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Abstract

Project Code : PDF/62/2540
Project Title : The Semiclassical Behaviour of the Particle in the (Q-:v(y)2 Potential
Investigator : Asst.Prof.Dr. Krisanadej Jaroensutasinee

Institute of Science, Walailak University
Tasala, NakhonSiThammarat

Email address: jkrisana@wu.ac.th
Project Period 3 years
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FawnIWunuUInw  Prof.Dr. George Rowlands

Department of Physics, Warwick University, Coventry CV4 7AL
United Kingdom

Objectives of this project
To calculate macroscopic structure of the phase space of the dynamic of a single particle in
(Q-xy)2 potential. We consider the phase space which composes of orbits of short period.

This knowledge is important when computing semiclassical energy eigenvalues which is the
object of further study.

Keywords: Chaos, Periodic Orbit Calculation, Periodic Orbit Family
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A New Method for Cycle Calculation

Dr Krisanadej Jaroensutasinee
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Abstract

Cycles or periodic solutions play a very important role in the mod-
elling of nature using differential or difference equations. These special
orbits have the nature to exist without any other indicators, hence making
them extremely hard to search for, especially the unstable ones. We have

" developed a novel method to compute both stable and unstable cycles nu--
merically. This new method is equiped with a special searching technique
that is similar to simulated annealing. This special technique allows us
to probe as many cycles with a given period as the computational limits
impose. For small cycles, we expect to discover all of them. The method

has been applied to the well-known logistic map and the results are shown
here.

1 Periodic Orbits and Their Importance

Knowledge of “Periodic orbits” (POs) in a chaotic system is the most important
key to understanding chaos in such a system. Many researchers (e.g. Wintgen D
1988 or Dahlqvist and Russberg 1991) are riow using periodic orbits to compute
semiclassical eigenvalues of classically chaotic systems. Other researchers use
POs to determine the fractal dimension of a complicated strange attractor (e.g.
Parker and Chua 1989). The diffusion rate in the standard map is also found to
connect with POs (Eckhardt 1993).

It is known that although a system under consideration is chaotic, its POs are
regular and attainable. POs can be classified into 2 groups, stable and unstable.
It is easier to calculate stable POs numerically, and sometimes analytically, than
to calculate unstable POs. Nevertheless, stable POs are much less used in chaotic’
systems since one definition of chaos is that almost no stable POs exist.

To calculate unstable POs is not a simple task. A number of methods for
computing these UPQOs have been invented but which one is the generally best
method is still arguable. Moreover, the methods are normally invented to study
some specific systems. We present here a novel method that can be applied
generally to maps and the Poincaré sumiface of section. The method can be used
to compute both stable and unstable POs. We have applied it to study the

logistic map which is a 1-d map. The study gives us many interesting results
which are to be presented later on in this paper.
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Figure 1: (a) Bifurcation Diagram of Logistic Map. (b} An example of Dp.y plot for
the Logistic map.

2 The new method

We define a function Dp.s, which we call the DirectD function, as

Dpes(X, z,n) = Fy(z) — z. (1)

where n is the period of POs, F represents the mapping function, A is the control
parameter, z is the state variable, and F(z) = Fi(... n times ...(x)).

Obviously, POs result from the condition that simply requires the function
to be zero. This makes it easy to visualise the problem which is one of the two
convenient points of this DirectD approach. The other point is that stable or
unstable POs appear to be the same ia this aspect. So, the task is now just to
search for zeros of the DirectD function.

One can assume the task is simple because it is possible to employ the zeros
finding algorithm such as the Gauss-Newton method that converges to the solu-
tion very quickly but needs a very good initial guess. However, technical problems
can prevent one from obtaining a meaningful result easily. Technical problems
are, for example, traps caused by the local minima and numencal overflow due
to high values of gradient around UPOs.

There are a number of approaches that can be applied to increase the degree
of convergence of the Gauss-Newton method such as the damped-Newton method
(Dennis and Schnabel 1983) and some authors use the recurrence theorem to find
good initial guesses for the routine. In general it is found that computing costs
can be very high, not only due to these technical problems, but also as a resuit
of a dense set of POs in one particular region of interest.

