

รายงานวิจัยฉบับสมบูรณ์

โครงการวิจัยหลังปริญญาเอก

เรื่อง การคัดกรองพืชสมุนไพร เพื่อควบคุมลูกน้ำยุงลายบ้าน (Aedes aegypti) และความเป็นพิษต่อปลา

โดย ผศ.ดร. อมรา นาคสถิตย์ และคณะ

กันยายน 2546

รายงานวิจัยฉบับสมบูรณ์

โครงการวิจัยหลังปริญญาเอก

ารคัดกรองพืชสมุนไพร เพื่อควบคุมลูกน้ำยุงลายบ้าน (<u>Aedes aegypti)</u> และความเป็นพิษต่อปลา

โดย ผศ.ดร. อมรา นาคสถิตย์ และคณะ

กันยายน 2546

กิตติกรรมประกาศ

คณะผู้วิจัยขอขอบคุณอาจารย์จำลอง เพ็งคล้าย และ คร.ก่องกานคา ชยามฤต ผู้เชี่ยวชาญค้าน พันธุ์ไม้ แห่งหอพันธุ์ไม้ กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืชแห่งประเทศไทย ที่ได้กรุณาตรวจสอบพันธุ์ ไม้ให้กับคณะวิจัยเป็นอย่างคื

รายงานวิจัยฉบับสมบูรณ์

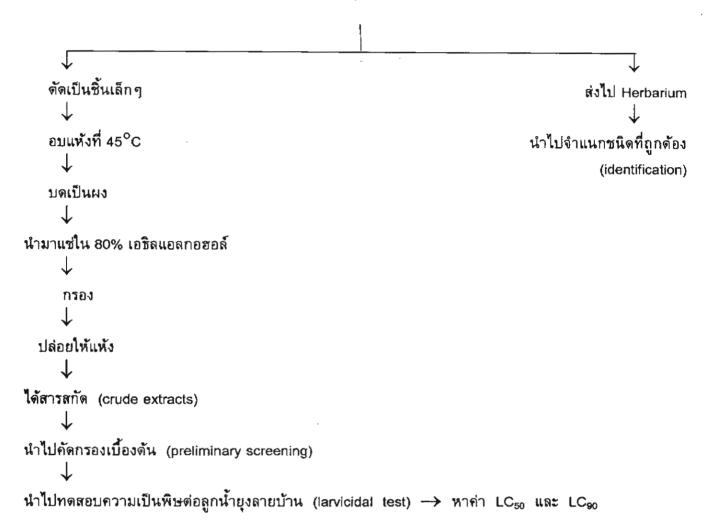
โครงการวิจัยหลังปริญญาเอก

เรื่อง การคัดกรองพืชสมุนไพร เพื่อควบคุมลูกน้ำยุงลายบ้าน (Aedes aegypti) และความเป็นพิษต่อปลา

คณะผู้วิจัย

1. ผศ.จร. อมรา นากสถิตย์

2. น.ส. สุวรรณี พรหมศิริ


สังกัด

ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

โปรแกรมวิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏสงขลา

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

4. การคัดกรองเบื้องต้น (Preliminary screening)

นำสารสกัดจากพืชที่ความเข้มข้น 100 mg ต่อลิตรใน absolute ethyl alcohol มาทดสอบ กับลูกน้ำยุงลายบ้านระยะที่สามและสี่ที่เพาะเลี้ยงได้จากห้องปฏิบัติการก็ฏวิทยาทางการแพทย์ของสถาบันวิจัย NIH ของกรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข จังหวัดนนทบุรี โดยใช้มาตรฐานของการคัดกรอง ของห้องปฏิบัติการของ WHO (1981) โดยทำทั้งหมด 5 replicates พร้อม control ในช่วงทดสอบไม่มีการ ให้อาหารลูกน้ำยุงแต่อย่างใจ ทำการเก็บข้อมูลหลัง 48 ชั่วโมง นับจำนวนลูกน้ำที่ตาย

5. การทดสอบความเป็นพิษต่อลูกน้ำยุง (larvicidal test)

วิธีทดสอบความเป็นพิษต่อลูกน้ำยุงที่ใช้ดัดแปลงมาจากวิธีทดสอบของ WHO (1981) ที่ อธิบายไว้โดย Insunt et al (1999) แต่ละการทดสอบทำ 5 replicates พร้อม control สารสกัดพืชสมุนไพรที่ม่า ลูกน้ำยุงได้ 50% ในการคัดกรองเบื้องต้น (preliminary screening) จะนำมาใช้ในการทดสอบทั้งหมด สาร สกัดจากพืชสมุนไพรที่ความเข้มข้นต่ำที่สุดที่สามารถฆ่าลูกน้ำยุงตายได้มากกว่า 50% จะนำไปใช้ทดสอบความ เป็นพิษต่อ non target organism คือ ปลาหางนกยูงต่อไป

6. ใช้โปรแกรมคอมพิวเตอร์ SPSS/PCT กัน probit analysis เพื่อหาค่า LC₅₀ และ LC₉₀ ผลการทดลอง

 การคัดกรองพืชสมุนไพรเบื้องดัน สารสกัดจากพืชสมุนไพร 121 species อยู่ใน 112 จีนัส 50 สกุล ตารางที่ 1
 พิชสมุนไพรที่นำมาใช้ทดสอบความเป็นพิษต่อลูกน้ำยุงลายบ้าน ระยะที่ 3 และระยะที่4

Family and Scientific name	Plant	Vernacular name	Parts use	Place
	habit	Thai (T), English (E)		obtained
Acanthaceae				
Andrographis paniculata	Herb	Fa thalai chon (T)	Leaves	Yala
(Burm.f.) Wall. Ex Nees		Kreat (E)		
Justicia adhatoda L.	Shrub	Sa niat (T)	Leaves	Pattani
		Adhatoda (E)		
Rhinacanthus nasutus (L.) Kurz	Shrub	Thong khan chang (T)	Leaves	Songkhla
		- (E)		
Amaranthaceae				
Amaranthus spinosus L.	Exotic	Phak khom nam (T)	Leaves &	Yala
	Herb	Spiny pigweed (E)	Twings	
Achyranthes aspera L.	Herb	Phan ngu (T)	Leaves	Satun
		Pricklychaff-flower (E)		
Araceae				
Acorus calamus L.	Herb	Wan nam (T)	Roots	Phatthalung
		Sweet flag (E)		
Alocasia macrorrhizos L.	Herb	Kradat daeng (T)	Roots	Songkhla
		Elephant ear (E)		
Colocasia giganted Hook.f.	Herb	Kradat Khao	Roots	Songkhla
		Giant tard (E)		
Anacardiaceae				
Anacardium occidentale L	Exotic	Mamuang himmaphan (T)	Seeds	Songkhla
	Shrubby	Cashew nut tree (E)		
	Tree			
Annonaceae				
Annona muricata L.	Exotic	Thurian thet (T)	Seeds	Songkhla
	Shrubby	Durian belanda (E)		
	Tree			
Apocynaceae				
Alsonia macrophylla	Tree	Thungfa (T)	Fruits	Nokhon Si
Wall. Ex G. Don		Botino (E)		Thammarat

F	Plant	Vernacular name		Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
Nerium indicum Mill	Exotic	Yitho (T)	Twigs	Pattani
	Shrubby	Rosebay (E)		
	Tree			
Rauvolfia serpentine (L.)	Shrub	Rayom (T)	Stems	Surat thani
Benth, Ex Kurz.		Rauwolfia (E)		
Thevetia peruviana (Pers.)	Exotic	Ram phoei (T)	Leaves	Yala
K. Schum	Shrubby	Trumpet flower (E)		
	Tree			
Araliaceae				
Ployscias fruticosa (L.)	Herb	Lep khrut (T)	Leaves	Narathiwat
Harms.				
		Ming aralia (E)		
Asparagaceae				
Asparagus racemosus Willd.	Climber	Sam sip (T)	Roots	Pattani
Cactaceae		- (E)		
Opuntia elatior Mill	Exotic	Sema (T)	Stems	Yala
	Shrub	- (E)		
Capparaceae				
Cleome viscose L.	Herb	Phak sian phi (T)	Leaves &	Yala
		Polanisia vicosa (E)	Twigs	
Cecropiaceae				
Celastrus paniculata willd.	Climber	Kurapia (T)	Twigs	Songkhla
		- (E)		
Celastraceae				
Celastrus paniculata Willd.	Climber	Krathong lai (T)	Twigs	Narathiwat
		- (E)		
Salacia chinensis L.	Scandent	Kam phaeng	Stems	Yala
	Shrub	Chet chan (T)		
		- (E)		
Colchicaceae				
Gloriosa superba L.	Herb-	Dong dueng (T)	Fruits	Pattani
	Climber	Climbing lily (E)		

Family and Calandida name	Plant	Vernacular name	D = 4=	Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
Compositae				
Blumea balsamifera (L.) DC.	Shrub /	Nat yai (T)	Leaves	Yala
	Shrubby	Camphor tree (E)		
	Tree			
Eclipta prostrate (L.). L.	Herb	Ka meng (T)	Leaves	Pattani
		False daisy (E)	&	
			Twigs	
Chromolaena odoratum (L.)	Exotic-	Sap suea (T)	Leaves	Pattani
	Herb	- (E)		
Gynura var. hispida Thwaites	Herb	Wan mahakan (T)	Stems	Surat Thani
		- (E)		
Pluchea indica (L.) Less	Shrub	Khlu (T)	Stems	Songkhla
		Indian marsh fleabane (E)		
Spilanthes acmella Murr.	Herb	Phak ksrat huawaen (T)	Leaves	Yala
		Para cress (E)	Twigs	
Tithonia diversifolia	Exotic-	Bua tong (T)	Flowers	Chumporn
	Under			
(Hemsl.) A. Gray	Shrub	Mexican sunflower		,
]	Weed (E)		
Connaraceae		;		
Connarus ferrugineus Jack.	Climber	Thop thaep (T)	Stems	Yala
		- (E)		
Convolviaceae				
Erycibe elliptilimba Merr&	Climber	Change san sap man (T)	Stems	Trang
Chun				
		- (E)		
Costaceae				
Costus speciosus (Koen.)	Herb	Ueang maina (T)	Roots	Krabi
Sm.				
		Spiral flag (E)		
Cucurbitanceae				
Bryonia laciniosa L.	Climber	Kiegakone (T)	Vines	Yala
		- (E)		
Trichosanthes cucumerina L.	Herb-	Buap knom (T)	Fruits	Yala
	Climber	- (E)		
Cyperaceae				
Cyperus rotundus L.	Herb	Ya haeo mu (T)	Roots	Yala
		Nut grass (E)	<u>,</u>	

