

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การวิเคราะห์ TAP ยืนในประชากรไทยและความสัมพันธ์ กับโรคข้ออักเสบรูมาตอยด์

โดย พญ.ศศิจิต เวชแพศย์ และคณะ

31 กรกฎาคม 2542

สัญญาเลขที่: PDF/30/2540

รายงานวิจัยฉบับสมบูรณ์

โครงการการวิเคราะห์ TAP ยีนในประชากรไทยและความสัมพันธ์กับโรคข้ออักเสบรูมาตอยด์

คณะผู้วิจัย

สังกัด

1.พญ.ศศิจิด เวชแพศย์2.ร.ศ. พญ. เล็ก ปริวิสุทธ์3.โกมล หลวงตระกูล4.พรรณพิมล หลวงตระกูล

คณะแพทยศาสตร์ศิริราช, มหาวิทยาลัยมหิดล คณะแพทยศาสตร์ศิริราช, มหาวิทยาลัยมหิดล คณะแพทยศาสตร์ศิริราช, มหาวิทยาลัยมหิดล คณะแพทยศาสตร์ศิริราช, มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

ชุดโครงการ ทุนวิจัยหลังปริญญาเอก

กิดดิกรรมประกาศ

โครงการวิจัยนี้ได้รับทุนอุดหนุนจากสำนักงานกองทุนสนับสนุนการวิจัย โครงการทุนวิจัยหลัง ปริญญาเอก PDF/30/2540

บทคัดย่อ

สัญญาเลขที่: PDF/30/2540

ชื่อโครงการ: การวิเคราะห์ TAP ยีนในประชากรไทยและความสัมพันธ์

กับโรคข้ออักเสบรูมาตอยด์

คณะผู้ดำเนินการวิจัย พญ.ศศิจิต เวชแพศย์¹, ร.ศ. พญ. เล็ก ปริวิสุทธ์²,โกมล หลวงดระกูล¹, พรรณพิมล หลวงตระกูล¹ ภาควิชาเวชศาสตร์การธนาคารเลือด¹ และภาควิชาอายุรศาสตร์² คณะแพทยศาสตร์ศิริราชพยาบาลมหาวิทยาลัยมหิดล

E-mail Address: sisve@mahidol.ac.th

ระยะเวลาที่ทำการวิจัย 2 ปี

วัตถุประสงค์

- ศึกษาความถี่ของ TAP 1 และ TAP 2 Allele ในประชากรไทย (กรุงเทพ ฯ) จำนวน
 100 รายและเปรียบเทียบกับที่มีรายงานแล้วในเชื้อชาดิอื่น
- 2. ศึกษา linkage ของ TAP ยืน และ HLA class II ยืนในประชากรไทย (กรุงเทพ ฯ)
- ศึกษาความสัมพันธ์ของ TAP1 และ TAP 2 ยีนด่อการเกิดโรครูมาตอยด์ในคนไทย (กรุงเทพฯ)

ระเบียบวิธีวิจัย

- 1. กลุ่มประชากรที่ศึกษา:ผู้ป่วยโรคข้ออักเสบรูมาตอยด์จำนวน 50-100 ราย และประชากร ไทย (กรุงเทพ ฯ) จำนวน 100 ราย
- 2. การตรวจทางห้องปฏิบัติการ: ตรวจ TAP 1 และ TAP 2 ยีน โดยวิธี ARMS-PCR
- 3. การวิเคราะห์ข้อมูล: การเปรียบเทียบข้อมูลทางสถิติใช้ Chi- square test ผลการศึกษา: ในประชากรไทยสามารถดรวจพบ TAP1 ได้ 4 อัลลีล คือ TAP1A, 1B, 1C และ 1D และตรวจพบ TAP2 ได้ 5 อัลลีล คือ TAP2A, 2B, 2C, 2D และ 2E โดยมีความถี่คล้ายคลึง กับที่พบในเชื้อชาดิอื่น การเปรียบเทียบความถี่ของ TAP 1 และ TAP 2 ยืนในผู้ป่วยโรคข้อ อักเสบรูมาตอยด์ และคนไทยปกติไม่พบมีความแดกต่างอย่างมีนัยสำคัญทางสถิติ สรุปสาระสำคัญ: TAP1 และ TAP2 ยืนไม่มีบทบาทสำคัญต่อการเกิดโรคข้ออักเสบรูมาตอยด์ ในประชากรไทย

