บทคัดย่อ

Project Code : PDF/45/2540

Project Title : การแพร่กระจายและสะสมของสารปรอทในสิ่งแวดล้อมทางทะเล

บริเวณชายฝั่งภาคตะวันออก

Investigators :

รศ.ดร.วรวิทย์ ชีวาพร นางสาวพวงกมล นวลสุทธิ์ นางสาวสายทิพย์ สวัสดิกุล ศ.ดร.เปี่ยมศักดิ์ เมนะเศวต ภาควิชาวาริชศาสตร์ มหาวิทยาลัยบูรพา ภาควิชาวาริชศาสตร์ มหาวิทยาลัยบูรพา ภาควิชาวาริชศาสตร์ มหาวิทยาลัยบูรพา สถาบันวิจัยทรัพยากรสิ่งมีชีวิตทางน้ำ

จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: voravit@bucc4.buu.ac.th

Project Period : สิงหาคม 2540 - กรกฎาคม 2542

Objectives :

1) เพื่อศึกษาหาระดับการปนเปื้อนของสารพิษปรอทในสิ่งแวดล้อมชายฝั่งทะเลภาคตะวัน ออก และการสะสมขยายตัวทางชีวภาพของสารพิษปรอทในสัตว์น้ำเศรษฐกิจบริเวณชายฝั่ง ทะเลภาคตะวันออก

2) ข้อมูลองค์ความรู้ที่ได้จะนำไปคำนวณประเมินผลความเสี่ยงต่อการบริโภคสัตว์น้ำจาก บริเวณชายฝั่งทะเลภาคตะวันออก

Methodology :

- 1) ทำการเก็บตัวอย่างแท่งตะกอนดิน (Sediment core) จากบริเวณชายฝั่งทะเลภาคตะวัน ออก ได้แก่ บริเวณอ่างศิลา ศรีราชา แหลมฉบัง พัทยาและมาบตาพุด มาเพื่อศึกษาประวัติ การปนเปื้อนของสารปรอทในแท่งตะกอนดิน
- 2) ทำการเก็บตัวอย่างสัตว์น้ำชนิดต่างๆ จากบริเวณอ่างศิลา แหลมฉบัง และจังหวัดระยอง (บ้านเพ) ด้วยวิธีการลากอวนและถุงแพลงค์ตอน เพื่อศึกษาการสะสมและการขยายตัวทางชีว ภาพของสารปรอทในบริเวณชายฝั่งภาคตะวันออก
- 3) นำตัวอย่างที่ได้มาทำการวิเคราะห์หาสารปรอทโดยการย่อยด้วยกรดไนตริกและวัดด้วย วิธี Hydride generation Atomic Absorbtion Spectrophotometry (Perkin Elmer 3300)

4) นำข้อมูลที่ได้มาวิเคราะห์ทางสถิติโดยใช้ ANOVA, Duncan's New Multiple Range Test และ Pearson Correlation analysis

Result:

ได้ทำการเก็บตัวอย่างแท่งตะกอนดินจำนวน 30 แท่ง ใน 5 สถานี จากบริเวณชายฝั่ง ทะเลจังหวัดชลบุรีและระยอง มาวิเคราะห์ปริมาณสารปรอทโดยเครื่องอะตอมมิกแอบซอร์พชัน สเปกโดรโฟโตมิเตอร์ ระบบไฮไดรด์ รวมทั้งวิเคราะห์ขนาดอนุภาคดินตะกอน และปริมาณ คาร์บอนอินทรีย์ในดินตะกอน ผลการศึกษาพบว่าโดยทั่วไปปริมาณสารปรอทไม่แตกต่างกัน อย่างมีนัยสำคัญเมื่อระดับความลึกเปลี่ยนแปลงไป แสดงให้เห็นถึงแนวโน้มที่ไม่มีการสะสมเพิ่ม ขึ้นอย่างมีนัยสำคัญของปริมาณสารปรอทในปัจจุบันเมื่อเทียบกับอดีด นอกจากนี้ยังพบว่า ปริมาณสารปรอทในดินตะกอนมีความสัมพันธ์ในเชิงบวกกับปริมาณอนุภาค Silt&Clay และ ปริมาณคาร์บอนอินทรีย์ในดินตะกอนอย่างชัดเจน กล่าวคือบริเวณใดที่มีปริมาณอนุภาค Silt&Clay และปริมาณคาร์บอนอินทรีย์สูง ก็จะมีปริมาณการปนเปื้อนของสารปรอทสูงตามไป ด้วย ปริมาณสารปรอทที่พบในแท่งตะกอนดินมีค่าอยู่ในช่วง 4.80 - 37.49 ng/g ซึ่งดำกว่า ค่ามาตรฐานดินที่ไม่มีการปนเปื้อน (50 ng/g) และค่าเฉลี่ยในดินตะกอนของโลก (300 ng/g) ผลการศึกษายังพบว่าความแปรปรวนของปริมาณสารปรอทในแท่งตะกอนดินที่ตรวจพบในฤดู กาลและสถานีที่ต่างกันนั้น เกิดเนื่องจากตัวอย่างแท่งตะกอนดินที่เกิบได้ในแต่ละฤดูกาลและ สถานีมีลักษณะเนื้อดินและปริมาณคาร์บอนอินทรีย์ที่แตกต่างกัน การศึกษาการแพร่กระจาย ตามแนวระนาบพบว่าแหล่งชุมชน (ศรีราชา) มีการปนเปื้อนของสารปรอทในดินตะกอนสูงกว่า แหล่งเพาะเลี้ยง (อ่างศิลา) แหล่งท่องเที่ยว (พัทยา) และ แหล่งอุตสาหกรรม (แหลมฉบังและ มาบดาพุด)

