

รายงานวิจัยฉบับสมบูรณ์

โดรงการ โลคัลโทโมกราฟฟีอัลกอริทีมสำหรับ การสร้างฟังก์ชันความหนาแน่นความน่าจะเป็นในเปลวไฟเทอร์บิวเลนซ์

โดย

นาย ปูมยศ วัลลิกุล

ภาควิชาวิศวกรรมเครื่องกล สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ

# สัญญาเลขที่ PDF/53/2540

# รายงานการวิจัยฉบับสมบูรณ์

โครงการ โลคัลโทโมกราฟพิอัลกอริทึมสำหรับ การสร้างฟังก์ชันความหนาแน่นความน่าจะเป็นในเปลวไฟเทอร์บิวเลนซ์

ผู้วิจัย

นายปูมยศ วัลลิกุล ภาควิชาวิศวกรรมเครื่องกล สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

#### กิดติกรรมประกาศ

ผู้วิจัยขอขอบคุณ รศ.ตร.บัณฑิต ฟุ้งธรรมสาร ที่ให้คำปรึกษาแนะนำที่ดีมาโดยตลอด การดำเนินงานวิจัย และขอขอบคุณผู้ช่วยวิจัย นางสาวจีระวรรณ เกตุนุ้ย และนายพงศาล มี คุณสมบัติ ที่ได้ทำงานหนักเพื่อให้ผลงานวิจัยนี้มีผลออกมาเป็นที่น่าพอใจยิ่ง งานวิจัยนี้จะ สำเร็จมิได้ถ้าไม่มีหน่วยงานสนับสนุนการวิจัย ผู้วิจัยขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย(สกว.)ที่ให้ความสะดวกในการดำเนินงาน และงานส่งเสริมวิจัย สถาบันเทคโนโลยีพระ จอมเกล้าพระนครเหนือที่สนับสนุนทุนบางส่วนไว้ ณ โอกาสนี้ด้วย

#### บทคัดย่อ

สัญญาเลขที่ : PDF/53/2540

ชื่อโครงการ: โลคัลโทโมกราฟฟีอัลกอริธึมสำหรับการสร้างฟังก์ชันความหนาแน่นความน่าจะ

เป็นในเปลวไฟเทอร์บิวเลนซ์

ผู้วิจัย : นายปูมยศ วัลลิกุล ภาควิชาวิศวกรรมเครื่องกล

สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ

E-mail Address: pyy@kmitnb.ac.th

ระยะเวลาโครงการ : สิงหาคม 2540 – กรกฎาคม 2542

วัตถุประสงค์ของโครงการ : งานวิจัยนี้นำเสนออัลกอริธึมสำหรับสร้างฟังก์ชันความหนาแน่น ความนำจะเป็นแบบโลคัล (local-PDF) ของคำการส่งผ่านในเปลวไฟเทอร์บิวเลนซ์จากข้อมูล การวัดสร้างฟังก์ชันความหนาแน่นความน่าจะเป็นแบบวิถีรวม (path-PDFs)

วิธีการวิจัย : อัลกอริธีมนี้พัฒนาขึ้นบนพื้นฐานของความสัมพันธ์ทางคณิตศาสตร์ระหว่าง ฟังก์ชันโมเมนต์วิถีรวม และฟังก์ชันโมเมนต์เฉพาะที่ ซึ่งเกี่ยวข้องกับฟังก์ชันความหนาแน่น ความน่าจะเป็นแต่ละประเภทตามลำดับ และทำการเปรียบเทียบผลการคำนวณที่ได้กับวิธีการ Discrete Probability Function (DPF) ซึ่งเป็นวิธีแบบดั้งเดิม

ผลการวิจัย: การประเมินอัลกอริธีมที่พัฒนาขึ้นโดยพิจารณาผลการคำนวณเป็นเกณฑ์ แสดง ให้เห็นว่าอัลกอริธีมนี้สามารถสร้างภาพเสมือนได้ดีทั้งในกรณีเปลวไฟแบบสมมาตร และเปลว ไฟแบบไม่สมมาตร

วิเคราะห์ และสรุป : มีข้อด้อยสำหรับอัลกอริธีมนี้สองประการ คือ เนื่องจากวิธีการเป็นการ แปลงทางคณิตศาสตร์ซึ่งเป็นวิธี explicit จึงจำเป็นต้องใช้ข้อมูลในการสร้างภาพเสมือนจำนวน มากเพื่อให้ได้ผลลัพธ์ที่สอดคล้องกับความเป็นจริง อีกประการหนึ่งคือสมมุติฐานความเป็น อิสระต่อกันของ local-PDFs ยังคงเป็นข้อสงสัยของนักวิจัยทางด้านการเผาใหม้อยู่ อย่างไรก็ ตามได้มีการนำวิธีโทโมกราฟฟีแบบไม่ต่อเนื่องมาใช้ในงานวิจัยนี้และพบว่าด้วยวิธีการนี้มีความ เป็นไปได้ที่จะผ่อนปรนเงื่อนไขความเป็นอิสระต่อกันของ local-PDFs ได้ใช้เทคนิคการ optimization ด้วยวิธี Natural Pixel Decomposition และ ART สำหรับปัญหาโทโมกราฟฟี สำหรับเปลวใฟเทอร์บิวเลนซ์ที่มีความเป็น underdetermine มากและได้ผลเป็นที่นำพอใจ

งานวิจัยที่จะทำในอนาคต: การพัฒนาโมเดลทางคณิตศาสตร์เพื่อผ่อนปรนเงื่อนไขความเป็น อิสระต่อกันของ local-PDFs เป็นหัวข้อวิจัยสำคัญที่ต้องทำต่อจากโครงการวิจัยนี้

Key word:

#### **Abstract**

Project Code: PDF/53/2540

Project Title: Local Tomographic Algorithms for Reconstructing Probability Density

Functions in Turbulent Flames

Investigator: Pumyos Vallikul, Department of Mechanical Engineering,

King Mongkut's Institute of Technology North Bangkok.

E-mail Address: pyy@kmitnb.ac.th

Project Period: August 1997 - July 1999

Objectives: The aim of this research is to develop a reconstruction algorithm to retrieve local probability density functions (local-PDFs) of transmittance within turbulent flames from the synthetic and measurement data of path-integrated probability density functions (path-PDFs).

Methodology: A mathematical relationship between the local- and path-PDFs is derived under the assumption that the local-PDFs have to be statistically independent and verified by comparing the results with that from the conventional Discrete Probability Function (DPF) method.

Results: Evaluations of the algorithm through the reconstruction results show that the algorithm handles well the tomographic data from both symmetrical and asymmetrical flame profiles.

Discussion Conclusion: There are two main disadvantages: Excessive data for the explicit reconstruction algorithm are needed and an underlying assumption —that the local-PDFs have to be statistically independent— remains questionable. However, it is found that with the discrete tomographic approach, the statistically independent assumption imposed in the previous continuous technique can possibly be relaxed. Optimization techniques for the dramatic underdetermine tomographic problems such as Natural Pixel Decomposition and ART techniques have been used, and the results are justified.

Future Directions for Research: To develop appropriate mathematical models for the local-PDFs of turbulent flames is important future research topic. The maximum entropy and wavelet techniques used in the field of image recognition and data compression fields come to mind.

Keywords: Combustion measurement, Tomography, Turbulent flames

# หน้าสรุปโครงการ (Executive Summary) ทุนวิจัยหลังปริญญาเอก

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

1. ชื่อโครงการ

โลคัลโทโมกราฟฟีอัลกอริธึมสำหรับการสร้างฟังก์ชันความหนาแน่นความน่าจะเป็นใน เปลวไฟเทอร์บิวเลนซ์

Local Tomographic Algorithms for Reconstructing Probability Density Functions in Turbulent Flames

2. ชื่อหัวหน้าโครงการ หน่วยงานที่สังกัด ที่อยู่ หมายเลขโทรศัพท์ โทรสาร และ E-mail

ชื่อ-สกุล

นายปูมยศ วัลลิกุล

Mr. Pumyos Vallikul

หน่วยงาน

ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์

สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ

ที่อยู่

1518 ถ.พิบูลสงคราม บางชื่อ กทม. 10800

โทรศัพท์

9132500 ต่อ 8321 หรือ 8315

โทรสาร

5856149

E-mail

pyy@kmitnb.ac.th

- 3. สาขาที่ทำการวิจัย สาขาวิศวกรรมการสันดาปเกี่ยวกับขั้นดอนวิธีการวิเคราะห์การสันดาป จากข้อมูลการวัดการดูดกลืนของรังสีเลเซอร์
- 4. งบประมาณทั้งโครงการ

400,000- บาท

5. ระยะเวลาดำเนินงาน

2 1

- 6. ได้เสนอโครงการนี้ หรือโครงการที่มีส่วนเหมือนกับเรื่องนี้บางส่วน เพื่อขอทุนต่อแหล่งทุน อื่นที่ใดบ้าง
  - 🛘 ไม่ได้เสนอต่อแหล่งทุนอื่น
  - 🛛 เสนอต่อ

สำนักงบประมาณ

หมวดเงินสนับสนุนวิจัย

งบประมาณประจำปังบประมาณ 2541

ชื่อโครงการที่เสนอ การศึกษาการไหลหลายองค์ประกอบแบบมีปฏิกริยาด้วยวิธีโทโมกราฟฟี 7. ปัญหาที่ทำการวิจัย และความสำคัญของปัญหา

การเข้าใจปรากฏการณ์ภายในเปลวไฟแบบเทอร์บิวเลนซ์ถือเป็นองค์ความรู้พื้น ฐานที่สำคัญยิ่งต่อการศึกษาสาขาวิศวกรรมการสันดาป ทั้งนี้เพื่อควบคุมกลไกการ สันดาปให้มีประสิทธิภาพสูง โดยข้อมูลเบื้องดันที่สำคัญต่อการศึกษาคือคุณสมบัติทาง เทอร์โมไดนามิกส์ เช่น ความเข้มข้นและอุณหภูมิของแก๊สองค์ประกอบ

เนื่องจากบริเวณที่เกิดการสันดาปภายในเปลวไฟเทอร์บิวเลนซ์มักจะอ่อนไหว (sensitive) ต่อการรบกวน ดังนั้นการวัดค่าคุณสมบัติดังกล่าวข้างดันจำเป็นต้องเป็นการ วัดที่อาศัยการรับสัญญาณทางไกล (remote sensing) เงื่อนไขสำคัญนอกเหนือจากนี้คือ วิธีการวัดค่าที่ใช้จะต้องมีความสามารถวัดค่าคุณสมบัติของแก๊สองค์ประกอบที่มีความเข้ม ข้นดำได้ด้วย

วิธีโทโมกราฟฟีเป็นวิธีการวัดที่ใช้การรับสัญญาณทางไกล ซึ่งเป็นวิธีที่เหมาะ สมอย่างยิ่งต่อการวิเคราะห์การสันดาป ทั้งนี้เพราะระหว่างการวัดจะไม่มีอุปกรณ์ใด ๆ สัมผัสกับบริเวณการสันดาปโดยตรง นอกจากนี้ยังสามารถใช้วัดค่าคุณสมบัติของแก๊ส องค์ประกอบที่มีความเข้มข้นด่ำ ๆ ได้เนื่องจากการวัดเป็นแบบ path-integrated ซึ่งต่าง จากการวัดแบบเฉพาะจุด (point measurement) ที่ใช้กันในปัจจุบัน

โครงการวิจัยนี้จะพัฒนาขั้นตอนวิธีโทโมกราฟฟีแบบโลคัล ซึ่งขั้นตอนวิธีใหม่นี้จะ ใช้เวลาการคำนวณน้อยกว่าและให้คำตอบที่มีเสถียรภาพมากกว่าขั้นตอนวิธีแบบที่ใช้อยู่ ในปัจจุบัน ภาพเสมือนที่สร้างขึ้น (Reconstructed Image) จะสามารถแสดงข้อมูลราย ละเอียดคุณสมบัติต่าง ๆ ของแก็สองค์ประกอบได้ชัดเจนขึ้น และจะนำไปสู่การวิเคราะห์ กลไกการสันดาปที่มีประสิทธิภาพสูง

### 8. วัดถุประสงค์ของโครงการ

- 1. เพื่อศึกษาขั้นตอนวิธี และสร้างโปรแกรมคอมพิวเตอร์สำหรับการคำนวณค่าคุณสมบัติ ด่าง ๆ ในเปลวไฟแบบเทอร์บิวเลนซ์ด้วยวิธีโลคัลโทโมกราฟฟี โดยใช้ข้อมูลจากการ วัดแบบดูดกลืน (absorption measurement) ของรังสีเลเซอร์
- 2. เป็นงานวิจัยพื้นฐานเพื่อรองรับนักศึกษาระดับปริญญาโท, ปริญญาเอกสาขา วิศวกรรมเครื่องกล

#### 9. ระเบียบวิธีวิจัย

### การพัฒนา/สร้างอัลกอริชึม (Algorithm Development)

นำทฤษฎี Wavelet transform มาประยุกต์ใช้กับปัญหาทางโทโมกราฟฟี ทั้งนี้จะ ทำการศึกษาและพัฒนาอัลกอริธิม สำหรับ 2-D Wavelet transform รวมทั้งเขียน โปรแกรมคอมพิวเตอร์เพื่อรับและประมวลผลข้อมูลโทโมกราฟฟีจากการวัดแบบดูดกลืน ของเปลวไฟเทอร์บิวเลนซ์

# <u>การตรวจสอบ/ยืนยันอัลกอริธีมด้วยข้อมูลจำลอง</u>

สร้างข้อมูลจำลอง(Simulated data) ของเปลวไฟ ซึ่งเป็นฟังก์ชันความหนาแน่น นำจะเป็น(PDFs)ของคุณสมบัติด่าง ๆ ในเบ่ลวไฟเทอร์บิวเลนซ์ด้วยเครื่องคอมพิวเตอร์ โดยโมเดลด่าง ๆ ของเทอร์บิวเลนซ์จะจำลองขึ้นด้วยโปรแกรมสำเร็จรูป เช่น Fluidyn-NS หรือ PHOENICS เป็นต้น แต่ถ้าไม่สามารถใช้โปรแกรมสำเร็จรูปเหล่านี้ได้ จะทำการ จำลองรูปร่างเปลวไฟต่าง ๆ ด้วยสมการทางคณิตศาสตร์แทน

จากนั้นจะเขียนโปรแกรมคอมพิวเตอร์เพื่อคำนวณหาฟังก์ชันภาพฉาย (projection functions) ทั้งนี้เพื่อใช้เป็นข้อมูลดั้งดัน(input)สำหรับอัลกอริธึมที่สร้างขึ้น หลังจากทำการคำนวณสร้างภาพเสมือน(reconstructed image)ด้วยอัลกอริธึมที่สร้างขึ้น แล้ว จึงตรวจสอบผลการคำนวณกับข้อมูลจำลองที่สร้างขึ้นเพื่อยืนยันความถูกต้องของอัลกอลิธึมและโปรแกรมคอมพิวเตอร์

## การทดสอบอัลกอริธึม/โปรแกรมด้วยข้อมลจากการวัดจริง

ข้อมูลที่ใช้ในการคำนวณคือข้อมูลที่ได้จากการวัดแบบดูดกลืนของรังสีเลเชอร์จาก เปลวไฟจริง ทั้งนี้ข้อมูลดังกล่าวผู้เสนอโครงการจะใช้ข้อมูลชุดเดียวกับข้อมูลที่ใช้ในวิทยา นิพนธ์ระดับปริญญาเอก และเปรียบเทียบผลกับการคำนวณที่ได้จากวิธีการแบบเก่าเพื่อ ทดสอบ เปรียบเทียบ และประเมินผลการคำนวณด้วย อัลกอริธึม/โปรแกรม ใหม่ที่ เสนอในโครงการวิจัยนี้

### 10. สรุปผลการวิจัย

รายงานวิจัยได้แสดงวิธีการประยุกด์วิธีโทโมกราฟฟีกับการวินิจฉัยการไหลหลาย องค์ประกอบแบบมีปฏิกิริยาโดยเฉพาะการวินิจฉัยเปลวไฟแบบเทอร์บิวเลนซ์ โดยได้เริ่ม ศึกษาความเชื่อมโยงของวิธีโทโมกราฟฟีที่ใช้ในวงการแพทย์กับโทโมกราฟฟีที่ใช้ศึกษา การไหลหลายองค์ประกอบในเปลวเพลิง

ในระยะแรกของการวิจัยใช้วิธีพิลเดอร์แบคโปรเจคชันคำนวณหาลักษณะโปรไฟล์ ของค่าเฉลี่ยคุณสมบัติทางเทอร์โมไดนามิกส์ของเปลวไฟจำลองจากข้อมูลภาพฉาย โดย ศึกษาผลกระทบของตัวแปรต่าง ๆ เช่น จำนวนมุม จำนวนเส้นวิถีรวมจากข้อมูลภาพฉาย ตลอดจนฟิลเตอร์ฟังก์ชันที่ใช้ในกระบวนการสร้างภาพที่มีต่อคุณภาพของภาพเสมือนที่ สร้างขึ้น จากการศึกษาพบว่าจำนวนมุมตัวอย่างต้องมีมากพอที่จะเทียบเคียงกับความถึ่ ในการเก็บดัวอย่างของเส้นวิถีรวม หากจำนวนมุมน้อยเกินไปจะเกิดความคลาดเคลื่อน ของภาพเสมือนไปจากภาพจริง ปรากฏเป็นลักษณะที่คล้ายกับสัญญาณรบกวน งานวิจัย ยังได้แสดงผลของสัญญาณรบกวนต่อการสร้างภาพด้วยวิธีดังกล่าวนี้ด้วย

เนื่องจากปรากฏการณ์ในเปลวไฟมักเป็นการไหลในลักษณะที่เป็นเทอร์บิวเลนซ์ จึงได้ดำเนินการวิจัยการสร้างภาพเสมือนของความหนาแน่นความน่าจะเป็นของคุณ สมบัติทางเทอร์โมไดนามิกส์โดยวิธีโทโมกราฟฟีด้วย ทั้งนี้ได้แสดงความสัมพันธ์ทาง คณิตศาสตร์ของโมเมนด์ของฟังก์ชันความหนาแน่นความน่าจะเป็นของผลรวมแนววิถีและ โลคัลโมเมนด์ ผลการสร้างภาพเสมือนยืนยันให้เห็นว่าค่าที่คำนวณได้มีค่าสอดคล้องกับค่า PDF ของฟังก์ชันทดสอบ(Sivathanu, 1993) สังเกตได้จากค่าผลรวมความหนาแน่นความ น่าจะเป็นมีค่าต่างจาก 1 ไม่เกิน 0.01%

การศึกษาครั้งนี้ได้ดำเนินการพัฒนาขั้นตอนวิธีการสร้างภาพเสมือนของ Local-PDF จากข้อมูล Path-PDF ด้วยวิธีการแปลงโมเมนต์ ซึ่งแบ่งออกเป็น 4 ขั้นตอน คือ

- 1. ทำการวัดค่า PDF วิถีรวม
- นำโมเมนด์วิถีรวมมาคำนวณสร้างภาพเสมือนของโลคัลโมเมนด์ (ซึ่งในการศึกษา ครั้งนี้ใช้ขั้นตอนวิธีฟิลเดอร์แบคโปรเจคชันหรือ FBP) ที่ลำดับต่างๆ เพื่อใช้ใน การแก้ปัญหาโมเมนต์
- 4. ใช้โลคัลโมเมนด์ที่ได้จากการสร้างภาพเสมือนเป็น Local-PDF โดยการแก้ปัญหา โมเมนด์ (ในที่นี้ใช้วิธีการแยกค่าเอกฐานหรือ SVD)

แต่ขั้นตอนวิธีนี้มีข้อจำกัดสำคัญสองข้อคือ

- 1. ข้อมูลโมเมนด์วิถีรวมด้องมีจำนวนมาก (เพราะกระบวนการอยู่บนพื้นฐานการ แปลง ฟูริเยร์แบบต่อเนื่อง)
- 2. Local-PDF แต่ละจุดต้องเป็นอิสระต่อกัน (Statistically independent)
  เพื่อผ่อนปรนเงื่อนไขเหล่านี้จึงได้นำวิธีโทโมกราฟฟีแบบไม่ต่อเนื่องมาประยุกต์
  ใช้กับงานวิจัยนี้

การพัฒนาขั้นตอนวิธีการสร้างภาพเสมือนด้วยวิธีโทโมกราฟฟีแบบไม่ต่อเนื่อง เลือกฟังก์ชันเกาส์แบบเยื้องศูนย์เป็นฟังก์ชันทดสอบ และใช้วิธีพีชคณิต (Algebraic reconstruction techniques, ART) และวิธีการแยกพิกเชลธรรมชาติ (Natural pixel decomposition, NP) สำหรับวิธี NP นั้น ใช้เทคนิคเวฟเลทช่วยในการหาผลเฉลย และ ได้ใช้วิธี Maximum Entropy แก้ปัญหาโมเมนต์

ผลการสร้าง Local-PDF จากข้อมูลโทโมกราฟฟีที่มีปริมาณจำกัดโดยใช้วิธี FBP และ NP นั้นแสดงให้เห็นว่า วิธี NP ให้ผลที่ดีกว่า จึงสรุปได้ในเบื้องดันว่า วิธีโทโม กราฟฟีแบบไม่ต่อเนื่องสามารถประยุกต์ใช้กับปัญหาทางการสันดาปได้ นอกจากนี้การ สร้าง PDF จากโมเมนด์ด้วยวิธี Maximum Entropy แสดงให้เห็นชัดเจนว่าฟังก์ชัน PDF ในกรณีของการสันดาปของเปลวเพลิงขึ้นอยู่กับโมเมนต์อันดับดัน ๆ เท่านั้น

# สารบัญ

|          |                                                         | หน้า |
|----------|---------------------------------------------------------|------|
| กิดติกรร | รมประกาศ                                                | 70   |
| บทกัดเ   | ย่อภาษาไทย                                              | ค    |
| บทกัดเ   | ย่อภาษาอังกฤษ                                           | 3    |
| หน้าสรุ  | ุปโครงการ                                               | 9    |
|          | ยูดาราง                                                 | ฏ    |
| สารบัญ   | บูภาพ                                                   | 3    |
| บทที่    |                                                         |      |
| 1        | บทน้า                                                   | 1    |
|          | โทโมกราฟฟีกับการวินิจฉัยการไหลแบบมีปฏิกิริยาการเผาใหม้  | 1    |
|          | วัดถุประสงค์ของโครงการ                                  | 5    |
|          | ประโยชน์ที่คาดว่าจะได้รับ                               | 5    |
|          | ขอบเขตการวิจัย                                          | 5    |
| 2        | วิธีฟิลเดอร์แบคโปรเจคชัน                                | 6    |
|          | เปลวไฟจำลอง                                             | 6    |
|          | ฟังก์ชันภาพฉาย                                          | 7    |
|          | พิกเจอร์ดิสแทนซ์                                        | 10   |
|          | ขั้นตอนวิธีฟิลเตอร์แบกโปรเจกชัน                         | 10   |
|          | ผลการสร้างภาพเสมือน                                     | 14   |
|          | ข้อวิจารณ์ผลการสร้างภาพเสมือน                           | 15   |
| 3        | การสร้าง Local-PDF ด้วยวิธีโทโมกราฟฟี                   | 21   |
|          | การวัดความแปรปรวนของคำการส่งผ่าน                        | 21   |
|          | ความถูกต้องของความสัมพันธ์โลคัลโมเมนต์ - โมเมนต์วิถีรวม | 22   |
|          | ปัญหาโมเมนด์                                            | 23   |
|          | การสร้าง Local-PDF ด้วยวิธีฟิลเดอร์แบคโปรเจคชัน         | 24   |
|          | ผลการสร้าง Local-PDF ของเปลว Propylene                  | 25   |
|          | ผลการสร้างภาพเสมือนจากข้อมูลวิถีรวมจริง                 | 27   |
|          | ผลการสร้าง Local PDE ของพังก์ชับทดสอบแบบให่สบบาตร       | 20   |

# สารบัญ (ค่อ)

| บทที่ |                                                                         | หน้า |
|-------|-------------------------------------------------------------------------|------|
| 4     | วิธีโทโมกราฟฟีแบบไม่ต่อเนื่อง                                           | 35   |
|       | ฟังก์ชันภาพฉายแบบแถบ                                                    | 35   |
|       | การสร้างภาพเสมือนด้วยวิธีพืชคณิต                                        | 37   |
|       | การสร้างภาพเสมือนด้วยวิธีการแยกพิกเซลชรรมชาดิ                           | 38   |
|       | การประยุกด์การแปลงเวฟเลทกับวิธีการแยกพิกเซลธรรมชาติ                     | 39   |
| 5     | ผลการสร้างภาพเสมือนคำเฉลี่ยด้วยโทโมกราฟฟีแบบใม่ต่อเนื่อง                | 43   |
|       | ฟังก์ชันทดสอบ                                                           | 43   |
|       | การสร้างเมทริกซ์พื้นที่                                                 | 44   |
|       | การตรวจสอบความถูกต้องของเมทริกซ์พื้นที่, $\phi$                         | 45   |
|       | ศักยภาพในการประยุกด์วิธีโทโมกราฟฟีแบบไม่ต่อเนื่อง                       | 47   |
|       | ผลของจำนวนพิกเซล $(x_i,y)$ ที่มีต่อเมทริกซ์ $\phi$                      | 48   |
|       | การดรวจสอบความถูกด้องของเมทริกซ์ $\phi$ ด้วยฟังก์ชันทดสอบ               | 48   |
|       | ผลการสร้างภาพเสมื้อน                                                    | 53   |
|       | การสร้างโลคัลโมเมนต์ด้วยจำนวนข้อมูลจำกัด                                | 57   |
|       | การแก้ปัญหาระบบสมการที่มีดัวแปรมากกว่าสมการด้วยวิธีเอนโทรปีสูงสุด       | 58   |
|       | Bevensee's Iterative Algorithm                                          | 59   |
|       | ผลการสร้าง Local-PDF ของเปลว Propylene ด้วยข้อมูลจำกัด                  | 61   |
| 6     | บทสรุป                                                                  | 62   |
|       | แนวทางการวิจัยในอนาคต                                                   | 64   |
| บรรถ  | เานุกรม                                                                 | 65   |
| ผลงา  | นจากการวิจัย                                                            | 69   |
| ภาคผ  | เนวก                                                                    | 70   |
|       | ผลการสร้างภาพเสมือนด้วยวิธี FBP ด้วยข้อมูลจากการทดลอง                   | 71   |
|       | บทความ "การประเมินอัลกอริธึมสำหรับการสร้างรูปร่างของคุณสมบัติ           |      |
|       | เปลวเพลิงโดยวิธีโทโมกราฟฟี"                                             | 74   |
|       | บทความ "การสร้างภาพเมือนฟังก์ชันความหนาแน่นความน่าจะเป็น                |      |
|       | ในเปลวไฟเทอร์บิวเลนซ์จากข้อมูลโทโมกราฟฟีด้วยแนวทางใหม่"                 | 85   |
|       | บทความ "การประเมินขั้นดอนวิธีสำหรับการสร้างรูปร่างของคุณสมบัติ          |      |
|       | เปลวเพลิงเทอร์บิวเลนซ์โดยวิธีโทโมกราฟฟีแบบไม่ต่อเนื่องดั๋วยข้อมูลจำกัด" | 96   |

# สารบัญ (ค่อ)

|                                                         | หน้า |
|---------------------------------------------------------|------|
| ภาคผนวก(ต่อ)                                            |      |
| บทความ "A Tomographic Algorithm for Reconstructing      |      |
| Local Probability Density Function in Turbulent Flames* | 102  |
| บทความ"Tomographic Algorithm for Reconstructing         |      |
| Local Probability Density Function in Turbulent Flames  | 112  |

# สารบัญตาราง

| ดาราง | ที                                                                    | หน้า |
|-------|-----------------------------------------------------------------------|------|
| 1     | คำพารามิเตอร์ต่าง ๆ สำหรับฟังก์ชันภาพฉายที่มีวัตถุกีดขวาง             | 10   |
| 2     | ผลการสร้างภาพเสมือนของ Local-PDF เทียบเป็นตัวเลขกันค่าที่ได้จากการวัด |      |
|       | ณ ดำแหน่งศูนย์กลางเปลว                                                | 34   |

# สารบัญภาพ

| ภาพที่ |                                                                                                        | หน้า |
|--------|--------------------------------------------------------------------------------------------------------|------|
| 1      | แสดงการวัดคุณสมบัติภายในเปลวเพลิงของการเผาใหม้ด้วยวิธีโทโมกราฟฟี                                       | 2    |
| 2      | พารามิเตอร์ต่าง ๆ ในการคำนวณฟังก์ชันภาพฉายของรูปร่างวงรี                                               | 9    |
| 3      | แสดงลักษณะการฉายลำแสงเพื่อส่งฟังก์ชัน 2 มิติในระนาบ (x,y)                                              |      |
|        | เป็นฟังก์ชันภาพฉาย 1 มิติ, p <sub>Ø</sub> (r)                                                          | 11   |
| 4      | แสดงฟิลเตอร์ฟังก์ชันรามาชานเดรียน (a) ในสเปซโดเมน (b) ในโดเมนความถึ่                                   |      |
|        | แสดงฟิลเดอร์ฟังก์ชันเชพพ์และโลแกน (c) ในสเปซโดเมน (d) ในโดเมนความถึ่                                   | 16   |
| 5      | ฟังก์ชันจริงและภาพฉายของ Gaussian                                                                      | 17   |
| 6      | ฟังก์ชันจริงและภาพฉายของ multi-layer top hat                                                           | 17   |
| 7      | ภาพเสมือน Gaussian profile จากวิธี FBP ด้วยจำนวนมุมการเก็บข้อมูล                                       |      |
|        | ต่างกัน (a) 64 แถบ, 6 มุม (b) 64 แถบ, 18 มุม                                                           | 18   |
| 8      | ภาพเสมือน multi-layer top hat profile จากวิธี FBP ด้วยจำนวนมุม                                         |      |
|        | การเก็บข้อมูลต่างกัน (a) 64 แถบ, 18 มุม (b) 64 แถบ, 180 มุม                                            | 18   |
| 9      | เปรียบเทียบคำพิกเจอร์ดิสแทนซ์ของภาพเสมือนที่สร้างด้วยจำนวนมุม                                          |      |
|        | ด่าง ๆ กัน (a) Gaussian profile (b) multi-layer top hat profile                                        | 19   |
| 10     | ภาพฉายของ Gaussian profile ที่มีสัญญาณรบกวน 1%                                                         | 19   |
| 11     | ผลกระทบของสัญญาณรบกวนและชนิดของฟิลเตอร์ฟังก์ชันที่มีต่อ                                                |      |
|        | พิกเจอร์ดิสแทนซ์เมื่อจำนวนมุมเท่ากัน (90 มุม)                                                          | 19   |
| 12     | ภาพเสมือน Gaussian profile ที่มีสัญญาณรบกวน เมื่อใช้ฟิลเตอร์ฟังก์ชัน                                   |      |
|        | ต่างกัน (a)  รามาชานเดรียน ( 64มุม, 90 แถบ )                                                           |      |
|        | (b) เซพพ์และโลแกน ( 64 แถบ, 90 มุม )                                                                   | 20   |
| 13     | Off-center Gaussian profile ที่มีวัดถุกีดขวาง (a) ฟังก์ชันจริง                                         |      |
|        | (b) ภาพเสมือนเมื่อใช้เชพพ์และโลแกน ( 64 แถบ, 90 มุม )                                                  | 20   |
| 14     | แสดงค่าโมเมนต์วิถีรวมที่คำนวณจากสมการ(3.5) เปรียบเทียบกับวิธีDPF                                       | 23   |
| 15     | แสดงค่า Local-PDF ของเปลวทดสอบจากการวัด (Sivathanu, 1993)                                              | 25   |
| 16     | ค่าโลคัลโมเมนต์ลำดับที่ 1 ของเปลวจำลองแบบสมมาดร                                                        | 26   |
| 17     | ค่า $\log_{10} \mathcal{\Sigma}$ และ $\log_{10} \left  U^T m  ight $ สำหรับแก้ปัญหาโมเมนด์ด้วยวิธี SVD |      |
|        | ณ ดำแน่งศูนย์กลางเปลวของเปลวจำลองแบบสมมาตร                                                             | 26   |

# สารบัญภาพ (ต่อ)

| กาพที่ |                                                                                                  | หน้า |
|--------|--------------------------------------------------------------------------------------------------|------|
| 18     | เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF กับค่าที่ได้จากการวัด                                   |      |
|        | ณ ดำแหน่งศูนย์กลางเปลวของเปลวจำลองแบบสมมาตร                                                      | 27   |
| 19     | แสดง Path-PDF จากการวัดของเปลวเพลิงเอททิลีน/อากาศ                                                | 28   |
| 20     | ค่า $\log_{10} \varSigma$ และ $\log_{10} \left  U^T m \right $ สำหรับแก้ปัญหาโมเมนด์ด้วยวิธี SVD |      |
|        | ณ ดำแน่งศูนย์กลางเปลวของเปลวเพลิงเอททิลีน/อากาศ                                                  | 28   |
| 21     | เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF กับคำที่ได้จากการวัด                                    |      |
|        | ณ ดำแหน่งศูนย์กลางเปลวของเปลวเพลิงเอททิลีน/อากาศ                                                 | 29   |
| 22     | แสดงภาพมุมมองด้านบนและส่วนประกอบของเปลวจำลองแบบไม่สมมาตร                                         | 30   |
| 23     | ค่าโลคัลโมเมนต์ลำดับที่ 1 ของเปลวจำลองแบบไม่สมมาต <del>ร</del>                                   | 31   |
| 24     | ค่าฟังก์ชันภาพฉายของเปลวจำลองแบบไม่สมมาตรที่มุมด่างๆ                                             | 31   |
| 25     | ภาพเสมือนโลคัลโมเมนด์ลำดับที่ 1 ของเปลวจำลองแบบไม่สมมาตร                                         | 32   |
| 26     | ค่า $\log_{10} \varSigma$ และ $\log_{10} \left  U^T m  ight $ สำหรับแก้ปัญหาโมเมนด์ด้วยวิชี SVD  |      |
|        | ณ ดำแน่งศูนย์กลางเปลวของเปลวจำลองแบบไม่สมมาตร                                                    | 32   |
| 27     | เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF กับค่าที่ได้จากการวัด                                   |      |
|        | ณ ดำแหน่งศูนย์กลางเปลวของเปลวจำลองแบบไม่สมมาตร                                                   | 33   |
| 28     | แสดงลักษณะการเก็บข้อมูลวิถีรวมแบบแถบ และการหาค่าเมทริกซ์พื้นที่, $\phi$                          | 36   |
| 29     | ฟังก์ชันทดสอบ                                                                                    | 43   |
| 30     | ดัวอย่างการแยกฟังก์ชันเพื่อการพิจารณาเมทริกซ์พื้นที่                                             | 46   |
| 31     | แผนภาพแสดงความแตกต่างของพื้นที่ที่แถบพาดผ่านฟังก์ชันจากแนววิถี                                   |      |
|        | ในมุมด่าง ๆ                                                                                      | 47   |
| 32     | ผลเฉลยจากข้อมูลวิถีรวม 8 มุม ๆ ละ 64 แถบที่ความละเอียดใน                                         |      |
|        | การแยกฟังก์ชันต่างกัน                                                                            |      |
|        | (a) 32 x 32 พิกเซล (b) 64 x 64 พิกเซล (c) 128 x 128 พิกเซล 43                                    | 50   |
| 33     | ฟังก์ชันภาพฉายแบบแถบของฟังก์ชันทดสอบจากการฉาย                                                    |      |
|        | ด้วยจำนวนแถบต่าง ๆ                                                                               | 51   |
| 34     | ภาพเสมือนคุณภาพสูงสุดของวิธีการแยกพิกเชลธรรมชาดิจากจำนวนมุม                                      |      |
|        | การเก็บข้อมูลต่าง ๆ กัน                                                                          |      |
|        | (a) 64 แถบ, 4 มุม  (b) 64 แถบ, 8 มุม  (c) 64 แถบ, 16 มุม                                         | 52   |

# สารบัญภาพ (ค่อ)

| ภาพที่ |                                                                     | หน้า |
|--------|---------------------------------------------------------------------|------|
| 35     | เปรียบเทียบค่าพิกเจอร์ดิสแทนซ์ของภาพเสมือนที่สร้างโดยวิธีโทโมกราฟฟี |      |
|        | แบบไม่ค่อเนื่องแบบต่าง ๆ                                            | 53   |
| 36     | ภาพเสมือนจากวิธี FBP ตัวยจำนวนมุมการเก็บข้อมูลด่าง ๆ กัน            |      |
|        | (a) 64 แถบ, 4 มุม (b) 64 แถบ, 8 มุม (c) 64 แถบ, 16 มุม              | 54   |
| 37     | ภาพเสมือนจากวิธี ART ด้วยจำนวนมุมการเก็บข้อมูลต่าง ๆ กัน            |      |
|        | (a) 64 แถบ, 4 มุม (b) 64 แถบ, 8 มุม (c) 64 แถบ, 16 มุม              | 55   |
| 38     | ภาพเสมือนจากการประยุกด์การแปลงเวฟเลทกับวิธี NP ด้วยจำนวนมุม         |      |
|        | การเก็บข้อมูลต่าง ๆ กัน                                             |      |
|        | (a) 64 แถบ, 4 มุม (b) 64 แถบ, 8 มุม (c) 64 แถบ, 16 มุม              | 56   |
| 39     | เปรียบเทียบผลการสร้างภาพเสมือนโลคัลโมเมนต์ด้วยวิธี FBP และ NP       | 57   |
| 40     | เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF ของเปลว Propylene          |      |
|        | กับค่าที่ได้จากการวัด ณ ดำแหน่งศูนย์กลางเปลว                        | 61   |

บทที่ 1

บทนำ

## โทโมกราฟฟีกับการวินิจฉัยการเผาใหม้

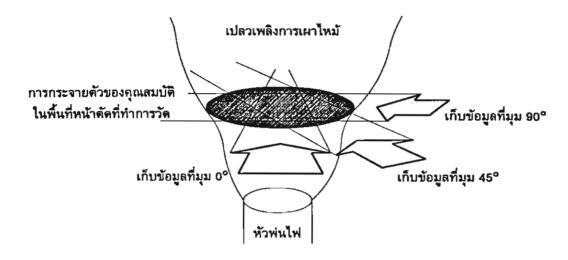
การวัดค่าคุณสมบัติทางเทอร์โมไดนามิกซ์ (เช่น อุณหภูมิ, ความเข้มข้นของก๊าซองค์ ประกอบ ฯลฯ) ภายในเปลวเพลิงสามารถทำได้หลายวิธี การวัดด้วยแสงเป็นวิธีหนึ่งที่สามารถ วัดค่าได้อย่างมีประสิทธิภาพ เนื่องจากไม่จำเป็นต้องใช้อุปกรณ์เข้าไปสัมผัสกับเปลวเพลิงโดย ดรง อันจะเป็นการรบกวนระบบและทำให้ค่าคุณสมบัติที่ด้องการวัดเปลี่ยนไป การวัดด้วยแสง สามารถทำได้ 2 แบบ คือ การวัดแบบจุด (Point measurements) และการวัดแบบแนววิถี (Path measurements) โดยทั่วไปการวัดแบบจุดจะเป็นการวัดค่าการกระเจิงของแสงจาก ดำแหน่งที่ด้องการทราบค่า วิธีนี้มักจะสามารถวัดค่าได้ทีละจุดเท่านั้น และไม่สามารถวัดค่าได้ แน่นอนหากจุดนั้นมีความเข้มข้นของก๊าซองค์ประกอบ ส่วนการวัดแบบแนววิถีสามารถทำได้ โดยการยิงลำแสงจากแหล่งกำเนิดผ่านเข้าไปในเปลวเพลิงบริเวณที่ต้องการวัดค่าคุณสมบัติและ มีอุปกรณ์รับความเข้มของลำแสงที่ผ่านออกมา ค่าที่วัดได้จึงเป็นค่าการดูดกลืนเฉลี่ยดลอดแนว วิถีนั้น

วิธีโทโมกราฟฟีที่ใช้แสง เป็นวิธีการวัดแสงแบบแนววิถีโดยการนำข้อมูลการวัดวิถีรวม (Projection data) จากหลาย ๆ มุม มาคำนวณกลับเพื่อสร้างภาพเสมือน (Reconstruction Image) แบบ 2 มิติ (ในบางครั้งเรียกว่าภาพตัดขวาง) ของสนามคุณสมบัติ (Property field) ตลอดพื้นที่หน้าตัดที่สนใจ (ดูภาพที่ 1) ด้วยวิธีนี้ทำให้สามารถวัดค่าคุณสมบัติในทุก ๆ จุดได้ พร้อมกัน แม้ว่าค่าคุณสมบัติที่จุดนั้นจะมีค่าด่ำมากก็ตาม

ในการวัดการดูดกลืนภายในตัวกลางเนื้อเดียว (Homogeneous media) เมื่อยิงลำแสงที่ มี ความเข้ม 1<sub>0</sub> ผ่านเข้าไปยังตัวกลาง ความเข้มของลำแสงเมื่อผ่านตัวกลางจะเปลี่ยนแปลงไป ตามกฎของเบียร์ (Beer's Law)

$$I = I_0 e^{-KS} \tag{1.1}$$

โดยที่ K เป็นค่าสัมประสิทธิ์การดูดกลืนของตัวกลาง และ / เป็นความเข้มของลำแสงหลังจาก ผ่านตัวกลางความยาว S



<u>ภาพที่ 1</u> แสดงการวัดคุณสมบัติภายในเปลวเพลิงของการเผาไหม้ด้วยวิธีโทโมกราฟฟี

สำหรับตัวกลางที่เป็นของผสม ค่าสัมประสิทธิ์การดูดกลืน K ดามแบบจำลองความร้อน (Thermal model) จะขึ้นอยู่กับทั้งอุณหภูมิและความไม่เป็นเอกพันธุ์ (Nonhomogeneous) ของ ตัวกลางนั้น ฮิวห์อี (Hughey, 1982) และซานทาวิคกา (Santavicca) ประยุกด์กฎของเบียร์โดย

$$I = I_0 e^{\left(-\int_{S} p P_{\omega} ds\right)} \tag{1.2}$$

ให้  $K=pP_{\omega}$  เป็นฟังก์ชันของระยะทาง, p เป็นความดันย่อยของตัวกลาง,  $P_{\omega}$  (cm  $^{-1}$ atm  $^{-1}$ ) เป็น ค่าสัมประสิทธิ์การดูดกลืนเชิงปริมาตรของตัวกลางที่ตอบสนองต่อลำแสงความถี่  $\omega$ 

ในทางปฏิบัติอัตราส่วนความเข้มแลง,  $I/I_0$  , เป็นค่าที่สามารถวัดได้จากการทดลอง จัดรูปสมการ (1.2) เสียใหม่

$$p_{\theta}(r) = \int_{\text{source}}^{\text{detector}} p P_{\omega} ds = -\ln\left(\frac{I}{I_0}\right)$$
 (1.3)

แก้สมการ (1.3) ด้วยวิธีโทโมกราฟฟี เพื่อหาค่า  $pP_{\omega}$  โดยค่าผลลัพธ์นี้ (ทำการวัดที่ ความถี่สองความถี่ เพราะ p=p(s,T) และ  $P_{\omega}=P_{\omega}(T)$  สามารถนำไปคำนวณเป็นค่าคุณสมบัติ ทางเทอร์โมไดนามิกส์ของดัวกลาง ดังนั้นกุญแจสำคัญของการวัดคุณสมบัติของการเผาไหม้ ด้วยวิธีโทโมกราฟฟี อยู่ที่ความถูกต้องของการสร้างภาพเสมือน 2 มิติ ของค่าสัมประสิทธิ์ การดูดกลืน

ในปี ค.ศ. 1976, เชน (Chen, 1976) และ โกลาร์ด (Goulard) นำการแปลงกลับด้วยวิธี การปอกเปลือกหัวหอม (Onion Peeling Inversion method) เพื่อวัดปริมาณสารมลพิษที่ปล่อย ออกมาจากเครื่องยนต์เจ็ท วิธีนี้สามารถหาค่าสนามคุณสมบัติแบบ 2 มิดิได้ โดยเริ่มคำนวณ จากชั้นนอกสุดของฟังก์ชันเข้าไปชั้นในเรื่อย ๆ คล้ายกับการปอกเปลือกหัวหอม วิธีนี้เป็นวิธีโท โมกราฟฟีวิธีแรกที่สามารถหาอุณหภูมิและความเข้มขันของก๊าซองค์ประกอบในทุก ๆ จุดของ พื้นที่หน้าตัดที่สนใจได้พร้อมกัน อย่างไรก็ตามผลเฉลยที่ได้มีความอ่อนไหวต่อสัญญาณรบกวน มาก ซึ่งทำให้ผลเฉลยไม่เสถียร ในปี ค.ศ. 1980, เอมเมอร์แมน (Emmerman, 1980) และ คณะ สามารถแก้ไขบัญหาการสะสมค่าความผิดพลาดโดยการนำวิธีการแปลงทางคณิตศาสตร์ที่ เรียกว่าวิธีฟิลเตอร์แบคโปรเจคชัน (Filter-back projection, FBP) มาแทนวิธีเดิม วิธีนี้จะแปลง ข้อมูลการวัดวิถีรวมไปอยู่ในโดเมนความถี่ (Frequency domain) ซึ่งทำให้สามารถขจัด สัญญาณรบกวนความถี่สูงออกไปได้ และวิธี FBP นี้มีข้อดีกว่าวิธีการแปลงเอเบล (Abel transform) (Bracewell, 1986) คือสามารถสร้างภาพเสมือนที่เป็นฟังก์ชันที่ไม่สมมาตรได้ (Dasch, 1992) อย่างไรก็ตามการสร้างภาพเสมือนด้วยวิธี FBP จำเป็นต้องใช้ข้อมูลการวัดวิถี รวมเป็นจำนวนมากเพื่อให้ได้ภาพที่สมบูรณ์ (Buonocore, 1981) ซึ่งในการวัดทางการเผาไหม้ บางครั้งไม่สามารถเก็บข้อมูลวิถีรวมเป็นจำนวนมาก ๆ ได้ การพัฒนากระบวนวิธีที่สามารถ สร้างภาพเสมือนที่ถูกต้องจากข้อมูลวิถีรวมเป็นจำนวนจำกัดจึงเป็นสิ่งจำเป็น

วิธีโทโมกราฟฟีแบบดั้งเดิม สามารถสร้างภาพเสมือนของฟังก์ชันการกระจายตัวของ คุณสมบัติทางเทอร์โมไดนามิกส์ของเปลวเพลิงที่เป็นคำเฉลี่ยต่อเวลาได้ดี แต่เป็นที่ทราบกันดี ว่าความแปรปรวนของคุณสมบัติในเปลวเพลิงเทอร์บิวเลนซ์ ทำให้ค่าการแผ่รังสีความร้อนที่วัด ได้สูงกว่าค่าที่ประมาณจากค่าคุณสมบัติที่เป็นค่าเฉลี่ย 2-3 เท่าตัว (Gore, 1986; Hamins, 1994) ดังนั้นการวัดความแปรปรวนของคุณสมบัติด้วยวิธีโทโมกราฟฟีจึงเป็นความท้าทาย สำหรับการวิจัยในสาขาการเผาไหม้

ชินเดอร์ (Synder, 1988) และ บิทิงก์ (Beiting, 1991) พยายามบันทึกโครงสร้างเทอร์ บิวเลนซ์ของเปลวเพลิง ด้วยวิธีการอ่านค่าการฉายอย่างรวดเร็ว (Fast scanning) แต่เนื่องจาก ความแปรปรวนแบบสุ่มของสนามการใหลอันเนื่องจากความเป็นเทอร์บิวเลนซ์ ทำให้ภาพ เสมือนที่คำนวณได้เป็นภาพลวง และมีความละเอียดของภาพที่จำกัด ในปี ค.ศ. 1995, ทอร์ เนียเนน (Torniainen, 1995) และคณะ แนะนำวิธีเชิงดัวเลขในการแก้ปัญหาข้อมูลการวัดที่ จำกัด โดยการใช้วิธีคาร์ฮูเนน-โลว์ (Karhunen-Loeve procedure) พบว่าข้อมูลจำนวนเล็กน้อย จากการอ่านค่าในแต่ละครั้ง สามารถนำมาใช้ในการสร้างภาพเสมือนของสนามการใหลแบบไม่ เสถียรได้ แต่วิธีนี้ยังจำกัดอยู่ด้วยการใช้ข้อมูลจำลอง (Torniainen, 1998)

