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Abstract

Project Code : PDF/53/2540
Project Title : Local Tomographic Algorithms for Reconstructing Probability Density
Functions in Turbulent Flames
Investigator : Pumyos Vallikul, Department of Mechanical Engineering,
King Mongkut's Institute of Technology North Bangkok.
E-mail Address : pyy@kmitnb.ac.th
Project Period : August 1997 — July 1999
Objectives : The aim of this research is to develop a reconstruction algorithm to
retrieve local probability density functions (local-PDFs) of transmittance within turbulent
flames from the synthetic and measurement data of path-integrated probability density
functions (path-PDFs).
Methodology : A mathematical relationship between the local- and path-PDFs is
derived under the assumption that the local-PDFs have to be statistically independent
and verified by comparing the results with that from the conventional Discrete
Probability Function (DPF) method.
Results : Evaluations of the algorithm through the reconstruction results show that the
algorithm handles well the tomographic data from both symmetrical and asymmetricai
flame profiles.
Discussion Conclusion : There are two main disadvantages: Excessive data for the
explicit reconstruction algorithm are needed and an underlying assumption —that the
local-PDFs have to be statistically independent— remains questionable. However, it is
found that with the discrete tomographic approach, the statistically independent
assumption imposed in the previous continuous technique can possibly be relaxed.
Optimization techniques for the dramatic underdetermine tomographic problems such as

Natural Pixel Decomposition and ART techniques have been used, and the results are
justified.

Future Directions for Research : To develop appropriate mathematical models for the
local-PDFs of turbulent flames is important future research topic. The maximum entropy

and wavelet techniques used in the field of image recognition and data compression
fields come to mind.

Keywords : Combustion measurement, Tomography, Turbulent flames
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Tuwwuditisan, —infMg (1], 3nnuu @
par)

r

m‘sns:mnﬁ’ﬂmumfmaoqm
FUVAVBIN UMY N8

-] g . A ) el - o
MWN 3 uFIRNBmsnIRIBdEILENasoWanTn 2 DaluIzun (xy)

wWuwadsuwnwang 1 58, pgn)



12

AW tunwang, pe(r),
[+.2]
Po(r)= [fo(r.s)ds (2.18)
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l o ad .
f(x,y)=47r2 [ [F(x.Y ) dxdy (2.21)

—Q0 —a)

sums (2.21) snsadisuliagluszuuAdadaguldii

2r

1 e}
f(x,y)= ppe) [ jF(R @ JeR(xcos6+ysinb) pARA O 2.22)
0-



o P = [ o " - LY &
lapf FR, O Houdusldiuiandu FgrR.S)e  Svnnmaujluseatu-gladiae Pg
(R)  uardumauU@nmInyuuuusuanes imnnui F(-R, 6 fiduriiy F

(R,O+7D) dauu

f(x,y)= 4% [ [Py(R)e™|R|dRAE (2.23)
T 0-»

[ A v o A . P o s ]
fun1y (2.23) dusunsililvevieadaia (Unbounded function)  Liiasan |R) feng

o & o W w ) P » 'y . -
gan  MINUAT R Tampniiiamodl 9 wi |R| <02 dwmualiWinduminseania
AawnaIWNaitu, HR) = bR)IR] lauh

1  where |R| <0

b(R)=
(R) 0 wherel|R|> 2

(2.24)

AmualidvinsesmaiutayamuunirIe (Lateral sampling) Sidndu a’ 6
UUINNOBHMIFUa18E19 (Sampling theorem) 3: 1610

Q=2 == (2.25)
a

NFUMS (2.23) unud |R] My HR) ustlinnujrauligiu (Convolution) ax'ldma
NINITEFNMNLEN oYU (Reconstruction formula) 1w

flxy)==T
0

. ng(r)h(xcos0+ysin9—‘r)dfd9 (2.26)

<0

Pz = & s o -
\a hfn \dunmsudasfSininndusas HR) mmmmﬁiuu‘lu;ﬂ’uﬂﬂ:ﬁ' (Analytic form)
) G R

lok 0

_ )2z =
h(r) = 1[29 sint ) 5 , (2.27)

__271' __r r +_r2 cos(.!?r)——rz] a0
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Waraa Tt h(n) mmimﬁumﬂugﬂ'lﬂeimﬁaa h(r,=ak) \iie k= 0,1,2,..,N-1 'léilu

T
h(0) =
(9) 2a?
2 - = =
h(r, )= gy Wa & iluiad (2.28)
h(r,)=0 e k BUNERT

- o Y - A e P
guM3 (2.28) AsfanaiWeiiurasmunruaiou (Ramachandran, 1971) TINANWMUEN
] L] [ od st A »
U39 N RONLTWA (Shepp. 1974) uatlaunu (Logan) wuzifaimaiWardduniunds
L a L4 e ] d;
Kapaedarintanisaemwiaaudiiu

4
mat(4k* 1)

h(r,)=— k=0,+1,+2,..,r(N-1) (2.29)

J e AL - A
qumIiL3onitfamasWatdulmnrinazlaunu (Shepp and Logan filter function) NIWAN

- [ & . -
4 wsasilsieaTWoriduniges  noluaalaiun (Space domain) uazlulawuuanud
(Frequency domain)

- & v P - a v as

mavunrsdszuniuylidafiasvessunisnisaiinwaliauaasis  FBP
mansadowlaiu

M N
f(xy)= LZZPG(Q Jh(xcos@; +ysin@; —r, ) (2.30)

2M T
- = - . - =1 ]
lasn M Lﬂ“i]"l“")ﬂl!&l‘ﬂﬂ(!ﬂ'ﬁtﬁﬂﬂﬁﬁﬂ uas N Lflummuqﬂmaom'smuﬁagaﬂa 1 LY

HANIRINNIWLAT AU

MNNMIFFINTNETaUYDY Gaussian profile Wa: multi-layer top hat profile @28
FAamasuualusiondu Lﬁﬂlﬁ'\mumnﬁv'ﬁaQaua:xﬁuﬂmﬁmmﬂmiundunﬂuw1ﬂ
fimaTlunmadenwaiion wm"lqum‘ﬁmaaauuda:unuﬁqmé’num:vhaﬁuﬁo'lua
WalawuuazTawanud

WenlfrainTueimuRsineileidu nsdifliifuanasumunnmni 7 uas
Mnh 8 uwm'lﬁ'tﬁu'htﬂaﬁ'\muquﬁLﬁm‘fagaﬂfhﬁ'au nmwadeudlafisnwaliG oy
AfBUll noise-like pattemn a3 ﬁaﬁtﬁaamnﬂamafﬁoﬁ-ﬁ'uﬁlﬁfuﬁﬁ'\mngoqﬂua:
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Aaudgauandiunnluaolaam (nwh 4a) mildimaugades 9 limansnre
- [ . w ¥ v oa [ . .
IEANUARIMARAUANEEITWILS  falWiiednwuuas noiselike pattern  luAwW
- - = 3 e = al ol . &
wwilaw uamlaRansanmAniasdaunus (nnh 9) nsfiuad multi-layer top hat 4w
| A YY) e a o R 4
Jufelafianufinsouivdygraanuiganlilesmaduiwisuounmafiviouaie
Wlndidsanunauimsgumetni(sampling  theorem) uazaaUmngmIntiudauiias
nanulidaiitaduesfaidu ( Bracewel, 1986 ) dndudaaRudiwmmuyuiiifivdays
L o -‘.‘- = o . . J - WA - i
fqp Sasnudsifinansnie noise-like pattern ulunwiaiion malenliWawnasWondun
Iinadnszwinvdungigauazdaudmgaiosss 11w iswiuaslaunuilaiaaSWrisu
= A e oo “ A - . . e ' s 1 ' v oa vl
(NN 4c) JuTudnmalRanniiiNana noise-like pattern TIvzna1IDIlULHanwING LY
- v = - - e v odda
PRauEa IRIRRRaNTNUINRyanmsunuazmMstian il amaiWantufilida
L o o - 4 nn' s L
HEMIRIWNMLRTEU 3988y Gaussian profile  fitAuF tsuNIw lulu
L I3 b [ - ) - A
Wartunmwans  lasdimualdlzwialdifiu_ 1% vasmgigavosdoyaninann (nIwh
- -« & = ¢ = § = & . w & «
10) waymmmuulasSsisaamadoutsitudinndumdaourandu  dadusd
a F P a4  a o , oo .
UsznouyiisiadsezaaasuuendliwwBoafioiinanad  udlunsdifidnosdyanm
- [ v [ - el a ' w o [ & - -
sunawdtldnanodluwitasmlszneuyGainanudgeisliiiadygrosuniuin - dadu
ﬂ. » L Lt a » B J z ko
maRvwnunudayadadumsibiRedygrasununnivluduasunmsaianiw
o I w_ o~ = £ - P v oo = v «
wilow Hunalddifinumefdsunudidgdouaaslumni 11 usdillat)fowanlgiowA
' “ “ » " AN A -~ & .~
wazlaunuiamaifaidulnnghmwaiisunldianugndasnniu aadyanusuniu
wa L H i LA o ' a . '
198I% (wh 11 waz nnhl 12) nalmzinowinaclaunuilaina fWantulade
[ H . . - - [ P P
syruanuigdaoniunmweisuiisine Wity damulunidindifygmsuniu
=~ L € = 3 A & o [ | U] o3 -
andanlfionwuaslaunuilaiaasWanitu wananiidailimanaaldwangafivde
yafidasasle
Andnurdawilumsshsnmaiioutaswantuiidnensaunins  luwami
13 lwnsfumnaiiousaglin 2 §dla 9 dvitamasuualusiendu ASnn
uazlaunuilaeaieddu)  nsiRuswanunudaysrilWdsmingnsafvdifiasninanu
) - § L - | P - L s »~
lidaiftassasaituanas thiimaAuiwmgulunmafivdayaszgsld  noise-like
- J’ L J s « =l [ Al o
pattern tiadutasinn uazliasnniidunaseuliinmsladyyrasuniwdlunsls
TswaisuflameiNansuInhazliuanmssenwadloufianiii
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(a) (b)

o . o r “ . .
mMwh 12 mMwiailaou Gaussian profile N IMTUNMW alTAawmasNIATUAINK
(@) T IUATHN (643u, 90 Uy ) (b) \wruszTlaunw (64 unw, 90 uw )
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>4 \\\\\\\‘7” N,
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o ol -
NINn 13 Off-center Gaussian profile ﬂmﬂqﬁﬂm‘m
(a) Wanituasa
- o ) «
(by mwislawdialfiswiuazlaunu ( 64 uou, 90 yy )



unii 3
N138719 Local-PDF euaTIinluntivil

NTINNNULLUTUIIUY DI NITRIHNU

AMIANIUIR S (Transmittance of path S), 7g, vadigasdlsznauluad
Wiy susmdowmdusiuwlsalaunadn  (Stochastic variabie) uvylisdaiios Ts
(Sivathanu, 1993) wusdslanmaiaznufasisdsznaufddimsdorinn Tgy DUIUTN
75, ~(d7g, /2) wez 75, +(Arg, /2) fenanuirenily £, issvmdinisd
Hmfidnagsnineg 0 Do 1 fanu Ts,1 =0, 75, =kdrg, T, =1 uaz
Y. P (k=1...K) fduiu 1 fswwssiarifuanunuuinanuiezsiuwuuylise
Wias (Discrete probability density function) , PDF(zg, ) Tan

P, =PDF(tg, )Atg (3.1)

o 8 » L A 4:.‘ o =
ganua luuudauduf n muTadwInniisnuvasliiuug (Tennekes, 1992)
K
— n —~ n
M, = ITSPDF(rS Jdrg = 75, P, (3.2)
k=1

o ' o~ o oo a u ' & '
We M, fafiluanaduaui n uas PDF(75) #edwansuanuinesiuuuuss
P

Waswas 7

winuisRIIAIMIERwiIG s aaniudimsdsiulivinny 2 fdes 7
Uaz Tg, N30 ST uaxr S2 Mudau dmsaIdwufa

Tg =T51Ts2 (3.3)

& - Y . < = [
wruydnulinnanede g use 7g, Sanailwdaszdain (Statistically

. [V & =l - [} ]
independent) AvuuMILY 7, 74 usr 75, munadsuliagluglvasluaudldiiu
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Mg,=Mg Mg, , (3.4)

Aluuanisenavadaums (3.4) Saguuif S7 uax S2 MudIGU  aduNael
‘o a v o o o .

suns (3.4) lauuaaiin, M, swnsadsuliaglumenvesluuuddditinioniag,

m

- \1vv P g
o8z, laadu

MS,n = (ml,n )Sl(mz,n )SZ

3.5
wa —-InMg, =Sl(=-Inm,)+S2(=Inm,,) 55

o : = A .

Wiassnmlauued, my, uaz m,,,, \dunuani@nulu (Intensive property) 33aunin

Gowduadtu mr.s) luszuuRna (r.s) uazi3un mrs) Iladaluuud  Asan
J L

Mwh 3 musndisuauns (3.5) WWulwaiilu

pe(r) = —InMy, (r) = J.—Inmn(r,s)ds = If(r,s)dg (3.6)

gUNT  (3.6) JuaumIdufiinmuaainnusuAussznie luuaitrinuazlana

= Y - [ ‘. ol o e v -
Tuuug 5Fnsudaums (3.6) Wamlanaluwuannluudituimwuald waaeld
Tunrtadaly

ANONS 8RR NUFUNUS lanaluue — luluainsi

Tuudsdnufismmnnladaluauddoaums @.5) usaaSoufinuiued
Tauddfisufidmrude3 Wt fuarnunurusiuanukeaduuunlisaiios
(Discrete probability density function, DPF) (Sivathanu, 1993) lavladaluudun
Faunu 5, 10 uas 20 34 axldluwudifnuiireandosiudsuanslumnil 14

nagglImaIni 14 (\Hunistugunnugnaastadsuns (3.5) Tuflusunisiun
J ) -~ L ] -
undagradinlunimiuvudaiiies
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_ Sivathanu
451 (@) O Moments method| -

POF

0 01 02 03 04 05 06 07 08 09
Transmittance

- | - ) o . - med
WA 14 uaaas luluadnnunswInnauns (3.5) wWisuiisunuis DPF

P lutuug

Wamansamalanaluaug, m, (xy,y, ), Imnmseanmsliauaisisinly
ST ' » ® = o ad = a e
nyAua? dalufiasdmwanuilu POF Tasaunish (3.2) Sadlulgmiluwuadaimua
drluiualiduiam PDF 1lousums (3.2) atwnind

) 0 0 I p ) i 7
e 2 [R)] [
1 1 1
T T e T P m
_l .2 K | .2 | _ ] -1 [ (3.7)
-1 1-1 I-t
| 7 L3 o Ty \PK, W=y

A [] U ] - & b4
TaofifinTsIn 7,20 usz Z,=1 uazdl PDF, = PAAD Twnddoiismuali

- £ L r ) 1
A7 =0.01 wmindnmithovesaums (3.7) falunindueimniTaanam P, uaz m, Ao
drauinaziiiu wazdrlanaluwud audsu

