# รายงานวิจัยฉบับสมบูรณ์

# โครงการ

การพัฒนาซุดตรวจหาเชื้อไวรัสหัวเหลืองในกุ้งกุลาดำ

Development of diagnostic kit for detection of yellow-head virus in *Penaeus monodon* 

ผศ.คร.ชัยณรงค์ วงศ์ธีรทรัพย์ และคณะ

วันที่ 31 กรกฎาคม 2542 เสร็จสิ้นโครงการ

## สัญญาเลขที่ PDF/43/2540

# รายงานวิจัยฉบับสมบูรณ์

## โครงการ

# การพัฒนาชุดตรวจหาเชื้อไวรัสหัวเหลืองในกุ้งกุลาดำ

Development of diagnostic kit for detection of yellow-head virus in *Penaeus monodon* 

ผศ.ดร.ชัยณรงค์ วงศ์ธีรทรัพย์

ภาควิชาชีวเคมี คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย ชุดโครงการทุนวิจัยหลังปริญญาเอก

## กิตติกรรมประกาศ

ขอขอบพระคุณศาสตราจารย์ ดร.วิชัย บุญแสง อาจารย์ที่ปรึกษาในโครงการวิจัยนี้ ซึ่งเป็นผู้ให้คำชี้แนะการทำวิจัยให้เป็นไปในทิศทางที่ถูกต้อง เอาใจใส่และให้ความเข้าใจตลอดระยะ เวลาดำเนินโครงการ ศาสตราจารย์ ดร.สกล พันธุ์ยิ้ม ที่ให้ความรู้และการแนะนำอย่างต่อเนื่อง โดย เฉพาะอย่างยิ่งในงานชีววิทยาระดับโมเลกุล รองศาสตราจารย์ บุญเสริม วิทยซำนาญกุล และ Prof. Dr. Tim Flegel ให้ความเอื้อเฟื้อในตัวอย่างเชื้อไวรัส และคำแนะนำในการตรวจสอบภาคสนาม Dr. Peter Walker และ Dr. Richard Hodgson ที่ให้คำแนะนำและอำนวยความสะดวกในการทำวิจัย ณ สถาบัน CSIRO Tropical Agriculture เมือง Brisbane ประเทศออสเตรเลีย และขอขอบคุณสำนัก งานกองทุนสนับสนุนการวิจัย (สกว.) ที่ให้ทุนสนับสนุนการวิจัยในโครงการนี้

สัญญาเลขที่ PDF/43/2540

การพัฒนาชุดตรวจหาเชื้อไวรัสหัวเหลืองในกุ้งกุลาดำ

ผศ.ดร.ชัยณรงค์ วงศ์ธีรทรัพย์

ภาควิชาชีวเคมี คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ สุขุมวิท 23 กรุงเทพฯ 10110

บทคัดย่อ

การเพาะเลี้ยงกุ้งกุลาดำเป็นอุตสาหกรรมที่นำรายได้เข้าประเทศปีละหลายหมื่นล้าน

บาท แต่ผลผลิตการเพาะเลี้ยงกุ้งกุลาดำมีแนวโน้มลดลงเนื่องจากมีการระบาดของเชื้อไวรัส 2 ชนิด

คือ ไวรัสหัวเหลือง และไวรัสตัวแดงจุดขาว จากการศึกษาเชื้อไวรัสหัวเหลืองพบว่ามีสารพันธุกรรม

เป็น RNA จึงได้ทำการพัฒนาการตรวจสอบไวรัสหัวเหลืองโดยวิธี RT-PCR ผลการวิจัยพบว่า

สามารถตรวจหาเชื้อไวรัสได้ที่ระดับ 0.01 pg ของ RNA ของเชื้อไวรัส และมีความจำเพาะสูงโดย

สามารถตรวจจากเลือดกุ้งได้เป็นอย่างดี นอกจากนี้ยังได้พัฒนาการตรวจเชื้อไวรัสหัวเหลืองและไวรัส

ตัวแดงจุดขาวในปฏิกิริยาเดียวกัน (Multiplex RT-PCR) ซึ่งได้ผลการตรวจสอบที่มีความจำเพาะสูง

แต่ความไวจะต่ำกว่าการตรวจหาเชื้อชนิดเดียวประมาณ 10 เท่า ซึ่งจะได้นำเทคนิคนี้ไปใช้ตรวจสอบ

ลูกกุ้งและพ่อ-แม่พันธุ์และสืบหาพาหะต่อไป นอกจากนี้ยังได้ศึกษาเปรียบเทียบความ

สัมพันธ์ของไวรัสหัวเหลืองที่ระบาดในประเทศไทยและประเทศออสเตรเลีย พบว่าไวรัสทั้งสองชนิดมี

ความสัมพันธ์กัน อย่างไรก็ดีจากการใช้ชุดตรวจสอบ RT-PCR ที่พัฒนาขึ้นไม่สามารถใช้ตรวจสอบไว

รัสหัวเหลืองของประเทศออสเตรเลียได้

Key words: Yellow head virus (YHV), RT-PCR, Penaeus monodon

E-mail: Chaina @ Psm.swu.ac.th.