ในส่วนของการศึกษาด้านการสะสมตัวและการขยายตัวทางชีวภาพ พบว่ามีการขยาย ตัวทางชีวภาพของสารปรอทในห่วงโช่อาหารในบริเวณอ่างคิลา แหลมฉบังและระยอง นอกจาก นี้ยังพบว่าสัตว์น้ำหลายชนิดเช่น กุ้งแชบ๊วย (Penaeus merguiensis) และปลาหางแข็งบั้ง (Atule mate) มีการสะสมสารปรอทเพิ่มขึ้น เมื่อมีขนาดเพิ่มขึ้น กลไกของการสะสมนี้ยังไม่ ทราบแน่ชัด

Discussion, Conclusion:

ผลงานการวิจัยนี้พบว่า ปริมาณสารปรอทในแท่งตะกอนดินไม่แสดงแนวโน้มการสะสม ที่เพิ่มขึ้นอย่างมีนัยสำคัญ บริเวณที่มีอนุภาคตะกอนละเอียด เช่น อนุภาคของ silt&clay และ ปริมาณคาร์บอนอินทรีย์สูง ก็จะมีปริมาณการปนเปื้อนของสารปรอทสูงตามไปด้วย ในส่วนของ การสะสมตัวพบว่าสัตว์น้ำหลายชนิดมีการสะสมตัวของสารปรอทมากขึ้นเมื่อมีขนาดเพิ่มขึ้น และพบการขยายดัวทางชีวภาพของสารปรอทในห่วงโช่อาหาร ในบริเวณชายฝั่งภาคตะวันออก

อย่างไรก็ตามเมื่อคำนวณค่า PTWI (Provisional tolerate-weekly intake) แล้วพบว่าการปน เปื้อนของสารปรอทในสัตว์ทะเลชายฝั่งภาคตะวันออกยังอยู่ในระดับที่ปลอดภัยต่อการบริโภค

Suggestions/Further Implication/Implementation:

สิ่งที่ค้นพบใหม่จากงานวิจัยนี้คือ พบว่าสารปรอทไม่แสดงแนวโน้มการสะสมที่เพิ่มขึ้น ในแท่งตะกอนดินจากชายฝั่งภาคตะวันออก แต่พบการขยายตัวทางชีวภาพของสารปรอทใน ห่วงลูกโช่อาหารในบริเวณนี้ และมีการสะสมของสารปรอทมากขึ้นในสัตว์ทะเลบางชนิดเมื่อสัตว์ ทะเลมีอายุหรือขนาดเพิ่มขึ้น เมื่อคำนวณค่าความเสี่ยงในการบริโภค PTWI (Provisional tolerate-weekly intake) แล้วพบว่าการปนเปื้อนของสารปรอทในสัตว์ทะเลชายฝั่งภาคตะวัน ออก ยังอยู่ในระดับที่ปลอดภัยต่อการบริโภค

ข้อเสนอแนะเพิ่มเติม คือการขยายขอบเขตการศึกษาให้ครอบคุมพื้นที่ชายฝั่งของอ่าว ไทยทั้งหมด

Keywords :

Mercury, Bioaccumulation, Biiomagnification, Food-chain, Sediment-core, Provisional tolerate-weekly intake (PTWI)

Abstract

Project Code : PDF/45/2540

Project Title : Distribution and Accumulation of Hg in the Marine Environment of

The Eastern Coast of Thailand.