English and Calcutific name	Plant	Vernacular name	B 4 -	Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
Dipterocarpaceae				
Cotylelobium lanceolatum	Tree	Khiam (T)	Stem	Nakhon Si
Craib				
		Resak tombaga (E)		Thammarat
Euphorblaceae				
Acalypha indica L.	Herb	Tamyae maeo (T)	Roots	Narathiwat
		- (E)		
Aporosa dioica Muell. Arg.	Shrub /	Nuan sian (T)	Stem	Surat Thani
	Shrubby	- (E)		
	Tree			
Croton tiglium L.	Exotic	Salot (T)	Twigs	Narathiwat
	Shrubby	Croton oil plant (E)		
Frankrich to time atti	Tree	Others and the state (TT)		, , ,
Euphorbia tirucalli L.	Exotic	Phaya raibai (T)	Stems	Krabi
	Shrubby	- (E)	1	
E ligularia Davh	Tree Exotic	Sam abas (T)	Stems	Yala
E. ligularia Roxb.	Shrubby	Som chao (T)	Stems	Tala
	Tree	- (E)		
E. pulcherrima Willd. Ex		Song radu (T)	Leaves	Yala
Klotzsch	LAGUO.	Cong rada (1)	200,00	Tuiu
7.102.0011	Shrubby	Poinsettia (E)		
Excoecaria cochinchinensis	Exotic	Kamlang kra bue (T)	Leaves	Yala
Lour. Var. Cochinchinensis	Shrub	- (E)		
E. oppositifolia Griff	Shrub	Fai duean ha (T)	Leaves	Yala
	Tree	- (E)		
Suregada muttiflorum Bill	Shrub /	Khan thong	Leaves	Pathalung
	Shrubby	Phayabat (T)		
	Tree	- (E)		
Jatropha multifida L.	Exotic	Finton (T)	Leaves	Pattani
	Shrubby	- (E)		}
	Tree			
Mallotus repandus Mull. Arg.	Creeper	Makai khruea (T)	Twigs	Pattani
	:	Coral plants (E)		
Phyllanthus pulcher Wall. Ex	Shrub	Wan thoranisan (T)	Leaves	Narathiwat
Mull.				
Arg	Shrub /	- (E)		1
	Shrubby			
Sauropus androgynus (L.)	Tree	Phak wan ban (T)	Leaves	Yala
Merr.	Shrub	- (E)		

Farable and Calandida and a	Plant	Vernacular name	B-4	Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
Lablatae				
Clerodendrum serratum (L.)	Under	Akkhi thawan (T)	Leaves	Songkhla
Manager Matter C. D.	Shrub	- (E)		
Moon var. Wallichii C.B.	Exotic	Khancha thet (T)	Leaves	Narathiwat
Leonurus sibiricus L.	Herb	Siberian motherwort (E)	Leaves	Yala
Ocimum sanctum L.	Under	Kaphroa (T)		
	Shrub	Thai basii (E)		
O. basilicum L.	Exotic	Horapha (T)	Leaves	Yala
	Under			
	Shrub	Sweet basil (E)		}
O. gratissimum L.	Exotic	Yira (T)	Leaves	Yala
	Shrub	- (E)		
Vitex rotundifolia L.f.	Creeper	Khon thi so thale (T)	Leaves	Songkhla
	Shurb	Chaste tree (E)		
V. negundo L.	Exotic	Khon thi khamao (T)	Leaves	Chumporn
	Shurb /	Chinese chaste tree (E)		
	Shrubby			
	Tree ·			
Coleus amboinicus (Lour.) Spreng	Exotic	Niam husuea (T)	Leaves	Chumporn
	Herb	Indian borage (E)	&	
			Twigs	
Lauraceae				Į.
Cinnamomum porrectum (Roxb).	Tree	Thep tharo (T)	Wings	Trang
Kosterm				
		- (E)		
C. iners Reinw. Ex Blume	Tree	Chiat (T)	Stem	Nakhon Si
		Cinnomorn (E)		Thammarat
C. bejolghota (Buch-Ham.) Sweet	Tree	Op choei (T)	Leaves	Pattani
or majorgina (Cultur Hammy Cultur)	1.00	- (E)	200700	i attani
Temmodaphne Thailandica	Tree	Samun la waeng (T)	Stems	Nakhon Si
Kosterm	1100	Tem's laurel (E)	Bark	Thammarat
Leguminosae – Mimosoldeae		Torrestauter (E)	ספיג	inaminaidl
Albizia procera (Roxb.) Benth	Tree	Thing then (T)	Stome	Nakhan Ci
MULIA PIOCETA (NOXD.) DERRI	1166	Thing thon (T)	Stems	Nakhon Si
Canadainia mulahamina (I.)	[**	White siris (E)		Thammarat
Caosalpinia pulcherrima (L.) Sw.	Exotic	Hang nokyung thai (T)	Leaves	Songkhla
Artz.				

Family and Calentific name	Plant	Vernacular name	Dasta una	Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
	Shurb	Peacock's orest (E)		
Delonix regia (Bojer ex Hook.) Raf.	Exotic	Hang nok yung farang (T)	Leaves	Songkhia
	Tree	Peacock flower (E)		
Derris scandens (Roxb.) Benth	Climber	Thao wan priang (T)	Steams	Songkhla
		Jewel Vine (E)		
Entada phaseoloides Dc.	Climber	Saba mon (T)	Seeds	Songkhla
		St. Thomas's Bean (E)		
Erythrina variegate L.	Tree	Thong lang lai (T)	Stem	Krabi
		Indian coral tree (E)	Bark	
Samanea saman (Jacq.)	Tree	Chamchuri (T)	Stem	Yala
Merr.				,
		Rain tree (E)		
Leguminosae-Caesalpinio ideae				
Cassia alata L.	Exotic	Chumhet thet (T)	Leaves	Pattani
	Shrub	Golden Bush (E)		
C. tora (L.) Roxb	Under	Chumhet thai (T)	Roots	Yala
	Shurb	Foetid assia (E)		
Peltophorum terocarpum	Tree	Non si (T)	Stem	Yala
(DC.) Backer				
ex K. Heyne		Copper pod (E)	bark	
Senna siamea (Lam.) Irwin &	Tree	Khi lek (T)	Leaves	Pattani
Barneby		Thai copper pod (E)		
Leguminosae-Papilion oideae				
Sesbania grandiflora (L.)	Exotic	Khae ban (T)	Stem	Narathiwat
Desv				
	Shrub	Agasta (E)	bark	
Gentianaceae				
Fagraea Fragrans Roxb.	Tree	Kan krao (T)	Leaves	Pattani
Guttiferae				
Calophyllum inophyllum L.	Tree	Krathing (T)	Roots	Chumporn
		Borneo mahogany		
		(E)		
Mammea siamensis Kostem	Tree	Saraphi (T)	Flowers	Pattani
		Negkassar (E)		_

F	Plant	Vernacular name	B4	Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
Malvaceae				
Abelmoschus moschatus	Tree	Chamot ton (T)	Leaves	Trang
Medik.				
		Musk mallow (E)		[
Abutilon indicum (L.) Sweet.	Exotic	Fan si (T)	Roots	Yala
	Herb	Country mallow (E)		1
Gossypium herbaceum L.	Under	Fai (T)	Seeds	Songkhla
	Shrub	Cotton plant (E)		
Meliaceae				
Lansium domesticum Correa	Tree	Langsat (T)	Seeds	Yala
		Langsat (E)		
Menispermaceae				
Anamirta cocculus (L.) Wight	Climber	Kho Khlan (T)	Twings	Songkhla
& Arn.				
		Cocculus (E)	}	
Arcangelisia flava (L.) Merr.	Climber	Khamin khruea (T)	Stems	Songkhla
(-,		- (E)		
Tinospora crispa (L.) Miers	Climber	Boraphet (T)	Stems	Songkhla
ex Hook.		}		J
f. & Thomson		- (E)		
Moraceae		(-)		ļ
Streblus asper Lour	Tree	Khoi (T)	Stem	Surat Thani
,		Siamese rough bush (E)	Bark	
Myristicaceae)		
Knema globularia (L) Warb	Tree	Lueat raet (T)	Seeds	 Krabi
g (2,		- (E)		1
Palmae				}
Elaeis guineensis Jacq.	Exotic	Palm namman (T)	Flowers	Satun
	Palm	Aprican oil palm (E)		
Passifloraceae	2,111	, thirden on bann (m)	1	
Passiflora foetida L.	Herb	Ka thok rok (T)	Stems	Satun
. 455.1707, 4.7001.044 E.	Climber	Stinking passion	Ctoms	Odian
	0	flower (E)		
Plumbaginaceae				
Plumbago indica L.	Under	Chetta mub pholeng	Roots	Songkhla
go maioa c.	Shurb	daeng (T)		Jongkilla
	311015	Rose coloured leadwort		
	1			
		(E)		
		Phak phai nam (T)	<u> </u>	

	Plant	Vernacular name		Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
Polygobaceae	_			
Ploygonum flaccidium Meissn	Herb	Cotton plant (E)	Leaves	Yala
Punicaceae				
<i>Punica granatum</i> L. var.	Exotic	Thap thim (T)	Roots	Yala
Granatum				
	Shrub	Pomegranate (E)		
Morinda citrifolia L.	Shrub	Yo (T)	Leaves	Yala
	Tree.	Indian mulberry (E)		
Xantonnea parvifolia Craib	Shurb	Khrop chakkawan (T)	Roots	Yala
		- (E)		
Rutaceae		1		
Aegle marmelos (L.) Correa	Tree	Tum (T)	Twigs	Pattani
ex Roxb.				
		Beal fruit tree (E)		
Clausena excavate Burm. F.	Shurb /	San sok (T)	Stems	Songkhla
	Shrubby.	- (E)		
•		Tree		
Micromelum minutum (G.	Shrub /	Mui khao (T)	Leaves	Pattani
Forst.)				
Wight & Arn	Shrubby	Negkassar (E)		
Sapindaceae				
Cardiospermum halicacabum	Herb	Khok Kra om (T)	Leaves	Pattani
L,				
	Climber	Balloon vine (E)		
Quassia amara L.	Exotic	Pra that chin (T)	Roots	Yala
	Shrub	Stave-weed (E)		
Schizaeaceae				
Lygodium flexuosum (L.) Sw.	Climber	Ya yai phao (T)	Leaves	Narathiwat
	Fern	- (E)		
		-		
L. circinatum (Burm.f.) Sw.	Climber	Liphao hang kai (T)	Leaves	Narathiwat
	Fern	- (E)		

