			Distance	
The second second	Df	MS	А	%VC	MS	i	37.7%	Me	CHOMAN CO	OLVINO.	110	Evenings	-
1111		4.0	1				2000	MAG		7000	Ma		2000
I IIIIc (A)	0	0.15	10.43	3.7	69.58	8.95*	22.2	11.80	3 18*	D. 14	OL X	3161 6	3.40
Locality (B)	m	0.12	7.12*	0.1	80.76	10 34*	0	90.0	Mea A	5	200	41.4	5.40
Habitat (C)	+	15.02	271 AA+	212	3062 63		2	77.7	0.03		1.38	0.48	•
12)		20.0	0/1/4	0.00	2024.37	390.93	24.9	1253.60	358.99	80.57	504.00	175.61*	60 84
AB	56	0.14	7.93	10.8	15.43	-86	100	175	1 668	306	4.00		
AC	10	0000	443*	3.5	6 74	1 268			200	20.4	20.4	141	3.37
20		V 111	× 200			9		1.40	0.40	· Contraction	100	0.63	
2			0.27	1:5	47.07	2.38	6.8	28.10	8.05	6.34	14.20	4 06*	37.5
ABC	58	0.04	2.08*	3.4	7.81		223	3.40		000	2 00		
Error	344	0.02		186	17	3	-			2.30	7.00		0.72

ภาคผนวกที่ 2

การประชุมเพื่อเสนอผลงานวิจัย

โครงการทุนวิจัยหลังปริญญาเอก

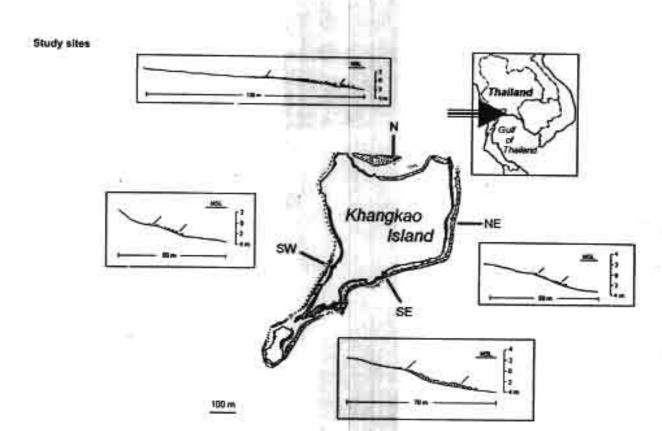
มศ.คร. วิภูษิต บัณฑะจิตร ภาควิชาวาริชศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา (038) 745900 ต่อ 3132 <u>vipoosil@bucc.buu.ac.th</u>

ผศ.คร. สุวพล สุดารา

Community structure, spatio-temporal variation and recruitment of fishes on coral reefs at the inner Gulf of Thailand

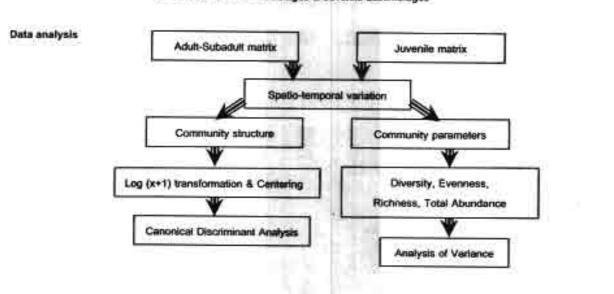
Vipoosit Manthachitre and Suraphol Sudara

Fish assemblages on coral roofs at the inner Gulf of Thailand are subjected to low salinity but high sediment environment and also limited connection to other roofs. Results from the monitoring of reef fish assemblages at Khangkao Island during October 1997 to November 1998 found 83 species from 26 families. Small water column feeders (15 species, 39.63% abundance) and small herbivores (4 species, 38.54% abundance) dominated in the assemblages while predatory fish had moderate number of species but very low abundance (16 species, 0.91% abundance). Canonical discriminant analysis indicated the variation of fish assemblage over spatial and temporal scales which habitat is the major source of variation. Variation among stations was detected only on fish at reef slope and temporal variation was also detected but occurred mainly on fishes dominated in each study area. Community parameters indicated a similar pattern where habitat was a major source of variation. There were 33 species recruit during study periods, indicated different recruitment strategies among species of fishes in the study area. This is a significant factor that structure and maintains fish assemblage in this limited environment.