.+« A [] s ol *
umsuisunsluud (3.7) Wamen P, 1935n1susndneng u (Singular value
s - - w & = ol - .
decomposition, SVD) (William, 1996) lasfimualvigmiitiduilgymindaumsuinnda
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aulslinsuen (Overdetermined problem) lap#l 1 > K wawaan P, Alddniuna

IRAULUUMAINAUAR (Least square solution)
Weonaums 3.7) Waglugiadgneimiun

AP =m (3.8)

A 1 - 1 ] [ =1 = I ) =

Wa A dwunindamssriw Jauwia 1x K, P ilwnimeddianuinaniiu waz m
dAatnaailanalutund nanmsva9id SVD (Forsythe, 1977 ; Wilkinson, 1978) &ausn
A aanidu

A=UzVT (3.9)
P P - - o . - P ™ da
Toof U JuwaundndiBensann (Orthogonal matrix) Avwia 1 x 1 uaz 2 lwan3ngni

ﬁ'lmwn:'lw.mfue‘fumtmaw (Diagonal matrix) Jvwia 1 x K , V uwandndideaeann
L AHA‘ ) =
A K x K arudtiaunsodmwiamianing P lugums (3.8) 1dlaw

P=VE'U'm (3.10)

Fniudnanuianiu A, @wdandu Local-PDF  dasamdwus PDF.=P/(AD)

AUITON AN TULNUS M UasATMTEIHW T

N1I&319 Local-PDF suiTWataasuualisiantu

NMsEFMWIRTauYad Local-PDF TutdaaiwdanasDaud MNToYN Path-PDF
[] o -‘-‘l W A‘
wyalaifiu 4 TuaauaIn
1. "nINae Path-PDF

N

Ammdays Path-POF Widudsyaluudifiudssums (3.2)

[/ ]

[T o ol J‘ W [ et - L 24 -
1) aga'[muumnﬂnuﬁﬂamwLﬂﬁaumamﬂaﬂa'[muusfmauﬂmtwmmm‘i'i
WalaaTuunlusiansu

4. winsdnladaluuaiiudgn Local-PDF Taomsuitumiluiundeasds svo
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Han1I&319 Locai-PDF uadttal Propylene

wanfildvinminarey wdaawdsuenywilindg (Non-premixed flame) Twslw
awene (Propylene/air flame) “fmauqﬁiﬁﬁuﬁnﬁﬁﬁmaotﬂmnmﬁamﬂmonau?ﬂﬁ
0.0805 w3 wivaanduwiaumiu 11 29 uazmwnuaguinaal  lasluwdaziod
mM7ia Local-PDF 4838 1MIEIHIUIINIIINaadIdie FalFTwsuTaua (Optical probe)
AT pE 9 TInI WA I 0.007 LaT (Sivathanu, 1993) aaiuluAufintdavasitan
naRavs Local-PDF tanua 12 Wendufiuandrsiudoaiunludnsusauunas

50 50 50
401 Central Core 40| 11thring 40| 10th ring
w 30 30 30
(=
o 20 20 20
10 10 10
0.8 0.9 1 0.8 0.9 1 0.8 0.9 1
(@) (b) (c)
80 80 B8O
9th ring 8th ring 7th ring
60 60 60
a
g 40 40 40
20 20 20
0 0 0
0.8 0.9 1 0.8 09 1 0.8 0.9 1
Transmittance Transmittance Transmittance

(d) (e) it

NIWA 15 WAAIAN Local-PDF 2aa1aImagauannn1sia (Sivathanu, 1993)

N 15a uaa Local-PDF mnmﬁ'ﬂﬁv’nLmﬁ.oquzfnmmﬂm 2R 15b 1ilu
Local-PDF  fiaauminasdi 11 “fiaa;}iﬁ’maanmmnguﬁnmotﬂm usznWh 15c Liudf
Jauvmanndasenuiion 9 MW 3 fidvasdlanaluuddeuil 1 veassnanas
dmes  ugeslumwil 16 Tﬂﬂﬁ"mm'mwaogﬂtﬂuquume‘hunumaagﬂ 3 4§ uae
auLanasIfluGm e nuTuEMAdeiy  wWBnuflifduwaastein T
WiosadprasdimIsiiiud Fonanpfinonmiianufiuuasnmiuies ﬁw'ﬁ’aa‘\;aﬁ
ﬁ'ﬂﬁ*lﬂﬁwaaatﬂuﬁagamwmu udlHAT FBP TunsdmmnduiiRamdrlanaluiue,
mixy), Wwauwddnilldifanga x=0 waz y=0 lumsusasna Iedanluwudimaun
300 deiu (m,, n=0 3 299) lﬁa'litﬂuﬁ'agmﬁam"ﬁo PDF uuulidalilas 100 61 (PDF,
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,i=119100) NN 17 uresdn Jog,, 2 uaz log,0|UTm‘ fmTuuidgmiluiuud
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40
e
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* » Reconstructed
A0 .

N
15
1

local PDF at central core
5 8

sy
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A
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Transmittance

l‘ - - - Lo » A Lo =
17 18 WIsufpuranmsaFen wigilaw Local-PDF nusnnlaannnide
n oi*ummi.aguu‘nmaqu'uaenﬂma‘haaounuaumm

HaMIFFIANLIENauINTaua I TN

'ﬁ'agaﬁﬁsmﬁaﬁ‘lﬂumm’s’wmmaﬁau T nuainivteniiau/ennia
(Ethylene/air flame) (Sivathanu, 1993) Tﬂms'mu1‘1ﬁfhtﬂmﬁﬁ'\mﬁﬂﬁé’nmm:tﬂmo
naNaNaNeITall 0.0475 a3 Ynmyiatayadlisindiuiu 19 adanisain 1 34 udas
@MU 0.005 LuAT ﬁa»‘fnﬁagaﬁﬁﬂumnmsmu 1 qua:ﬂmﬁuﬂnmoﬁuﬁhnuﬂ 10
f1 (T TBURZYINTIRE 9 '-gmwﬁ'ma*uﬁi'ﬂmuguﬁnmaqu‘é'n 1 \§u) #i1 Path-PDF
ATalaRiTriieng 9 veaar uaasdanwd 19
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lumsanmadilimsfommeiiauvasluaug mnifaa‘.}ﬂTumuﬁ'ﬁﬁﬁuﬁf‘hmmiﬁmn
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ﬁaﬁ'ﬁ'un'lwmummmma"laaoﬁﬁnmm‘lﬁ'ﬁnnqu 0 897N, 30 837, 60 8IA7 UAL
90 9m  WEGILTRIN MR 24 dnwasvasvatFumwanpuaaaitunagaufiaiua ol
Tuudazyuazlimiauiu dissnnWatdunagaunduieisud liquainas
iaga'[muus‘fﬁiﬁﬂuﬁf‘hmm'lﬁmnﬁo 180 yu  gnlElumsaiamwadanvedluiuue
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UBHUFITIRDY Tﬂuﬁx‘mmmumaogmﬂuquuuaaﬁ’ﬁuuumaumwmﬂau UEAINY
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WU (Sharp variation) (Meekunnasombat, 1997)
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f=¢"x (4.8)
o x=[xT(1) xT(2) - xT(k) - xT(M)] @9
Tauf x(k)z[x,,(1 Xpnp 0 Xp, e ka]T

uwnual £ ngums (4.8) astuauns (4.4) azlé9n

¢p' x
Gx where G=d¢gp" (4.10)

I
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= [ A =Y [ =y = n‘.’- A‘ e,
W3NG 6 AolunINgANTasITuTd  lwnsdansaTailsdd svD lunmswiian
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[ Py =
aIRulTEaEND, X
B s 1 ;
AIRUNNTT AT

f=¢"G"y (4.11)

msdszonaniTntasatannudTnsuanANEIa TITATI6

dlavnmasieniwaioudoitusnfnmasrumdsdudoslfinaiuazning
anumanalasdwngs  lunsudsumsiumindaualwa) (Buonocore, 1981) Farh
Twagi laduifiouaunszriolull 1994 1 iiAies (Bhatia, 1994) uazamus léandnam
FUUGMILUIGING  (Scale) NMsHwIniwaInNulasidwian  (Wavelet transform) a0
Jrzgnaldnumssiamwiaiioudgdinmsuenfinisssisnma il aS U ansnw
Tunsdruananniu LazAIN1T0UIANAT IR MIUNIULAAG o it Rvasnis
wlaarrian  luns@nsasiiddlaaslulnsesduanasnimindinisudaaanianan
Uszgneld LLGia):Ll.uzﬁ'u'ﬁUmé'nm‘iﬁug’m'lumﬁ_l'i:qnsﬂ'ﬁ' Welildnamsdiuam
Lffaad‘uﬁﬁu%'u'l'ﬂum'sﬁnw’ﬁ:é’ugmvia'hJ Suastdsannadieaaaivaddianian
FUIOANW LA IUUITIUNTN (Burrus, 1998 ; Mallat, 1989 : Newland, 1993)
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Ltunluaglugﬂnmumna (Multiscale decomposition) leilag
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- . (4.12)
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a € o
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(4.22)
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The Filter Back-projection method is used (o reconstruct axisymmetrical and
asymmetrical flame-property profiles from their computer simulated projection
functions. The effect of the mathematical shape of the profiles, the lateral and angular
sampling rates and of the measurement noise on reconstruction accuracy are studied.
Deviations between the test profile and the reconstructed profile are quantitatively
evaluated. Their dependence on the filter functions and on the samgling rates are also
examined. It has been found that reconstruction by the Filter Back-projection method is
very tolerant of noise, since high frequency terms tend to be removed by filtering and

that the method is capable of reconstructing an arbitrary 2-D function.

I= Ioe'x’

Absorption Tomography is an optical measurement technique for
monitoring thermodynamic properties in combustion fiames. By
this method, two-dimensional property fields across a flame are
reconstructed from their multi-angular path measurement projection
data (see Fig.1). This provides a major advantage over customary
optical point measurement techniques in that the property fields of
species with low concentration for all points In the flame cross-
sections can be reconstructed simultaneously from the same set of
projection data.

For absorption measurement in a homogeneous media, a
monochromatic pencil beam of ray having an intensity fp , when

. passing through a uniform medium, is attenuated in accordance
with Bear's law,

where K is the absorption coefficient and [ is the emerging
intensity after attenuation along the path length s,

in gaseous mixtures, the absorplion coefficient &, in the thermal
model is both temperature dependent and nonhomogeneous.
Hughey and Santavicca [1] rewrite Beer's law in the form

- frr.

I =1Ie
where K = pP,, , p is the partial pressure of the absorbing
species, P, (cm atm') the volume absorption coefficient at
frequency @ , and s the optical path length. The projection

functions can be found experimentally from the absorption data.
hence,

P(r)= EpP,ds: —hrT’- .



Tomographic techniques provide solutions to this equation for
pPs -which is in tum a function of gas temperature and
concentration. The “twoline” method is used to obtain the
temperature and absorbing species concentration {1]. This method
involves making two sets of line center absorption measurements
The knowledge of the line center
absorption coefficients and their temperature dependence is readily
available from the literature [2].

at different wavetengths.

Hughey and Santavicca (1]
assumed as a simplification, that the absorption coefficients vary
lineary with temperature. A linear absorption model for the R(6)
and R(19) lines of the CO 4.7]L band [1] was extrapolated to high
temperature to give the empirical relations:

P, =581-0024T

F, = —18.99+0.092T.
These are used in the reconstruction process. Substituting these
equations into the reconstruction results in

fixy)=pP.(xy), i=12
and solving for the temperature gives
581f,(x.y)+1899f(x.y)
T(x,y)= .

0092f(x,y)+0.024f,(x,y)
Once the temperature is known , p(x,y) can then be calculated

and the concentrations are found through the equation of state.
The key to the combustion tomography problem is to accurately
reconstruct the 2-D absormption coefficient functions from their 1-D

projections.

* . ~Combustiori .

al given cross-section

o vt T g .
R S s

Bty View angle 90°

Figura 1 A typical scanning from tomographic measurement

Chen and Goulard [2] introduced a generalized onion peeling
inversion method to measure pollutant emitted from jet engine
exhaust flows. The method determings the two-dimensional
property fields, beginning at the exterior shell, proceeding inward
shell by shell as in a peeling process. The technique is very
sensitive o measurement noise such that emors accumulate with
| the peeling process, leading o unstable solutions. Emmerman, et
al [3] overcame the accumulation emors by introducing =a
mathematical transform technique called Filter Back-projection

(FBP) technique. The FBP technique transforms the absorption
data into the frequency domain where noisy components can be
truncated. Hughey and Santavicca [1] pointed out in their
computer simulated noisy absorption measurement data of
axisymmetric reacting flow fields that the FBP outperforms the
onion peeling. The FBP also has advantage over customary Abel
transform [4] techniques in that it can reconstruct a more general
2-D function. Although the FBP technique is very tolerant of noise,
frequency response of different filter functions and the averaging
nature of the 2-D mathematical transform have to be studied.

In this paper, mathematical profiles are reconstructed from their
computer simulated projection data, using the classical FBP
algorithm. Reconstruction from synthetic projections ailows the
reconstruction algorithm

to be evaluated independently of

measurement noise. Effects of lateral and angular sampling
frequencies, of obstacles along the absorption paths and of

fictittous noise on the reconstruction results are studied.

2. Definitions

The test functions, their projections and the "Picture distance”

which is used to evaluate the resemblance between the
reconstruction results and the test functions are mathematically

defined in this section.

2.1 The Test Functions

Three test functions are employed in this paper. These are:
Gaussian, multi-layer top hat, and a combination of an off-center
Gaussian profiles and three ellipsoidal.

(Fig.3) is defined by

The Gaussian profile

fix,y)= et
where the constant "c" is set to be 20.
A multi-layer top hat profile (Fig.4) is the summation of co-center

top hat profiles of different radii, hence,

p for X'+y <A

flx.y)=

0  otherwise |
pi are set to be 0.2, 0.5, 0.7 and 1.0 when A, equal 0.65, 0.50.
0.35 and 0.20 comrespondingly.

The third test function is a oom-binau'on of an off-center Gaussian

profile, an ellipse, a hollow cylinder, confined in a circular wall
{Fig.12c). We write

f(xy)=fi+f,+f,+f,

— a =N i3, M o=y, F [
f‘ = v v .

The constant ¢ , x; and y; are 20, 0.24 and 0.24 respectively.
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whera '1}.1 is tha value of original profite, R;,* Is the reconstruction,

and Trp.qn the average valua of 'I}.,, over the region of interest.

3. Filter Back-Projection (FBP) algorithm [g]
3.1 Projection-Slice Theorem

Consider two-dimensional Fourier transform of flx,y)} ,

FXY) = [ [ fixyje™™dxdy
Rotate the function f{x,¥) to a new (r,s) coordinate system.
FXY) = J_'-J: fir,sh g ~1Xtrcos8-ssin® s ¥iesinsscos® ) g, 4
= F,(R,S),

i where R and S are XcosB+Ysin@ and YcosB-Xsin@

f respectively. From the rotated function fo(7,5) , the projection is

_pe(r) =J::fg{'r,s)ds )

¥ and the Fourier transform of pgfr) being

B(R)=] | furs)e™dsdr.