PDF/43/2540

Development of diagnostic kit for detection of yellow-head virus in

Penaeus monodon

Chainarong Wongteerasupaya

Department of Blochemistry, Faculty of Medicine, Srinakhariwirot University, Sukhumvit 23, Bangkok Thailand 10110

**Abstract** 

Cultivated shrimps industry in Thailand, attracts several billions US dollars per year.

However the production rate tends to be decreased due largely to the outbreak of white spot

virus (WSV) and yellow head virus (YHV). This has brought an attention to develop a rapid

and sensitive PCR-base assay for an early detection of the disease outbreak in shrimps. The

RT-PCR method has been developed to amplify part of YHV RNA genome. The method was

highly sensitive and capably of detection 0.01 pg of YHV genome multiplex RT-PCR has also

been developed to detect the presence of YHV and WSV in hemolymph of shrimps

simultaneously. We describes a method which allows rapid diagnosis by performing a single

step of extraction of both RNA and DNA using the Trizol reagent. The detection of both

viruses by multiplex RT-PCR is convenient, specific but less sensitive than the detection of

either YHV or WSV alone. This technique will be applied to detect the infection of these 2

viruses in broodstock and carriers. The YHV from Thailand and gill-associated virus (GAV)

from Australia were compared by RT-PCR and sequence analysis. The developed RT-PCR

method can only detect YHV isolated from Thailand but not from Australia although these 2

isolates show a high degree of genetic similarities. Sequence analysis of RT-PCR products

generated with generic yellow head virus primers will provide a more useful tool for

distinguishing between isolates from different geographical regions.

Key words: Yellow head virus (YHV), RT-PCR, Penaeus monodon

E-mail: Chaina @ Psm.swu.ac.th.

#### **Executive Summary**

A rapid, simple and sensitive reverse transcription polymerase chain reaction (RT-PCR) has been successfully developed. The results suggested that RT-PCR might be useful to shrimp aquaculturists for early detection of YHV outbreaks or for detection of asymptomatic carrier. The multiplex RT-PCR has also been developed to detect the presence of YHV and WSV in hemolymph of shrimps simultaneously. The developed RT-PCR method can only detect YHV isolated from Thailand but not for gill-associated virus (GAV) from Australia although these 2 isolates show a high degree of genetic similarities.

## เนื้อหางานวิจัย

#### 1. บทน้ำ

การเพาะเลี้ยงกุ้งกุลาดำในประเทศไทยเป็นอุดสาหกรรมที่ทำรายได้หลักเข้าสู่ประเทศ แต่ในภาค การผลิตต้องประสบปัญหาโรคระบาดอย่างรุนแรง ไวรัสที่มีความสำคัญที่ก่อให้เกิดปัญหาคือ ไวรัสหัว เหลือง (1) และไวรัสตัวแดงจุดขาว (2-4)

คณะผู้วิจัยได้ทำการศึกษาไวรัสหัวเหลืองมาตั้งแต่ปี พ.ศ. 2536 และพบว่าเชื้อไวรัสนี้ มีสารพันธุกรรมเป็น RNA (5-6) จึงได้ทำการ clone ชิ้นส่วนของ RNA ของเชื้อไวรัสนี้ ในโครงการนี้ คณะผู้วิจัยได้เสนอโครงการการพัฒนาชุดตรวจสอบเชื้อไวรัสหัวเหลือง ซึ่งคาดว่าจะได้ผลการวิจัยที่ สามารถใช้เป็นส่วนหนึ่งในการบรรเทาปัญหาการระบาดของเชื้อได้ โดยจะได้พัฒนาชุดตรวจสอบที่มี ความจำเพาะ และมีความไวสูง เพื่อจะได้ใช้ในการตรวจสอบการติดเชื้อในภาคสนาม และตรวจหา พาหะของเชื้อ อันจะเป็นส่วนหนึ่งของการควบคุมการระบาดของเชื้อได้