ข้อเสนอแนะ: HLA ยีนน่าจะเป็นยืนที่มีบทบาทสำคัญที่สุดต่อการเกิดโรค

ข้ออักเสบรูมาตอยด์

Keywords: TAP, rheumatoid arthritis

Abstract

Project Code: PDF/30/2540

Project Title: Analysis of Transporter associated with antigen processing (TAP) gene in

Thai population and its association with Rheumatoid Arthritis

Investigators: Sasijit Vejbaesya¹, Lek Parivisut², Komol Luangtrakool¹, Panpimon

Luangtrakool

¹Department of Transfusion Medicine, ²Department of Medicine, Faculty

of Medicine Siriraj Hospital, Mahidol University

E-mail Address: sisve@mahidol.ac.th

Project Period: 2 years (1 August 1997-31 July 1999)

Objectives:

1.To study the allele frequencies of TAP1 and TAP2 genes in the normal Thai population.

2.To study linkage disequilibrium between TAP and HLA genes

3.To study the association of TAP1 and TAP2 genes with Thai rheumatoid arthritis

Methodology:

Study population: 50-100 rheumatoid arthritis patients and 100 unrelated normal

individuals

Method: TAP1 and TAP2 were typed by ARMS-PCR

Statistical analysis: Chi-square test with yates correction

Results: In the normal population, TAP1 presents 4 alleles: TAP1A, 1B, 1C and 1D and TAP2 presents 5 alleles: TAP2A, 2B, 2C, 2D and 2E. The antigen frequencies of TAP1 and TAP2 genes are similar to those found in other populations. Comparison of TAP1 and TAP2 allele frequencies between the patients and normal controls showed no significant differences.

Discussion and Conclusion: TAP1 and TAP2 genes do not confer susceptibility to rheumatoid arthritis in Thai population.

Suggestions: It should be the HLA genes that primarily associated with rheumatoid arthritis.

Keywords: TAP, rheumatoid arthritis

Executive Summary ทุนวิจัยหลังปริญญาเอก

1. ความสำคัญและที่มาของปัญหา

TAP (Transporter associated with antigen processing gene) เป็นยืนใหม่ที่มี ดำแหน่งอยู่ภายใน class II region ของ human major histocompatibility complex (MHC) โดยอยู่ระหว่าง HLA-DQ และ HLA-DP ยืนนี้จะ code โปรดีน heterodimer ซึ่งทำหน้าที่เกี่ยว ข้องกับการเคลื่อนย้าย peptide ในกระบวนการ antigen processing และ antigen presentation

จากการศึกษาความสัมพันธ์ของโรคด่างๆกับระบบ MHC พบว่ามีหลายโรคโดยเฉพาะ โรคในกลุ่มautoimmune มีความสัมพันธ์กับ MHC ยีน อย่างไรก็ตามยังไม่สามารถบอกดำแหน่ง ยีนที่เกี่ยวข้องกับการเกิดโรคอย่างแน่ชัดเนื่องจากยีนในระบบ MHC ประกอบด้วยยีนจำนวน มากและเป็นกลุ่มที่มี linkage disequilibrium ระหว่าง loci มาก TAP ยีน เป็นยีนใหม่ที่อยู่ภาย ใน class II region และจากหน้าที่ของยีนที่พบว่าเกี่ยวข้องกับ antigen processing และ antigen presentation TAP ยีนจึงเป็นยีนหนึ่งที่อาจมีบทบาทสำคัญและมีความสัมพันธ์กับการ เกิดโรคซึ่งเดิมเข้าใจว่า เกี่ยวข้องกับ HLA ยีน ซึ่งปัจจุบันยังไม่มีการศึกษา TAP ยีนในประชา กรไทย

ในกลุ่มโรค autoimmune โรค Rheumatoid Arthritis เป็นโรคที่พบได้บ่อยในคนไทย
และยังขาดความเข้าใจในพยาธิกำเนิด ซึ่งมีรายงานพบว่ามีความสัมพันธ์กับ HLA-DRB1*0405
ซึ่งพบได้บ่อยในคนไทย ในขณะที่เชื้อชาติ Caucasian พบมีความสัมพันธ์กับ HLADRB1*0401 อย่างไรก็ตามยังไม่มีข้อสรุปที่ชัดเจนถึงยีนที่เกี่ยวข้องกับการเกิดโรคเนื่องจากยีน
ในกลุ่ม MHC มี linkage ระหว่าง loci มาก