อีกแนวทางหนึ่งในการศึกษาเปลวเพลิงเทอร์บิวเลนซ์ คือการสร้างภาพเสมือนของ ฟังก์ชันความหนาแน่นความน่าจะเป็น (Probability density function, PDF) ของค่าคุณสมบัติ แทนค่าชั่วขณะ สีเวธานุ (Sivathanu, 1993) และ กอร์ (Gore) ใช้แนะนำวิธีฟังก์ชันความหนา แน่นความน่าจะเป็นแบบไม่ต่อเนื่อง (Discrete probability density function, DPF) คำนวณร่วม กับวิธีโทโมกราฟฟีแบบปอกเปลือกหัวหอมในการหาค่า PDF เฉพาะที่ (Local-PDF) ของค่า

คุณสมบัติในเปลวเพลิงเทอร์บิวเลนซ์จากข้อมูลการวัด PDF วิถีรวม (Path-PDF) และเนื่องจาก PDF ไม่เปลี่ยนแปลงกับเวลา จึงไม่จำเป็นต้องอ่านค่าการฉายอย่างรวดเร็วพร้อมกันหลาย ๆ จุด แม้ว่าผลการสร้างภาพเสมือนจะดูสมเหตุสมผล แต่พวกเขาก็ประสบกับปัญหาการสะสมคำ ความผิดพลาด เนื่องมาจากกระบวนการปอกเปลือกหัวหอม (Vallikul, 1996: 1)

ในปี ค.ศ. 1996, ปูมยศ (Vallikul, 1996 : 2) ได้พัฒนากระบวนการสร้างภาพเสมือน ของ PDF โดยใช้วิธีการแปลงทางคณิตศาสตร์ เพื่อปรับปรุงผลเฉลยให้ดีขึ้นและสามารถคำนวณ ค่า Local-PDF ในเปลวเพลิงได้โดยตรงจากการสร้างภาพเสมือนของโมเมนต์ของสนามคุณ สมบัติ กระบวนการดังกล่าวต้องใช้ความสัมพันธ์ทางคณิตศาสตร์ของฟังก์ชันโมเมนต์ของ Local-PDF และฟังก์ชันโมเมนต์ของ Path-PDF โดยดั้งอยู่บนสมมุติฐานว่าค่า Local-PDF ใน แต่ละจุดจะต้องไม่ขึ้นต่อกัน (Statistically independent) และวิธีนี้สามารถขจัดปัญหาการสะสม ค่าความผิดพลาดได้ดี และได้ผลเฉลยที่เสถียร (Nyden, 1996)

เนื่องจากวิธีการหา Local-PDF ใช้กระบวนการโทโมกราฟฟีแบบ FBP จึงจำเป็นด้อง ใช้ข้อมูลการดูดกลืนของค่าการส่งผ่านวิถีรวมจำนวนมากเพื่อให้ได้ภาพเสมือนที่ถูกต้องและจำ เป็นต้องมีสมมุดิฐานของความไม่ขึ้นด่อกันของ Local-PDF เงื่อนไขสำคัญสองข้อนี้อาจจะทำให้ ผลเฉลยคลาดเคลื่อนจากความเป็นจริงถ้าปริมาณข้อมูลมีจำกัด และ PDF ขึ้นต่อกัน

ในปี ค.ศ. 1978, เฮอร์แมน (Herman, 1978) ได้พิสูจน์ให้เห็นว่าวิธีโทโมกราฟฟีแบบ ไม่ต่อเนื่อง เหมาะสมสำหรับการสร้างภาพเสมือนจากข้อมูลวิถีรวมที่จำกัด เนื่องจากใช้ข้อมูลวิถีรวมแบบแถบ (Strip integral) เป็นการอินทิเกรทดลอดพื้นที่ของลำแสง ทำให้สามารถเก็บข้อ มูลคุณสมบัติของฟังก์ชันได้ครบถ้วนกว่าข้อมูลวิถีรวมแบบเส้น (Line integral) จึงมีแนวโน้มที่ จะสามารถสร้างภาพเสมือนได้ดีกว่าแม้จะมีข้อมูลการวัดที่จำกัด และในปี ค.ศ. 1981, บูโอโน คอร์ (Buonocore, 1981) และคณะ ได้แนะนำวิธีการแยกแบบพิกเซลธรรมชาติ (Natural pixel decomposition) แทนการแยกแบบคาร์ทีเซียน (Cartesian decomposition) โดยพิสูจน์ให้เห็น ว่าการแยกแบบพิกเซลธรรมชาติโดยใช้ฟังก์ชันภาพฉายเป็นฟังก์ชันประมาณ มีความเหมาะสม กับขั้นตอนวิธีโทโมกราฟฟีแบบไม่ต่อเนื่องมากกว่าการแยกแบบคาร์ทีเซียน

จากผลการวิจัยที่ผ่านมา (Meekunnasombat, 1997, 1998, 1999) ทำให้เห็นได้ว่าวิธี โทโมกราฟฟีแบบไม่ต่อเนื่อง มีความเหมาะสมกับการสร้างภาพเสมือนจากข้อมูลวิถีรวมที่ จำกัด และยังให้แนวทางที่จะผ่อนปรนเงื่อนไขความไม่ขึ้นต่อกันของค่า Local-PDF ได้ โดย วิธีนี้ให้แนวทางที่จะใส่สมการความสัมพันธ์ระหว่างค่า PDF ในแต่ละจุด เพิ่มเติมลงไปได้ทำให้ สามารถผ่อนปรนข้อจำกัดเรื่องความไม่ขึ้นต่อกันของ Local-PDF

# วัดถประสงค์ของโครงการ

- 1.1 เพื่อศึกษาขั้นดอนวิธี และสร้างโปรแกรมคอมพิวเตอร์สำหรับการคำนวณค่าคุณ สมบัติต่าง ๆ ในเปลวไฟแบบเทอร์บิวเลนซ์ด้วยวิธีโลคัลโทโมกราฟฟี โดยใช้ข้อมูลจากการวัด แบบดูดกลืน (absorption measurement) ของรังสีเลเซอร์
- 1.2 เป็นงานวิจัยพื้นฐานเพื่อรองรับนักศึกษาระดับปริญญาโท, เอกสาขาวิศวกรรม เครื่องกล

# <u>ประโยชน์ที่คาดว่าจะได้รับ</u>

โปรแกรมคอมพิวเดอร์ที่สร้างขึ้นจะเป็นเครื่องมือวิเคราะห์สำหรับนักวิจัยทางสาขาวิศว กรรมการสันดาป, สาขากระบวนการทางเคมีและการควบคุม และยังรวมไปถึงงานวิจัยทางการ แพทย์ ทั้งนี้เพราะพื้นฐานทางคณิตศาสตร์ที่ใช้คล้ายคลึงกับการคำนวณภาพเสมือนจากเครื่อง Computer Aided Tomography (CAT-Scanner)

ผลงานที่ได้จากโครงการวิจัยนี้ยังเป็นพื้นฐานเพื่อการออกแบบระบบเครื่องมือวัดการ ไหลประสิทธิภาพสูงแบบใหม่ที่จะใช้ในอุดสาหกรรมของประเทศต่อไปในอนาคต

#### ขอบเขดการวิจัย

การวิจัยจะใช้ข้อมูลจาก การวัด Absorption ของเปลวไฟเทอร์บิวเลนซ์ (Turbulent Diffusion Flame ) จาก Burner ขนาดเล็ก และข้อมูลที่จำลองขึ้นโดยวิธีทางคณิตศาสตร์

#### บทที่2

#### วิธีฟิลเดอร์แบคโปรเจคซัน

ในหัวข้อต่อไปนี้จะนิยามเปลวไฟจำลอง, ฟังก์ชันภาพฉาย, และพิกเจอร์ดิสแทนซ์ที่ใช้ ประเมินความถูกต้องของภาพเสมือนเทียบกับฟังก์ชันจริง

### <u>เปลวไฟจำลอง</u>

ในที่นี้จะกล่าวถึงเปลวไฟจำลอง 3 แบบด้วยกัน คือ Gaussian, multi-layer top hat, และ combination of an off-center Gaussian profiles and three ellipsoidal

สมการของฟังก์ชันเกาส์เซียน คือ

$$f(x,y) = e^{-c(x^2 + y^2)}$$
 (2.1)

เมื่อกำหนดให้ c เท่ากับ 20 (ภาพที่ 5)

รูปร่าง multi-layer top hat (ภาพที่ 6) เป็นการรวม top hat ขนาดต่าง ๆ ที่มีจุดศูนย์ กลางร่วมกัน สามารถเขียนสมการคณิตศาสตร์ได้ดังนี้

$$f(x,y) = \begin{cases} \rho_i & \text{for } x^2 + y^2 \le A_i^2 \\ 0 & \text{otherwise} \end{cases}$$
 (2.2)

เมื่อกำหนดให้ ρ, มีค่าเท่ากับ 0.2, 0.5, 0.7, และ 1.0 และ A, เท่ากับ 0.65, 0.50, 0.35, และ 0.20 ดามลำดับ

เปลวไฟจำลองแบบสุดท้าย เป็นการรวมกันระหว่าง เกาส์เซียน, วงรี, ทรงกระบอก กลวง ล้อมรอบด้วยผนังทรงกลม ดังภาพที่ 13 ดังนั้น

$$f(x,y) = f_1 + f_2 + f_3 + f_4 \tag{2.3}$$

โดย 
$$f_I = e^{-c[(x-x_I)^2 + (y-y_I)^2]}$$
 (2.4)

ค่าคงที่ c, x และ y มีค่าเท่ากับ 20, 0.24 และ 0.24 ตามลำดับ

$$f_2 = \begin{cases} \rho & \text{for } \frac{p^2}{A^2} + \frac{q^2}{B^2} \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (2.5)

กำหนดค่า ρ, A และ B เท่ากับ 0.3, 0.35 และ 0.15 ตามลำดับ นิยามให้ฟังก์ชัน p และ q คือ

$$p = (x - x_1) \cos \theta + (y - y_1) \sin \theta$$
$$q = (y - y_1) \cos \theta - (x - x_1) \sin \theta$$

เมื่อ  $x_1$  ,  $y_1$  และ  $\theta$  เท่ากับ 0.2, -0.4 และ 20 องศา ตามลำดับ

$$f_3 = \begin{cases} \rho & \text{for } r_{in} \le (x - x_I)^2 + (y - y_I)^2 \le r_{out} \\ 0 & \text{otherwise} \end{cases}$$
 (2.6)

เมื่อ ρ, r<sub>in</sub> , r<sub>out</sub> , x<sub>1</sub> และ y<sub>1</sub> เท่ากับ 0.2, 0.1, 0.24, -0.4 และ 0.1 ตามลำดับ

un: 
$$f_4 = \begin{cases} \rho & \text{for } r_{in} \le x^2 + y^2 \le r_{out} \\ 0 & \text{otherwise} \end{cases}$$
 (2.7)

กำหนด ρ, r<sub>in</sub> , r<sub>out</sub> เท่ากับ 0.2, 0.8 และ 0.9 ตามลำดับ

### ฟังก์ชันภาพฉาย (Projection Function)

ฟังก์ชันภาพฉายคือผลของการส่ง(Mapping) ฟังก์ชัน 2 มิดิเป็นฟังก์ชัน 1 มิดิ โดยการ อินทิเกรทฟังก์ชันตามแนววิถี ฟังก์ชันภาพฉายของ f(x,y) ตามแนวตั้งฉากกับมุม heta คือ

$$p_{\theta}(r) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - r) dx dy$$
 (2.8)

เมื่อ  $\delta$  คือ โคลเนคเคอร์เคลดา (Kronecker delta)

$$\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & otherwise \end{cases}$$

สมการ (2.8) สามารถเขียนให้อยู่ในระบบพิกัด (r,s) ซึ่งหมุนจากระบบพิกัด (x,y) ไป เป็นมุม heta ได้ดังนี้ (ดูภาพที่ 3 )

$$p_{\theta}(r) = \int_{-\infty}^{\infty} f_{\theta}(r, s) ds$$
 (2.9)

ฟังก์ชันภาพฉายของเกาส์เชียนเท่ากับ

$$p(r) = \sqrt{\frac{\pi}{c}}e^{-cr^2} \tag{2.10}$$

ฟังก์ชันภาพฉายของ multi-layer top hat เท่ากับ

$$p(r) = \begin{cases} 2\rho_i \sqrt{A_i^2 - r^2} & \text{for } |r| < A_i \\ 0 & \text{otherwise} \end{cases}$$
 (2.11)

เมื่อ  $\rho_i$  มีคำเท่ากับ 0.2, 0.5, 0.7, และ 1.0 และ  $A_i$  เท่ากับ 0.65, 0.50, 0.35, และ 0.20 ตาม ลำดับ ตัวห้อย  $\theta$  ไม่ปรากฏในสมการเนื่องจากทั้งเกาส์เซียนและ multi-layer top hat มี ลักษณะสมมาตร

ฟังก์ชันภาพฉายของเปลวเพลิงจำลองแบบที่สาม สามารถเขียนใด้เป็น

$$p_{\theta}(r) = p_{\theta}^{1}(r) + p_{\theta}^{2}(r) + p_{\theta}^{3}(r) + p_{\theta}^{4}(r)$$
 (2.12)

ฟังก์ชัน  $p_{\theta}^{I}(r)$  คำนวณใต้จาก

$$p_{\theta}^{1}(r) = \sqrt{\frac{\pi}{c}} e^{-c(r-R)^{2}}$$
 (2.13)

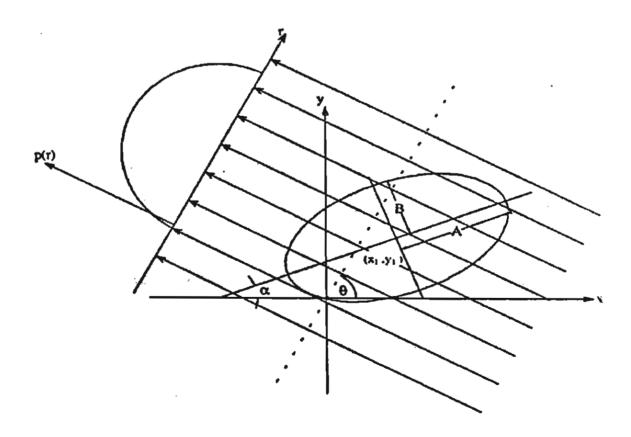
เมื่อ 
$$R = \sqrt{x_1^2 + y_1^2} \cos \left\{ \left[ \tan^{-1} \left( \frac{y_1}{x_1} \right) \right] - \theta \right\}$$

ฟังก์ชัน  $p_{\theta}^{2}(r)$  ,  $p_{\theta}^{3}(r)$  และ  $p_{\theta}^{4}(r)$  คำนวณได้จาก

$$p(r) = \begin{cases} \frac{2\rho AB}{a^{2}(\theta - \alpha)} \sqrt{a^{2}(\theta - \alpha) - (r - R)^{2}} & \text{for } |r| \le a(\theta - \alpha) \\ 0 & \text{for } |r| > a(\theta - \alpha) \end{cases}$$
(2.14)

เมื่อ 
$$a^{2}(\theta - \alpha) = A^{2} \cos^{2}(\theta - \alpha) + B^{2} \sin^{2}(\theta - \alpha)$$
และ 
$$R = \sqrt{x_{1}^{2} + y_{1}^{2}} \cos \left\{ \left[ \tan^{-1} \left( \frac{y_{1}}{x_{1}} \right) \right] - \theta \right\}$$

ค่าคงที่  $x_1$  ,  $y_1$  , A, B,  $\alpha$  และ  $\rho$  สำหรับแต่ละฟังก์ชันภาพฉายแสดงดังภาพที่ 2 และตารางที่ 1



<u>ภาพที่ 2</u> พารามิเตอร์ต่าง ๆ ในการคำนวณฟังก์ชันภาพฉายของรูปร่างวงรี

| <u>ดารางที่ 1</u> | คำพารามิเตอร์ต่าง | 9 | สำหรับฟังก์ชันภาพฉายที่ | ไม่วัดถุกีดขวาง |
|-------------------|-------------------|---|-------------------------|-----------------|
|                   |                   |   |                         |                 |

| Obstacle                                                        | $x_I$ | Уі   | A                 | В                     | α     | ρ                     |
|-----------------------------------------------------------------|-------|------|-------------------|-----------------------|-------|-----------------------|
| $p_{\theta}^{2}(r)$                                             | 0.2   | -0.4 | 0.35              | 0.15                  | 20°   | 0.3                   |
| $p_{\theta}^{j,i}(r)$                                           | -0.4  | 0.1  | 0.24              | 0.24                  | 0°    | 0.2                   |
| $p_6^{f2}(r)$                                                   | 0.4   | 0.1  | 0.1               | 0.1                   | 0°    | 0.2                   |
| $p_{\theta}^{i,i}(r)$                                           | 0.0   | 0.0  | 0.9               | 0.9                   | 0°    | 0.2                   |
| $p_{\theta}^{s,2}(r)$                                           | 0.0   | 0.0  | 0.8               | 0.8                   | 0°    | 0.2                   |
| $p_{\theta}^{3}(r) = p_{\theta}^{3,1}(r) - p_{\theta}^{3,2}(r)$ |       |      | $p_{u}^{\prime}($ | $r)=p_{\theta}^{J,I}$ | (r)-p | $\int_0^{\infty} (r)$ |

#### พิกเจอร์ดิสแทนซ์ (Picture distance)

การประเมินความถูกต้องของภาพเสมือนเทียบกับฟังก์ชันจริง ในการศึกษาครั้งนี้ใช้ แนวคิดของซิเกฮิโต (Shigehito, 1983) ที่นำเสนอค่า "พิกเจอร์ดิสแทนซ์" , d, นิยามโดย

$$d = \sqrt{\frac{\sum_{i=k}^{M} \sum_{j=n}^{N} (T_{i,j} - R_{i,j})^{2}}{\sum_{i=k}^{M} \sum_{j=n}^{N} (T_{i,j} - T_{mean})^{2}}}$$
(2.15)

เมื่อ  $T_{ij}$  คือค่าจริงของฟังก์ชัน,  $R_{ij}$  คือค่าที่ได้จากการสร้างภาพเสมือนและ  $T_{mean}$  คือค่าเฉลี่ยของ  $T_{ij}$  ตลอดบริเวณที่พิจารณา จากนิยามของพิกเจอร์ดิสแทนซ์จะเห็นว่าเมื่อภาพเสมือนที่สร้างขึ้น มีรูปร่างใกล้เคียงกับฟังก์ชันจริงค่าพิกเจอร์ดิสแทนซ์จะมีค่าเข้าใกล้ศูนย์มากขึ้น

### ขั้นตอนวิธีฟิลเตอร์แบคโปรเจคซัน

วิธีฟิลเดอร์แบคโปรเจคชัน (FBP) เป็นวิธีโทโมกราฟฟีวิธีหนึ่งที่ใช้เทคนิคการแปลงฟูริ เยร์ (Fourier transform) เป็นพื้นฐาน พิจารณาฟังก์ชันการแปลงฟูริเยร์ 2 มิดิ, F(X,Y), ของ ฟังก์ชัน f(x,y)

$$F(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-i(Xx+Yy)}dxdy$$
 (2.16)

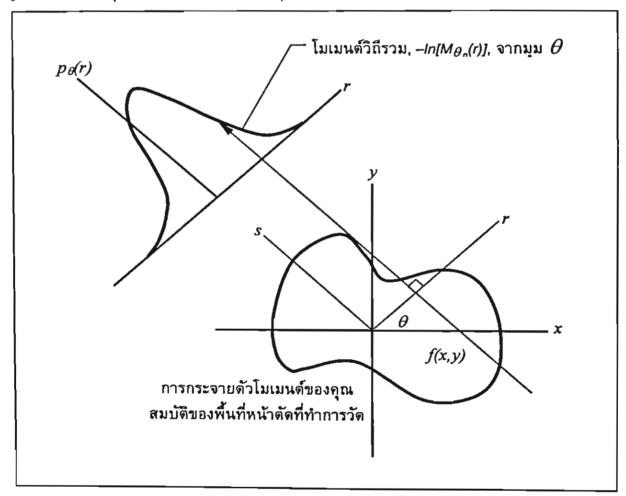
เขียนฟังก์ชัน f(x,y) ไปอยู่ในระบบพิกัด (r,s) โดยที่แกน r ทำมุม heta กับแกน x (ดูภาพที่ 3) จะได้ฟังก์ชันการแปลงฟูริเยร์, F(X,Y), เป็น

$$F(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,s)e^{-i[X(r\cos\theta - s\sin\theta) + Y(r\sin\theta + s\cos\theta)]} drds$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,s)e^{-i[rR + sS]} drds$$

$$= F_{\theta}(R,S)$$
(2.17)

เมื่อ R และ S คือ  $X\cos\theta+Y\sin\theta$  และ  $Y\cos\theta-X\sin\theta$  ตามลำดับ สมการ (2.17) สื่อให้ ทราบว่าถ้า  $f_{\theta}(r,s)$  หมุนจาก f(x,y) ไปเป็นมุม  $\theta$  ฟังก์ชันการแปลงฟูริเยร์  $F_{\theta}(R,S)$  ก็หมุนจาก F(X,Y) เป็นมุม  $\theta$  ด้วย



ภาพที่ 3 แสดงลักษณะการฉายลำแสงเพื่อส่งฟังก์ชัน 2 มิติในระนาบ (x,y) เป็นฟังก์ชันภาพฉาย 1 มิติ, p<sub>d</sub>(r)

พิจารณาฟังก์ชันภาพฉาย,  $p_{ heta}(r)$ ,

$$p_{\theta}(r) = \int_{-\infty}^{\infty} f_{\theta}(r, s) ds$$
 (2.18)

และฟังก์ชันการแปลงฟูริเยร์  $P_{\theta}(R)$  ของ  $p_{\theta}(r)$  คือ

$$P_{\theta}(R) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\theta}(r, s) e^{-iRr} ds dr$$
 (2.19)

หากเปรียบเทียบสมการ (2.17) และ (2.19) จะได้ว่า  $P_{\mathcal{C}}(R)$  มีค่าเทียบเคียงได้กับ  $F_{\mathcal{C}}(R,S)$  ตามแนวแกน R หรือ

$$P_{\theta}(R) = F_{\theta}(R, S)|_{S=0} \tag{2.20}$$

สมการ (2.20) คือ ทฤษฎีโปรเจคชัน-สไลซ์ (Projection-slice theorem) ซึ่งกล่าวว่าฟังก์ชัน การแปลงฟูริเยร์ 1 มิติของฟังก์ชันภาพฉาย คือฟังก์ชันการแปลงฟูริเยร์ 2 มิติของฟังก์ชันเดิม ดามแนวภาพฉายที่ตัดผ่านจุดกำเนิด

ดังนั้นหากมีข้อมูลฟังก์ชันการแปลงฟูริเยร์ของฟังก์ชันภาพฉายจำนวนอนันด์มุมแล้ว เราจะทราบค่าทุก ๆ จุดของ *F(X,Y)* บนระนาบ (X,Y) และเมื่อทราบ *F(X,Y)* สามารถคำนวณ กลับเป็น *f(x,y)* ด้วยการแปลงฟูริเยร์ผกผันดังนี้

$$f(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(X,Y)e^{i(Xx+Yy)} dXdY$$
 (2.21)

สมการ (2.21) สามารถเขียนให้อยู่ในระบบพิกัดเชิงมุมได้เป็น

$$f(x,y) = \frac{1}{4\pi^2} \int_{0-\infty}^{2\pi} \int_{-\infty}^{\infty} F(R,\theta) e^{iR(x\cos\theta + y\sin\theta)} R dR d\theta$$
 (2.22)

โดยที่  $F(R, \theta)$  เทียบเคียงได้กับฟังก์ชัน  $F_{\theta}(R, S)|_{\theta}$  ซึ่งจากทฤษฎีโปรเจคชัน-สไลซ์ก็คือ  $P_{\theta}$  (R) และด้วยคุณสมบัติการหมุนแบบสมมาดร เราทราบว่า  $F(-R, \theta)$  มีค่าเท่ากับ  $F(-R, \theta)$  ดังนั้น

$$f(x,y) = \frac{1}{4\pi^2} \int_{0-\infty}^{\pi} \int_{-\infty}^{\infty} P_{\theta}(R) e^{iRr} |R| dR d\theta \qquad (2.23)$$

สมการ (2.23) เป็นสมการที่ไม่มีขอบเขตจำกัด (Unbounded function) เนื่องจาก |R| มีค่าลู่ ออก ดังนั้นค่า R จึงควรถูกจำกัดด้วยค่า ๆ หนึ่ง  $|R| \leq \Omega$  กำหนดให้ฟังก์ชันการกรองหรือ ฟิลเตอร์ฟังก์ชัน, H(R) = b(R)|R| โดยที่

$$b(R) = \begin{cases} 1 & where |R| \le \Omega \\ 0 & where |R| > \Omega \end{cases}$$
 (2.24)

กำหนดให้ช่วงห่างของการเก็บข้อมูลตามแนวขวาง (Lateral sampling) มีค่าเป็น 'a' ดัง นั้นจากทฤษฎีการสุ่มตัวอย่าง (Sampling theorem) จะได้ว่า

$$\Omega = 2\pi f_{max} = \frac{\pi}{a} \tag{2.25}$$

จากสมการ (2.23) แทนค่า |R| ด้วย *H(R)* และใช้ทฤษฎีคอนโวลูชัน (Convolution) จะได้สม การการสร้างภาพเสมือน (Reconstruction formula) เป็น

$$f(x,y) = \frac{1}{2\pi} \int_{0-\infty}^{\pi} p_{\theta}(\tau) h(x\cos\theta + y\sin\theta - \tau) d\tau d\theta$$
 (2.26)

เมื่อ *h(r)* เป็นการแปลงฟูริเยร์ผกผันของ *H(R)* ซึ่งสามารถเขียนในรูปวิเคราะห์ (Analytic form) ได้เป็น

$$h(r) = \begin{cases} \frac{\Omega^2}{2\pi} & , r = 0\\ \frac{1}{2\pi} \left[ \frac{2\Omega}{r} \sin(\Omega r) + \frac{2}{r^2} \cos(\Omega r) - \frac{2}{r^2} \right] & , r \neq 0 \end{cases}$$
 (2.27)

ฟิลเดอร์ฟังก์ชัน h(r) สามารถเขียนเป็นรูปไม่ต่อเนื่อง  $h(r_{k}=ak)$  เมื่อ k=0,1,2,...,N-1 ได้เป็น

$$h(0) = \frac{\pi}{2a^2}$$

$$h(r_k) = -\frac{2}{\pi k^2 a^2} \qquad เมื่อ k เป็นเลขคี่$$

$$h(r_k) = 0 \qquad \qquad เมื่อ k เป็นเลขคู่$$

$$(2.28)$$

สมการ (2.28) คือฟิลเตอร์ฟังก์ชันของรามาชานเดรียน (Ramachandran, 1971) ซึ่งมีลักษณะที่ แกว่งมาก ต่อมาเชพพ์ (Shepp, 1974) และโลแกน (Logan) แนะนำฟิลเตอร์ฟังก์ชันที่แกว่ง น้อยลงซึ่งทำให้ผลการสร้างภาพเสมือนดีขึ้น

$$h(r_k) = -\frac{4}{\pi a^2 (4k^2 - 1)}$$
 ,  $k = 0, \pm 1, \pm 2, ..., \pm (N - 1)$  (2.29)

สมการนี้เรียกว่าฟิลเดอร์ฟังก์ชันเชพพ์และโลแกน (Shepp and Logan filter function) ภาพที่ 4 แสดงฟิลเดอร์ฟังก์ชันทั้งสอง ทั้งในสเปซโดเมน (Space domain) และในโดเมนความถึ่ (Frequency domain)

ดังนั้นการประมาณแบบไม่ต่อเนื่องของสมการการสร้างภาพเสมือนด้วยวิธี FBP สามารถเขียนได้เป็น

$$f(x,y) = \frac{a}{2M} \sum_{j=1}^{M} \sum_{k=1}^{N} p_{\theta_j}(r_k) h(x \cos \theta_j + y \sin \theta_j - r_k)$$
 (2.30)

โดยที่ M เป็นจำนวนมุมของการเก็บข้อมูล และ N เป็นจำนวนจุดของการเก็บข้อมูลต่อ 1 มุม

#### ผลการสร้างภาพเสมือน

จากการสร้างภาพเสมือนของ Gaussian profile และ multi-layer top hat profile ด้วย วิธีฟิลเตอร์แบคโปรเจคชัน เมื่อใช้จำนวนการเก็บข้อมูลและปริมาณสัญญาณรบกวนเป็นพารา มิเตอร์ในการสร้างภาพเสมือน พบว่าเปลวเพลิงทดสอบแต่ละแบบมีคุณลักษณะต่างกันทั้งในส เปซโดเมนและโดเมนความถึ่

เลือกใช้รามาชานเครียนฟิลเดอร์ฟังก์ชัน กรณีที่ไม่มีสัญญาณรบกวนจากภาพที่ 7 และ ภาพที่ 8 แสดงให้เห็นว่าเมื่อจำนวนมุมที่เก็บข้อมูลมีคำน้อย ภาพเสมือนที่ได้มีลักษณะไม่เรียบ คล้ายกับมี noise-like pattem เกิดขึ้น ทั้งนี้เนื่องจากฟิลเตอร์ฟังก์ชันที่ใช้นั้นมีคำบวกสูงสุดและ ค่าลบด่ำสุดแตกต่างกันมากในสเปซโดเมน (ภาพที่ 4a) การใช้จำนวนมุมน้อย ๆ ไม่สามารถชด เชยความคลาดเคลื่อนลักษณะเช่นนี้ได้ ก่อให้เกิดลักษณะของ noise-like pattern ในภาพ เสมือน และเมื่อพิจารณาค่าพิกเจอร์ดิสแทนซ์ (ภาพที่ 9) กรณีของ multi-layer top hat นั้นพบ ว่าเมื่อใดก็ตามที่พยายามจับสัญญาณความถี่สูงมาใช้โดยการเพิ่มจำนวนแถบการเก็บข้อมูลเพื่อ ให้ใกล้เคียงกับทฤษฎีการสุ่มตัวอย่าง(sampling theorem) และลดปรากฏการณ์กิบส์อันเนื่อง จากความไม่ต่อเนื่องของฟังก์ชัน ( Bracewell, 1986 ) จำเป็นต้องเพิ่มจำนวนมุมที่เก็บข้อมูล ด้วย มิฉะนั้นจะเกิดลักษณะ noise-like pattern ขึ้นในภาพเสมือน การเลือกใช้ฟิลเดอร์ฟังก์ชันที่ ให้ผลด่างระหว่างคำบวกสูงสุดและค่าลบด่ำสุดน้อยลง เช่น เชพพ์และโลแกนฟิลเดอร์ฟังก์ชัน (ภาพที่ 4c) จึงเป็นอีกทางเลือกหนึ่งเพื่อลด noise-like pattern ซึ่งจะกล่าวถึงในย่อหน้าถัดไป

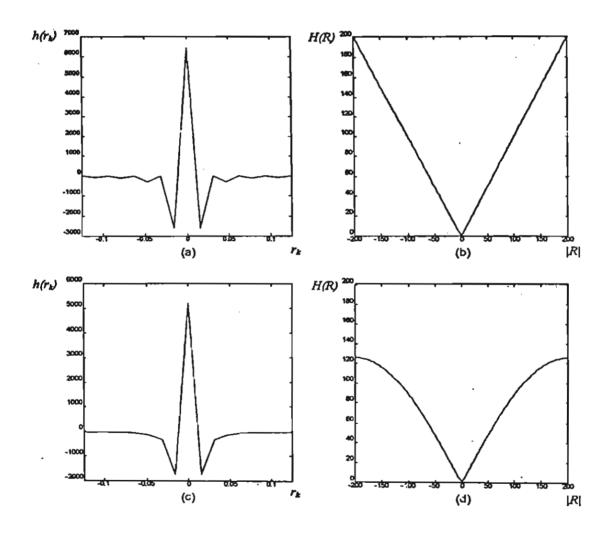
เพื่อแสดงให้เห็นผลกระทบจากสัญญาณรบกวนและการเลือกใช้ฟิลเดอร์ฟังก์ชันที่มีต่อ ผลการสร้างภาพเสมือน ทำการจำลอง Gaussian profile ที่เพิ่มสัญญาณรบกวนเข้าไปใน ฟังก์ชันภาพฉาย โดยกำหนดให้มีขนาดไม่เกิน 1% ของค่าสูงสุดของข้อมูลภาพฉาย (ภาพที่ 10) เนื่องจากการแปลงฟูเรียร์ของเกาส์เซียนฟังก์ชันยังคงเป็นเกาส์เซียนฟังก์ชัน ดังนั้นองค์ ประกอบฟูเรียร์ควรจะลดลงแบบเอกซ์โปเนนเซียลเมื่อเพิ่มความถี่ แต่ในกรณีที่จำลองสัญญาณ รบกวนเข้าไปกลายเป็นว่าองค์ประกอบฟูเรียร์ที่ความถี่สูงก่อให้เกิดสัญญาณรบกวนขึ้น ดังนั้น การเพิ่มจำนวนแถบข้อมูลจึงเป็นการทำให้เกิดสัญญาณรบกวนมากขึ้นในขั้นตอนการสร้างภาพ เสมือน เป็นผลให้ค่าพิกเจอร์ดิสแทนซ์มีค่าสูงดังแสดงในภาพที่ 11 แต่เมื่อเปลี่ยนมาใช้เซพพ์ และโลแกนฟิลเดอร์ฟังก์ชันปรากฏว่าภาพเสมือนที่ได้มีความถูกต้องมากขึ้น ลดสัญญาณรบกวน ได้ดีขึ้น (ภาพที่ 11 และ ภาพที่ 12) ทั้งนี้เพราะว่าเซพพ์และโลแกนฟิลเดอร์ฟังก์ชันไวต่อ สัญญาณความถี่สูงน้อยกว่ารามาซานเดรียนฟิลเดอร์ฟังก์ชัน ดังนั้นในกรณีที่มีสัญญาณรบกวน ควรเลือกใช้เซพพ์และโลแกนฟิลเดอร์ฟังก์ชัน นอกจากนี้ยังทำให้สามารถใช้จำนวนมุมเก็บข้อ มูลที่น้อยลงได้

ที่กล่าวมาข้างต้นเป็นการสร้างภาพเสมือนของฟังก์ชันที่มีลักษณะสมมาตร ในภาพที่ 13 เป็นการสร้างภาพเสมือนของรูปร่าง 2 มิติใด ๆ ด้วยวิธีฟิลเตอร์แบคโปรเจคชัน (ใช้เชพพ์ และโลแกนฟิลเตอร์ฟังก์ชัน) การเพิ่มจำนวนแถบข้อมูลทำให้ปรากฏการณ์กิบส์เนื่องจากความ ไม่ต่อเนื่องของฟังก์ชันลดลง ถ้ามีการเพิ่มจำนวนมุมในการเก็บข้อมูลจะช่วยให้ noise-like pattern เกิดขึ้นน้อยมาก และเนื่องจากฟังก์ชันทดสอบไม่มีการใส่สัญญาณรบกวนเข้าไปการใช้ รามาชานเดรียนฟิลเตอร์ฟังก์ชันจึงน่าจะให้ผลการสร้างภาพเสมือนที่ดีกว่านี้

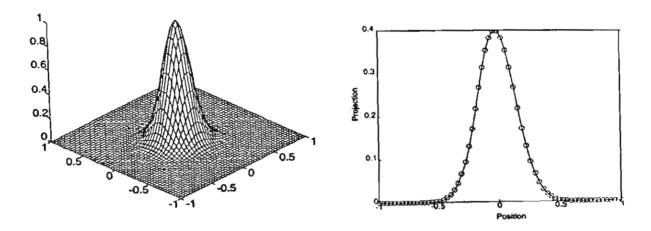
# <u>ข้อวิจารณ์ผลการสร้างภาพเสมือน</u>

การศึกษาและประเมินผลการสร้างภาพเสมือนของค่าคุณสมบัติเฉลี่ยของเปลวเพลิง จำลองด้วยวิธีฟิลเดอร์แบคโปรเจคชันพบว่า วิธีฟิลเดอร์แบคโปรเจคชันมีข้อจำกัดด้านจำนวน ข้อมูลที่ใช้ เนื่องจากจำเป็นด้องใช้จำนวนมุมเพื่อข้อมูลจำนวนมาก ซึ่งอาจเนื่องจากการเลือกใช้ วิธีการคำนวณกลับ วิธีการแปลงทางคณิตศาสตร์ไม่ใช่วิธีที่ดีที่สุดสำหรับเกาส์เซียนฟังก์ชัน จึง ควรมีการปรับปรุงขั้นตอนวิธีและฟิลเตอร์ฟังก์ชันที่ใช้ให้ดีกว่าเดิม

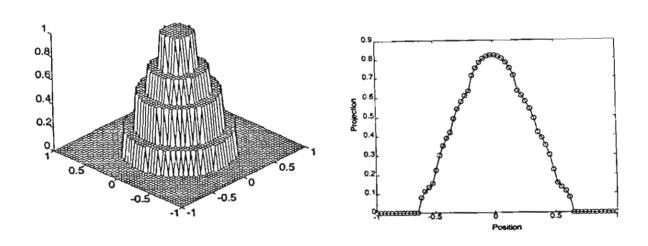
วิธีการอื่น ๆ เช่น pattern recognition และ maximum enropy ซึ่งยังไม่มีการนำมา ประยุกต์ใช้กับงานด้านการเผาไหม้เป็นแนวทางที่น่าสนใจ และจากงานวิจัยด้านเวฟเลทยัง แสดงให้เห็นความคล้ายกันระหว่างปัญหาด้านเวฟเลทและด้านการเผาไหม้อีกด้วย นอกจากนี้ เพื่อให้เหมาะสมกับทางปฏิบัติเช่น เดาเผาในโรงงานอุดสาหกรรม ควรปรับปรุงวิธีโทโมกราฟฟี ให้สามารถใช้กับกรณีที่มีข้อจำกัดในด้านจำนวนมุมที่เก็บข้อมูลด้วย



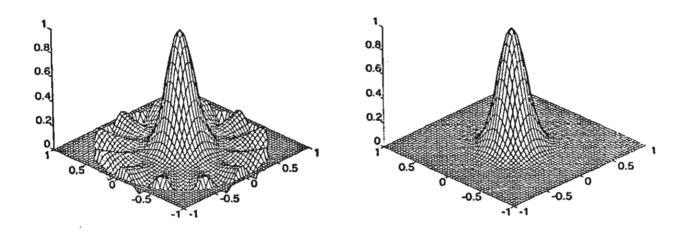
<u>ภาพที่ 4</u> แสดงฟิลเตอร์ฟังก์ชันรามาชานเดรียน (a) ในสเปซโดเมน (b) ในโดเมนความถึ่ แสดงฟิลเตอร์ฟังก์ชันเซพพ์และโลแกน (c) ในสเปซโดเมน (d) ในโดเมนความถึ่



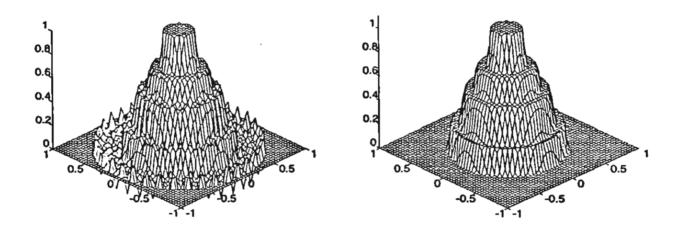
ภาพที่ 5 ฟังก์ชันจริงและภาพฉายของ Gaussian



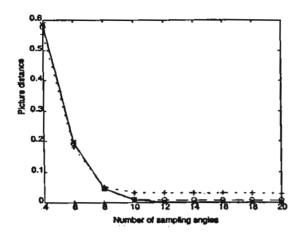
ภาพที่ 6 ฟังก์ชันจริงและภาพฉายของ multi-layer top hat

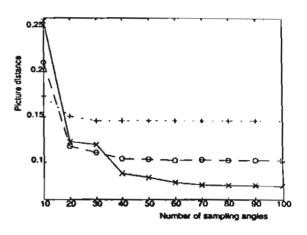


<u>ภาพที่ 7</u> ภาพเสมือน Gaussian profile จากวิธี FBP ด้วยจำนวนมุมการเก็บข้อมูลด่างกัน (a) 64 แถบ, 6 มุม (b) 64 แถบ, 18 มุม



<u>ภาพที่ 8</u> ภาพเสมือน multi-layer top hat profile จากวิธี FBP ด้วยจำนวนมุมการเก็บข้อมูลด่างกัน (a) 64 แถบ, 18 มุม (b) 64 แถบ, 180 มุม



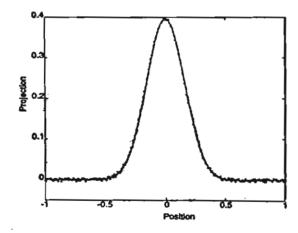


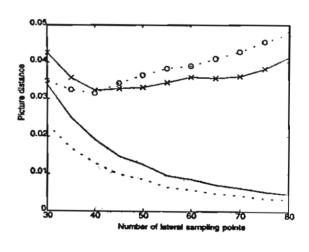
<u>ภาพที่ 9</u>เปรียบเทียบค่าพิกเจอร์ดิสแทนซ์ของภาพเสมือนที่สร้างด้วยจำนวนมุมต่าง ๆ กัน

(a) Gaussian profile

(b) multi-layer top hat profile

---+--- 32 แถบ --- O--- 64 แถบ





ภาพที่ 10 ภาพฉายของ Gaussian profile ที่มีสัญญาณรบกวน 1%

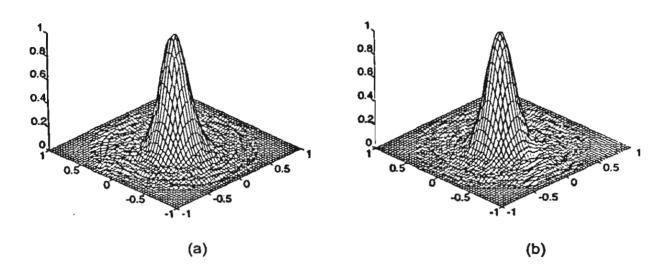
ภาพที่ 11 ผลกระทบของสัญญาณรบกวน และชนิดของฟิลเดอร์ฟังก์ชันที่มีต่อพิกเจอร์ดิส แทนซ์เมื่อจำนวนมุมเท่ากัน (90 มุม)

----- RMCD เมื่อไม่มีสัญญาณรบกวน

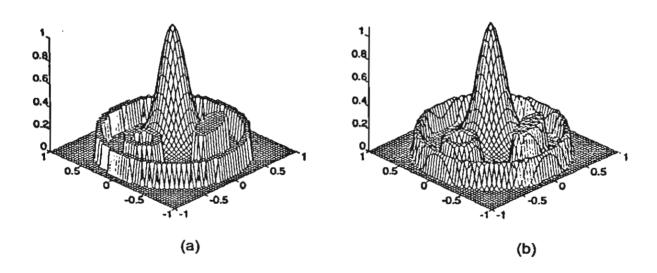
-- -O - - RMCD เมื่อมีสัญญาณรบกวน

— X — SL เมื่อมีสัญญาณรบกวน

--- SL เมื่อไม่มีสัญญาณรบกวน



ภาพที่ 12 ภาพเสมือน Gaussian profile ที่มีสัญญาณรบกวน เมื่อใช้ฟิลเดอร์ฟังก์ชันด่างกัน (a) รามาชานเดรียน ( 64มุม, 90 แถบ ) (b) เชพพ์และโลแกน ( 64 แถบ, 90 มุม )



ภาพที่ 13 Off-center Gaussian profile ที่มีวัตถุกีดขวาง

- (a) ฟังก์ชันจริง
- (b) ภาพเสมือนเมื่อใช้เชพพ์และโลแกน ( 64 แถบ, 90 มุม )

#### บทที่ 3

#### การสร้าง Local-PDF ด้วยวิธีโทโมกราฟฟี

### การวัดความแปรปรวนของค่าการส่งผ่าน

ค่าการส่งผ่านวิถี S (Transmittance of path S),  $au_S$ , ของก๊าซองค์ประกอบในเปลว เพลิง สามารถเขียนเป็นตัวแปรสโตแคสติก (Stochastic variable) แบบไม่ต่อเนื่อง  $au_{S,k}$  (Sivathanu, 1993) หมายถึงโอกาสที่จะพบก๊าซองค์ประกอบที่มีค่าการส่งผ่าน  $au_{S,k}$  อยู่ในช่วง  $au_{S,k} - \left( \Delta au_{S,k} / 2 \right)$  และ  $au_{S,k} + \left( \Delta au_{S,k} / 2 \right)$  มีค่าความน่าจะเป็น  $P_k$  เนื่องจากค่าการส่ง ผ่านมีค่าอยู่ระหว่าง 0 ถึง 1 ดังนั้น  $au_{S,l} = 0$ ,  $au_{S,k} = k \Delta au_S$ ,  $au_{S,K} = 1$  และ  $\sum P_k \left( k = 1 \dots K \right)$  มีค่าเป็น 1 นิยามของฟังก์ซันความหนาแน่นความน่าจะเป็นแบบไม่ต่อ เนื่อง (Discrete probability density function) ,  $PDF( au_{S,k})$  โดย

$$P_k \equiv PDF(\tau_{S,k}) \Delta \tau_S \tag{3.1}$$

ดังนั้นค่าโมเมนด์อันดับที่ n สามารถคำนวณจากนิยามของโมเมนด์ (Tennekes, 1992)

$$M_{S,n} = \int \tau_S^n PDF(\tau_S) d\tau_S \cong \sum_{k=1}^K \tau_{S,k}^n P_k$$
 (3.2)

เมื่อ  $M_{\mathrm{s},n}$  คือค่าโมเมนต์อันดับที่ n และ  $PDF(\tau_S)$  คือค่าฟังก์ชันความน่าจะเป็นแบบต่อ เนื่องของ  $\tau_S$ 

หากแบ่งพิจารณาค่าการส่งผ่านวิถี S ออกเป็นค่าการส่งผ่านไม่เท่ากัน 2 ค่าคือ  $au_{S1}$  และ  $au_{S2}$  มีวิถี S1 และ S2 ตามลำดับ ค่าการส่งผ่านรวมคือ

$$\tau_S = \tau_{S1} \tau_{S2} \tag{3.3}$$

ดั้งสมมุติฐานให้การกระจายด้วของ  $au_{S1}$  และ  $au_{S2}$  มีความเป็นอิสระต่อกัน (Statistically independent) ดังนั้นด้วแปร  $au_S$  ,  $au_{S1}$  และ  $au_{S2}$  สามารถเขียนให้อยู่ในรูปของโมเมนด์ได้เป็น

$$M_{S,n} = M_{S1,n} M_{S2,n} (3.4)$$

ค่าโมเมนต์ทางขวามือของสมการ (3.4) อิงอยู่บนวิถี S1 และ S2 ตามลำดับ อาศัยผลของ สมการ (3.4) โมเมนต์วิถีรวม,  $M_{\text{s,n}}$ , สามารถเขียนให้อยู่ในเทอมของโมเมนต์อิงวิถีหนึ่งหน่วย,  $m_{\text{l,n}}$  และ  $m_{\text{2,n}}$ , ได้ดังนี้

$$M_{S,n} = (m_{1,n})^{S1} (m_{2,n})^{S2} - \ln M_{S,n} = S1(-\ln m_{1,n}) + S2(-\ln m_{2,n})$$
(3.5)

เนื่องจากค่าโมเมนด์,  $m_{1,n}$  และ  $m_{2,n}$ , เป็นคุณสมบัติภายใน (Intensive property) จึงสามารถ เขียนเป็นฟังก์ชัน  $m_n(r,s)$  ในระบบพิกัด (r,s) และเรียก  $m_n(r,s)$  ว่าโลคัลโมเมนด์ พิจารณา ภาพที่ 3 สามารถเขียนสมการ (3.5) เสียใหม่เป็น

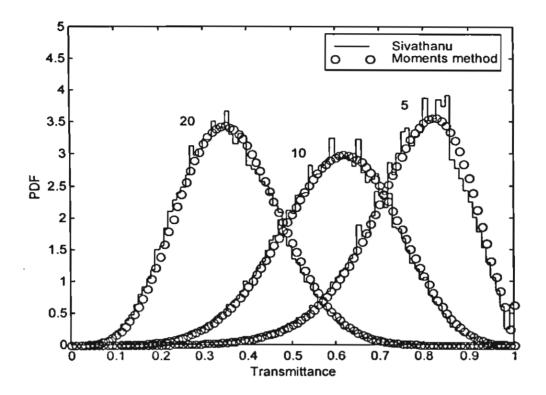
$$p_{\theta}(r) = -lnM_{\theta,n}(r) = \int_{-\infty}^{\infty} -lnm_n(r,s)ds = \int_{-\infty}^{\infty} f(r,s)ds$$
 (3.6)