We resort to the method of simulated annealing to solve the local minimum
problem. By slowly cooling the system down, we assume that the local minima
can be avoided. Then, we take the points as initial guesses for further refinement
in which we employ the Gauss-Newton algorithm. Roughly speaking, we choose
points at random over the domain of interest, calculate the total energy.which is
defined by the sum of the square of Dp.; and let them cool down by rearranging
the configuration so that the total energy reduces slowly. Then we take ‘all the
points as initial guesses for Gauss-Newton methods in which the refinements
take place. The combination of these two numerical methods and the DirectD
definition to calculate POs is the new method we propose here. We call it the
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Figure 2: (a) The hidden bifurcation of period-3 cycles. (b} Full Bifurcation Diagram
for Period 8 4 2 1.

DirectD method.

3 Application to Logistic Map

The logistic map is a l-dimensional map that has a rich structure due to the
presence of nonlinearity. It also has a bifurcation route (Fig.1a) to chaos. The«
most important thing is that it is very simple, and is hence widely used to demon-
strate period doubling, n-period oscillation, universality, and chaos. One of the
mapping equations has the form:

Tpt1 = AZn(l — z,) (2)

where z 1s the state variable ranging from 0 to 1, A is the control parameter
taking the domain from 1 to 4, and n is the index of iteration.
For the logistic map, we have

Dpes(hz,n) = F{{(z) — z, (3)

where Fy(r) = Az(1l — z) and n is the period of POs of interest. Fig. 1b gives an
idea of what the DirectD function looks like for A = 3.2 and n = 8. Note that
when we define n = 8, the function effectively includes the periods 4, 2, and 1
as well. We have used the method to calculate period 3 and period 1 POs for As
around the well-known Period-3 structure, and found that this cvele bifurcated
further into stable period-3 and unstable period-3 orbits. We don’t usually see
this additional branch in the bifurcation diagram (Fig. 1a). The reason is that
one of the branches that corresponds to the just-bifurcated cycle is unstable, and
therefore missing from the bifurcation diagram. The result is shown graphically

in Fig. 2a. The full bifurcation diagram (including unstable cycles - Fig. 2b) can
also be obtained by the method.

4 Conclusions

For the logistic map, we perform a simulation by choosing a uniform distribution
of 50000 points over the domain 0 to 1 and then iterating the map on each point

jogd g
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Figure 3: (a) Distribution function obtained from simulation of 50000 points at A =
3.25 where the cycle-2 dominates. {(b) at A = 3.6 where chaos is present. (¢) at A = 4.0
where chaos completely dominates and no stable orbits are present.

1000 times. A histogram with 1000 bins of these points is then obtained. At
A = 2.5 it is found that the histogram is dominated by the only stable cycle.
This domination of POs in the histogram can be seen more clearly in Fig. 3a at
A = 3.25 in which the period-two cycles and the single unstable period-one cycle
have a great influence. The situation when we have the mixing of chaos and
stable cycles is shown in Fig. 3b. Notice the shallow curve in the middle of two
sharp peaks. Fig. 3c gives the picture when all stable cycles disappear.
Analytical equations for the determination of properties of POs after knowing
their positions will be the subject of future investigation. Amnalytical formulas
that link the first derivative to the Lyapunov number are also waiting to be
found. One can also speed up the method by employing a different approach in
the simulated annealing part. Generalisation of this method to apply to two-
dimensional problems such as the standard map and the 2D Poincarg surface of

section for the flow of 2D Hamiltonian system is another very interesting avenue
for further work.
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Abstract

Generating the Bifurcation diagrams of the Logistic map is an easy computational task. The
mapping equation is very simple and the algorithm requires only the power of a desktop
computer. Nevertheless, the diagram is found to be very complicated. It is fractal and contains
a number of interesting structures apart from the well-known bifurcation route to chaos. One
example of such structures is the birth of the period 3 cycle which appears immediately afler
chaos. For this reason this structure can be clearly noticed in the diagram. There are other
structures of other periods tnn. But these structures are not obvious - they are hidden in the
diagram. By employing the DirectD method, these structures can be calculated easily and so
they are revealed. The prime cycles are chosen for detailed calculation. The structures found
by the method are very interesting. For no obvious reason, they appear in the diagram,
bifurcate, and disappear in the bifurcation diagram. The strength of the method is that -pecific
peniods can be chosen and it can also detect the unstable cycles. These unstable cycles are
needed to connect up the structures.