#### 2. การทดลอง

#### 2.1 การเตรียมเชื้อไวรัสหัวเหลือง

นำกุ้งกุลาดำที่ติดเชื้อไวรัสมาบดใน Loster haemolymph buffer กรองบน filter 0.45 µm เพื่อแยก bacteria ออก นำเชื้อไวรัสนี้ไปฉีดในกุ้งน้ำหนัก 15-20 กรัม จำนวน 200 ตัว ทำการเก็บ haemolymph ภายหลังการฉีดเชื้อได้ 2 วัน และเดรียมเชื้อให้บริสุทธิ์โดยใช้ Urograffin gradient Ultracentrifugation ตามวิธีของ Wongteerasupaya et al, 1995(6)

### 2.2 ทำ Cloning ของ RNA ไวรัสหัวเหลือง

ทำการ clone ชิ้นส่วนไวรัสหัวเหลือง โดยการเปลี่ยน RNA ให้เป็น cDNA จากนั้น สร้าง double stranded cDNA (ตามรายงานความกัววหน้าครั้งที่ 1 ทำการ ligate double stranded cDNA ที่ Sau 3Al ของ bluescript vector และ transform ไปยัง *E.coli* 

### 2.3 ทำการหาลำดับนิวคลีโอไทด์ และออกแบบไพรเมอร์

ได้ทำการคัดเลือก clone ที่เหมาะสมเพื่อไปหาลำดับนิวคลีโอไทด์โดยใช้ Sequence kit และทำการออกแบบไพร์เมอร์โดยโปรแกรม oligo 4.0

#### 2.4 ทำการศึกษาความไวของการติดเชื้อ

ได้ทำการศึกษาความไวของการติดเชื้อ โดยการฉีดเชื้อไวรัสไปยังกุ้งปกติ จากนั้นติด ตามพัฒนาการของเชื้อไปทุกๆ 6 ชั่วโมง ( time course infection ) เพื่อจะศึกษาการตรวจเชื้อในระยะ เริ่มแรก (early infection)

## 2.5 พัฒนาวิธี Multiplex RT-PCR ในการตรวจไวรัสหัวเหลือง และไวรัสตัวแดงจุดขาว

ได้ทำการพัฒนาการตรวจเชื้อไวรัสหัวเหลือง และไวรัสจุดขาวไปพร้อมๆ กัน ซึ่งเป็น การทดลองเพิ่มเติมจากที่เสนอไว้ในโครงการโดยได้ออกแบบไพรเมอร์สำหรับ Multiplex RT-PCR ของไวรัสหัวเหลือง ขนาด 135 เบส และไวรัสตัวแดงจุดขาวขนาด 250 เบส (รายละเอียดการทดลอง ได้แสดงไว้ในรายงานความกัววหน้าครั้งที่ 3)

## 2.6 การตรวจหาพาหะของเชื้อไวรัสหัวเหลือง และตัวแดงจุดขาว

ทำการศึกษาพาหะของเชื้อไวรัสทั้งสองชนิด โดยได้เริ่มด้นศึกษาพาหะของเชื้อไวรัส ตัวแดงจุดขาวก่อนเพื่อเป็นต้นแบบในการศึกษาพาหะของเชื้อไวรัสหัวเหลือง โดยศึกษาสิ่งมีชีวิต ต่างๆ ที่อาจจะเป็นพาหะของเชื้อ เช่น แม่เพรียง ปู และกุ้งกระตะ เป็นต้น

## 2.7 ศึกษาความแตกต่างของไวรัสหัวเหลืองของประเทศไทยและออสเตรเลีย

การทดลองนี้เพื่อจะศึกษาว่าไพเมอร์ที่ใช้สามารถตรวจสอบเชื้อไวรัสที่ระบาดใน ประเทศอื่นได้หรือไม่ โดยได้มีความร่วมมือกับกลุ่มนักวิจัยของ Dr. Peter Walker จากสถาบัน CSIRO Tropical Agriculture ที่ประเทศออสเตรเลีย และมีการแลกเปลี่ยนไพรเมอร์ในการทำ RT-PCR เพื่อใช้ตรวจหาเชื้อไวรัส การทดลองนี้ยังได้นำผลผลิต RT-PCR มาหาลำดับนิวคลีโอไทด์เพื่อ เปรียบเทียบความสัมพันธ์ของเชื้อไวรัสด้วย