L Comparing Pg(Rj with Fgo(R,S) It appears that Po(R) Is equivalent
. x Fo(R.S) along R or

|  B(R)=F(RS ).,

The above equation is the “Projection-Slice theorem”™ which
| sates that the one-dimensional Fourier transform of a projéc'a‘on is
} 2 “slice” through the two-dimensional Fourier transform of the
p oginal function.

- 3.2 The Reconstruction Formula

it follows from the Projection-Slica thearem that if an Infinite

-' somber of Fourier slices are taken from the corresponding Infinite

I sumber of projections, F(X, Y} would be known at all points in the

<X Y) plane.

Knowing F(X,Y), the function fix,¥) can be racovered by using

k pe inverse Fourier transform:

Flxy)=—t [ [Fcx.vie*axay .

. - 4" <=t

| Rewriting the above equation in polar coordinates we have
1 = : . .

fexyy=g [T P(RG)e™ = RaRae .

} e function F(R,8) is equivalent to Fg(R,S) |s,0 or to Po(R) by

L te Projection Sfice theorem.

| ence,

1
2

ft'x-)’)=4n,

[ B(Rie~Rarae .

Also Fgoeof-R, S} is F&R,S),.

The ~bove integral is not bounded since |R| dose not convarge.
Theretore R should ba limited to some value IRl S {2 Wa now
Intraduce a band limited filter FI(R) = b{R)IR| where

! iflRISQ
b(R)=
0 if|RpQ2
The lateral sampling has an interval "a';, hence by the sampling

thecrem,

Q=27 =

oA

" Replace IR} by H{R) and use the convolution thearem to give the

requlred reconstruction formula

1 = ‘
f{x.y)=“2‘;r‘L J:pﬂ(-'r)ff(xcosﬂ+_\‘sm€-r Mtde
whesra A{r) is the inverse Fourier transform of H{R) which can be
written analytically as

ﬂ 2
2

hir)=

242 2
—1—["— sin( 2r )+ —cosf $2r Jwi,} aEO
2rl r P r

3.3 Numerical Implementation

Thae filter function k(r) is written into a discrete from fi(re=ak
fork=01,.. . M-1as

T
- h(O)--za2
. 2 '
h(n)=——7dc—aa—,— k= odd
hir, )=0 ko= evenr .

The above equations deflne the “Ramachandran filter function”
(RMCD){see Fig.5) which is found to bs somewhat oscillatory.
Shepp and Logan [7], introduce another filter with a more damped
response,

' 4
mal(4k’—1)

Thfs equation is called the “Shepp and Logan filter function™
(SL)(see Fig.6).

Therefore, the discreis approximal’ron' for the filter back-

hir )=- k=0 (M)

projection formula can be written as

f(x.y):f-h?zzpa‘(q Jh{ xcos(8 )+ vsinf8 )—r, ).

where M is the number of sampling points and N the number of

sampling angles.

4, Reconstruction Results and Discussions

Effects of sampling rate and measurement noise on
reconstruction accuracy ~re studied in this section by using FBP

technique to reconstruct two simple proflles: Gaussian and multi- ‘



. 2 2
p . for £~;+'q—,s I
f, = A B
) .
0 - otherwise |

whare p, A and B are 0.3, 0.35 and 0.15 respectively while
functions p and g are defined by
p=(x—x,)cos@+(y—y,)sinf
g={y~-y )cos@—(x~x, }sin8 ,
whare x;, y; and 6 are 0.2 , 0.4 and 20 degraa respectively.
P Sor niSx-x, ) +(y-y,F <r,
f.f =
0  otherwise ,
where 0, Fin : Tou , Xy and ¥y are 0.2, 0.1, 0.24, -0.4 and 0.1
respactively.
p Jor r,2x'+y'sr,
fo=
0 otherwise ,
where p, ry, and r,,, is 0.2, 0.8 and 0.9 respectivaly.

2.2 The Projections
A projectlan Is a mapping of a two-dimensional function Into a
one-dimensional one, which can be obtained by integrating the
function in a particular direction. The projection of f{x,y) along
8™~ direction Is .
Polr)= 'r _[ fix, ¥y)8(xcosB + ysin® — ridxdy |

where &(x) is dafined by,
1
6(7() = { )

We may interpret f in the (r,5) coordinate system, rotating from

x=0
otherwise.

(x.y} coordinate system by the angle B . With this representation,
the integral is along the s-axis and the projection function can be

written as

Po(r) = I:f,(r.s)ds.

The projection function of Gaussian profile is

plr)= J—-—Ee""
“Ne

The projection function of the multi-layer top hat profile is

. 2p,JA -1

p(ry=

for |t < A4,

4] ) otherwise

where 0; equals 0.2, 0.5, 0.7 and 1.0 whan A; being set at 0.65,
0.50, 0.35 and 0.20 respectively. Subscript @ has been omitted
sinca both the Gaussian and the multl-layer tap hat functions are
7 axlsymmetric. |

The projaction function of the combination of off-center Gaussian
prafile and the three alipsoidal functions is

el )= PAFI+ PI(r )+ pilr )+ pilr),

T e

I i —ctr-RF
pa(r)=11"e R
' c
where R = fx,"+y] Cosf[!M_I[%L]f-e /.
!

Functions pi(r). pl{r) and pi(r) are built from

a,—i‘(,’%w(e —~a )= (i —RJ
p(r)=1 for rl<al6 -o )
0 for l>a(6-a)
. where,

af—-a)=A’cos’(@~a )+ B ;v_i:_r:-{e—a)
‘and  R=4x!+y cos{[mn"[-“.—']]—aj.
. X,
The constants X;, ¥, A, B, & and p corresponding to each

projectlon function are shown in Tablel. Describiive meaning of

these constants are shown in Fig.2.

Eigure 2 Descriptive meaning of the parameters of an ellipse.

Table 1 Constants in the projection with obstacles

Obstacle Xy A A 8 o o
pl(r) 02 04 035 015 200 03
pyi(r) | 04 0 024 024 0° 0.2
pri(r} 0.4 0.1 0.1 ot . o° 0.2
pritry | 6o 00 09 05 o 02
pit(r) | oo 0.0 0.8 0.8 0° 0.2
pUr)=pl(r)=pii(r) | pitri=piiir)-pyi(r)

2.3 Picture Distance
In order to evaluate the resemblance between the test prbﬁle
and its reconstruction result, we used the concept of "Piclure

distance® [5]: it is the normalized root-mean-square distance, 4, as
dafined by



layer top hat. Each test profile has different characteristics both in
space and frequency domains. We also advance the technique %>
reconstruct a combination of Gaussian and ellipsoid functions from
their projections in order to demonstrate its capability for
reconstructing an arbitrary two dimensional function.

it is shown in Fig. 7 and Fig. 8 that small angular sampling rates
has a considerable effect on the reconstruction results. This is
because the filter function used in this study contains a large
difference between its highest positive value and lowest negative
value {Fig 5a), yvielding deep negative values and high positive
values of the back project filtered function in the space domain.
These values from such view angles cannot be compensated by
the summation of a few sampling angles and hence noise-like
pattemns appear. [t is shown in the picture distance measurement
(Fig. 9), especially in the multi-layer top hat profile, that whenever
we try to catch the high frequency signal by increasing the lateral

sampling rate (in order to meet the sampling theorem requirement

| and to reduce Gibbs phenomenon [4]), we are forced to increase

the angular sampling rate, otherwise the noise-like patterns will
appear. Choosing filter functions that exhibit a small difference
between the highest positive value and the lowest negative value
{for example, see SL filter Fig. 6a) is another way to reduce this
noise-like patterm. Then less -angular samplings are needed to

compensate the over and under-shooting effect of the filter function

used {compare Fig. 12a with b).
The effact of measurement noise on reconstruction results can
"be evaluated by comparing the reconstruction

' projections (fictitious noise in our case) with the one from noise

from noisy

|‘free projection. Fig. 10 shows the projection of the Gaussian
function, corrupted with fictitious random noise of magnitude limited
itt:) 1% of the maximum value of the projection data. Since the
|Fourier transform of a Gaussian is also a Gaussian then the
Fourier components should have decayed exponentially with
‘increasing frequency. Conversely, in this particular case, the
corrupted noise appears as the high frequency Fourier components
and hence increasing the lateral sampling rate means introducing
This
results in a larger value of the picture distance as shown in Fig 11.

more noisy compeonents into the reconstruction process.

Using the SL filter improves the reconstruction results {see both
Fig.11 and Fig.12).
to the high frequency signal than the RMCD, as already shown in
Fig. €. Therefore in the case of reconstruction from noisy
projections, the SL filter is preferred.

This is because the SL filter is less sensitive

The above discussions are applicable for the reconstruction of
an asymmetric profile. Fig. 12 shows an arbitrary two dimensional
test function and its FBP reconstruction result The Gibbs erors
due to discontinuity can be reduced by increasing the (ateral
sampling frequency. This, howevar, should be accompanied with

the increasing angular sampling so that the noise-like pattem is
minimized. Since measurement noise is not involved then RMCD

filter is preferred.

5. Conclusion and Future Directions for Research

The FBP algorithm for reconstructing mean combustion field
property from their computer simulated data has been evaluated.
The major practical limitation of the method appears to be the need
for many angular viewing angles. This is partly due to the choice
of inversion method: mathematical transforms methods are not best
suited to Gaussian profiles. improved algorithms and filters should
be evolved.

Also recent techniques have been used outside of the
combustion diagnostics field: pattern recognition and maximum
entropy methods come to mind. Current research on wavelets
seem fo be relevant fo this particular problem. For practical
purpose, a method tolerant of limited angular access (industrial
combustors) would be most desirable. A more advanced
tomographic algorithms for reconstructing fluctuating fields such as
fluctuating property field in turbulent flames is also a challenging

research area.
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Figure 7 Reconstruchion resull of Gaussian profile with 64 sampling paints

(ay 6 samphng angles and {b}*& samphng angles

Figure 8 Reconstruction result of multi-layer top hat profile with 64 sampling points

{a) 18 sampling angles and (b} 180 sampling angles
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Moment by Moment Method for
Reconstructing Probability Density
Functions in Turbulent Flames from
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Local probability density functions (POFs) of transmittance within turbulent Rames are
raconstructed from their multi-anguiar path-integrated PDFs data. It is shown that the path-
Integrated moment functions assoclated with the path-integrated PDFs relate mathematically
o the local moments associated wilh the local PDFs, resulting in 8 farmiliar tomographic
problem. The known path-integrated momaent functions. therefore, can then be used lo
reconstruct local moment functions via the filter back-projection algorithm. Local POFs of
the transmittance is in tum retrieved from their momeant functions using singuiar value
decomposition technique. With the proposed algorithm, turbulent structures of the flames
are proserved in terms of the numbear of moments used In the reconstruction process.
Reconstruction resulls from both path-integrated synthelic and experiment data of
axisymmetrical flames are in good agreement with the local data. The algorithm is then
extended fo reconstruct an asymmelric synlthetic flame and it is shown that proposed

algorithm s capable of raconstructing the two dimensional POFs distribulions.

flames since mid '70s. It is, however, well known that scalar

Ciassical tomographic techniques [1-5] (see Figure 1) have Property fluctuations (concentration, temperature, etc.) within

been successfully wused to reconstruct time-averaged wrbulent flames may cause mean thermal radiation 2-3 times

thermodynamic property distributions within cross-sections of Digher than estimates based on mean properties [6.7). Measuring



these fluctuations by tomographic techniques therefore presents a
new challenge for scientists and engineers in combustion research.

To capture the turbulent structure within a fiame Snyder, R.
and Hessenlink, L. [8] and Beiting, E.J. [9] proposed tomographic
methods with fast scanning techniques. There remains temporal
resolution limit and are also artifacts in the reconstruction resuits
due to random fluctuations in the instantaneous flow field.
Recently, Tomnlaninen et ai [10] introduced a numerical technique
to solve limited data tomographic problems using Karhunen-Loeve
procedure.

property distribution of unsteady flow field, as they claim, can be

Fewer data are needed for each scan such that the

reconstructed.

Another approach Is to reconstruct probability density function
of the property of interest instead of its value at an instantaneous
time. Sivathanu and Gore [11] introduce Discrete Probability
Density Function (OPF) method in conjunction with onion peeling
tomography which has been used to infer the local PDF within
flames from their path-integrated measurement data [11]. Since
the PDFs are assumed to be stationary, fast scanning techniques
are not needed. Although the reconstruction results appear
reasonable, they suffer from accumulation errors due to the peeling

process.

Combustion Flame

Figure 1 A typical scanning from tomographic measurement

In this paper, we further develop Sivathanu and Gore’'s method
by introducing mathematical transform techniques to improve the
reconstruction resuits and directly calculating the PDF from the

reconstructed moments of the property field — a process which
may be termed “moment by moment method™. This process
requires a mathematical relationship between the local and path
PDFs, which is outlined in section 2. The relation is verified in
section 3 by comparing the results of forward convoluting of PDFs
along the path by the present method with that of DPF [11].
Section 4 applies the new method to tomographic problems.
Reconstruction results of axisymmetric and asymmetric flame

profiles are shown in sections 5 and 6 respectively.

2. Fluctuation of Transmittance and its Moments

We derive, in this section, a relation between path-integrated
and local PDFs of transmittance. Transmittance based on path
length § is defined discretely as a stochastic variable Tgy which
represents all probable values of Tg in an interval ATs . The

probability of occurrence of Ts; is measured as P,. Since

transmittance ranges from zero to one, we have Tgs; = 0,
Tsi= kATs Tsxg =1 and XP; (k = 1...K) is unity. The discrete
probability density function, PDF(Ts,), is defined by
P, = PDF(1;, )At,.
It then: follows that the n" moment of Tscan be calculated from
the discrete probability by

K
Mg, = [tiPDF(t;)dr, = Y 1] P |
tel

whera My, is the n” moment and PDF( Ts) is the continuous
probability density function of 75. In the reconstruction problem the
path-integrated PDFs and the local PDFs are related through their
moments. The derivation of the refation follows.

Considering transmittance in a gas volume for a path length S
and S2 with

transmittances Ts; and Tz, the total transmittance is

consisting of two segments SJ individual
Ts =T51 Ts2

Assume that the distributions of Ts; and Ts; are statistically

independent, the variables Ty Ts; and Ts> can then be written
respectively in terms of their momants as

M, =M M, n

The moments on the right hand side of the equation (1) are

based on different path lengths S/ and S2. Using the same

argument, rewriting them as local moments m;, and

s,
respectively based on unit length leads to

M, = (m!.u )”(mz.u)” or —inMg
= S](— in mu)+ 32(— nm,, )

The logarithmic function of the path integrated moment, Mg, ,
integrates the logarithmic function of local moment per unit length,
m,, ., along the line of sight $. Since the local moment is an
intensive property, we may write it as a function of space, n1,(r.s).
The (r,s) coordinate axes are rotated from the (x.Vv) coordinate
axes by the angle & and the integration is along the - direction.