Family and Calentific name	Plant	Vernacular name	Dordo uso	Place
Family and Scientific name	habit	Thai (T), English (E)	Parts use	obtained
Simaroubaceae				
Brucea jaranica (L.) Merr.	Shrub	Ratchadat (T)	Stems	Pathalung
		- (E)		
Eurycoma longifolia Jack	Shrub /	Pl alai phueak (T)	Leaves	Phangnga
	Shrubby	- (E)		
Harrisonia perforate (Blanco)	Tree	Khontha (T)	Leaves	Songkhla
Merr.				
	Scan	Clitorea hanceana (E)		
	Shrub			
Quassia amara L.	Exotic	Pra that chin (T)	Leaves	Yala
	Shrub	Stave weed (E)		
Solanaceae				
Datura metel L. var. Metel	Under	Lam phong (T)	Leaves	Yala
	Shrub	Thorn apple (E)		
Physalis angulata L.	Herb	Thong theng (T)	Leaves	Pattani
	Climber	Cut leaf groung cherry	&	
	}	(E)	Branch	
Solanum sanitwongsei Craib	Herb	Ma waeng ton (T)	Fruits	Songkhla
Stemonaceae				
Stemona tuberose Lour.	Shrub	Non tai yak (T)	Roots	Songkhla
		Stemona (E)		
Strychnaceae				
Strychnos nux-vomica L.	Tree	Salaeng Chai (T)	Seeds	Nakhon si
	l	Snake wood (E)		Thammarat
Umbelliferae	,			
Anethum graveolens L.	Exotic	Thian khao plueak (T)	Leaves	Yala
	Herb	Dill (E)	&	
		Bua bok (T)	Twigs	
Centella asiatica (L.) Urb.	Exotic	Asiatic pennywort (E)	Stems	Yala
	Herb			
Coriandrum sativum L.	Exotic	Phak chi (T)	Flowers	Yala
	Herb	Coriander (E)	}	
Urticaceae				ii
Pouzolzia pentandra Benn.	Herb	Ya non tai (T)	Leaves &	Songkhia
		- (E)	Twigs	
Verbenacea				
Lantana aculeate L.	Exotic	Phak a krong (T)	Leaves	Yala
	Climber	Hedge flower (E)		

Family and Scientific name	Plant habit	Vernacular name Thai (T), English (E)	Parts use	Place obtained
Vitaceae				
Parthenocissus quinguefolia	Exotic	Thao khan daeng (T)	Leaves	Narathiwat
(L.) Planch				
	Climber	True virginiacreeper		
		(E)		
Zingiberaceae				
Alpinia officinarum Hance	Exotic	Kha lek (T)	Roots	Yala
	Herb	Galangal minor (E)		
Boesenbegia rotunda (L.)	Herb	Kra chai (T)	Roots	Yala
Mansf.				
		- (E)		
		-		
Curcuma xanthorrhiza Roxb.	Exotic	Wan chak motluk (T)	Roots	Yala
	Herb	- (E)		
Elettaria cardamomum (L.)	Exotic	Krawan thet (T)	Fruits	Yala
Maton				
	Herb	Cardamom (E)		
Etlingera elatior (Jack) R.M.	Exotic	Kala (T)	Flowers	Yala
Sm.				
	Herb	Torch ginger (E)		
Kaempferia galanga L.	Herb	Pro hom (T)	Roots	Songkhla
		- (E)		
Zingiber zerumbet (L.) Sm.	Herb	Kra thue (T)	Flowers	Yala
		Wild Ginger (E)		

เมื่อนำสารสกัดมาคัดกรองเบื้องดัน พบว่าพืช 14 species มีความเป็นพิษสูงมากกว่า 50% ต่อลูกน้ำยุงลายบ้าน พืชทั้ง 14 species นี้ได้แก่ Abutilon indium, Samanea saman, Costus speciosus, Acorus calamus, Knema globularia, Stemona tuberosa, Strychons nux-vomica, Kaempferia galanga, Cinnamomum porrectum, Phyllanthus pulcher, Ancardium occidentale, Mammea siamensis, Anethum graveolens และ Annona muricata.

2. ผลการทดสอบความเป็นพิษต่อลูกน้ำยุง (Larvicidal test)

พืชสมุนไพร 8 species จาก 14 species สามารถฆ่าลูกน้ำยุงได้ 100% เมื่อใช้ความเข้มข้น ของสารสกัดที่ 100 mg/l และมีเพียง 1 ชนิด ที่ฆ่าลูกน้ำยุงได้ 100% เมื่อใช้สารสกัดที่ความเข้มขัน 100, 50 และ 25 mg/l และสารสกัดจากพืช 3 ชนิด ได้แก่ Kaempferia galanga, Anacardium occidentale และ Mammea siamensis ที่สามารถฆ่าลูกน้ำยุงได้ 100% ภายใน 24 ชั่วโมง (ดูตารางที่ 2)

สมุนไพร 14 ชนิด (species) ที่ให้ผลความเป็นพิษสูงต่อลูกน้ำยุงลายบ้าน (*Ae. aegypti) ระยะที่* 3 และระยะที่ 4 ภายหลัง 24 ชั่วโมง และ 48 ชั่วโมง ตารางที่ 2

me Hrs. 24 48 24 n indicum 52 57 19 ea saman 63 78 40 speciosus 38 100 33 calamus 80 100 45 globularia 64 88 60 na tuberosa 72 80 33 nos nux-vomica 55 93 20 feria galanga 100 100 98 momum porrectum 92 100 71 thus pulcher 94 100 90 dium occidentale 100 100 90 as siamensis 100 100 90 m graveolens 97 100 85 n muricata 67 69 51	Sci	Scientific	Conc. (mg/l)	_	100	5	50	25	ψ.	12.5	ı.	6.3	е	3.2	2	1.6	ω.	8.0		4.0	4	0.2	2
n indicum 52 57 19 ea saman 63 78 40 speciosus 38 100 33 calamus 80 100 45 globularia 64 88 60 globularia 64 88 60 as tuberosa 72 80 33 nos nux-vomica 55 93 20 feria galanga 100 100 98 momum porrectum 92 100 90 dium occidentale 100 100 90 as siamensis 100 100 90 m graveolens 97 100 85 n muricata 67 69 51	Ē	ате	Hrs.	24	84	24	48	24	48	24	48	24	48	24	48	54	48	24	48	24	48	24	48
ea saman 63 78 40 speciosus 38 100 33 calamus 80 100 45 globularia 64 88 60 na tuberosa 72 80 33 nos nux-vornica 55 93 20 feria galanga 100 100 98 nomum porrectum 92 100 71 dium occidentale 100 100 90 ea siamensis 100 100 90 m graveolens 97 100 85 n muricata 67 69 51	Abutil	on indicun	-	52	22	19	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
speciosus 38 100 33 calamus 80 100 45 globularia 64 88 60 na tuberosa 72 80 33 nos nux-vomica 55 93 20 feria galanga 100 100 98 nomum porrectum 92 100 71 dium occidentale 100 100 90 ea siamensis 100 100 90 m graveolens 97 100 85 n muricata 67 69 51	Sama	mea sama	u	63	78	40	45	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
calamus 80 100 45 globularia 64 88 60 na tuberosa 72 80 33 nos nux-vornica. 55 93 20 feria galanga 100 100 98 nomum porrectum 92 100 71 thus pulcher 94 100 90 dium occidentale 100 100 90 as siamensis 100 100 85 m graveolens 97 100 85 n muricata 67 69 51	Costu	is speciosi	SI	38	199	33	82	27	32	13	13	က	∞	-	2	0	0	0	0	0	0	0	0
globularia 64 88 60 na tuberosa 72 80 33 nos nux-vornica. 55 93 20 feria galanga 100 100 98 nomum porrectum 92 100 71 thus pulcher 94 100 90 dium occidentale 100 100 90 as siamensis 100 100 85 m graveolens 97 100 85 n muricata 67 69 51	Acoru	ıs calamus		80	100	45	62	ည	7	4	5	-	2	0	-	0	0	0	0	0	0	0	0
na tuberosa 72 80 33 nos nux-vornica. 55 93 20 feria galanga 100 100 98 nomum porrectum 92 100 71 thus pulcher 94 100 90 dium occidentale 100 100 100 as siamensis 100 100 85 m graveolens 97 100 85 n muricata 67 69 51	Knem	na globular.	ia	22	88	09	77	æ	ω	-	က	0	0	0	0	0	0	0	0	0	0	0	0
feria galanga 100 100 98 nomum porrectum 92 100 71 thus pulcher 94 100 90 dium occidentale 100 100 100 as siamensis 100 100 90 m graveolens 97 100 85 n muricata 67 69 51	Stemo	ona tubero	8S.	72	80	33	44	80	13	~	2	0	0	0	0	0	0	0	0	0	0	0	0
feria galanga 100 100 98 nomum porrectum 92 100 71 thus pulcher 94 100 90 dium occidentale 100 100 100 ea siamensis 100 100 90 m graveolens 97 100 85 a muricata 67 69 51	Stryct	v-xnu sou	omica.	22	93	20	27	12	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nomum porrectum 92 100 71 thus pulcher 94 100 90 dium occidentale 100 100 100 ea siamensis 100 100 90 m graveolens 97 100 85 a muricata 67 69 51	Kaem	ipferia galz	ınga	100	100	98	66	23	24	r,	10	က	က	0	-	-	-	0	1	0	0	0	0
thus pulcher 94 100 90 dium occidentale 100 100 100 ea siamensis 100 100 90 m graveolens 97 100 85 a muricata 67 69 51	Clinna	этотит р	orrectum	92	100	7.1	82	42	48	18	18	-	-	0	0	0	0	0	0	0	0	0	0
dium occidentale 100 100 100 ea siamensis 100 100 90 m graveolens 97 100 85 a muricata 67 69 51	Phylle	anthus pulc	:her	94	100	8	95	8	9	73	87	7	5	-	-	0	0	0	0	0	0	0	0
ea siamensis 100 100 90 m graveolens 97 100 85 a muricata 67 69 51	Anaca	ardium occ	identale	100	100	100	100	88	9	02	82	58	74	6	13	5	10	0	0	0	0	0	0
m graveolens 97 100 85 a muricata 67 69 51	Mamr	nea siame	nsis	9	100	96	26	77	68	22	98	47	77	48	51	12	17	1	1	0	1	0	0
<i>muricata</i> 67 69 51	Aneth	um gravec	lens	97	100	85	91	72	9/	51	54	6	14	0	0	0	0	0	0	0	0	0	0
	Annoi	na muricat	8	67	69	51	99	23	23	1	3	0	0	0	0	0	0	0	0	0	0	0	0
0 0 0	Control	Ы		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Mammea siamensis สามารถฆ่าลูกน้ำยุงได้ 50% เมื่อใช้สารสกัดที่ความเข้มข้นต่ำที่สุด (3.2 mg/l) ภายใน 48 ชั่วโมง

3. ค่า LC₅₀ และ LC₉₀ ของสารสกัดจากพืชสมุนไพรทั้ง 3 ชนิด แสดงให้เห็นในตารางที่ 3 และ 4 และรูปที่ 5 และ 6

ตารางที่ 3 ค่าความเข้มข้นของสมุนไพร 3 ชนิด (species) ที่มีฤทธิ์ฆ่าลูกน้ำยุงลายบ้าน (Aedes aegypti) ระยะที่ 3 และระยะที่ 4 ภายหลัง 24 ชั่วโมง

		Lethal concentration (m	g/l)
Scientific name	LC ₅₀ (95% CL*)	LC ₉₀ (95% CL*)	Slope <u>+</u> SE
Mammea siamensis	6.2	24.1	1.7 <u>+</u> 0.08
	(4.7 – 8.0)	(17.8 – 34.8)	
Anethum graveolens	16.6	64.7	2.6 <u>+</u> 0.1
	(12.6 – 21.9)	(46.8 – 95.8)	
Annona muricata	60.9	237.7	3.8 <u>+</u> 0.14
	(44.7 – 85.0)	(162.5 – 379.9)	

ตารางที่ 4 ค่าความเข้มข้นของสารสกัดจากพืชสมุนไพร 3 ชนิด (species) ที่มีฤทธิ์ฆ่าลูกน้ำยุงลายบ้าน (Aedes aegypti) ภายหลัง 48 ชั่วโมง