#### 3. ผลการทดลองและบทวิจารณ์

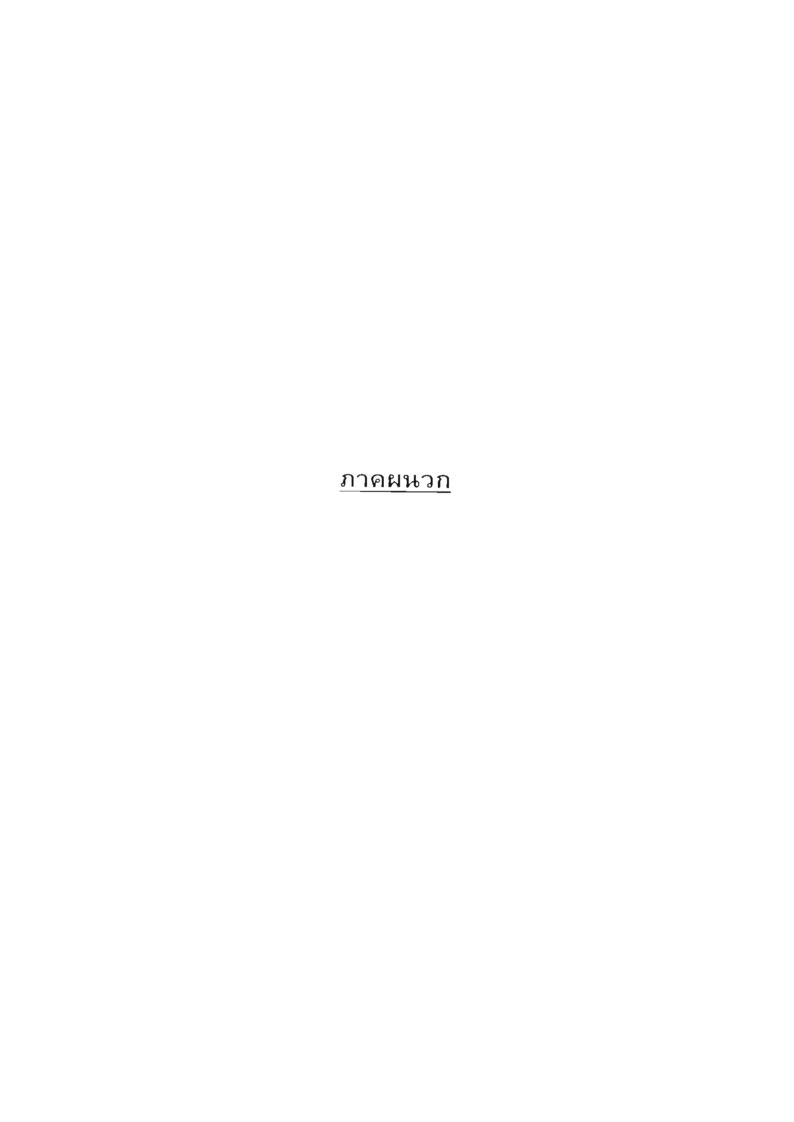
จากการทดลองสามารถพัฒนาเทคนิค RT-PCR ในการตรวจเชื้อไวรัสที่มีความไว และความจำเพาะสูงได้สำเร็จ โดยสามารถตรวจหาเชื้อไวรัสหัวเหลืองที่ระดับ 0.01 pg RNA และ สามารถตรวจพบไวรัสในระยะเริ่มแรก (early detection) ได้ภายในเวลา 12 ชั่วโมงภายหลังการติด เชื้อ (7) โดยได้รายงานไว้ในวารสาร Diseases of Aquatic Organisms Vol. 31: 181-186; (1997) (ดัง Reprint ที่แนบมาในภาคผนวก) และได้พัฒนาการตรวจเชื้อไวรัสหัวเหลืองและไวรัสตัวแดงจุด ขาว (Multiplex RT-PCR) ซึ่งได้ผลการทดลองที่น่าเชื่อถือ (ดังรายงานผลการทดลองฉบับที่ 3) ซึ่ง กำลังอยู่ในระหว่างการเตรียม Manuscript เพื่อเผยแพร่ต่อไป