Investigators :

Voravit Cheevaporn Dept. of Aquatic Sc. Burapha University.

Phuangkamol Nualsut Dept. of Aquatic Sc. Burapha University.

Saitip Savadhikul Dept. of Aquatic Sc. Burapha University.

Prof. Piamsak Menasveta Aquatic Resources Research Institute,

Chulalongkorn University

E-mail Address: voravit@bucc4.buu.ac.th

Project Period : August 1997- July1999

Objectives

 To investigate the extent of Hg contamination in the marine environment and the biomagnification of Hg in the economic marine animals of the Eastern Coast of Thailand.

 To assess the risk of marine animal consumption due to the Hg contamination in the Eastern Coast of Thailand.

Methodology :

- Thirty sediment cores were taken from 5 stations namely: Angsila, Sriracha, Laem-Chabang, Pattaya, and Mabtapud for Hg analysis and studies regarding history of Hg contamination in sedimentary column.
- Marine organisms were collected from Angsila, Laem Chabang, and Rayong province (Ban Pae) by trawler and plankton net. The samples were kept for bioaccumulation and biomagnification studies.
- Samples were then analysed for Hg by Nitric acid digestion and measured by means of Hydride generation Atomic Absorption Spectrophotometry (Perkin Elmer 3300).

4) The data obtained was statistical analysis by ANOVA, Duncan's New Multiple Range Test and Pearson Correlation analysis.

Results:

Thirty sediment cores were taken from 5 stations along the coastal line of Chonburi and Rayong provinces. Mercury concentrations were then determined by using a hydride generation atomic absorption spectrophotometer. Sediment texture was analysed by wet sieving techniques, whereas the titration method was used for determination of organic carbon in the sediments. Results of the analysis revealed no significant differences of the mercury level in each depth of the sedimentary column. These findings indicated that there was no increase of the present-day anthropogenic inputs of the mercury contamination when comparing with those of the previous day. Furthermore, the results also demonstrated that there was a significant correlation between the concentration of mercury and the texture of the sediments (%silt&clay) or the total organic carbon contents in the sediments. The mercury content ranged from 4.80 - 37.49 ng/g, which was similar to the un-polluted sediment standard (50ng/g) and lower than the world average value for sediment (300ng/g). In finding of the study, it was also found that there were significant differences among the mercury level collected from different seasons and also among those collected from different stations. These temporal and spatial variations were due to different textures of the collected sediments. These findings supported the idea that clay -minerals and organic materials have strong affinity with free mercuric ions. Horizontal distribution of mercury contamination in the area showed higher concentration of mercury contamination in the urban area than in the aquaculture area (Angsila), tourist area (Pattaya), and industrial areas (Laem Chabang and Mabtapud).

In a present study, biomagnification of Hg was found in the marine food-chain of Angsila, Laem Chabang, and Rayong province. Hg levels tend to increase at higher trophic levels and according to the animal's size (i.e., White shrimp (*Peneaus merguiensis*), and Banded crevalle fish (*Atule mate*)). The mechanism of this accumulation was not well understood.

Discussion, Conclusion:

Results of the studies indicated that there was no significant increase of the present-day anthropogenic inputs of the mercury contamination when comparing with those of the previous day. Furthermore, the results also demonstrated that there was a significant correlation between the concentration of mercury and the texture of the sediments (%silt&clay) or the total organic carbon contents in the sediments. Mercury levels tend to increase at higher trophic levels in the food chain and according to the animal's size. The calculation of PTWI (Provisional tolerate-weekly intake) indicated that the mercury levels of marine animals from the Eastern Coast of Thailand are within safety limit.

Suggestions/Further Implication/Implementation:

Results of the studies revealed that there was no significant increase of the Hg levels in the marine sediments from the Eastern Coast of Thailand. However, the results demonstrated that mercury levels tend to increase at higher trophic levels in the marine food-chain and according to the animal's size. Provisional tolerate weekly intake (PTWI) value indicated that marine animal from the Eastern Coast are still safe for consumption. For further studies, we recommend to extend the study areas to cover the whole gulf of Thailand.

Keywords

Mercury, Bioaccumulation, Biiomagnification, Food-chain, Sediment-core, Provisional tolerate-weekly intake (PTWI)