จากการศึกษาความสัมพันธ์ของ TAP ยีนและโรค Rheumatoid มีรายงานน้อยเฉพาะ ในบางเชื้อชาดิ ซึ่งการศึกษาดังกล่าวยังให้ข้อสรุปไม่ชัดเจนและจำเป็นต้องมีการศึกษายืนยันใน เชื้อชาดิอื่นเพื่อบอกบทบาทของ TAP ยีน และดำแหน่งของยืนที่เกี่ยวข้องกับการเกิดโรคได้ดี ขึ้น การศึกษา TAP ยีนในผู้ป่วยไทยที่เป็นโรค Rheumatoid นี้จึงคาดว่าจะเป็นประโยชน์ต่อ ความเข้าใจพยาธิกำเนิดของโรค Rheumatoid โดยเฉพาะยีนที่เกี่ยวข้องกับการเกิดโรค ซึ่งจะ เป็นประโยชน์ในการบอกปัจจัยเสี่ยง และอาจมีประโยชน์ต่อการป้องกัน และการวางแผนการ รักษาในอนาคต

2. วัตถุประสงค์

- 1. ศึกษาความถี่ของ TAP 1 และ TAP 2 Allele ในประชากรไทย (กรุงเทพ ฯ) จำนวน 100 รายและเปรียบเทียบกับที่มีรายงานแล้วในเชื้อชาติอื่น
- 2. ศึกษา linkage ของ TAP ยืน และ HLA class II ยืนในประชากรไทย (กรุงเทพ ฯ)
- ศึกษาความสัมพันธ์ของ TAP1 และ TAP 2 ยีนต่อการเกิดโรค Rheumatoid ในคนไทย (กรุงเทพฯ)

3. ระเบียบวิธีวิจัย

- กลุ่มประชากรที่จะศึกษา
 - 1.1 กลุ่มผู้บริจาคโลหิตที่มีภูมิลำเนาในจังหวัดกรุงเทพฯ ไม่จำกัดเพศ อายุระหว่าง 18-70 ปี โดยวิธีสุ่ม จำนวนไม่ด่ำกว่า 100 ราย ซึ่งเป็นกลุ่มที่ทราบผล HLA typing แล้ว
 - 1.2 กลุ่มผู้ป่วยโรค Rheumatoid Arthritis จากโรงพยาบาลศิริราชจำนวน 50-100 ราย วินิจฉัยจาก criteria ของ American College of Rheumatology โดยอายุร แพทย์สาขา rheumatology
- 2. สิ่งส่งตรวจ

3.

เจาะเก็บเลือดจากผู้บริจาคโลหิต และผู้ป่วยโรค Rheumatoid Arthritis จำนวน 10 ml การตรวจทางห้องปฏิบัติการ

- 3.1 การสกัด DNA โดยวิธิ modified salting out technique (UCLA technique)
- 3.2 การดรวจ TAP 1 และ TAP 2 ยีน โดยวิธี ARMS-PCR (12th international workshop technique) มีขั้นตอนโดยย่อคือ
- 3.2.1 PCR amplification

TAP1 position 333, 637

TAP2 position 379, 565, 665

แต่ละ position ใช้ 4 primer มี sequence ดังที่เคยมีรายงาน (12th IHWC protocol)

reaction condition: 95oC for 5 min, 35 cycle of 94oC for 1 min, appropriate annealing T for 2 min, 72oC for 2 min, 72oC for 10 min

- 3.2.2 Agarose gel electrophoresis
- 4. การวิเคราะห์ข้อมูล

ศึกษาความถี่ของ TAP 1 และ TAP 2 ยีน ในกลุ่มประชากรไทย(กรุงเทพฯ) ซึ่งจะเป็น กลุ่ม control

ศึกษาความถี่ของ TAP ยีนในผู้ป่วย Rheumatoid เปรียบเทียบกับกลุ่ม control การเปรียบเทียบข้อมูลทางสถิติใช้ Chi- square test