ได้วางแผนการตรวจหาพาหะของเชื้อไวรัสหัวเหลืองและดัวแดงจุดขาวโดยได้ทำการ ตรวจหาพาหะของเชื้อตัวแดงจุดขาวก่อน ผลการศึกษาพบว่าปูชนิด U.pugilator, S.semta และ Sesama sp. เป็นพาหะของเชื้อไวรัสดัวแดงจุดขาว (8) ซึ่งได้ดีพิมพ์ในวารสาร Diseases of Aquatic Organisms Vol.34: 1-7(1998) (ดัง reprint ที่แนบมาในภาคผนวก) จากนั้นได้นำวิธีการ การตรวจหาพาหะแบบเดียวกันมาใช้เพื่อตรวจหาพาหะของเชื้อไวรัสหัวเหลืองซึ่งได้ทำการทดลอง เบื้องต้นแล้ว อย่างไรก็ดีจำเป็นต้องมีข้อมูลผลการทดลองมากขึ้นจึงจะสรุปผลได้ ซึ่งคณะผู้วิจัยจะได้ ทำการศึกษาเพิ่มเดิมต่อไป

คณะผู้วิจัยยังได้มีความร่วมมือในการผลิตชุดตรวจสอบไวรัสหัวเหลืองร่วมกัน ระหว่างนักวิทยาศาสตร์ไทย และออสเตรเลีย โดยการศึกษาเบื้องต้นพบว่าไวรัสหัวเหลืองของไทย และออสเตรเลียมีความสัมพันธ์กันสูง แต่ชุดตรวจสอบที่คณะผู้วิจัยของเราพัฒนาขึ้นไม่สามารถใช้ ตรวจสอบไวรัสหัวเหลืองของประเทศออสเตเลีย (Gill associated virus; GAV) ได้ แต่ชุดตรวจสอบ ไวรัส GAV ของออสเตรเลียได้จากบริเวณยืน ORF 1b ขนาด 618 bp สามารถใช้ตรวจสอบเชื้อไวรัส หัวเหลืองของประเทศไทยได้ ซึ่งหมายถึงความแปรผันของพันธุกรรมในส่วนของผลผลิต RT-PCR (135 เบส) ของไทยมีความแปรผันสูงกว่ายืน ORF 1b ขนาด 618 bp ของออสเตรเลีย (9) ซึ่งได้ราย งานไว้ในวารสาร Diseases of Aquatic Organisms Vol. 36: 153-157(1999) (ดัง reprint ที่แนบมา ในภาคผนวก)

คณะผู้วิจัยยังได้จัดประชุมเชิงปฏิบัติการนานาชาติ เรื่อง Molecular Diagnostics for shrimp viruses in The Asia Region วันที่ 10-13 กุมภาพันธ์ 2542 โดยการสนับสนุนจากสถาบัน ACIAR Crawford Fund และ BIOTECH ที่สถาบันวิทยาศาสตร์เทคโนโลยีมหิดล ศาลายา โดยมีผู้เข้าร่วม สัมมนาชาวต่างประเทศ 12 คน และคนไทย 12 คน และได้ทำการจัดคู่มือการตรวจเชื้อไวรัสหัวเหลือง (ดังสำเนาเอกสารที่แนบมาในภาคผนวก) ซึ่งในการประชุมเชิงปฏิบัติการนี้จะได้จัดทำขึ้นอีกครั้ง ประมาณตันปี พ.ศ. 2543

#### 4. เอกสารอ้างอิง


- Boonyaratpalin, S., Supamataya, k., Kasornchandra, J., Direkbusarakom, S., Aekpanithan-pong., and Chantanachookhin, C. (1993) Non-occluded baculo-like virus the causative agent of yellow-head disease in the black tiger shrimp *Penaeus monodon*. Fish Pathology 28: 103-109.
- Flegel, T.W., Sriurairatana, S., Wongteerasupaya, C., Boonsaeng, V., Panyim, S., and Withyachumnarnkul, B. (1995) Progress in characterization and control of yellow-head virus of *Penaeus monodon*. In Browdy, C. and S. Hopkins (eds) Swimming through troubled water; Precedings of the special session on shrimp farming, Aquaculture'95, San Diego, February, World Aquaculture Society, Bato Rouge, LA, pp. 76-83.
- Wongteerasupaya, C., Vickers, JE., Sriuraiwatana, S., Gary, Nash, GL., Akarajamorn, A., Boonsaeng, B., Panyim, S., Tassanakajorn, A., Withyachumnarnkul, B and Flegel, TW. (1995) A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in *Penaeus monodon*. Dis. Aquat. Org. 21: 69-77.
- Wongteerasupaya, C., Wongwisansri,S., Boonsaeng, V., Panyim, S., Pratanpipat, P., Nash, GL., Withyachumnarnkul, B., and Flegel, TW. (1996.) DNA fragment of *Penaeus* monodon baculovirus PmNOBII gives positive in situ hybridization with viral infections in 6 penaeid shrimp species. Aquaculture 143: 23-32.
- Wongteerasupaya, C., Sriurairatana, S., Vickers, J.E., Akarajaramorn, A., Boonsaeng, V., Panyim, S., Tassanakajon, A., Withyachumnarnkul, B., and Flegel, T.W.(1994) Isolation and characterization of yellow-head viurs of *Penaeus monodon*. Biopolymers and Bioproducts: structure, function and applications. Proceeding of the 11 the FAOBMB Symposium, 15-18
- Wongteerasupaya, C., Sriurairatana, S., Vickers, JE., Anutara, A., Boongsaeng, V., Panyim, S., Tassanakajon, A., and Withyachumna rnkul, B., and Flegel, TW.(1995) Yellow-head virus of *Penaeus monodon* is an RNA virus. Diseases of Aquatic Organisms 22:45-50.
- Wongteerasupaya, C., Boonsaeng, V., Panyim, S., Tassanakajon, A., Withyachumnarnkul, B., and Flegel., TW. (1997). Detection of yellow-head virus (YHV) of *Penaeus monodon* by RT-PCR amplification. Diseases of Aquatic Organisms 31: 181-186.