โครงสร้างสังคม, ความมันแปรจากพื้นที่และเวลา และการทดแทนประชากรของปลาในแนวปะการังบริเวณคอนในสุด ของอำวไทย

วิภูษิด มัณฑะจิตร และ สุรพล สุดารา

กลุ่มปลาที่อาตับอยู่ในแนวปะการังบริเวณหมู่เกาะสีขัง ซึ่งอยู่คอนในสุดของอาวไทย อยู่ในสิ่งนวดล้อมที่มีความเค็มดำ แต่ละกอนมาก และคิดต่อกับแนวปะการังอื่นเฉพาะจากทางที่สได้ ผลจากการคิดตามโครงสร้างสังคมของกลุ่มปลาแนวปะการังที่ เกาะค้างคาว ระหว่างเดือนดุสาคม 2540 ถึง พฤดจิกายน 2541 พบปลา 83 ชนิดจาก 28 วงศ์ กลุ่มปลาที่พบเป็นองค์ประกอบ หลักเป็นปลาขนาดเล็กกินอาหารจากมวดน้ำ (15ชนิด และ 39.63 %ของครามชุกชุม) และปลาขนาดเล็กที่กินพืชเป็นอาหาร (4 ชนิด, 38.54%ของครามชุกชุม) ปลากินเนื้อพบจำนวนชนิดปานกลางแต่ครามชุกชุมดำมาก ผลจาก Canonical Discriminant Analysis แสดงให้เห็นครามผันแปรจากปัจจัยพื้นที่และเราสาของโครงสร้างสังคมว่ามาจากแหล่งที่อยู่มากกว่าจากตถานี สำหรับ ครามผันแปรจากเวลาเกิดเฉพาะกับองศ์ประกอบหลักในแต่ละสถานีที่ทำการศึกษา เมื่อพิจารณาพารามีเดอร์ทรงสังคม พบว่ากลุ่ม ปลาในเขต reef slope มีครามสมบูรณ์กว่าในเขต reef สม ส่วนครามแตกต่างระหว่างสถานีและระหว่างเรลามีน้อย การทดแทน ประชากรของปลาพบรวม 33 ชนิด แสดงให้เห็นว่าปลาแต่ละชนิดมีลักษณะการทดแทนประชากรที่แลกต่างกัน และเป็นปัจจัย สำคัญที่มีผลต่อโครงสร้างสังคมและการดำรงอยู่ของสังคมปลาในบริเวณนี้


reef fishes, community structure, spatio-temporal variation, recruitment, Gulf of Thailand

ชื่อเรื่อง (ภาษาอังกฤษ) Community structure, spatio-temporal variation and recruitment of fishes on coral reefs.

Sampling

- 1. Factorial design: Time (11), Location (4), Habitat (2), 5 replicates
- 2. SCUBA Diving
- 3. Visual census: identified & Count along 30x5 m2 transect
- 4. Adult-Subadult assemblages & Juvenile assemblages

วิภูษิด (2544) การนับแปรตามเวลาและการหลแทนประชากรของปลาแนวปะการังบริเวณหมูเกาะสีรัง (ส่วนในสุดของอ่าวไทย)

ชื่อเรื่อง (ภาษาอังกฤษ) Community structure, spatio-temporal variation and recruitment of fishes on coral reefs at the inner Gulf of Thailand

Table 1. Major coral reef fish families found at Khangkao Island during 1998.