1. Introduction

I.1 The Logistic Map

[t 1s now widely known that simple mathematical models can possess very complicated

behavior. May [8] was one of the pioneers to point this out to the scientific society. The
difference equation of the form:

x ., = Ax (1 —-x)) (1)

was the first to be used to illustrate this point where x is the state variable having the domain
from 0 to I, A is the control parameter taking the domain from 1 to 4, and » is the index of
iteration. This equation is known as “the Logistic equation”. This equation can be used to
model various situations ranging ffom physics to biology. It also illustrates many of the
phenomena found in realistic models of physics [12].

Mathematically speaking, the Logistic map is a 1-dimensional map that has the nich
feature of nonlinearity. It has a bifurcation route to chaos. The most important thing is because
of its simplicity, it is widely used to demonstrate period doubling, n-period oscillation,

universality, and chaos. It contains many bifurcation sequences and has been explored in
detail since its discovery [5,8]
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1.2 Importance of cycles

It is known that although a system under consideration is chaotic. its POs are regular and
attainable. Therefore, knowledge of “Periodic orbits” (POs) in a chaotic system is the most
important key to understanding chaos in such a system. POs can be classified into 2 groups,
stable and unstable. It is easier to calculate stable POs numerically, and sometimes
analytically, than to calculate unstable POs. However, stable POs are much less used in
chaotic systems since one definition of chaos is that no stable POs exist. . .

Many researchers (e.g. [1,13]) are now using periodic orbits to compute semiclassical
eigenvalues of classically chaotic systems. Other researchers use POs to determine the fractal
dimension of a complicated strange attractor [10]. Diffusion rate in the standard map 1s also
found to connect with POs [4]. Cycies are the key structure of bifurcation diagram (fig.! and
. fig.4). For the Logistic map, special consideration was given to cycles. Very fine details of
cycles of many period were given in May [8].

1.3 Prime cycles

Prime numbers have always been special. It is widely noted that the period 3 emerges out .Of
chaos in the bifurcation diagram. Other prime period cycles such as period 5 are noted to exist
but buried in the chaotic bands of the diagram, therefore it is hard to observe those cycles. In
our work, we have revealed these structures and we discovered their convergence, by
numerical means, to the value of the control parameter 3.6786. In the following, the first
hundred prime numbers are presented.

23

29

2 3 5 7 11 13 17 19

31 37 41 43 47 53 59 &1 &7 71
73 79 83 a9 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
213 219 241 251 257 263 269 271 277 281
283 293 307 311 313 317 3131 337 347 149
353 359 167 373 379 3E3 389 397 401 409
419 421 431 4313 419 443 449 457 461 463
467 179 487 491 499 503 509 521 523 S41

Table 1 The first hundred prime numbers.

2. Cycle calculation

2.1 Survey of the methods

Up to now, there are a number of numerical tecﬁm'ques for calculating cycles or periodic
solutions for a system of ordinary differential equations and also for 2 map. Each technique
has its own advantages. The simplest method is to let the system execute until it reaches the
cycle. This method is called the “Brute-force method”[10] and just like mamy other
techniques, it has some advantages despite its simplicity. This method is easy to code in a
programming language and it is relatively general because it can locate many different types
of cycles (equilibrium point, cycles of period one or more). For the Logistic Map, cycles are
he results of the iteration of the map after having the transient removed by ignoring the first

The 224 ANSCSE -
175




few hundred iterations. Nevertheless, the method has many problems. It obviously cannot be ..
used for conservative Hamiltonian systems since for such systems the state of the systems Wlll 3
never reach an asymptotic state and can go quasiperiodic. Next, the method is slow for hghtfy =
dampcd systems. Furthermore, in many cases it is not possible to say that the system has 3
reached an asymptotic state. Most importantly, the method can only locate stable cyles. '“

More sophisticated methods tumn the problem of locating their cycles into a boundary &4
value problem (BVP). This method is natural and is extensively utilised in bifurcation studxicms‘-
of dynamical systems (see for example [2,6]). The condition of a cycle for the BVP is: TR

x(7) = x(0) (2)