- 4. แผนการดำเนินงานวิจัยในแต่ละช่วง 6 เดือน
 - ปีที่ 1 เดือนที่ 1-6 เก็บรวบรวม sample, ทดลองวิธีการดรวจ เดือนที่ 7-12 ตรวจ TAP ยีนในประชากรไทย
 - ปีที่ 2 เดือนที่ 1-6 ดรวจ TAP ยีนในผู้ป่วย rheumatoid เดือนที่ 7-12 รวบรวมวิเคราะห์ข้อมูลและเขียนรายงาน
- 5. ผลงานที่จะตีพิมพ์ในวารสารนานาชาติ: ผลงานจะดีพิมพ์เมื่อสิ้นสุดการศึกษาในปีที่ 2 ชื่อเรื่อง 'Polymorphism of TAP 1 and TAP2 in rheumatoid arthritis in Thais'

เนื้อหางานวิจัย

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease. Although the etiology is unknown, genetic component is strongly suggested [1]. There were many evidences suggesting that the susceptibility genes lie in the HLA region. In many populations, it is demonstrated that HLA-DR4 is associated with rheumatoid arthritis [2]. Although rheumatoid arthritis is associated with HLA-DR4, the association is not absolute. Therefore, it is possible that other genes in the class II region may also be involved in the pathogenesis of rheumatoid arthritis. The TAP1 and TAP2 genes (Transporter Associated with Antigen Processing) are localized in the class II region between HLA-DP and DQ. They are members of ABC superfamily of transporter genes which play important roles in antigen processing and presentation [3,4]. Although TAP1 and TAP2 genes mainly involve in the HLA class I antigen-peptide binding, it has been reported that TAP play a role in class II-restricted endogenous antigen processing [5]. Both TAP1 and TAP2 are polymorphic genes. In the rat, TAP gene polymorphism can influence the specificity of peptides preferentially presented by the MHC molecules and the outcome of the immune response. Besides, linkage disequilibrium has been reported between certain alleles of TAP and HLA-DR [6]. Because of the function and the location of TAP gene, it is possible that they may be involved in rheumatoid arthritis and other autoimmune disease. In this study, therefore the association of TAP genes in Thai rheumatoid arthritis patients were investigated.

MATERIALS AND METHODS

Study population

Eighty-two Thai patients with rheumatoid arthritis at the Department of Internal Medicine at Siriraj Hospital were included in this study. All the patients were diagnosed according to the American College of Rheumatology revised criteria [7]. The HLA types of 66 patients were known from the previous study [2]. One-hundred unrelated ethnic Thai individuals served as ethnical and geographically-matched controls.

TAP1 and TAP2 genotyping

Polymorphisms within TAP1 and TAP2 genes were analyzed by the previously described amplification refractory mutation system (ARMS-PCR) [8]. For TAP1, two polymorphic sites were typed: position 333 and 637. For TAP2, 3 polymorphic sites were typed: position 379, 565 and 665. Four primers were used for each site, two specific for one of the two varients, the others complementary to the flanking regions as controls. Oligonucleotide primers used in this study have been previously described [8]. PCR were performed in a 50 ul final volume containing 0.5 ug DNA, 2mM MgCl₂, 200 mM dNTPs, 1xTaq DNA polymerase buffer and 2u of Taq DNA polymerase. Reaction conditions were 95°C for 5 min, followed by 35 cycles of 94°C 1 min, the appropriate annealing temperature for 1 min, 72°C for 1 min, and 72°C for 10 min. PCR product were seperated on a 2% agarose gel and stain with ethidium bromide. TAP nomenclature were used according to Powis et al [9]. Individuals heterozygote at both TAP1 were assumed to possess allele 1AB. Heterozygote at all three TAP2 position were omitted from Table1, as these could possess any of the possible combination.

Statistical analysis

Comparison of TAP genes between the patients and the normal controls were tested by the Chi-square (X²) test with Yate's correction used when appropriate, and relative risks were calculated according to the method of Woolf [10]. P value were further corrected (Pc) for the number of alleles detected in each locus. Delta value (D), haplotypic frequencies (HF) and chi-square (X²) to analyze linkage disequilibrium (LD) were calculated as described in Iminishi et al [11].