สมการ (3.6) เป็นสมการอินทิเกรทแสดงความสัมพันธ์ระหว่าง โมเมนด์วิถีรวมและโลคัล โมเมนด์ วิธีการแกัสมการ (3.6) เพื่อหาโลคัลโมเมนด์จากโมเมนต์วิถีรวมที่กำหนดให้ แสดงไว้ ในหัวข้อถัดไป

## ความถกต้องของความสัมพันธ์โลคัลโมเมนต์ - โมเมนต์วิถีรวม

โมเมนด์วิถีรวมที่คำนวณจากโลคัลโมเมนต์ด้วยสมการ (3.5) แสดงเปรียบเทียบกับค่า โมเมนด์วิถีรวมที่คำนวณด้วยวิธีฟังก์ชันความหนาแน่นความน่าจะเป็นแบบไม่ต่อเนื่อง (Discrete probability density function, DPF) (Sivathanu, 1993) โดยนำโลคัลโมเมนต์มา ซ้อนกัน 5, 10 และ 20 ชั้น จะได้ค่าโมเมนต์วิถีรวมที่สอดคล้องกันดังแสดงในภาพที่ 14

ผลสรุปจากภาพที่ 14 เป็นการยืนยันความถูกต้องของสมการ (3.5) ซึ่งเป็นสมการพื้น ฐานที่สำคัญของโทโมกราฟฟีแบบต่อเนื่อง



ภาพที่ 14 แสดงค่าโมเมนด์วิถีรวมที่คำนวณจากสมการ (3.5) เปรียบเทียบกับวิธี DPF

### ปัญหาโมเมนด์

เมื่อสามารถหาค่าโลคัลโมเมนด์,  $m_n(x_0,y_0)$ , จากการสร้างภาพเสมือนด้วยวิธีโทโม กราฟฟีแล้ว ต่อไปต้องคำนวณเป็น PDF โดยสมการที่ (3.2) ซึ่งเป็นปัญหาโมเมนด์คือกำหนด คำโมเมนต์ให้คำนวณหา PDF เขียนสมการ (3.2) ในรูปเมทริกซ์

$$\begin{bmatrix} \tau_{1}^{0} & \tau_{2}^{0} & \cdots & \tau_{K}^{0} \\ \tau_{1}^{1} & \tau_{2}^{1} & \cdots & \tau_{K}^{1} \\ \vdots & \vdots & & \vdots \\ \tau_{1}^{I-1} & \tau_{2}^{I-1} & \cdots & \tau_{K}^{I-1} \end{bmatrix} \begin{bmatrix} P_{1} \\ P_{2} \\ \vdots \\ P_{K} \end{bmatrix} = \begin{bmatrix} m_{0} \\ m_{1} \\ \vdots \\ m_{I-1} \end{bmatrix}$$
(3.7)

โดยที่ค่าการส่งผ่าน  $au_r = 0$  และ  $au_\kappa = 1$  และค่า  $PDF_k = P_{\kappa}/(\Delta t)$  ในงานวิจัยนี้กำหนดให้  $\Delta t = 0.01$  เมทริกช์ทางช้ายของสมการ (3.7) คือเมทริกช์ของค่าการส่งผ่าน  $P_{\kappa}$  และ  $m_i$  คือ ค่าความน่าจะเป็น และค่าโลคัลโมเมนต์ ตามลำดับ

ในการแก้สมการโมเมนด์ (3.7) เพื่อหาค่า  $P_k$  ใช้วิธีการแยกค่าเอกฐาน (Singular value decomposition, SVD) (William, 1996) โดยกำหนดให้ปัญหานี้เป็นปัญหาที่มีสมการมากกว่า

ด้วแปรไม่ทราบค่า (Overdetermined problem) โดยที่ I > K ผลเฉลย  $P_k$  ที่ได้จึงเป็นผล เฉลยแบบกำลังน้อยสุด (Least square solution)

เขียนสมการ (3.7) ให้อยู่ในรูปอย่างง่ายเป็น

$$AP = m (3.8)$$

เมื่อ A เป็นเมทริกซ์ค่าการส่งผ่าน มีขนาด I x K, P เป็นเวกเตอร์ค่าความน่าจะเป็น และ m คือเวกเตอร์โลคัลโมเมนต์ หลักการของวิธี SVD (Forsythe, 1977; Wilkinson, 1978) คือแยก A ออกเป็น

$$A = U\Sigma V^{T} \tag{3.9}$$

โดยที่ U เป็นเมทริกซ์เชิงตั้งฉาก (Orthogonal matrix) มีขนาด  $I \times I$  และ  $\Sigma$  เป็นเมทริกซ์ที่มี ค่าเฉพาะในแนวเส้นทแยงมุม (Diagonal matrix) มีขนาด  $I \times K$  , V เป็นเมทริกซ์เชิงตั้งฉาก ขนาด  $K \times K$  ด้วยวิธีนี้สามารถคำนวณหาเมทริกซ์ P ในสมการ (3.8) ได้โดย

$$P = V \Sigma^{-1} U^T m \tag{3.10}$$

ดังนั้นค่าความน่าจะเป็น  $P_{k}$  (ซึ่งแปลงเป็น Local-PDF ด้วยความสัมพันธ์  $PDF_{k}=P_{k}/(\Delta t)$ ) สามารถหาได้จากโมเมนด์ m และค่าการส่งผ่าน t

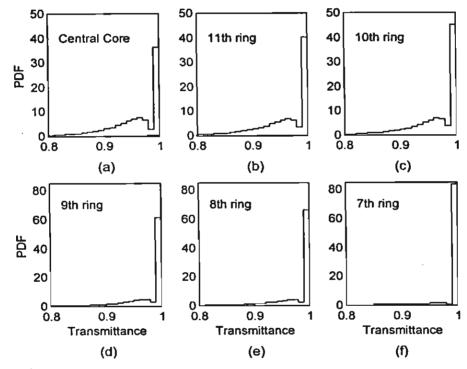
#### การสร้าง Local-PDF ด้วยวิธีฟิลเดอร์แบคโปรเจคชัน

การสร้างภาพเสมือนของ Local-PDF ในเปลวเพลิงเทอร์บิวเลนซ์ จากข้อมูล Path-PDF แบ่งได้เป็น 4 ขั้นตอนดังนี้

- 1. ทำการวัดค่า Path-PDF
- 2. คำนวณข้อมูล Path-PDF ให้เป็นข้อมูลโมเมนด์วิถีรวมด้วยสมการ (3.2)
- 3. ใช้ข้อมูลโมเมนด์วิถีรวมนี้สร้างภาพเสมือนของคำโลคัลโมเมนด์ของเปลวเพลิงด้วยวิธี ฟิลเดอร์แบคโปรเจคชัน
- 4. แบ่ลงค่าโลคัลโมเมนด์เป็นค่า Local-PDF โดยการแก้ปัญหาโมเมนต์ด้วยวิธี SVD

# ผลการสร้าง Local-PDF ของเปลว Propylene

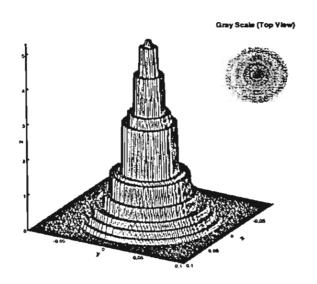
เปลวที่ใช้ทำการทดสอบ เป็นเปลวเพลิงนอนท์พรีมิกซ์ (Non-premixed flame) โพรไพ ลึน/อากาศ (Propylene/air flame) ซึ่งสมมุติให้พื้นที่หน้าตัดของเปลวทดสอบเป็นวงกลมรัศมี 0.0805 เมตร แบ่งออกเป็นวงแหวน 11 วง และรวมกับจุดศูนย์กลางเปลว โดยในแต่ละวงมี การวัด Local-PDF ของค่าการส่งผ่านจากการทดลองจริง ซึ่งใช้โพรบวัดแสง (Optical probe) ที่มีระยะห่างระหว่างหัวโพรบ 0.007 เมตร (Sivathanu, 1993) ดังนั้นในพื้นที่หน้าตัดของเปลว ทดสอบจะมี Local-PDF ทั้งหมด 12 ฟังก์ชันที่แดกต่างกันเรียงเป็นวงในลักษณะสมมาตร



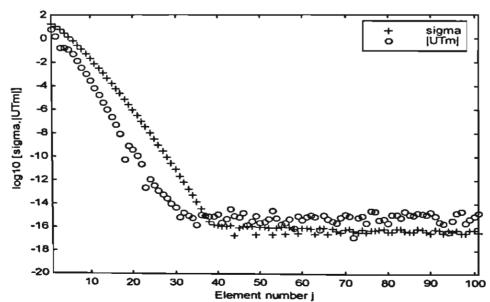
<u>ภาพที่ 15</u> แสดงค่า Local-PDF ของเปลวทดสอบจากการวัด (Sivathanu, 1993)

ภาพที่ 15a แสดง Local-PDF จากการวัดที่ดำแหน่งศูนย์กลางเปลว ภาพที่ 15b เป็น Local-PDF ที่วงแหวนวงที่ 11 ซึ่งอยู่ถัดออกมาจากศูนย์กลางเปลว และภาพที่ 15c เป็นค่าที่ วงแหวนวงถัดออกมาเรื่อย ๆ ภาพ 3 มิดิของค่าโลคัลโมเมนด์ลำดับที่ 1 ของเปลวสมมาตร จำลอง แสดงในภาพที่ 16 โดยด้านขวาบนของรูปเป็นมุมมองด้านบนของรูป 3 มิดิ แสดง ความแตกต่างของค่าโมเมนต์ด้วยความเข้มสีเทาที่ต่างกัน บริเวณที่มีสีเข้มแสดงถึงค่าโมเมนต์ หรือค่าเฉลี่ยของค่าการส่งผ่านต่ำ ซึ่งหมายถึงบริเวณนั้นมีความทึบแสงมากนั้นเอง นำข้อมูลที่ วัดนี้ไปจำลองเป็นข้อมูลภาพฉาย แล้วใช้วิธี FBP ในการคำนวณกลับเพื่อหาค่าโลคัลโมเมนต์, m(x,y), ในงานวิจัยนี้ได้เลือกจุด x=0 และ y=0 ในการแสดงผล ได้คำนวณโมเมนต์ทั้งหมด 300 ลำดับ ( $m_n$ , n=0 ถึง 299) เพื่อใช้เป็นข้อมูลเพื่อสร้าง PDF แบบไม่ต่อเนื่อง 100 ค่า (PDF,

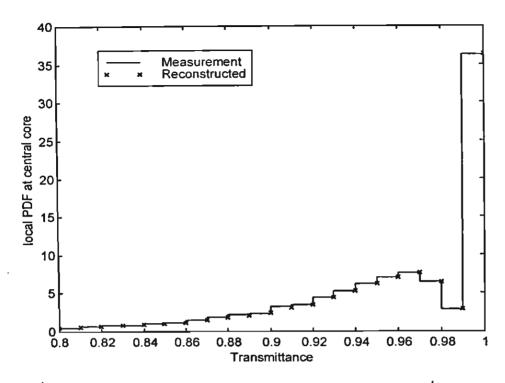
, i=1 ถึง 100) ภาพที่ 17 แสดงค่า  $\log_{10} \Sigma$  และ  $\log_{10} |U^Tm|$  สำหรับแก้ปัญหาโมเมนต์ ด้วยวิธี SVD จะเห็นว่าค่าเอกฐานที่นำมาคำนวณได้มีไม่ถึง 40 ค่าเท่านั้น เนื่องจากเครื่อง คำนวณสามารถบันทึกความละเอียดจุดทศนิยมได้เพียง  $10^{-15}$  ถึง  $10^{-16}$  (ที่ความละเอียดจุดทศนิยมแบบสองเท่า) ค่าที่น้อยกว่านี้จึงเป็นที่ค่าไม่สามารถเชื่อถือได้ ซึ่งเป็นสาเหตุหนึ่งของความ ผิดพลาดของผลเฉลยในการแก้ปัญหาโมเมนต์ ผลการคำนวณ Local-PDF ณ ตำแหน่งศูนย์ กลางเปลวจากภาพเสมือนของเปลวสมมาตรจำลอง เปรียบเทียบกับค่าที่ได้จากข้อมูลการวัดที่ จุดศูนย์กลางเปลว (ภาพที่ 15a) แสดงในภาพที่ 18 ซึ่งมีความผิดพลาดเฉลี่ยประมาณ 0.1% เท่านั้น



<u>ภาพที่ 16</u> ค่าโลคัลโมเมนด์ลำดับที่ 1 ของเปลวจำลองแบบสมมาตร



<u>ภาพที่ 17</u> ค่า  $log_{10} \varSigma$  และ  $log_{10} ig| U^T m ig|$  สำหรับแก้ปัญหาโมเมนด์ด้วยวิชี SVD ณ ตำแน่งศูนย์กลางเปลวของเปลวจำลองแบบสมมาตร

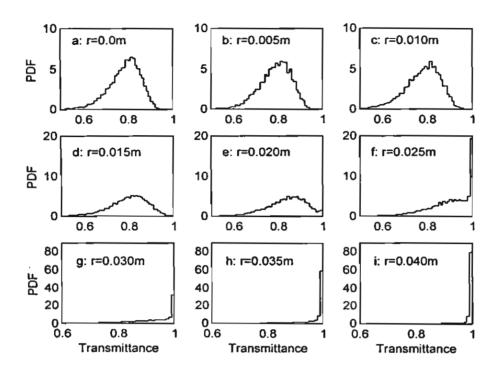


รู<u>ปที่ 18</u> เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF กับคำที่ได้จากการวัด ณ ตำแหน่งศูนย์กลางเปลวของเปลวจำลองแบบสมมาตร

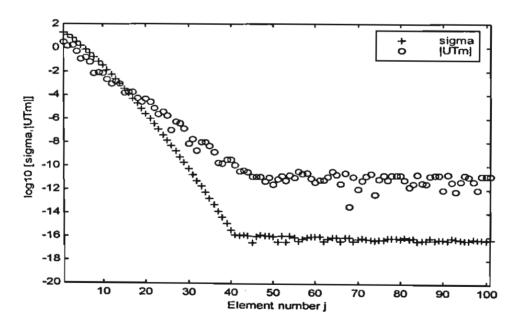
## <u>ผลการสร้างภาพเสมือนจากข้อมลวิถีรวมจริง</u>

ข้อมูลวิถีรวมจริงที่ใช้ในการสร้างภาพเสมือน วัดจากเปลวเพลิงเอททิลีน/อากาศ (Ethylene/air flame) (Sivathanu, 1993) โดยเราสมมุติว่าเปลวที่ทำการวัดมีลักษณะเป็นวง กลมสมมาตรรัศมี 0.0475 เมตร ทำการวัดข้อมูลวิถีรวมจำนวน 19 จุดต่อการฉาย 1 มุม แต่ละ จุดห่างกัน 0.005 เมตร ดังนั้นข้อมูลวิถีรวมจากการฉาย 1 มุมจะมีค่าที่แตกต่างกันทั้งหมด 10 ค่า (ข้างซ้ายและขวาข้างละ 9 จุดรวมกับเส้นที่วัดผ่านศูนย์กลางเปลวอีก 1 เส้น) ค่า Path-PDF ที่วัดได้ที่รัศมีต่าง ๆ ของเปลว แสดงดังภาพที่ 19

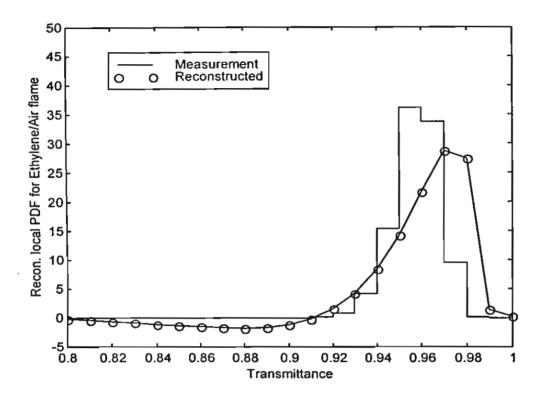
เลือกคำนวณเฉพาะ Local-PDF ที่จุดศูนย์กลางเปลว จากภาพที่ 20 จะเห็นว่ามีค่า โมเมนด์และค่าเอกฐานที่สอดคล้องกันเพียง 8 ค่าเท่านั้น ซึ่งเป็นสาเหตุสำคัญที่ทำให้ผลเฉลย เกิดความผิดพลาด การเปรียบเทียบค่า PDF ที่ได้จากการวัดด้วยโพรบและที่ได้จากการ คำนวณกลับด้วยวิธีโมเมนด์ แสดงดังภาพที่ 21



ภาพที่ 19 แสดง Path-PDF จากการวัดของเปลวเพลิงเอททิลีน/อากาศ (Sivathanu, 1993)



 $\underline{m}$  กาพที่ 20 คำ  $\log_{10} \mathcal{\Sigma}$  และ  $\log_{10} \left| U^T m \right|$  สำหรับแก้ปัญหาโมเมนด์ด้วยวิชี SVD ณ ตำแหน่งศูนย์กลางเปลวของเปลวเพลิงเอททิลีน/อากาศ



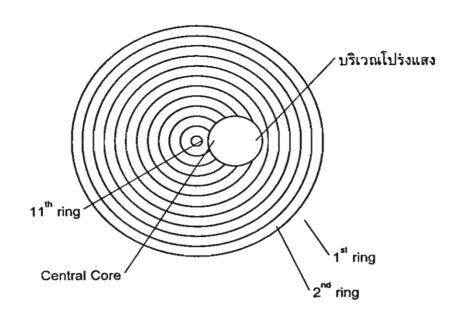
<u>ภาพที่ 21</u> เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF กับค่าที่ได้จากการวัด ณ ดำแหน่งศูนย์กลางเปลวของเปลวเอททิลีน/อากาศ

# ผลการสร้าง Local-PDF ของฟังก์ชันทุดสอบแบบไม่สมมาตร

ในการจำลองฟังก์ชันทดสอบเปลวเพลิงโพรไพลีน/อากาศ (ดูภาพที่ 15) ให้เป็นแบบไม่ สมมาตร (Meekunnasombat, 1998) ทำได้โดยกำหนดให้ความน่าจะเป็นของฟังก์ชันมีค่าการ ส่งผ่านเป็น 1 (ไม่มีการดูดกลืน) อยู่ภายในบริเวณวงกลมรัศมี 0.0175 เมตร ที่มีดำแหน่งศูนย์ กลางอยู่ที่คู่ลำดับ (0.0245,0) ฟังก์ชันความน่าจะเป็นของพื้นที่โปร่งแสงที่เพิ่มเข้าไปคือ

$$P(\tau) = \begin{cases} 1 & \text{i มื่อ } \tau = 1 \\ 0 & \text{i มื่อเป็นค่าอื่น} \end{cases}$$
 (3.1)

ภาพที่ 22 แสดงภาพมุมมองด้านบนของเปลวจำลอง ภาพ 3 มิติของค่าโลคัลโมเมนด์ ลำดับที่ 1,  $-\ln m_1(x,y)$ , ของฟังก์ชันทดสอบแสดงดังภาพที่ 23 และมุมขวาบนแสดงระดับ ความทึบแสงของเปลวจำลอง

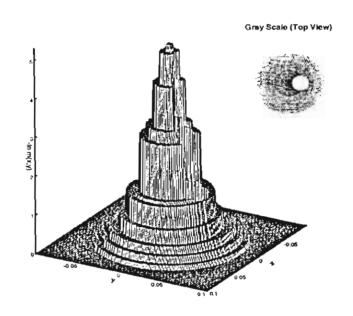


<u>ภาพที่ 22</u> แสดงภาพมุมมองด้านบนและส่วนประกอบของเปลวจำลองแบบไม่สมมาตร

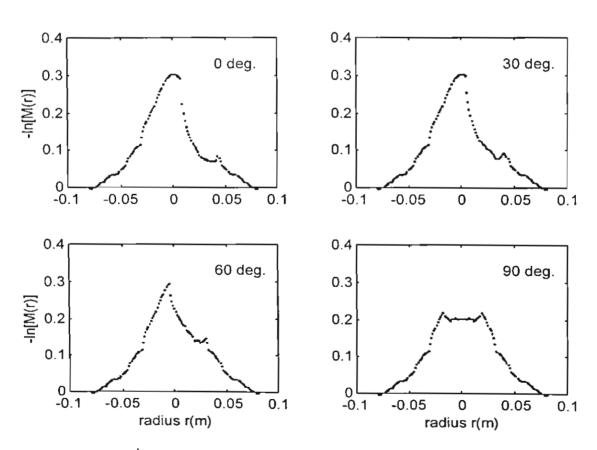
พังก์ชันภาพฉายของโมเมนต์ลำดับที่ 1,  $-\ln M_{\theta,1}(r)$ , ของเปลวจำลอง หาได้จาก การอินทิเกรทฟังก์ชันทดสอบตามแนววิถี ดังวิธีที่แนะนำโดยคัคค์ (Kak) (Rosenfeld, 1982) ในการศึกษาครั้งนี้เราสร้างภาพเสมือนของโมเมนต์ จากข้อมูลโมเมนต์วิถีรวมที่คำนวณได้จาก ทั้งหมด 180 มุม และในแด่ละมุมเก็บข้อมูลจำนวน 128 จุด ดังนั้นเราจะมีฟังก์ชันภาพฉายของ เปลวจำลองทั้งหมด 180 ฟังก์ชันที่แดกด่างกัน และมีข้อมูลทั้งหมด 180 x 128 = 23,040 จุด

ฟังก์ชันภาพฉายของเปลวจำลองที่คำนวณได้จากมุม 0 องศา, 30 องศา, 60 องศา และ 90 องศา แสดงไว้ดังภาพที่ 24 ลักษณะของฟังก์ชันภาพฉายของฟังก์ชันทดสอบที่คำนวณได้ ในแต่ละมุมจะไม่เหมือนกัน เนื่องจากฟังก์ชันทดสอบเป็นฟังก์ชันที่ไม่สมมาตร ข้อมูลโมเมนต์วิถีรวมที่คำนวณได้จากทั้ง 180 มุม ถูกใช้ในการสร้างภาพเสมือนของโมเมนต์ ของเปลวจำลอง ด้วยวิธี FBP ภาพที่ 25 แสดงภาพเสมือน 3 มิติของโมเมนต์ลำดับที่ 1 ของเปลวจำลอง โดยที่มุมขวาบนของรูปเป็นภาพมุมมองด้านบนของภาพเสมือน แสดงความ แดกด่างของค่าการส่งผ่านเฉลี่ยด้วยความเข้มที่ต่างกัน สังเกตที่บริเวณรอบนอกของภาพ เสมือนจะเกิดความผิดพลาดในรูปแบบคล้ายสัญญาณรบกวน (Noise-like pattern error) และ เกิดปรากฏการณ์กิบบ์ส (Gibbs phenomenon) ณ บริเวณที่มีการเปลี่ยนแปลงค่าอย่างกระทัน หัน (Sharp variation) (Meekunnasombat, 1997)

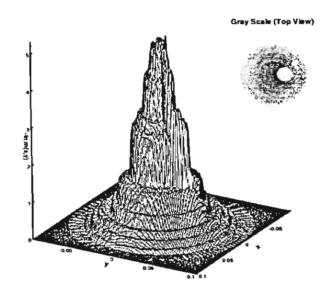
สำหรับการคำนวณหา Local-PDF ในทุกดำแหน่งของเปลวจำลอง เราจำเป็นต้องหา ค่าลำดับของค่าโลคัลโมเมนต์ให้มีจำนวนมากกว่าจำนวนค่า PDF ของค่าการส่งผ่าน (ในที่นี้ กำหนดให้เป็น 100 จุดในช่วงค่าการส่งผ่านเป็น 0 ถึง 1) เพื่อแก้ปัญหาโมเมนต์ดังสมการ (3.7) ด้วยวิธี SVD ในการศึกษาครั้งนี้ได้คำนวณโมเมนต์ทั้งหมด 300 ลำดับ จากข้อมูลโมเมนต์วิถี รวมตั้งแต่ลำดับที่ 1 ถึง 300 ค่าโมเมนต์และค่าเอกฐาน 100 ค่าแรก ที่ใช้คำนวณในขั้นตอน SVD แสดงในภาพที่ 26 จะเห็นได้ว่ามีลักษณะความสอดคล้องกันของข้อมูลเช่นเดียวกับภาพ เสมือนจากเปลวจำลองแบบสมมาตร



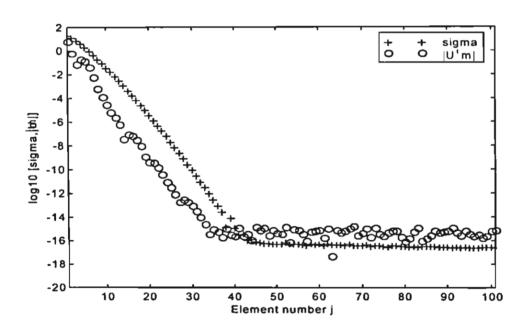
ฐ<u>ปที่ 23</u> ค่าโลคัลโมเมนต์ลำดับที่ 1 ของเปลวจำลองแบบไม่สมมาตร



<u>ภาพที่ 24</u> ฟังก์ชันภาพฉายของเปลวจำลองแบบไม่สมมาดรที่มุมด่าง ๆ

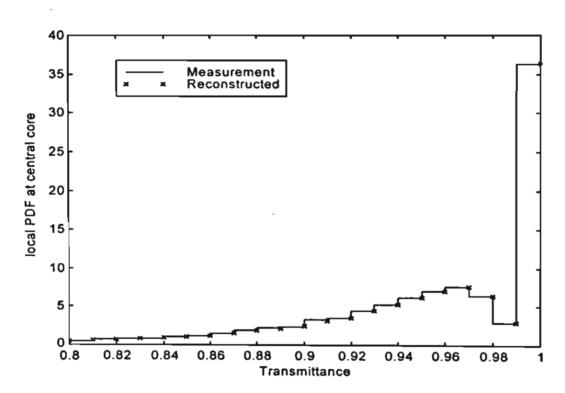


<u>ภาพที่ 25</u> ภาพเสมือนโลคัลโมเมนด์ลำดับที่ 1 ของเปลวจำลองแบบไม่สมมาตร



 $\underline{m}$  กาพที่ 26 ค่า  $\log_{10} \mathcal{\Sigma}$  และ  $\log_{10} \left| U^T m \right|$  สำหรับแก้ปัญหาโมเมนด์ด้วยวิชี SVD ณ ตำแหน่งศูนย์กลางเปลวของเปลวจำลองแบบไม่สมมาตร

ผลการสร้างภาพเสมือนของ Local-PDF ณ ดำแหน่งศูนย์กลางเปลวของเปลวจำลอง แสดงดังภาพที่ 27 เมื่อเปรียบเทียบกับค่า Local-PDF ที่ได้จากการวัด จะเห็นว่าใกล้เคียงกัน มาก โดยมีความแดกด่างกันไม่ถึง 0.15% (แต่ยังคงมีความแดกด่างกันเล็กน้อยดังแสดงเป็น ตัวเลขในดารางที่ 2) ซึ่งเป็นการยืนยันได้ส่วนหนึ่งว่าการสร้างภาพเสมือนของ Local-PDF จาก เปลวเพลิงไม่สมมาตร ด้วยวิธีการแปลงโมเมนต์ให้ผลการคำนวณที่ถูกด้องเชื่อถือได้ อย่างไร ก็ตามการแก้ปัญหาโมเมนต์ยังคงมีความผิดพลาดเนื่องมาจากวิธี SVD ต้องการจำนวนลำดับ ของโมเมนต์มากกว่านี้ (ต้องการให้ปัญหามีสมการมากกว่าตัวแปรมาก ๆ) และข้อจำกัดด้าน ความละเอียดจุดทศนิยมของเครื่องคำนวณ ทำให้ไม่สามารถนำข้อมูลที่มีค่าน้อยจนเครื่อง คำนวณไม่สามารถคำนวณ (น้อยกว่า 10<sup>-14</sup>) ไปใช้ในการแก้สมการปัญหาโมเมนต์



รูปที่ 27 เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF กับค่าที่ได้จากการวัด ณ ตำแหน่งศูนย์กลางเปลวของเปลวจำลองแบบไม่สมมาตร

<u>ดารางที่ 2</u> ผลการสร้างภาพเสมือนของ Local-PDF เทียบเป็นตัวเลขกับค่าที่ได้จากการวัด ณ ดำแหน่งศูนย์กลางเปลว

| ค่าการส่งผ่าน | ค่า PDF ที่วัดได้ | ค่า PDF จากภาพเสมือน |  |
|---------------|-------------------|----------------------|--|
| 0.85          | 1.1025            | 1.0263               |  |
| 0.86          | 1.2183            | 1.2268               |  |
| 0.87          | 1.4986            | 1.5394               |  |
| 0.88          | 1.8290            | 1.8485               |  |
| 0.89          | 2.1996            | 2.0891               |  |
| 0.90          | 2.3926            | 2.5110               |  |
| 0.91          | 3.2616            | 3.1749               |  |
| 0.92          | 3.4881            | 3.5192               |  |
| 0.93          | 4.4238            | 4.4060               |  |
| 0.94          | 5.3151            | 5.3090               |  |
| 0.95          | 6.2379            | 6.2286               |  |
| 0.96          | 7.0739            | 7.0622               |  |
| 0.97          | 7.5803            | 7.5692               |  |
| 0.98          | 6.5057            | 6.5042               |  |
| 0.99          | 2.9465            | 2.9545               |  |
| 1.00          | 36.2862           | 36.3361              |  |

#### บทที่ 4

## วิธีโทโมกราฟฟีแบบไม่ต่อเนื่อง

## ฟังก์ชันภาพฉาย<u>แบบแถบ</u>

จากสมการ (2.30) สังเกตได้ว่า  $p_{\theta}(r)$  เป็นฟังก์ชันแบบไม่ต่อเนื่องในขณะที่ภาพเสมือน f(x,y) เป็นฟังก์ชันแบบต่อเนื่อง ดังนั้นการสร้างภาพเสมือน f(x,y) ที่สอดคล้องกับค่าจริงจึงจำ เป็นต้องใช้ข้อมูล  $p_{\theta}(r)$  จำนวนมาก ถ้าฟังก์ชันภาพฉายมีจำนวนจำกัด ผลลัพธ์ที่ได้จากการ สร้างภาพเสมือนจึงไม่เป็นผลลัพธ์ที่สอดคล้องกับความเป็นจริง ทั้งนี้เพราะปัญหากลายเป็น ประเภทปัญหาที่มีข้อมูลน้อยเกินไป (Extremely under determined problem) (Louis, 1990) ในการสร้างภาพเสมือนจากข้อมูลที่จำกัดจึงมักทำการแยกฟังก์ชัน f(x,y) ให้เป็นฟังก์ชันแบบ ไม่ต่อเนื่อง และใช้การอินทริเกรทแบบแถบแทนการอินทริเกรทแบบแนววิถี (Buonocore, 1981) ซึ่งวิธีนี้จัดเป็นวิธีโทโมกราฟฟีแบบไม่ต่อเนื่อง (Herman, 1978)

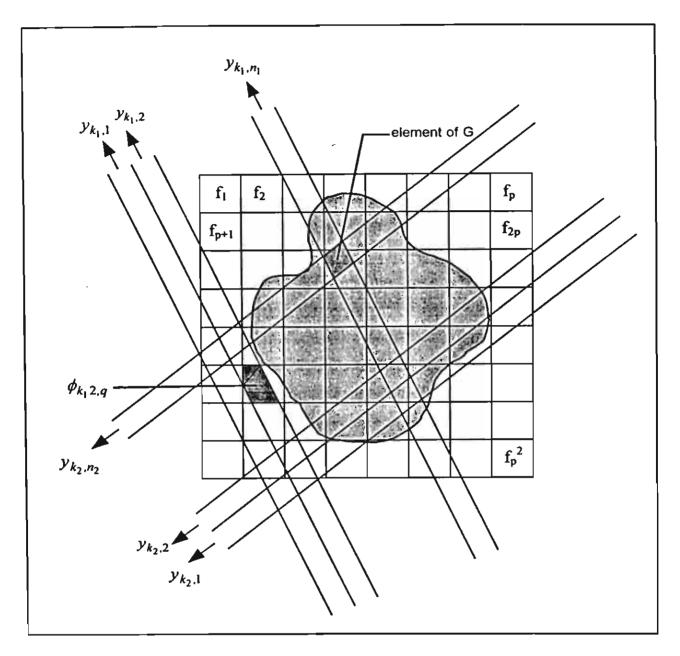
พังก์ชันภาพฉายแบบแถบ สามารถคำนวณได้โดยแบ่งโดเมนที่สนใจ ออกเป็นดาราง สี่เหลี่ยมจัดุรัสเล็ก ๆ (เรียกว่าพิกเซล) และให้ค่าในแต่ละพิกเซลคือ f(x,y) พังก์ชันภาพฉาย แบบแถบคือผลรวมตลอดแนวของผลคูณระหว่างพื้นที่ที่แถบพาดผ่านกับค่าของ f(x,y) ในพิก เซลนั้น ๆ (ดังภาพที่ 28) และพื้นที่ของแต่ละพิกเซลที่แถบพาดผ่านสามารถรวบรวมเขียนเป็น เมทริกซ์พื้นที่,  $\phi$  ดังนี้

$$\phi = \begin{bmatrix} \phi_{11,1} & \phi_{11,2} & \cdots & \phi_{11,q} & \cdots & \phi_{11,p^2} \\ \phi_{12,1} & \phi_{12,2} & \cdots & \phi_{12,q} & \cdots & \phi_{12,p^2} \\ \vdots & \vdots & & \vdots & & \vdots \\ \phi_{kn,1} & \phi_{kn,2} & \cdots & \phi_{kn,q} & \cdots & \phi_{kn,p^2} \\ \vdots & \vdots & & \vdots & & \vdots \\ \phi_{MN,1} & \phi_{MN,2} & \cdots & \phi_{MN,q} & \cdots & \phi_{MN,p^2} \end{bmatrix}$$

$$(4.1)$$

โดยที่  $\phi_{m,q}$  คือค่าของพื้นที่ที่แถบลำดับที่ n ในมุมที่ k พาดผ่านพิกเซลที่ q และ  $p^2$  คือจำนวน พิกเซลทั้งหมด รวบรวมเขียน f(x,y) เสียใหม่ในรูปของเวกเตอร์  $\underline{f}$  โดย

$$\underline{f} = \begin{bmatrix} f_1 & f_2 & \cdots & f_q & \cdots & f_{p^2} \end{bmatrix}^T \tag{4.2}$$



 $\underline{n}$ าพที่ 28 แสดงลักษณะการเก็บข้อมูลวิถีรวมแบบแถบ และการหาคำเมทริกซ์พื้นที่,  $\phi$ 

เมื่อ  $f_q$  คือค่าของฟังก์ชันในพิกเซลที่ q และในทำนองเดียวกันเวกเตอร์ของฟังก์ชันภาพฉาย แบบแถบ  $\underline{y}$  รวบรวมอยู่ในรูป

$$\underline{y} = \begin{bmatrix} y^T(1) & y^T(2) & \dots & y^T(k) & \dots & y^T(M) \end{bmatrix}^T$$
 (4.3)

โดยที่ 
$$y(k) = [y_{k1} \ y_{k2} \ \dots \ y_{kn} \ \dots \ y_{kN}]^T$$

เมื่อ  $y_{kn}$  คือค่าของฟังก์ชันภาพฉายแบบแถบที่ตำแหน่ง n ในมุมที่ k จากการกำหนดตัวแปรสม การ (4.1) ถึง (4.3) ความสัมพันธ์ของ  $\underline{f}$  ,  $\phi$  และ  $\underline{y}$  จึงเขียนได้เป็น

$$\underline{y} = \phi \underline{f} \tag{4.4}$$

ในกรณีที่ข้อมูลมีจำกัด,  $\rho^2 > M \times N$ , ปัญหาการแก้สมการ (4.4) เป็นปัญหาประเภทข้อ มูลน้อย (Under determined problem) ในงานวิจัยนี้ได้ทดลองแก้สมการ (4.4) ด้วยวิธีการ แทนคำซ้ำ (Iteration) และการแก้สมการโดยตรงด้วยการผกผันเมทริกซ์ (Matrix inversion)

#### การสร้างภาพเสมือนด้วยวิธีพืชคณิต

วิธีแลชช์มาร์ช (Kaczmarz method) หรือในบางครั้งเรียกว่าวิธีพีชคณิต (Algebraic reconstruction technique, ART) (Rosenfeld, 1982) เป็นวิธีแบบแทนค่าซ้ำ (Iterative) ชนิด หนึ่งที่ใช้ในการแก้ระบบสมการเชิงเส้น โดยการสมมุติค่าเริ่มต้นของผลเฉลย แล้วทำการฉาย เงาลงบนระนาบหลายมิติ (Hyper-plane) ของสมการเชิงเส้นแต่ละสมการไปเรื่อย ๆ จนกระทั่ง ผลเฉลยที่ได้มีการเปลี่ยนแปลงอยู่ในช่วงที่ยอมรับได้ จึงถือว่าค่านั้นเป็นผลเฉลยของระบบ สมการ ดังที่แสดงรายละเอียดในย่อหน้าถัดไป

พิจารณาสมการ (4.4) และเขียนให้อยู่ในรูปกระจายได้เป็น

$$y_{11} = \phi_{11,1}f_1 + \phi_{11,2}f_2 + \dots + \phi_{11,q}f_q + \dots + \phi_{11,p^2}f_{p^2}$$

$$y_{12} = \phi_{12,1}f_1 + \phi_{12,2}f_2 + \dots + \phi_{12,q}f_q + \dots + \phi_{12,p^2}f_{p^2}$$

$$\vdots$$

$$y_{kn} = \phi_{kn,1}f_1 + \phi_{kn,2}f_2 + \dots + \phi_{kn,q}f_q + \dots + \phi_{kn,p^2}f_{p^2}$$

$$\vdots$$

$$y_{MN} = \phi_{MN,1}f_1 + \phi_{MN,2}f_2 + \dots + \phi_{MN,q}f_q + \dots + \phi_{MN,p^2}f_{p^2}$$

สมการ (4.5) เป็นระบบสมการเชิงเส้น โดยที่  $f_1, f_2, ..., f_{p^2}$  เป็นดัวแปรไม่ทราบค่า หากพิจารณาในแด่ละแถวของระบบสมการ (4.5) จะเห็นว่า ในแต่ละสมการก็คือระนาบหลาย มิติ 1 ระนาบ ที่มีมิติเป็น  $p^2$  การแก้ระบบสมการนี้ด้วยวิธี ART เริ่มด้วยการสมมุติเวกเตอร์ ผลเฉลย,  $f^{(0)}$ , ที่มีขนาด  $p^2$  ซึ่งก็คือจุดพิกัดจุดหนึ่งในระบบพิกัด  $p^2$  มิติ แล้วฉายเงาของ  $f^{(0)}$ ลงบนระนาบ  $p^2$  มิติของสมการปัญหา จะได้เวกเตอร์ผลเฉลยตัวใหม่,  $f^{(1)}$ , แล้ว ฉายเงาของ  $f^{(1)}$  ลงบนระนาบ  $p^2$  มิติของสมการต่อไป จะได้  $f^{(2)}$  ทำการฉายเงาเช่นนี้

ไปเรื่อย ๆ จนค่าของผลเฉลย  $f^{(kn)}$  มีการเปลี่ยนแปลงอยู่ในช่วงเล็ก ๆ ที่ยอมรับได้ ถือว่า  $f^{(kn)}$  เป็นผลเฉลยของระบบสมการซึ่งก็คือเวกเดอร์ภาพเสมือนของฟังก์ชันเริ่มดัน f ที่สนใจ นั้นเอง

กระบวนการข้างต้นสามารถสรุปเป็นสูตรการคำนวณได้ดังนี้

$$f_q^{(kn)} = f_q^{(kn-1)} + \left[ (y_{kn} - w_{kn}) / \sum_{i=1}^{p^2} \phi_{kn,i}^2 \right] \phi_{kn,q}$$
 (4.6)

โดยที่

$$w_{kn} = \sum_{j=1}^{p^2} f_j^{(kn-1)} \phi_{kn,j}$$

จะเห็นได้ว่าผลเฉลยลำดับที่  $kn, f^{(kn)}$ , หาได้จากผลเฉลยลำดับที่ kn-1,  $f^{(kn-1)}$ , บวกกับค่าความเปลี่ยนแปลงเนื่องมาจากการฉาย  $f^{(kn-1)}$  ลงบนระนาบ  $p^2$  มิติของสมการ ลำดับที่ kn ในระบบสมการ (4.5) และหากคำนวณจนครบทุกสมการแล้ว การเปลี่ยนแปลง ของผลเฉลยยังไม่อยู่ในช่วงที่ยอมรับได้ ก็ให้เริ่มการคำนวณจากสมการแรกใหม่อีกครั้ง โดยใช้ ผลเฉลยล่าสุดเป็นค่าเริ่มด้น

## <u>การสร้างภาพเสมือนด้วยวิธีการแยกพิกเชลธรรมชาดิ</u>

วิธีแยกพิกเชลธรรมชาดิเป็นวิธีการแกัสมการโดยตรงด้วยการผกผันเมทริกช์ เริ่มต้น จากการกระจาย f ให้อยู่ในเทอมของพื้นที่ที่แถบพาดผ่านพิกเชล โดยมี x<sub>m</sub> เป็นสัมประสิทธิ์ ของการกระจาย

$$f_{1} = \phi_{11,1}x_{11} + \phi_{12,1}x_{12} + \dots + \phi_{kn,1}x_{kn} + \dots + \phi_{MN,1}x_{MN}$$

$$f_{2} = \phi_{11,2}x_{11} + \phi_{12,2}x_{12} + \dots + \phi_{kn,2}x_{kn} + \dots + \phi_{MN,2}x_{MN}$$

$$\vdots$$

$$f_{q} = \phi_{11,q}x_{11} + \phi_{12,q}x_{12} + \dots + \phi_{kn,q}x_{kn} + \dots + \phi_{MN,q}x_{MN}$$

$$\vdots$$

$$f_{p^{2}} = \phi_{11,p^{2}}x_{11} + \phi_{12,p^{2}}x_{12} + \dots + \phi_{kn,p^{2}}x_{kn} + \dots + \phi_{MN,p^{2}}x_{MN}$$

$$(4.7)$$

หรือเขียนในรูปเมทริกช์ได้เป็น

$$\underline{f} = \phi^T \underline{x} \tag{4.8}$$

เมื่อ  $\underline{x} = \begin{bmatrix} x^T(1) & x^T(2) & \cdots & x^T(k) & \cdots & x^T(M) \end{bmatrix}^T \quad (4.9)$ 

โดยที่  $x(k) = \begin{bmatrix} x_{k1} & x_{k2} & \cdots & x_{kn} & \cdots & x_{kN} \end{bmatrix}^T$ 

แทนค่า  $\underline{f}$  จากสมการ (4.8) ลงในสมการ (4.4) จะได้ว่า

$$\underline{y} = \phi \phi^T \underline{x}$$

$$\underline{y} = G\underline{x} \quad \text{where } G = \phi \phi^T$$
(4.10)

เมทริกซ์ G คือเมทริกซ์พิกเซลธรรมชาติ ในการศึกษาครั้งนี้ใช้วิธี SVD ในการหาเวก เดอร์สัมประสิทธิ์,  $\underline{x}$  จากนั้นแทนค่าลงในสมการ (4.8) เพื่อหาเวกเตอร์ของภาพเสมือน,  $\hat{\underline{f}}$ , ดังสมการข้างล่างนี้

$$\hat{\underline{f}} = \phi^T G^{-1} \underline{y} \tag{4.11}$$

# การประยกต์การแปลงเวฟเลทกับวิธีการแยกพิกเซลธรรมชาดิ

เนื่องจากการสร้างภาพเสมือนด้วยวิธีแยกพิกเซลธรรมชาดิจำเป็นต้องใช้เวลาและหน่วย ความจำของเครื่องคำนวณสูง ในการแก้สมการเมทริกซ์ขนาดใหญ่ (Buonocore, 1981) จึงทำ ให้วิธีนี้ไม่เป็นที่นิยมจนกระทั่งในปี 1994 บาห์เทียร์ (Bhatia, 1994) และคณะ ได้อาศัยคุณ สมบัติการแบ่งสเกล (Scale) การคำนวณของการแปลงเวฟเลท (Wavelet transform) มา ประยุกต์ใช้กับการสร้างภาพเสมือนด้วยวิธีการแยกพิกเซลธรรมชาติ ทำให้วิธีนี้มีประสิทธิภาพ ในการคำนวณมากขึ้น และสามารถขจัดผลของสัญญาณรบกวนได้ดีด้วยคุณสมบัติของการ แปลงเวฟเลท ในการศึกษาครั้งนี้มิได้ลงไปในรายละเอียดของการนำวิธีการแปลงเวฟเลทมา ประยุกต์ใช้ แต่จะแนะนำเพียงหลักการพื้นฐานในการประยุกต์ใช้ เพื่อให้ได้ผลการคำนวณ เบื้องต้นสำหรับใช้ในการศึกษาระดับสูงต่อไป รายละเอียดทางคณิตศาสตร์ของวิธีเวฟเลท สามารถศึกษาได้ในบรรณานุกรม (Burrus, 1998; Mallat, 1989; Newland, 1993)

เวกเตอร์สัมประสิทธิ์  $\underline{x}$  และเวกเตอร์ฟังก์ซันภาพฉายแบบแถบ  $\underline{y}$  สามารถทำการ แยกในอยู่ในรูปหลายสเกล (Multiscale decomposition) ได้โดย

$$\underline{\xi} = NW\underline{x}$$

$$\underline{\psi} = W\underline{y}$$
(4.12)

โดยที่ N คือจำนวนแถบของการฉายต่อ 1 มุม, W คือเมทริกซ์การแปลงเวฟเลท ซึ่งเป็นเมท ริกซ์เชิงตั้งฉาก (Orthogonal matrix) โดยมีคุณสมบัติ  $W^{-1}=NW^T$  ,  $\underline{\xi}$  และ  $\underline{\psi}$  คือเวก เตอร์หลายสเกลของ  $\underline{x}$  และ  $\underline{y}$  ตามลำดับ ซึ่งมีลักษณะดังนี้

$$\underline{\xi} = \left[\underline{\xi}^{T}(h) \quad \underline{\xi}^{T}(h+1) \quad \dots \quad \underline{\xi}^{T}(j) \quad \dots \quad \underline{\xi}^{T}(l) \quad \underline{\xi}^{T}(d)\right]^{T} \quad (4.13)$$

โดยที่ <u>ร</u>ั(j) คือเวกเดอร์สัมประสิทธิ์ในสเกล j และกำหนดให้สเกล h คือสเกลที่ละเอียดที่สุด, สเกล l คือสเกลที่หยาบที่สุด และ d เป็นสเกลพื้นฐานของฟังก์ชัน เวกเตอร์ <u>รั(j)</u> แต่ละสเกล ประกอบไปด้วยค่าสัมประสิทธิ์ที่เกิดจากลำแสงแต่ละเส้นถูกแยกออกเป็นสเกลต่าง ๆ ดังนี้

$$\underline{\xi}(j) = \left[\underline{\xi}_{\theta}^{T}(1,j) \quad \underline{\xi}_{\theta}^{T}(2,j) \quad \dots \quad \underline{\xi}_{\theta}^{T}(k,j) \quad \dots \quad \underline{\xi}_{\theta}^{T}(M,j)\right]^{T} \quad (4.14)$$

โดยที่  $\underline{\xi}_{\theta}(k,j) = \left[ \xi_{kj1} \quad \xi_{kj2} \quad \dots \quad \xi_{kjn_j} \right]^T$  ,  $\xi_{kjn_j}$  หมายถึงค่าสัมประสิทธิ์ที่เกิดจาก ลำแสงแถบลำดับที่  $n_j$ ในมุมที่ k ถูกแยกลงในสเกล j โดยที่

$$n_{j} = \begin{cases} \frac{N}{2^{j}} & \text{for } j \neq d\\ 1 & \text{for } j = d \end{cases}$$

$$\tag{4.15}$$

เวกเดอร์หลายสเกลของฟังก์ชันภาพฉาย,  $\underline{\psi}$ , นิยามในทำนองเดียวกันคือ

$$\underline{\psi} = \left[\underline{\psi}^{T}(h) \quad \underline{\psi}^{T}(h+1) \quad \dots \quad \underline{\psi}^{T}(j) \quad \dots \quad \underline{\psi}^{T}(l) \quad \underline{\psi}^{T}(d)\right]^{T} \tag{4.16}$$

โดยที่ 
$$\underline{\psi}(j) = \left[\underline{\psi}_{\theta}^{T}(1,j) \quad \underline{\psi}_{\theta}^{T}(2,j) \quad \dots \quad \underline{\psi}_{\theta}^{T}(k,j) \quad \dots \quad \underline{\psi}_{\theta}^{T}(M,j)\right]^{T}$$
 (4.17)

uaz 
$$\underline{\psi}_{\theta}(k,j) = \begin{bmatrix} \psi_{kj1} & \psi_{kj2} & \dots & \psi_{kjn_j} \end{bmatrix}^T$$