	1	Lethal concentration (m	ng/l)
Scientific name	LC ₅₀ (95% CL*)	LC _{so} (95% CL*)	Slope + SE
Mammea siamensis	4.1	14.0	1.4 <u>+</u> 0.8
	(2.6 – 6.5)	(8.9 – 28.5)	
Anethum graveolens	13.7	48.8	2.6 <u>+</u> 0.1
	(8.5 – 22.2)	(29.3 – 99.2)	
Annona muricata	53.9	192.3	4.0 <u>+</u> 0.1
	(32.5 – 94.6)	(108 – 438)	

CL* = Confidence Limit

4. การทดสอบความเป็นพิษของสารสกัดต่อ non target fish

พบว่าสารสกัด 8 ชนิด ใน 14 ชนิด เป็นพิษต่อปลาหางนกยูง ขณะที่อีก 6 ชนิด ไม่เป็นพิษ พืชทั้ง 6 ชนิดได้แก่ Cinnamomum porrectum, Phyllanthus pulcher; Anacardium occidentale, Mammea siamensis, Anethum graveolens และ Annona muricata ดังแสดงในดารางที่ 5

ตารางที่ 5 ความเป็นพิษของสารสกัดสมุนไพร 14 ชนิด (species) ต่อปลาหางนกยูงที่ความเข้มขันด่ำ ที่สุดที่จะสามารถฆ่าลูกน้ำยุงลายบ้าน (*Aedes aegypti*) ได้ 50%

Scientific name	Conc. At produced more than 50% larvae mortality rate (mg/l)	Mortality of guppy fish (N = 30) (%)
Abutilon indium	100	100
Samanea saman	100	100
Costus speciosus	50	100
Acorus calamus	50	100
Knema globularia	50	100
Stemona tuberose	100	80
Strychnos nux-vomica	100	100
Kaempferia galanga	50	80
Cinnamomum porrectum	50	0
Phyllanthus pulcher	12.5	0
Anacardium occidentale	6.3	0
Mammea siamensis	3.2	0
Anethum graveolens	12.5	0
Annona muricata	50	0
Control	0	0

สรุปและวิจารณ์ผลการทดลอง

จากการวิจัยครั้งนี้พบว่าสารสกัดจากส่วนต่างๆ ของพืชสมุนไพร 6 ชนิด ได้แก่ กิ่งของดัน เทพธาโร (Cinnamomum porrectum) ใบว่านธรณีสาร (Phyllanthus pulcher) เมล็ดมะม่วงหิมพานด์ (Anacardium occidentale) ตอกสารภี (Mammea siamensis) ต้นเทียนข้าวเปลือก (Anethum graveoltens) และเมล็ดทุเรียนเทศ (Annona muricata) มีความสามารถสูงในการกำจัดลูกน้ำยุงลายบ้าน และ ยิ่งไปกว่านั้น เราพบว่าสารภี เทียนข้าวเปลือก และทุเรียนเทศ มีผลทำให้ยุงดัวเต็มวัยที่รอดชีวิตวางไข่ได้ จำนวนน้อยลงอีกด้วย ดังนั้นเราจึงนำสารสกัดจากพืชทั้ง 3 ชนิดมาทำการทดลองหาผลกระทบต่อวงจรชีวิต ของยุงลายบ้านต่อไป

สารสกัดจากดอกสารภีมีความเป็นพิษสูงที่สุดโดยมีค่า LC₅₀ เป็น 4.0 μg/ml ที่ 48 ชั่วโมง รองลงมาคือใบและกิ่งเทียนข้าวเปลือกที่มีค่า LC₅₀ เป็น 14.2 μg/ml ที่ 48 ชั่วโมง และเมล็ดทุเรียนเทศที่มีค่า LC₅₀ เป็น 53.2 μg/ml ที่ 48 ชั่วโมง

สารสกัดทั้ง 3 ชนิดไม่เป็นพิษต่อปลาหางนกยูงที่นำมาเป็นตัวแทนของ non-target organism ยกเว้นสารสกัดจากดอกสารภีที่ค่า LC₉₀ ต่อลูกน้ำยุงลายบ้านมีความเป็นพิษเล็กน้อยต่อปลาหางนกยูง มี รายงานว่าสารภีมีสาร proanthocyanidin polymers ที่เป็นสารประกอบที่มีพิษต่อปลาได้ (Balza et al 1989) อย่างไรก็ดีดอกสารภีตากแท้งใช้เป็นยาสมุนไพรมาแต่โบราณและไม่เคยมีรายงานว่ามีพิษต่อมนุษย์แต่ อย่างไร

นักวิจัยไม่สามารถนำสารสกัดจากพืชอีก 3 ชนิด คือ เทพธาโร ว่านธรณีสาร และมะม่วงหิม-พานต์ มาทำการทดลองหาผลกระทบต่อวงจรชีวิตของยุงลายบ้านได้ เนื่องจากข้อจำกัดของเวลาโดยเฉพาะ เมล็ตมะม่วงหิมพานด์ที่มีความเป็นพิษสูงต่อลูกน้ำยุงลาย แต่กระบวนการสกัดสารจากเมล็ดมะม่วงหิมพานด์มี ความยุ่งยากและสลับซับซ้อนมาก เนื่องจากมีสารประกอบที่เป็นพิษและมีน้ำมันอยู่มาก

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

จากการศึกษาวิจัยเบื้องด้นพบว่าสิ่งที่น่าจะทำการวิจัยต่อไปคือ ศึกษาผลกระทบของสารสกัด จากพืช 3 ชนิดต่อวงจรชีวิตของยุงลายบ้านในแง่ของประชากรที่ลดลง (Population reduction) การ เจริญเดิบโดที่ช้าหรือหยุดชะงักไปของยุง (Growth retardation and prolongation of development period) ความผิดปกดิของลักษณะทางสัณฐานวิทยาของยุงทุก ๆ ระยะที่เป็นผลมาจากสารสกัด (Morphological aberration induced by medicinal plant extracts) การหาตำแหน่งที่สารสกัดจากพืชสมุนไพรมีผลทำให้ลูกน้ำ ยุงตาย (Possible site of action of plant extracts in killing larvae and pupae) การตรวจสอบลูกน้ำยุงที่ ได้รับผลกระทบต่อสารสกัดจากภาพถ่ายที่ได้จากกล้องจุลทรรศน์อิเลคตรอนแบบสแกน (Scanning electron microscopic) และการตรวจสอบอาการของลูกน้ำยุงลายที่นำมาใช้ทดสอบกับสารสกัดสมุนไพร (Observations of symptoms of tested larvae)

Screening of medicinal plant extracts for larvicidal effects on Aedes aegypti (Diptera: Culletidae) and toxicity on a non target organism

Suwannee Promsiria, Amara Naksathit

Biology Program, Faculty of Science, Rajabhat Songkhla University, Songkhla 90000

Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400

ABSTRACT. A preliminary study was conducted to find out the effects of the extracts of one

hundred and twelve medicinal plant species, collected from the southern part of Thailand, on Aedes

aegypti. Studies on larvicidal properties of plant extracts against the third and fourth instars larvae

showed fourteen extracts with high toxicity. Six plant species, Mammea siamensis, Anacardium

occidentale, Anethum graveolens, Phyllanthus pulcher, Cinnamomum porrectum, and Annona muricata,

were comparatively more effective than others at very low concentration. The LC50 and LC90 values

being 4.1 and 14.0 µg/ml for Mammea siamensis, 6.5 and 11.6 µg/ml for Anacardium occidentale,

13.7 and 48.8 µg/ml for Anethum graveolens, 15.6 and 44.4 µg/ml for P. pulcher, 51.2 and 59.8

μig/ml for Cinnamomum porrectum and 53.9 and 192.3 μg/ml for Annona muricata, respectively.

These extracts demonstrated no or very low toxicity to guppy fish (Poecilia reticulata), which was

selected to represent the most common non-target organism found in habitats of Ae. aegypti.

KEYWORDS: medicinal plants, Aedes aegypti, guppy fish, Poecilia reticulata

REFERENCES CITED

- Avirutnant, W. and Pongpan, A. (1983) The antimicrobial activity of some Thai flowers and plants. Journal of pharmaceutical sciences, 10, 81-86.
- Balza, F., Abramowski, Z., Neil, G. H., Towers, Ghn. and Wiriyachitra, P. (1989)

 Identification of proanthocyanidin polymers as the pisticidal constituents of *Mammea*siamensis, Polygonum stagninum and Diospyros diepenhorstii. Phytochemistry, 28,

 1827-1830.
- Campbell, F. L., Sullivan, W. W. and Smith. L.N. (1933) The relative toxicity of nicotine, nabasine, methylanaba sine and lupinine for Culicine mosquito larvae. Journal of Economic Entomology, 26, 505-509.
- Choochote, W., Kanjanapothi, D., Panthong, A., et al. (1999) Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian Journal of Tropical Medicine and Public Health, 30, 470-476.
- Finney, D.J. (1964) Statistical Method in Biological Assay. 2nd ed., Hafner Publishing

 Co., New York. pp. 668.
- Grainge, M. and Ahamed, S. (1988) Handbook of plant with pest control properties. John Wiley & Sons, Toronto. pp. 470.

- Grantz, G. N. (1993) What must we do to effectively control *Aedes aegypti*. Journal of Tropical Medicine, 35, 243-251.
- Harley, S. L. K. (1967) A note on the influence of a range of plant chemicals on the growth and survival of *Aedes aegypti* L. larvae. Canadian Journal of Zoology, 45,1297-1300.
- Havertz, D. S. and Curtin, T. J. (1967) Reproductive behavior of *Aedes aegypti* sublethally exposed to DDT. Journal of Medical Entomology, 4, 143-145.
- Issakul, K., Kongtrakoon, W., Dheeranupatana, S., Jangsutthivorawat S. and Jatisatienr,

 A. (2004) The Future for Medicinal and Aromatic Plants Insecticidal Effectiveness

 OF COMPOUNDS FROM MAMMEA SIAMENSIS KOST. AGAINST MUSCA DOMESTICA LINN

 Horticultural Congress. ISHS Acta Horticulturae 629: XXVI.
- Jacobson, M. (1958) Insecticides from plants. A review of the literature, Agriculture Handbook, US Department Agriculture, USA, pp. 1941-1952.
- Lichtenstein, E.P., Liang, T.T., Schulz, K. R., Schnoes, H. K. and Carter, G. T. (1974)

 Insecticidal and synergistic components isolated from dill plants. Journal of

 Agricultural and Food Chemistry, 22, 658-664.