Therefore we refer to the path-integrated moment by its direction

parameter 6 and we assume infinite path length. Hence, the
above equation can be written as
—InM,(r)= J'—inm,(r,s)ds. (2)

Note that the path length S can be extended to infinity since
the local transmittance is assumed unity outside the region of
interest. In equation (2), the path-integrated moments are known

from the measurement data and the local moments are unknown.



3. The Moment Problem

Once the local moments are known from the reconstruction

' results, the problem then becomes a classical moment problem:

given the moments find the probability density function {12]. We

have the discrete approximation in mafrix form as,

[} o
T, T, v Ta P, m,
1
T, T, - T, P, m,
- ]
-1 I-1 =i
T, T, T Lo (Prl g My

where T;= 0, Tx= 1. Note the PDF, is simply PAAT). The
matrix on the left hand side is the transmittance matrix, made up of
powers of the discrete transmittance values %. and P; and m; are
the probability and reconstructed local moment vectors
respectively: note that there being K PDF's and | moments.

The singular value decomposition {(SVD) technique is used to
solve the moment equations directly when the system is over-
determined, that is, when / > K. This results in a least squares
solution. Furthermore, the reconstrucied moments may not be laid
on the column space of the transmittance matrix (For a discussion
of column space see Strang [13]). This means that there may be
no solution to this system. This

is due to errors in the

measurement data or the reconstruction results. To remedy this
problem, a least squares technique is needed.

The algorithm is shown in the standard literature [e.q.
14,15,16). Rewrite equation (2) into the form

AP =m,

where A is the [ x K transmittance matrix, P the probability
vactor and m the moment vector. Any f by K matrix A of rank r
can be factored [17] as

A=UZVT,

where U/ is an [ x I orthogona! matrix and Xis an / x K

diagonal matrix. Then P is simply calculated from
P=vVZ'U'm.

Hence, the probabilities P, (and therefore the local PDF's
(PDF,=P,/AT)) are determined from the moments m and the
transmittances TWZ(m, 1), V(T)). Golub's algorithm [14] for
calculating the SVD in double precision is used in the present
study.

The path-integrated PDFs which are calculated from the local
PDFs by using the method of Sivathanu [11] and the moments
method of the present study are shown in Figure 2. Comparison
of results based on 5, 10 and 20 layers of local PDF are shown in

Figure 3. The resulls are in good agreement,

4. Tomographic Problem

According to eguation (2), it is a tomographic problem similar
to Beer's law [3].
tomographic method.

Thus, this equation can be solved by

In this paper, we use the Filter Back-

Projection methed [2] to solve for the local moments of turbulent
flames. We can reconstruct a two-dimensional function from its

projection by,

ffxy)')=%]' Tp,(r)h(xcose + ysin@ - rr)drde.

where f{x,y) is a reconstructed function, pg{r) a projection
function, and h(r) a fiter function which is the inverse Fourier
When applied to turbidént flames,
functions are replaced by their

transform of a ramp function.
the mathematical physical
counterparts:
Pl r)=—In[M(r)]
fxy)==In[m{ x,y)]
where Mg(r) is the path integrated moment function calculated
from the path-integrated absorption measurements and m{x,y) the
required reconstructed function of local mements of the absorption

coefficient.

5. Axisymmetric Flame Reconstruction

In this section, we describe the results of reconstructing the
PDFs of local transmittance from two sets of path-integrated
absorption data: one for a non-premixed propylenel/air flame where
the "synthetic” path-integrated data has been computed from the
local absorption measurements of Sivathanu and Gore [11], and
the other for a non-premixed ethylene/air jet flame where the path-
integrated data has been obtained from direct measurements [11].
The measurement plane for the propylenefair flame was assumed
to be circular and divided into 11 rings and a central core as
shown in Figure 4.

Figure S shows the computed projection data of the
propylene/air flame. The reconstruction result of local PDF at the
center of the flame using the present method (with 300
reconstructed local moments) is seen to be in good agreement
with the measured data as shown in Figure 6.

The cost of the present technique and the error involved
depend mainly on the number of moments used in the PDF
calculation. Infinite moments are needed to obtain & unique PDF.
The calcuiation, however, cannot go beyond machine error so only
a finite number can be used. Truncation of singular values is
another source of error. The: upper and lower limits for both
moments and singular values used are of order 1 and 10-8
respectively.

The measured path-integrated functions of the first two
moments of the ethylene/air flame is shown in Figure 7. Figure 8
shows reconstructed local PDF solutions wusing the method
proposed in this paper, comparing directly with measured local
PDFs at the center of the flame from [11]. We used 300

the
Deviation of total probability is less that 7% from

reconstructed moments and aight singular values in

computation.



unity. The present method underpredicts the height of the PDF,
and therefore the solution oscillates around the measured POF,
allowing unrealiatic negative values as the measured PDF goes to
zero. The oscillation does not vanish when higher number of
momaents are included. On the other hand, if more singular values
sre usad the soiution becomes unstable. This is due to the
inconsistency of the system which comes from both measurement
and numerical errors. The first source of error is the number of
lines of sight used in the reconstruction. We have only ten
measured lines of sight available from this data set this causes
sliasing errors in the FBP algorithm. The second scurce of emor
has to do with the floating point accuracy of the data: we calculate
with double precision while the projection data are in single
precision. Noise in the data could also be responsible for the

Inconsgistency since it may not be completely filtered out by the
FBP.

6. Asymmetric Flame Reconstruction

The proposed algorithm is also applied to reconstruct the local
PDFs of an asymmetric flame. Since it is intended to test the
algorithm on the asymmetric profile, the Propylene/Air flame is
again used as a test flame. To make the flame become,
asymmetric, we assume that within an off-centered circular region
which is centered at (0.0245,0) with a 0.0175m radius, the flame is
completely transparent such that

1 when t=1
P )_{0 otherwise

Figure 9 shows the first moment, —/nm,( x,y }, of the local
PDFs of the asymmetric propylene/air flame. To visualize the
pattern of the transparent region, we exploit the gray scale
representation. The top view of the local moment function in gray
scale is shown on Figure 9. Although the PDF within the
transparent region of the fiame is fictitious, the shape of the PDF
Is simple and errors due to the shape of the PDF in the
reconstruction results should be minimized. This also allows us to
confine the study on the verification of the reconstruction algorithm
for the asymmetric flame data.

Tha projection functions. —inM, (r}. of the first moment
can be calculated using the technique suggested by Kak [18]. We
generate 180 projection functions and each function has 128
projection points. The numbers of projection functions and
projection points are similar to that used In the reconstruction of
axisymmetnc flame in Section 5 for the propose of comparison.
These numbers. however, are appropriate 1o compaensats both the
allasing and the noise-lika pattern arors due to the 2-D problam of
reconstruction [19.20). Note that for the axisymmetric fame,
projections of the first moment function are similar for all view
anglas. But in the asymmetriic fleme the shape of projection

functions depend on view angles. Figure 10 shows samples of
projection function at four different view angles.

All 180 projections are used to reconstruct the local moment
(the first moment) via the FBP algorthm and the reconstruction
result is shown in Figure 11. The FBP procedure is repeated for
300 moments. Figure 12 shows the reconstructed local PDFs at
POF
measurement data which are in good agreement Deviation of
total probability in the asymmetric flame. both at the center and In

the center of the asymmetric flame and the local

the transparent region is less than 104 from unity. The results
clearty demonstrate that the algorithm Is unaflected by asymmetry
in the flame.

7. Concluslons

The local PDF at a particular point in the xy-plane can be
reconstructed from the measurement of path-integrated PDF. This
reconstruction algorithm has been developed under the assumption
that the local PDFs are statistically independent. When applied to

combustion studies, the algorithm extends the

tomographic
techniques to the reconstruction of fluctuating components.

The reconstruction algorithm has been tested by using both
synthetic and experimental absorption data. In the synthetic case,
the projections were obtained from measurement of local PDFs in
a propylene/air non-premixed flame and construction of their
moments. Measured path-integrated PDFs from an ethylene/air
non-premixed flame was used in the full reconstruction case.
-Good reconstruction results were obtained from both cases and
the reconstruction algorithm is justified.

The major practical limitation of the method appears to be the
need for many projection points from many angular viewing angles.
This is partly due to the choice of inversion method: Fourier
transforms are global transforms and are not best suited to local
measurements. Improved algorithms and fiters should be
developed. Such as the local transform techniques which are
being developed. For practical purposes, 8 method tolerant of
limited angular access (e.g. for industrial combustors) would be

most desirable.
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Abstract
algorithms  for
limited

Discrete  tomographic  reconstruction

reconstructing turbulent flame-property profiles from
absorption data have been studied. The turbulent flame is
imulated by an off-center Gaussian profite which reprasents a
two dimensional field of average values of transmittance. This
study introduces a numerical tgchnique for synthesizing strip
integration resulting

in a projection maltrix that discretely

characterizes the problem, The synthelic projections and a natural
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pixel matrix are then constructed and the appropriate numbers for
angular and lateral sampling a;e determined. Two reconstruction
algorithms for underdetermined problems have been used in this
study: The algebraic reconstruction technique (ART) and the
natural pixel (NP) decomposition technique. It has been found
from this study that the discrete tomographic technique tolerates
the incomplete data and the method also allows us to model the

path integrated measurement data discretely.

1 Introduction

F&econstructing the local probability density functions (local-
PDF) of a thermodynamic property within a turbulent fiame from
their measured path-integrated probability density functions {path-
PDF} has evolved only recently. Beginning in 1996, Nyden et al
[1] introduced an algorithm for reconstructing moments of focal-
PDFs (called tocal moments) of transmiltance within an
axisymmetric turbulent flame [2] from 'iheir measured and
computer simulated path-PDFs. Later, Vallikul et al [3]) improved
upan the algorithm so that it can retrieve the local-PDFs of
transmittance at an arbitrary location within the turbulent flame
when the reconstructed local moments are given,

Although the algorithm has been shown satisfactory on the
basis of the quality of the reconstruction resulls, an underlying
assumption —thal the

local-POFs have to be statistically

independent— remains questionable. On the other hand since



Filter Back-projection (FBP) [4] technique has been used
uring reconstruction, the algorithm becomes semi-discrete and

ssiva tomographic data ars needed in order to obtain

P ———————

sistent reconstruction results [5].
I-PDFs have to be statistically independent and the fact that

The assumption that the

{ method is not tolerant of incomplete tomographic data are the
main disadvantages of the algerithm,

l; This study is aimed at overcoming the latter disadvantage.
.' e idea is to replace the FBP technique by the Natural Pixel
|t INP) technique, then study the effecls on the quality of the

nstruction. The Natural Pixel {NP) reconstruction technique
] has been used for incomplete tomographic data [7] and the
chnique [s sometimes called discrete tomography since all the
In this

P ——

teps in the reconstruction algorithm are fully discrete.
tudy a test function is initially set up (section 2), then, a matrix
ojecting the test function into discrete strips is constructed and

analyzed (section 3). The NP method is reviewed in section 4, in
, L:hich the effects of the number of pixels, projection strips and
I view angle on the reconstruction results, is studied. Finally the
reconstruction result using the NP method is compared with the
FBP and with an algebraic reconstruction technigue (ART) [8], the

| [esults being shown in section 5.

2 Test Function

An off-centered Gaussian profile has been chosen as the

test function, f(x,y) for this study. The function has the form

[
|
i
I

2 2
f(x‘y) = e-d(-\"‘n‘o) +H{y—-ya)°) (1)

where the constant ¢ and (x,, Yo} are set to be 20 and (0.4, 0.0)

‘respectively. A surface plot of the function is shown in Figure 1.

Figure 1 The test funclion

The off.centered Gaussian prolie has the analylical line

integrated funclion at different angles of the form [8]

—clr=R)%
pL(r)=J§e c(r—-R) 2)

3
R=\/x§+y§ cos{| tan"!| 22

“J‘9
Xp

The line integral {2) will be used, in section 4.2, to calculate the

where

analytical value of projection strips.

3 Construction of the projection matrix

In discrete tomography, the problem is derived in discrete
form at the beginning of the reconstruction process. The two-
dimensional domain is divided into pXp rectangular pixels and
the function, f(x,y), that falls into each pixel, is approximated to
have a constant value f,, (q = 1... pz). represented by a vector f.
The projection matrix, CD is then defined by the matrix that
transforms the vector f, into the projection vector y of length
MXN where M and N represent the M view angles and the N
number of projections at that view angle. For example, if y,, is
the element of vector y then y,, represents the value of the nm

th
projection when viewed from the k angle, hence

o=y @
2
The matrix q) has MXN rows and p columns, that is,
_¢ll.t .2 ¢n.q ¢1|,p1 i
2. P22 ¢12,q ¢|2.p‘
o= (@)
Gy Prma v Pueg ¢bn.p’
_¢M~.l Punz ¢MN-q ¢M~.p’ J
The vectors f and y are '
F R A A1 ®
and .
T T T T r
lz[y M Y@ ... ¥y ...y (M)] (®)

respaclively where y(k) = [_y“ Yiz  e-- yw]T_

Yin -
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If the y is set to be the strip integral of f, then each element of

(. 5 represents a portion of the area of the n strip of the K"

view angle that passes through the pixel q. Calculation of the
value of aach element of ¢ is a matter of determining the area of

a polygon [6].

3.1 Evaluating the projection matrix: a simple example

Consider a domain consisting of 3X3 pixels and let each

pixel has an area of unity. Two strips pass the pixels at the view

k Lngles of 0° and 90° respectively as shown in Figure 2.

Yz
7 8 9
4 S 6
Y21
1 2 3
Y11 Y12

Figure 2 An example of function decomposition uses

: { 3x3 pixels and 4 projection strips ).
|

LI‘hta matrix ), according to {4), can simply be written as

05 0 1 05 0 1 05 0
0 05 1 0 05 1 0 05 1
¢= )
1 1 05 05 05 0 0O O
0 0 0 05 05 05 1 1 1

4. Natural pixel decomposition reconstruction

Natural pixel decomposilion (NP) is a technique for
reconstructing a function from its incomplete tomographic data.

With this technique, the vector f is written as linear combinations

T
of the column space of & :

f=0"x (8)
where the elements of x are unknown. The vector x is

__.;:[_1-'(1) oy ik '(.1.1_|

and

x(k)=[x“ X2 v Xy T xm]T

The vectors f and x and the matrix ¢T can be written in terms of

their elements as

A =0ux Xzt Qo Xin o Ppna Xaen
f2 =2 Y OaXy tee F P aXiy + o Dy 2 Xy

)

fq =¢1 qu“ +¢|2‘4X|2 +..-+¢mxh| +"'+¢HN,quN

S

» =¢l Lp,x“ +¢lzplez +. ..+¢mpzxkn +

- "+¢M~.P1 xMN

Substitute f from (8) into (3) and the result becomes

I
]
<
S

-
I

(10)

¥ Gx where G = ¢¢T

G is the natural pixels matrix. As can be seen from (10}, the

th th
element G; is a comrelation between the i and the j strips. And
the component y; of the projection vector y is the summation of all
th

and the j

th
contribution of each correlation between the i strips,

starling from j = 1 to MN.