เมทริกซ์หลายสเกลของเมทริกซ์พื้นที่,  $\phi$ , นิยามโดย

$$\Phi = W\phi \tag{4.18}$$

$$\Phi = \begin{bmatrix} \Phi(h) & \Phi(h+1) & \dots & \Phi(j) & \dots & \Phi(l) & \Phi(d) \end{bmatrix}^T$$
 (4.19)

โดยที่ 
$$\Phi(j) = [\underline{\Phi}(1,j) \ \underline{\Phi}(2,j) \ \dots \ \underline{\Phi}(k,j) \ \dots \ \underline{\Phi}(M,j)]$$
 (4.20)

uat 
$$\underline{\Phi}(k,j) = \begin{bmatrix} \Phi_{kj1} & \Phi_{kj2} & \dots & \Phi_{kjn_j} \end{bmatrix}^T$$

เมทริกซ์หลายสเกลของเมทริกซ์พิกเชลธรรมชาติ, G. นิยามโดย

$$\Gamma = WGW^T = W(\phi\phi^T)W^T = (W\phi)(W\phi)^T = \Phi\Phi^T$$
 (4.21)

จากสมการ (4.10) สามารถแปลงเป็นเมทริกซ์หลายสเกลได้โดย

$$\underline{y} = G\underline{x}$$

$$W\underline{y} = WGW^{-1}W\underline{x}$$

$$\underline{\psi} = (WGW^{T})\underline{\xi}$$

$$\psi = \Gamma\xi$$
(4.22)

ชึ่งจะได้ว่า

และจากสมการการแยกพิกเซลธรรมชาติ (4.8) สามารถแปลงให้อยู่ในรูปเมทริกซ์หลายสเกลได้ เป็น

$$\underline{f} = \phi^T \underline{x} 
= \phi^T W^T W \underline{x} 
= (W\phi)^T \underline{\xi} 
\hat{f} = \Phi^T \xi$$
(4.23)

ชึ่งจะได้ว่า

ในการศึกษาครั้งนี้ใช้การแปลงเวฟเลทแบบดูบิซีร์ 6 (Daubechies-6, D6) (Burrus, 1998) ในการคำนวณเป็นเมทริกซ์หลายสเกล โดยได้รับความอนุเคราะห์โปรแกรมคำนวณจากคุณดำรงศักดิ์ วิรเศรษฐ์ (Wirasaet, 1999)

ขั้นตอนการสร้างภาพเสมือนเริ่มด้วยการแปลงเมทริกซ์ G,  $\phi$  และ  $\underline{y}$  ให้เป็นเมทริกซ์ หลายสเกล  $\Gamma$ ,  $\Phi$  และ  $\underline{\xi}$  ตามลำดับ จากนั้นใช้วิธี SVD แก้สมการเมทริกซ์ (4.22) หาเวก เตอร์สัมประสิทธิ์หลายสเกล,  $\underline{\xi}$ , แล้วแทนค่าลงในสมการสร้างภาพเสมือน (4.23) ก็จะได้เวก เตอร์ภาพเสมือน,  $\underline{\hat{f}}$  วิธีการนี้ยอมให้แก้สมการเมทริกซ์แบบหลายสเกล ซึ่งมีผลดีดือสามารถ ลดพื้นที่หน่วยความจำที่ใช้, สามารถแก้ปัญหาโดยวิธีปรับแต่ง (Adaptive scheme) เฉพาะ บริเวณที่สนใจได้ อย่างไรก็ตามรายละเอียดเหล่านี้อยู่นอกเหนือเนื้อหาของงานวิจัยครั้งนี้

#### บทที่ 5

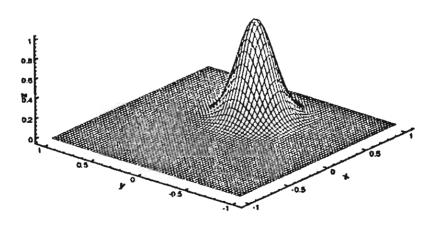
#### ผลการสร้างภาพเสมือนด้วยวิธีโทโมกราฟฟีแบบไม่ต่อเนื่อง

#### ฟังก์ชันทดสอบ

บทนี้มุ่งเน้นในการศึกษาขั้นตอนวิธีการสร้างภาพเสมือนจากข้อมูลวิถีรวมที่จำกัด ด้วย วิธีโทโมกราฟฟีแบบไม่ด่อเนื่อง ฟังก์ชันที่ใช้ทดสอบจึงไม่ซับซ้อนเพื่อให้สามารถเห็นผลการ สร้างภาพเสมือนจากขั้นตอนวิธีด่าง ๆ ได้ชัดเจน ในการศึกษาครั้งนี้ใช้ฟังก์ชันเกาส์เซียนแบบ เยื้องศูนย์ (Off-center Gaussian profile) เป็นฟังก์ชันทดสอบ โดยมีสมการในรูปวิเคราะห์เป็น

$$f(x,y) = e^{-c[(x-x_0)^2 + (y-y_0)^2]}$$
 (5.1)

ค่า c เป็นค่าคงที่เท่ากับ 20 , (x₀, y₀) คือจุดศูนย์กลางของฟังก์ชันเท่ากับ (0.4,0.0) ภาพ 3 มิดิของฟังก์ชันทดสอบ แสดงไว้ดังภาพที่ 29

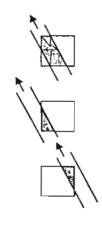


ภาพที่ 29 ฟังก์ชันทดสอบ

# การสร้างเมทริกซ์พื้นที่

ข้อมูลแต่ละหน่วยภายในเมทริกซ์พื้นที่,  $\phi$ , คือขนาดของพื้นที่ที่แถบหนึ่ง ๆ พาดผ่าน พิกเซลหนึ่ง ๆ ซึ่งการคำนวณหาขนาดพื้นที่ในแต่ละหน่วยของเมทริกซ์นั้นค่อนข้างยุ่งยาก เพราะฟังก์ชันทดสอบถูกแยกออกเป็นหลายพิกเซล และแถบจำนวนมากก็มีแนววิถีมาจาก หลาย ๆ มุม จึงทำให้พื้นที่ที่ลำแสงแถบพาดผ่านพิกเซลเกิดขึ้นได้หลายลักษณะ ไม่ว่าจะเป็น สามเหลี่ยม, สี่เหลี่ยม, ห้าเหลี่ยม หรือหกเหลี่ยมใด ๆ จึงของสรุปขั้นดอนการคำนวณหาขนาด พื้นที่ดังนี้

- 1. พิจารณาแนววิถีของแถบผ่านฟังก์ชันทดสอบทีละมุม แล้วเริ่มพิจารณาทีละพิก เชลของฟังก์ชันทดสอบว่า ในพิกเชลนั้นมีลำแสงแถบเส้นใดบ้างที่พาดผ่าน โดยเริ่มจากหาจุด ตัดของสมการเส้นดรงทั้ง 4 ด้านของพิกเชลกำหนดเป็นขอบเขตของพิกเชลไว้ หากสมการเส้น ตรงของแถบไม่ว่าฝั่งซ้ายหรือฝั่งขวา (แถบมีความหนาจึงต้องพิจารณาทั้งสองฝั่งของแถบ) พาด ผ่านขอบเขตของพิกเชลถือว่าแถบนั้นพาดผ่านพิกเชล และนำไปพิจารณาในขั้นต่อไป
- 2. น้ำจุดดัดระหว่างสมการขอบเขตพิกเชลกับสมการของแถบที่พาดผ่านไป พิจารณาเป็นกรณี ๆ ไปว่า ลักษณะการพาดผ่านทำให้เกิดพื้นที่อย่างไรบนพิกเชล ซึ่งสามารถ สรุปได้เป็น 3 กรณีใหญ่ ๆ คือ

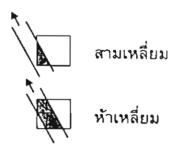


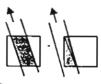
ลำแสงแถบพาดผ่านพิกเซลทั้งสองฝั่งของลำแสง

ลำแสงแถบพาดผ่านพิกเชลทางฝั่งขวาของลำแสง

ลำแสงแถบพาดผ่านพิกเชลทางฝั่งซ้ายของลำแสง

โดยในแต่ลำกรณีก็จะแยกย่อยเป็นกรณีต่าง ๆ ขึ้นอยู่กับลักษณะของพื้นที่ที่เกิดขึ้น เช่น



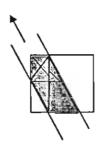


สี่เหลี่ยม



หกเหลี่ยม

ในการคำนวณพื้นที่สามารถทำได้โดยแบ่งพื้นที่ออกเป็นรูปสามเหลี่ยมประกอบกัน และใช้สูดร การหาพื้นที่สามเหลี่ยมจากความยาวด้าน 3 ด้าน เช่น หากพื้นที่การพาดผ่านเป็นรูปห้าเหลี่ยม ให้พิจารณาเป็นสามเหลี่ยมสามรูปประกอบกันดังภาพด้างล่าง



3. นำค่าพื้นที่ที่คำนวณได้บรรจุลงในเมทริกซ์พื้นที่ แล้วพิจารณาพิกเชลถัดไปจน ครบทั้งฟังก์ชัน (p² พิกเชล) และเริ่มการคำนวณในมุมถัดไปของการฉายลำแสงแถบจนครบทุก มุมที่กำหนด

ในการคำนวณหาเมทริกซ์พื้นที่นั้น ปัญหาที่มักจะประสพคือการหาจุดตัดไม่พบ เพราะ จุดตัดแต่ละจุดไม่ว่าจะเป็นจุดตัดขอบเขตของพิกเซล หรือจุดตัดของแถบกับขอบเขตพิกเซล อาจจะอยู่ห่างกันในระยะที่น้อยมาก จึงควรใช้ความละเอียดแบบสองเท่า (Double precision) ในการคำนวณ

# การตรวจสอบความถูกต้องของเมทริกซ์พื้นที่, $\phi$

เนื่องจากเม<sup>ท</sup>ริกซ์พื้นที่เป็นหัวใจหลักของการคำนวณตามขั้นตอนวิธีโทโมกราฟฟีแบบ ไม่ต่อเนื่อง การตรวจสอบความถูกต้องของเมทริกซ์จึงเป็นเรื่องสำคัญ สำหรับการตรวจสอบ ทำได้โดยเปรียบเทียบผลรวมของพื้นที่ที่ลำแสงแถบพาดผ่านพิกเซลทั้งหมดตลอดความกว้าง ยาวของแถบในแต่ละมุม ว่ามีพื้นที่เท่ากับพื้นที่ที่ควรจะเป็นหรือไม่

กำหนดเมทริกซ์  $\lambda$  มีมิติเท่ากับเมทริกซ์พื้นที่  $\phi$  และในแต่ละหน่วยของ  $\lambda$  จะมีค่าเป็น 1 เมื่อแถบพาดผ่านพิกเซล และเป็นศูนย์เมื่อแถบไม่ผ่านพิกเซล ตัวอย่างเช่น พิจารณา ฟังก์ชันใด ๆ ที่ถูกแยกเป็นพิกเซลจัตุรัสจำนวน 9 พิกเซล โดยให้แต่ละพิกเซลมีพื้นที่ 1 หน่วย และมีลำแสงแถบฉายมาจาก 2 มุม คือ มุม 0 องศา และ 90 องศา โดยแต่ละมุมมีลำแสงแถบ 2 แถบ ดังภาพที่ 30

| ļ                   |   |                 | <u> </u>        |
|---------------------|---|-----------------|-----------------|
| 7                   | 8 | 9               | Y <sub>22</sub> |
| 4                   | 5 | 6               | У <sub>21</sub> |
| <br>y <sub>11</sub> |   | y <sub>12</sub> |                 |

ภาพที่ 30 ด้วอย่างการแยกฟังก์ชันเพื่อการพิจารณาเมทริกซ์พื้นที่

คำนวณหาเมทริกซ์พื้นที่  $\phi$  และเมทริกซ์  $\lambda$  ได้เป็น

$$\phi = \begin{bmatrix} 1 & 0.5 & 0 & 1 & 0.5 & 0 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0 & 0.5 & 1 & 0 & 0.5 & 1 \\ 1 & 1 & 1 & 0.5 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0.5 & 1 & 1 & 1 \end{bmatrix}$$

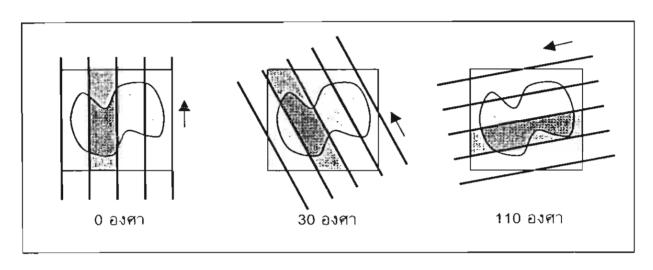
$$\lambda = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

ผลคูณของ  $\phi$  และ  $\lambda^{r}$  คือพื้นที่ควบเกี่ยวกันของลำแสงแถบแต่ละเส้น ดังนี้

$$(\phi)(\lambda^T) = \begin{bmatrix} 4.5 & 1.5 & 3 & 3\\ 1.5 & 4.5 & 3 & 3\\ 3 & 3 & 4.5 & 1.5\\ 3 & 3 & 1.5 & 4.5 \end{bmatrix}$$

เช่น ลำแลงแถบ y<sub>11</sub> ควบเกี่ยวกับ y<sub>11</sub> เป็นพื้นที่ 4.5 หน่วย, ลำแลงแถบ y<sub>11</sub> ควบเกี่ยวกับ y<sub>12</sub> เป็นพื้นที่ 1.5 หน่วย และลำแลงแถบ y<sub>11</sub> ควบเกี่ยวกับ y<sub>21</sub> เป็นพื้นที่ 3 หน่วย (พิกเชลหมาย เลข 1 ; 1 หน่วย, หมายเลข 4 ; 1 หน่วย, หมายเลข 5 ; 0.5 หน่วย, หมายเลข 2 ; 0.5 หน่วย) เป็นต้น สังเกตได้ว่าหน่วยของเมทริกซ์ที่อยู่ในแนวเส้นทะแยงมุม คือผลรวมของพื้นที่ทั้งหมด ที่ลำแสงแถบแต่ละเส้นพาดผ่าน

ในการศึกษาครั้งนี้ กำหนดให้ความกว้างของการฉายในแต่ละมุมเท่ากับความกว้างทั้ง หมดของฟังก์ชันที่ถูกแยกเป็นพิกเซลจัตุรัสแล้ว ดังนั้นในแต่ละมุมของการฉายพื้นที่ที่แถบแต่ละ แถบครอบคลุมจึงไม่เท่ากัน ดังภาพที่ 31



<u>ภาพที่ 31</u> แผนภาพแสดงความแตกต่างของพื้นที่ที่แถบพาดผ่านฟังก์ชันจากแนววิถีในมุมต่าง ๆ

การตรวจสอบความถูกต้อง เริ่มด้วยการคำนวณหาพื้นที่ที่แถบพาดผ่านฟังก์ซันโดย พิจารณาว่าฟังก์ซันมีเพียง 1 พิกเชลที่มีพื้นที่เท่ากับ  $\mathbf{p}^2$  หน่วย (ซึ่งสามารถคำนวณหาได้ง่าย กว่าหาเมทริกซ์พื้นที่มาก) นำมาเทียบกับค่าในแนวทะแยงมุมของเมทริกซ์  $(\phi)(\lambda^T)$  หาก หน่วยใดมีค่าไม่ตรงกันก็แสดงว่าเกิดความผิดพลาดในการคำนวณพื้นที่ที่ลำแสงแถบเส้นนั้น พาดผ่านพิกเชล ด้วยการตรวจสอบในลักษณะนี้ ทำให้สามารถปรับปรุงความถูกต้องของเมท ริกซ์พื้นที่  $\phi$  จนกระทั่งทุก ๆ ค่าที่ทำการตรวจสอบมีความผิดพลาดน้อยกว่า  $10^{-8}$  ซึ่งทำให้ มั่นใจได้ส่วนหนึ่งว่าเมทริกซ์พื้นที่ที่จะใช้ในการคำนวณต่อไปมีความถูกต้อง

## <u>ศักยภาพในการประยุกต์วิธีโทโมกราฟฟีแบบไม่ต่อเนื่อง</u>

จากที่ได้แสดงลักษณะสมบัติของ  $(\phi)(\lambda^T)$  หรืออักนัยหนึ่งคือเมทริกซ์ G แสดงชัด เจนว่า  $G_{11}$  เป็นคำพื้นที่รวมของแถบ  $y_{11}$  ในขณะที่  $G_{12}$  เป็นคำพื้นที่ที่ควบเกี่ยวระหว่าง  $y_{11}$  และ  $y_{12}$  และ  $G_{13}$  เป็นคำพื้นที่ที่ควบเกี่ยวระหว่าง  $y_{11}$  กับ  $y_{13}$  ดามลำดับ

ลักษณะสมบัติของ G แสดงศักยภาพอย่างชัดเจนถึงความสามารถที่จะพัฒนาให้ G รวม เอาความขึ้นต่อกัน (Dependence) ของแต่ละพิกเซล อันจะนำไปสู่การผ่อนปรนเงื่อนไขความไม่ ขึ้นต่อกัน (Independence) ของ Local-PDF ในที่สุด

งานวิจัยนี้จะแสดงเฉพาะคุณสมบัติเบื้องด้นของเมทริกซ์  $\phi$  โดยแสดงการวิเคราะห์หา ขนาดการเก็บตัวอย่างที่เหมาะสม ทั้งนี้เมทริกซ์  $\phi$  มีพารามิเตอร์ที่สำคัญ 3 ค่า คือ จำนวน พิกเซลในการ์ทีเซียน (Cartesian coordinate), จำนวนการเก็บตัวอย่างในแนวขวาง (Lateral sampling) และจำนวนการเก็บตัวอย่างเชิงมุม (Angular sampling)

# ผลของจำนวนพิกเซล (x,, y) ที่มีต่อเมทุริกซ์ $\phi$

จากนิยามของการแยกพิกเชลธรรมชาติของฟังก์ชันทดสอบ f ในสมการ (4.8) เรา สามารถแยก f ออกเป็นสัมประสิทธิ์ x ได้ด้วยวิธี SVD (เมื่อจำนวนข้อมูลวิถีรวมมีค่าไม่มาก กว่าจำนวนพิกเชล : MN < p<sup>2</sup>)

$$\underline{x} = (\phi^T)^{-1} \underline{f} \tag{5.2}$$

แทนเวกเตอร์  $\underline{x}$  ที่คำนวณได้ลงในสมการ (4.8) จะได้ฟังก์ชันประมาณ  $\underline{f}$  ของ ฟังก์ชันทดสอบ  $\underline{f}$  เนื่องจากการคำนวณข้างดันไม่มีผลของฟังก์ชันภาพฉายแบบแถบมาเกี่ยว ข้อง ทำให้ไม่เกิดความผิดพลาดเนื่องจากความไม่สอดคล้องกันของข้อมูลวิถีรวมกับ  $\underline{f}$  ภาพ ที่ 32 แสดงภาพ 3 มิติของ  $\underline{f}$  จากข้อมูล  $\phi$  ที่ใช้ 64 แถบและจำนวนมุม 8 มุม ในช่วง 0 - 180 องศา โดยมีระยะห่างระหว่างมุมเท่ากัน ที่ความละเอียดของการแยกฟังก์ชันด่าง ๆ โดยที่ ภาพที่ 32a แยกที่ความละเอียด 32 x 32 พิกเซล ภาพที่ 32b แยกที่ความละเอียด 64 x 64 พิกเซล และภาพที่ 32c แยกที่ความละเอียด 128 x 128 พิกเซล จะเห็นว่าไม่ว่าฟังก์ชันจะถูก แยกให้ละเอียดมากขึ้นหรือน้อยลง รูปแบบของ  $\underline{f}$  ที่ได้จะมีลักษณะเดียวกัน คือมีความผิด พลาดเป็นรูปแนวเส้น (Streakline error) คล้ายกันทั้ง 3 รูป ซึ่งแสดงให้เห็นว่าการแยกฟังก์ชัน ให้ละเอียดมากขึ้นมิได้ส่งผลให้ผลเฉลยมีค่าถูกต้องมากขึ้น แต่กลับจะเป็นการสิ้นเปลืองหน่วย ความจำในการคำนวณ ทั้งนี้เพราะข้อมูลถูกจำกัดด้วยจำนวนแถบของ  $\phi$  (64 x 8) ดังนั้นใน การเลือกความละเอียดของการแยกฟังก์ชันจึงขึ้นอยู่กับความซับซ้อนของฟังก์ชัน และความจำเป็นในการประเมินภาพเสมือน

## การตรวจสอบความถูกต้องของเมทริกซ์ $\phi$ ด้วยฟังก์ชันทดสอบ

ใช้ฟังก์ชันภาพฉายแบบแถบที่คำนวณได้จากการอินทิเกรทโดยตรง, สมการ (5.3), เป็น ค่าอ้างอิง เพื่อเปรียบเทียบกับฟังก์ชันภาพฉายแบบแถบ, <sub>y</sub>,ที่สร้างจากสมการ (2.4)

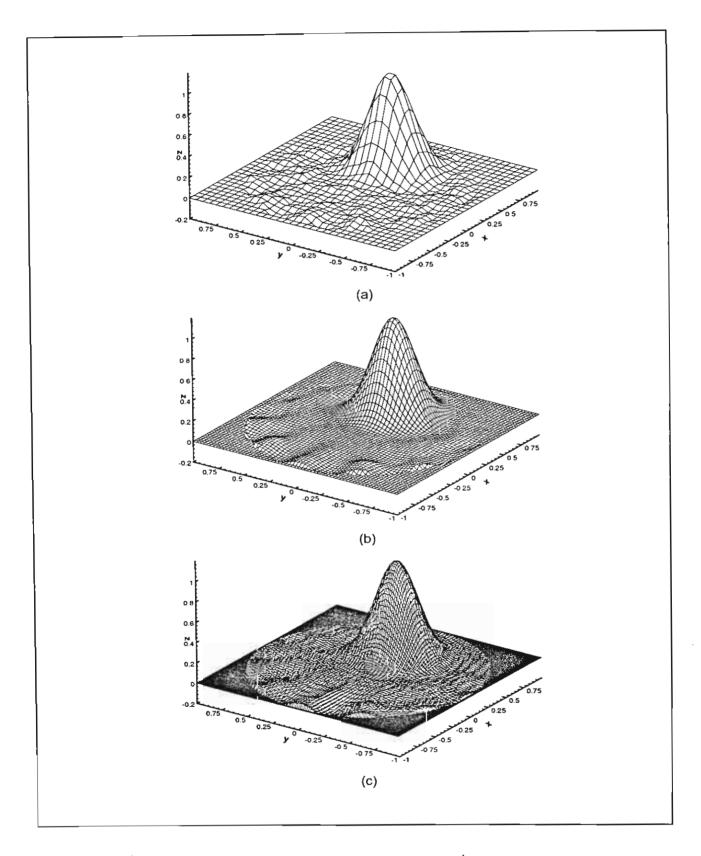
$$p_{s}(r_{i}) = \int_{r_{i}-\frac{1}{2}}^{r_{i}+\frac{1}{2}} p_{\theta}(r) dr = \int_{r_{i}-\frac{1}{2}}^{r_{i}+\frac{1}{2}} \sqrt{\frac{\pi}{c}} e^{-c(r-R)^{2}} dr$$
 (5.3)

โดยที่ 
$$R = \sqrt{x_0^2 + y_0^2} \cos \left\{ \left[ tan^{-1} \left( \frac{y_0}{x_0} \right) \right] - \theta \right\}$$

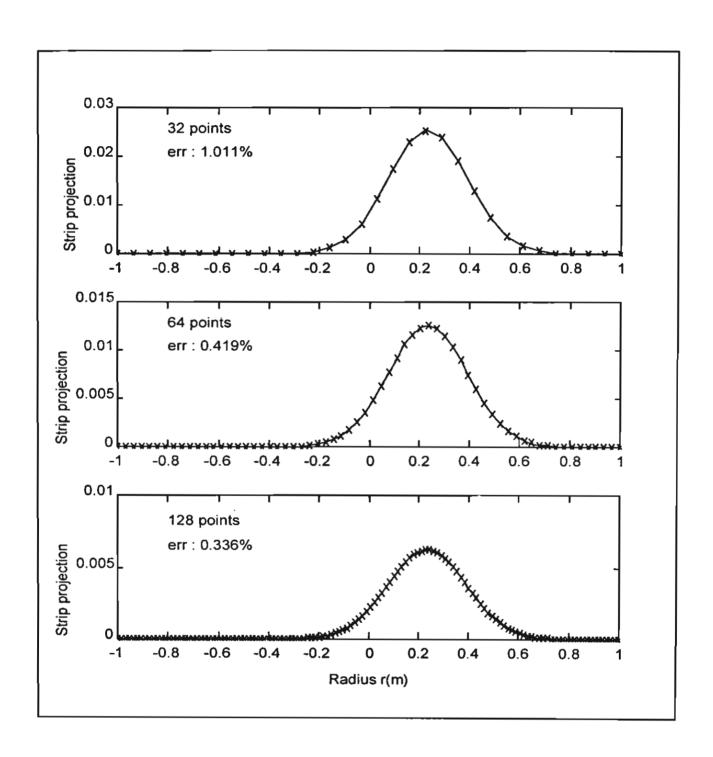
ภาพที่ 33 แสดงฟังก์ชันภาพฉายแบบแถบที่คำนวณจากสมการ (2.4) เปรียบเทียบกับ ค่าอ้างอิง ที่จำนวนการเก็บข้อมูลแนวขวางค่าง ๆ กัน โดยแสดงความผิดพลาดเป็นร้อยละผล ต่างรากกำลังสองเฉลี่ย (Root mean square error) จะเห็นได้ว่าร้อยละผลต่างสูงสุดมีประมาณ ร้อยละ 1 เท่านั้น และมีค่าน้อยลงเรื่อย ๆ เมื่อจำนวนแถบมากขึ้น ซึ่งเป็นการยืนยันความถูก ด้องของเมทริกซ์ภาพฉายได้อีกประการหนึ่ง

ในที่นี้ได้แยกฟังก์ชันออกเป็น 64 x 64 พิกเซล จากภาพที่ 33 จะเห็นวาค่าร้อยละผล ด่างเฉลี่ยลดลงอย่างมากเมื่อจำนวนแถบเพิ่มขึ้นจาก 32 เป็น 64 แถบ แต่จะมีค่าลดลงไม่มาก เมื่อจำนวนแถบเพิ่มขึ้นเป็น 128 แถบ เป็นการแสดงให้เห็นว่าความถูกต้องของฟังก์ชันภาพ ฉายถูกจำกัดด้วยความละเอียดในการแยกฟังก์ชัน (64 x 64 พิกเชล) ดังนั้นหากด้องการให้ ฟังก์ชันภาพฉายมีค่าใกล้เคียงกับค่าจริงมากขึ้น จะต้องเพิ่มทั้งจำนวนแถบและความละเอียดในการแยกฟังก์ชัน

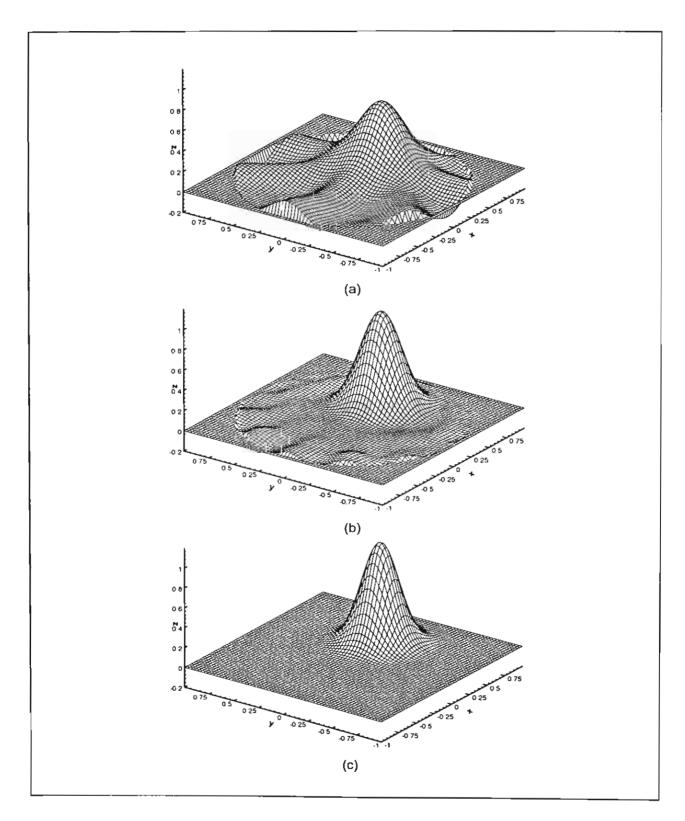
ผลของการเพิ่มจำนวนมุมการเก็บข้อมูลแสดงดังภาพที่ 34 ซึ่งจะเห็นได้อย่างชัดเจนว่า เมื่อเพิ่มจำนวนมุมในการเก็บข้อมูลเพิ่มขึ้น  $\hat{f}$  ที่ได้ก็มีความถูกต้องขึ้นเป็นลำดับ



<u>ภาพที่ 32</u> ผลเฉลยจากข้อมูลวิถีรวม 8 มุม ๆ ละ 64 แถบที่ความละเอียดในการแยก ฟังก์ชันด่างกัน (a) 32 x 32 พิกเซล (b) 64 x 64 พิกเซล (c) 128 x 128 พิกเซล



<u>ภาพที่ 33</u> ฟังก์ชันภาพฉายแบบแถบของฟังก์ชันทดสอบจากการฉายด้วยจำนวนแถบต่าง ๆ

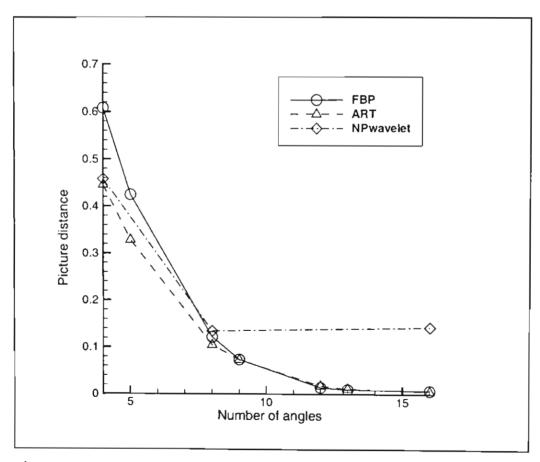


<u>ภาพที่ 34</u> ภาพเสมือนคุณภาพสูงสุดของวิธีการแยกพิกเซลธรรมชาติจากจำนวนมุมการเก็บ ข้อมูลด่าง ๆ กัน (a) 64 แถบ, 4 มุม (b) 64 แถบ, 8 มุม (c) 64 แถบ, 16 มุม

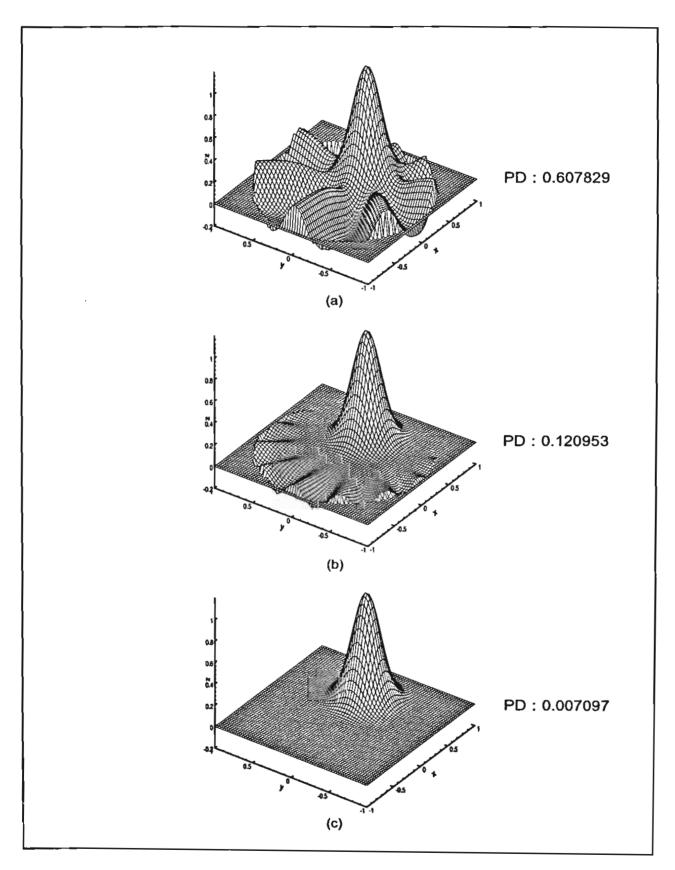
#### <u>ผลการสร้างภาพเสมือน</u>

ภาพที่ 36, 37 และ 38 แสดงภาพ 3 มิติของภาพเสมือนที่สร้างด้วยวิธี FBP, วิธี พีชคณิต (ART) และวิธีการประยุกต์การแปลงเวฟเลทกับการแยกพิกเซลธรรมชาติ (NP) ตาม ลำดับ โดยเป็นภาพเสมือนที่สร้างจากข้อมูลวิถีรวมจำนวน 64 แถบจาก 4, 8 และ 16 มุม ซึ่ง แสดงไว้ในรูปย่อย (a), (b) และ (c) ตามลำดับ

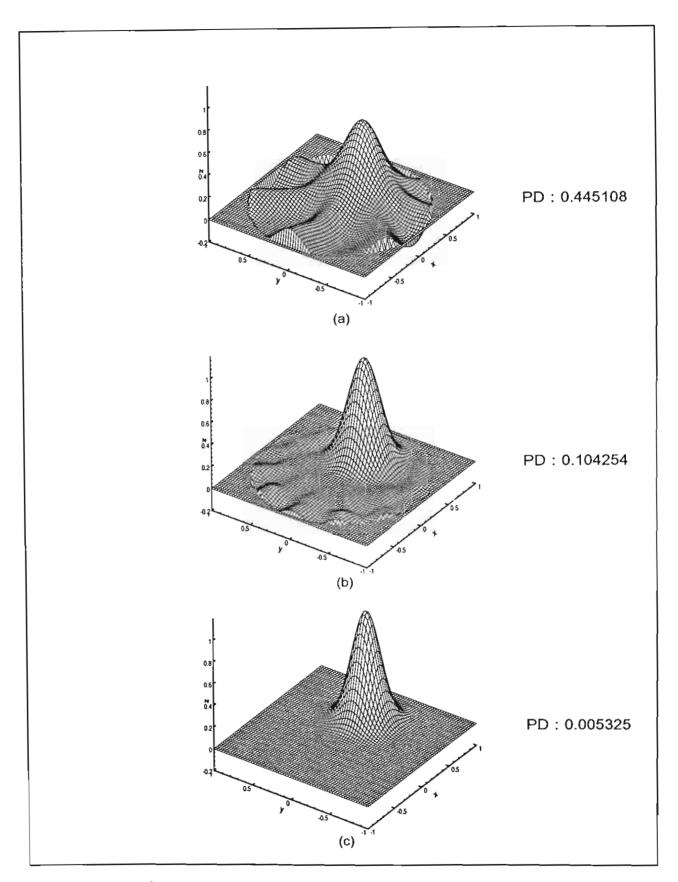
ภาพที่ 35 แสดงค่าพิกเจอร์ดิสแทนซ์เปรียบเทียบภาพเสมือนที่สร้างด้วยวิธี FBP, ART และ NP จะเห็นว่าวิธี FBP เกิดความผิดพลาดมากเมื่อจำนวนข้อมูลมีน้อย ดังสังเกดได้จาก ภาพที่ 36a และ 36b ในขณะที่ภาพเสมือนที่สร้างด้วยวิธี ART มีความผิดพลาดน้อยกว่าที่ จำนวนข้อมูลเท่ากัน แม้ว่าค่าพิกเจอร์ดิสแทนซ์ของภาพเสมือนที่สร้างด้วยวิธี NP จะสูง แต่ ความผิดพลาดที่เกิดขึ้นมีลักษณะคล้ายสัญญาณรบกวนความถี่สูง (ซึ่งต่างจากความผิดพลาด ของวิธี FBP ซึ่งเกิดจากความไม่สมบูรณ์ของข้อมูล) ลักษณะสัญญาณรบกวนเช่นนี้ สามารถ ขจัดออกได้โดยใช้คุณสมบัติของการแปลงเวฟเลท ซึ่งมีการพัฒนาอย่างกว้างขวางในปัจจุบัน รายละเอียดของการประยุกต์เวฟเลทไม่อยู่ในขอบเขตการวิจัยครั้งนี้



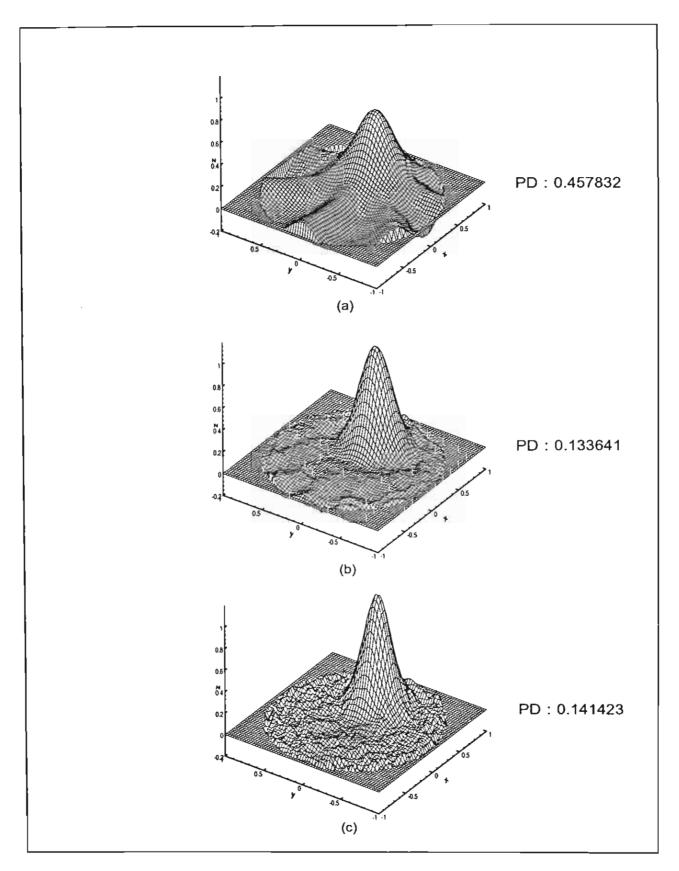
<u>ภาพที่ 35</u> เปรียบเทียบค่าพิกเจอร์ดิสแทนซ์ของภาพเสมือนที่สร้างโดยวิธีโทโมกราฟฟีแบบ ไม่ต่อเนื่องแบบต่าง ๆ



<u>ภาพที่ 36</u> ภาพเสมือนจากวิธี FBP ด้วยจำนวนมุมการเก็บข้อมูลด่าง ๆ กัน (a) 64 แถบ, 4 มุม (b) 64 แถบ, 8 มุม (c) 64 แถบ, 16 มุม



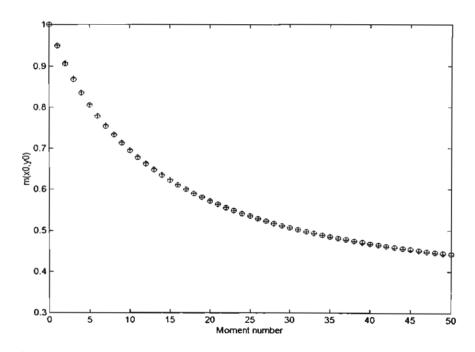
<u>ภาพที่ 37</u> ภาพเสมือนจากวิธี ART ด้วยจำนวนมุมการเก็บข้อมูลต่าง ๆ กัน (a) 64 แถบ, 4 มุม (b) 64 แถบ, 8 มุม (c) 64 แถบ, 16 มุม



ภาพที่ 38 ภาพเสมือนจากการประยุกต์การแปลงเวฟเลทกับวิธี NP ด้วยจำนวนมุมการเก็บ ข้อมูลต่าง ๆ กัน (a) 64 แถบ, 4 มุม (b) 64 แถบ, 8 มุม (c) 64 แถบ, 16 มุม

# การสร้างโลคัลโมเมนต์ด้วยจำนวนข้อมูลจำกัด

ในบทที่ 3 ได้กล่าวถึงการสร้างภาพเสมือนของ Local-PDF จากข้อมูลโมเมนด์วิถีรวมของเปลวเพลิงโพรไพลีน โดยการนำโมเมนด์วิถีรวมมาสร้างภาพเสมือนของโลคัลโมเมนด์ด้วย วิธีฟิลเตอร์แบ็คโปรเจคชัน จากนั้นจึงนำค่าโลคัลโมเมนด์นี้ไปคำนวณเป็นค่า Local-PDF ทั้งนี้ ในการสร้างภาพเสมือนค่าโลคัลโมเมนด์นั้นจำนวนข้อมูลแนวขวางและจำนวนมุมต้องมีมาก เมื่อนำมาคำนวณเป็นค่า Local-PDF จึงได้ค่าที่ใกล้เคียงกับค่าจากการวัดจริง ซึ่งแสดงให้เห็นโดยนัยว่าค่าโลคัลโมเมนด์ที่สร้างมานั้นมีความถูกต้องแม่นยำสูง แต่ในทางปฏิบัติจำนวนมุมในการเก็บข้อมูลมีจำกัด ซึ่งย่อมมีผลต่อการสร้างภาพเสมือน Local-PDF อย่างแน่นอน ดังนั้นในหัวข้อนี้จึงได้ทำการสร้างภาพเสมือนของโลคัลโมเมนต์เมื่อถูกจำกัดด้วยจำนวนข้อมูลแนวขวางและจำนวนมุมด้วยวิธีแยกพิกเซลธรรมชาติ โดยจำกัดจำนวนมุมไว้ที่ 16 มุม จำนวนข้อมูลแนวขวาง 32 จุดต่อมุม และแบ่งโดเมนออกเป็น 64x64 พิกเซล ค่าโลคัลโมเมนต์ที่คำนวณได้จากวิธีนี้จะถูกนำมาเปรียบเทียบกับค่าโลคัลโมเมนต์ที่คำนวณจากวิธีฟิลเตอร์แบ็คโปรเจคชันที่ มีจำนวนข้อมูลสมบูรณ์ ดังแสดงในภาพที่ 39



<u>ภาพที่ 39</u> เปรียบเทียบผลการสร้างภาพเสมือนโลคัลโมเมนด์ด้วยวิธี FBP และ NP

- + FBP M = 180 N = 129 pixel = 128×128
- NP M = 16 N = 32 pixel =  $64 \times 64$

จากภาพเห็นได้ว่าค่าโลคัลโมเมนต์ที่คำนวณด้วยวิธีแยกพิกเซลธรรมชาติเมื่อมีข้อมูล จำกัดมีค่าใกล้เคียงกับค่าที่ได้จากวิธีฟิลเตอร์แบ็คโปรเจคชั่นที่มีข้อมูลสมบูรณ์ และจากค่าที่ได้ นี้จะนำไปสร้างภาพเสมือนของ Local-PDF ต่อไป

# การแก้ปัญหาระบุบสมการที่มีตัวแปรมากกว่าสมการด้วยวิธีเอนโทรปีสูงสุด

การสร้างภาพเสมือนของ Local-PDF ด้วยวิธีแยกค่าเอกฐานจำเป็นด้องมีจำนวนสมการ มากกว่าตัวแปร ดังนั้นจึงใช้โลคัลโมเมนต์ทั้งหมด 300 ลำดับ ทำให้สิ้นเปลืองเวลาในการ คำนวณมาก วิธีเอนโทรปีสูงสุด(Maximum Entropy technique)จึงเป็นอีกวิธีหนึ่งที่น่าสนใจ เนื่องจากต้องการจำนวนโลคัลโมเมนต์ไม่ถึงครึ่งของจำนวน Local-PDF มาใช้ในการคำนวณ สำหรับหลักการของวิธีเอนโทรปีสูงสุดจะกล่าวถึงในย่อหน้าถัดไป

พิจารณากรณีโมเมนต์ที่คำนวณได้มีจำนวนน้อยกว่าจำนวนของความน่าจะเป็นแบบไม่ ต่อเนื่องซึ่งเป็นตัวแปรไม่ทราบค่า (I < K) เราเรียกปัญหานี้ว่า underdetermined problem และผลเฉลยที่ได้มีหลายคำตอบ อย่างไรก็ตามอัลกอริธึมใดๆ ที่หาค่าความน่าจะเป็นแบบไม่ต่อ เนื่องจากโมเมนต์จะต้องเป็นไปตาม consistency conditions (Tikochinsky et al., 1984) และ จากการศึกษาเงื่อนไขดังกล่าวโดย Tikochinsky และคณะแสดงให้เห็นว่า consistent algorithm นั้นนำไปสู่ฟังก์ชันที่มีเอนโทรปีสูงสุดภายใต้เงื่อนไขของโมเมนต์ที่ให้มา เทคนิคนี้ยังตรงกับหลัก การของการลดปริมาณข้อมูล (principle of data reduction) อีกด้วย (Abels, 1972)

เลือกใช้วิธีการของ Maxwell-Boltzman เพื่อหาผลเฉลยของวิธีเอนโทรปีสูงสุด (Sears, 1959) โดยให้เซลล์ P<sub>k</sub> ประกอบจากกล่องที่มีขนาด dt เท่าๆ กัน จำนวน n<sub>k</sub> กล่อง สมการ เงื่อนไข I สมการแรกได้จากสมการโมเมนต์

$$M_{i} = \sum_{k=1}^{K} \tau_{k}^{i} n_{k} d\tau \qquad (i = 1, 2, ..., l)$$
 (5.4)

สมการเงื่อนไขเพิ่มเติมหาได้จากสมการ

$$N = \sum_{k=1}^{K} n_k \tag{5.5}$$

เมื่อ N เป็นจำนวนกล่องทั้งหมด โดยเซลล์ที่ 1 มีกล่องอยู่ n₁ ใบ, เซลล์ที่ 2 มีกล่อง n₂ ใบ, และ เซลล์ที่ k มีกล่อง n<sub>k</sub> ใบ

ให้นิยามเอนโทรปี,S เป็นลอการิธึมของจำนวนวิธีทั้งหมดที่ได้จากการจัดกล่อง N กล่อง ในเซลล์ K เซลล์ โดยมี n<sub>1</sub> กล่องในเซลล์ที่ 1, n<sub>2</sub> กล่องในเซลล์ที่ 2, จนถึง n<sub>k</sub> กล่องในเซลล์ที่ k จะได้ว่า

$$S = log \left[ \frac{N!}{\prod_{k} n_{k}!} \right] = -\sum_{k=1}^{K} n_{k} log \left( \frac{n_{k}}{N} \right)$$
 (5.6)

เพื่อให้เอนโทรปีมีค่าสูงสุดภายใต้เงื่อนไขทั้งหมด I+1 สมการ นิยามให้ objective function ,F เป็นผลบวกของเอนโทรปีกับผลคูณระหว่างแต่ละสมการเงื่อนไขกับตัวคูณ Lagrange  $\gamma$  และ  $\beta_i$  ตามลำดับ

$$F = S + \gamma \left(\sum_{k} n_{k} - N\right) + \sum_{i=1}^{l} \beta_{i} \left(\sum_{k} \tau_{k}^{i} n_{k} d\tau - M_{i}\right)$$

ทำให้ F มีค่าสูงสุดโดยการหาอนุพันธ์ของ F เทียบกับ  $n_k$  แล้วเซตให้อนุพันธ์แต่ละตัวมีค่าเป็น คูนย์ จะได้ผลเฉลย  $n_k$  (k=1,2,...,K) ที่มีเอนโทรปีสูงสุด เขียน  $P_k$  (ความน่าจะเป็น)แทน  $n_k$ 

$$P_{k} = P_{T} \frac{exp\left(\sum_{i=1}^{I} \beta_{i} \tau_{k}^{i}\right)}{\sum_{k=1}^{K} exp\left(\sum_{i=1}^{I} \beta_{i} \tau_{k}^{i}\right)}$$
(5.7)

เมื่อ P<sub>T</sub> เป็นผลรวมของความน่าจะเป็นซึ่งมีค่าเท่ากับหนึ่ง แต่ P<sub>T</sub> มีค่าไม่คงที่ในแต่ละรอบของ การคำนวณ อย่างไรก็ตามจะเข้าใกล้หนึ่งเมื่อการคำนวณให้ค่าที่ลู่เข้าสู่ผลเฉลย จึงถือได้ว่า P<sub>T</sub> เป็นตัวแปรอีกตัวหนึ่ง ในการหาผลเฉลยเอนโทรปีสูงสุดเลือกใช้ขั้นตอนการ iterative ของ Bevensee ดังหัวข้อถัดไป