There are two standard methods for solving two point boundary value problems[12]: thc )
shootmg method and the relaxation method. They both, however, are unsuitable for chaotlc
systems in general since the orbits are bound to be complicated, highly oscillating, which E
requires more time and more grid points. 13

prend

2.2 DirectD method and Prime cycles |

Calculation of unstable POs is more difficult. A method called DirectD method was
developed [7]. This method can be applied generally to maps and Poincare surfaces of section.
[n the present work, this method was used to compute both stable and unstable POs of thc :
Logistic map. For the Logistic map, a function D, , which we call the DirectD function, ca.q

e defined by

SRS S PP - P

D, (A x,n)=F'(x)—x ’- 3)

where n is the period of POs, F represents the mapping function, A is the control parameter
aind x is the state variable, and F](x)= F,(...ntimes...(x}). For the Logistic map
F, (x) = Ax(1— x) . POs result from the condition that simply requires the function to be zero.
Fig.2 gives an idea of what the DirectD function looks like for A = 3.2 and » = 8.

1.3 What are enclosed in Period »n DirectD calculation?

(n order to calculate unstable cycles, there is a price to pay. The DirectD function has one
major drawback. It cannot separate period 4 from period 8, nor cannot separate period 5 from
10. To determine the period of the output from the method is not difficult. Making the
drawback into a slight inconvenience. We simply need to generate the possible period
sequence and test the output one by one from the lowest to the highest period, ». It is also
possible to test their stability property at the same time.

The other soiution is simpie. We just concentraie our caicuiation on prime cycles,
since one drawback of this method is that it finds all the lower period cycles that can are

fractions of the given period. By focusing on primes, we then rule out this problem for the
calculation,
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3. Cycles

3.1 Existence of period 3

It can be seen from the bifurcation diagram (Fig.l) that for A in the range 3.8284 to 3.8495
there is a stable period 3 solution. What is not seen is the other period 3 solution that exists
but it is unstable. Even though they both seem to originate from the same origin, their
behavior is completely different. The stable one undergoes period doubling, just like another
Feigenbaum sequence, while the unstable just continues to exist for the rest of A. This resuit is
obtained analytically and shown in Drazin [3], but the more complete result is shown here in
fig.3. The visibility of this period 3 cycle leads to the discovery of other prime and interger
period cycles that are buried in the bifurcation diagram.

3.2 Low period prime cycles and the hidden skeleton

Fig.4 is the structure of POs period 8 4 2 1 that is hidden in the bifurcation diagram. The birth
of some structures can be clearly noticed and these are regular structures in chaotic region.
May [8] mentioned that the birth is produced by the tangent bifurcation process while the birth
of 2" cycles in the main bifurcation sequence before the critical value of the controlling
parameter (A.) is caused by the pitchfork bifurcation process.

The appearence of period 3 right after the Chaos at A around 3.8284 is very appealing.
It makes one wonder if this situation happens for the other prime cycles, or does it just
happens for this special cycle. By using our method we can reveal this prime structures at
ease.

The results for other prime cycles show that they exist (but undergo unstable) to A
equals to 4. Thus, this can be treated as numerically proof of the complete chaotic state at this
value of A where all cycles exist but unstable:

The more intriguing result is when we overlap the prime cycles on the same plot
stamng from low period that is period 3, 5, 7 and so on. We found geometrically that the
sequence of A when the first time these cycles exist should converge to a special value of A.
By calculating these numerical values of A for each cycles from the period from 3 upward, we
found that these As converge to 3.6786. Surprisingly this value of A is reported in May (8]. It
is the first A where the first odd period cycle appears. Together with our result, we conclude

that the first odd cycle must have a very high period (infinity?). Numerical values of these As
are shown in Table 2 and plotted in Fig.6.

period _the first appearing A
3 3.828258
5 3.738068
7 3.701481
11 3.681572
13 3.679700
17 3.678679

Table 2 First appearing values of A for the prime cycles.
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4. Conclusion

To sum up, we have explored prime cycles structures in the bifurcation diagram of the
Logistic map. Some of the results accidentally confirm the first value of A where the first odd
cycle exist which was reported by May [8]. Further work includes (1) calculation of
Feigenbaum numbers using the DirectD method and (2) exploration of the fine siructure in the
bifurcation diagram more in detail. Then, the result can be compared with the result reported
in Metropolis, Stein and Stein [9].
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1. Bifurcation diagram of the Logistic map.
2. An example of Dpes plot for the Logistic map for period 8 and at A = 3.2.
3. The hidden bifurcation of period-3 cycles.
4. Structure of Period 84 2 1.
5. Structure of Period 1 3 5 7. (a) Period 3 (b) Period 5 and (c) Period 7.
6. Convergence of the sequence of the first apperence A of some prime cycles.
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Homoclinic Tangle Visualisation