4.1 The effects of number of pixels
In this study we evaluate the effects of the number of pixels
from the values of the vector x in (8). Since the test function f is

known, x can be determined directly from
T+l
x=@¢")"f

Since the problem is over-determined, the singular wvalue
decomposition technique is used to solve the above equation.
Evaluation of x directly from this method rather than that from the
reconstruction result, has an advantage in that the reconstruction
errors can be avoided, thanks to the computer simulated test
function f. - .

The solutions x are obtained for the different numbers of p2
(=32 x 32, 64 x 64, and 128 x 128 pixels) but a fixed number of
MN (8 angles x 64 strips). Since the solutions x do not have a
physical meaning, we then interpret the solutions in terms of the
approximation funclions of f. Using the solutions x, three different

approximation functions of { are shown in Figure 3



Figure 3 Approximation function f (a) 32 x 32 pixels

{b) 64 x 64 pixels {c) 128 x 128 pixels

It is shown in Figures 3a to 3c that a similar streakline pattern
appears on all of the approximation functions. increasing the
This is
due to the fact that the number of projection strips of the matrix

number of pixels does not overcome the streakline error.
Ly .
¢ , both lateral and angular, is limited to MN (Bx64 strips).

4.2 The effects of number of projections

The accuracy of the lateral strip projections is studied by
comparing the strips obtained from (3) with that from analytical
integration of (2). The calculation of projection strips from (3) is
straightforward while

the analytical strip projection of the

particular test function can be obtained by

n+-l— n+-

p,(r)= Ipo(r)dr—I ( Rl ()
1

ni—

m
Nl.—

Xg

where R =1}x§ +ya cos[l mn_'[y—u] -8

Figure 4 compares the strip projection functions between
those obtained from discrete projections, (3), and those from
direct integration, (11). The results are calculated for different
values of strips per view angle (32, 64 and 128 strips) but a fixed
number of pixels (64 x 64 pixels). Emors are presented as
percentage of root-mean-square emor. The error decreases,
noticeably, when the number of strips increases from 32 to 64 but
negligibly when the number of the strips increases from 64 to
128. This demonstrates that the accuracy of the projection strips

has reached its limit for the given number of pixels.
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Figure 4 Projection function : direct integrated (solid line),

4.3 The effects of number of view angles

Effects of the number of angular samplings are shown by
Figure 5. The Figure is obtained by calculating the approximation
function of f, using the solutions of x for different number of
angular views (4, 8, and 16 view angles) but for a fixed number of
pixels (p2 = 64 x 64) and lateral projection strips (64 strips per
angular view). It is clearly demonstrates that for the given
numbers of the pixels and the lateral projection strips, a more
accurate approximation function f is obtained when more angular

samplings are used.

5. Reconstruction Results

It has been shown from the previous section that an
appropriate dimension of the projection matrix Q) affects the
accuracy of the unknown coefficient vector x . In this paper, lhe
projection matrix (D is constructed based on 64 x 64 pixels, 64

strips for @ach angular view. The number of angular sampling is



lek as unknown, which is usually the case for combustion

measurement.

FigureS Approximation function f : {a) 4 sampling angles
{b) B sampling angles (c) 16 sampling angles

Figure 6 shows the reconstruction results of the test function
from their analytical path-integrated data. Three reconstruction
techniques are used. FBP, ART and NP techniques. Picture
distance {PD) measure as we used in our previous work [3] is
again used to evaluate the resemblance of the reconstruction
results to the test function.

It is shown from Figure 6 that the ART and NP techniques
give a better reconstruction result than FBP. The resulls of FBP
and ART are comparable when the higher number of angular
views are used. Figures 7 to 9 show the surface plots of the
reconstructed functions by using FBP, ART and NP techniques
respectively. Consider particularly the NP result, it is shown in
Figure 9 that the PD measure is high compared to the other
techniques when higher angular views are used and the error

‘ smears over the enlire region, which is similar to white noise.
Improving the matrix-inversions technique using an appropriale
technique, e.g. wavelets, is under way in the current series of

investigations.

Picture distance

Figure 6 Picture distance : FBP, ART and NP.

6. Conclusions

Discrete tomographic reconstruction of an off-centered
Gaussian function from its incomplete data has been studied.
With this method, the Gaussian function is assumed to be a
discrete function at the beginning of the reconstruction process. A
projection matrix, which projects the test function into projection
strips, is constructed and its c;naracteristics studied. It is shown
from the study that the accuracy of the reconstruction result
depends mainly on an appropriate dimension of the projection
matrix. Reconstruction results using the FBP, ART and NP
techniques have been studied and compared. It is found that
when a small number of view angles (less than B) is used the
ART and NP techniques give more accurate reconstruction
results than the FBP. On the other hand, when a large number
of view angles is used the reconstruction results using the ART
and I-;BP are in good agreement with the test function. There
appears to be a white noise pattem in the reconstruction results
when using the NP technique with a large number of angular
samplings. To solve this problem, an advanced algorithm for the

solution of a large matrix is needed.
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ABSTRACT

Local probability density functions (PDF) of absorption coefficients within turbulent

{ilflames have been retrieved from their multi-angular absorption data of path-integrated

probability density functions via a series of numerical techniques. First the Filter Back-
Projection (FBP) technique has been used to reconstruct local moments within the flame.
|The moments are then transformed to the local PDFs by using the singular value
decomposition (SVD) and maximum entropy (ME) techniques. The FBP technique
transforms the absorption data into the frequency domain where noisy components can be
truncated while turbulent components are still preserved in the form of reconstructed
moments. The reconstruction algorithm is tested by using both synthetic and experimental
absorption data. Reconstruction from synthetic data allows the reconstruction algorithm to be
 evaluated independently of path measurement noise. On the other hand, reconstruction from
experimental data demonstrates the capability of determining the local PDF within the
turbulent flame. Good reconstruction results are obtained from both cases and the
reconstruction algorithm is justified. This work extends the capability of the tomographic
' method to handle more detailed turbulent flame diagnostics in addition to the well-known
application to laminar and mean flame diagnostics.

' 1. Introduction Tomographic techniques are classified as
Reconstruction of thermodynamic optical path measurement techniques as
property distributions over cross-sections opposed to point measurement techniques
of combustion flow fields from multi- such as scattering methods and laser
angular line of sight absorption induced fluorescence (LIF). Some
measurement data has been recognized advantages of optical path techniques over
since the mid ‘70s [1-5]. Combustion point techniques are that the properties
tomographic techniques are based upon the over the whole cross-section can be
same principal idea underlying the well retrieved simultaneously and that the
known computer aided tomography (CAT) techniques do not introduce poorly
scanners used for medical diagnostics. understood factors such as quenching
Reconstruction proceeds by analytically effects.
deconvoluting the line of sight absorption In 1976, Chen and Goulard [1] introduced
data, resulting in absorption coefficient a generalized onion peeling inversion
distributions over the whole cross-section. method to measure pollutant emitted from

jet engine exhaust flows. The method



determines the two-dimensional property
ields, beginning at the exterior shell,
Fgroceeding inward shell by shell as in a
peeling process. Their work became the
first optical path measurement technique
_F;omographic method) able to resolve
. temperature and species concentration for
! points over the two-dimensional
L property field simultaneously. However,
he technique is very sensitive to noise
ince errors accumulate with the peeling
rocess leading to unstable solutions.
Emmerman, et al [2] overcame the
accumulation errors by introducing a
mathematical transform technique, the
filter back-projection (FBP). The FBP
technique transformns the absorption data
into the frequency domain where noisy
components can be truncated. The
technique is easy to implement since it is
|| |lexplicit. Hughey and Santavicca [3]
| |pointed out in their computer simulated
noisy absorption measurement data of
axisymmetric reacting flow fields that the
'FBP outperforms both the onion peeling
and the customary Abel transform
| techniques. Dasch [4] improved the
computer algorithm for the Abel transform
technique using a three point approach
which, he reports, proved to be more
efficient than the FBP in the case of
| reconstructing a simulated axisymmetric
flow field. More recently, Tornianen et al
[5] have proposed a series expansion
technique for reconstructing property
distribution within an isothermal flow
from incomplete absorption measurement
| data. The method requires a large set of
|\ flow fields at different conditions to
|| construct basis functions (called
eigenfunctions). The coefficients of the
expansion are then implicitly determined
| from the basis functions subject to the
given path-integrated absorption
measurement constraints.
" For all of the above studies, tomographic
i\ techmiques have been used successfully as

analytical methods for reconstructing time-
averaged temperature and concentration
distnbutions within the flow from their
multi-angular  absorption measurement
data. In this paper, we advance a new
technique to reconstruct statistically
fluctuating distributions.

In turbulent flames, it is well known that
scalar property fluctuations (concentration,
temperature, etc.) cause mean thermal
radiation at levels two to three times higher
than those predicted based on mean
properties  [6,7]. The foregoing
tomographic techniques, however, do not
apply to turbulent measurement in the
sense that high frequency fluctuations tend
to be smoothed out by the averaging nature
of reconstruction algorithms. Although
fast scanning has been proposed for
capturing the turbulent structure [8,9], the
reconstruction  results  have  limited
temporal resolution and suffer from a high
degree of deconvolution noise. There are
also artifacts in the reconstruction resulits
due to random fluctuations in the
instantaneous flow field.

Recently, Sivathanu and Gore [10]
introduced a statistical technique called the
Discrete  Probability Function (DPF)
technique which was originally used for
calculating thermal radiation from
turbulent flames in conjunction with onion
peeling tomography to infer the probability
density  function (PDF) of local
transmittance within turbulent flames from
path-integrated PDFs of path-integrated
transmittance data. The local PDFs of
transmittance are in turn used to predict
local PDFs of soot volume fraction and
temperature within  turbulent flames.
Although the reconstruction results appear
reasonable, they suffer from accumulation
errors due to the peeling process.

This research study proposes to further
develop Sivathanu and Gore’s method of
reconstructing probability density
functions (PDFs) of local transmittance




| from measurements
| PDFs of transmittance by introducing the
following reconstruction steps:

of path-integrated

mathematical transform
improve reconstruction

1) introduce
techniques 1o
results.

2) directly calculate the PDF from the
moments of the property field.

We apply the proposed algorithm to both
synthetic and experimental data.

2. Formulations

We derive, in this section, a
relation between path-integrated and local
PDFs of transmittance. Transmittance
based on path length S is defined discretely
as a stochastic variable 15 which
represents all probable values of Ts in an
interval ATg The probability of
occurrence of Tsy is measured as Pg. Since
transmittance ranges from zero to one, we
have 15 = 0, Tsx = kATs, Tsx = 1 and X Py
(k = 1..K) is unity. The discrete
probability density function, PDF(Tsy), 1s
defined by

P, = PDF(15, )AT,.

It then follows that the n® moment of s
can be calculated from the discrete
probability by

Mg, = IT;PDF(TS)dTS =2.1,.P (1)

k=1

where Mg, is the n'" moment and PDF(ts)
is the continuous probability density
function of 1s. In the reconstruction
problem the path-integrated PDFs and the
local PDFs are related through their
moments. The derivation of the relation
follows.

Considering transmittance in a gas volume
for a path length S consisting of two
segments S1 and S2 with individual

transmittances s
transmittance is

and Tts», the total

Ts = Tg5Tso

Assume that the distributions of tg; and Ts»
are statistically independent, the variables
s , 1s1 and Ts» can then be written
respectively in terms of their moments as

MS,n = MSI.nMSZ.n N

The moments on the right hand side of the
equation are based on different path
lengths S1 and S2. Using the same
argument, rewriting them as local
moments m; , and m;, respectively based
on unit length leads to

M, = (ml.n)sl (mz.n )52 or
—InMg, =SI(~lnm, )+ S2(~Inm, ).

The logarithmic function of the path
integrated moment, Ms, , Integrates the
logarithmic function of local moment per
unit length, m;, , along the line of sight S.
Since the local moment is an intensive
property, we may write it as a function of
space, my(r,s). The (r,s) coordinate axes
are rotated from the (x,y) coordinate axes
by the angle 0 and the integration is along
the 8" direction. Therefore we refer to the
path-integrated moment by its direction
parameter 6 and we assume infinite path

length. Hence, the above equation can be
written as

-In Mg n(r) = I—ln m,(r,s)ds. (2)

Note that the path length S can be
extended to be infinite since the local
transmittance is assumed unity outside the
region of interest. In Equation (2), the
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path-integrated moments are known from
the measurement data and the local
moments are unknown. Using the FBP
technique [2], the solution to the above
integral equation may be written as

-In my(X,y) = f(X.,Y) =

1
E]. T— InM, , (p)h(xcosB+ ysinB— p)dpdo,
O—N

3

where h(r) is a filter function. It is then
follows that the local moments of
transmittance based on path-length S at a
point (X,y) within the flame are

mS.n(x’Y) = exp(-S x f(xsy)) . (4)

Note that the path length S in Equation (4)
should be small enough to resolve spatial
variation of the moments in the
neighborhood of the point (x,y), yet large
enough to justify our assumption of
statistical independence [11].

Once the local moments are known from
the reconstruction results, the problem then
becomes a classical moment problem:
given the moments find the probability
density function [12]. In general, the
continuous probability density function can
be solved from its discrete moments [13].
The continuous problem is, however,
dramatically under-determined resulting in
nonunique solutions. Hence, it is simpler
to go back to the discrete model of the
probability density function (PDF) for
which we have the discrete approximation
in matrix form as,

Ty Th P, m,
1.': le T:c Pz _ m,
I-1 - 1-1
tl 12 TK IxK PK K ml—l 1

where 1) = 0, Tk = 1. Note that PDF; is
simply Pi/(A1). The left hand side matrix
1s the transmittance matrix, made up of
powers of the discrete transmittance values
Tk, and Py and m; are the probability and
reconstructed local moment vectors
respectively: note that there are K PDF’s
and I moments. Depending on I and K this
1s either an over- or underdetermined
system.

Two different methods are used to
solve the problem. The first method uses
the singular value decomposition (SVD)
technique to solve the moment equations
directly when the system is overdetermined
{14]. This results in a least squares
solution. The second method uses a
maximum entropy (ME) model when the
system is underdetermined[15]). The
resulting solution is the most probable
solution that satisfies the given set of
moments and some additional constraints,
In summary, the proposed algorithm for
reconstruction of local PDF consists of the
following steps:

1) Measure path-integrated (line of sight)
PDPFs.

2) For each view angle, convert all
measured path-integrated PDFs to path-
integrated moment function.

3) Using tomographic methods (Abel
transfornm or FBP) reconstruct local
moments from the corresponding path-
integrated moments.

4) Retrieve the discrete PDF from its
moments by solving moment equations
using singular value decomposition
technique or by using maximum entropy
model. :

We now turn to validation of the proposed
algorithm using synthesized and actual
experimental data.