## Bevensee's Iterative Algorithm

ในปี 1981,Bevensee ได้นำเทคนิคการ iterative ที่มีประสิทธิภาพสูงมาใช้ในการหาผล เฉลยระบบสมการที่มีตัวแปรมากกว่าสมการ ซึ่งภายหลังได้ปรับปรุงให้ดียิ่งขึ้น (Bevensee,1993) โดยแต่ละรอบของการทำ iterative จะมีการแก้เมตริกซ์อยู่ด้วยเสมอทำให้ลู่ เข้าสู่ผลเฉลยได้เร็วขึ้น อัลกอริซึมนี้เริ่มต้นด้วยการสมมติค่า  $\beta_i^{(0)}$  และ  $P_T^{(0)}$  ที่สมเหตุสมผล จากนั้นคำนวณค่าต่าง ๆ ตามขั้นตอนต่อไปนี้

1. คำนวณค่า  $P_k^{\ (I)}$  จากสมการที่ (5.7)

- 2. คำนวณค่า  $M_i^{(I)}$  จากสมการโมเมนต์
- 3. คูณ  $P_T^{\ (0)}$  ด้วยค่า c ที่คำนวณจากสมการที่ (5.8) จะได้ค่า  $P_T^{\ (I)}$

$$c = \frac{\sum \beta_i^{(0)} M_i}{\sum \beta_i^{(0)} M_i^{(1)}}$$
 (5.8)

4. ในทำนองเดียวกัน คูณ  $P_k^{(I)}$  และ  $M_i^{(I)}$  ด้วย c

$$P_k^{(1)} \rightarrow c P_k^{(1)}$$
 ,  $M_i^{(1)} \rightarrow c M_i^{(1)}$ 

5. เพื่อให้ค่า  $M_i^{(I)}$  ที่คำนวณได้มีค่าใกล้เคียงกับค่าจากการวัด  $M_i$  จำเป็นต้องใช้ค่า  $\Delta \beta_i^{(I)}$  ซึ่งทำได้โดยแก้ปัญหาสมการดิฟเฟอเรนเซียลจำนวน I สมการ

$$\Delta M_{i}^{(1)} = M_{i} - M_{i}^{(1)} = \sum_{j=1}^{l} \frac{\partial M_{i}^{(1)}}{\partial \beta_{j}} \Delta \beta_{j}^{(1)}$$
 (5.9)

คำ  $\Delta \beta_i^{(I)}$  ที่คำนวณได้นำมาหาค่า  $\beta_i^{(I)}$  โดย

$$\beta_i^{(1)} = \beta_i^{(0)} + \Delta \beta_i^{(1)} \tag{5.10}$$

ด้วยค่า  $eta_i^{(1)}$  นี้ย้อนกลับสู่ขั้นตอนที่ 1-5 ใหม่อีกครั้งซึ่งจะได้ค่า  $P_k^{(2)}$ ,  $M_i^{(2)}$  และ  $eta_i^{(2)}$ ทำ ซ้ำเช่นนี้ไปเรื่อย ๆ จนกระทั่งได้ค่า  $P_k$  ที่ต้องการโดยพิจารณาจากค่า  $M_i$  ที่ยอมรับได้ สมการ ที่ ( ) สามารถเขียนในรูปเมตริกซ์ได้ดังนี้

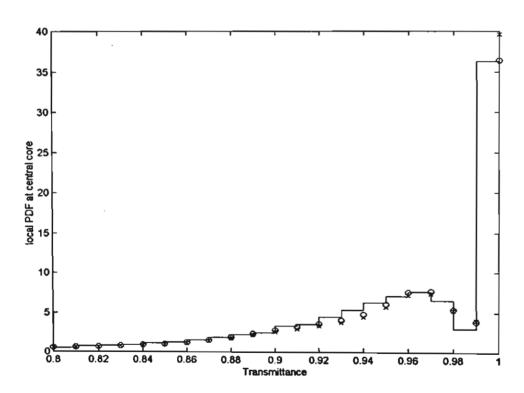
$$\left[\Delta M\right]^{(I)} = \left[A\left(X^{(I)} - \frac{I}{P_T}\left[P\right]^{(I)}\left[P^T\right]^{(I)}\right]A^T\right] \cdot \left[\Delta \beta\right]^{(I)} \tag{5.11}$$

เมื่อ A เป็นเมตริกซ์ค่าการส่งผ่านในปัญหาโมเมนด์ โดยมีขนาด I×K มีสมาชิกเป็น  $\tau_k^{\ i}$  และ X เป็นเมตริกซ์แนวทะแยงมุมหลักโดยมีสมาชิก  $X_i$  เท่ากับ  $P_i^{(I)}$  ตัวยก T หมายถึง ทรานสโพส ของเมตริกซ์หรือเวกเตอร์นั้น และ [] หมายถึงเวกเตอร์ ระบบสมการข้างดันเป็นระบบสมการที่

ill-conditioned และ rank ไม่เพียงพอ งานวิจัยนี้เลือกใช้ Psudoinverse (Lawson, 1974) เพื่อ แก้ปัญหานี้

# ผลการสร้าง Local-PDF ของเปลว Propylene ด้วยข้อมูลจำกัด

ในหัวข้อนี้การคำนวณค่า Local-PDF จากโลคัลโมเมนด์ด้วยวิธีเอนโทรปีสูงสุดจะเลือก ใช้โมเมนด์เพียง 50 ลำดับแรกเท่านั้น ผลการสร้าง Local-PDF ด้วยวิธีแยกพิกเซลธรรมชาติ และวิธีฟิลเตอร์แบ็คโปรเจคชันเมื่อมีจำนวนข้อมูลเท่ากัน จะนำมาเปรียบเทียบกับค่าจากการ วัดจริงดังแสดงในภาพที่ 39 ซึ่งเห็นได้ชัดว่าเมื่อจำกัดจำนวนมุมไว้ที่ 16 มุม จำนวนข้อมูลแนว ขวาง 32 แถบ และจำนวนพิกเซล 64×64 พิกเซล วิธีแยกพิกเซลธรรมชาติจะให้ผลการสร้าง ภาพเสมือนที่ใกล้เคียงกับค่าจากวัดเมื่อเทียบกับวิธีฟิลเตอร์แบ็คโปรเจคชัน โดยเฉพาะที่ ตำแหน่งค่าการส่งผ่านเท่ากับ 1 ซึ่งวิธีฟิลเดอร์แบ็คโปรเจคชันให้ค่าที่คลาดเคลื่อนสูงมาก อย่างไรก็ตามยังคงเห็นความแตกต่างของค่า Local-PDF ทั้งที่โลคัลโมเมนด์ที่คำนวณได้มีค่า ใกล้เคียงกับเมื่อมีข้อมูลสมบูรณ์ ซึ่งแสดงให้เห็นว่าค่าโลคัลโมเมนด์ที่เปลี่ยนแปลงเพียงเล็ก น้อยมีผลกระทบต่อการสร้างภาพเสมือนของ Local-PDF เป็นอย่างมาก



ภาพที่ 40 เปรียบเทียบผลการสร้างภาพเสมือน Local-PDF ของเปลว Propylene กับค่าที่ได้จากการวัด ณ ดำแหน่งศูนย์กลางเปลว

- x FBP M = 16 N = 32 pixel =  $64 \times 64$
- o NP M = 16 N = 32 pixel =  $64 \times 64$

### บทที่ 6

## บทสรุป

รายงานวิจัยได้แสดงวิธีการประยุกต์วิธีโทโมกราฟฟีกับการวินิจฉัยการไหลหลายองค์ ประกอบแบบมีปฏิกิริยาโดยเฉพาะการวินิจฉัยเปลวไฟแบบเทอร์บิวเลนซ์ โดยได้เริ่มศึกษา ความเชื่อมโยงของวิธีโทโมกราฟฟีที่ใช้ในวงการแพทย์กับโทโมกราฟฟีที่ใช้ศึกษาการไหลหลาย องค์ประกอบในเปลวเพลิง

ในระยะแรกของการวิจัยใช้วิธีฟิลเตอร์แบคโปรเจคชันคำนวณหาลักษณะโปรไฟล์ของ ค่าเฉลี่ยคุณสมบัติทางเทอร์โมไดนามิกส์ของเปลวไฟจำลองจากข้อมูลภาพฉาย โดยศึกษาผล กระทบของตัวแปรต่าง ๆ เช่น จำนวนมุม จำนวนเส้นวิถีรวมจากข้อมูลภาพฉาย ตลอดจน ฟิลเตอร์ฟังก์ชันที่ใช้ในกระบวนการสร้างภาพที่มีต่อคุณภาพของภาพเสมือนที่สร้างขึ้น จาก การศึกษาพบว่าจำนวนมุมตัวอย่างต้องมีมากพอที่จะเทียบเคียงกับความถี่ในการเก็บตัวอย่าง ของเส้นวิถีรวม หากจำนวนมุมน้อยเกินไปจะเกิดความคลาดเคลื่อนของภาพเสมือนไปจากภาพ จริง ปรากฏเป็นลักษณะที่คล้ายกับสัญญาณรบกวน งานวิจัยยังได้แสดงผลของสัญญาณรบ กวนต่อการสร้างภาพด้วยวิธีดังกล่าวนี้ด้วย

เนื่องจากปรากฏการณ์ในเปลวไฟมักเป็นการไหลในลักษณะที่เป็นเทอร์บิวเลนซ์ จึงได้ ดำเนินการวิจัยการสร้างภาพเสมือนของความหนาแน่นความน่าจะเป็นของคุณสมบัติทางเทอร์ โมไดนามิกส์โดยวิธีโทโมกราฟฟีด้วย ทั้งนี้ได้แสดงความสัมพันธ์ทางคณิตศาสตร์ของโมเมนต์ ของฟังก์ชันความหนาแน่นความน่าจะเป็นของผลรวมแนววิถีและโลคัลโมเมนต์ ผลการสร้าง ภาพเสมือนยืนยันให้เห็นว่าค่าที่คำนวณได้มีค่าสอดคล้องกับค่า PDF ของฟังก์ชันทดสอบ (Sivathanu, 1993) ดังแสดงในภาพที่ 18 สังเกตได้จากค่าผลรวมความหนาแน่นความน่าจะเป็น มีค่าต่างจาก 1 ไม่เกิน 0.01%

การศึกษาครั้งนี้ได้ดำเนินการพัฒนาขั้นตอนวิธีการสร้างภาพเสมือนของ Local-PDF จากข้อมูล Path-PDF ด้วยวิธีการแปลงโมเมนด์ ซึ่งแบ่งออกเป็น 4 ขั้นตอน คือ

- 1. ทำการวัดค่า PDF วิถีรวม
- แปลงข้อมูล PDF วิถีรวมจากการวัดเป็นโมเมนด์วิถีรวม ด้วยความสัมพันธ์ทาง คณิตศาสตร์ตาม สมการ (3.2)

- นำโมเมนต์วิถีรวมมาคำนวณสร้างภาพเสมือนของโลคัลโมเมนต์ (ซึ่งในการศึกษา ครั้งนี้ใช้ขั้นตอนวิธีฟิลเดอร์แบคโปรเจคชันหรือ FBP) ที่ลำดับต่างๆ เพื่อใช้ในการ แก้ปัญหาโมเมนต์สมการ (3.7)
- 4. ใช้โลคัลโมเมนด์ที่ได้จากการสร้างภาพเสมือนเป็น Local-PDF โดยการแก้ปัญหา โมเมนด์ (ในที่นี้ใช้วิธีการแยกค่าเอกฐานหรือ SVD)

แต่ขั้นดอนวิธีนี้มีข้อจำกัดสำคัญสองข้อคือ

- 1. ข้อมูลโมเมนด์วิถีรวมด้องมีจำนวนมาก (เพราะกระบวนการอยู่บนพื้นฐานการแปลง ฟูริเยร์แบบด่อเนื่อง)
- 2. Local-PDF แต่ละจุดต้องเป็นอิสระต่อกัน (Statistically independent)
  เพื่อผ่อนปรนเงื่อนไขเหล่านี้จึงได้นำวิธีโทโมกราฟฟีแบบไม่ต่อเนื่องมาประยุกด์ใช้กับ
  งานวิจัยนี้

การพัฒนาขั้นตอนวิธีการสร้างภาพเสมือนด้วยวิธีโทโมกราฟฟีแบบไม่ด่อเนื่องเลือก ฟังก์ชันเกาส์แบบเยื้องศูนย์เป็นฟังก์ชันทดสอบ และใช้วิธีพืชคณิต (Algebraic reconstruction techniques, ART) และวิธีการแยกพิกเชลธรรมชาติ (Natural pixel decomposition, NP) สำหรับวิธี NP นั้น ใช้เทคนิคเวฟเลทช่วยในการหาผลเฉลย และได้ใช้วิธี Maximum Entropy แก้ปัญหาโมเมนต์

ทั้งวิธี ART และวิธี NP จำเป็นต้องใช้เมทริกซ์  $\phi$  ที่ถูกต้อง การทดสอบ  $\phi$  ได้อาศัย ลักษณะสมบัติของ G (ในที่นี้คือ  $(\phi)(\lambda^T)$ ) กล่าวคือ สมาชิกบนเส้นทะแยงมุมของ G คือพื้นที่ของแถบแต่ละแถบเช่น  $G_{11}$  คือพื้นที่แถบ  $y_{11}$ ,  $G_{22}$  คือพื้นที่แถบ  $y_{22}$  นอกจากนี้สมาชิก  $G_{ij}$  ยัง แสดงพื้นที่แถบที่ i ที่สัมพันธ์กับพื้นที่ j ดังนั้นเมทริกซ์ G จึงเป็นช่องทางที่จะประมาณความ สัมพันธ์ร่วม (Correlation) ของพิกเซลต่าง ๆ อันจะเป็นผลการผ่อนปรนเงื่อนไขความไม่ขึ้นต่อ กันของ Local-PDF

จำนวนพิกเซลที่ใช้ในการสร้าง  $\phi$  ถูกจำกัดด้วยจำนวนแถบ การเพิ่มจำนวนพิกเซล ภายใต้ข้อจำกัดของจำนวนแถบที่จะทำให้เกิดความคลาดเคลื่อนในลักษณะเป็นเส้น (Streakline error) ในทางตรงกันข้ามการเพิ่มจำนวนแถบจะทำให้ภาพฉายแบบแถบมีค่าเข้าใกล้ค่าที่อินทิเกรท (หรือวัดจริง) มากขึ้น แต่ก็ถูกจำกัดโดยจำนวนพิกเซลที่ใช้สร้าง  $\phi$  เช่นกัน ข้อจำกัดของข้อมูลโทโมกราฟฟีมักจะอยู่ที่จำนวนมุมในการเก็บตัวอย่าง เมื่อมุมน้อยลงจะส่งผลให้การสร้างภาพมีความคลาดเคลื่อนสูง

การทดลองใช้กระบวนการโทโมกราฟฟีแบบไม่ต่อเนื่องด้วยวิธี ART และ เวฟเลท-NP พบว่าให้ค่า  $\hat{f}$  ที่ดีกว่าวิธี FBP ในกรณีที่ข้อมูลเชิงมุมน้อย แต่เมื่อข้อมูลเชิงมุมมากขึ้นวิธี ART และ FBP ให้ผลที่ใกล้เคียงกัน วิธีเวฟเลท-NP มีข้อจำกัดเมื่อข้อมูลมาก และเมื่อดูจาก ผลเฉลยพบว่ามีลักษณะความผิดพลาดเหมือนกับสัญญาณรบกวน (White noise) ซึ่งอาจเกิด

จากวิธีการแก้เมตริกซ์ขนาดใหญ่ ดังนั้นเทคนิคในการแก้ปัญหาเมตริกซ์ขนาดใหญ่จึงเป็นแนว ทางในการทำวิจัยต่อไป

ผลการสร้าง Local-PDF จากข้อมูลโทโมกราฟฟีที่มีปริมาณจำกัดโดยใช้วิธี FBP และ NP นั้นแสดงให้เห็นว่า วิธี NP ให้ผลที่ดีกว่าดังแสดงในภาพที่ 40 จึงสรุปได้ในเบื้องต้นว่า วิธี โทโมกราฟฟีแบบไม่ต่อเนื่องสามารถประยุกต์ใช้กับปัญหาทางการสันดาปได้ นอกจากนี้การ สร้าง PDF จากโมเมนต์ด้วยวิธี Maximum Entropy แสดงให้เห็นชัดเจนว่าฟังก์ชัน PDF ใน กรณีของการสันดาปของเปลวเพลิงขึ้นอยู่กับโมเมนต์อันดับดัน ๆ เท่านั้น

## แนวทางการวิจัยในอนาคต

จากผลการสร้างภาพเสมือนโดยนำการแปลงเวฟเลทมาประยุกด์กับวิธี NP แสดงให้ เห็นว่า หากมีการพิจารณาดัดสัมประสิทธิ์บางตัวในเมทริกซ์ที่ผ่านการแปลงเวฟเลทแล้ว จะ สามารถลดความผิดพลาดของภาพเสมือนลงได้ เนื่องจากลักษณะของความผิดพลาดที่เกิดขึ้น คล้ายกับสัญญาณความถี่สูงขนาดเล็ก ซึ่งโดยคุณสมบัติของการแปลงเวฟเลทสามารถขจัด สัญญาณรบกวนในลักษณะนี้ได้ดี (Newland, 1993) ดังนั้นการศึกษาการแปลงเวฟเลทในระดับ ลึกเพื่อให้เข้าใจถึงรายละเอียดทางคณิดศาสตร์ จึงเป็นสิ่งจำเป็นในการนำการแปลงเวฟเลทมา ประยุกต์กับวิธีโทโมกราฟฟี

เมทริกซ์พิกเซลธรรมชาติ, G, ที่ผ่านการแปลงเวฟเลทเล้ว แม้จะมีขนาดใหญ่แด่มี ลักษณะที่กระจายมาก (Spread) ดังนั้นหากใช้ขั้นตอนวิธีการคำนวณเมทริกซ์ที่สามารถนำ เฉพาะหน่วยที่มีค่าในเมทริกซ์มาคำนวณ โดยละการคำนวณในหน่วยที่ไม่มีค่า จะทำให้ใช้ หน่วยความจำและเวลาในการคำนวณน้อยลงมาก ซึ่งสามารถสร้างภาพเสมือนจากข้อมูลวิถี รวมที่มากขึ้นได้โดยใช้เครื่องคำนวณแบบเดิม ทำให้การสร้างภาพเสมือนด้วยวิธี NP มีประ สิทธิภาพมากขึ้น

การศึกษาความสัมพันธ์ของ Local-PDF ของค่าการส่งผ่านในแต่ละจุดในเปลวเพลิงที่ ทำการวัด จะทำให้การสร้างภาพเสมือนให้ผลเฉลยที่ใกล้เคียงความเป็นจริงมากขึ้น โดยวิธีโท โมกราฟฟีแบบไม่ต่อเนื่อง อนุญาตให้ใส่ความสมการความสัมพันธ์นี้เพิ่มเข้าไปได้ เพราะเป็น การคำนวณสร้างภาพเสมือนที่มีระดับความเป็นอิสระ (Degree of freedom) ของค่าคุณสมบัติ ในแต่ละจุดสูง

### บรรณานุกรม

- Beiting, E.J. "Fast Optical Absorption Tomography." Optics Letters 16 (1991): 1281.
- Bhatia, M.; Karl, W.C.; and Willsky, A.S. "Using Natural Wavelet Bases and Multiscale Stochastic Model for Tomographic Reconstruction." Technical Report LID-P-2196, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 1994.
- Bracewell, R.N. <u>The Fourier Transform and its Applications</u> New York: McGraw-Hill, Inc., 1986.
- Buonocore, M.H.; Brody, W.R.; and Macovski, A. "A Natural Pixel Decomposition for Two-Dimensional Image Reconstruction." <u>IEEE Transactions on Biomedical Engineering</u> Vol. BME-28 No. 2 (February 1981): 69-78.
- Burrus, C.S.; Gopinath, R.A.; and Guo, H. <u>Introduction to Wavelets and Wavelet</u>
  Transform New Jersey, Prentice-Hall, Inc., 1998.
- Chen, F.P., and Goulard, R. "Retrieval of Arbitrary Concentration and Temperature Fields by Multiangular Scanning Techniques." <u>Journal of Quantitative Spectroscopy & Radiative Transfer</u> 16 (1976): 819-827.
- Dasch, C.J. "One-dimensional Tomography: A Comparison of Abel, onion-peeling, and Filter Back-Projection methods." Applied Optics 31 (1992): 1146.
- Emmerman, P.J.; Goulard, R.; Santaro, R.J.; and Semerijian, H.G. "Multiangular Absorption Dianostics of a Turbulent Argon-Methane Jet." <u>AIAA Journal</u> 4 No. 2 (1980): 70.
- Forsythe, G.E.; Michael, A.M.; and Moler, C.B. <u>Computer Methods for Mathematical</u>

  <u>Computations</u> Prentice-Hall series in Automatic Computation, New Jersey:

  Prentice-Hall Internation, Inc., 1977.
- Gore, J.P., and Faeth, G.M. <u>Twenty-First Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh (1986): 1521-1531.
- Hamins, A.; Fischer, S.J.; Kashiwagi, T.; Klassen, M.E.; and Gore, J.P. "Heat Feedback to the Fuel Surface in Pool Fires." Combustion Science and Technology 97 (1994): 37.

- Herman, G.T., discussed following "Reconstructions with Limited Data using Estimation Theory." in Proc. Int. Fed. Inform. Process. Soc. TC-4 Working Conf. Aided Tomography Ultrasonics Med., Technion, Israel Institute of Technology, Haifa, Israel, 8-10 August 1978.
- Hughey, B.J., and Santavicca, D.A. "A Comparison of Techniques for Reconstruction Axisymmetric Reacting Flow Field from Absorption Measurements." Combustion Science and Technology Vol.29 (1982): 167-190.
- Lawson, C.L., and Hanson, R.J. <u>Solving Least Squares Problem</u>: Prentice-Hall, Inc., 1974.
- Louis, A.K., and Maass, P. "A Mollifier Method for Linear Operator Equations of The First Kind." Inverse Problem 6 (1990): 427-440.
- Mallat, S.G. "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation." <u>IEEE Transactions on Pattern Analysis and Machine Intelligence</u>
  Vol. 11 No. 7 (1989): 674-693.
- Meekunnasombat, P.; Vallikul, P.; and Fungtammasan, B. "Evaluation of An Algorithm for Tomographic Reconstruction of Flame-property Profiles." Paper presented at The 11<sup>th</sup> National Mechanical Engineering Conference, Mahanakorn University of Technology, Bangkok, 11-12 December 1997.
- Meekunnasombat, P.; Vallikul, P.; and Fungtammasan, B. "A New Approach for Reconstructing Probability Density Functions in Turbulent Flames from Tomographic Data." Paper presented at The 12<sup>th</sup> National Mechanical Engineering Conference, Chulalongkorn University, Bangkok, 11-13 November 1998.
- Meekunnasombat, P.; Ketnuy, J.; Vallikul, P.; and Fungtammasan, B. "Evaluation of An Algorithm for Discrete Tomographic Reconstruction of Turbulent Flame-property Profiles from Limited Data." Paper presented at The 13<sup>th</sup> National Mechanical Engineering Conference, King Mongkut's Institute of Technology Ladkrabang, Bangkok, October 1999.
- Newland, D.E. <u>An Introduction to Random Vibrations, Spectral and Wavelet Analysis</u>
  3 rd ed., Addison Wesley Longman, Ltd., 1993.
- Nyden, M.R.; Vallikul, P.; and Sivathanu, Y.R. "Tomographic Reconstruction of The Moments of Local Probability Density Functions in Turbulent Flow Fields." <u>Journal of Quantitative Spectroscopy & Radiative Transfer</u> 55 No. 3 (1996): 345-356.

- Ramachandran,G.N., and Lakshminarayana, A.V. "Three dimentional Reconstruction from Radiographs and Electron Micrographs: Application of Convolutions in stead of Fourier Transforms." <a href="Proc. Nat. Acad. Sci. 68">Proc. Nat. Acad. Sci. 68</a> (1971): 2236.
- Rosenfeld, A., and Kak, A.C. <u>Digital Picture Processing</u> 2 nd ed. New York: Academic Press, 1982.
- Shepp, L.A., and Logan, B.F. "The Fourier Reconstruction of A Head Section." <u>IEEE</u>

  <u>Transection on Nuclear Science</u> NS-21 (1974): 21
- Shigehito Suzuki "A Study on The Resemblance between A Computed Tomographic Image and The Original Object, and The Relationship to The Filter Function used in Image Reconstruction." Optik 66 No. 1 (1983): 61-71.
- Sivathanu, Y.R., and Gore, J.P. "A Tomographic Method for the Reconstruction of Local Probability Density Functions." <u>Journal of Quantitative Spectroscopy & Radiative Transfer</u> 50 (1993): 483.
- Snyder, R., and Hesselink, L. Optic Let. 13 (1988): 87.
- Tennekes, H., and Lumley, J.L. A First Course in Turbulence: The MIT Press, 1992.
- Torniainen, E.D.; Lam K.W.; Chojanacki, A.M.; Gouldin, F.C.; and Wolga, G.J. 
  "Tomographic Reconstruction of Absorption Coefficient Distributions from a 
  Limited Number of Laser Absorption Measurements." Chemical and Physical 
  Processes in Combustion. Pittsburgh: Eastern States Section of The Combustion 
  Institute, 1995.
- Torniainen, E.D.; Alexander K.H.; and Frederick C.G. "Tomographic Analysis of Unsteady, Reacting Flows: Numerical Investigation." <u>AIAA Journal</u> Vol. 36 No. 7 (1998): 1270-1278.
- Vallikul, P.; Goulard, R.; Mavriplis, C.; and Nyden, M.R. "Tomographic Reconstruction of Probability Density Functions in Turbulent Flames." Conference Proceedings of The Seventh International Fire Science and Engineering Conference (Interflame'96), St. John's College, Cambridge, England, 26-28 March 1996: 235-243
- Vallikul, P. "Tomographic Reconstruction of Probability Density Function in Turbulent Flames." D.Sc. Thesis The School of Engineering and Applied Sciences, The George Washington University, 1996.
- Wilkinson, J.H. <u>Numerical Software-Needs and Availability</u> D.Jacobs Eds: Academic Press, 1978.

- William, H., et al. <u>Numrical Recipe in C: The Art of Scientific Computing</u> 2 nd ed. Cambridge: Cambridge University Press, 1996.
- Wirasaet, D , and Vallikul, P. "Numerical Solution to 1-D Navier-Stokes Equation Using a Wavelet Collocation Technique." Paper presented at The 3<sup>rd</sup> Annual National Symposium on Computational Science and Engineering (ANSCSE'99), Chulalongkorn University, Bangkok, 24-26 March 1999.

#### ผลงานจากการวิจัย

## 1. การประชุมวิชาการระดับชาดิ

- 1.1 Meekunnasombat, P., Fungtammasan, B., Vallikul, P., "Evaluation of an Algorithm for Tomographic Reconstruction of Flame-Property Profiles" Proc. 11<sup>th</sup> National Mech. Eng. Conf., Mahanakorn University, Bangkok, 11-12 December, 1997.
- 1.2 Meekunnasombat, P., Fungtammasan, B., Vallikul, P., "A New Approach for Reconstructing Probability Density Functions in Turbulent Flames from Tomographic Data" Proc. 12<sup>th</sup> National Mech. Eng. Conf., Chulalongkorn University, Bangkok, 11-13 November, 1998.
- 1.3 Meekunnasombat, P., Ketnuy J., Vallikul P., and Fungtammasan B., "Evaluation of An Algrithm for Discrete Tomographic Reconstruction of Turbulent Flame-property Profiels from Limited Data" The 13<sup>th</sup> National Mech. Eng. Conf., Pattaya, Cholburi, December 1999.

## 2. การประชุมนานาชาติ

Goulard, R., Mavriplis, C., and Vallikul, P., "A Tomographic Algorithm for Reconstructing Local Probability Density Function in Turbulent Flames" Proceedings of The 4<sup>th</sup> Asian-Pacific International Symposium on Combustion and Energy Utilization, Bangkok, Thailand, 8-11 December 1997.

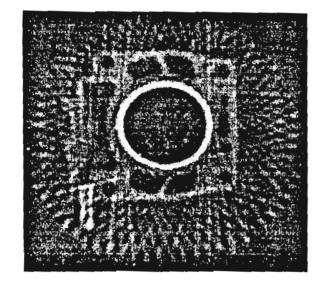
# 3. วารสารวิชาการนานาชาติ (อยู่ระหว่างการแก้ไข)

Vallikul P., Goulard R., and Mavriplis C., "Tomographic Algorithm for Reconstructing Local Probability Density Function in Turbulent Flames" Journal of Quantitative Spectroscopy and Radiative Transfer

ภาคผนวก

# ผลการสร้างภาพเสมือนด้วยวิธี FBP ด้วยข้อมูลจากการทดลอง

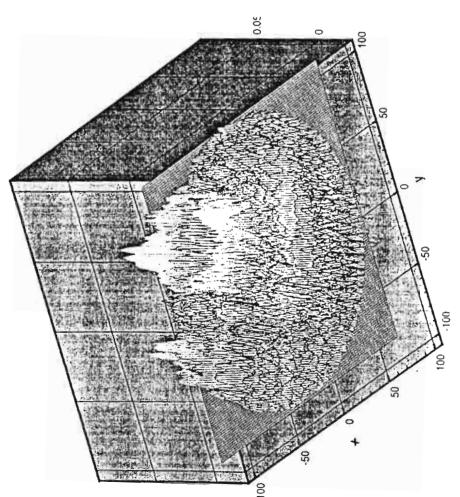
ข้อมูลโทโมกราฟฟีที่ใช้ในการสร้างภาพเสมือนของเสื้อสูบเครื่องยนต์ในหน้าถัดไป ได้ รับความอนุเคราะห์จาก รองศาสตราจารย์สมยศ ศรีสถิตย์ ภาควิชานิวเคลียร์เทคโนโลยี คณะ วิศวกรรมศาสตร์จุฬาลงกรณ์มหาวิทยาลัย ซึ่งเป็นข้อมูลโทโมกราฟฟีจากการวัดด้วยรังสี แกมมา (Gamma-ray) จาก 36 มุม โดยเก็บข้อมูลแต่ละมุมห่างกัน 5 องศา และเก็บข้อมูลแนว ขวางจำนวน 99 จุดต่อ 1มุม โดยมีระยะห่างระหว่างจุดเป็น 2 มิลลิเมตร สร้างภาพเสมือนด้วย วิธี FBP โดยใช้ฟิลเตอร์ฟังก์ชันของเซพพ์และโลแกนในสมการ (2.29) แสดงผลด้วยความ ละเอียด 128 x 128 พิกเชล



R36px.99 'Source file name

99 'Number of ray-sum 36 'Number of projections 2. 'Ray-sum interval (mm) 5.0 'Angular step (degree)

Using the Shepp-Logan filter function



# P. Meekunnasombat P. Vallikul B. Fungtammasan

Department of Mechanical Engineering King Mongkut's Institute of Technology North Bangkok Bangsue Bangkok 10800

# การประเมินอัลกอริธึมสำหรับการสร้าง รูปร่างของคุณสมบัติเปลวเพลิงโดยวิธี โทโมกราฟฟี

# Evaluation of An Algorithm for Tomographic Reconstruction of Flame-property Profiles

บทความฉบับนี้ได้ศึกษาถึง ความถูกต้องในการสร้างภาพเสมือนของคุณสมบัติต่าง ๆ ของ
เปลวไฟที่มีรูปร่างสมมาตรและไม่สมมาตรกับแกน ด้วยวิธีฟิลเตอร์แบ็คโปรเจ็คชั่น โดยรูป
ร่างของเปลวที่ใช้ศึกษาได้จำลองขึ้นด้วยคอมพิวเตอร์ การศึกษาครั้งนี้พยายามหาผลกระทบ
ของรูปร่างเปลว , ความถี่ในการเก็บตัวอย่างตามแนวขวางและแนวเส้นรอบวง และสัญญาณ
รบกวนในการเก็บตัวอย่าง ที่มีผลต่อภาพเสมือนที่สร้างขึ้น โดยได้ทำการประเมินความแคก
ต่างในเชิงปริมาณระหว่างรูปร่างของเปลวด้วอย่างในการทดสอบกับภาพเสมือนที่สร้างขึ้น
จากการศึกษาพบว่า วิธีฟิลเตอร์แบ็คโปรเจ็คชั่นนี้สามารถขจัดสัญญาณรบกวนได้ดี เนื่อง
จากองค์ประกอบที่เป็นความถี่สูงมักถูกกำจัดไปตัวยผลของการกรอง และวิธีนี้สามารถนำไป
ใช้ได้กับการสร้างภาพเสมือนของรูปร่าง 2 มิติโด ๆ

The Filter Back-projection method is used to reconstruct axisymmetrical and asymmetrical flame-property profiles from their computer simulated projection functions. The effect of the mathematical shape of the profiles, the lateral and angular sampling rates and of the measurement noise on reconstruction accuracy are studied. Deviations between the test profile and the reconstructed profile are quantitatively evaluated. Their dependence on the filter functions and on the sampling rates are also examined. It has been found that reconstruction by the Filter Back-projection method is very tolerant of noise, since high frequency terms tend to be removed by filtering and that the method is capable of reconstructing an arbitrary 2-D function.

#### 1. Introduction

Absorption Tomography is an optical measurement technique for monitoring thermodynamic properties in combustion flames. By this method, two-dimensional property fields across a flame are reconstructed from their multi-angular path measurement projection data (see Fig.1). This provides a major advantage over customary optical point measurement techniques in that the property fields of species with low concentration for all points in the flame cross-sections can be reconstructed simultaneously from the same set of projection data.

For absorption measurement in a homogeneous media, a monochromatic pencil beam of ray having an intensity  $I_0$ , when passing through a uniform medium, is attenuated in accordance with Beer's law,

$$I = I_a e^{-\kappa t}$$

where K is the absorption coefficient and I is the emerging intensity after attenuation along the path length s.

In gaseous mixtures, the absorption coefficient K, in the thermal model is both temperature dependent and nonhomogeneous. Hughey and Santavicca [1] rewrite Beer's law in the form

$$I = I_{e}e^{(-\int p\theta_{e}dx)}$$

where  $K=pP_{\omega}$ , p is the partial pressure of the absorbing species,  $P_{\omega}$  (cm<sup>-1</sup>atm<sup>-1</sup>) the volume absorption coefficient at frequency  $\omega$ , and s the optical path length. The projection functions can be found experimentally from the absorption data. hence.

$$p_{\bullet}(r) = \int_{\text{source}}^{\text{det other}} p P_{\bullet \bullet} ds = -\ln \frac{1}{I_a} .$$

Tomographic techniques provide solutions to this equation for  $pP_{\omega}$  which is in turn a function of gas temperature and concentration. The "two-line" method is used to obtain the temperature and absorbing species concentration [1]. This method involves making two sets of line center absorption measurements at different wavelengths. The knowledge of the line center absorption coefficients and their temperature dependence is readily available from the literature [2]. Hughey and Santavicca [1] assumed as a simplification, that the absorption coefficients vary linearly with temperature. A linear absorption model for the R(6) and R(19) lines of the CO 4.7 $\mu$  band [1] was extrapolated to high temperature to give the empirical relations:

$$P_{u_1} = 58.1 - 0.024T$$
  
 $P_{u_1} = -18.99 + 0.092T$ .

These are used in the reconstruction process. Substituting these equations into the reconstruction results in

$$f_i(x,y) = pP_m(x,y)$$
,  $i = 1.2$ 

and solving for the temperature gives

$$T(x,y) = \frac{58.1f_2(x,y) + 18.99f_1(x,y)}{0.092f_1(x,y) + 0.024f_2(x,y)}.$$

Once the temperature is known, p(x,y) can then be calculated and the concentrations are found through the equation of state. The key to the combustion tomography problem is to accurately reconstruct the 2-D absorption coefficient functions from their 1-D projections.

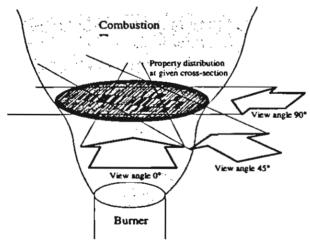


Figure 1 A typical scanning from tomographic measurement

Chen and Goulard [2] introduced a generalized onion peeling inversion method to measure pollutant emitted from jet engine exhaust flows. The method determines the two-dimensional property fields, beginning at the exterior shell, proceeding inward shell by shell as in a peeling process. The technique is very sensitive to measurement noise such that errors accumulate with the peeling process, leading to unstable solutions. Emmerman, et al. [3] overcame the accumulation errors by introducing a mathematical transform technique called Fitter Back-projection

(FBP) technique. The FBP technique transforms the absorption data into the frequency domain where noisy components can be truncated. Hughey and Santavicca [1] pointed out in their computer simulated noisy absorption measurement data of axisymmetric reacting flow fields that the FBP outperforms the onion peeling. The FBP also has advantage over customary Abel transform [4] techniques in that it can reconstruct a more general 2-D function. Although the FBP technique is very tolerant of noise, frequency response of different filter functions and the averaging nature of the 2-D mathematical transform have to be studied.

In this paper, mathematical profiles are reconstructed from their computer simulated projection data, using the classical F8P algorithm. Reconstruction from synthetic projections allows the reconstruction algorithm to be evaluated independently of measurement noise. Effects of lateral and angular sampling frequencies, of obstacles along the absorption paths and of fictitious noise on the reconstruction results are studied.

#### 2. Definitions

The test functions, their projections and the "Picture distance" which is used to evaluate the resemblance between the reconstruction results and the test functions are mathematically defined in this section.

#### 2.1 The Test Functions

Three test functions are employed in this paper. These are: Gaussian, multi-layer top hat, and a combination of an off-center Gaussian profiles and three ellipsoidal. The Gaussian profile (Fig.3) is defined by

$$f(x,y)=e^{-\alpha x^2+x^2},$$

where the constant "c" is set to be 20.

A multi-layer top hat profile (Fig.4) is the summation of co-center top hat profiles of different radii, hence,

$$f(x,y) = \begin{cases} \rho_i & \text{for } x^2 + y^2 \le A_i^2 \\ 0 & \text{otherwise} \end{cases}$$

 $\rho_i$  are set to be 0.2, 0.5, 0.7 and 1.0 when  $A_i$  equal 0.65, 0.50, 0.35 and 0.20 correspondingly,

The third test function is a combination of an off-center Gaussian profile, an ellipse, a hollow cylinder, confined in a circular wall (Fig.12c). We write

$$f(x,y) = f_1 + f_2 + f_3 + f_4$$

$$f_i = e^{-\epsilon R(s-s_i)\hat{r} \cdot \epsilon(\tau-\tau_i)\hat{r} \cdot \hat{r}}.$$

The constant  $c_1 x_1$  and  $y_1$  are 20, 0.24 and 0.24 respectively.

$$d = \sqrt{\frac{\sum_{j=n}^{N} \sum_{k=m}^{M} (T_{j,k} - R_{j,k})^{2}}{\sum_{k=n}^{N} \sum_{k=m}^{M} (T_{j,k} - T_{mean})^{2}}}$$

where  $T_{j,k}$  is the value of original profile,  $R_{j,k}$  is the reconstruction, and  $T_{mean}$  the average value of  $T_{j,k}$  over the region of interest.

#### 3. Filter Back-Projection (FBP) algorithm [6]

#### 3.1 Projection-Slice Theorem

Consider two-dimensional Fourier transform of f(x,y),

$$F(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-i(xx+Yy)}dxdy.$$

Rotate the function f(x,y) to a new (r,s) coordinate system.

$$F(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,s)e^{-i[X(r\cos\theta-i\sin\theta)+Y(r\sin\theta+i\cos\theta)]}drds$$
$$= F_{\alpha}(R,S),$$

where R and S are  $Xcos\theta+Ysin\theta$  and  $Ycos\theta-Xsin\theta$  respectively. From the rotated function  $f_{\theta}(r,s)$ , the projection is

$$p_{\theta}(r) = \int_{-\infty}^{\infty} f_{\theta}(r, s) ds ,$$

and the Fourier transform of  $p_{\theta}(r)$  being

$$P_{\theta}(R) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\theta}(r,s)e^{-iRr}dsdr.$$

Comparing  $P_{\theta}(R)$  with  $F_{\theta}(R,S)$  it appears that  $P_{\theta}(R)$  is equivalent to  $F_{\theta}(R,S)$  along R or

$$P_{\theta}(R) = F_{\theta}(R,S)|_{S=0}.$$

The above equation is the "Projection-Slice theorem" which that the one-dimensional Fourier transform of a projection is a "slice" through the two-dimensional Fourier transform of the original function.

#### 3.2 The Reconstruction Formula

It follows from the Projection-Slice theorem that if an infinite number of Fourier slices are taken from the corresponding Infinite number of projections, F(X,Y) would be known at all points in the (X,Y) plane.

Knowing F(X,Y), the function f(x,y) can be recovered by using the inverse Fourier transform:

$$f(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(X,Y)e^{i(Xx+Yy)} dXdY.$$

Rewriting the above equation in polar coordinates we have

$$f(x,y) = \frac{1}{4\pi^2} \int_0^{2\pi} \int_{-\infty}^{\infty} F(R,\theta) e^{iR(x\cos\theta + y\sin\theta)} R dR d\theta$$

The function  $F(R,\theta)$  is equivalent to  $F_{\theta}(R,S)|_{S=0}$  or to  $P_{\theta}(R)$  by the Projection Slice theorem. Also  $F_{\theta+180}(-R,S)$  is  $F_{\theta}(R,S)$ , sence,

$$f(x,y) = \frac{1}{4\pi^2} \int_0^{\pi} \int_{-\pi}^{\pi} P_{\theta}(R) e^{iRr} |R| dR d\theta$$

The above integral is not bounded since |R| dose not converge. Therefore R should be limited to some value  $|R| \le \Omega$ . We now introduce a band limited filter H(R) = b(R)|R| where

$$b(R) = \begin{cases} 1 & \text{if } |R| \leq \Omega \\ 0 & \text{if } |R| > \Omega \end{cases}$$

The lateral sampling has an interval "a", hence by the sampling theorem.

$$\Omega = 2\pi f_{\text{max}} = \frac{\pi}{c}$$
.

Replace IRI by H(R) and use the convolution theorem to give the regulard reconstruction formula

$$f(x,y) = \frac{1}{2\pi} \int_0^x \int_{-\infty}^{\infty} p_{\theta}(\tau) h(x\cos\theta + y\sin\theta - \tau) d\tau d\theta.$$

where h(r) is the inverse Fourier transform of H(R) which can be written analytically as

$$h(r) = \begin{cases} \frac{\Omega^2}{2\pi} & r = 0\\ \frac{1}{2\pi} \left[ \frac{2\Omega}{r} \sin(\Omega r) + \frac{2}{r^2} \cos(\Omega r) - \frac{2}{r^2} \right], r \neq 0 \end{cases}$$

#### 3.3 Numerical Implementation

The filter function h(r) is written into a discrete from  $h(r_k=ak)$  for k=0,1,...,M-1 as

$$h(0) = \frac{\pi}{2a^2}$$

$$h(r_k) = -\frac{2}{\pi k^2 a^2} \quad , k = odd$$

$$h(r_k) = 0 \quad k = even$$

The above equations define the "Ramachandran filter function" (RMCD)(see Fig.5) which is found to be somewhat oscillatory. Shepp and Logan [7], introduce another filter with a more damped response,

$$h(r_k) = -\frac{4}{\pi a^2 (4k^2 - 1)}$$
,  $k = 0, \pm 1, ..., \pm (M - 1)$ .

This equation is called the "Shepp and Logan filter function" (SL)(see Fig.6).

Therefore, the discrete approximation for the filter backprojection formula can be written as

$$f(x,y) = \frac{a}{2N} \sum_{j=1}^{N} \sum_{k=1}^{M} p_{\theta_{k}}(r_{k}) h(x\cos(\theta_{j}) + y\sin(\theta_{j}) - r_{i})$$

where M is the number of sampling points and N the number of sampling angles.

#### 4. Reconstruction Results and Discussions

Effects of sampling rate and measurement noise on reconstruction accuracy are studied in this section by using FBP technique to reconstruct two simple profiles: Gaussian and multi-

$$f_2 = \begin{cases} \rho & \text{for } \frac{p^2}{A^2} + \frac{q^2}{B^2} \le 1 \\ 0 & \text{otherwise} \end{cases}$$

where p , A and B are 0.3, 0.35 and 0.15 respectively while functions p and q are defined by

$$p = (x - x_i)\cos\theta + (y - y_i)\sin\theta$$
$$q = (y - y_i)\cos\theta - (x - x_i)\sin\theta$$

where  $x_I$  ,  $y_I$  and  $\theta$  are 0.2 , -0.4 and 20 degree respectively.

$$f_{s} = \begin{cases} \rho & \text{for } r_{is} \leq (x - x_{i})^{2} + (y - y_{i})^{2} \leq r_{ost} \\ 0 & \text{otherwise} \end{cases}$$

where  $\rho$  ,  $r_{\rm in}$  ,  $r_{\rm out}$  ,  $x_I$  and  $y_I$  are 0.2, 0.1, 0.24, -0.4 and 0.1 respectively.

$$f_{4} = \begin{cases} \rho & \text{for } r_{\text{in}} \leq x^{2} + y^{2} \leq r_{\text{out}} \\ 0 & \text{otherwise} \end{cases}$$

where  $\rho$  ,  $r_{in}$  and  $r_{out}$  is 0.2, 0.8 and 0.9 respectively.

#### 2.2 The Projections

A projection is a mapping of a two-dimensional function into a one-dimensional one, which can be obtained by integrating the function in a particular direction. The projection of f(x,y) along  $\theta^{\perp}$ -direction is

$$p_{\theta}(r) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x cos\theta + y sin\theta - r) dx dy \ ,$$
 where  $\delta(x)$  is defined by,

$$\delta(x) = \begin{cases} 1 & x = 0 \\ 0 & \text{otherwise.} \end{cases}$$

We may interpret f in the (r,s) coordinate system, rotating from (x,y) coordinate system by the angle  $\theta$ . With this representation, the integral is along the s-axis and the projection function can be written as

$$p_{\theta}(r) = \int_{-\infty}^{\infty} f_{\theta}(r,s) ds.$$

The projection function of Gaussian profile is

$$p(r) = \sqrt{\frac{\pi}{c}}e^{-cr^2}$$

The projection function of the multi-layer top hat profile is

$$p(r) = \begin{cases} 2\rho_i \sqrt{A_i^2 - r^2} & \text{for } |\mathbf{r}| < A_i \\ 0 & \text{otherwise} \end{cases}$$

where  $\rho_i$  equals 0.2, 0.5, 0.7 and 1.0 when  $A_i$  being set at 0.65, 0.50, 0.35 and 0.20 respectively. Subscript  $\theta$  has been omitted since both the Gaussian and the multi-layer top hat functions are axisymmetric.

The projection function of the combination of off-center Gaussian profile and the three ellipsoidal functions is

$$p_{\theta}(r) = p_{\theta}^{1}(r) + p_{\theta}^{2}(r) + p_{\theta}^{3}(r) + p_{\theta}^{4}(r)$$
.

$$p_{\theta}^{I}(r) = \sqrt{\frac{\pi}{c}}e^{-c(r-R)^{2}},$$
 where  $R = \sqrt{x_{I}^{2} + y_{I}^{2}} cos([tan^{-l}(\frac{y_{I}}{x_{I}})] - \theta).$ 

Functions  $p_{\theta}^{2}(r)$ ,  $p_{\theta}^{s}(r)$  and  $p_{\theta}^{s}(r)$  are built from

$$p_{\theta}(r) = \begin{cases} \frac{2 \rho A B}{a^{2} (\theta - \alpha)} \sqrt{a^{2} (\theta - \alpha) - (r - R)^{2}} \\ for |r| \leq a(\theta - \alpha) \end{cases}$$

$$0 \qquad for |r| > a(\theta - \alpha)$$

where

$$a^{2}(\theta - \alpha) = A^{2} \cos^{2}(\theta - \alpha) + B^{2} \sin^{2}(\theta - \alpha)$$
and
$$R = \sqrt{x_{1}^{2} + y_{1}^{2}} \cos\{\{\tan^{-1}\left(\frac{y_{1}}{x_{1}}\right)\} - \theta\}.$$

The constants  $x_I$ ,  $y_I$ , A, B,  $\alpha$  and  $\rho$  corresponding to each projection function are shown in Table 1. Descriptive meaning of these constants are shown in Fig.2.