- Mahidol, C., Kaweetripob, W., Prawat, H. and Ruchirawat, S. (2002) Mammea coumarins from the flowers of *Mammea siamensis*. Journal of natural products, 65, 757-760.
- Martin, G. J. (1995) Ethnobotany: a methods manual. Chapman & Hall, London. pp
- Mittal, P. K., Adak, T. and Sharma, V. P. (1994) Comparative toxicity of certain mosquitocidal compounds to larvivorous fish, *Poecilia reticulata*. Indian Journal of Malariology, 31, 43-47.
- Mohtar, M., Yarmo M.A. and Kadri, A. (1999) The effects of *Nerium indicum* leaf extract on *Aedes aegypti* larvae. Journal of Tropical Forest Products, 5, 87-92.
- Monzon, R.B., Alvior, J.P., Luczon, L.L., Morales, A.S. and Mutuc, F.E. (1994) Larvicidal potential of five Philippine plants against *Aedes aegypti* (Linnaeus) and *Culex quinquefasciatus* (Say). Southeast Asian Journal of Tropical Medicine and Public Health, 25, 755-759.
- Palakulk, K., Sucharit, S., Komalamisra, N. and Deesin, V. (1999) Larvicidal activity of

 Thai Ka-lum-pak sa-lad dai Euphobia antiquarum Linn. against Aedes, Culex,

- Anopheles and Mansonia larvae in laboratory. Abstract, Mahidol University, Bangkok. pp. 384.
- Rongsriyam, Y. and Baskoro, T. (1998) Medicinal plants for replacement of insecticides use in vector control. Abstract, Mahidol University, Bangkok, pp. 683.
- Satoto, T. B. T. (1993) A laboratory study of the biological effects of some medicinal plants on Culex tritaeniorhynchus sp. (M.Sc. Thesis in Tropical Medicine), Faculty of Graduate Studies, Mahidol University, Bangkok, pp. 119.
- Schwartz, A. M., Paskewitz, S. M., Orth, A. P., Tesch, M. J., Toong, Y.C. and Goodman, W. G. (1998) The lethal effects of *Cyperus iria* on *Aedes aegypti* Journal of American Mosquito Control Association, 14, 78-82.
- Shama, S. and Shama, K.V.P. (1995) Field studies on the mosquito replellent action of Neem Oil. Southeast Asian Journal of Tropical Medicine and Public Health, 26, 180-182.
- Soralum, P., Choasakool, W. and Bhrathantoorak, S. (2001) Medicinal Plant Encyclopedia. V. I. Gardenherb of Sirerukkachart. Faculty of Pharmacy, Mahidol University, Bangkok. pp253.

- Su, T. and Mulla, M.S. (1998) Ovicidal activity of neem products (Azadirachtin) against

 Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). Journal of American

 Mosquito Control Association, 14, 204-209.
- Supavarn, P., Knapp, F. W. and Sigafus R. (1974) Biologically active plant extracts for control of mosquito larvae. Mosquito News, 34, 398-402.
- Sukumar, K., Perich, M. J. and Boobar, L. R.(1991) Botanical derivative in mosquito control. A review, Journal of American Mosquito Control Association, 7, 210-216.
- Thangam, T. S. and Kathiresan, K. (1992) Smoke repellency and killing effect of mangrove plants against the mosquito *Aedes aegypti* (Linnaeus). Tropical Biomedicine, 10,125-128.
- World Health Organization. (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insect development inhibitor. WHO/VBC/, 812-881.
- Yasui, K. (1993) Straegies of dengue vaccine development by WHO. Using new biotechnology. Journal of Tropical Medicine and Hygiene, 35, 233-241.
- Yodbutra, S., Ketavan, C., Upatham, E. S. and Areekul, S. (1985) Effects of a juvenile hormone analogue on the morphology and biology of *Aedes scutellaris malayensis*

Colless (Diptera:Culicidae). Southeast Asian Journal of Tropical Medicine and Public Health, 16, 41-48.

Zebitz, C.P.W. (1984) Effects of some crude and azadirachtin-enriched neem (Azadirachta indica) seed kernel extracts on larvae of Aedes aegypti. Australian Journal of Entomology, 39, 208-211.

KEYWORDS: medicinal plants, Aedes aegypti, guppy fish, Poecilia reticulata

Evaluations of larvicidal activity of medicinal plant extracts to *Aedes aegypti* (Diptera: Culicidae) and other effects on a non target fish

SUWANNEE PROMSIRI', AMARA NAKSATHIT', MALEEYA KRUATRACHUE' and USAVADEE THAVARA'

¹ Department of Biology, Faculty of Science, Mahidol University, Bangkok, and ² National Institute of Health, Department of Medical Science, Ministry of Public Health, Thailand

Abstract A preliminary study was conducted to investigate the effects of the extracts of 112 medicinal plant species, collected from the southern part of Thailand, on Aedes aegypti. Studies on larvicidal properties of plant extracts against the fourth instar larvae revealed that extracts of 14 species showed evidence of larvicidal activity. Eight out of the 14 plant species showed 100% mosquito larvae mortality. The LC₅₀ values were less than 100 $\mu g/mL$ (4.1 $\mu g/mL$ mL-89.4 µg/mL). Six plant species were comparatively more effective against the fourth instar larvae at very low concentrations. These extracts demonstrated no or very low toxicity to guppy fish (Poecilia reticulata), which was selected to represent most common non-target organism found in habitats of Ae. aegypti, at concentrations active to mosquito larvae. Three medicinal plants with promising larvicidal activity, having LC₅₀ and LC₅₀ values being 4.1 and 16.4 µg/mL for Mammea siamensis, 20.2 and 34.7 µg/mL for Anethum graveolens and 67.4 and 110.3 μg/mL for Annona muricata, respectively, were used to study the impact of the extracts on the life cycle of Ae. aegypti. These plants affected pupal and adult mortality and also affected the reproductive potential of surviving adults by reducing the number of eggs laid and the percentage of egg hatchability. When each larval stage was treated with successive extracts at the LC₅₀ value, then the first instar larvae were found to be very susceptible to A. muricata and the second instar larvae were found to be susceptible to A. graveolens, while the third and fourth instar larvae were found to be susceptible to M. siamensis. These extracts delayed larval development and inhibited adult emergence and had no adverse effects on P. reticulata at LC50 and LC90 values, except for the M. siamensis extract at its LC₅₀ value

Key words Aedes aegypti, guppy fish, larvicidal activity, medicinal plants, Poecilia reticulata

DOI 10.1111/j.1744-7917.2006.00080.x

Introduction

One primary vector of yellow fever, chikungunya, dengue

Correspondence: Amara Naksathit, Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. Fax: 011 662 247 0079; e-mail: grans@mahidol. ac.th

fever, dengue hæmorrhagic fever (DHF) and dengue shock syndrome, is Aedes aegypti (Grantz, 1993). DHF is a major cause of child morbidity and hospitalization in Thailand as well as in other countries (Yasui, 1993). Control has been mainly affected by use of conventional insecticides but these have caused their own problems, such as adverse effects on the environment and the encouragement of pesticide resistance in some mosquitoes (Su & Mulla, 1998). These problems stimulated a search for safer alter-

native anti-mosquito control.

It has been found that herbal extracts are one safer alternative method of control, especially the extracts of certain medicinal plants. One early report on the use of plant extracts against mosquito larvae was that of Campbell et al. (1933) where it was found that plant alkaloids like nicotine, anabasine, methyl anabasine and lumpinin extracted from the Russian weed, Anabasis aphylla, killed the larvae of Culex sp. Monzon et al. (1994) reported that some medicinal plants containing natural toxins were effective against mosquito larvae. Not only can medicinal plant extracts be effective but also they may greatly reduce the risk of adverse ecological effects and they do not induce pesticide resistance in mosquitoes. Since these chemicals are taken from medicinal plants, they are expected to have low human toxicity and a high degree of biodegradation (Choochote et al., 1999).

Recently, many studies conducted in Thailand and around the world have shown that chemicals from medicinal plants have larvicidal, pupicidal and adulticidal effects on mosquitoes (Monzon et al., 1994; Choochote et al., 1999; Palakulk et al., 1999; Rongsriyam & Baskoro, 1996; Shama & Shama, 1995). In the south of Thailand where many tropical rain forests are found, a vast number of medicinal plants have not had their mosquitocidal potential assessed. The identification and eventual use of indigenous medicinal plants in the control of mosquito larvae is beneficial to developing countries such as Thailand and its Southeast Asian neighbors. Thus, the principal objectives of this paper are, to screen the medicinal plants found in southern regions of Thailand for potential larvicidal effects, to test the effects of these extracts on the growth, survival, development and other life cycle aspects of the Ae. aegypti, and to study their impacts on fish, the most common group of non-target organisms in mosquito habitats.

Materials and methods

Plant collection

Samples of 112 medicinal plant species in 111 general belonging to 50 families were collected from the southern part of Thailand from November 2000 to March 2002. Three methods of collection were used. Random sampling was the first method, i.e. taking any plant which could be collected in sufficient quantity and quality. The second method was to follow a chemotaxonomic approach, selecting the medicinal plants belonging to specific families which have been reported in scientific journals to have certain larvicidal or insecticidal properties. The third method was based on ethnopharmacological information (Martin,

1995): i.e. those plants already used as insecticides by local people. All parts of the plants were collected and kept separately in plastic bags and brought to the laboratory for extraction. Each herbarium specimen was prepared from each plant and was identified by: (i) comparing the morphological characters, habit and habitat with those described in the taxonomic literature; (ii) Dr Chamlong Pengklai and Dr Kongkanda Chayamarit, the Forest Botany Division, Forest Herbarium, National Park, Wildlife and Plant Conservation Department where voucher specimens were deposited.

Plant extraction

The method of plant extraction was modified from those of Satoto (1993) and Choochote et al. (1999). Five hundred grams of each plant (oven dried) was ground and filtered using a strainer silver number 60. The powder was macerated with 1.5 L of 80% ethanol solution and left to stand at room temperature for 3 days. The mixture was filtered through a Whatman no.1 filter paper by suction and the filtrate was evaporated under vacuum at 40°C until completely dried, and kept at a constant 4°C until needed for tests.

Rearing of Aedes aegypti

Ae. aegypti eggs were obtained from a colony maintained at the Medical Entomology Laboratory of the National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi Province, Thailand.

Filter paper with attached eggs was dipped into a plastic tray containing 500 mL of dechlorinated water for 30–40 min, time enough to allow for eggs to hatch into larvae. They were reared indoors at $26 \pm 2 \,\mathrm{C}$, $70\% \pm 10\%$ RH and a 14:10 light: dark photoperiod and they were fed daily with ground mouse feed until such time as they molt to become pupae. They were moved into a mosquito cage where the emergent adults were fed with a 10% sucrose solution. Five days after emergence, female mosquitoes were allowed to blood-feed on white mice for 2–3 hours. A few days after having a blood meal, the gravid mosquitoes laid their eggs.

Larvicidal test

Larvicidal tests were assessed by the standard method of WHO (1981) with some modifications. Medicinal plant extracts, which produced more than 50% larval mortality in preliminary screening, were serially diluted at concentrations of 100, 50, 25, 12.5, 6.3, 3.2, 1.6, 0.8, 0.4, and 0.2 μ g/mL. One hundred milliliters of each test solution was

placed in a plastic drinking cup along with (a standard group of) 25 fourth instar larvae. Each experiment was conducted with (alongside) four replicates and a concurrent control group. A control group consisted of 0.03 mL of absolute ethanol and 99.97 mL of distilled water and an untreated one, which contained only 100 mL of distilled water. No food was provided during the treatment. Observations were made 24 and 48 hours after treatment; dead larvae were counted and preserved in a 50% ethanol solution. Subsequently, the lowest concentration of crude extract that had successfully produced more than 50% larval mortality rate was used in a toxicity test on a nontarget organism. A probit analysis using a computer program (SPSS/PC+, Finney, 1964) was employed on the results to determine LC₅₀ and LC₉₀ values.