Family	Guilda	No. species	% abundance	No. species
Pomacentridae	1.2.4	20	76.87	10
Labridae			5.57	6
Apogonidae	7	6	4,23	3
Serraridae	7,8	6	0.50	2
Siganidae	3	5	0.88	
Lutjanidae		5	0.32	
Nemiprendae			3.21	3
Carangidae	5	3	1.67	31
Haemulidae		:3	0.02	
Chaelodontidae	6	2	2.06	30
Gerreidae		2	0.60	
Mugildae	3	2	0.13	X
Pomacanthidae	60	2	0.05	80
Others	4,5,6,7,8,9	15	3.69	4
Total		83	100	33

Table 2. Composition of coral reef fish assemblages based on ecological guilds

Ecological guilde	No. species	% abundance
A) Herbivores	15	39.74
1. Site ettach	94	38.54
2. Gardener	2	0.17
3. Homerange	9	1.03
B) Omnivores	19	41.82
4. Water column	15	39.63
5. Pelagic		2.19
C) invertebrate feeders	33 17.52	
6. Substrate feeders	25	
7. Noctumal feeders		5.42
D) Predators	16	0.91
8. Site attach	ž	0.57
9. Homerange	9	0.35
Total	83	100

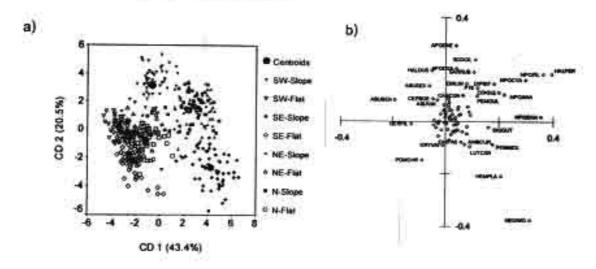


Figure 1. Ordination plots from Canonical Discriminant Analysis illustrated spatio-temporal variation of fish assemblages on coral reef at Khangkao island; a) Site scores and b) Canonical structures of species.

ชื่อเรื่อง (ภาษาลังกฤษ) Community structure, spatio-temporal variation and recruitment of fishes on coral reefs at the inner Gulf of Thailand

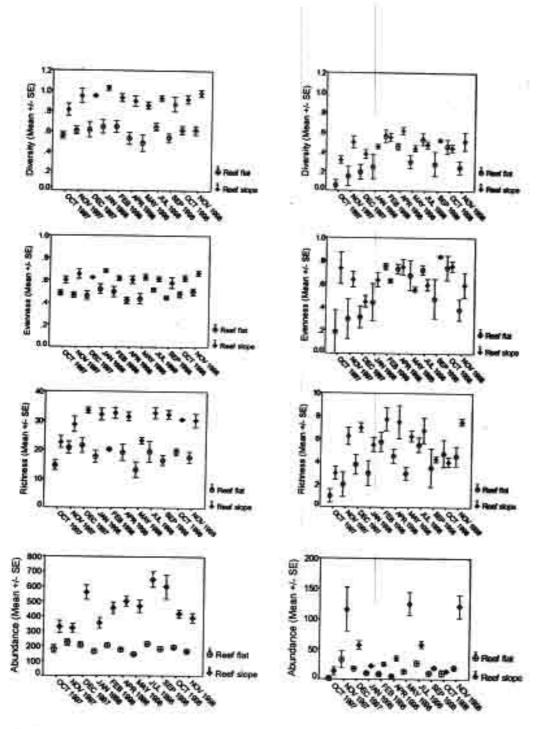


Figure 2. Community parameters of adult-subadult (left) and juvenile (right) fish assemblages on coral reef at Khangkao Island indicated variation through time and between habitats

ภาคผนวกที่ 3

Paper presented at

9th International Coral Reef Symposium

NINTH INTERNATIONAL CORAL REEF SYMPOSIUM

WORLD CORAL REEFS IN THE NEW MILLENNIUM: BRIDGING RESEARCH AND MANAGEMENT FOR SUSTAINABLE DEVELOPMENT

> BALI, INDONESIA, 23-27 OCTOBER 2000

ABSTRACTS

STATE MINISTRY FOR THE ENVIRONMENT, INDONESIA INDONESIAN INSTITUTE OF SCIENCES THE INTERNATIONAL SOCIETY FOR REEF STUDIES