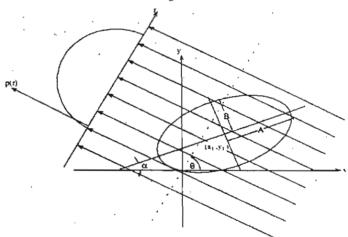


Figure 2 Descriptive meaning of the parameters of an ellipse.

Table 1 Constants in the projection with obstacles

| Obstacle                       | $x_{l}$                                                         | <i>y</i> <sub>1</sub> | Α    | В                                                             | α    | ρ   |  |
|--------------------------------|-----------------------------------------------------------------|-----------------------|------|---------------------------------------------------------------|------|-----|--|
| $p_{\theta}^{2}(r)$            | 0.2                                                             | -0.4                  | 0.35 | 0.15                                                          | 20°  | 0.3 |  |
| $p_{\theta}^{s,i}(r)$          | -0.4                                                            | 0.1                   | 0.24 | 0.24                                                          | 0°   | 0.2 |  |
| $p_{\theta}^{j,2}(r)$          | -0.4                                                            | 1.0                   | 0.1  | ٥. ١                                                          | . 0° | 0.2 |  |
| $p_{\theta}^{AA}(r)$           | 0.0                                                             | 0.0                   | 0.9  | 0.9                                                           | 0°   | 0.2 |  |
| $p_{\theta}^{4,2}(r)$          | 0.0                                                             | 0.0                   | 0.8  | 8.0                                                           | 0°   | 0.2 |  |
| $p'_{\theta}(r) = p'_{\theta}$ | $p_{\theta}^{j}(r) = p_{\theta}^{j,j}(r) - p_{\theta}^{j,j}(r)$ |                       |      | $p_{\theta}^{A}(r) = p_{\theta}^{AA}(r) - p_{\theta}^{AA}(r)$ |      |     |  |

#### 2.3 Picture Distance

In order to evaluate the resemblance between the test profile and its reconstruction result, we used the concept of "Picture distance" [5]: it is the normalized root-mean-square distance, d, as defined by

layer top hat. Each test profile has different characteristics both in space and frequency domains. We also advance the technique to reconstruct a combination of Gaussian and ellipsoid functions from their projections in order to demonstrate its capability for reconstructing an arbitrary two dimensional function.

It is shown in Fig. 7 and Fig. 8 that small angular sampling rates has a considerable effect on the reconstruction results. This is because the filter function used in this study contains a large difference between its highest positive value and lowest negative value (Fig 5a), yielding deep negative values and high positive values of the back project filtered function in the space domain. These values from such view angles cannot be compensated by the summation of a few sampling angles and hence noise-like patterns appear. It is shown in the picture distance measurement (Fig. 9), especially in the multi-layer top hat profile, that whenever we try to catch the high frequency signal by increasing the lateral sampling rate (in order to meet the sampling theorem requirement and to reduce Gibbs phenomenon [4]), we are forced to increase the angular sampling rate, otherwise the noise-like patterns will appear. Choosing filter functions that exhibit a small difference between the highest positive value and the lowest negative value (for example, see SL filter Fig. 6a) is another way to reduce this noise-like pattern. Then less angular samplings are needed to compensate the over and under-shooting effect of the filter function used (compare Fig. 12a with b).

The effect of measurement noise on reconstruction results can be evaluated by comparing the reconstruction from noisy projections (fictitious noise in our case) with the one from noise free projection. Fig. 10 shows the projection of the Gaussian function, corrupted with fictitious random noise of magnitude limited to 1% of the maximum value of the projection data. Since the Fourier transform of a Gaussian is also a Gaussian then the Fourier components should have decayed exponentially with increasing frequency. Conversely, in this particular case, the corrupted noise appears as the high frequency Fourier components and hence increasing the lateral sampling rate means introducing more noisy components into the reconstruction process. This results in a larger value of the picture distance as shown in Fig 11. Using the SL filter improves the reconstruction results (see both Fig.11 and Fig.12). This is because the SL filter is less sensitive to the high frequency signal than the RMCD, as already shown in Fig. 6. Therefore in the case of reconstruction from noisy projections, the SL filter is preferred.

The above discussions are applicable for the reconstruction of an asymmetric profile. Fig. 12 shows an arbitrary two dimensional test function and its FBP reconstruction result. The Gibbs errors due to discontinuity can be reduced by increasing the lateral sampling frequency. This, however, should be accompanied with

the increasing angular sampling so that the noise-like pattern is minimized. Since measurement noise is not involved then RMCD filter is preferred.

#### 5. Conclusion and Future Directions for Research

The FBP algorithm for reconstructing mean combustion field property from their computer simulated data has been evaluated. The major practical limitation of the method appears to be the need for many angular viewing angles. This is partly due to the choice of inversion method: mathematical transforms methods are not best suited to Gaussian profiles. Improved algorithms and filters should be evolved.

Also recent techniques have been used outside of the combustion diagnostics field: pattern recognition and maximum entropy methods come to mind. Current research on wavelets seem to be relevant to this particular problem. For practical purpose, a method tolerant of limited angular access (industrial combustors) would be most desirable. A more advanced tomographic algorithms for reconstructing fluctuating fields such as fluctuating property field in turbulent flames is also a challenging research area.

#### References

- [1] Hughey, B. J. and Santavicca, D.A., 1982, "A Comparison of Techniques for Reconstructing Axisymmetric Reacting Flow Fields from Absorption Measurements", *Combustion Science and Technology*, Vol.29, pp.167-190.
- [2] Chen, F.P. and Goulard, R. ,1976, "Retrieval of Arbitrary Concentration and Temperature Fields by Multiangular Scanning Techniques." *J.Q.S.R.T* 16, pp. 819-827.
- [3] Emmerman, P.J.,Goulard, R.,Santoro, R.J.,and Semerjian, H.G., 1980, AIAA J.4 No.2:70.
- [4] Bracewell, R.N., 1986, The Fourier Transform and its Applications, McGraw-Hill, Inc., New York.
- [5] Shigehito Suzuki, 1983, "A study on the resemblance between a computed tomographic image and the original object, and the relationship to the filter function used in image reconstruction", Optik 66, No.1, pp. 61-71.
- [6] Azriel Rosenfeld, Avinash C. Kak, 1982, *Digital Picture Processing*, 2<sup>nd</sup> Edition, Vol. 1, Academic press.
- [7] Shepp, L. A. and Logan, B. F., 1974, "The Fourier Reconstruction of a Head Section", *IEEE Transactions on Nuclear Science*, Vol. NS-21, pp. 21-40.

#### **Acknowledgment**

This work was supported in part by The Thailand Research Fund, Grant No. PDF/53/2540.

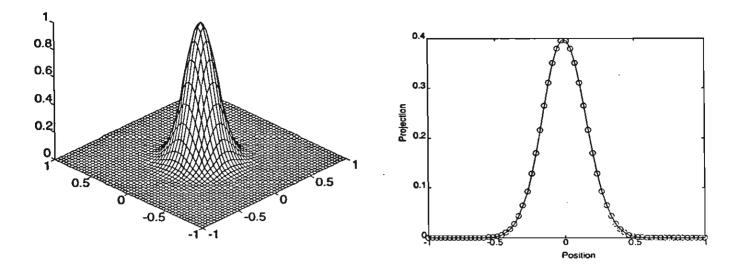


Figure 3 True function of Gaussian profile and its projection.

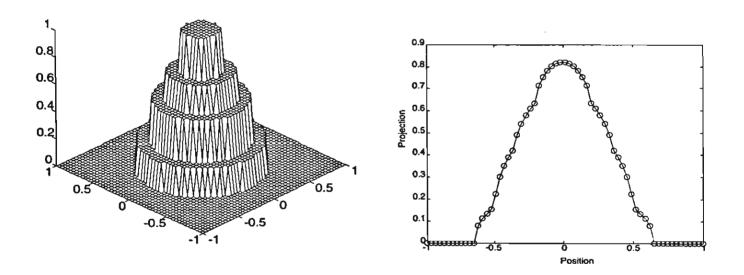


Figure 4 True function of multi-layer top hat profile and its projection.

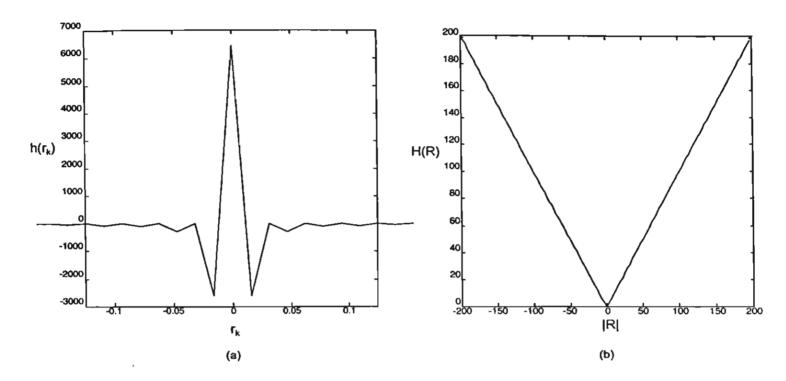


Figure 5 Ramachandran filter function in spatial domain (a) and frequency domain (b) with M=128

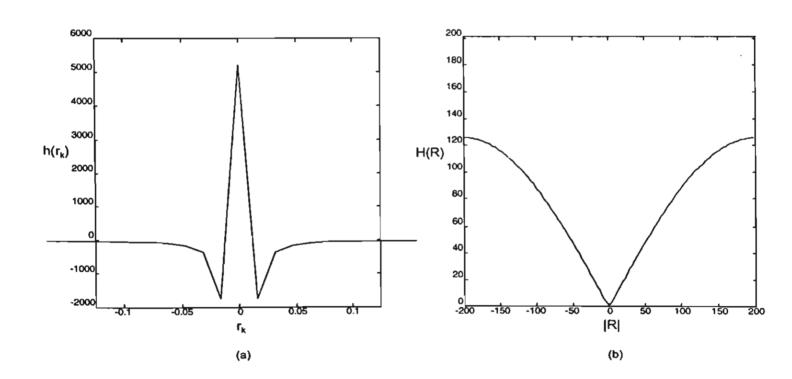


Figure 6 Shepp and Logan filter function in spatial domain (a) and frequency domain (b) with M=128

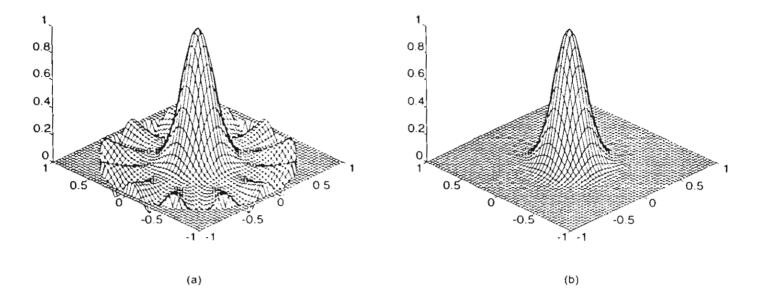


Figure 7 Reconstruction result of Gaussian profile with 64 sampling points
(a) 6 sampling angles and (b)18 sampling angles

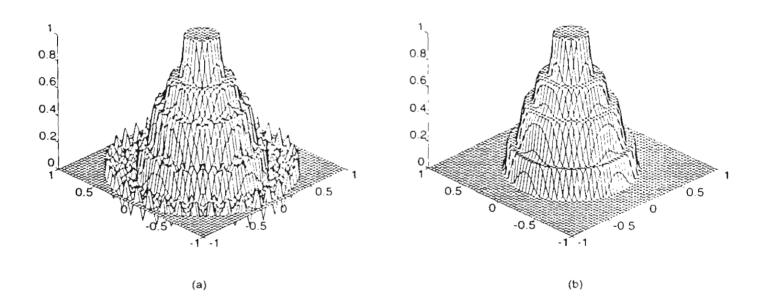
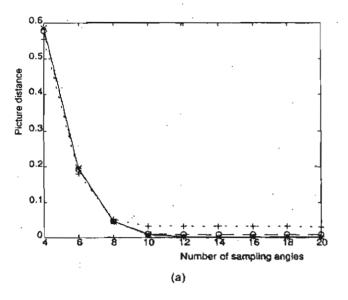


Figure 8 Reconstruction result of multi-layer top hat profile with 64 sampling points
(a) 18 sampling angles and (b) 180 sampling angles



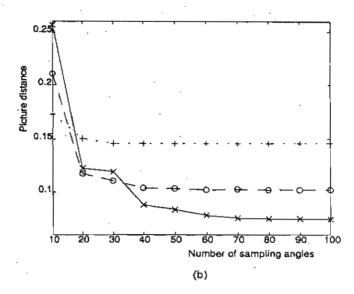
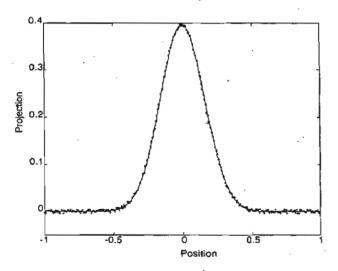


Figure 9 Picture distance as a function of the number of sampling angles of

(a) Gaussian profile, (b) multi-layer top hat profile

----- 32 sampling points
----- 64 sampling points
----- 128 sampling points



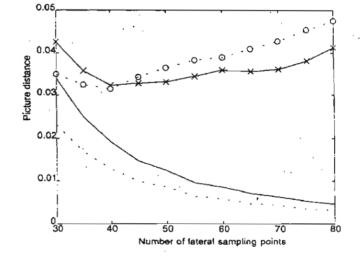


Figure 10 Projection of Gaussian profile with 1% maximum random noise added

Figure 11 The effect of noise and the comparison of efficiency of filter functions at constant number of sampling angles (90 angles)

Ramachandran filter function with noise added

Shepp and Logan filter function with noise added

Ramachandran filter function without noise

Shepp and Logan filter function without noise

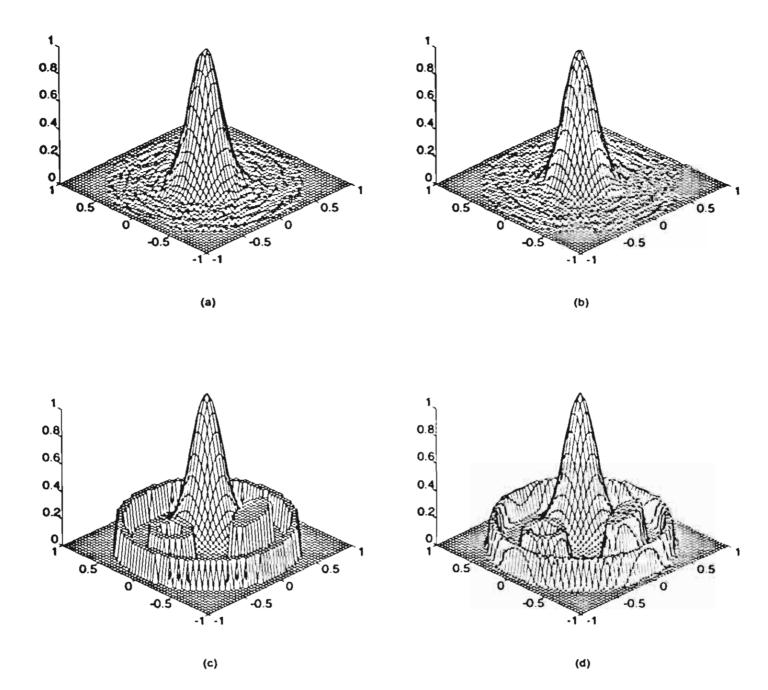


Figure 12 Reconstruction result of :-

- (a) Gaussian profile with RMCD filter with noise added (M=64, N=90)
- (b) Gaussian profile with SL filter with noise added (M=64, N=90)
- (c) True function of off-center Gaussian profile with obstacles
- (d) Off-center Gaussian profile with obstacles (M=64, N=90) without noise (use SL filter function)

P. Meekunnasombat P. Vallikul B. Fungtammasan

Waste Incineration Research Center
King Mongkut's Institute of Technology
North Bangkok
Bangsue Bangkok 10800

การสร้างภาพเสมือนฟังก์ชันความหนาแน่น ความน่าจะเป็นในเปลวไฟ เทอร์บิวเลนซ์จากข้อมูลโทโมกราฟฟีด้วยวิธี โมเมนต์ต่อโมเม<sup>่</sup>นต์

Moment by Moment Method for Reconstructing Probability Density Functions in Turbulent Flames from Tomographic Data

บทความนี้กล่าวถึงการสร้างฟังก์ชันความหนาแน่นความน่าจะเป็นเฉพาะที่ของค่าการส่งผ่านใน
เปลวเพลิงแบบเทอร์บิวเลนซ์จากข้อมูลความหนาแน่นความน่าจะเป็นวิถีรวม ผลการศึกษาพบว่ามี
ความสัมพันธ์ทางคณิตศาสดร์ระหว่างฟังก์ชันโมเมนต์เฉพาะที่ (คำนวณจากฟังก์ชันความหนาแน่น
ความน่าจะเป็นเฉพาะที่) กับฟังก์ชันโมเมนต์วิถีรวม (คำนวณจากฟังก์ชันความหนาแน่นความน่าจะ
เป็นวิถีรวม) ซึ่งทำให้สามารถใช้ข้อมูลฟังก์ชันโมเมนต์วิถีรวมมาใช้สร้างฟังก์ชันโมเมนต์เฉพาะที่ได้
ด้วยวิธีฟิสเตอร์แบคโปรเจกชัน และจากนั้นก็สามารถใช้วิธีการแยกค่าเอกฐานเพื่อคำนวณฟังก์ชัน
ความหนาแน่นความน่าจะเป็นเฉพาะที่ต่อไป ด้วยอัลกอริธีมดังกล่าวนี้รายละเอียดของเทอร์บิว
เลนซ์จะเก็บไว้ได้ในรูปของจำนวนโมเมนต์ที่ใช้ ผลการสร้างภาพเสมือนจากข้อมูลวิถีรวมทั้งที่เป็น
ข้อมูลสังเคราะห์และที่เป็นข้อมูลจากการทดลอง ปรากฏว่าสอดคล้องกับค่าข้อมูลเฉพาะที่ด้วยดี
อัลกอริธีมนี้ยังนำไปใต้ใช้กับเปลวไฟที่มีลักษณะไม่สมมาตรซึ่งแสดงให้เห็นว่าวิธีนี้สามารถสร้าง
ภาพเสมือนของการกระจายค่าฟังก์ชันความหนาแน่นความน่าจะเป็นแบบสองมิดิได้ด้วย

Local probability density functions (PDFs) of transmittance within turbulent flames are reconstructed from their multi-angular path-integrated PDFs data. It is shown that the path-integrated moment functions associated with the path-integrated PDFs relate mathematically to the local moments associated with the local PDFs, resulting in a familiar tomographic problem. The known path-integrated moment functions, therefore, can then be used to reconstruct local moment functions via the filter back-projection algorithm. Local PDFs of the transmittance is in turn retrieved from their moment functions using singular value decomposition technique. With the proposed algorithm, turbulent structures of the flames are preserved in terms of the number of moments used in the reconstruction process. Reconstruction results from both path-integrated synthetic and experiment data of axisymmetrical flames are in good agreement with the local data. The algorithm is then extended to reconstruct an asymmetric synthetic flame and it is shown that proposed algorithm is capable of reconstructing the two dimensional PDFs distributions.

#### 1. Introduction

Classical tomographic techniques [1-5] (see Figure 1) have been successfully used to reconstruct time-averaged thermodynamic property distributions within cross-sections of

flames since mid '70s. It is, however, well known that scalar property fluctuations (concentration, temperature, etc.) within turbulent flames may cause mean thermal radiation 2-3 times higher than estimates based on mean properties [6,7]. Measuring

these fluctuations by tomographic techniques therefore presents a new challenge for scientists and engineers in combustion research.

To capture the turbulent structure within a flame Snyder, R. and Hessenlink, L. [8] and Beiting, E.J. [9] proposed tomographic methods with fast scanning techniques. There remains temporal resolution limit and are also artifacts in the reconstruction results due to random fluctuations in the instantaneous flow field. Recently, Tomianinen et al [10] introduced a numerical technique to solve limited data tomographic problems using Karhunen-Loeve procedure. Fewer data are needed for each scan such that the property distribution of unsteady flow field, as they claim, can be reconstructed.

Another approach is to reconstruct probability density function of the property of interest instead of its value at an instantaneous time. Sivathanu and Gore [11] introduce Discrete Probability Density Function (DPF) method in conjunction with onion peeling tomography which has been used to infer the local PDF within flames from their path-integrated measurement data [11]. Since the PDFs are assumed to be stationary, fast scanning techniques are not needed. Although the reconstruction results appear reasonable, they suffer from accumulation errors due to the peeling process.

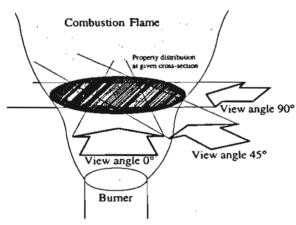


Figure 1 A typical scanning from tomographic measurement

In this paper, we further develop Sivathanu and Gore's method by Introducing mathematical transform techniques to improve the reconstruction results and directly calculating the PDF from the reconstructed moments of the property field — a process which may be termed "moment by moment method". This process requires a mathematical relationship between the local and path PDFs, which is outlined in section 2. The relation is verified in section 3 by comparing the results of forward convoluting of PDFs along the path by the present method with that of DPF [11]. Section 4 applies the new method to tomographic problems. Reconstruction results of axisymmetric and asymmetric flame profiles are shown in sections 5 and 6 respectively.

#### 2. Fluctuation of Transmittance and its Moments

We derive, in this section, a relation between path-integrated and local PDFs of transmittance. Transmittance based on path length S is defined discretely as a stochastic variable  $\tau_{S,k}$  which represents all probable values of  $\tau_S$  in an interval  $\Delta \tau_S$ . The probability of occurrence of  $\tau_{S,k}$  is measured as  $P_k$ . Since transmittance ranges from zero to one, we have  $\tau_{S,t}=0$ ,  $\tau_{S,k}=k\Delta \tau_S$ ,  $\tau_{S,K}=1$  and  $\sum P_k$  (k=1...K) is unity. The discrete probability density function,  $PDF(\tau_{S,k})$ , is defined by

$$P_{k} \equiv PDF(\tau_{s,k})\Delta\tau_{s}$$

It then follows that the  $n^{th}$  moment of  $\tau_S$  can be calculated from the discrete probability by

$$M_{s,s} = \int \tau_s^s PDF(\tau_s) d\tau_s \cong \sum_{k\neq l}^K \tau_{s,k}^s P_k$$
,

where  $M_{S,n}$  is the n<sup>th</sup> moment and  $PDF(\tau_S)$  is the continuous probability density function of  $\tau_S$ . In the reconstruction problem the path-integrated PDFs and the local PDFs are related through their moments. The derivation of the relation follows.

Considering transmittance in a gas volume for a path length S consisting of two segments SI and S2 with individual transmittances  $\tau_{SI}$  and  $\tau_{S2}$ , the total transmittance is

$$\tau_S = \tau_{SI} \ \tau_{S2}$$

Assume that the distributions of  $\tau_{SI}$  and  $\tau_{S2}$  are <u>statistically independent</u>, the variables  $\tau_{S}$ ,  $\tau_{SI}$  and  $\tau_{S2}$  can then be written respectively in terms of their moments as

$$M_{s,n} = M_{s,t,n} M_{s,t,n}. (1)$$

The moments on the right hand side of the equation (1) are based on different path lengths SI and S2. Using the same argument, rewriting them as local moments  $m_{I,n}$  and  $m_{2,n}$  respectively based on unit length leads to

$$M_{s,n} = (m_{t,n})^{s_t} (m_{s,n})^{s_s} \text{ or } -\ln M_{s,n}$$
  
=  $SI(-\ln m_{t,n}) + SI(-\ln m_{t,n})$ .

The logarithmic function of the path integrated moment,  $M_{S,n}$ , integrates the logarithmic function of local moment per unit length,  $m_{i,n}$ , along the line of sight S. Since the local moment is an intensive property, we may write it as a function of space,  $m_n(r,s)$ . The (r,s) coordinate axes are rotated from the (x,y) coordinate axes by the angle  $\theta$  and the integration is along the  $\theta^\perp$  direction. Therefore we refer to the path-integrated moment by its direction parameter  $\theta$  and we assume infinite path length. Hence, the above equation can be written as

$$-\ln M_{\theta,s}(r) = \int -\ln m_s(r,s)ds. \tag{2}$$

Note that the path length S can be extended to infinity since the local transmittance is assumed unity outside the region of interest. In equation (2), the path-integrated moments are known from the measurement data and the local moments are unknown.

#### 3. The Moment Problem

Once the local moments are known from the reconstruction results, the problem then becomes a classical moment problem: given the moments find the probability density function [12]. We have the discrete approximation in matrix form as,

$$\begin{bmatrix} \boldsymbol{\tau}_{i}^{o} & \boldsymbol{\tau}_{2}^{o} & \cdots & \boldsymbol{\tau}_{K}^{o} \\ \boldsymbol{\tau}_{i}^{t} & \boldsymbol{\tau}_{2}^{t} & \cdots & \boldsymbol{\tau}_{K}^{t} \\ \cdots & \cdots & \cdots & \cdots \\ \boldsymbol{\tau}_{i}^{t-1} & \boldsymbol{\tau}_{2}^{t-1} & \cdots & \boldsymbol{\tau}_{K}^{t-1} \end{bmatrix}_{t \times K} \begin{bmatrix} P_{t} \\ P_{2} \\ \cdots \\ P_{K} \end{bmatrix}_{K} = \begin{bmatrix} m_{o} \\ m_{t} \\ \cdots \\ m_{t-1} \end{bmatrix},$$

where  $\tau_i$  = 0,  $\tau_k$  = 1. Note the  $PDF_k$  is simply  $P_k/(\Delta \tau)$ . The matrix on the left hand side is the transmittance matrix, made up of powers of the discrete transmittance values  $\tau_k$  and  $P_k$  and  $m_i$  are the probability and reconstructed local moment vectors respectively: note that there being K PDF's and I moments.

The singular value decomposition (SVD) technique is used to solve the moment equations directly when the system is over-determined, that is, when I > K. This results in a least squares solution. Furthermore, the reconstructed moments may not be laid on the column space of the transmittance matrix (For a discussion of column space see Strang [13]). This means that there may be no solution to this system. This is due to errors in the measurement data or the reconstruction results. To remedy this problem, a least squares technique is needed.

The algorithm is shown in the standard literature [e.g. 14,15,16]. Rewrite equation (2) into the form

$$AP = m$$
.

where A is the  $I \times K$  transmittance matrix, P the probability vector and m the moment vector. Any I by K matrix A of rank r can be factored [17] as

$$A = U\Sigma V^{T}$$
.

where U is an  $I \times I$  orthogonal matrix and  $\Sigma$  is an  $I \times K$  diagonal matrix. Then P is simply calculated from

$$P = V \Sigma^{-1} U^T m.$$

Hence, the probabilities  $P_k$  (and therefore the local PDF's  $(PDF_k=P_k/\Delta\tau)$ ) are determined from the moments m and the transmittances  $\tau(Z(m,\tau),\ V(\tau))$ . Golub's algorithm [14] for calculating the SVD in double precision is used in the present study.

The path-integrated PDFs which are calculated from the local PDFs by using the method of Sivathanu [11] and the moments method of the present study are shown in Figure 2. Comparison of results based on 5, 10 and 20 layers of local PDF are shown in Figure 3. The results are in good agreement.

#### 4. Tomographic Problem

According to equation (2), it is a tomographic problem similar to Beer's law [3]. Thus, this equation can be solved by tomographic method. In this paper, we use the Filter Back-

Projection method [2] to solve for the local moments of turbulent flames. We can reconstruct a two-dimensional function from its projection by,

$$f(x,y) = \frac{1}{2\pi} \int_{0}^{\pi} \int_{-\pi}^{\pi} p_{\theta}(r) h(x\cos\theta + y\sin\theta - r) dr d\theta,$$

where f(x,y) is a reconstructed function,  $p_{\theta}(r)$  a projection function, and h(r) a filter function which is the inverse Fourier transform of a ramp function. When applied to turb(A)ent flames, the mathematical functions are replaced by their physical counterparts:

$$p_{\theta}(r) = -\ln[M_{\theta}(r)],$$
  
$$f(x, y) = -\ln[m(x, y)]$$

where  $M_{\theta}(r)$  is the path integrated moment function calculated from the path-integrated absorption measurements and m(x,y) the required reconstructed function of local moments of the absorption coefficient.

#### 5. Axisymmetric Flame Reconstruction

In this section, we describe the results of reconstructing the PDFs of local transmittance from two sets of path-integrated absorption data; one for a non-premixed propylene/air flame where the "synthetic" path-integrated data has been computed from the local absorption measurements of Sivathanu and Gore [11], and the other for a non-premixed ethylene/air jet flame where the path-integrated data has been obtained from direct measurements [11]. The measurement plane for the propylene/air flame was assumed to be circular and divided into 11 rings and a central core as shown in Figure 4.

Figure 5 shows the computed projection data of the propylene/air flame. The reconstruction result of local PDF at the center of the flame using the present method (with 300 reconstructed local moments) is seen to be in good agreement with the measured data as shown in Figure 6.

The cost of the present technique and the error involved depend mainly on the number of moments used in the PDF calculation. Infinite moments are needed to obtain a unique PDF. The calculation, however, cannot go beyond machine error so only a finite number can be used. Truncation of singular values is another source of error. The upper and lower limits for both moments and singular values used are of order 1 and 10<sup>-8</sup> respectively.

The measured path-integrated functions of the first two moments of the ethylene/air flame is shown in Figure 7. Figure 8 shows reconstructed local PDF solutions using the method proposed in this paper, comparing directly with measured local PDFs at the center of the flame from [11]. We used 300 reconstructed moments and eight singular values in the computation. Deviation of total probability is less that 7% from

unity. The present method underpredicts the height of the PDF. and therefore the solution oscillates around the measured PDF. allowing unrealiatic negative values as the measured PDF goes to zero. The oscillation does not vanish when higher number of moments are included. On the other hand, if more singular values are used the solution becomes unstable. This is due to the Inconsistency of the system which comes from both measurement and numerical errors. The first source of error is the number of lines of sight used in the reconstruction. We have only ten measured lines of sight available from this data set: this causes aliasing errors in the FBP algorithm. The second source of error has to do with the floating point accuracy of the data; we calculate with double precision while the projection data are in single precision. Noise in the data could also be responsible for the Inconsistency since it may not be completely filtered out by the FRP

#### 6. Asymmetric Flame Reconstruction

The proposed algorithm is also applied to reconstruct the local PDFs of an asymmetric flame. Since it is intended to test the algorithm on the asymmetric profile, the Propylene/Air flame is again used as a test flame. To make the flame become asymmetric, we assume that within an off-centered circular region which is centered at (0.0245,0) with a 0.0175m radius, the flame is completely transparent such that

$$P(\tau) = \begin{cases} I & \text{when } \tau = I \\ 0 & \text{otherwise} \end{cases}$$

Figure 9 shows the first moment,  $-\ln m_i(x,y)$ , of the local PDFs of the asymmetric propylene/air flame. To visualize the pattern of the transparent region, we exploit the gray scale representation. The top view of the local moment function in gray scale is shown on Figure 9. Although the PDF within the transparent region of the flame is fictitious, the shape of the PDF is simple and errors due to the shape of the PDF in the reconstruction results should be minimized. This also allows us to confine the study on the verification of the reconstruction algorithm for the asymmetric flame data.

The projection functions,  $-lnM_{\sigma,l}(r)$ , of the first moment can be calculated using the technique suggested by Kak [18]. We generate 180 projection functions and each function has 128 projection points. The numbers of projection functions and projection points are similar to that used in the reconstruction of axisymmetric flame in Section 5 for the propose of comparison. These numbers, however, are appropriate to compensate both the aliasing and the noise-like pattern errors due to the 2-D problem of reconstruction [19,20]. Note that for the axisymmetric flame, projections of the first moment function are similar for all view angles. But in the asymmetric flame the shape of projection

functions depend on view angles. Figure 10 shows samples of projection function at four different view angles.

All 180 projections are used to reconstruct the local moment (the first moment) via the FBP algorithm and the reconstruction result is shown in Figure 11. The FBP procedure is repeated for 300 moments. Figure 12 shows the reconstructed local PDFs at the center of the asymmetric flame and the local PDF measurement data which are in good agreement. Deviation of total probability in the asymmetric flame, both at the center and in the transparent region is less than 10<sup>-5</sup> from unity. The results clearly demonstrate that the algorithm is unaffected by asymmetry in the flame.

#### 7. Conclusions

The local PDF at a particular point in the xy-plane can be reconstructed from the measurement of path-integrated PDF. This reconstruction algorithm has been developed under the assumption that the local PDFs are statistically independent. When applied to combustion studies, the algorithm extends the tomographic techniques to the reconstruction of fluctuating components.

The reconstruction algorithm has been tested by using both synthetic and experimental absorption data. In the synthetic case, the projections were obtained from measurement of local PDFs in a propylene/air non-premixed flame and construction of their moments. Measured path-integrated PDFs from an ethylene/air non-premixed flame was used in the full reconstruction case. Good reconstruction results were obtained from both cases and the reconstruction algorithm is justified.

The major practical limitation of the method appears to be the need for many projection points from many angular viewing angles. This is partly due to the choice of inversion method: Fourier transforms are global transforms and are not best suited to local measurements. Improved algorithms and filters should be developed. Such as the local transform techniques which are being developed. For practical purposes, a method tolerant of limited angular access (e.g. for industrial combustors) would be most desirable.

#### 8. References

- [1] Chen, F.P. and Goulard, R., 1976, "Retrieval of Arbitrary Concentration and Temperature Fields by Multiangular Scanning Techniques." *J.O.S.R.T.* 16, pp. 819-827.
- [2] Emmerman, P.J., Goulard, R., Santoro, R.J. and Semerjian, H.G., 1980, AIAA J.4 No.2:70.
- [3] Hughey, B.J. and Santavicca, D.A., 1982, "A Companson of Techniques for Reconstruction Axisymmetric Reacting Flow Fields from Absorption Measurements", *Combustion Science and Technology*, Vol.29, pp.167-190.

- [4] Dasch, C.J., 1992, Applied Optics 31:1146.
- [5] Tornianen, E.D., Lam K.W., Chojanacki, A.M., Gouldin, F.C. and Wolga, G.J., 1995, Chemical and Physical Processes in Combustion. Eastern States Section of The Combustion Institute, Pittsburgh.
- [6] Gore, J.P. and Faeth, G.M., 1986, *Twenty-First Symposium (International) on Combustion*. The Combustion Institute, Pittsburgh, pp.1521.
- [7] Haminus, A., Fischer, S.J., Kashiwagi, T., Klassen, M.E. and Gore, J.P., 1994, Combustion Science and Technology 97:37.
  - [8] Snyder, R. and Hesselink, L., 1988, Optics Lett. 13:87.
  - [9] Beiting, E.J., 1991, Optics Lett. 16:1281.
- [10] Torninainen, E.D., Hinz, A.K. and Gouldin, F.,
  Tomographic Analysis of Unsteady, July 1998, "Reacting Flows:
  Numerical Investigation", *AIAA Journal*, Vol. 36, No.7.
- [11] Sivathanu, Y.R. and Gore, J.P., 1993, *J.Q.S.R.T.* 50, No.5:483-492.
- [12] Backus, G. and Gilbert, F., 1970, Phil. Trans. Royal Soc. 266,123.
- [13] Strang, G., 1988, *Linear Algebra and Its Applications: 3<sup>rd</sup> edition*. Harcourt Brance Jovanovich Publishers.
- [14] Forsythe, G.E., Michael A.M. and Moler, C.B., 1977. Computer Methods for Mathematical Computations, Prentice-Hall series in Automatic Computation, Englewood Cliffs, New Jersey.
  - [15] Golub, G.H. and Reinsch, C., 1970, Num. Math. 14:403.
- [16] Wilkinson, J.H., 1978, *Numerical Software-Needs and Availability* (D.Jacobs Eds), Academic Press.
- [17] Lawson, C.L. and Hanson, R.J., 1974, Solving Least Squares Problem. Prentice-Hall, Inc.
- [18] Azriel Rosenfeld, Avinash C. Kak, 1982, *Digital Picture Processing*, 2<sup>nd</sup> Edition, Vol.1, Academic press.
- [19] Vallikul, P., 1996, "Tomographic Reconstruction of Probability Density Function in Turbulent Flames", *D.Sc. Thesis*, The George Washington University.
- [20] Meekunnasombat, P., Vallikul, P. and Fungtammasan, B., 1997, "Evaluation of An Algorithm for Tomographic Reconstruction of Flame-property Profiles", 11<sup>th</sup> National Mechanical Engineering Conference, Mahanakom University, December 11-12, 1997, Bangkok, Thailand.

#### 9. Acknowledgment

This work was supported in part by The Thailand Research Fund, Grant No. PDF/53/2540.

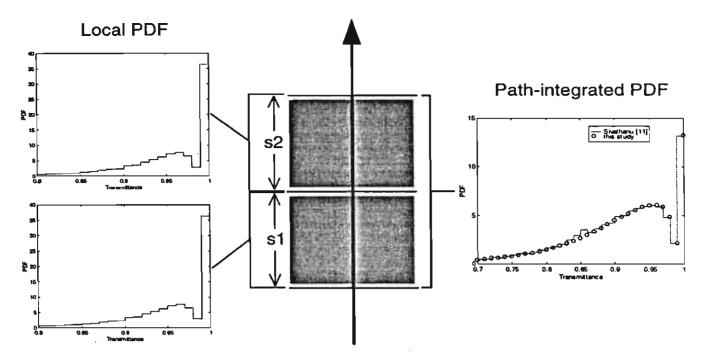


Figure 2 Path-integrated PDF of 2 layers of local PDF

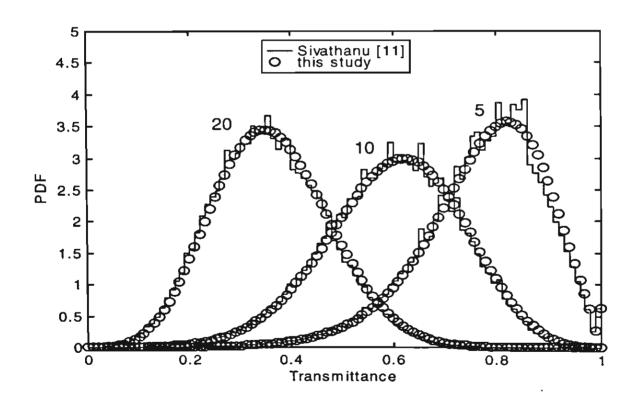


Figure 3 Path-integrated PDF of 5, 10 and 20 layers of local PDF

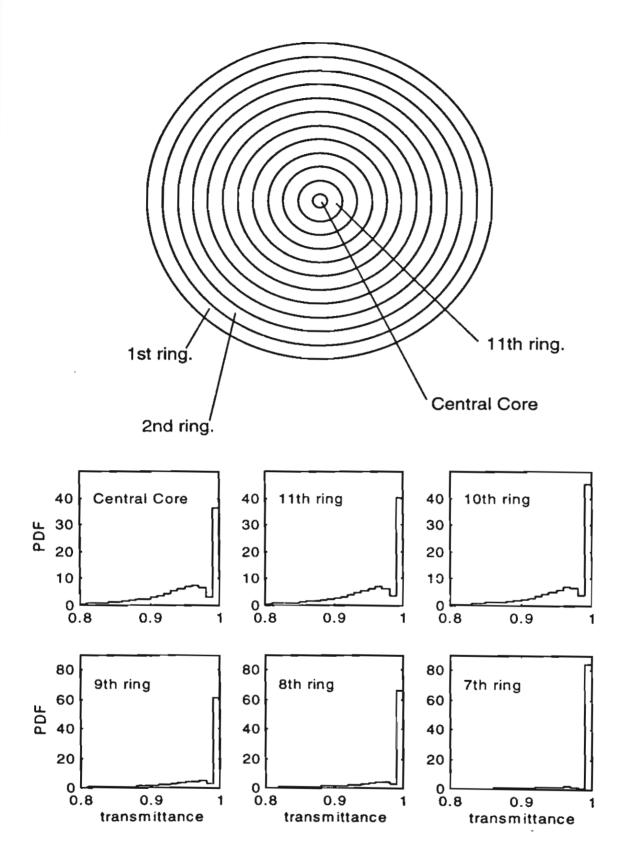


Figure 4 Local PDF of propylene/air flame from measurement [11]

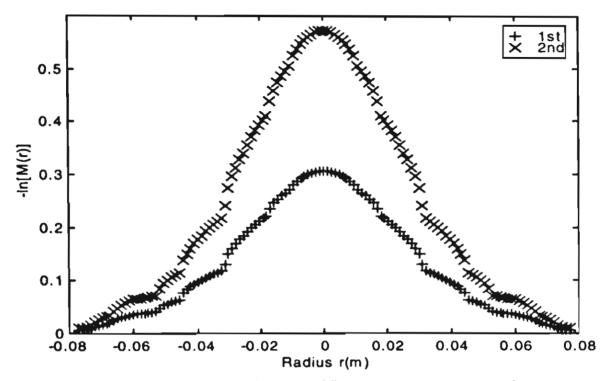


Figure 5 Projection function of first and second moment of propylene/air flame

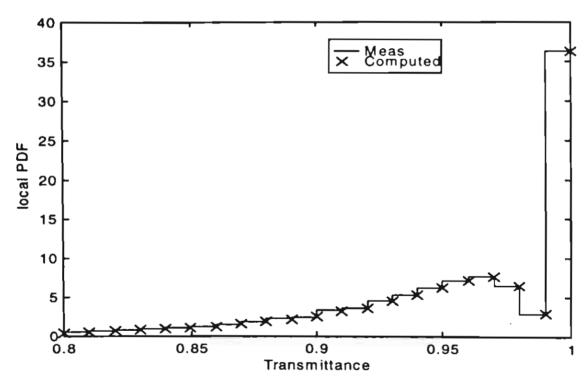


Figure 6 Reconstruction of local PDF at central core of propylene/air flame

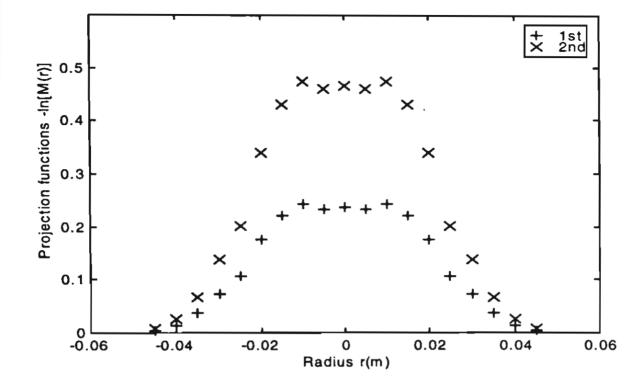


Figure 7 Projection function of first and second moment of ethylene/air flame

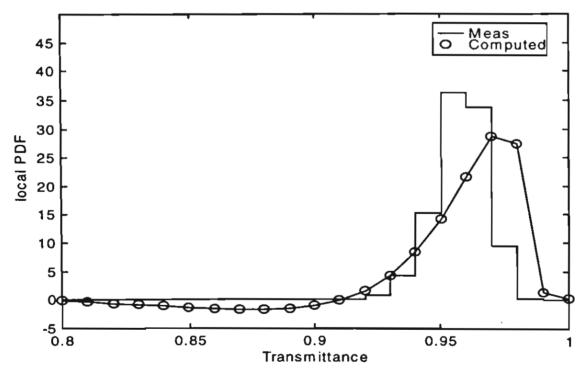


Figure 8 Reconstruction of local PDF at central core of ethylene/air flame

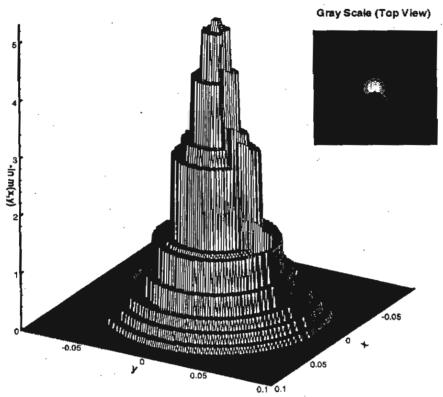


Figure 9 True function of first moment of asymmetric flame

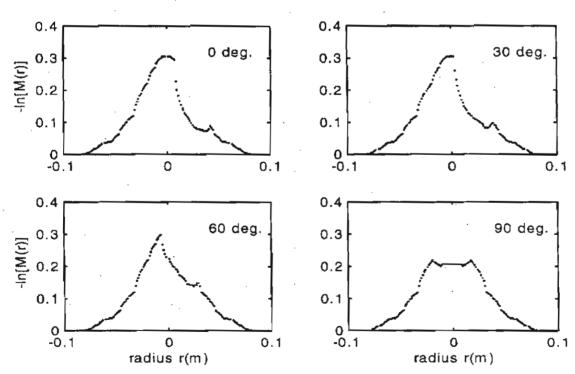


Figure 10 Projection functions in various angles of asymmetric flame

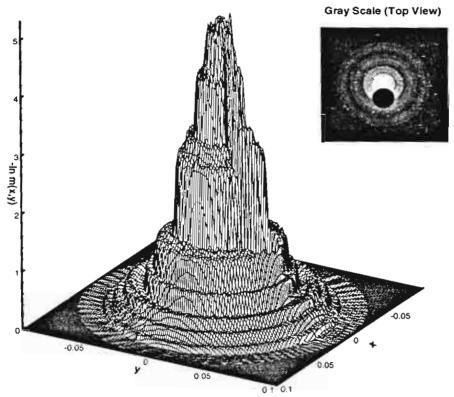


Figure 11 Reconstruction of first moment of asymmetric flame

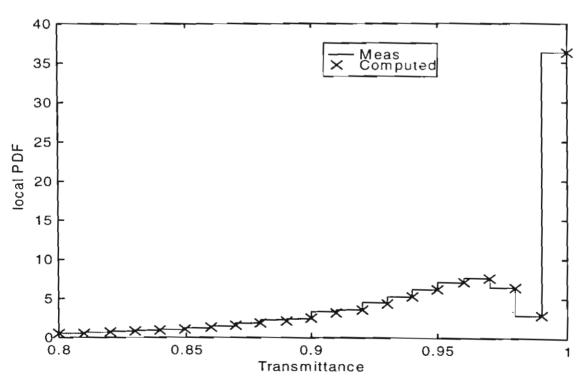


Figure 12 Reconstruction of local PDF at central core of asymmetric flame

# การประเมินขั้นตอนวิธีสำหรับการสร้างรูปร่างของคุณสมบัติเปลวเพลิงเทอร์บิวเลนท์ โดยวิธีโทโมกราฟฟีแบบไม่ต่อเนื่องด้วยข้อมูลจำกัด

Evaluation of An Algorithm for Discrete Tomographic Reconstruction of Turbulent

· Flame-property Profiles from Limited Data

พงศาล มีคุณสมบัติ, จีระวรรณ เกตุนุ้ย, ปูมยศ วัลลิกุล, บัณฑิต ฟุ้งธรรมสาร ศูนย์วิจัยการเผากากของเสีย ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ กรุงเทพฯ

Phongsan Meekunnasombat, Jeerawan Ketnuy, Purnyos Vallikul and Bundit Fungtammasan
The Waste Incineration Research Center (WIRC)

Department of Mechanical Engineering
King Mongkut's Institute of Technology North Bangkok

### บทคัดย่อ

บทความนี้ได้ศึกษาขั้นตอนวิธีโทโมกราฟฟีแบบไม่ค่อเนื่องในการ สร้างภาพเสมือนของรูปร่างคุณสมบัติเปลวเพลิงเทอร์บิวเลนท์จากข้อ ยูลการดูดกลืนที่จำกัด เปลวเพลิงทดสอบจำลองขึ้นโดยให้มีรูปร่าง แบบเกาซ์เซียนเยื้องคนย์ ใช้แทนสนามของค่าการส่งผ่านเฉลี่ยแบบ 2 การศึกษาครั้งนี้ได้แนะนำวิธีเชิงตัวเลขในการสังเคราะห์กระบวน การอินทีเกรทแบบแถบซึ่งเป็นผลทำให้ได้เมทริกซ์ภาพฉาย ที่แสดงดุณ ดีกษณะแบบไม่ต่อเนื่องของปัญหา จากนั้นทำการสังเคราะห์ภาพฉาย, ชร้างเมทริกซ์พิกเซลธรรมชาติ, หาจำนวนการเก็บข้อมูลแนวขวางและ ร้านวนมุมที่เหมาะสมสำหรับการสร้างภาพเสมือน ขั้นดอนวิธีการสร้าง กาพเลมือนที่ศึกษา เพื่อแก้ปัญหาที่มีตัวแปรมากกว่าลมการ มี 2 วิธี าือวิธีพืชคณิด และวิธีการแยกพิกเซลธรรมชาติ แสดงให้เห็นว่าวิธีโทโมกราฟฟีแบบไม่ค่อเนื่องยอมให้สร้างภาพเสมือน จากข้อมูลวิถีรวมที่ไม่สมบูรณ์ และวิธีนี้ทำให้เราสามารถสร้างแบบ จำลองของข้อมูลการวัดวิถีรวมแบบไม่ต่อเนื่องได้

### Abstract

Discrete tomographic reconstruction algorithms for reconstructing turbulent flame-property profiles from limited absorption data have been studied. The turbulent flame is simulated by an off-center Gaussian profile which represents a two dimensional field of average values of transmittance. This study introduces a numerical technique for synthesizing strip integration resulting in a projection matrix that discretely characterizes the problem. The synthetic projections and a natural

pixel matrix are then constructed and the appropriate numbers for angular and lateral sampling are determined. Two reconstruction algorithms for underdetermined problems have been used in this study: The algebraic reconstruction technique (ART) and the natural pixel (NP) decomposition technique. It has been found from this study that the discrete tomographic technique tolerates the incomplete data and the method also allows us to model the path integrated measurement data discretely.