Effects on growth and development of Ae. Aegypti

The effects of the three promising medicinal plant extracts, that were found to be effective as larvicides, were studied

Immature stages mortality and adult emergence Each cup from a larvicidal test (part 1 above), that was still holding living larvae after a 48-hour period, was placed into a separate mosquito cage. All larvae and emergent adults were fed daily. Larval, pupal and adult mortality as well as adult female and male emergence rates was determined.

Egg and larval number reduction A determination was made of the extract impact on fertility and of fecundity in emerging adults. After blood feeding and mating, females were isolated in another cage and allowed to lay eggs. The eggs were collected, counted, and recorded daily until all females died, the eggs then being allowed to hatch after being dried for a 3-day period. The number of viable larvae was recorded at the fourth instar stage. The larval reduction in the F₁ generation due to exposure to medicinal plant extract was calculated using the following formula (Thangam & Kathiresan, 1992).

Larval reduction (%) = [(A-B/A)] 100%,

A = Average number of larvae that hatched per female per cage in the control (The average was calculated in relation to the total number of mosquitoes tested).

B = Average number of larvae hatched per female per cage for mosquitoes treated with a particular plant extract.

Growth retardation and prolongation of development Groups of 25 of the first, second, third and fourth instar larvae of Ae. aegypti were each exposed to LC₅₀ doses of the three specific kinds of (selected) medicinal plant extract. There was no fixed duration of exposure: exposure was sustained from the onset of egg hatching until larval death or else of successful adult emergence. The larvae were fed with ground mouse feed for the duration of their exposure. Data on growth and survival percentage was collected and the Harley index (1967) was used for comparing the revelant effects of the various extracts, the Harley formula being

Mean index = Percentage of individuals pupation+ Percentage of individuals reaching adulthood/median day of pupation.

Toxicity to guppy fish

A test to determine the susceptibility of a selected nontarget organism to plant extracts followed Mittal et al.' s approach (1994). The guppy fish, Poecilia reticulata, was selected as the non-target organism. The following stage test was conducted.

Stage one assessment of toxicity, at the lowest concentration of crude extract to produce a more than 50% larval mortality rate in a larvicidal test. This test was conducted on guppy fish. Thirty guppy fish were placed in a rectangular, glass aquarium containing 400 mL of plant extract water solution in three replicates. Each group of 30 fish was exposed to a test solution. A control, consisting of 30 fish in dechlorinated tap water, was studied at the same time. The number of dead fish was recorded first at a 24-hour point and then at a 48-hour point and the percentage mortality calculated. All of these bioassay tests were conducted at a room temperature of approximately 27-28 ℃, without aeration or renewal of water.

Stage two assessment of toxicity fist at a LC₅₀ value (point) and then at a LC, value (point), which showed no toxic effects (had suffered no illness) to fish in stage one, was conducted in the same manner.

Results

Larvicidal tests

Preliminary screening 14 species of plant extracts were found to show high toxicity with a more than 50% mortality rate at of the fourth instar larvae stage in a concentration of 100 μ g/mL at the 48 h after treatment point (Table 1).

Larvicidal tests Eight out of fourteen plant species, Anacardium occidentale, Mammea siamensis, Phyllanthus pulcher, Anethum graveolens, Kaempferia galanga, Cinnamomum porrectum, Costus speciosus, and Acorus calamus at a concentration of 100 µg/mL showed 100% larval mortality after an exposure of 48 hours (Table 2). These plant extracts showed high larvicidal activity, their LC_{50} after 48 hours < 100 μ g/mL, 13.9-56.2 μ g/mL (Table

Table 1 Fourteen medicinal plants with high toxicity to the fourth instar larvae of Aedes aegypti in preliminary screening.

Family and sientific name	Plant habit	Thai common name	English common name	Part use
Malyaceae	Under	Continon name	COMMON MARIO	
		Fan-si	Country mallow	Roots
Abutilon indicum	shurb			
Leguminosae-		GI 0 :	B . 1	0. 1 1
Mimosoideae	Tree	Chamc huri	Rain tree	Stem bark
Samanea saman		**		
Costaceae	Herb	Ueang	Spiral flag	Roots
Costus speciosus		mai-na		
Araceae	Herb	Wan-nam	Sweet flag	Roots
Acorus calamus			_	
Myristicaceae	Tree	Lueat raet		Seeds
Knema globularia				
Stemonaceae	Неть	Non tai yak	_	Roots
Stemona tuberosa		,		
Strychnaceae	Shrub	Salaeng chai	Snake wood	Seeds
Strychnos nux-vomica				2002
Zingiberaceae	Herb	Pro hom	****	Roots
Kaempferia galanga	220.0	110 110111		11500
Lauraceae	Tree	Thep tharo	_	Wood
Cinnamomum porrectum	1100	thop date		17 004
Euphorbiaceac	Shrub	Wan-	_	Leaves &
Phyllanthus pulcher	Omap	thorani-san		twigs
Anacardiaceae	Exotic	Mamuang	Cashew	Seed shell
Anacardium occidentale	shrub tree	Him-ma-phan	nut tree	Seed silen
Guttiferae	Tree	Saraphi	Negkassar	Flower
Mammea siamensis	1100	Загарии	regrassar	Piowei
Umbelliferae	Exotic	Thain khoa Pluca	Dill	Leaves &
Anethum graveolens	he rb	t nam knoa Piuca	Dill	twigs
Annonaceae	Exotic	Thurian-thet	Durian belanda	
Annona muricata	Shrub tree	i nunsa-met	Dunan betanga	Seeds

2). Six remaining medicinal plant species, Strychnos nux-vomica, Knema globularia, Stemona tuberosa, Samanea saman, Annona muricata, Abutilon indicum at a concentration of $100 \mu g/mL$ showed moderate percentage mortality of larvae (93%, 88%, 80%, 78%, 69% and 57%, respectively), their LC₉₀ after 48 hours < $200 \mu g/mL$, $82.6-130.3 \mu g/mL$ (Table 2).

Effects on growth and development of Ae. aegypti

Immature stages mortality and adult emergence

The effects of the extracts on still living larvae were monitored continuously after an initial 48-hour period of exposure. It was found that slightly more pupae and also more adults died following exposure to solutions containing A. muricata and A. graveolens extracts than did larvae. Details of the comparative effects of three medicinal plant extracts on mortality of Ae. aegypti are shown in Table 3.

It was found that three of the medicinal plant extracts, M. siamensis, A. graveolens and A. muricata caused very low mortality among larvae, actual rates of mortality being 0%-3%, 0%-6%, and 0%-10%, respectively. The mean mortality rates of larvae for all concentrations of these plant extracts were 1%, 2%, and 2%, respectively. Mortality of pupae ranged from 2%-7%, 2%-9%, and 0%-13%, respectively. The mean number of dead pupae listed in the same order, were 3%, 5%, and 7%, respectively. Similarly, mortality at the adult stage ranged from 2%-26%, 4%-35%, and 9%-20%, respectively. The mean numbers of dead adults were 10%, 18% and 13%, respectively. Adult emergence from pupae after permanent exposure to three medicinal plant extracts ranged from 2%--79%, 9%-81%, and 6%-87%, respectively, while the means were 34%, 42%, and 63%, respectively.

Number of eggs and larval reduction In comparison to the control, the three medicinal plant extracts re-

Table 2 Toxicity of 14 medicinal plant extracts on Aedes aegypti fourth instar larvae.

Scientific name	24	h	48	3 h
	$LC_{50}^{\dagger}(\mu g/mL)$	$LC_{\infty}(\mu g/mL)$	$LC_{50}(\mu g/mL)$	$LC_{\infty}(\mu g/mL)$
	94.2 acg	136.3 k	89.4 a	130.3 m
Abutilon indicum	(81.3-112.1)	(116.5-170.9)	(78.0-106.3)	(112.9-162.3)
	79.2 bf	121.11 s	69.2 bf	104.5 n
Samanea saman	(68.5 - 92.8)	(103.8 - 145.5)	(59.7-75.5)	(90.0-121.9)
	98.5 ac	171.2 m	33.7 ci	53.6 os
Costus speciosus	(83.1-164.8)	(113.1-387.5)	(28.5 - 39.3)	(45.4-64.1)
	67.2 de	103.6 ns	40.15 d	56.2 os
Acorus calamus	(9.1-79.2)	(90.4-123.6)	(34.6-46.00)	(50.0-68.7)
	72.1 def	114.4 ls	53.2 e	82.6 p
Knema globularia	(3.8-107.1)	(87.0-183.2)	(39.9-76.4)	(64.5-126.6)
	75.2 bef	114.9 ls	65.8 bfg	105.0 n
Stemona tuberosa	(5.2 - 88.8)	(100.2-140.3)	(56.4-78.0)	(91.2-128.4)
	90.0 ag	137.7 k	62.8 bfg	92.2 q
Strychnos nux-vomica	(6.5-108.4)	(115.7-171.7)	(55.7-74.6)	(82.3-112.7)
	30.7 h	44.9 o	29.5 hi	43.6 rs
Kaempferia galanga	(7.5-37.0)	(39.8-55.1)	(24.9~34.5)	(36.3-52.3)
	43.5 i	73.6 p	31.5 hi	49.8 ors
Cinnamomum porrectum	(9.5-73.5)	(53.0-136.7)	(26.7-36.3)	(42.1-58.3)
	25.8 h	50.7 o	15.9 j	28.0 t
Phyllanthus pulcher	(9.9-66.2)	(21.2-76.1)	(9.6-28.0)	(22.7-68.1)
	9.1 j	15.3 q	7.7 k	13.9 u
Anacardium occidentale	(6.5-11.4)	(10.8-19.9)	(4.9~9.6)	(8.7-17.3)
	5.9 j	27.8 r	4.1 k	16.4 ս
Mammea siamensis	(4.53-7.6)	(17.7~40.1)	(3.0-5.1)	(11.2-24.5)
	27.4 h	50.0 o	20.2 [34.7 t
Anethum graveolens	(17.1-41.9)	(31.6-79.4)	(12.5-40.9)	(24.2 - 81.9)
	69.25 def	113.9 lns	67.4 bf	110.3 n
Annona muricata	(52.1~101.0)	(86.0-175.1)	(50.8 - 98.8)	(85.2-173.3)

Value ranges in the brackets stand for LC estimated by probit analysis 95% confidence limit. Letters are indices to show similarities of concentrations at LC_{so} and LC_{so}. The pair or group of plants that have the same indices have similar concentration at $P \ge 0.05$ or different at P < 0.05.

duced the number of eggs laid, the hatching ability and the larvae in the first generation of Ae. aegypti after treatment as fourth instar larvae. The results are shown in Table 3. The mean numbers of eggs laid for the three medicinal plant extracts were 46 eggs, 31 eggs, and 27 eggs, respectively. The percentages of hatched eggs for the three medicinal plant extracts ranged from 47%-60%, 40%-62%, and 35%-63%, respectively, while the mean percentages of hatched eggs were 54%, 51%, and 49%, respectively. The percentage reductions in larvae ranged from 20%-53%, 42%-82%, and 60%-84%, respectively, while the mean reductions in larvae were 44%, 66%, and 70%, respectively.