RESULTS

TAP polymorphisms

Two dimorphic residues in TAP1 and three dimorphic residues in TAP2 were identified and the combinations of these residues form potential alleles as previously described by Powis et al[9]. The phenotype frequencies of TAP1 and TAP2 are shown in Table 1. In the control population, TAP1A was the most frequent allele (90%). Followed by TAP1B (24%) and TAP1C (26%), while TAP1D (3%) was rare. Among the five TAP2 alleles, TAP2A is the predominant allele (80.9%) followed by TAP2B (52.1%), TAP2C (24.5%), TAP2D (14.9%) and TAP2E (7.4%). The distribution of TAP1 alleles was similar between the patients and controls. Among TAP2 alleles, TAP2C was slightly increased in rheumatoid arthritis patients, while TAP2A was decreased in rheumatoid arthritis compared with the normal controls (P>0.05). TAP2B, 2D and 2E were similarly distributed in the patients and controls. When the allelic combinations of TAP1 and TAP2 were analyzed, an increase of TAP2B/2C was found in the patients (19%) compared to the controls (6.4%, P=0.01, Pc=ns). No significant difference of other TAP1 and TAP2 genotypes were observed (data not shown). To exclude unclear assignment of some alleles due

to heterozygous at more than one residue, we also analyzed individual TAP dimorphisms. There was no significant difference in TAP1 dimorphism frequencies between the patients and controls (Table 2). However, a modest difference in the frequency of TAP2 dimorphism at position 379 was observed (Table 3). The phenotype frequency of isoleucine at position TAP2 379 was increased in rheumatoid arthritis patients as compared to the controls (53.7% vs 38%, P=0.03, RR=1.41). Comparison of the TAP dimorphisms in the patients positive and negative for DRB1*0405 and matched controls was performed and the difference of isoleucine was not observed.

Linkage disequilibrium between HLA-DRB1, TAP1 and TAP2 loci in the Thai population.

No linkage disequilibrium (LD) between DRB1*0405 with any alleles of the TAP1, and TAP2 was observed. A linkage disequilibrium was observed between DRB1*0301 and TAP1B (X² =40.3, D=0.025, HF=2.8%). DRB1*0406 was in LD with TAP2A (X²=11.1, D=0.03, HF=5.1%). In addition, TAP1A was in LD with TAP2B (X²=18.3, D=0.06, HF=28%). TAP1C was in LD with TAP2D (X²=49.7, D=0.04, HF=5.5%).

DISCUSSION

Although the HLA-DR locus probably account for the strongest predisposing effect to rheumatoid arthritis, the possibility that additional susceptibility genes exist in the MHC class II region can not be excluded. Recent studies have identified a cluster of genes within the MHC class II region which play important roles in antigen processing and presentation and as such, were suggested to be candidate disease susceptibility genes for autoimmune disease. In this study, the TAP1 and TAP2 genes

were investigated in Thai rheumatoid arthritis of which the association with DRB1*0405 was previously described [2].

Although the association of TAP genes in rheumatoid arthritis has been reported in many populations, it is still unclear whether TAP gene are additional risk factors for rheumatoid arthritis and most of the studies were performed in Caucasian population of which rheumatoid arthritis is associated with DRB1*0401. These included a study in British and Belgian which demonstrated an increase of TAP2D in rheumatoid arthritis, and the association was in linkage disequilibrium with HLA-DR4 [12,13]. In contrast, Singal et al reported an increase of TAP2C/D in Canadian rheumatoid arthritis which was independent of HLA-DR4 [14]. In Asian populations, a Japanese group reported the slight increase of TAP2B and 2C which was secondary to DRB1*0405 and a decrease of TAP2E in rheumatoid arthritis[15]. In this study, we have clearly demonstrated that no single alleles of TAP1 and TAP2 genes is associated with rheumatoid arthritis. Although the genotype TAP2A/2B was found to be increased, it failed to retain significance after P correction.

In the previous study, an increase of isoleucine at TAP2 position 379 has been reported and suggested that a particular dimorphism rather than a single allele may be associated with the disease [16]. In this study, an increase of isoleucine at TAP2 position 379 was observed in the patients but this was not significant when DRB1*0405 positive and negative patients were compared with matched controls. Therefore, the increase of isoleucine should be due to positive association with DRB1*0405.