### 1 Introduction

Reconstructing the local probability density functions (local-PDF) of a thermodynamic property within a turbulent flame from their measured path-integrated probability density functions (path-PDF) has evolved only recently. Beginning in 1996, Nyden et al [1] introduced an algorithm for reconstructing moments of local-PDFs (called local moments) of transmittance within an axisymmetric turbulent flame [2] from their measured and computer simulated path-PDFs. Later, Vallikul et al [3] improved upon the algorithm so that it can retrieve the local-PDFs of transmittance at an arbitrary location within the turbulent flame when the reconstructed local moments are given.

Although the algorithm has been shown satisfactory on the basis of the quality of the reconstruction results, an underlying assumption—that the local-PDFs have to be statistically independent—remains questionable. On the other hand since

the Filter Back-projection (FBP) [4] technique has been used during reconstruction, the algorithm becomes semi-discrete and excessive tomographic data are needed in order to obtain consistent reconstruction results [5]. The assumption that the ocal-PDFs have to be statistically independent and the fact that the method is not tolerant of incomplete tomographic data are the wo main disadvantages of the algorithm.

This study is aimed at overcoming the latter disadvantage. The idea is to replace the FBP technique by the Natural Pixel NP) technique, then study the effects on the quality of the econstruction. The Natural Pixel (NP) reconstruction technique 6] has been used for incomplete tomographic data [7] and the achnique is sometimes called discrete tomography since all the steps in the reconstruction algorithm are fully discrete. In this study a test function is initially set up (section 2), then, a matrix projecting the test function into discrete strips is constructed and analyzed (section 3). The NP method is reviewed in section 4, in which the effects of the number of pixels, projection strips and view angle on the reconstruction results, is studied. Finally the reconstruction result using the NP method is compared with the FBP and with an algebraic reconstruction technique (ART) [8], the results being shown in section 5.

### 2 Test Function

An off-centered Gaussian profile has been chosen as the test function, f(x,y) for this study. The function has the form

$$f(x,y) = e^{-c\{(x-x_0)^2 + (y-y_0)^2\}}$$
 (1)

where the constant c and  $(x_0, y_0)$  are set to be 20 and (0.4, 0.0) respectively. A surface plot of the function is shown in Figure 1.

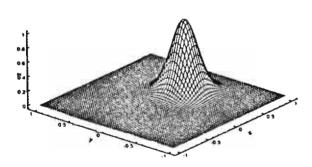


Figure 1 The test function

The off-centered Gaussian profile has the analytical line integrated function at different angles of the form [8]

$$p_L(r) = \sqrt{\frac{\pi}{c}} e^{-c(r-R)^2}$$
 (2)

where

$$R = \sqrt{x_0^2 + y_0^2} \cos \left\{ \left[ \tan^{-1} \left( \frac{y_0}{x_0} \right) \right] - \theta \right\}.$$

The line integral (2) will be used, in section 4.2, to calculate the analytical value of projection strips.

### 3 Construction of the projection matrix

In discrete tomography, the problem is derived in discrete form at the beginning of the reconstruction process. The two-dimensional domain is divided into p $\times$ p rectangular pixels and the function, f(x,y), that falls into each pixel, is approximated to have a constant value  $f_q$ , (q = 1...  $p^2$ ), represented by a vector  $\underline{f}$ . The projection matrix,  $\varphi$ , is then defined by the matrix that transforms the vector  $\underline{f}$ , into the projection vector  $\underline{y}$  of length M $\times$ N where M and N represent the M view angles and the N number of projections at that view angle. For example, if  $y_{kn}$  is the element of vector  $\underline{y}$  then  $y_{kn}$  represents the value of the  $n^{th}$  projection when viewed from the  $k^{th}$  angle, hence

$$\phi \underline{f} = \underline{y} \tag{3}$$

The matrix  $\phi$  has MXN rows and  $p^2$  columns, that is,

$$\phi = \begin{bmatrix} \phi_{11,1} & \phi_{11,2} & \cdots & \phi_{11,q} & \cdots & \phi_{11,\rho^{2}} \\ \phi_{12,1} & \phi_{12,2} & \cdots & \phi_{12,q} & \cdots & \phi_{12,\rho^{2}} \\ \vdots & \vdots & & \vdots & & \vdots \\ \phi_{kn,1} & \phi_{kn,2} & \cdots & \phi_{kn,q} & \cdots & \phi_{kn,\rho^{2}} \\ \vdots & \vdots & & \vdots & & \vdots \\ \phi_{MN,1} & \phi_{MN,2} & \cdots & \phi_{MN,q} & \cdots & \phi_{MN,\rho^{2}} \end{bmatrix}$$

$$(4)$$

The vectors f and y are

$$\underline{f} = \begin{bmatrix} f_1 & f_2 & \cdots & f_q & \cdots & f_{p^2} \end{bmatrix}^T \tag{5}$$

and

$$\underline{y} = \begin{bmatrix} y^T(1) & y^T(2) & \dots & y^T(k) & \dots & y^T(M) \end{bmatrix}^T$$
 (6)

respectively where  $y(k) = \begin{bmatrix} y_{k1} & y_{k2} & \dots & y_{kn} & \dots & y_{kN} \end{bmatrix}^T$ .

If the  $\underline{y}$  is set to be the strip integral of  $\underline{f}$ , then each element of  $\varphi_{tm, q}$  represents a portion of the area of the  $n^{th}$  strip of the  $k^{th}$  view angle that passes through the pixel q. Calculation of the value of each element of  $\varphi$  is a matter of determining the area of a polygon [6].

### 3.1 Evaluating the projection matrix: a simple example

Consider a domain consisting of 3X3 pixels and let each pixel has an area of unity. Two strips pass the pixels at the view angles of 0° and 90° respectively as shown in Figure 2.

| 7     | 8 |   | 9               | У22 |
|-------|---|---|-----------------|-----|
|       |   |   |                 |     |
| 4     | 5 |   | 6               |     |
|       |   |   |                 | У21 |
| <br>1 | 2 |   | 3               |     |
|       |   |   |                 |     |
| У1    | 1 | 1 | y <sub>12</sub> |     |

Figure 2 An example of function decomposition uses ( 3x3 pixels and 4 projection strips ).

The matrix  $\Phi$ , according to (4), can simply be written as

$$\phi = \begin{bmatrix} 1 & 0.5 & 0 & 1 & 0.5 & 0 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0 & 0.5 & 1 & 0 & 0.5 & 1 \\ 1 & 1 & 1 & 0.5 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0.5 & 1 & 1 & 1 \end{bmatrix}$$
 (7)

### 4. Natural pixel decomposition reconstruction

Natural pixel decomposition (NP) is a technique for reconstructing a function from its incomplete tomographic data. With this technique, the vector  $\underline{\mathbf{f}}$  is written as linear combinations of the column space of  $\boldsymbol{\varphi}^{\mathsf{T}}$ :

$$\underline{f} = \phi^T \underline{x} \tag{8}$$

where the elements of  $\underline{x}$  are unknown. The vector  $\underline{x}$  is

$$\underline{x} = \begin{bmatrix} x^{T}(1) & x^{T}(2) & \cdots & x^{T}(k) & \cdots & x^{T}(M) \end{bmatrix}^{T}$$

$$x(k) = \begin{bmatrix} x_{k1} & x_{k2} & \cdots & x_{kn} & \cdots & x_{kN} \end{bmatrix}^T$$

The vectors  $\underline{f}$  and  $\underline{x}$  and the matrix  $\varphi^T$  can be written in terms of their elements as

$$\begin{split} f_1 &= \phi_{1 \downarrow 1} x_{11} + \phi_{12 \downarrow 1} x_{12} + \ldots + \phi_{kn_1} x_{kn} + \ldots + \phi_{MN,1} x_{MN} \\ f_2 &= \phi_{1 \downarrow 2} x_{11} + \phi_{12,2} x_{12} + \ldots + \phi_{kn,2} x_{kn} + \ldots + \phi_{MN,2} x_{MN} \\ &\vdots \\ f_q &= \phi_{1 \downarrow q} x_{11} + \phi_{12,q} x_{12} + \ldots + \phi_{kn,q} x_{kn} + \ldots + \phi_{MN,q} x_{MN} \\ &\vdots \\ f_{p^2} &= \phi_{1 \downarrow p^2} x_{11} + \phi_{12,p^2} x_{12} + \ldots + \phi_{kn,p^2} x_{kn} + \ldots + \phi_{MN,p^2} x_{MN} \end{split}$$

Substitute f from (8) into (3) and the result becomes

G is the natural pixels matrix. As can be seen from (10), the element  $G_{ij}$  is a correlation between the  $i^{th}$  and the  $j^{th}$  strips. And the component  $y_i$  of the projection vector y is the summation of all contribution of each correlation between the  $i^{th}$  and the  $j^{th}$  strips, starting from j = 1 to MN.

### 4.1 The effects of number of pixels

In this study we evaluate the effects of the number of pixels from the values of the vector  $\underline{\mathbf{x}}$  in (8). Since the test function  $\underline{\mathbf{f}}$  is known,  $\underline{\mathbf{x}}$  can be determined directly from

$$\underline{x} = (\phi^T)^{-1} f$$

Since the problem is over-determined, the singular value decomposition technique is used to solve the above equation. Evaluation of  $\underline{x}$  directly from this method rather than that from the reconstruction result, has an advantage in that the reconstruction errors can be avoided, thanks to the computer simulated test function f.

The solutions  $\underline{x}$  are obtained for the different numbers of  $p^2$  (= 32 x 32, 64 x 64, and 128 x 128 pixels) but a fixed number of MN (8 angles x 64 strips). Since the solutions  $\underline{x}$  do not have a physical meaning, we then interpret the solutions in terms of the approximation functions of  $\underline{f}$ . Using the solutions  $\underline{x}$ , three different approximation functions of  $\underline{f}$  are shown in Figure 3

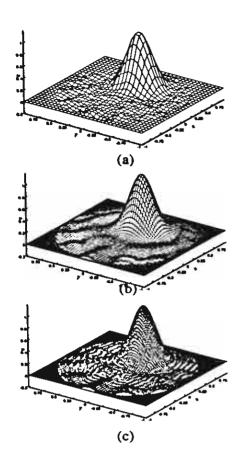


Figure 3 Approximation function  $\underline{f}$  (a) 32 x 32 pixels (b) 64 x 64 pixels (c) 128 x 128 pixels

It is shown in Figures 3a to 3c that a similar streakline pattern eppears on all of the approximation functions. Increasing the number of pixels does not overcome the streakline error. This is due to the fact that the number of projection strips of the matrix  $\Phi^T$ , both lateral and angular, is limited to MN (8x64 strips).

### 4.2 The effects of number of projections

The accuracy of the lateral strip projections is studied by comparing the strips obtained from (3) with that from analytical integration of (2). The calculation of projection strips from (3) is straightforward while the analytical strip projection of the particular test function can be obtained by

$$p_{s}(r_{i}) = \int_{r_{i}-\frac{1}{2}}^{r_{i}+\frac{1}{2}} p_{\theta}(r)dr = \int_{r_{i}-\frac{1}{2}}^{r_{i}+\frac{1}{2}} \sqrt{\frac{\pi}{c}} e^{-c(r-R)^{2}} dr$$
 (11)

where 
$$R = \sqrt{x_0^2 + y_0^2} \cos \left\{ \left[ \tan^{-1} \left( \frac{y_0}{x_0} \right) \right] - \theta \right\}$$

Figure 4 compares the strip projection functions between those obtained from discrete projections, (3), and those from direct integration, (11). The results are calculated for different values of strips per view angle (32, 64 and 128 strips) but a fixed number of pixels (64 x 64 pixels). Errors are presented as percentage of root-mean-square error. The error decreases, noticeably, when the number of strips increases from 32 to 64 but negligibly when the number of the strips increases from 64 to 128. This demonstrates that the accuracy of the projection strips has reached its limit for the given number of pixels.

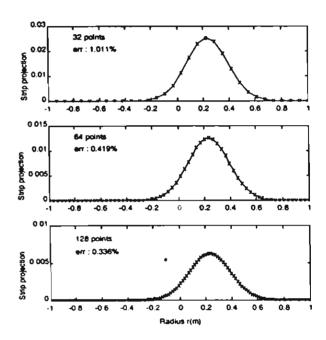


Figure 4 Projection function: direct integrated (solid line),

### 4.3 The effects of number of view angles

Effects of the number of angular samplings are shown by Figure 5. The Figure is obtained by calculating the approximation function of  $\underline{f}$ , using the solutions of  $\underline{x}$  for different number of angular views (4, 8, and 16 view angles) but for a fixed number of pixels ( $p^2 = 64 \times 64$ ) and lateral projection strips (64 strips per angular view). It is clearly demonstrates that for the given numbers of the pixels and the lateral projection strips, a more accurate approximation function f is obtained when more angular samplings are used.

### 5. Reconstruction Results

It has been shown from the previous section that an appropriate dimension of the projection matrix  $\phi$  affects the accuracy of the unknown coefficient vector  $\underline{\mathbf{x}}$ . In this paper, the projection matrix  $\phi$  is constructed based on 64 x 64 pixels, 64 strips for each angular view. The number of angular sampling is

left as unknown, which is usually the case for combustion measurement.

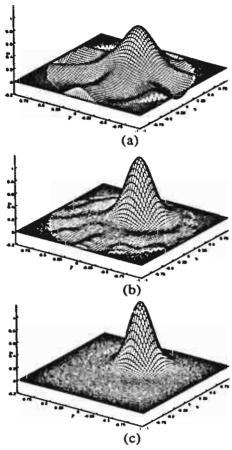


Figure 5 Approximation function  $\underline{\mathbf{f}}$ : (a) 4 sampling angles (b) 8 sampling angles (c) 16 sampling angles

Figure 6 shows the reconstruction results of the test function from their analytical path-integrated data. Three reconstruction techniques are used: FBP, ART and NP techniques. Picture distance (PD) measure as we used in our previous work [3] is again used to evaluate the resemblance of the reconstruction results to the test function.

It is shown from Figure 6 that the ART and NP techniques give a better reconstruction result than FBP. The results of FBP and ART are comparable when the higher number of angular views are used. Figures 7 to 9 show the surface plots of the reconstructed functions by using FBP, ART and NP techniques respectively. Consider particularly the NP result, it is shown in Figure 9 that the PD measure is high compared to the other techniques when higher angular views are used and the error smears over the entire region, which is similar to white noise. Improving the matrix-inversions technique using an appropriate technique, e.g. wavelets, is under way in the current series of investigations.

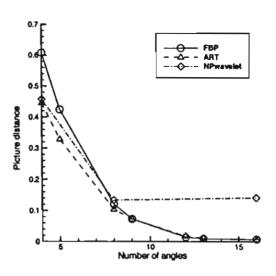


Figure 6 Picture distance: FBP, ART and NP.

#### 6. Conclusions

Discrete tomographic reconstruction of an off-centered Gaussian function from its incomplete data has been studied. With this method, the Gaussian function is assumed to be a discrete function at the beginning of the reconstruction process. A projection matrix, which projects the test function into projection strips, is constructed and its characteristics studied. It is shown from the study that the accuracy of the reconstruction result depends mainly on an appropriate dimension of the projection matrix. Reconstruction results using the FBP, ART and NP techniques have been studied and compared. It is found that when a small number of view angles (less than 8) is used the ART and NP techniques give more accurate reconstruction results than the FBP. On the other hand, when a large number of view angles is used the reconstruction results using the ART and FBP are in good agreement with the test function. There appears to be a white noise pattern in the reconstruction results when using the NP technique with a large number of angular samplings. To solve this problem, an advanced algorithm for the solution of a large matrix is needed.

### Acknowledgement

This work was supported in part by The Thailand Research Fund, Grant No. PDF/53/2540.

### References

[1]. Nyden, M.R.; Vallikul, P.; and Sivathanu, Y.R., <u>Journal of Quantitative Spectroscopy & Radiative Transfer</u> 55 No. 3 (1996): 345-356.

Sivathanu, Y.R., and Gore, J.P., Journal of Quantitative Spectroscopy & Radiative Transfer 50 (1993): 483

Vallikul, P.; Goulard, R.; Mavriplis, C.; and Nyden, M.R. "Tomographic Reconstruction of Probability Density Functions in Turbulent Flames." Conference Proceedings of The Seventh International Fire Science and Engineering Conference (Interflame'96), St. John's College, Cambridge, England, 26-28 March 1996: 235-243

Shepp, L.A., and Logan, B.F., IEEE Transection on Nuclear Science NS-21 (1974): 21

i. Chapman C.H., and Cary P.W., Inverse Problem 2 (1986): 23-49

J. Buonocore, M.H.; Brody, W.R.; and Macovski, A. <u>IEEE</u>

<u>Transactions on Biomedical Engineering</u> Vol. BME-28 No. 2

(February 1981): 69-78.

J. Beiting, E.J., Optics Letters 16 (1991): 1281.

Rosenfeld, A., and Kak, A.C. <u>Digital Picture Processing</u> 2 nd ed. New York: Academic Press, 1982.

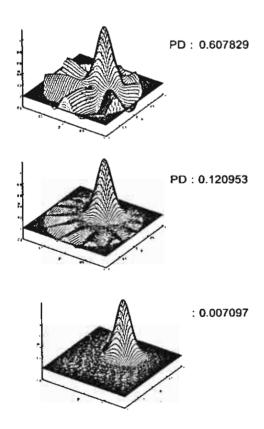


Figure 7 Reconstruction results using FBP technique with 4 ,8 and 16 sampling angles respectively

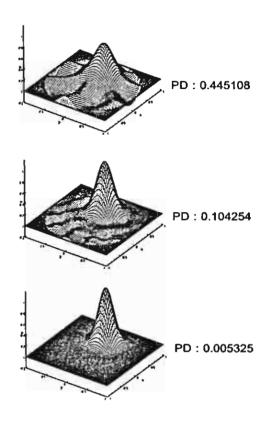


Figure 8 Reconstruction results using ART technique with 4,8 and 16 sampling angles respectively

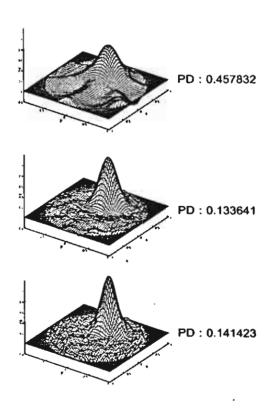


Figure 9 Reconstruction results using wavelet-NP technique with 4,8 and 16 sampling angles respectively

# A Tomographic Algorithm for Reconstructing Local Probability Density Functions in Turbulent Flames

Robert Goulard, Catherine Mavriplis
Department of Civil, Mechanical and Environmental Engineering
The George Washington University, Washington DC 20052, USA.

and

Pumyos Vallikul
Department of Mechanical Engineering
King Mongkut's Institute of Technology, Bangkok 10800, THAILAND.

### **ABSTRACT**

Local probability density functions (PDF) of absorption coefficients within turbulent flames have been retrieved from their multi-angular absorption data of path-integrated probability density functions via a series of numerical techniques. First the Filter Back-Projection (FBP) technique has been used to reconstruct local moments within the flame. The moments are then transformed to the local PDFs by using the singular value decomposition (SVD) and maximum entropy (ME) techniques. The FBP technique transforms the absorption data into the frequency domain where noisy components can be truncated while turbulent components are still preserved in the form of reconstructed moments. The reconstruction algorithm is tested by using both synthetic and experimental absorption data. Reconstruction from synthetic data allows the reconstruction algorithm to be evaluated independently of path measurement noise. On the other hand, reconstruction from experimental data demonstrates the capability of determining the local PDF within the Good reconstruction results are obtained from both cases and the turbulent flame. reconstruction algorithm is justified. This work extends the capability of the tomographic method to handle more detailed turbulent flame diagnostics in addition to the well-known application to laminar and mean flame diagnostics.

### 1. Introduction

Reconstruction of thermodynamic property distributions over cross-sections of combustion flow fields from multiabsorption angular line of sight measurement data has been recognized Combustion since the mid '70s [1-5]. tomographic techniques are based upon the same principal idea underlying the well known computer aided tomography (CAT) scanners used for medical diagnostics. Reconstruction proceeds by analytically deconvoluting the line of sight absorption data, resulting in absorption coefficient distributions over the whole cross-section.

Tomographic techniques are classified as optical path measurement techniques as opposed to point measurement techniques such as scattering methods and laser induced fluorescence (LIF). Some advantages of optical path techniques over point techniques are that the properties over the whole cross-section can be retrieved simultaneously and that the techniques do not introduce poorly understood factors such as quenching effects.

In 1976, Chen and Goulard [1] introduced a generalized onion peeling inversion method to measure pollutant emitted from jet engine exhaust flows. The method determines the two-dimensional property fields, beginning at the exterior shell, proceeding inward shell by shell as in a peeling process. Their work became the first optical path measurement technique (tomographic method) able to resolve temperature and species concentration for points over the two-dimensional property field simultaneously. However, the technique is very sensitive to noise since errors accumulate with the peeling process leading to unstable solutions. Emmerman, et al [2] overcame the accumulation errors by introducing a mathematical transform technique, the filter back-projection (FBP). The FBP technique transforms the absorption data into the frequency domain where noisy components can be truncated. technique is easy to implement since it is Hughey and Santavicca [3] explicit. pointed out in their computer simulated noisy absorption measurement data of axisymmetric reacting flow fields that the FBP outperforms both the onion peeling and the customary Abel transform Dasch [4] improved the techniques. computer algorithm for the Abel transform technique using a three point approach which, he reports, proved to be more efficient than the FBP in the case of reconstructing a simulated axisymmetric flow field. More recently, Tornianen et al [5] have proposed a series expansion technique for reconstructing property distribution within an isothermal flow from incomplete absorption measurement data. The method requires a large set of flow fields at different conditions to construct basis **functions** (called eigenfunctions). The coefficients of the expansion are then implicitly determined from the basis functions subject to the path-integrated absorption measurement constraints.

For all of the above studies, tomographic techniques have been used successfully as

analytical methods for reconstructing timeaveraged temperature and concentration distributions within the flow from their multi-angular absorption measurement data. In this paper, we advance a new technique to reconstruct statistically fluctuating distributions.

In turbulent flames, it is well known that scalar property fluctuations (concentration, temperature, etc.) cause mean thermal radiation at levels two to three times higher than those predicted based on mean properties [6,7]. The foregoing tomographic techniques, however, do not apply to turbulent measurement in the sense that high frequency fluctuations tend to be smoothed out by the averaging nature of reconstruction algorithms. Although fast scanning has been proposed for capturing the turbulent structure [8,9], the reconstruction results have temporal resolution and suffer from a high degree of deconvolution noise. There are also artifacts in the reconstruction results to random fluctuations in instantaneous flow field.

Recently, Sivathanu and Gore [10] introduced a statistical technique called the Discrete Probability Function technique which was originally used for calculating thermal radiation from turbulent flames in conjunction with onion peeling tomography to infer the probability density function (PDF) of transmittance within turbulent flames from path-integrated PDFs of path-integrated transmittance data. The local PDFs of transmittance are in turn used to predict local PDFs of soot volume fraction and temperature within turbulent flames. Although the reconstruction results appear reasonable, they suffer from accumulation errors due to the peeling process.

This research study proposes to further develop Sivathanu and Gore's method of reconstructing probability density functions (PDFs) of local transmittance from measurements of path-integrated PDFs of transmittance by introducing the following reconstruction steps:

- 1) introduce mathematical transform techniques to improve reconstruction results.
- 2) directly calculate the PDF from the moments of the property field.

We apply the proposed algorithm to both synthetic and experimental data.

### 2. Formulations

We derive, in this section, a relation between path-integrated and local PDFs of transmittance. Transmittance based on path length S is defined discretely as a stochastic variable  $\tau_{S,k}$  which represents all probable values of  $\tau_S$  in an interval  $\Delta \tau_S$ . The probability of occurrence of  $\tau_{S,k}$  is measured as  $P_k$ . Since transmittance ranges from zero to one, we have  $\tau_{S,1}=0$ ,  $\tau_{S,k}=k\Delta \tau_S$ ,  $\tau_{S,K}=1$  and  $\sum P_k$  (k = 1...K) is unity. The discrete probability density function, PDF( $\tau_{S,k}$ ), is defined by

$$P_k \equiv PDF(\tau_{S,k})\Delta\tau_S$$
.

It then follows that the  $n^{th}$  moment of  $\tau_S$  can be calculated from the discrete probability by

$$M_{s,n} = \int \tau_s^n PDF(\tau_s) d\tau_s \cong \sum_{k=1}^K \tau_{s,k}^n P_k \quad (1)$$

where  $M_{S,n}$  is the  $n^{th}$  moment and  $PDF(\tau_S)$  is the continuous probability density function of  $\tau_S$ . In the reconstruction problem the path-integrated PDFs and the local PDFs are related through their moments. The derivation of the relation follows.

Considering transmittance in a gas volume for a path length S consisting of two segments S1 and S2 with individual transmittances  $\tau_{S1}$  and  $\tau_{S2}$ , the total transmittance is

$$\tau_s = \tau_{s_1} \tau_{s_2}$$
 .

Assume that the distributions of  $\tau_{S1}$  and  $\tau_{S2}$  are statistically independent, the variables  $\tau_{S}$ ,  $\tau_{S1}$  and  $\tau_{S2}$  can then be written respectively in terms of their moments as

$$\mathbf{M}_{\mathsf{S},\mathsf{n}} = \mathbf{M}_{\mathsf{S}\mathsf{i},\mathsf{n}} \mathbf{M}_{\mathsf{S}\mathsf{2},\mathsf{n}} \ .$$

The moments on the right hand side of the equation are based on different path lengths S1 and S2. Using the same argument, rewriting them as local moments  $m_{1,n}$  and  $m_{2,n}$  respectively based on unit length leads to

$$M_{S,n} = (m_{I,n})^{SI} (m_{2,n})^{S2}$$
 or   
  $-\ln M_{S,n} = SI(-\ln m_{I,n}) + S2(-\ln m_{2,n})$ .

The logarithmic function of the path integrated moment,  $M_{S,n}$ , integrates the logarithmic function of local moment per unit length,  $m_{i,n}$ , along the line of sight S. Since the local moment is an intensive property, we may write it as a function of space,  $m_n(r,s)$ . The (r,s) coordinate axes are rotated from the (x,y) coordinate axes by the angle  $\theta$  and the integration is along the  $\theta^{\perp}$  direction. Therefore we refer to the path-integrated moment by its direction parameter  $\theta$  and we assume infinite path length. Hence, the above equation can be written as

$$-\ln M_{\theta,n}(r) = \int_{-\infty}^{\infty} -\ln m_n(r,s) ds. \quad (2)$$

Note that the path length S can be extended to be infinite since the local transmittance is assumed unity outside the region of interest. In Equation (2), the

path-integrated moments are known from the measurement data and the local moments are unknown. Using the FBP technique [2], the solution to the above integral equation may be written as

$$-\ln m_n(x,y) = f(x,y) = \frac{1}{2\pi} \int_{0}^{\pi} \int_{-\infty}^{\infty} -\ln M_{\theta,n}(\rho) h(x\cos\theta + y\sin\theta - \rho) d\rho d\theta,$$
(3)

where h(r) is a filter function. It is then follows that the local moments of transmittance based on path-length S at a point (x,y) within the flame are

$$m_{S,n}(x,y) = \exp(-S \times f(x,y)). \quad (4)$$

Note that the path length S in Equation (4) should be small enough to resolve spatial variation of the moments in the neighborhood of the point (x,y), yet large enough to justify our assumption of statistical independence [11].

Once the local moments are known from the reconstruction results, the problem then becomes a classical moment problem: given the moments find the probability density function [12]. In general, the continuous probability density function can be solved from its discrete moments [13]. The continuous problem is, however, dramatically under-determined resulting in nonunique solutions. Hence, it is simpler to go back to the discrete model of the probability density function (PDF) for which we have the discrete approximation in matrix form as,

$$\begin{bmatrix} \tau_1^0 & \tau_2^0 & \dots & \tau_K^0 \\ \tau_1^1 & \tau_2^1 & \dots & \tau_K^1 \\ \dots & \dots & \dots & \dots \\ \tau_1^{I-1} & \tau_2^{I-1} & \dots & \tau_K^{I-1} \end{bmatrix}_{I \times K} \begin{bmatrix} P_1 \\ P_2 \\ \dots \\ P_K \end{bmatrix}_K = \begin{bmatrix} m_0 \\ m_1 \\ \dots \\ m_{I-1} \end{bmatrix}_I$$

where  $\tau_1 = 0$ ,  $\tau_K = 1$ . Note that PDF<sub>k</sub> is simply  $P_k/(\Delta \tau)$ . The left hand side matrix is the transmittance matrix, made up of powers of the discrete transmittance values  $\tau_k$ , and  $P_k$  and  $m_i$  are the probability and reconstructed local moment vectors respectively: note that there are K PDF's and I moments. Depending on I and K this is either an over- or underdetermined system.

Two different methods are used to solve the problem. The first method uses the singular value decomposition (SVD) technique to solve the moment equations directly when the system is overdetermined This results in a least squares The second method uses a solution. maximum entropy (ME) model when the underdetermined[15]. system is resulting solution is the most probable solution that satisfies the given set of moments and some additional constraints. In summary, the proposed algorithm for reconstruction of local PDF consists of the following steps:

- 1) Measure path-integrated (line of sight) PDFs.
- 2) For each view angle, convert all measured path-integrated PDFs to path-integrated moment function.
- 3) Using tomographic methods (Abel transform or FBP) reconstruct local moments from the corresponding path-integrated moments.
- 4) Retrieve the discrete PDF from its moments by solving moment equations using singular value decomposition technique or by using maximum entropy model.

We now turn to validation of the proposed algorithm using synthesized and actual experimental data.

### 3. Results and Discussions

The proposed reconstruction method is used to reconstruct the PDF of local transmittance of a Propylene/Air

diffusion flame from its synthetic pathabsorption data. Local integrated absorption measurements of the local PDFs within the flame were carried out by Sivathanu and Gore [10]. The diameter of the burner used was d = 50 mm and the burner operated at the Reynolds number of 750 based on fuel properties at the burner exit. A purged optical probe with a 10 mm path length was used to obtain the local PDFs from the absorption measurements. All local measurements were conducted in a plane (assumed circular) at a particular height above the burner (at z/d = 6.7 where z is the distance from the burner exit and d is the burner diameter). The plane was divided into 11 rings and a central core where the local PDFs for the individual region were measured.

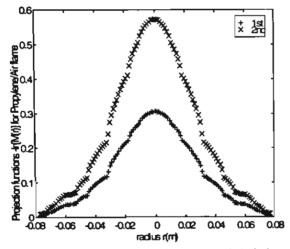


Figure 1 Synthetic path-integrated (projection) functions for the Propylene/Air diffusion flame: First and Second moments.

The path-integrated functions, -ln  $M_{\theta,n}(r)$ , are synthesized from the local PDF measurement data and construction of their moments. Figure 1 shows the synthetic path-integrated (projection) functions of the first two moments as a function of radius r. We generate 300 moment functions (-ln  $M_{\theta,n}(r)$  for n = 1 to 300), each function having 128 projection points (total view angles are 180). These path-integrated functions, -ln  $M_{\theta,n}(r)$ , are used

to reconstruct local moment functions, -ln  $[m_n(r)]$ , at the center of the flame (r=0). The reconstructed local moment functions from the FBP algorithm are based on unit path-length. To compare the reconstruction result with the test PDF, local moments based on path-length S=0.01m are required. These can be calculated by using Equation (4) with S=0.01m. Figure 2 shows the first fifty reconstructed moments.

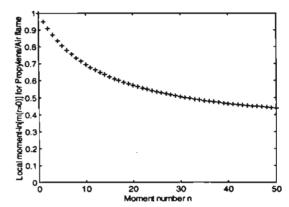


Figure 2. Local moment reconstruction from synthetic path-integrated functions for Propylene/Air diffusion flame: First 50 reconstructed local moments at the flame center.

The SVD technique offers a way to monitor the reconstructed local moments to see if they are consistent. It is shown in standard literature[e.g.16,17,18] that the SVD algorithm factor the transmittance matix in to  $U \Sigma V^T$ . Figure 3 shows the plot of  $\log_{10} |U^T m_i| = dil$  and  $\log_{10} (\sigma_i)$  versus j. The values of  $log_{10}(\sigma_i)$  are always greater than that of log<sub>10</sub>|d<sub>i</sub>|. This means that the reconstructed local moments give a consistent system of linear equations. When the calculated values are as small as 10<sup>-16</sup>, we have reached the machine error and the calculated values below 10-16 are Although the calculations are omitted. carried out by using double precision, the data obtained from the test PDFs are single precision. With these sources of error in mind, we use the first 18 singular values  $(\sigma_{min} \sim 10^{-5}$ , and  $\sigma_{max}/\sigma_{min} \sim 10^{5})$  in our study and set the rest to be zero.

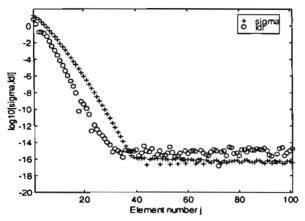


Figure 3. Singular value decompostion values:  $log_{10}(|d_j|)$  and  $log_{10}(|\sigma_j|)$  for the Propyline/Air diffusion flame at the flame center.

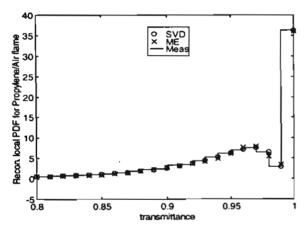


Figure 4. Reconstruction results of local PDFs at the center of the Propylene/Air diffusion flame: Comparision of the SVD and ME solutions and probe measuremets from [10].

Figure 4 shows the reconstruction results of local PDF at the center of the Propylene/Air diffusion flame using the SVD and ME methods (with 300 and 50 reconstructed local moments respectively) comparing with the measured values from [10]. Both reconstruction results are in good agreement with the directly measured PDF though the SVD solution appears to be better. Recall that the ME solution uses a much smaller set of data, solving the underdetermined problem. Deviation of

total probability for both methods is less than  $10^{-5}$  from unity.

The cost of the SVD technique and the error involved depend mainly on the number of moments used in the PDF calculation. Infinite moments are needed to get a unique PDF. The calculation, however, can not go beyond machine error so only a finite number can be used. Truncation of singular values is another source of error. For the 300 by 101 matrix decomposition and the back substitution step required for these results, the SVD algorithm takes only a few minutes on a UNIX workstation.

From Figure 4, we see that there is a minor discrepancy between the ME solution and the directly measured PDF. This is due to the underdetermined system used in Bevensee's algorithm: we can not add too many moment constraints because the number of constraints can not exceed half of the number of unknowns. This is the existence condition for generalized inverse solution described by Bevensee The condition for the number of constraints is the only disadvantage to this algorithm that we can see at this time. However, the error is acceptable in an engineering sense. The ME results take only 10 iterations or less than a minute (on a UNIX workstation) to converge using 50 moments instead of 300 in the previous case (SVD solution).

Within each iteration step of the ME method there is a matrix solver. We use the truncated SVD method to solve the matrix equation since it is ill-conditioned. The number of singular values used depends on each problem. In addition, the first guess of the Lagrange multipliers affects the convergence of the solution: a good initial guess leads to very fast convergence. Conversely, an unreasonable guess may lead to a diverging solution. Unfortunately, there appears to be no hard and fast rules for choosing the initial

Lagrange multiplier values: some trial and error is advisable for each problem.

Next, we use the proposed algorithm to do the full problem: reconstruct a local PDF at the center of an Ethylene/Air turbulent jet flame from path-integrated diffusion measured PDFs. The measured data are from Sivathanu and Gore [10]. The flame has a d = 6 mm outlet-diameter and 9200 exit Reynolds number. The measurements are at a cross-section of z/d = 30 above the There are ten line of sight burner. measurements and each line is .005 m. apart.

The algorithm begins with construction of the path-integrated functions (projections) from the path-integrated PDF measurement data. The path-integrated function of the first moment is constructed by Equation (2).

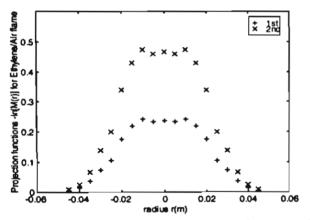


Figure 5. Measured path-integrated (projection) functions for the Ethylene/Air turbulent jet diffusion flame: First and Second moments at 19 projection points.

Assuming that the PDF is axisymmetric, we have nineteen projection points. The path-integrated function of the second moment can be constructed using the same procedure and so can the higher order (moment) path-integrated functions. Figure 5 shows the path-integrated functions of the first two moments.

After constructing the path-integrated moment functions, we apply the FBP algorithm, resulting in the reconstructed local moments of order corresponding to the order of moment from which the pathintegrated functions were constructed.

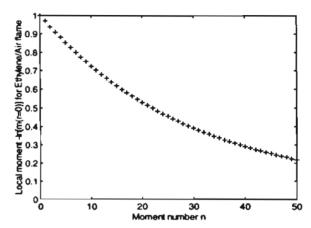


Figure 6. Local moment reconstruction from measured path-integrated functions for the Ethylene/Air diffusion flame: First 50 reconstructed local moments at the flame center.

Again the resulting local moments are based on unit path-length. We change the path-length to 0.01m i.e. the path-length of the probe used in the local measurement [10]. Figure 6 shows the first fifty reconstructed local moments at the center of the flame.

From the  $|d_i|$  and singular values  $\sigma_i$  plot shown in Figure 7, the reconstructed moments do not give a consistent system of equations for all singular values since some of the singular values vanish before their corresponding component of implies that the vector m reconstructed local moments is a linear combination of both the column space and the left nullspace of the transmittance matrix A. In the least squares (SVD) solution, only the singular values that are greater than the ldil have been used. In addition, the number of singular values used has to ensure a total probability closest to unity. Figure 8 shows reconstructed local PDF solutions using the SVD and ME methods proposed in this paper, and the DPF results of [10].

comparing directly with measured local PDFs at the center of the flame from [10].

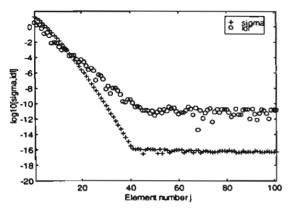


Figure 7. Singular value decomposition values: log10(ldjl) and10(oj) for the Ethylene/Air diffusion flame at the flame center.

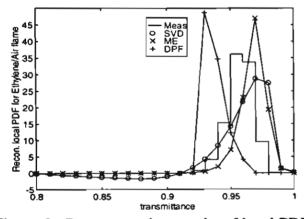


Figure 8. Reconstruction results of local PDFs at the center of the Ethylene/Air turbulent jet diffusion flame: Comparision of the SVD and ME, the DPF results from [10] and the probe measurements from [10]

In the SVD solution we used 300 reconstructed moments and eight singular values ( $\sigma_{min} \sim 10^{-1}$ , and  $\sigma_{max}/\sigma_{min} \sim 10^2$ ). Deviation of total probability is less that The SVD method 7% from unity. underpredicts the height of the PDF, and therefore the solution oscillates around the measured PDF. allowing unphysical negative values as the measured PDF goes to zero. The oscillation does not vanish when higher number of moments are On the other hand, if more included.

singular values are used the solution becomes unstable. This is due to the inconsistency of the system which comes from both measurement and numerical The first source of error is the errors. number of lines of sight used in the reconstruction. We have only measured lines of sight available to us from this data set: this causes aliasing errors in the FBP algorithm. The second source of error has to do with the floating point accuracy of the data: we calculate with double precision while the projection data are in single precision. Noise in the data could also be responsible also for the inconsistency since it may not be completely filtered out by the FBP. Nevertheless, the SVD solution seems to be the closest to the measured PDF in terms of magnitude. Should we able to suppress the oscillation below zero, we expect to improve the agreement in magnitude. In both cases the prediction in maximum magnitude is improved over the DPF results [10].

The ME solution gives a more realistic solution to the problem with a smaller number of moments (50) used, in that no oscillation with negative values of the PDF are found. The total probability is about 0.001 greater than unity. This discrepancy is smaller than in the SVD solution. This is due to the fact that the ME technique predicts the most probable solution to the given constraints instead of solving the moment system directly. The ME result, however, overpredicts the maximum value of PDF. The main source of error is from under-determined nature of the problem as discussed earlier in the synthetic reconstruction case.

The location of the peak in both the SVD and ME solutions is shifted towards a transmittance of unity in comparison with the measured data. Since the SVD and ME solutions exhibit similar effects, it may be that 1) there is insufficient data (only ten

line of sight measurements) or that 2) the measured peak shifted is due experimental егтог. Ĭn the direct measurement of the local PDFs, probe intrusion disturbs the flow structure. Moreover, the path-length of the probe is 10 mm. This may not be small enough to resolve the local measurement. To resolve discrepancies, the proposed technique will be tested against more data in the future.

developed

new

### 4. Conclusions

We

have

algorithm for tomographic reconstruction of probability density function (PDF). The local PDF at a particular point in the xyplane can be reconstructed from the measurement of path-integrated PDF. This reconstruction algorithm is developed under the assumption that the local PDFs statistically independent. combustion measurements, this algorithm techniques extends tomographic turbulent fluctuating flame measurements. The reconstruction algorithm has been tested by using both synthetic and experimental absorption data. synthetic case, the projections obtained from measurement of local PDFs in a Propylene/Air diffusion flame and construction of their moments. Pathintegrated measured PDFs from Ethylene/Air diffusion flame were used in the full reconstruction case. Good reconstruction results were obtained from both cases and the reconstruction algorithm is justified.

The algorithm has an advantage over the DPF method proposed by Sivathanu and Gore [10] in that there are no errors due to the rebinding process, resulting in a smoother PDF profile. The new method also offers a way to preserve turbulent structures of the flow through the number of moments used in the method.

Our research has introduced two techniques for solving the moment equations the singular value decomposition (SVD) technique overdetermined and ill-conditioned systems and the maximum entropy (ME) technique for underdetermined systems. Both methods significant represent improvements over more traditionally used algebraic reconstruction techniques (ART). Since the system is ill-conditioned the ART technique can take several days of CPU time to converge as opposed to a few minutes for the SVD or ME techniques (on a workstation). The ME technique should prove to be particularly useful in the case of limited moment data.

Introduction of the SVD technique provides a way to check the consistency of the reconstructed moments. If the reconstructed moments are consistent, the SVD technique is preferred. Conversely, if only a few values of  $|d_j| < \sigma_j$  the ME technique is preferred since it gives the most probable PDF solution.

The major practical limitation of the method appears to be the need for many projection points from many angular viewing angles. This is partly due to the choice of inversion method: Fourier transforms are global transforms and are not the best suited to local measurements. Improved algorithms and filters should be developed. Also, recent techniques have been used outside of the combustion diagnostics field: pattern recognition maximum entropy methods come to mind. Current research on local transform techniques also seems to be relevant to the particular problem. For practical purposes, a method tolerant of limited angular access (e.g. for industrial combustors) would be most desirable.

### 5. Acknowledgments

We are grateful to Dr. Marc R. Nyden, Building and Fire Research

Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 USA, who introduced us to the moment method for reconstructing the PDF in turbulent flames. We are also grateful to Bert W. Rust, Mathematician at NIST, for his suggestions and discussions on the SVD technique. Absorption data used in this paper were supplied by Dr. Sivathanu, School Yudaya R. Mechanical Engineering, Purdue University, during his stay in fall 1994 at NIST. Dr. Sivathanu's valuable discussions are very much appreciated.

### 6. References

- [1] Chen, F.P. and Goulard, R., (1976) <u>JOSRT</u>, Vol. 16., p. 819.
- [2] Emmerman, P.J., Goulard, R., Santoro, R.J. and Semerjian, H.G., (1980) AIAA., Vol. 4 No.2, p.70.
- [3] Hughey, B.J. and Santavicca, D.A., (1982) Combustion Science and Technology, Vol.29, p.167.
- [4] Dasch, C.J., (1992) <u>Applied</u> Optics, Vol. 31, p. 1146.
- Tornianen, E.D., Lam [5] K.W., Chojnacki, A.M., Gouldin, F.C. and Wolga, G.J., (1995) Chemical Processes in and Physical Combustion, Eastern States Section of Combustion The Institute, Pittsburgh.
- [6] Gore, J.P. and Faeth, G.M. (1986)

  Twenty-First Symposium

  (International) on Combustion, pp
  1521-1531, The Combustion

  Institute, Pittsburgh.
- [7] Hermins, A., Fischer, S.J., Kashiwagi, T., Klassen, M.E. and Gore, J.P., (1994) Combust. Sci. and Tech, Vol. 97, p. 37.
- [8] Snyder, R. and Hesselink, L., (1988) Optic Let, Vol. 13, p. 87.
- [9] Beiting, E.J., Optics Letters, (1991) Vol.16, p. 1281.

- [10] Sivathanu, Y.R. and Gore, J.P., (1993) JOSRT, Vol. 50, p. 483.
- [11] Nyden, M.R., Vallikul, P., and Sivathanu, Y.R., (1996) <u>JOSRT</u>., Vol. 55No.3, p. 345.
- [12] Backus, G., and Gilbert, F., (1970)

  Phil. Trans. Royal Soc., London,
  Vol. 266, p. 123.
- [13] Louis, A.K., and Maass, P., (1990) <u>Inverse Problems</u>, Vol. 6, p. 427.
- [14] Golub, G.H. and Reinsch, C., (1970) Num.Math., Vol. 14, p. 403.
- [15] Bevensee, R.M., (1981) <u>IEEE</u>

  <u>Transactions on Antenna and</u>

  <u>Propagation</u>, Vol. 29 No 2, p. 271.
- [16] Forsythe, G.E., Michael A.M., and Moler, C.B., (1977) Computer

  Methods for Mathematical

  Computations. Prentice-Hall series in Automatic Computation,

  Englewood Cliffs, New Jersey.
- [17] Wilkinson, J.H., (1978) in <u>Numerical</u>
  <u>Software-Needs and Availability</u>
  (D. Jacobs Eds), Academic Press.
- [18] Lawson, C.L., and Hanson, R.J., (1974) Solving Least Squares
  Problem. Prentice-Hall, Inc..
- [19] Bevensee, R.M., (1993) Maximum
  Entropy Solutions to Scientific
  Problems. Prentice Hall,
  Englewood Cliffs, New Jersey.