Growth retardation and prolongation of developmental period The comparative effects of the three medicinal plant extracts, at their L.C. concentrations, on the growth, survival and prolongation of the various instar larvae of Ae. aegypti are shown in Table 4. It was found that the first instar larvae were more susceptible to A. muricata and the second instar larvae more susceptible to A. graveolens. The third and fourth instar larvae were more susceptible to M. siamensis. Survival percentage of pupae were reduced when treated at the first and second instar stage with A. muricata and at the third and fourth instar stage with A. graveolens. Percentage adult emergence was lower for first and second instar larvae treated with A. muricata, for third instar treated with A. graveolens and for fourth instar treated with M. siamensis, than that of the control. The larvae took more time to develop to pupae, i.e., 30 days, 33 days, 35 days and 20 days, respectively, in developing to pupation compared to the control, when the first instar were treated with A. graveolens extract, the

Table 3 Effects of three medicinal plant extracts on immature stages mortality and adult emergence of Aedes aegypti.

Plant C	Concentration	Number	M	Mortality (%				Alive (%)		Average	Hatched	Reduction
	$(\mu g/mL)$	of larvae	L	P	A	N	0.	Α	ì	No.	number of		in larvae
		after 48 h				M	F	•	М	F	eggs laid/fem	ale	over control
Mammea	100			_	-	-		_	-		_	_	_
siamensi.	s 50	3	1	2	-	_	_	_	-		_	_	_
	25	11	1	2	6	5	1	2	- 1	1	40	53	53
	12.5	14	3	4	2	2	0	5	3	2	65	55	20
	6.3	23	2	3	6	5	1	12	8	4	40	58	49
	3.2	49	1	3	23	11	12	22	5	17	52	48	44
	1.6	83	3	4	15	14	1	61	18	43	60	47	38
	0.8	99	1	5	26	20	6	67	28	39	42	52	51
	0.4	99	2	7	13	8	5	77	45	32	39	56	51
	0.2	100	0	2	19	17	2	79	33	46	40	60	47
	Mean	48	i	3	10	8	2	34	14	20	46	54	44
	Control	100											
Anethum	100		_	-		-		_		_	_	T	-
graveo-	50	9	0	9	_		_	_	-		_	-	
lens	25	24	5	6	4	4	0	9	5	4	59	44	42
	12.5	46	0	8	11	9	2	27	14	13	33	52	62
	6.3	86	6	5	27	24	3	48	24	24	18	61	7 6
	3.2	100	1	6	35	28	7	58	19	39	28	47	71
	1.6	1 0 0	1	2	31	27	4	66	20	46	16	50	82
	0.8	100	0	3	30	28	2	67	27	40	33	52	62
	0.4	100	3	9	27	20	7	61	7	54	21	62	71
	0.2	100	0	5	14	10	4	81	45	36	40	40	62
	Mean	67	2	5	18	15	3	42	16	26	31	51	66
	Control	_	_	_	-	_	_	_	_	-	_	_	_
Annona	100	31	2	3	20	14	6	6	2	4	25	36	80
muricata	50	44	10	12	9	7	2	13	7	6	23	61	69
	25	77	1	6	17	14	3	53	25	28	24	63	67
	12.5	97	3	12	16	15	1	66	18	48	39	46	60
	6.3	100	0	13	9	9	0	78	42	36	16	44	84
	3.2	100	0	6	12	8	4	82	31	51	22	59	71
	1.6	100	1	5	14	11	3	80	34	46	27	48	71
	0.8	100	0	4	11	8	3	85	48	37	29	62	60
	0.4	100	1	5	12	7	5	82	47	35	38	48	60
	0.2	100	0	0	13	10	3	87	44	43	23	35	82
	Mean	8.5	2	7	13	10	3	63	30	33	27	49	70
	Control	_	_	_	_		_	_					

L = larva, P = pupa, A = adult, M = male, F = female.

second and the fourth instars with *M. siamensis* extract, and the third instar larvae with *A. muricata* extract, respectively. *Anethum graveolens* produced a marked reduction in Harley's index of 4, 5, 5, and 4 in the first, second, third and fourth instar larvae, respectively, while *M. siamensis* produced an index of 4 in the fourth instar stage in comparison with the control.

Toxicity to guppy fish

Toxicity at the lowest concentration of crude extracts that produced more than 50% larval mortality in the larvicide's test Out of 14 plant extracts found to be larvicidel, eight plant extracts were toxic to guppy fish and six extracts were found to be not so toxic.

Table 4 Effect of the three medicinal plant extracts at LC₅₀ on survival and prolongation of different larvae instar of Aedes aegypti.

Scientific			First	insta	r (n)			Sec	cond	insta	r (n)			Т	hird	insta	r (n)			Fe	ourth	insta	r (n)	
name	L	P/	A/	LP	MD	Ml	L	P/	A/	LP	MD	ΜĬ	ι	P/	A/	LP	MD	MI	L	P/	A/	LP	MD	MI
		(%)	(%)					(%)	(%)					(%)	(%)					(%)	(%)			
M. siamensis	33	20	15	21	14	8	58	46	40	33	19	8	59	45	36	26	15	9	37	13	5	20	14	4
		(61)	(46)					(79)	(69)					(76)	(61)					(35)	(14)			
A. graveolens	85	36	26	30	19	4	45	19	16	22	15	5	80	23	35	26	15	5	64	20	11	18	11	4
		(42)	(31)					(42)	(36)					(29)	(44)					(31)	(17)			
A. muricata	28	11	8	27	15	5	64	24	18	16	11	6	60	37	33	35	17	7	55	34	23	17	14	7
		(39)	(29)					(38)	(28)					(62)	(55)					(62)	(42)			
Control	100	100	100	12	6	33	100	100		12	6	33	100	100	100	12	6	33	100	100	100	12	6	33

L = Larva; P = Pupa; A = Adult; LP = Larvae Period; MD = Median Day; MI = Mean Index.

Abutilon indicum, Samanea saman, Costus speciosus, Acorus calamus, Knema globularia, Stemona tuberosa, Strychnos nux-vomica, and Kaempferia galanga extracts were toxic to guppy fish at concentrations of 100, 100, 50, 50, 50, 100, 100, and 50 μ g/mL, respectively. They all produced 100% mortality for guppy fish except for S. tuberosa and K. galanga, which resulted in 80% mortality. Six plant species, C. porrectum, P. pulcher, A. occidentale, M. siamensis, A. graveolens, and A. muricata were not toxic to guppy fish at concentrations of 50, 12.5, 6.3, 3.2, 12.5 and 50 μ g/mL, respectively (Table 5).

Table 5 Toxicity of extracts of medicinal plants to guppy fish at the lowest concentration that produced more than 50% larval mortality in the larvicidal test.

Scientific name	Concentration which caused more than 50% larval mortality (µg/mL)	Mortality of selected non- targe torganism (%)
Abutilon indicum	100	100
Samanea saman	100	100
Costus speciosus	50	100
Acorus calamus	50	100
Knema globularia	50	100
Stemona tuberosa	100	80
Strychnos nux-vomica	100	100
Kaempferia galanga	50	80
Cinnamomum porreci	tum 50	0
Phyllanthus pulcher	12.5	0
Anacardium occident	ale 6.3	0
Mammea siamensis	3.2	10
Anethum graveolens	12.5	0
Annona muricata	50	0
Control	0	0

Toxicity of the three medicinal plant extracts to guppy fish at their LC₅₀ and LC₆₀ concentrations Of the three lavicidal plants A. graveolens, A. muricata, and M. siamensis did not exhibit any noticeable effect on guppy fish after either 24 or 48 hours of exposure at their LC₅₀ and LC₅₀ values. However, M. siamensis at LC₅₀ value did affect guppy fish slightly, and produced 17% mortality at the LC₅₀ value and 100% mortality at the LC₅₀ value.

Discussion

Larvicidal tests

From the 112 species of medicinal plant collected from the southern part of Thailand, 14 species (12.5%) showed toxicity against the third and the fourth instar larvae of Ae. aegypti while eight out of these 14 species (7.1%) demonstrated toxicity to the selected non-target organism. Six of the fourteen species (5.4%) showed excellent larvicidal properties against the fourth instar larvae of Ae. aegypti. All had LC₅₀ values at 48 hours after treatment under 100 μ g/mL (4.1-67.4 μ g/mL); therefore, these plants have potential as good mosquitocides.

Effects on growth and development of Ae. aegypti

The immature stages mortality and the stage of the emergent adult Low mortality rates of larvae were observed after permanent exposure to extracts of M. siamensis, A. graveolens, and A. muricata. It was found that some larvae successfully continue to develop up to the pupal stage. Of these, some failed at the pupal stage, but still some emerged as adults. Mammea siamensis demonstrated some inhibition of the growth of larvae more than any correspondent inhibition of pupa and of adults. Extracts of A. graveolens, and of A. muricata produced larvae mortality rates after 24 hours and 48 hours of relevant exposure, rates that were lower than these produced by M. siamensis, and yet these two extracts produced high mortality rates among adults and among pupae. Some of the larvae did not die within the 48 hour period, but instead they died at the pupal or at the adult stage, due to the chronic effects of chemical compounds attributable to the medicinal plant extract (Sukumar et al., 1991). It has already been reported that some plant chemicals produced either larvicidal, pupicidal or adulticidal effects, and that at the various stages of their life cycle, mosquitoes differ markedly in their susceptibility to these phytochemicals (Rongsriyam & Baskoro, 1996).

Number of eggs and larval reduction It was found that the average number of eggs laid by females that emerged from medicinal plant treatment was lower than the number of eggs laid by the females of the control group. Hatchability of these eggs was also low and the size of the first generation was small when mosquitoes were treated at the third and the fourth instar larvae stage, including mosquitoes treated with M. siamensis extract. Mahidol et al. (2002) reported that plants of the genus Mammea were known to be rich sources of various coumarine and xanthones and coumarines were reported to exhibit diverse biological activities. It seemed possible that M. coumarins flowers might inhibit ecdysteriod hormone and juvenile hormone, or that while cytotoxic coumarines and insecticidal compounds stimulated ovaries to produce more eggs, these compounds still had an adverse effect on egg development of Ae. aegypti in that they decreased their hatchability. These findings have both biological and physiological significance in that they indicate that some compound had affected reproductive organ development, insinulated itself into the eggs and affected some vital physiological and biochemical processes associated with embryonic development. It would seem that this was the case with all those eggs that failed to hatch (Choochote et al., 1999; Zebitz, 1984). Su and Mulla (1998) report coumarines capable of producing such multiple effects on insects as anti-feeding, growth inhibition, fecundity suppression, sterilization and changes in biological fitness.