The frequencies of TAP1, TAP2 alleles in normal Thai have not previously been reported. The frequency of TAP1C was relatively higher in the Thai population than in Caucasians [17]. In addition, the linkage disequilibrium between certain alleles of

TAP genes and HLA class II genes were observed in Thai population which also differed from the reports in other populations [6,17,18]. This may reflect some difference in the genetic background between different ethnic groups and may play roles in the preponderance or resistance of populations to other diseases which remains to be investigated.

REFERENCES

- Lawrence J. Rheumatoid arthritis: nature or nurture. Ann Rheum Dis 29: 357, 1970.
- 2. Nelson JL, Hansen JA, Singal D Buchanan W, Marshall W, Larset B, Feng L, Feng CH, Thomson W, Ollier W, Howell W, Smith J, Eliace JF, Clot J, Taneja V, Mehra N, Naik S, Agarwal S, Angelini G, Ferrara G, Delfino L, Morozzi G, Marcolongo R, Tsuchiya K, Sasazuki T, Chandanayingyong D, Charoenwongse P, Deesomchok U, Temples D, Sartakova M, Konenkov V. Rheumatoid arthritis. In Tsuji K, Aizawa M, Sasazuki T(eds): HLA 1991: Proceedings of the Eleventh International Workshop and Conference. Vol.1. Oxford, UK, Oxford University Press, 1991.
- Powis SJ, Deverson EV, Coadwell WJ, Ciruela A, Huskisson NS, Smith H,
 Butcher GW, Howard JC. Effect of polymorphism of an MHC-linked transporter
 on the peptides assembled in a class I molecule. Nature 357: 210, 1992.
- Mombery F, Roelse J, Howard JC, Butcher GW, Hammerling GJ, Neefjes JJ.
 Selectivity of MHC-encoded peptide transporters from human, mouse and rat.
 Nature 367: 648, 1994.
- Malnati MS, Marti M, La Vante T, Jaraquemada D, Biddison W, DeMars R, Long EO. Processing pathway for presentation of cytosolic antigen to MHC class II restricted T cells. Nature 357: 702, 1992.
- Djilali-Saiah I, Benini V, Daniel S, Assan R, Bach J-F, Caillat-Zucman S.
 Linkage disequilibrium between HLA class II (DR, DQ, DP) and antigen processing (LMP, TAP, DM) genes. Tissues Antigens 48: 87, 1996.
- 7. Arnett FC, Edworthy SM, Bloch DA, Mcshene DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS. The American Rheumatism Association

- 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31: 315, 1988.
- Powis SH, Teisserenc H. TAP, LMP and HLA-DM typing protocols. In Charron D (ed): HLA: Genetic Diversity of HLA, Functional and Medical Implications,
 Vol. 2. Paris, EDK Medical and Scientific International Publishing, 1997.
- Powis SH, Tonks S, Mockridge I, Kelly AP, Bodmer JG, Trowsdale J: Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2.
 Immunogenetics 37: 373, 1993.
- Woolf B. On estimating the relation between bloods and disease. Ann Hum Genet
 19: 251, 1955.
- 11. Imanishi T, Akaza T, Kimira A, Tokunaga K, Gojobori T. Allele and haplotype frequencies for HLA and complement loci in various ethnic groups. In: Tsuji K, Aizawa M, Sasazuki T(eds):HLA 1991, vol.1. New York: Oxford University Press, 1992:1065-220.
- 12. Wordsworth BP, Pile KD, Gibson K, Burney RO, Mockridge I, Powis SH.

 Analysis of the MHC-encoded transporters TAP1 and TAP2 in rheumatoid
 arthritis: linkage with DR4 accounts for the association with a minor TAP2 allele.
 Tissue Antigens 42: 152, 1993.
- 13. Vandevyver C, Geusens P, Cassiman JJ, Raus J. Peptide transporter genes (TAP) polymorphisms and genetic susceptibility to rheumatoid arthritis. Br J Rheumatol 34: 207, 1995.
- 14. Singal DP, Ye M, Qiu X, D'Souza M. Polymorphisms in the TAP2 gene and their association with rheumatoid arthritis. Clin Exp Rheumatol 12: 29, 1994.