# Journal of Quantitative Spectroscopy and Radiative Transfer

.. Fax: (516) 632-9389

PROFESSOR P. VARANASI, Editor 149 Dana Hall Marine Sciences Research Center State University of New York Stony Brook, NY 11794-5000, U.S.A. Tel: (516) 632-9388



Published by Pergamon Press New York - Oxford

Date: 15 April 1998

Dr. Catherine Mavriplis Academic Center T731

School of Engineering and Applied Science

To: Department of Civil, Mechanical and

Environmental Engineering

The George Washington University, Washington DC 20052

Title, Author(s) "A Tomographic Algorithm for Reconstructing Local Probability

& Date Received: Density Function in Turbulent Flames"

(Ms.#97-130: Received 27 October 1997)

by Pumyos Vallikul, Robert Gouland and Cabteri

|             | by Pumyos                                               | Vallikul, Rob                            | ert Goulard and                        | Cahterine Mavriplis                                                   |                |
|-------------|---------------------------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|----------------|
| Please foll | ow instructions for e                                   | ach item marked                          | concerning public                      | cation of your paper.                                                 |                |
| Yo          | ur paper has been acc                                   | cepted for public                        | ation.                                 |                                                                       |                |
|             | ur paper will be acce<br>enclosed <del>guidelines</del> |                                          |                                        | ibmitted in proper form acco                                          | ording to      |
| <b>A</b> de | eferee's reportlis ons                                  | losad. All of the                        | referee's remarks                      | and questions must be answ                                            | vered in .     |
| Yo          | our paper has not been                                  | n submitted in ac                        | ceptable form.                         |                                                                       |                |
| Ple         | ease follow the enclose                                 | sed guidelines ca                        | refully.                               |                                                                       |                |
| Re          | presentative editoria                                   | l changes are sho                        | wn on the enclose                      | ed document.                                                          |                |
| Th          | ne entire list of refere                                | nces should be ca                        | refully retyped ac                     | ecording to the guidelines.                                           |                |
| A!          | l bullets, excessive p                                  | aragraphing and                          | needless offsets sl                    | hould be removed.                                                     |                |
| All be      | ll unnecessary phrase shortened.                        | s and repetitive s                       | entences should b                      | e eliminated and the manusc                                           | ript shoul     |
| W           | e require original, can vellum) that are suit           | refully lined (bot<br>able for direct re | h vertically and he production.        | orizontally) tables and figure                                        | es (india i    |
| ✓ Y         | our carefully revised                                   | paper should be                          | returned to me in                      | duplicate.                                                            |                |
| — ге        | garding this paper sh                                   | ould be sent alon                        | g with your Fax N                      | nting. All further correspond<br>to. to:<br>de Street, Exeter EX12AH, |                |
|             | completion of the encire amended by you as              | losed Transfer of required. It shou      | Copyright Agreer<br>ld also be sent to | ment is required for publicat<br>me.                                  | ion. It ma     |
| Y           | our paper has been re                                   | eturned to you un                        | der separate cover                     | r. <b>\</b>                                                           |                |
| c           | c: Pergamon Press.                                      |                                          |                                        | Brand Lava                                                            | <del>-</del> - |
|             |                                                         |                                          |                                        | P. Varanasi Editor                                                    |                |
|             |                                                         |                                          |                                        | TOTIOI                                                                |                |

# A Tomographic Algorithm for Reconstructing Local Probability Density Function in Turbulent Flames

Pumyos Vallikul<sup>+</sup>, Robert Goulard, and Catherine Mavriplis\*

Department of Civil, Mechanical and Environmental Engineering

The George Washington University, Washington DC 20052, USA

Type of article: Full-length article

\*Corresponding Author:

801 22nd St. NW.,

Academic Center T731,

School of Engineering and Applied Science,

Department of Civil, Mechanical and Environmental Engineering

The George Washington University, Washington DC 20052, USA

Phone (202) 994-6149

Fax (202) 994-0238

E-mail mavripli@seas.gwu.edu

\*Current address:

Waste Incineration Research Center

King Mongkut's Institute of Technology, Bangkok 10800, THAILAND

### **ABSTRACT**

Local probability density functions (PDF) of absorption coefficients within turbulent flames have been retrieved from their multi-angular absorption data of path-integrated probability density functions via a series of numerical techniques. First the Filter Back-Projection (FBP) technique has been used to reconstruct local moments within the flame. The moments are then transformed to the local PDFs by using the singular value decomposition (SVD) and maximum entropy (ME) techniques. The FBP technique transforms the absorption data into frequency domain where noisy components can be truncated while turbulent components are still preserved in the form of reconstructed moments. The reconstruction algorithm is tested by using both synthetic and experimental absorption data. Reconstruction from synthetic data allows the reconstruction algorithm to be evaluated independently of path measurement noise. On the other hand, reconstruction from experimental data demonstrates the capability of determining the local PDF within the turbulent flame. Good reconstruction results are obtained from both cases and the reconstruction algorithm is justified. This work extends the capability of the tomographic method to handle more detailed turbulent flame diagnostics in addition to the well-known application to laminar and mean flame diagnostics.

### **ABSTRACT**

Local probability density functions (PDF) of absorption coefficients within turbulent flames have been retrieved from their multi-angular absorption data of path-integrated probability density functions via a series of numerical techniques. First the Filter Back-Projection (FBP) technique has been used to reconstruct local moments within the flame. The moments are then transformed to the local PDFs by using the singular value decomposition (SVD) and maximum entropy (ME) techniques. The FBP technique transforms the absorption data into frequency domain where noisy components can be truncated while turbulent components are still preserved in the form of reconstructed moments. The reconstruction algorithm is tested by using both synthetic and experimental absorption data. Reconstruction from synthetic data allows the reconstruction algorithm to be evaluated independently of path measurement noise. On the other hand, reconstruction from experimental data demonstrates the capability of determining the local PDF within the turbulent flame. Good reconstruction results are obtained from both cases and the reconstruction algorithm is justified. This work extends the capability of the tomographic method to handle more detailed turbulent flame diagnostics in addition to the well-known application to laminar and mean flame diagnostics.

### Nomenclature

| a                         | sampling interval                           |  |
|---------------------------|---------------------------------------------|--|
| A                         | transmittance matrix                        |  |
| с .                       | convergence ratio                           |  |
| d                         | vector of $\mathbf{U}^{T}\mathbf{m}$        |  |
| f                         | two-dimensional function                    |  |
| F                         | Objective function                          |  |
| h                         | filter function                             |  |
| I                         | total number of known moments               |  |
| K                         | total number of unknown Pk                  |  |
| m                         | local moment                                |  |
| M                         | path-integrated moment                      |  |
| $n_{\mathbf{k}}$          | number of building blocks in P <sub>k</sub> |  |
| N                         | total number of building blocks             |  |
| $P_{\boldsymbol{k}}$      | discrete probability at the point k         |  |
| $\mathtt{P}_{\mathtt{T}}$ | total probability                           |  |
| PDF                       | probability density function                |  |
| p                         | one-dimensional projection function         |  |
| q                         | filtered function                           |  |
| <b>r</b> .                | matrix rank                                 |  |
| S                         | Entropy                                     |  |
| U,V                       | orthogonal matrices                         |  |
| ·X                        | diagonal matrix                             |  |
| Symbols                   |                                             |  |

### Greek

| β        | Lagrange multiplier for moment constraint               |
|----------|---------------------------------------------------------|
| γ        | Lagrange multiplier for total building block constraint |
| σ        | singular value                                          |
| Σ        | singular value matrix                                   |
| <b>T</b> | transmittance                                           |

 $\tau_{S,k}$  discrete transmittance based on path length S at the point k

## Superscript

(i) iteration number

transpose of a matrix

## Subscripts

n order of moment

S path-length

θ angle

### 1. INTRODUCTION

Reconstruction of thermodynamic property distributions over cross-sections of combustion flow fields from multi-angular line of sight absorption measurement data has been recognized since the mid '70s [1-5]. Combustion tomographic techniques are based upon the same principal idea underlying the well known computer aided tomography (CAT) scanners used for medical diagnostics. Figure 1 shows a typical setup of tomographic measurement. Line of sight absorption measurement data are taken from both lateral and angular directions. Reconstruction proceeds by analytically deconvoluting the line of sight absorption data, resulting in absorption coefficient distributions over the whole cross-section.

Tomographic techniques are classified as optical path measurement techniques as opposed to point measurement techniques such as scattering methods and laser induced fluorescence (LIF). Some advantages of optical path techniques over point techniques are that the properties over the whole cross-section can be retrieved simultaneously and that the techniques do not introduce poorly understood factors such as quenching effects.

In 1976, Chen and Goulard [1] introduced a generalized onion peeling inversion method to measure pollutant emitted from jet engine exhaust flows. The method determines the two-dimensional property fields, beginning at the exterior shell, proceeding inward shell by shell as in a peeling process. Their work became the first optical path measurement technique (tomographic method) able to resolve temperature and species concentration for all points over the two-dimensional property field simultaneously. However, the technique is very sensitive to noise since errors accumulate with the peeling process leading to unstable solutions. Emmerman, et al [2] overcame the accumulation errors by introducing a mathematical transform technique, the filer back-projection (FBP). The FBP technique transforms the absorption data into the frequency domain where noisy components can be truncated. The technique is easy to implement since it is explicit. Hughey and Santavicca [3] pointed out in their computer simulated noisy absorption measurement data of axisymmetric reacting flow fields that the FBP outperforms both the onion peeling and the customary Abel transform techniques. Dasch [4] improved the computer algorithm for the Abel transform technique using a three point approach which, he reports, proved to be more efficient than the FBP in the case of reconstructing a simulated axisymmetric flow field. More recently, Tornianen et al [5] have proposed a series expansion technique for reconstructing property distribution within an isothermal flow from incomplete absorption measurement data. The method requires a large set of flow fields at different conditions to construct basis functions (called eigenfunctions). The coefficients of the expansion are then implicitly determined from the basis functions subject to the given path-integrated absorption measurement constraints.

For all of the above studies, tomographic techniques have been used successfully as analytical methods for reconstructing <u>time-averaged</u> temperature and concentration distributions within the flow from their multi-angular absorption measurement data. In this paper, we advance a new technique to reconstruct statistically fluctuating distributions.

In turbulent flames, it is well know that scalar property fluctuations (concentration, temperature, etc.) cause mean thermal radiation at levels two to three times higher than those predicted based on mean properties [6,7]. The foregoing tomographic techniques, however, do not apply to turbulent measurement in the sense that high frequency fluctuations tend to be smoothed out by the averaging nature of reconstruction algorithms. Although fast scanning has been proposed for capturing the turbulent structure [8,9], the reconstruction results have limited temporal resolution and suffer from a high degree of deconvolution noise. There are also artifacts in the reconstruction results due to random fluctuations in the instantaneous flow field.

Recently, Sivathanu and Gore [10] introduced a statistical technique called the Discrete Probability Function (DPF) technique which was originally used for calculating thermal radiation from turbulent flames in conjunction with onion peeling tomography to infer the probability density function (PDF) of <u>local transmittance</u> within turbulent flames from <u>path-integrated PDFs</u> of path-integrated transmittance data. The local PDFs of transmittance are in turn used to predict local PDFs of soot volume fraction and temperature within turbulent flames. Although the reconstruction results appear reasonable, they suffer from accumulation errors due to the peeling process.

This research study proposes to further develop Sivathanu and Gore's method of reconstructing probability density functions (PDFs) of local transmittance from measurements of path-integrated PDFs of transmittance by introducing the following reconstruction steps:

1) introduce mathematical transform techniques to improve reconstruction results.

There are two main advantages to mathematical transform techniques. First, they allow absorption data to be transformed into the frequency domain where noisy components can be truncated. Second, they are easy to implement since they are explicit. The mathematical transform technique used in this research is the Filter Back-Projection (FBP) technique.

2) directly calculate the PDF from the moments of the property field.

The idea is to reconstruct the higher moments in addition to the first moment (the average value) of the property field. Once the moments are known, the problem then becomes the classical moment problem: given the moments, find the density function. Discrete PDFs of absorption coefficients are obtained from their reconstructed moments by two different methods. The first method solves for the PDF directly from the moment equations by using the singular value decomposition (SVD) technique. The second method uses the maximum entropy (ME) model to determine the PDF.

This paper is organized as follows. Section 2 introduces the new approach to fluctuation measurement of local transmittance in turbulent flames: the moment approach. We derive the relation between path-integrated and local PDFs of transmittance. The moments of the local PDFs are then retrieved from moments of the pathintegrated PDFs via tomographic methods. In Section 3, mathematical transform tomographies, in particular, the Filter Back-Projection (FBP) technique are reviewed and computer implementations for reconstructing continuous two-dimensional functions from their discrete one-dimensional projection functions are developed. In Section 4, we apply the singular value decomposition (SVD) technique to solve for the least squares PDF solution from the moment equations. We also introduce the maximum entropy (ME) technique to solve for the most probable PDF solution from its limited moments. We apply the proposed algorithm to both synthetic and experimental data. The synthetic reconstruction results are shown in Section 5. In the synthetic projection case, the PDFs of local transmittance within a Propylene/Air flame are measured using a purged optical probe. Then the path-integrated absorption data are generated synthetically using the local PDFs and the construction of their Detailed calculation of the synthetic projections are shown and the reconstruction results are moments. To test the technique on real experimental data, experimental path-integrated PDFs of the Ethylene/Air diffusion flame are used to reconstruct local PDFs at the center of the flame. The reconstruction result is then compared with the directly measured local PDF. These results are shown in Section 6. In Section 7, the reconstruction algorithm is applied to reconstruct the PDF at the center of an asymmetrical flame. The last section concludes and suggests future directions for this research.

### 2. FLUCTUATION OF TRANSMITTANCE AND ITS MOMENTS

We derive, in this section, a relation between path-integrated and local PDFs of transmittance. Transmittance based on path length S is defined discretely as a stochastic variable  $\tau_{S,k}$  which represents all probable values of  $\tau_S$  in an interval  $\Delta \tau_S$ . The probability of occurrence of  $\tau_{S,k}$  is measured as  $P_k$ . Since

transmittance ranges from zero to one, we have  $\tau_{S,1} = 0$ ,  $\tau_{S,k} = k\Delta \tau_{S,K} = 1$  and  $\Sigma P_k$  (k = 1...K) is unity. The discrete probability density function, PDF( $\tau_{S,k}$ ), is defined by

$$P_k \equiv PDF(\tau_{s,k})\Delta \tau_s$$
.

It then follows that the  $n^{th}$  moment of  $\tau_S$  can be calculated from the discrete probability by

$$\mathbf{M}_{S,n} = \int \tau_S^n PDF(\tau_S) d\tau_S \cong \sum_{k=1}^K \tau_{S,k}^n P_k , \qquad (1)$$

where  $M_{S,n}$  is the  $n^{th}$  moment and PDF( $\tau_S$ ) is the continuous probability density function of  $\tau_S$ . In the reconstruction problem the path-integrated PDFs and the local PDFs are related through their moments. The derivation of the relation follows.

Considering transmittance in a gas volume for a path length S consisting of two segments S1 and S2 with individual transmittances  $\tau_{S1}$  and  $\tau_{S2}$ , the total transmittance is

$$\tau_S = \tau_{S1} \tau_{S2}$$

Assume that the distributions of  $\tau_{S1}$  and  $\tau_{S2}$  are <u>statistically independent</u>, the variables  $\tau_{S1}$  and  $\tau_{S2}$  can then be written respectively in terms of their moments as

$$M_{S.n} = M_{S1.n} M_{S2.n}$$
.

The moments on the right hand side of the equation are based on different path lengths S1 and S2. Using the same argument, rewriting them as local moments  $m_{1,n}$  and  $m_{2,n}$  respectively based on unit length leads to

$$M_{s,n} = (m_{1,n})^{s_1} (m_{2,n})^{s_2}$$
 or  $-\ln M_{s,n} = s_1 (-\ln m_{1,n}) + s_2 (-\ln m_{2,n})$ .

The logarithmic function of the path integrated moment,  $M_{S,n}$ , integrates the logarithmic function of local moment per unit length,  $m_{i,n}$ , along the line of sight S. Since the local moment is an intensive property, we may write it as a function of space,  $m_n$  (r,s). The (r,s) coordinate axes are rotated from the (x,y) coordinate axes by the angle  $\theta$  and the integration is along the  $\theta^{\perp}$  direction (see Fig. 2). Therefore we refer to the path-integrated moment by its direction parameter  $\theta$  and we assume infinite path length. Hence, the above equation can be written as

$$-\ln M_{\theta,n}(r) = \int_{-\infty}^{\infty} -\ln m_n(r,s) ds.$$
 (2)

Note that the path length S can be extended to be infinite since the local transmittance is assumed unity outside the region of interest. In Equation (2), the path-integrated moments are known from the measurement data and the local moments are unknown. Figure 2 shows the physical relevance of view angle  $\theta$ .

Nyden et al [11] used Equation (2) to calculate path-integrated moments from directly measured local PDFs within a Propylene/Air diffusion flame [10]. Their results agreed well with the path-integrated moments of PDFs obtained by DPF method [10].

### 3. TOMOGRAPHIC PROBLEM

By making a series of measurements of PDFs of path-integrated transmittance at a number of different angles, we can mathematically construct projection functions for an arbitrary view angle  $\theta$ ,  $M_{\theta,n}(r)$ , from  $m_n$  (x,y). Figure 2 shows the local moment function and its projection (path-integrated moment function) at view angle  $\theta$ .

For ease of mathematical notation, let f(x,y) represent the local moment function  $-\ln[m_n(x,y)]$  and let  $p_{\theta}$ (r) represent the path-integrated moment function  $-\ln[M_{\theta,n}(r)]$ , so that Equation (2) may be written as:

$$p_{\theta}(r) = \int_{-\infty}^{\infty} f_{\theta}(r, s) ds.$$

Note that f is interpreted in the (r,s) coordinate system, rotated from the (x,y) coordinate system by the angle  $\theta$ . Inverting f and p, using the filter back-projection (FBP) technique [2], the solution may be written as

$$f(x,y) = \frac{1}{2\pi} \int_{0}^{\pi} \int_{-\infty}^{\infty} p_{\theta}(\rho) h(x \cos \theta + y \sin \theta - \rho) d\rho d\theta,$$
 (3)

where h(r) is a filter function. The inner integral in the reconstruction formula convolutes the filter h(r) with the projection  $p_{\theta}(r)$ , resulting in a filtered projection function:

$$q_{\theta}(r) = \int_{-\infty}^{\infty} p_{\theta}(\rho) h(r - \rho) d\rho.$$

The values of  $q_{\theta}(r)$ , where r corresponds to  $x\cos\theta+y\sin\theta$ , are then integrated over projection angle from 0 to  $\pi$ , giving f(x,y) as

$$f(x, y) = \frac{1}{2\pi} \int_{0}^{\pi} q(x \cos \theta + y \sin \theta) d\theta.$$

This is called the back-projection operation. These two steps therefore provide the name Filter Back-Projection to the formula.

The projections are sampled discretely at a particular angle  $\theta_j$ : M equally spaced lateral samples are obtained and the sampling procedure is repeated for total projections of N angles. The lateral sampling has an

interval "a": the filter h(r) needs to have the same sampling interval and for only M points. We use the Shepp-Logan filter function [12]:

$$h_{SL}(r_k) = -\frac{4}{\pi a^2 (4k^2 - 1)}, k = 0, \pm 1, ..., \pm (M - 1)/2.$$

Convolution between the projection at a particular angle  $\theta_j$  and the filter function can be performed discretely, resulting in a discrete filtered projection function of the form:

$$q_{\theta_j}(r_n) = a \sum_{k=0}^{M-1} p_{\theta_j}(r_k) h(r_n - r_k) \quad n = 0, 1, 2, ..., M-1.$$

The filtered projection  $q_{\theta}(r)$  at each projection angle  $\theta_j$  has to be smeared back over the two-dimensional (x,y) coordinate axes as required by the back-projection step. The value  $r = x\cos\theta_j + y\sin\theta_j$  may not correspond to one of the values of r at the discrete points  $r_n$  for which  $q_{\theta j}(r_n)$  is determined. We therefore approximate  $q_{\theta j}(r)$  as a quadratic function:

$$q_{\theta_{j}}(r) = q_{\theta_{j}}(r_{n}) \left( \frac{r_{n+1}^{2} - r_{n}^{2}}{r_{n+1}^{2} - r_{n}^{2}} \right) + q_{\theta_{j}}(r_{n+1}) \left( \frac{r^{2} - r_{n}^{2}}{r_{n+1}^{2} - r_{n}^{2}} \right),$$

whenever r is between  $r_n$  and  $r_{n+1}$ . The function f(x,y) to be reconstructed can then be calculated from the filtered projection functions by back-projecting them onto the (x,y) coordinate system as

$$f(x,y) = \frac{1}{2N} \sum_{j=1}^{N} q_{\theta_{j}}(x \cos \theta_{j} + y \sin \theta_{j}).$$

Reconstruction by Filter Back-Projection is very tolerant of noise, since high frequency terms tend to be removed by filtering. Note also that the FBP technique gives a semi-continuous result: the input projections  $p_{\theta j}$  ( $r_k$ ) are obtained discretely from measurements while the resulting solution f(x,y) is a continuous function. Since the projection p represents the path-integrated  $n^{th}$  moment function,  $-\ln[M_{\theta,n}(r)]$ , the reconstruction function f represents the local  $n^{th}$  moment function,  $-\ln[m_n(r)]$ . It then follows that the local moments of transmittance based on path-length S at a point (x,y) within the flame are

$$m_{S,n}(x,y) = \exp(-S \times f(x,y)). \tag{4}$$

Note that the path length S in Equation (4) should be small enough to resolve spatial variation of the moments in the neighborhood of the point (x,y), yet large enough to justify our assumption of statistical independence.

### 4. THE MOMENT PROBLEM

Once the local moments are known from the reconstruction results, the problem then becomes a classical moment problem: given the moments find the probability density function [13]. In general, the continuous probability density function can be solved from its discrete moments [14]. The continuous problem is, however, dramatically under-determined resulting in nonunique solutions. Hence, it is simpler to go back to the discrete model of the probability density function (PDF) for which we have the discrete approximation in matrix form as,

$$\begin{bmatrix} \tau_{1}^{0} & \tau_{2}^{0} & \cdots & \tau_{K}^{0} \\ \tau_{1}^{1} & \tau_{2}^{1} & \cdots & \tau_{K}^{1} \\ \cdots & \cdots & \cdots & \cdots \\ \tau_{1}^{I-1} & \tau_{2}^{I-1} & \cdots & \tau_{K}^{I-1} \end{bmatrix}_{I\times K} \begin{bmatrix} P_{1} \\ P_{2} \\ \cdots \\ P_{K} \end{bmatrix}_{K} = \begin{bmatrix} m_{0} \\ m_{1} \\ \cdots \\ m_{I-1} \end{bmatrix},$$
 (5)

where  $\tau_1 = 0$ ,  $\tau_K = 1$ . Note the PDF<sub>k</sub> is simply  $P_k/(\Delta \tau)$ . The left hand side matrix is the transmittance matrix, made up of powers of the discrete transmittance values  $\tau_k$ , and  $P_k$  and  $m_i$  are the probability and reconstructed local moment vectors respectively: note that there are K PDF's and I moments. Depending on I and K this is either an over-or underdetermined system.

Two different methods are used to solve the problem. The first method uses the singular value decomposition (SVD) technique to solve the moment equations directly when the system is overdetermined. This results in a least squares solution. The second method uses a maximum entropy (ME) model when the system is underdetermined. The resulting solution is the most probable solution that satisfies the given set of moments and some additional constraints. Each method is described below.

### 4.1 Singular Value Decomposition Method (SVD) for Solving an Overdetermined System

Since the resolution of  $\Delta \tau$  is limited, the moment problem becomes an overdetermined problem with I calculated moments and K unknown discrete probabilities when I > K. Furthermore, the reconstructed moments may not be laid on the column space of the transmittance matrix (For a discussion of column space see Strang [15]). This means that there may be no solution to this system. This is due to errors in the measurement data or the reconstruction results. To remedy this problem, a least squares technique is needed.

The most reliable method for computing the solution to the least squares problem is based on a matrix factorization known as the singular value decomposition technique [16]. There are other methods (e.g. LU decomposition of nominal equations) which may seem to require less computer time and storage, but they are

less effective in dealing with errors in the data, roundoff errors and the ill-conditionedness of the matrix. Note that small values of transmittance in the transmittance matrix taken to high powers become even smaller, leading to a wide range of transmittance i.e. the transmittance matrix is ill-conditioned.

This section shows how to implement the SVD technique. The algorithm is shown in the standard literature [e.g. 16,17,18]. Rewrite Equation (5) into the form

$$AP = m$$
.

where A is the I x K transmittance matrix, P is probability vector and m is the moment vector. Any I by K matrix A of rank r can be factored [19] as

$$A = U\Sigma V^{\mathsf{T}}$$
.

where U is an I x I orthogonal matrix and Σ is a I x K diagonal matrix of the form

$$\Sigma = \begin{bmatrix} S_{11} & 0 \\ 0 & 0 \end{bmatrix}_{I \times K}$$

where S<sub>11</sub> is an r x r diagonal matrix. The diagonal entries of S<sub>11</sub> are strictly positive and can be arranged to be nonincreasing,  $\sigma_1 > \sigma_2 > ... > \sigma_r > 0$ . They are the <u>singular values</u> of A. V is a K x K orthogonal matrix.  $V^T$  is the transpose of the matrix V. The columns of U and V give orthonormal bases for all four fundamental subspaces of A: the first r columns of U represent the column space, the last K-r columns of U the left nullspace, the first r columns of V the row space and the last I-r columns of V the nullspace of A [15].

Using the SVD of A, the linear system AP=m becomes

$$U\Sigma V^{T}P = m$$
.

and hence

$$\Sigma Z = d$$
.

where  $Z = V^T P$  and  $d = U^T m$ . The system of equations  $\Sigma Z = d$  is diagonal and hence can be easily studied. It breaks up into as many as three sets, depending on the values of the dimensions I and K and the rank r, the number of nonzero singular values:

$$\sigma_j Z_j = d_j, \quad \text{if } j \le K \text{ and } \sigma_j \ne 0,$$
 (6a)

$$\sigma_{j}Z_{j} = d_{j}$$
, if  $j \le K$  and  $\sigma_{j} \ne 0$ , (6a)  
 $0 \cdot Z_{j} = d_{j}$ , if  $j \le K$  and  $\sigma_{j} = 0$ , (6b)  
 $0 = d_{j}$ , if  $j > K$ . (6c)

$$0 = d_j, \quad \text{if } j > K. \tag{6c}$$

The second set of equations is empty if r = K, and the third is empty if K = I. Note that the moment equations are consistent if and only if d<sub>j</sub> is 0 whenever  $\sigma_j$  is 0 (Eqns (6b, 6c)). This also minimizes ||Ax-b|| since the left nullspace of A is set to zero as needed. The vector d is multiplied by  $\Sigma^{-1}$  resulting in the vector Z. Then P is simply calculated from

$$P = VZ$$
.

Hence, the probabilities  $P_k$  (and therefore the local PDF's (PDF<sub>k</sub>= $P_k/\Delta\tau$ )) are determined from the moments m and the transmittances  $\tau(Z(m,\tau), V(\tau))$ . Golub's algorithm [16] for calculating the SVD in double precision is used in the research.

### 4.2 Maximum Entropy Solution for an Underdetermined Problem

In this section we consider the case where the number of calculated moments is less than the number of discrete probability unknowns (I<K). The problem becomes an underdetermined problem and therefore solutions to the problem are not unique. However, it has been shown by Tikochinsky et al [20], that any algorithm for inferring a discrete probability distribution from a set of moments must satisfy a set of consistency conditions. Tikochinsky et al [20] derived the conditions and showed that the only consistent algorithm is the one leading to the distribution of maximal entropy subject to the given moment constraints. The technique is also consistent with the principle of data reduction which implies the capability of handling underdetermined problems [21].

We follow the Maxwell-Boltzmann derivation of the ME solution [22]. Let each  $P_k$  be constructed from a number  $n_k$  of building blocks of size  $d\tau$ . The first I constraints for the ME method are given by the moment equations:

$$m_i = \sum_{k=1}^K \tau_k^{\ i} n_k d\tau.$$

Let the total number of the blocks N. An additional constraint to the ME method is then

$$N = \sum_{k=1}^{K} n_k.$$

Define entropy as a logarithm of the total number of combinations of N blocks with  $n_1$  in the first cell,...,  $n_k$  in the kth cell, without a priori preference for particular values of the numbers  $n_k$ . It follows that

$$S = \ln \left( \frac{N!}{\prod_{k} n_{k}!} \right) = -\sum_{k} n_{k} \ln \left( \frac{n_{k}}{N} \right)$$

To maximize the entropy subject to the given I+1 constraint equations, we define an objective function F as the entropy plus each constraint equation multiplied by its Lagrange multiplier  $\gamma$  and  $\beta_i$  respectively:

$$F = S + \gamma \left( \sum_{k} n_{k} - N \right) + \sum_{i=0}^{I-1} \beta_{i} \left( \sum_{k=1}^{K} \tau_{k}^{i} n_{k} - m_{i} \right)$$

and we maximize F. We do this by taking the derivative of F with respect to  $n_k$  and setting each derivative to zero. This yields the ME solutions for all  $n_k$  (k = 1..K). The solutions can be written in terms of the probabilities  $P_k$ :

$$P_{k} = P_{T} \frac{exp\left(\sum_{i=0}^{I-l} \beta_{i} \tau_{k}^{i}\right)}{\sum_{k=1}^{K} exp\left(\sum_{i=0}^{I-l} \beta_{i} \tau_{k}^{i}\right)}, \qquad (7)$$

where  $P_T$  is the total probability and is equal to unity. Note, however, that  $P_T$  is not a constant in the iterative steps. In fact, it approaches unity as the iteration process converges, so it is left as another variable in the solution. We use the iterative algorithm suggested by Bevensee to solve for the ME solution.

### 4.3 Bevensee's Iterative Algorithm

Bevensee [23] suggests a very efficient iterative technique for the solution of an underdetermined system, with a more precise version following in [24]. The algorithm contains an implicit matrix solver within each iterative step leading to very fast convergence. The algorithm starts with an initial guess of  $\beta_i^{(0)}$  and with a reasonable guess  $P_T^{(0)}$ . The algorithm proceeds as follows:

- 1) The estimates  $P_k^{(1)}$  are obtained from  $\beta_i^{(0)}$  using the ME solution equation (7).
- 2) The estimates m<sub>i</sub><sup>(1)</sup> are computed from the moment equations (5).
- 3) P<sub>T</sub> (0) is scaled by the convergence ratio

$$c = \frac{\sum \beta_i^{(0)} m_i}{\sum \beta_i^{(0)} m_i^{(1)}}$$

to give PT (1).

4) All the P<sub>k</sub><sup>(1)</sup> and M<sub>i</sub><sup>(1)</sup> are also scaled by this factor:

$$P_k^{(l)} \rightarrow c P_k^{(l)}$$
 ,  $m_i^{(l)} \rightarrow c m_i^{(l)}$ 

5) Next, the  $\beta_i^{(0)}$  are updated to bring the computed  $M_i^{(1)}$  closer to the measured  $M_i$ . This is done by solving I different equations:

$$\Delta m_i^{(I)} = m_i - m_i^{(I)} = \sum_{j=I}^i \frac{\partial m_i^{(I)}}{\partial \beta_i} \Delta \beta_j^{(I)}, \label{eq:deltamin}$$

for all the  $\Delta \beta_i^{(1)}$ , resulting in the improved  $\beta_i^{(1)} = \beta_i^{(0)} + \Delta \beta_i^{(1)}$ . We now have  $\beta_i^{(1)}$  so that we can go back to step 1) and compute  $P_k^{(2)}$ ,  $m_i^{(2)}$  and so on, through as many iterations as necessary to obtain convergence of the  $P_k$  with acceptable accuracy in the term  $m_i$ . The above equation can be expressed in matrix form:

$$\left[\Delta \mathbf{m}\right]^{(1)} = \left[\mathbf{A}\left(\mathbf{X}^{(1)} - \frac{1}{\mathbf{P}_{\mathsf{T}}}\left[\mathbf{P}\right]^{(1)}\left[\mathbf{P}^{\mathsf{T}}\right]^{(1)}\right]\mathbf{A}^{\mathsf{T}}\right] \cdot \left[\Delta \boldsymbol{\beta}\right]^{(1)},$$

where A is the I x K transmittance matrix with components  $\tau_k^i$ ,  $X^{(1)}$  is a diagonal K x K matrix with components  $X^{(1)}_{kk} = P_k^{(1)}$ , the superscript T stands for the transposing of the matrix or vector and [] represents a vector. The above system is ill-conditioned with rank deficiency. In this paper, the above system is solved by the truncated singular value decomposition (SVD) technique. Hence, the probabilities  $P_k$  (and therefore the local PDF's (PDF<sub>k</sub>= $P_k/\Delta\tau$ )) are determined iteratively from the moments m and the transmittances  $\tau$ .

### RECONSTRUCTION ALGORITHM SUMMARY

In summary, the proposed algorithm for reconstruction of local PDF consists of the following steps:

- (1) Measure path-integrated (line of sight) PDFs.
- (2) For each view angle, convert all measured path-integrated PDFs to path-integrated moment function.
- (3) Using tomographic methods (Abel transform or FBP) reconstruct local moments from the corresponding path-integrated moments.
- (4) Retrieve the discrete PDF from its moments by solving moment equations using singular value decomposition technique or by using maximum entropy model.

We now turn to validation of the proposed algorithm using synthesized and actual experimental data.

### 5. RECONSTRUCTION FROM SYNTHETIC PROJECTIONS

The proposed reconstruction method is used to reconstruct the PDF of local transmittance of a Propylene/Air diffusion flame from its synthetic path-integrated absorption data. Local absorption measurements of the local PDFs within the flame were carried out by Sivathanu and Gore [10]. The diameter of the burner used was d = 50 mm and the burner operated at the Reynolds number of 750 based on fuel properties at the burner exit. A purged optical probe with a 10 mm path length was used to obtain the local PDFs from the

absorption measurements. All local measurements were conducted in a plane (assumed circular) at a particular height above the burner (at z/d = 6.7 where z is the distance from the burner exit and d is the burner diameter (see Fig. 1)). The plane was divided into 11 rings and a central core where the local PDFs for the individual region were measured. The path-integrated functions, -ln  $M_{\theta,n}(r)$ , are synthesized from the local PDF measurement data and construction of their moments. Figure 3 shows the synthetic path-integrated (projection) functions of the first two moments as a function of radius r. We generate 300 moment functions (-ln  $M_{\theta,n}(r)$  for n = 1 to 300), each function having 128 projection points (total view angles are 180).

These path-integrated functions, -ln  $M_{\theta,n}(r)$ , are used to reconstruct local moment functions, -ln[ $m_n(r)$ ], at the center of the flame (r = 0). The reconstructed local moment functions from the FBP algorithm are based on unit path-length. To compare the reconstruction result with the test PDF, local moments based on path-length S = 0.01 m are required. These can be calculated by using Equation (4) with S = 0.01 m Figure 4 shows the first fifty reconstructed moments.

As discussed earlier in Section 4.1 (Equations(6b) and (6c)), the SVD technique also offers a way to monitor the reconstructed local moments to see if they are consistent. Figure 5 shows the plot of  $\log_{10} |d_j|$  and  $\log_{10}(\sigma_j)$  versus j. The values of  $\log_{10}(\sigma_j)$  are always greater than that of  $\log_{10}|d_j|$ . This means that the reconstructed local moments give a consistent system of linear equations. When the calculated values are as small as  $10^{-16}$ , we have reached the machine error and the calculated values below  $10^{-16}$  are omitted. Although the calculations are carried out by using double precision, the data obtained from the test PDFs are single precision. With these sources of error in mind, we use the first 18 singular values ( $\sigma_{min} \sim 10^{-5}$ , and  $\sigma_{max/min} \sim 10^{5}$ ) in our study and set the rest to be zero.

Figure 6 shows the reconstruction results of local PDF at the center of the Propylene/Air diffusion flame using the SVD and ME methods (with 300 and 50 reconstructed local moments respectively) comparing with the measured values from [10]. Both reconstruction results are in good agreement with the directly measured PDF though the SVD solution appears to be better. Recall that the ME solution uses a much smaller set of data, solving the underdetermined problem. Deviation of total probability for both methods is less than  $10^{-5}$  from unity.

The cost of the SVD technique and the error involved depend mainly on the number of moments used in the PDF calculation. Infinite moments are needed to get a unique PDF. The calculation, however, can not go beyond machine error so only a finite number can be used. Truncation of singular values is another source of

error. For the 300 by 101 matrix decomposition and the back substitution step required for these results, the SVD algorithm takes only a few minutes on a UNIX workstation.

From Figure 6, we see that there is a minor discrepancy between the ME solution and the directly measured PDF. This is due to the underdetermined system used in Bevensee's algorithm: we can not add too many moment constraints because the number of constraints can not exceed half of the number of unknowns. This is the existence condition for generalized inverse solution described by Bevensee [24]. The condition for the number of constraints is the only disadvantage to this algorithm that we can see at this time. However, the error is acceptable in an engineering sense. The ME results take only 10 iterations or less than a minute (on a UNIX workstation) to converge using 50 moments instead of 300 in the previous case (SVD solution).

Within each iteration step of the ME method there is a matrix solver. We use the truncated SVD method to solve the matrix equation since it is ill-conditioned. The number of singular values used depends on each problem. In addition, the first guess of the Lagrange multipliers affects the convergence of the solution: a good initial guess leads to very fast convergence. Conversely, an unreasonable guess may lead to a diverging solution. Unfortunately, there appears to be no hard and fast rules for choosing the initial Lagrange multiplier values: some trial and error is advisable for each problem.

### 6. RECONSTRUCTION FROM EXPERIMENTAL PROJECTIONS

In this section we use the proposed algorithm to do the full problem: reconstruct a local PDF at the center of an Ethylene/Air turbulent jet diffusion flame from path-integrated measured PDFs. The measured data are from Sivathanu and Gore [10]. The flame has a d = 6 mm outlet-diameter and 9200 exit Reynolds number. The measurements are at a cross-section of z/d = 30 above the burner. There are ten line of sight measurements and each line is .005 m. apart.

The algorithm begins with construction of the path-integrated functions (projections) from the path-integrated PDF measurement data. The path-integrated function of the first moment is constructed by Equation (2). Assuming that the PDF is axisymmetric, we have nineteen projection points. The path-integrated function of the second moment can be constructed using the same procedure and so can the higher order (moment) path-integrated functions. Figure 7 shows the path-integrated functions of the first two moments.

After constructing the path-integrated moment functions, we apply the FBP algorithm, resulting in the reconstructed local moments of order corresponding to the order of moment from which the path-integrated functions were constructed. Again the resulting local moments are based on unit path-length. We change the

path-length to 0.01 m i.e. the path-length of the probe used in the local measurement [10]. Figure 8 shows the first fifty reconstructed local moments at the center of the flame.

From the  $|d_j|$  and singular values  $\sigma_j$  plot shown in Figure 9, the reconstructed moments do not give a consistent system of equations for all singular values since some of the singular values vanish before their corresponding component of  $|d_j|$ . This implies that the vector m of reconstructed local moments is a linear combination of both the column space and the left nullspace of the transmittance matrix A. In the least squares (SVD) solution, only the singular values that are greater than the  $|d_j|$  have been used. In addition, the number of singular values used has to ensure a total probability closest to unity. Figure 10 shows reconstructed local PDF solutions using the SVD and ME methods proposed in this paper, and the DPF results of [10], comparing directly with measured local PDFs at the center of the flame from [10].

In the SVD solution we used 300 reconstructed moments and eight singular values ( $\sigma_{min} \sim 10^{-1}$ , and  $\sigma_{max}/\sigma_{min} \sim 10^2$ ). Deviation of total probability is less that 7% from unity. The SVD method underpredicts the height of the PDF, and therefore the solution oscillates around the measured PDF, allowing unphysical negative values as the measured PDF goes to zero. The oscillation does not vanish when higher number of moments are included. On the other hand, if more singular values are used the solution becomes unstable. This is due to the inconsistency of the system which comes from both measurement and numerical errors. The first source of error is the number of lines of sight used in the reconstruction. We have only ten measured lines of sight available to us from this data set: this causes aliasing errors in the FBP algorithm. The second source of error has to do with the floating point accuracy of the data: we calculate with double precision while the projection data are in single precision. Noise in the data could also be responsible also for the inconsistency since it may not be completely filtered out by the FBP. Nevertheless, the SVD solution seems to be the closest to the measured PDF in terms of magnitude. Should we able to suppress the oscillation below zero, we expect to improve the agreement in magnitude. In both cases the prediction in maximum magnitude is improved over the DPF results [10].

The ME solution gives a more realistic solution to the problem with a smaller number of moments (50) used, in that no oscillation with negative values of the PDF are found. The total probability is about 0.001 greater than unity. This discrepancy is smaller than in the SVD solution. This is due to the fact that the ME technique predicts the most probable solution to the given constraints instead of solving the moment system directly. The ME result, however, overpredicts the maximum value of PDF. The main source of error is from the underdetermined nature of the problem as discussed earlier in the synthetic reconstruction case.

The location of the peak in both the SVD and ME solutions is shifted towards a transmittance of unity in comparison with the measured data. Since the SVD and ME solutions exhibit similar effects, it may be that 1) there is insufficient data (only ten line of sight measurements) or that 2) the measured peak is shifted due to experimental error. In the direct measurement of the local PDFs, probe intrusion disturbs the flow structure. Moreover, the path-length of the probe is 10 mm. This may not be small enough to resolve the local measurement. To resolve these discrepancies, the proposed technique will be tested against more data in the future.

### 7. ASYMMETRICAL FLAME RECONSTRUCTION

The proposed algorithm is also applied to reconstruct the local PDFs of an asymmetrical flame. Since it is intended to test the algorithm on the asymmetrical profile, the Propylene/Air flame is again used as a test flame. To make the flame become asymmetrical, we assume that within an off-centered circular region which is centered at (0.0245,0) with a 0.0175m radius, the flame is completely transparent such that

$$P(\tau) = \begin{cases} 1 & \text{when } \tau = 1 \\ 0 & \text{otherwise} \end{cases}$$

Figure 11 shows the first moment,  $-\ln m_1(x,y)$ , of the local PDFs of the asymmetrical propylene/air flame. To visualize the pattern of the transparent region, we exploit the gray scale representation. The top view of the local moment function in gray scale is shown on Figure 11. Although the PDF within the transparent region of the flame is fictitious, the shape of the PDF is simple and errors due to the shape of the PDF in the reconstruction results should be minimized. This also allows us to confine the study on the verification of the reconstruction algorithm for the asymmetrical flame data.

The projection functions,  $-\ln M_{0,1}(r)$ , of the first moment can be calculated using the technique suggested by Kak [18]. We generate 180 projection functions and each function has 128 projection points. The numbers of projection functions and projection points are similar to that used in the reconstruction of axisymmetrical flame in Section 5 for the propose of comparison. These numbers, however, are appropriate to compensate both the aliasing and the noise-like pattern errors due to the 2-D problem of reconstruction [19,20]. Note that for the axisymmetrical flame, projections of the first moment function are similar for all view angles. But in the asymmetrical flame the shape of projection functions depend on view angles. Figure 12 shows samples of projection function at four different view angles.

All 180 projections are used to reconstruct the local moment (the first moment) via the FBP algorithm and the reconstruction result is shown in Figure 13. The FBP procedure is repeated for 300 moments. Figure 14 shows the reconstructed local PDFs at the center of the asymmetrical flame and the local PDF measurement data which are in good agreement. Deviation of total probability in the asymmetrical flame, both at the center and in the transparent region is less than 10<sup>-5</sup> from unity. The results clearly demonstrate that the algorithm is unaffected by asymmetry in the flame.

### 8. CONCLUSIONS

We have developed a new algorithm for tomographic reconstruction of probability density function (PDF). The local PDF at a particular point in the xy-plane can be reconstructed from the measurement of path-integrated PDF. This reconstruction algorithm is developed under the assumption that the local PDFs are statistically independent. For combustion measurements, this algorithm extends tomographic techniques to turbulent fluctuating flame measurements.

The reconstruction algorithm has been tested by using both synthetic and experimental absorption data. In the synthetic case, the projections were obtained from measurement of local PDFs in a Propylene/Air diffusion flame and construction of their moments. Path-integrated measured PDFs from an Ethylene/Air diffusion flame were used in the full reconstruction case. Good reconstruction results were obtained from both cases and the reconstruction algorithm is justified.

The algorithm has an advantage over the DPF method proposed by Sivathanu and Gore [10] in that there are no errors due to the rebinding process, resulting in a smoother PDF profile. The new method also offers a way to preserve turbulent structures of the flow through the number of moments used in the method.

Our research has introduced two techniques for solving the moment equations: the singular value decomposition (SVD) technique for overdetermined and ill-conditioned systems and the maximum entropy (ME) technique for underdetermined systems. Both methods represent significant improvements over more traditionally used algebraic reconstruction techniques (ART). Since the system is ill-conditioned the ART technique can take several days of CPU time to converge as opposed to a few minutes for the SVD or ME techniques (on a workstation). The ME technique should prove to be particularly useful in the case of limited moment data.

Introduction of the SVD technique provides a way to check the consistency of the reconstructed moments. If the reconstructed moments are consistent, the SVD technique is preferred. Conversely, if only a few values of  $|d_i| < \sigma_i$  the ME technique is preferred since it gives the most probable PDF solution.

The major practical limitation of the method appears to be the need for many projection points from many angular viewing angles. This is partly due to the choice of inversion method: Fourier transforms are global transforms and are not the best suited to local measurements. Improved algorithms and filters should be developed. Also, recent techniques have been used outside of the combustion diagnostics field: pattern recognition maximum entropy methods come to mind. Current research on local transform techniques also seems to be relevant to the particular problem. For practical purposes, a method tolerant of limited angular access (e.g. for industrial combustors) would be most desirable.

## **List of Figures**

| Figure 1 | A typical scanning from tomographic measurement.                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2 | Local moment function, -In $m_n(x,y)$ and its path-integrated moment function at view angle $\theta$ , -In $M_{\theta \cdot n}(r)$ .                                  |
| Figure 3 | Synthetic path-integrated (projection) functions for the Propylene/Air diffusion flame: First and Second moments.                                                     |
| Figure 4 | Local moment reconstruction from synthetic path-integrated functions for the Propylene/Air diffusion flame: First 50 reconstructed local moments at the flame center. |
| Figure 5 | Singular value decomposition values: $\log_{10}(kl_j)$ and $\log_{10}(\sigma_j)$ for the Propylene/Air diffusion flame at the flame center.                           |
| Figure 6 | Reconstruction results of local PDFs at the center of the Propylene/Air diffusion flame:  Comparison of the SVD and ME solutions and probe measurements from [10].    |
| Figure 7 | Measured path-integrated (projection) functions for the Ethylene/Air turbulent jet diffusion flame: First and Second moments at 19 projection points.                 |
| Figure 8 | Local moment reconstruction from measured path-integrated functions for the Ethylene/Air diffusion flame: First 50 reconstructed local moments at the flame center.   |
| Figure 9 | Singular value decomposition values: $\log_{10}(kl_j)$ and $\log_{10}(\sigma_j)$ for the Ethylene/Air diffusion flame at the flame center.                            |

### REFERENCES

- [1] Chen, F.P., and Goulard, R., JQSRT 16: 819 (1976).
- [2] Emmerman, P.J., Goulard, R., Santoro, R.J., and Semerjian, H.G., AIAA J. 4 No.2: 70 (1980).
- [3] Hughey, B.J., and Santavicca, D.A., Combustion Science and Technology 29: 167 (1982).
- [4] Dasch, C.J., Applied Optics 31: 1146 (1992).
- [5] Tornianen, E.D., Lam K.W., Chojnacki, A.M., Gouldin, F.C. and Wolga, G.J., Chemical and Physical Processes in Combusion. Eastern States Section of The Combustion Institute, Pittsburgh, 1995.
- [6] Gore, J.P. and Faeth, G.M. (1986), Twenty-First Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1986, p 1521.
- [7] Hamins, A., Fischer, S.J., Kashiwagi, T., Klassen, M.E., and Gore, J.P., Combust. Sci. and Tech. 97:37 (1994).
- [8] Snyder, R. and Hesselink, L., Optic Lett. 13:87 (1988).
- [9] Beiting, E.J., Optics Lett. 16: 1281 (1991).
- [10] Sivathanu, Y.R. and Gore, J.P., JQSRT 50:483 (1993).
- [11] Nyden, M.R., Vallikul, P., and Sivathanu, Y.R., JQSRT 55:345(1996).
- [12] Shepp, L.A., and Logan, B.F., IEEE Transections on Nuclear Science NS-21:21 (1974).
- [13] Backus, G., and Gilbert, F., Phil. Trans. Royal Soc. 266,123 (1970).
- [14] Louis, A.K., and Maass, P., Inverse Problems 6:427 (1990).
- [15] Strang, G. (1988) Linear Algebra and Its Applications: 3rd edition. Harcourt Brance Jovanovich Publishers, 1988.
- [16] Forsythe, G.E., Michael A.M., and Moler, C.B., Computer Methods for Mathematical Computations.

  Prentice-Hall series in Automatic Computation, Englewood Cliffs, New Jersey, 1977.
- [17] Golub, G.H., and Reinsch, C., Num. Math. 14:403 (1970).
- [18] Wilkinson, J.H., in Numerical Software-Needs and Availability (D.Jacobs Eds), Academic Press., 1978.
- [19] Lawson, C.L., and Hanson, R.J., Solving Least Squares Problem. Prentice-Hall, Inc., 1974.
- [20] Tikochinsky, Y., Tishby, N.Z., and Levine, R.D., Phy. Rev. Lett. 52 No 16: 1357 (1984).
- [21] Abels, J.G., Astronomical Astrophysics Supplemental Series 15:383 (1972).
- [22] Sears, F.W., Thermodynamics. Addison-Wesley, Reading, Massachusetts, 1959.
- [23] Bevensee, R.M., IEEE Transactions on Antenna and Propagation 29 No 2: 271 (1981).
- [24] Bevensee, R.M., Maximum Entropy Solutions to Scientific Problems. Prentice Hall, Englewood Cliffs. New Jersey, 1993.