Growth retardation and prolongation of developmental period There was a delay in the development of larvae to the pupal stage when the first, second, third or fourth instar larvae were exposed to all three medicinal plant extracts. This was especially noted in A. graveolens, followed by A. muricata. This may be due to the presence of high juvenile hormone levels in the larvae or else due to chemical compounds in the medicinal plant, preventing normal pupation and preventing adult emergence

from occurring. Zebitz (1984) reports that azadirachtin may act as an anti-ecdysteroid or else otherwise affected the neuroendocrine control of ecdysteroids such that growth is inhibited and that the developmental period is prolonged. Mohtar et al. (1999) report the effect of a methanol-aqueous extract of Nerium indicum leaf at 100 mg/L on different larval instars of Ae. aegypti and show an elongation of the preimago period for all their larvae treated when compared to the control larvae. Many studies have drawn attention to the effects of plant extracts on adult eclosion (Yodbutra et al., 1985; Schwartz et al., 1998). The benefit of elongation is that mosquito larvae numbers are reduced due to the longer period needed for a new generation to complete the mosquito life cycle (Havertz & Curtin, 1967).

This study found that six medicinal plant extracts, C. porrectum, P. pulcher, A. occidentale, M. siamensis, A. graveolens, and A. muricata evinced high larvicidal activity against the fourth instar larvae of Ae. aegypti. Furthermore, M. siamensis, A. graveolens, and A. muricata were all found to have a chronic effect on the fourth instar larvae of Ae. aegypti after permanent exposure, leading to a reduction in the number of resultant eggs and subsequent larvae of the mosquitoes.

Mode of action of three medicinal plant extracts, M. siamensis, A. graveolens and A. muricata as it impacted on the life cycle of Ae. aegypti was studied.

Mammea siamensis crude extract was the most toxic of the three, with a 48-hour LC₅₀ value of 4.1 µg/mL. Other workers have reported similar results. Issakul et al. (2004), who investigated insecticidal substances extracted from M. siamensis, report insecticidal affects on the eggs of the house fly, Musca domestica. Avirutnant and Pongpan (1983) reported that alcohol and water extracts of M. siamensis flowers shown inhibitory effects on microorganisms.

The second potential anti-Ae. aegypti plant extract was the dill plant, A. graveolens, having a 48-hour LC₅₀ value of 20.2 µg/mL. Its leaves are used for their antimicrobial and nematocidal properties, as well as for their properties as insect repellent and insecticide. It has been found to contain insecticidal components and also is synergistic with carbamate and organophosphorous insecticides for some insect species. Carvone and myristicin in the aerial parts of dill, including seeds ("dill green") act as insecticides and synergists (Lichtenstein et al., 1974). Supavarn et al. (1974) report a methanol extract of whole plants of A. graveolens, demonstrating low toxicity to the fourth instar larvae of Ae. aegypti but high inhibition of pupal development.

Annona muricata seed was found to be an active larvicide with a 48-hour LC₅₀ value of 67.4 μ g/mL. Jacobson

(1958) reports similar results for the seed extracts of another Annona species, namely A, cherimola, A. glabra and A. squamosa, which had lethal effects on larvae of Aedes sp. Its potential as a larvicidal plant was further supported by the results of a recent study by Satoto (1993), who found that A. squamosa seed was one of the most effective larvicides against both Culex tritaeniorhynchus and Ae. aegypti. Grainge and Ahmed (1988) report that the seed alkaloids from A. muricata were antifeedants to Ae. aegypti, known for about 10 years; they are characteristic of the Annonaceae, (Annona, Asimina, Goniothalamus, Rollinia, Uvaria), where they are mostly concentrated in the seeds. The potential applications of these molecules are due to their marked cytotoxic and antitumor (asimicin, bullatacine), antibacterial (cherimolin) and insecticidal (asimicin) properties.

Toxicity to guppy fish

They were non-toxic to the tested non-target organism, except M. siamensis at larval LCo value for Ae. aegypti was slightly toxic to fish. Mammea siamensis has been reported to contain proanthocyanidin polymers as the active compounds producing piscicidal effects (Balza et al., 1989). However, dried flowers from these plants have been traditionally used in herbal medicine (Soralum et al., 2001) and they have not been found to be toxic to human beings. The other two plant extracts had no toxic effect on fish.

Investigators in this study were not able to investigate C. porrectum, P. pulcher and A. occidentale although these plants are worthy of further study. Furthermore, A. occidentale appears to a have strong potential as a larvicide. However, the extraction process, from cashew nuts, is complex as it contains a toxic astringent as well as complex corrosive oily substances.

Acknowledgments

This work was funded by the Thailand Research Fund Organization (PDF/59/2540), Mahidol and Rajabhat Songkhla Universities, Thailand.

References

- Avirutnant, W. and Pongpan, A. (1983) The antimicrobial activity of some Thai flowers and plants. Journal of Pharmaceutical Sciences, 10, 81-86.
- Balza, F., Abramowski, Z., Neil, G.H., Towers, Ghn. and Wiriyachitra, P. (1989) Identification of proanthocyanidin

- polymers as the pisticidal constituents of Mammea siamensis. Polygonum stagninum and Diospyros diepenhorstii. Phytochemistry, 28, 1827-1830.
- Campbell, F.L., Sullivan, W.W. and Smith. L.N. (1933) The relative toxicity of nicotine, nabasine, methylanaba sine and Iupinine for Culicine mosquito larvae. Journal of Economic Entomology, 26, 505-509.
- Choochote, W., Kanjanapothi, D., Panthong, A., Taesotikul, T., Jitpakdi, A., Chaithong, U., Pitasawat, B. (1999) Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian Journal of Tropical Medicine and Public Health, 30, 470-476.
- Finney, D.J. (1964) Statistical Method in Biological Assay. 2nd edn., Hafner Publishing Co., New York. pp. 668.
- Grainge, M. and Ahamed, S. (1988) Handbook of Plants with Pest Control Properties. John Wiley & Sons, Toronto. pp. 470.
- Grantz, G.N. (1993) What must we do to effectively control Aedes aegypti. Journal of Tropical Medicine, 35, 243-251.
- Harley, S.L.K. (1967) A note on the influence of a range of plant chemicals on the growth and survival of Aedes aegypti L. larvae. Canadian Journal of Zoology, 45, 1297-1300.
- Havertz, D.S. and Curtin, T.J. (1967) Reproductive behavior of Aedes aegypti sub-lethally exposed to DDT. Journal of Medical Entomology, 4, 143-145.
- Issakul, K., Kongtrakoon, W., Dheeranupatana, S., Jangsutthivorawat S. and Jatisatienr, A. (2004) The Future for Medicinal and Aromatic Plants Insecticidal effectiveness of Compounds from Mammea siamensis Kost. Against Musca domestica Linn. Horticultural Congress. ISHS Acta Horticulturae 629: XXVI.
- Jacobson, M. (1958) Insecticides from plants. A review of the literature, 1954-1971. Agriculture Handbook, U.S.D.A., Washington, D.C., pp. 1941-1952.
- Lichtenstein, E.P., Liang, T.T., Schulz, K.R., Schnoes, H.K. and Carter, G.T. (1974) Insecticidal and synergistic components isolated from dill plants. Journal of Agricultural and Food Chemistry, 22, 658-664.
- Mahidol, C., Kaweetripob, W., Prawat, H. and Ruchirawat, S. (2002) Mammea coumarins from the flowers of Mammea siamensis. Journal of Natural Products, 65, 757-760.
- Martin, G.J. (1995) Ethnobotany: a Methods Manual. Chapman & Hall, London. pp 268.
- Mittal, P.K., Adak, T. and Sharma, V.P. (1994) Comparative toxicity of certain mosquitocidal compounds to larvivorous fish, Poecilia reticulata. Indian Journal of Malariology, 31,
- Mohtar, M., Yarmo, M.A. and Kadri, A. (1999) The effects of Nerium indicum leaf extract on Aedes aegypti larvae. Journal of Tropical Forest Products, 5, 87-92.
- Monzon, R.B., Alvior, J.P., Luczon, L.L., Morales, A.S. and Mutuc, F.E. (1994) Larvicidal potential of five Philippine plants against Aedes aegypti (Linnaeus) and Culex

- quinquefasciatus (Say). Southeast Asian Journal of Tropical Medicine and Public Health, 25, 755-759.
- Palakul, K., Sucharit, S., Komalamisra, N. and Deesin, V. (1999) Larvicidal activity of Thai Ka-lum-pak sa-lad dai Euphobia antiquarum Linn. against Aedes, Culex, Anopheles and Mansonia larvae in laboratory. Research Abstract, Mahidol University, Bangkok. pp. 384.
- Rongsriyam, Y. and Baskoro, T. (1996) Medicinal plants for replacement of insecticides used in vector control. Research Abstract, Department of Medical Entomology, Mahidol University, Bangkok. pp. 683.
- Satoto, T.B.T. (1993) A laboratory study of the biological effects of some medicinal plants on *Culex tritaeniorhynchus* sp. MS thesis in Tropical Medicine, Faculty of Graduate Studies, Mahidol University, Bangkok. pp. 119.
- Schwartz, A.M., Paskewitz, S.M., Orth, A.P., Tesch, M.J., Toong, Y.C. and Goodman, W.G. (1998) The lethal effects of Cyperus iria on Aedes aegypti. Journal of American Mosquito Control Association, 14, 78-82.
- Shama, S. and Shama, K.V.P. (1995) Field studies on the mosquito repletlent action of Neem Oil. Southeast Asian Journal of Tropical Medicine and Public Health, 26, 180-182.
- Soralum, P., Choasakool, W. and Bhrathantoorak, S. (2001) Medicinal Plant Encyclopedia. V. I. Gardenherb of Sirerukkachart. Faculty of Pharmacy, Mahidol University, Bangkok. pp. 253.
- Su, T. and Mulla, M.S. (1998) Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). Journal of American

- Mosquito Control Association, 14, 204-209.
- Supavarn, P., Knapp, F.W. and Sigafus, R. (1974) Biologically active plant extracts for control of mosquito larvae. *Mosquito News*, 34, 398-402.
- Sukumar, K., Perich, M.J. and Boobar, L.R. (1991) Botanical derivative in mosquito control. A review. *Journal of American Mosquito Control Association*, 7, 210-216.
- Thangam, T.S. and Kathiresan, K. (1992) Smoke repellency and killing effect of mangrove plants against the mosquito Aedes aegypti (Linnaeus). Tropical Biomedicine, 10, 125-128.
- World Health Organization (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insect development inhibitor. WHO/Vector Biology and Control, 812—881.
- Yasui, K. (1993) Straegies of dengue vaccine development by WHO. Using new biotechnology. *Journal of Tropical Medi*cine and Hygiene, 35, 233-241.
- Yodbutra, S., Ketavan, C., Upatham, E.S. and Areekul, S. (1985) Effects of a juvenile hormone analogue on the morphology and biology of Aedes scutellaris malayensis Colless (Diptera: Culicidae). Southeast Asian Journal of Tropical Medicine and Public Health, 16, 41-48.
- Zebitz, C.P.W. (1984) Effects of some crude and azadirachtinenriched neem (Azadirachta indica) seed kernel extracts on larvae of Aedes aegypti. Australian Journal of Entomology, 39, 208-211.

Accepted February 21, 2006