- 8. Kanchanaphum P, Wongteerasupaya C, Boongsaeng V, Panyim S, Sittidirokratana N, Tassanakajon A, Withyachumnarnkul B and Flegel TW. (1998). Experimental transmission of white-spot baculovirus (WSBV) from crabs to shrimp (*Penaeus monodon*). Diseases of Aquatic Organisms. 34: 1-7.
- Cowley JA, Dimmock CM, Wongteerasupaya C, Boongsaeng V, Panyim S and Walker PJ. (1999). Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses. Diseases of Aquatic Organisms. 36: 153-157.

#### Research out put

#### ผลงานที่ได้รับการตีพิมพ์ในวารสารนานาชาติ มี 3 เรื่อง

- Wongteerasupaya, C., V. Boonsaeng, S. Panyim, A. Tassanakajon, B. Withyachumnarnkul and T.W. Flegel (1997). Detection of yellow-head virus (YHV) of Penaeus monodon by RT-PCR amplification. Diseases of Aquatic Organisms 31: 181-186.
- Kanchanaphum, P., Wongteerasupaya, C., Boongsaeng, V., Panyim, S., Sittidirokratana, N., Tassanakajon, A., Withyachumnarnkul, B., and Flegel TW. (1998). Experimental transmission of white-spot baculovirus (WSBV) from crabs to shrimp (Penaeus monodon). Diseases of Aquatic Organisms. 34: 1-7.
- Cowley, JA., Dimmock, CM., Wongteerasupaya, C., Boongsaeng, V., Panyim, S., and Walker, PJ. (1999). Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses. Diseases of Aquatic Organisms. 36: 153-157.



# Detection of yellow-head virus (YHV) of Penaeus monodon by RT-PCR amplification

Chainarong Wongteerasupaya<sup>1</sup>, Wansika Tongchuea<sup>2</sup>, Vichai Boonsaeng<sup>3,\*</sup>, Sakol Panyim<sup>3</sup>, Anchalee Tassanakajon<sup>4</sup>, Boonsirm Withyachumnarnkul<sup>5</sup>, T. W. Flegel<sup>6</sup>

<sup>1</sup>Dept Biochemistry, Faculty of Medicine, Srinakharinwirot University, Soi 23 Sukhumvit Road, Bangkok 10110, Thailand

<sup>2</sup>National Center for Genetic Engineering and Biotechnology, Rama 6 Road, Bangkok 10400, Thailand

<sup>3</sup>Dept Biochemistry, <sup>5</sup>Dept Anatomy and <sup>6</sup>Dept Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road,

Bangkok 10400, Thailand

<sup>4</sup>Dept Biochemistry, Faculty of Science, Chulalongkorn University, Phya Thai Road, Bangkok 10400, Thailand