3. Results and Discussions

The proposed reconstruction
method is used to reconstruct the PDF of
local transmittance of a Propylene/Air
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diffusion flame from its synthetic path-
absorption data. Local
absorption measurements of the local
PDFs within the flame were carried out by
Sivathanu and Gore [10]. The diameter of
the burner used was d = 50 mm and the
burner operated at the Reynolds number of
750 based on fuel properties at the burner
exit. A purged optical probe with a 10 mm
path length was used to obtain the local

I|
1
|
I.
{ ]
In'

——

| PDFs from the absorption measurements.

All local measurements were conducted in
a plane (assumed circular) at a particular
' height above the burner (at z/d = 6.7 where
z is the distance from the burner exit and d
is the burner diameter). The plane was
divided into 11 rings and a central core
| where the local PDFs for the individual
region were measured.
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Figure 1 Synthetic path-integrated (projection)

functions for the Propylene/Air diffusion

flame: First and Second moments.

The path-integrated functions, -ln Mg (1),
are synthesized from the local PDF
measurement data and construction of their
moments. Figure 1 shows the synthetic
path-integrated (projection) functions of
the first two moments as a function of
radius r. We generate 300 moment
functions ( -In Mg,(r) for n = 1 to 300),
each function having 128 projection points
(total view angles are 180).These path-
integrated functions, -ln Mgx,(r), are used

to reconstruct local moment functions, -In
[mp(r)}, at the center of the flame (r = 0).
The reconstructed local moment functions
from the FBP algonthm are based on unit
path-length. To  compare the
reconstruction result with the test PDF,
local moments based on path-length S =
0.0lm are required. These can be
calculated by using Equation (4) with S =
0.0lm. Figure 2 shows the first fifty
reconstructed moments.
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Figure2. Local moment reconstruction from
synthetic  path-integrated functions for
Propylene/Air diffusion flame: First 50
reconstructed local moments at the flame
center.

The SVD technique offers a way to
monitor the reconstructed local moments
to see if they are consistent. It is shown in
standard literature[e.g.16,17,18] that the
SVD algorithm factor the transmittance
matix in to URV". Figure 3 shows the plot
of loglolUij = djl and log,o(cj) versus j.
The values of logo(c;) are always greater
than that of logjoldjl. This means that the
reconstructed local moments give a
consistent system of linear equations.
When the calculated values are as small as
10", we have reached the machine error
and the calculated values below 107' are
omitted. Although the calculations are
carried out by using double precision, the
data obtained from the test PDFs are single
precision. With these sources of error in
mind, we use the first 18 singular values



(Gmin ~ 107, and Gmax/Omin  ~ 10°) in our
study and set the rest to be zero.
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Figure 3. Singular value decompostion values:
logo(ld;) and log¢(lcjl) for the Propyline/Air
diffusion flame at the flame center.
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Figure 4. Reconstruction results of local PDFs
at the center of the Propylene/Air diffusion

flame: Comparision of the SVD and ME
solutions and probe measuremets from [10].

Figure 4 shows the reconstruction results
of local PDF at the center of the
Propylene/Air diffusion flame using the
SVD and ME methods (with 300 and 50
reconstructed local moments respectively)
comparing with the measured values from
[10]. Both reconstruction results are in
good agreement with the directly measured
PDF though the SVD solution appears to
be better. Recall that the ME solution uses
a much smaller set of data, solving the
underdetermined problem. Deviation of

total probability for both methods is less
than 10 from unity.
The cost of the SVD technique and the
error involved depend mainly on the
number of moments used in the PDF
calculation. Infinite moments are needed
to get a unique PDF. The calculation,
however, can not go beyond machine error
so only a finite number can be used.
Truncation of singular values is another
source of error. For the 300 by 101 matrix
decomposition and the back substitution
step required for these results, the SVD
algorithm takes only a few minutes on a
UNIX workstation.

From Figure 4, we see that there is
a minor discrepancy between the ME
solution and the directly measured PDF.
This is due to the underdetermined system
used in Bevensee’s algorithm: we can not
add too many moment constraints because
the number of constraints can not exceed
half of the number of unknowns. This is
the existence condition for generalized
inverse solution described by Bevensee
[19]. The condition for the number of
constraints is the only disadvantage to this
algorithm that we can see at this time.
However, the error is acceptable in an
engineering sense. The ME results take
only 10 iterations or less than a minute (on
a UNIX workstation) to converge using 50
moments instead of 300 in the previous
case (SVD solution).

Within each iteration step of the
ME method there is a matrix solver. We
use the truncated SVD method to solve the
matrix equation since it is ill-conditioned.
The number of singular values used
depends on each problem. In addition, the
first guess of the Lagrange multipliers
affects the convergence of the solution: a
good initial guess leads to very fast
convergence. Conversely, an unreasonable
guess may lead to a diverging solution.
Unfortunately, there appears to be no hard
and fast rules for choosing the initial



Lagrange multiplier values: some trial and
error is advisable for each problem.

Next, we use the proposed algorithm to do
the full problem: reconstruct a local PDF at
the center of an Ethylene/Air turbulent jet
diffusion flame from path-integrated
measured PDFs. The measured data are
from Sivathanu and Gore [10]. The flame
has a d = 6 mm outlet-diameter and 9200
exit Reynolds number. The measurements
are at a cross-section of z/d = 30 above the
burner. There are ten line of sight
measurements and each line is .005 m.
apart.

The algorithm begins with construction of
the path-integrated functions (projections)
from the path-integrated PDF measurement
data. The path-integrated function of the
first moment is constructed by Equation

).
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Figure 5. Measured path-integrated

(projection) functions for the Ethylene/Air
turbulent jet diffusion flame: First and Second
moments at 19 projection points.

Assuming that the PDF is axisymmetric,
we have nineteen projection points. The
path-integrated function of the second
moment can be constructed using the same
procedure and so can the higher order
(moment) path-integrated  functions.
Figure 5 shows the path-integrated
functions of the first two moments.

After constructing the path-integrated
moment functions, we apply the FBP
algorithm, resulting in the reconstructed

local moments of order corresponding to
the order of moment from which the path-
integrated functions were constructed.
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Figure 6. Local moment reconstruction from
measured path-integrated functions for the
Ethylene/Air diffusion flame: First 50
reconstructed local moments at the flame
center.

Again the resulting local moments are
based on unit path-length. We change the
path-length to 0.01m i.e. the path-length of
the probe used in the local measurement
[10). Figure 6 shows the first fifty
reconstructed local moments at the center
of the flame.

From the Id;l and singular values oj plot
shown in Figure 7, the reconstructed
moments do not give a consistent system
of equations for all singular values since
some of the singular values vanish before
their corresponding component of idjl.
This implies that the vector m of
reconstructed local moments is a linear
combination of both the column space and
the left nullspace of the transmittance
matrix A. In the least squares (SVD)
solution, only the singular values that are
greater than the Id; | have been used. In

addition, the number of singular values
used has to ensure a total probability
closest to unity. Figure 8 shows
reconstructed local PDF solutions using
the SVD and ME methods proposed in this
paper, and the DPF results of [10],



comparing directly with measured local
PDFs at the center of the flame from [10].
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In the SVD solution we used 300
reconstructed moments and eight singular

values (Gmin ~ 107, and Omax/Omin -102).
Deviation of total probability is less that
7% from unity. The SVD method
underpredicts the height of the PDF, and
therefore the solution oscillates around the
measured PDF, allowing unphysical
negative values as the measured PDF goes
to zero. The oscillation does not vanish
when higher number of moments are
included. On the other hand, if more

singular values are used the solution
becomes unstable. This is due to the
inconsistency of the system which comes
from both measurement and numerical
errors. The first source of error is the
number of lines of sight used in the
reconstruction. We have only ten
measured lines of sight available to us
from this data set : this causes aliasing
errors in the FBP algorithm. The second
source of error has to do with the floating
point accuracy of the data: we calculate
with double precision while the projection
data are in single precision. Noise in the
data could also be responsible also for the
inconsistency since it may not be
completely filtered out by the FBP.
Nevertheless, the SVD solution seems to
be the closest to the measured PDF in
terms of magnitude. Should we able to
suppress the oscillation below zero, we
expect to improve the agreement in
magnitude. In both cases the prediction in
maximum magnitude is improved over the
DPF results [10].

The ME solution gives a more realistic
solution to the problem with a smaller
number of moments (50) used, in that no
oscillation with negative values of the PDF
are found. The total probability is about
0.001 greater than unity. This discrepancy
is smaller than in the SVD solution. This
is due to the fact that the ME technique
predicts the most probable solution to the
given constraints instead of solving the
moment system directly. The ME result,
however, overpredicts the maximum value
of PDF. The main source of error is from
the under-determined nature of the
problem as discussed earlier in the
synthetic reconstruction case.

The location of the peak in both the SVD
and ME solutions is shifted towards a
transmittance of unity in comparison with
the measured data. Since the SVD and ME
solutions exhibit similar effects, it may be
that 1) there is insufficient data (only ten



line of sight measurements) or that 2) the
measured peak is shifted due to
experimental error. In the direct
measurement of the local PDFs, probe
intrusion disturbs the flow structure,
Moreover, the path-length of the probe is
10 mm. This may not be small enough to
resolve the local measurement. To resolve
these  discrepancies, the  proposed
technique will be tested against more data
in the future.

4. Conclusions

We have developed a new
algorithm for tomographic reconstruction
of probability density function (PDF). The
local PDF at a particular point in the xy-
plane can be reconstructed from the
measurement of path-integrated PDF. This
reconstruction algorithm is developed
under the assumption that the local PDFs
are statistically independent. For
combustion measurements, this algorithm
extends tomographic techniques to
turbulent fluctuating flame measurements.
The reconstruction algorithm has been
tested by using both synthetic and
experimental absorption data. In the
synthetic case, the projections were
obtained from measurement of local PDFs
in a Propylene/Air diffusion flame and
construction of their moments. Path-
integrated measured PDFs from an
Ethylene/Air diffusion flame were used in
the full reconstruction case. Good

reconstruction results were obtained from -

both cases and the reconstruction
algorithm is justified.

The algorithm has an advantage over the
DPF method proposed by Sivathanu and
Gore [10] in that there are no errors due to
the rebinding process, resulting in a
smoother PDF profile. The new method
also offers a way to preserve turbulent
structures of the flow through the number
of moments used in the method.

Our research has introduced two
techniques for solving the moment
equations : the singular  value
decomposition (SVD) technique for
overdetermined and ill-conditioned
systems and the maximum entropy (ME)
technique for underdetermined systems.
Both methods represent significant
improvements over more traditionally used
algebraic reconstruction techniques (ART).
Since the system is ill-conditioned the
ART technique can take several days of
CPU time to converge as opposed to a few
minutes for the SVD or ME techniques {(on
a workstation). The ME technique should
prove to be particularly useful in the case
of limited moment data.

Introduction of the SVD technique
provides a way to check the consistency of
the reconstructed moments. If the
reconstructed moments are consistent, the
SVD technique is preferred. Conversely, if
only a few values of Idjl <6; the ME
technique is preferred since it gives the
most probable PDF solution.

The major practical limitation of the
method appears to be the need for many
projection points from many angular
viewing angles. This is partly due to the
choice of inversion method: Fourier
transforms are global transforms and are
not the best suited to local measurements.
Improved algorithms and filters should be
developed. Also, recent techniques have
been used outside of the combustion
diagnostics field: pattern recognition
maximum entropy methods come to mind.
Current research on local transform
techniques also seems to be relevant to the
particular problem. For practical purposes,
a method tolerant of limited angular access

(e.g. for industrial combustors) would be
most desirable.
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ABSTRACT

Local probability density functions (PDF) of absorption coefficients within turbulent flames have been
retrieved from their muli-angular absorption data of path-integrated probability density functions via a series of
numerical techniques. First the Filter Back-Projection (FBP) technique has been used to reconstruct local
moments within the flame. The moments are then transformed to the local PDFs by using the singular value
decomposition (SVD) and maximum entropy (ME) techniques. The FBP technique transforms the absorption
data into frequency domain where noisy components can be truncated while turbulent components are  still
preserved in the form of reconstructed moments. The reconstruction algorithm is tested by using both synthetic
and experimental absorption data. Reconstruction from synthetic data allows the reconstruction algorithm to be
evaluated independently of path measurement noise. On the other hand, reconstruction from experimental data
demonstrates the capability of determining the local PDF within the turbulent flame. Good reconstruction results
are obtained from both cases and the reconstruction algorithm is justified. This work extends the capability of
the tomographic method to handle more detailed turbulent flame diagnostics in addition to the well-known

application to laminar and mean flame diagnostics.
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1. INTRODUCTION

Reconstruction of thermodynamic property distributions over cross-sections of combustion flow fields
from multi-angular line of sight absorption measurement data has been recognized since the mid *70s [1-5].
Combustion tomographic techniques are based upon the same principal idea underlying the well known
computer aided tomography (CAT) scanners used for medical diagnostics. Figure 1 shows a typical setup of
tomographic measurement. Line of sight absorption measurement data are taken from both lateral and angular
directions. Reconstruction proceeds by analytically deconvoluting the line of sight absorption data, resulting in
absorption coefficient distributions over the whole cross-section.

Tomographic techniques are classified as optical path measurement techniques as opposed to point
measurement techniques such as scattering methods and laser induced fluorescence (LIF). Some advantages of
optical path techniques over point techniques are that the properties over the whole cross-section can be
retrieved simultanecusly and that the techniques do not introduce poorly understood factors such as quenching
effects.

In 1976, Chen and Goulard [1] introduced a generalized onion peeling inversion method to measure
pollutant emitted from jet engine exhaust flows. The method determines the two-dimensional property fields,
beginning at the exterior shell, proceeding inward shell by shell as in a peeling process. Their work became the
first optical path measurement technique (tomographic method) able to resolve temperature and species
concentration for all points over the two-dimensional property field simultaneously. However, the technique is
very sensitive to noise since errors accumulate with the peeling process leading to unstable solutions.
Emmerman, et al [2] overcame the accumulation errors by introducing a mathematical transform technique, the
filer back-projection (FBP). The FBP technique transforms the absorption data into the frequency domain where
noisy components can be truncated. The technique is easy to implement since it is explicit. Hughey and
Santavicca [3] pointed out in their computer simulated noisy absorption measurement data of axisymmetric
reacting flow fields that the FBP outperforms both the onion peeling and the customary Abel transform
techniques. Dasch [4] improved the computer algorithm for the Abel transform technique using a three point
approach which, he reports, proved to be more efficient than the FBP in the case of reconstructing a simulated
axisymmetric flow field. More recently, Tornianen et al [5} have proposed a series expansion technique for
reconstructing property distribution within an isothermal flow from incomplete absorption measurement data.

The method requires a large set of flow fields at different conditions to construct basis functions (called



eigenfunctions). The coefficients of the expansion are then implicitly determined from the basis functions
subject to the given path-integrated absorption measurement constraints.

For all of the above studies, tomographic techniques have been used successfully as analytical methods
for reconstructing time-averaged temperature and concentration distributions within the flow from their multi-
angular absorption measurement data. In this paper, we advance a new technique to reconstruct statistically
fluctuating distributions.