- 15. Takeuchi F, Nakano K, Matsuta K, Takizawa K, Nabeta H, Kuwata S, Ito K.
 Polymorphism of TAP1 and TAP2 in Japanese patients with rheumatoid arthritis.
 Tissue Antigens 49: 280, 1997.
- 16. Hillarby MC, Davies EJ, Donn RP, Grennan DM, Ollier WER. TAP 2D is associated with HLA-B44 and DR4 and may contribute to rheumatoid arthritis and Felty's syndrome susceptibility. Clin Exp Rheumatol 14:67, 1996.
- 17. Teisserence H, Besnault L, Briaud I, Busson M, Albert E, Bignon JD, Caraballo L, Charron D, Danze PM, Louie L, Mora B, Demana G, Powis SH. TAP, LMP and HLA-DM polymorphism: 12th International Histocompatibility Workshop study. In Charron D (ed): HLA: Genetic Diversity of HLA, Functional and Medical Implications, Vol.2. Paris, EDK Medical and Scientific International Publishing, 1997.
- 18. Savage DA, Ng SC, Howe HS, Ngai JLF, Darke C, Hui KM. HLA and TAP associations in Chinese systemic lupus crythematosus patients. Tissue Antigens 46: 213, 1995.

Table 1. Phenotype frequencies of TAP1 and TAP2 alleles in RA patients and controls

	RA patients	Controls	
	N=81	N=100	
	%	%	
TAP1A	88.9	90	
В	26.6	24	
C	26.6	26	
D	0	3	
	N=81	N=94	
TAP2A	66.6	80.9	
В	55.1	52.1	
C	39.7	24.5	
D	15.4	14.9	
E _	5.1	7.4	

Table 2. Frequencies of TAP1 polymorphism in RA patients and controls

	RA patients	Controls	
	N=81	N=100	
TAP1 position 333	%	%	
Phenotype Frequency			
Ile/Ile	53.1	56	
Ile/Val	35.8	34	
Val/Val	11.1	10	
Ile	86.4	90	
Val	45.7	44	
Gene Frequency			
Ile	70.9	73	
Val	29.0	27	
TAP1 position 637			
Phenotype Frequency			
Asp/Asp	72.8	73	
Asp/Gly	25.9	24	
Gly/Gly	0	3	
Asp	80	97	
Gly	25.9	27	
Gene Frequency			
Asp	85.8	85	
Gly	12.9	15	

Table 3. Frequencies of TAP2 polymorphism in RA patients and controls

	RA patients	Controls
	N=82	N=100
TAP2 position 379	%	%
Phenotype Frequency		
Val/Val	45.1	61
Val/Ile	47.6	32
Ile/Ile	6.1	6
Val	92.7	93
Ile	53.7*a	38
Gene Frequency		
Val	68.9	77
Ile	29.9	22
TAP2 position 565		
Phenotype Frequency		
Ala/Ala	73.2	75
Ala/Thr	24.4	24
Thr/Thr	1.2	1
Ala	97.6	99
Thr	25.6	15
Gene Frequency		
Ala	85.4	87
Thr	13.4	13
TAP2 position 665		
Phenotype Frequency		
Thr/Thr	41.5	45
Thr/Ala	57.3	53
Ala/Ala	0	1 .
Thr	98.8	98
Ala	57.3	54
Gene Frequency		
Thr	70.1	71.5
Ala	28.7	27.5

N=number of individuals studied

^{*}a, P=0.034

งานวิจัยที่ได้ทำเพิ่มเติม

Analysis of HLA-DM polymorphism in Thai rheumatoid arthritis ผลการศึกษาแสดงใน manuscript

Output

Vejbaesya S, Luangtrakool P, Luangtrakool K, Sermduangpratep C, Parivisutt L, Chandanayingyong D. Analysis of TAP and HLA-DM polymorphism in Thai rheumatoid arthritis. Human Immunol summitted.

เสนอผลงานในการประชุมใหญ่วิชาการประจำปี 2542 ของศูนย์บริการโลหิตสภากาชาดไทย เรื่อง TAP1 and TAP2 polymorphism in Thai rheumatoid arthritis

ภาคผนวก

- 1. <u>manuscript</u>: Vejbaesya S, Luangtrakool P, Luangtrakool K, Sermduangpratep C, Parivisutt L, Chandanayingyong D. Analysis of TAP and HLA-DM polymorphism in Thai rheumatoid arthritis. Human Immunol summitted.
- 2. <u>Abstract</u> ที่เสนอผลงานในการประชุมใหญ่วิชาการประจำปี 2542 ของศูนย์บริการโลหิตสภากาชาดไทย