ABSTRACT: A nucleic acid probe was developed using cDNA prepared from ssRNA extracted from yellow-head virus (YHV), a serious pathogen of the black tiger prawn Penaeus monodon. The specificity and sensitivity of this probe was established using dot-blot hybridization with nucleic acid extracts from YHV and from shrimp, bacteria and other viruses. Based on the sequence of this cloned YHV cDNA fragment, a YHIV specific primer set for reverse transcription polymerase chain reaction (RT-PCR) of a 135 base pair (bp) sub-fragment was designed for detection of YHV infections in penaeid shrimp. When applied in RT-PCR with templates derived from experimentally or naturally YHV-infected shring and with purified YHV or YHV nucleic acid, the expected 135 bp amplification product was obtained. By contrast, nucleic acids extracted from tissue samples of healthy shrimp and from other shrimp pathogens gave no such fragment. This confirmed the specificity of the designed YHV RNA specific primers. RT-PCR based detection demonstrated high sensitivity, in that it could detect 0.01 pg of purified YHV-RNA. In a time course study of an experimental YHV infection, the RT-PCR detection showed evidence of infection at 6 to 12 h post exposure to the virus. However, histopathology typical of YHV infection (i.e. karyorhexis and pycnosis of haemocytes in haematoxylin and eosin (H&E) stained haemolymph smears] was not visible until 42 to 48 h post exposure. The results suggested that RT-PCR might be useful to shrimp aquaculturists for early detection of YHV outbreaks or for detection of asymptomatic carriers.

KEY WORDS: Yellow-head virus (YHV) · Polymerase chain reaction (PCR) · Penaeus monodon

#### INTRODUCTION

Yellow-head virus (YHV) of the black tiger prawn Penaeus monodon was first discovered in Thailand in 1992, although it is now known to have caused extensive losses on the eastern coast of the Gulf of Thailand as early as 1991 (Flegel et al. 1995). Shrimp infected with YHV often show light yellow coloration of the dorsal cephalothorax area and have a pale or bleached appearance (Limsuwan 1991). Upon initial discovery, the virus was considered to be a granulosis-like virus (Boonyaratpalin et al. 1993, Chantanachookhin et al.

1993), but later work showed that it was actually an RNA virus (Wongteerasupaya et al. 1995a). Two viruses which morphologically resemble YHV have also been reported in lymphoid organs (Spann et al. 1995) and gills (Spann et al. 1998) of *Penaeus monodon* from Australia. The virus from Thailand is also known to infect other species of penaeid shrimp in laboratory tests (Lu et al. 1994, 1997, Lightner 1996, Flegel et al. 1997), so it is not a potential pathogen solely to *P. monodon*. Since YHV is an RNA virus, cDNA preparation was necessary in order to characterize its nucleic acid and to prepare a diagnostic probe. The final aim was to develop a rapid, simple and sensitive reverse transcription polymerase chain reaction (RT-PCR) based system that would allow early detection of the virus.

<sup>\*</sup>Addressee for correspondence. E-mail: scvbs@mahidol.ac.th

#### MATERIALS AND METHODS

Viral isolation and nucleic acid extraction. YHV was isolated from experimentally infected juvenile shrimp *Penacus monodon* as described by Wongteerasupaya et al. (1995b). The YHV RNA was extracted from purified virions using guanidinium thiocyanate and was purified by CsCl gradient ultracentrifugation as described by Wongteerasupaya et al. (1995a).

RNA extraction by Trizol<sup>TM</sup> reagent. To prepare total RNA extracts for use as RT-PCR templates, 50 mg of shrimp gill tissue or 50 µl of haemolymph was treated with Trizol<sup>TM</sup> reagent for extraction of RNA (Bethesda Research Laboratories, Gaithersberg MD, USA), following the instructions in the reagent manual.

Preparation of double-stranded cDNA. Using RNA extracted from purified YHV as a template, cDNA was prepared at 37°C for 50 min, in 20 µl of reaction mixture containing 2.5 pM random hexanier (Sigma), 50 U Maloney murine leukemia virus reverse transcriptase (M-MLV) (Bethesda Research Laboratories, Gaithersborg, MD), 20 U of RNase inhibitor (Bethesda Research Laboratories, Gaithersberg, MD), 1 mM each deoxyubonucleotide triphosphate (dNTP), 5 mM MqCl<sub>2</sub>, 50 mM KCL 40 mM Tris-HCl (pH 8/3). Using 2 to 5 ml of this, double-stranded cDNA was synthesized in a final volume of 50 pl reaction mixture containing a final concentration of 2 mM MgCb, 0.1 mM each dNTP, 50 mM KCl, 10 mM Tris-HCl (pH 8.3) and  $2.5~\mu\mathrm{M}$  random hexamer. The sample was subjected to amphilication in a DNA thermal cycler (Perkin Elmer Cetus) at 95°C, 30 s; 20°C, 5 mm; and 37°C, 2 min, for 8 cycles with the addition of 1 μl of 5 U μl<sup>-1</sup> of Klenow tragment enzyme (Boehringer Mannheim Genius System) at each annealing step.