In turbulent flames, it is well know that scalar property fluctuations (concentration, temperature, elc.)
cause tnean thermal radiation at levels two to three times higher than those predicted based on mean properties
[6,7]. The foregoing tomographic techniques, however, do not apply to turbulent measurement in the sense that
high frequency fluctuations tend to be smoothed out by the averaging nature of reconstruction algorithms.
Although fast s.canning has been proposed for capturing the turbulent structure [8,9], the reconstruction results
have limited temporal resolution and suffer from a high degree of deconvolution noise. There are also artifacts
in the reconstruction results due to random fluctuations in the instantaneous flow field.

Recently, Sivathanu and Gore [10] introduced a statistical technique called the Discrete Probability
Function (DPF) technique which was originally used for calculating thermal radiation from turbulent flames in
conjunction with onion peeling tomography to infer the probability density function (PDF) of local transmittance
within turbulent flames from path-integrated PDFs of path-integrated transmittance data. The local PDFs of
transmittance are in turn used to predict local PDFs of soot volume fraction and temperature within turbulent
flames. Although the reconstruction results appear reasonable, they suffer from accumulation errors due to the
peeling process.

This research study proposes to further develop Sivathanu and Gore's method of reconstructing
probability density functions (PDFs) of local transmittance from measurements of path-integrated PDFs of
transmittance by introducing the following reconstruction steps:

1) introduce mathematical transform techniques to improve reconstruction results.

There are two main advantages to mathematical transform techniques. First, they allow absorption data
to be transformed into the frequency domain where noisy components can be truncated. Second, they are easy to
implement since they are explicit. The mathematical transform technique used in this research is the Filter Back-
Projection (FBP) technique.

2) directly calculate the PDF from the moments of the property field.



The idea is to reconstruct the higher moments in addition to the first moment (the average value) of the
property field. Once the moments are known, the problem then becomes the classical moment problem: given
the moments, find the density function. Discrete PDFs of absorption coefficients are obtained from their
reconstructed moments by two different methods. The first method solves for the PDF directly from the moment
equations by using the singular value decomposition (SVD) technique. The second method uses the maximum
entropy (ME) model to determine the PDF.

This paper is organized as follows. Section 2 introduces the new approach to fluctuation measurement
of local transmittance in turbulent flames: the moment approach. We derive the relation between path-integrated
and local PDFs of transmittance. The moments of the local PDFs are then retrieved from moments of the path-
integrated PDFs via tomographic methods. In Section 3, mathematical transform tomographies, in particular, the
Filter Back—ﬁrojection (FBP) technique are reviewed and computer implementations for reconstructing
continuous two-dimensional functions from their discrete one-dimensional projection functions are developed.
In Section 4, we apply the singular value decomposition (SVD) technique to solve for the least squares PDF
solution from the moment equations. We also introduce the maximum entropy (ME) technique to solve for the
most probable PDF solution from its limited moments. We apply the proposed algorithm to both synthetic and
experimental data. The synthetic reconstruction results are shown in Section 5. In the synthetic projection case,
the PDFs of local transmittance within a Propylene/Air flame ar¢ measured using a purged optical probe. Then
the path-integrated absorption data are generated synthetically using the local PDFs and the construction of their
moments. Detailed calculation of the synthetic projections are shown and the reconstruction results are
discussed. To test the technique on real experimental data, experimental path-integrated PDFs of the
Ethylene/Air diffusion flame are used to reconstruct local PDFs at the center of the flame. The reconstruction
result is then compared with the directly measured local PDF. These results are shown in Section 6. In Section
7, the reconstruction algorithm is applied to reconstruct the PDF at the center of an asymmetrical flame. The last

section concludes and suggests future directions for this research.

2. FLUCTUATION OF TRANSMITTANCE AND ITS MOMENTS
We derive, in this section, a relation between path-integrated and local PDFs of transmittance.
Transmittance based on path length S is defined discretely as a stochastic variable 15, which represents all

probable values of tTs in an interval Ats . The probability of occurrence of 15, is measured as P,. Since



transmittance ranges from zero to one, we have 1s; = 0, T5)= kATs, Tsx = 1 and ZP, (k = }...K) is unity. The

discrete probability density function, PDF(ts), is defined by
P, = PDF(t¢ , )AT;.
1t then follows that the n" moment of 5 can be calculated from the discrete probability by
K
M, = [1iPDF(t)dts = Y 13, P, , (1
k=l
where Mg, is the n" moment and PDF(ts) is the continuous probability density function of Ts. "In the
reconstruction problem the path-integrated PDFs and the local PDFs are related through their moments. The
derivation of the relation follows.
Considering transmittance in a gas volume for a path length S consisting of two segments S1 and S2
with individual transmittances 15, and Ts», the total transmittance is
Ts=Ts1 Ts2 .
Assume that the distributions of Tg, and 1 are statistically independent, the variables Ts Ts) and ts» can then be
written respectively in terms of their moments as
M, =M Mg, -
The moments on the right hand side of the equation are based on different path lengths S1 and S2. Using the

same argument, rewriting them as local moments m, , and m, , respectively based on unit length leads to

Mg, = (ml'n )Sl (mz.n)sz or —InMg,A = S].(— In m,_n) + SZ(— In mz_n] .

The logarithmic function of the path integrated moment, Mg, , integrates the logarithmic function of local
moment per unit length, m;, , along the line of sight S. Since the local moment is an intensive property, we may
write it as a function of space, m, (r,s). The (r,s) coordinate axes are rotated from the (x,y) coordinate axes by
the angle 8 and the integration is along the 6" direction (see Fig. 2). Therefore we refer to the path-integrated
moment by its direction parameter 8 and we assume infinite path length. Hence, the above equation can be

written as
~InM, (1) = _[— lnm, (r,s)ds. (2)

Note that the path length S can be extended to be infinite since the local transmittance is assumed unity outside

the region of interest. In Equation (2), the path-integrated moments are known from the measurement data and

the local moments are unknown. Figure 2 shows the physical relevance of view angle 0.



Nyden et al [11] used Equation (2) to calculate path-integrated moments from directly measured local
PDFs within a Propylene/Air diffusion flame [10]. Their results agreed well with the path-integrated moments of

PDFs obtained by DPF method [10].

3. TOMOGRAPHIC PROBLEM

By making a series of measurements of PDFs of path-integrated transmittance at a number of different
angles, we can mathematically construct projection functions for an arbitrary view angle 0, Mg ,(r), from m,

(x,y). Figure 2 shows the local moment function and its projection (path-integrated moment function) at view

angle,

For ease of mathematical notation, let f(x,y) represent the local moment function -In[m,(x.y)] and let pg

(r) represent the path-integrated moment function -In[ Mg ()], so that Equation (2} may be written as:

Pe(r) = _[fe (r,s)ds.

Note that f is interpreted in the {(r,s) coordinate system, rotated from the (x,y) coordinate sysiem by the angle 6.

Inverting f and p, using the filter back-projection (FBP) technique [2], the solution may be written as
1 &%
f(x,y) =2—_[ Ipo(p)h(x cos 0+ ysin 8 - p)dpdo, (3)
LY D oo

where h(r) is a filter function. The inner integral in the reconstruction formula convolutes the filter h(r) with the

projection pe(r), resulting in a filtered projection function:

qs(r) = [pe(P)h(r —p)dp.

The values of ge(r), where r corresponds to xcosB+ysin®, arc then integrated over projection angle from 0 to «,

giving f(x,y) as
f(x,y)= _I_J'q(x cos 0 + ysin 0)d0.
2n g

This is called the back-projection operation. These two steps therefore provide the name Filter Back-Projection
to the formula.
The projections are sampled discretely at a particular angle 8; : M equally spaced lateral samples are

obtained and the sampling procedure is repeated for total projections of N angles. The lateral sampling has an



interval “a”: the filter h(r) needs to have the same sampling interval and for only M points. We use the Shepp-

Logan filter function [12] :

4

h (R)=——
st () ma’(4k? —1)

k=021 FM=-1)/2.

Convolution between the projection at a particular angle 9; and the filter function can be performed discretely,

resulting in a discrete filtered projection function of the form:
M-l
4o, (1,) =2 Py (5)(r, —5,) n=01.2,.,M—1.
k=0

The filtered projection qe(r) at each projection angle 8 has to be smeared back over the two-
dimensional (x,y) coordinate axes as required by the back-projection step. The value r (= xcos9; +ysin6;) may
not correspond to one of the values of r at the discrete points r, for which ge(r,) is determined. We therefore

approximate qg,(r) as a quadratic function :

foy — T -
Qq, (1) = g, (T, -1 + Qe (f 2 2 )

whenever r is between r, and r,,,;. The function f(x,y) to be reconstructed can then be calculated from the filtered

projection functions by back-projecting them onto the (x,y) coordinate system as

N
f(x,y) =quo (xcosB; +ysin€)).
NS

Reconstruction by Filter Back-Projection is very tolerant of noise, since high frequency terms tend to be
removed by filtering. Note also that the FBP technique gives a semi-continuous result: the input projections pg;
(ry) are obtained discretely from measurements while the resulting solution f(x,y} is a continuous function. Since
the projection p represents the path-integrated n* moment function, -In[ M ,(r)], the reconstruction function f
represents the local n® moment function, -In[m,(r)]. It then follows that the local moments of transmittance
based on path-length S at a point (x,y) within the flame are

mg , (X,y) = exp(-Sx f(x,y)). (4)
Note that the path length S in Equation (4) should be small enough to resolve spatial variation of the momenits in

the neighborhood of the point (x,y), yet large enough to justify our assumption of statistical independence.



4, THE MOMENT PROBLEM

Once the local moments are known from the reconstruction results, the problem then becomes a
classical moment problem: given the moments find the probability density function [13]. In general, the
continuous probability density function can be solved from its discrete moments [14]. The continuous problem
is, however, dramatically under-determined resulting in nonunique solutions. Hence, it is simpler to go back to

the discrete model of the probability density function (PDF) for which we have the discrete approximation in

matrix form as,

T? T2 T(i)( P, my
1 1 i
T T - ‘C PZ ml
1 2 K _ , 5)
-1 1-1 -1
| T T2 o Tk ki Py )k my_

where T; = 0, 1k = 1. Note the PDF, is simply P/(At). The left hand side matrix is the transmittance matrix,
made up of powers of the discrete transmittance values T, and P and m; are the probability and reconstructed
local moment vectors respectively: note that there are K PDF’s and I moments. Depending on I and K this is
either an over-or underdetermined system.

Two different methods are used to solve the problem. The first method uses the singular value
decomposition (SVD) technique to solve the moment equations directly when the system is overdetermined.
This results in a least squares solution. The second method uses a maximum entropy (ME) model when the
system is underdetermined. The resulting solution is the most probable solution that satisfies the given set of

moments and some additional constraints. Each method is described below.

4.1 Singular Value Decomposition Method (SVD) for Solving an Overdetermined System

Since the resolution of At is limited, the moment problem becomes an overdetermined problem with I
calculated moments and K unknown discrete probabilities when I > K. Furthermore, the reconstructed moments
may not be laid on the column space of the transmittance matrix (For a discussion of column space see Strang
[15]). This means that there may be no solution to this systemn. This is due to errors in the measurement data or
the reconstruction results. To remedy this problem, a least squares technique is needed.

The most reliable method for computing the solution to the least squares problem is based on a matrix
factorization known as the singular value decomposition technique [16]. There are other methods (e.g. LU

decomposition of norminal equations) which may seem to require less computer time and storage, but they are



less effective in dealing with errors in the data, roundoff errors and the ill-conditionedness of the matrix. Note
that small values of transmittance in the transmittance matrix taken to high powers become even smalier, leading
to a wide range of wransmittance i.e. the transmittance matrix is ill-conditioned.

This section shows how to implement the SVD technique. The algorithm is shown in the standard
literature [e.g. 16,17,18}. Rewrite Equation (5} into the form

AP=m,

where A is the I x K transmittance matrix, P is probability vector and m is the moment vector. Any I by K

matrix A of rank r can be factored [19] as
A=UzVT,

where U is anr I x I orthogonal matrix and X is a I x K diagonal matrix of the form

E_I:Su Ojl
0 0f.«

where S, is an r x r diagonal matrix. The diagonal entries of S, are strictly positive and can be arranged to be
nonincreasing, 0;>0:> ... >6,>0. They are the singular values of A. Vis a K x K orthogenal matrix. VTis the
transpose of the matrix V. The columns of U and V give orthonormal bases for all four fundamental subspaces
of A: the first r columns of U represent the column space, the last K-r columns of U the left nullspace, the first r
columns of V the row space and the last I-r columns of V the nullspace of A [15].

Using the SVD of A, the linear system AP=m becomes
UZV'P=m,
and hence
XZ=d,
where Z = VTP and d = U'm. The system of equations £Z = d is diagonal and hence can be easily studied. It

breaks up into as many as three sets, depending on the values of the dimensions I and K and the rank r, the

number of nonzero singular values:

0,Z;=d;, ifj<Kando,=#0, (6a)
0-Z,=d;, ifj<Kando;=0, (6b)
0=d;, ifj>K. (6¢)

The second set of equations is empty if r = K, and the third is empty if K = I. Note that the moment equations

are consistent if and only if d; is 0 whenever g; is 0 (Eqns (6b, 6¢)). This also minimizes IlAx-bll since the left



nullspace of A is set to zero as needed. The vector d is multiplied by ! resulting in the vector Z. Then P is
simply calculated from

P=VZ
Hence, the probabilities Py (and therefore the local PDF’s (PDF,=P,/A1)) are determined from the moments m

and the transmittances t(Z(m,1t), V(1)). Golub’s algorithm [16] for calculating the SVD in double precision is

used in the research.

4.2 Maximum Enfropy Solution for an Underdetermined Problem

In this section we consider the case where the number of calculated moments is less than the number of
discrete probability unknowns (I<K). The problem becomes an underdetermined problem and therefore
solutions to the problem are not unique. However, it has been shown by Tikochinsky et al [20], that any
algorithm for inferring a discrete probability distribution from a set of moments must satisfy a set of consistency
conditions. Tikochinsky et al [20] derived the conditions ana showed that the only consistent algorithm is the
one leading to the distribution of maximal entropy subject to the given moment constraints. The technique is
also consistent with the principle of data reduction which implies the capability of handling underdetermined
problems [21].

We. follow the Maxwell-Boltzmann derivation of the ME solution [22]. Let each P, be constructed
from a number ny of building blocks of size dt. The first I constraints for the ME method are given by the

moment equations:

K n
m; =) T,'n,dtT.
k=1

Let the total number of the blocks N. An additional constraint to the ME method is then
N = 2 n,.
k=1
Define entropy as a logarithm of the total number of combinations of N blocks with n; in the first cell,..., n, in

the kth cell, without a priori preference for particular values of the numbers n,. It follows that

N1

= : n,
S=In an! zk:nkln(N]
k




To maximize the entropy subject to the given I+1 constraint equations, we define an objective function F as the

entropy plus each constraint equation multiplied by its Lagrange multiplier ¥ and [3; respectively:

F=S+y{zk“nk —N]+§B{§Tkink —mi}

and we maximize F. We do this by taking the derivative of F with respect to ny and setting each derivative to

zero. This yields the ME solutions for all o, (k = 1..K). The solutions can be written in terms of the

probabilities Py:

exp[iﬁitki }
PT K i=<:_| ’ ™
e

P =

i=0
where Py is the total probability and is equal to unity. Note, however, that Py is not a constant in the iterative
steps. In fact, it approaches unity as the iteration process converges, so it is left as another variable in the

solution. We use the iterative algorithm suggested by Bevensee to solve for the ME solution.