Cloning and screening of cDNA clones. The cDNA was digested with Sau3AI and the resulting fragments were ligated to BamHI digested Bluescribe plasmid (Stratagene) and transformed into Escherichia coli JM107 Transformants were selected on Luna-Bertaniagar containing 50 µg ml 1 ampicillin, 1 mM Isopropyl-D-thiogalacto-pyranoside (Sigma) and 2% 5-bromo-4chloro-3-indovl-galactoside (Sigma). Selected cDNA clones were then used as probes in dot-blot hybridizations with YHV RNA and nucleic acid preparations from various other sources. These included 1000, 100, and 10 ng of YHV RNA, shrimp genomic DNA, whitespot baculovirus DNA (WSBV) and control transcribed RNA from plasmid PAW109 (Perkin Elmer Cetus). Clones which gave positive hybridization only with YHV RNA were selected for further study.

DNA sequence and primer designation. The sequence of 1 selected YHV clone which gave good specificity for YHV-RNA was determined by the dideoxy chain termination method using Sequence kit

version 2.0 (USB) and ( $\alpha$ -358) dATP (Amersham) with M13/mp18 oligonucleotides as the sequencing primer. Then nucleotide primers were designed by using the programme Oligo version 4.0.

Amplification of a YHV-specific fragment by reverse transcription polymerase chain reaction. Extracted YHV RNA was incubated at 42°C for 15 min to synthesize cDNA in 20 µl of PCR butter (10 mM Tris-HCl. pH 8.3, 50 mM KCl) containing 2.5 U of M-MLV reverse transcriptase, 1.0 U of ribonuclease inhibitor, 0.75 mM of antisense primer (144R), 1 mM each of dATP, dTTP, dCTP, and dGTF, and 5 mM of MqCIs. Following cDNA synthesis, the mixture was incubated at 100°C for 5 min to inactivate the reverse transcriptase and then the product was allowed to cool to 5°C. The PCR mixture (10 mM Tris-HC), pH 8/3, 50 mM KCl) containing 2.5 U of Tag DNA polymerase (Perkin Elmer Cetus), 2 mM MgCL and 0.75 mM of sense primer (10F) was added to the reverse transcription product, giving a final volume of 100 µl. The tubes were overlaid with 100 µl of mineral oil. PCR amplification was carried out for 40 cycles at  $94^{\circ}C$ ,  $30 \text{ s}_{1} 58^{\circ}C$ ,  $30 \text{ s}_{1}$  and  $72^{\circ}C$ , -1 s and finishing at 72°C for 10 min. In every set of experiments, a negative control was included. This contained diethylpyrocarbonate (DEPC)-treated distilled water instead of RNA Amplified products were detected by electrophoresis of 20 µl abquots through 2% agarose gels in Tris-Borate-EDTA (TBE) buffer.

Specificity of RT-PCR detection. Nucleic acid preparations including *Penacus monodon* DNA, white-spot baculovirus WSBV DNA (Wongteerasupaya et al. 1995b), hepatopancreatic parvovirus (HPV) DNA (DiagXotics Co. Ltd. Wheaton, CT, USA), nuclear polyhedrosis virus (NPV) DNA (obtained from Rice Research Center, Kasetsart University, Thailand), *Salmonella* DNA and control plasmid PAW109 DNA (Perkin Elmer Cetus) were used as negative control templates for RT-PCR. From each RT-PCR reaction 20 µl was analysed by ethidium bromide stained gel electrophoresis.

Sensitivity of RT-PCR detection. Various amounts of YHV genomic RNA from 1 ng to 0.01 fg were used as templates in RT-PCR. Then 20  $\mu$ l of each RT-PCR reaction mixture was analysed by ethidium bromude-stained gel electrophoresis.

Time course detection of YHV in experimental infection. Twenty-seven juvenile shrimp of 20 g average weight were infected with 0.1 ml of a thawed gill extract from experimentally YHV-infected shrimp (Wongteerasyupaya et al. 1995b). Fresh haemolymph (50 µl) was then collected from 3 of these infected shrimp every 6 h and immediately mixed with 500 µl of Trizol<sup>TM</sup> reagent to be subsequently extracted by the procedure described above. The resuspended RNA (2 µl) was then subjected to RT-PCR. Then 20 µl of each RT-PCR reaction was analysed by ethidium bromide-