4.3 Bevensee’'s Herative Algorithm

Bevensee [23] suggests a very efficient iterative technique for the solution of an underdetermined
system, with a more precise version following in [24]. The algorithm contains an implicit matrix solver within

each iterative step leading to very fast convergence. The algorithm starts with an initial guess of J; © and with a

(L1

reasonable guess Pt . The algorithm proceeds as follows:

) ©0)
k

1) The estimates P,'"’ are obtained from B, using the ME solution equation (7).

n

2) The estimates m; ' are computed from the moment equations {5).

3) P;‘?is scaled by the convergence ratio

z Bim)mi

C

to give Py
4) All the P,'" and M;"" are also scaled by this factor:
* i i
5) Next, the B,® are updated to bring the computed M,'"’ closer to the measured M,. This is done by

solving I different equations:



L 9m "
n _ n _ m; (
Am;’ =m; —m, —za—A i
= OB,
for all the AB;", resulting in the improved B = B® + AB"". We now have B, so that we can go back to step

(2)

1) and compute P, mi(z’ and so on, through as many iterations as necessary to obtain convergence of the Py

with acceptable accuracy in the term m;. The above equation can be expressed in matrix form:

o =| o x0- LeP B) o |

T

where A is the I x K transmittance matrix with components 7/, X'" is a diagonal K x K matrix with components
XM= PV, the superscript T stands for the transposing of the matrix or vector and [ ] represents a vector. The
above system is ill-conditioned with rank deficiency. In this paper, the above system is solved by the truncated
singular value decomposition (SVD) technique. Hence, the probabilities Py (and therefore the local PDF’s
{PDF=P\/A1)) are determined iteratively from the moments m and the transmittances T.
RECONSTRUCTION ALGORITHM SUMMARY
In summary, the proposed algorithm for reconstruction of local PDF consists of the following steps:
(1) Measure path-integrated (line of sight) PDFs.
(2) For each view angle, convert all measured path-integrated PDFs to path-integrated moment
function.
(3) Using tomographic methods (Abel transform or FBP) reconstruct local moments from the
corresponding path-integrated moments.
(4) Retrieve the discrete PDF from its moments by solving moment equations using singular value
decomposition technique or by using maximum entropy model.

We now turn to validation of the proposed algorithm using synthesized and actual experimental data.

5. RECONSTRUCTION FROM SYNTHETIC PROJECTIONS

The proposed reconstruction method is used to reconstruct the PDF of local transmittance of a
Propylene/Air diffusion flame from its synthetic path-integrated absorption data. Local absorption
measurements of the local PDFs within the flame were carried out by Sivathanu and Gore [10]. The diameter of
the burner used was d = 50 mm and the burner operated at the Reynolds number of 750 based on fuel properties

at the burner exit. A purged optical probe with a 10 rnm path length was used to obtain the local PDFs from the



absorption measurements. All local measurements were conducted in a plane (assumed circular) at a particular
height above the burner (at z/d = 6.7 where z is the distance from the burner exit and d is the burner diameter
(see Fig. 1})). The plane was divided into 11 rings and a central core where the local PDFs for the individual
region were measured. The path-integrated functions, -ln Mg,(r), are synthesized from the local PDF
measurement data and construction of their moments. Figure 3 shows the synthetic path-integrated (projection)
functions of the first two moments as a function of radius r. We generate 300 moment functions (-in Mg (r) for
n = 1 to 300), each function having 128 projection points (total view angles are 180).

These path-integrated functions, -In Mg o{r), are used to reconstruct local moment functions, -In[m.(r)],
at the center of the flame (r = 0). The reconstructed local moment functions from the FBP algorithm are based
on unit path-length. To compare the reconstruction result with the test PDF, local moments based on path-length
S = 0.0! m are required. Thesc can be calculated by using Equation (4) with S = 0.01 m Figure 4 shows the
first fifty reconstructed moments.

As discussed earlier in Section 4.1 (Equations(6b) and (6¢)), the SVD technique also offers a way to
monitor the reconstructed local moments to see if they are consistent. Figure 5 shows the plot of log,old;l and
logo(g;) versus j. The values of log(o;) are always greater than that of logyldj. This means that the
reconstructed local moments give a consistent system of linear equations. When the calculated values are as
small as 107*%, we have reached the machine error and the calculated values below 107'® are omitted. Although
the calculations are carried out by using double precision, the data obtained from the test PDFs are single
precisi‘on. With these sources of error in mind, we use the first 18 singular values (Gmin~ 10, and Gumaymin ~ 10°)
in our study and set the rest to be zero.

Figure 6 shows the reconstruction results of local PDF at the center of the Propylene/Air diffusion
flame using the SVD and ME methods (with 300 and 50 reconstructed local moments respectively) comparing
with the measured values from [10]. Both reconstruction results are in good agreement with the directly
measured PDF though the SVD solution appears to be better. Recall that the ME solution uses a much smaller
set of data, solving the underdetermined problem. Deviation of total probability for both methods is less than
10°° from unity.

The cost of the SVD technique and the error involved depend mainly on the number of moments used
in the PDF calculation. Infinite moments are needed to get a unique PDF. The calculation, however, can not go

beyond machine error so only a finite number can be used. Truncation of singular values is another source of



error. For the 300 by 101 matrix decomposition and the back substitution step required for these resuits. the
SVD algorithm takes only a few minutes on a UNIX workstation.

From Figure 6, we see that there is a minor discrepancy between the ME solution and the directly
measured PDF. This is due to the underdetermined system used in Bevensee’s algorithm: we can not add too
many moment constraints because the number of constraints can not exceed half of the number of unknowns.
This is the existence condition for generalized inverse solution described by Bevensee [24]. The condition for
the number of constraints is the only disadvantage to this algorithm that we can see at this time. However. the
error is acceptable in an engineering sense. The ME results take only 10 iterations or less than a minute (on a
UNIX workstation) to converge using S0 moments instead of 300 in the previous case (SVD solution).

Within each iteration step of the ME method there is a matrix solver. We use the truncated SVD
method to solve the matrix equation since it is ill-conditioned. The number of singular values used depends on
each problem. In addition, the first guess of the Lagrange multipliers affects the convergence of the solution: a
good initial guess leads to very fast convergence. Conversely, an unreasonable guess may lead to a diverging
solution. Unfortunately, there appears to be no hard and fast rules for choosing the initial Lagrange multiplier

values: some trial and error is advisable for each problem.

6. RECONSTRUCTION FROM EXPERIMENTAL PROQJECTIONS

In this section we use the proposed algorithm to do the full problem: reconstruct a local PDF at the
center of an Ethylene/Air turbulent jet diffusion flame from path-integrated measured PDFs. The measured data
are from Sivathanu and Gore [10]. The flame has a d = 6 mm outlet-diameter and 9200 exit Reynolds number.
The measurements are at a cross-section of z/d = 30 above the burner. There are ten line of sight measurements
and each line is .005 m. apart.

The algorithm begins with construction of the path-integrated functions (projections) from the path-
integrated PDF measurement data. The path-integrated function of the first moment is constructed by Equation
(2). Assuming that the PDF is axisymmeltric, we have nineteen projection points. The path-integrated function
of the second moment can be constructed using the same procedure and so can the higher order (moment) path-
integrated functions. Figure 7 shows the path-integrated functions of the first two momeats.

After constructing the path-integrated moment functions, we apply the FBP algorithm, resulting in the
reconstructed local moments of order corresponding to the order of moment from which the path-integrated

functions were constructed. Again the resulting local moments are based on unit path-length. We change the



path-length to 0.01 m i.e. the path-length of the probe used in the local measurement {10]. Figure 8 shows the
first fifty reconstructed local moments at the center of the flame.

From the Id;l and singular values o; plot shown in Figure 9, the reconstructed moments do not give a
consistent system of equations for all singular values since some of the singular values vanish before their
corresponding component of Idj. This implies that the vector m of reconstructed local moments is a linear
combination of both the column space and the left nullspace of the transmittance matrix A. In the least squares
(SVD) solution, only the singular values that are greater than the |djl have been used. In addition, the number of
singular values used has to ensure a total probability closest to unity. Figure 10 shows reconstructed local PDF
solutions using the SVD and ME methods proposed in this paper, and the DPF results of [10], comparing
directly with measured local PDFs at the center of the flame from [10].

In t.he SVD solution we used 300 reconstructed moments and eight singular values (Gpin ~ 107, and
Gmax/Omin ~10%). Deviation of total probability is less that 7% from unity. The SVD method underpredicts the
height of the PDF, and therefore the solution oscillates around the measured PDF, allowing unphysical negative
values as the measured PDF goes to zero. The oscillation does not vanish when higher number of moments are
included. On the other hand, if more singular values are used the solution becomes unstable. This is due to the
inconsistency of the system which comes from both measurement and numerical errors. The first source of error
is the number of lines of sight used in the reconstruction. We have only ten measured lines of sight available to
us from this data set: this causes aliasing errors in the FBP algorithm. The second source of error has to do with
the floating point accuracy of the data: we calculate with double precision while the projection data are in single
precision. Noise in the data could also be responsible also for the inconsistency since it may not be completely
filtered out by the FBP. Nevertheless, the SVD solution seems to be the closest to the measured PDF in terms of
magnitude. Should we able to suppress the oscillation below zero, we expect to improve the agreement in
magnitude. In both cases the prediction in maximum magnitude is improved over the DPF results [10].

The ME solution gives a more realistic solution to the problem with a smaller number of moments (50)
used, in that no oscillation with negative values of the PDF are found. The total probability is about 0.001
greater than unity. This discrepancy is smaller than in the SVD solution. This is due to the fact that the ME
technique predicts the most probable solution to the given constraints instead of solving the moment system
directly. The ME result, however, overpredicts the maximum value of PDF. The main source of error is from

the underdetermined nature of the problem as discussed earlier in the synthelic reconstruction case.



The location of the peak in both the SVD and ME solutions is shifted towards a transmittance of unity
in comparison with the measured data. Since the SVD and ME solutions exhibit similar effects, it may be that 1)
there is insufficient data (only ten line of sight measurements) or that 2) the measured peak is shifted due to
experimental error. In the direct measurement of the local PDFs, probe intrusion disturbs the flow structure.
Moreover, the path-length of the probe is 10 mm. This may not be small enough to resolve the local
measurement. To resolve these discrepancies, the proposed technique will be tested against more data in the

future.

7. ASYMMETRICAL FLAME RECONSTRUCTION

The proposed algorithm is also applied to reconstruct the local PDFs of an asymumnetrical flame. Since it
is intended tb test the algorithm on the asymmetrical profile, the Propylene/Air flame is again used as a test
flame. To make the flame become asymmetrical, we assume that within an off-centered circular region which is
centered at (0.0245,0) with a 0.0175m radius, the flame is completely transparent such that

1 when t=1
P(1)= oo
0 otherwise

Figure 11 shows the first moment, —ln m, (X, y), of the local PDFs of the asymmetrical propylene/air

flame. To visualize the pattern of the transparent region, we exploit the pray scale representation. The top view
of the local moment function in gray scale is shown on Figure 11. Although the PDF within the transparent
region of the flame is fictitious, the shape of the PDF is simple and errors due to the shape of the PDF in the
reconstruction results should be minimized. This also allows us to confine the study on the verification of the

reconstruction algorithm for the asymmetrical flame data.

The projection functions, —In Mg (), of the first moment can be calculated using the technique suggested

by Kak [18]. We generate 180 projection functions and each function has 128 projection points. The numbers
of projection functions and projection points are similar to that used in the reconstruction of axisymmetrical
flame in Section 5 for the propose of comparison. These numbers, however, are appropriate to compensate both
the aliasing and the noise-like pattern errors due to the 2-D problem of reconstruction [19.20]. Note that for the
axisymmetrical flame, projections of the first moment function are similar for all view angles. But in the
asymmetrical flame the shape of projection functions depend on view angles. Figure 12 shows samples of

projection function at four different view angles.



All 180 projections are used to reconstruct the local moment (the first moment) via the FBP algorithm
and the reconstruction result is shown in Figure 13. The FBP procedure is repeated for 300 moments. Figure 14
shows the reconstructed local PDFs at the center of the asymmetrical flame and the local PDF measurement data
which are in good agreement. Deviation of total probability in the asymmetrical flame, both at the center and in
the transparent region is less than 10” from unity. The results clearly demonstrate that the algorithm is

unaffected by asymmetry in the flame.

8. CONCLUSIONS

We have developed a new algorithm for tomographic reconstruction of probability density function
(PDF). The local PDF at a particular point in the xy-plane can be reconstructed from the measurement of path-
integrated PDF. This reconstruction algorithm is developed under the assumption that the locali PDFs are
statistically independent. For combustion measurements, this algorithm extends tomographic techniques to
turbulent fluctuating flame measurements.

The reconstruction algorithm has been tested by using both synthetic and experimental absorption data.
In the synthetic case, the projections were obtained from measurement of local PDFs in a Propylene/Air
diffusion flame and construction of their moments. Path-integrated measured PDFs from an Ethylene/Air
diffusion flame were used in the full reconstruction case. Good reconstruction results were obtained from both
cases and the reconstruction algorithm is justified.

The algorithm has an advantage over the DPF method proposed by Sivathanu and Gore [10] in that
there are no errors due to the rebinding process, resulting in a smoother PDF profile. The new method also
offers a way to preserve turbulent structures of the flow through the number of moments used in the method.

Our research has introduced two techniques for solving the moment equations : the singular value
decomposition (SVD) technique for overdetermined and ill-conditioned systems and the maximum entropy (ME)
technique for underdetermined systems. Both methods represemt significant improvements over more
traditionally used algebraic reconstruction techniques (ART). Since the system is ill-conditioned the ART
technique can take several days of CPU time to converge as opposed to a few minutes for the SVD or ME

techniques (on a workstation}. The ME technique should prove to be particularly useful in the case of limited

moment data.



Introduction of the SVD. technique provides a way to check the consistency of the re_constmcged
moments. If the reconstructed moments are consistent, the SVD technique is preferred. Conversely, if only a
-few values of ldjl<g; the ME technique is preferred since it gives the most probable PDF solution.
| The majdr bractica] limitation of the metﬁod appears to be the need for many projection points from
many angular viewing angles. This is pﬂy due to the choice of inversion method: Foulrier transforms are
global transforms and. are -not the best suited to local mcasuréments. Improfe,d algorithrﬁs an& filters should be
developed. Also, recent techniques have been used outside of the combustion diagnostics field: pa{tern'
recognition maximum entropy methods come to mind. Current research on local transform techniques also
seems (o be relevant to the particular problem. For practical purposes, a method tolerant of limited angular

access (e.g. for industrial combustors) would be most desirable.
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