Krisanadej Jaroensutasinee,
School of Science. Walailak University
222 Tasala NakronSiThammarat 80160 Thailand
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strﬂct
is proved mathematicallv that Homochinic Tangle (HT) 1s the source of chaos in nonlinear

_;tabie m:mumd and unstaple manifold causes this. It 1s possibie 10 make HT visibie in some
~ctems such as Henon Map by continuously iterating the map in which we choose manv
tial conditions that iie on the desired stable manifold. This method works well except it

pljed to the Standard Map (SM) and with slight improvement, this method can make HT
ery clearly visible. More over. global behaviour of the map at any value of K can be seen
th this same method. Pernodic orbits structure 1s also visiole. This 1s possible because both

[

global" behaviour of chaotic Hamiltoni:m svstems is certainlv noL an easy
" ‘Mau. the positions of noqlmeu: resonance in the phase sya . By using the Dt ru_LD Au\.uxOu. H
phase space Lqual t0 2 (these include the cases of 2d Poincare Su_rface of Section).

'¢2. Improving DirectD for 2 dimensional Map

The method of DirectD) is applicable effectivelv for the calculation of periodic orbits (POs) in
Eld dimensional systems [1.2]. Even though there is some references to methods similar to this
L method (see for example in [3]) but here I have improved the calculation in sense that it can
= help us 1o visualise the systems in a glebal view. The means we do not need to locate just one
!rparticular orbit but we calculate this tfunction for the whole domain. In this work, I calculate

3 this function for Standard Map (SM) in the all-possible domain of interest at any value of X

and then study the results. And unexpectly. this function gives the global picture of the

~dynamical behaviour of the svstemn automatically.

"?'

%2.1 DirectD Method of the Standard Map

“ The method begins with the definition of D, which [ called the DirectD function as the
followine - -

D K.g.p.m=0uiq.p)-q) ~(Plig.pri-pf




where 71 is the period of the orbit of interesi. QF. is the variabie ¢ afisr 2 iteration by the

mapping function of the Standard Map. Similarly. P¢ is the variable p afier the sap he

number of iteration with the same mapping functions. K is the control parameter of the suie

and by definition POs can be found by asserting the condition that requires this function §M

vanish. For SM the mapping functions are: to
p'=p+ Ksin(g)

" g'=(g+ p')mod2x

3. Results
Results are presenting in the following figures:

e ]

Fig. 1 The Standard Map.
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7.370 0.565
Fig 9. Homoclinic Tangle that appears in [4]

* 4, Conclusions

~ 1did the calculation for vanous values of K and found that periodic points can be seen clearly
2" in the plots. As we change K, we found that when A’ is increased to | where chaotic behaviour

2 e

oy

(B7ae can be found in some regions. The plots show the intricate structures of the cutting between
_‘-:;{F-.‘-‘.;'- stable manifolds and unstable ones very distinctively. These structures are known as
289 Homoclinic Tangle (HT) as shown in figure 3. In this figure one could see }'Ts in many other
=22 regions in the plot but these HTs appear in smaller (fractal) sizes such as in the region when
=% g has the value between 1 10 2 and p is between 2 to 3. Another region is when g is between

U@E -2to-1and p is -3 to —2. [4] has a plot showing orbits that lie on stable manifold to give the
& clue how HT should be appeared. However, the DirectD method visualises HT a lot more
B clearly.

= And for stable cycles one could see a hollow smooth region in which the centre is the
EEC exact location of the POs. Cutting the hole quasi-periodic orbits can be recovered. In
fer conclusion, this method visually gives global dvynamical behaviour of the system.
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Charged-particle orbits near a
magnetic null point

JAROENSUTARINEE* and G ROWLANDS

Pepactiment of Physics, Univepaty of Warwick Coventry €0V 7ALLL UK
(Hecerved 10 Januacy 20000

Abstract. An approximate analytical expression is obtuined for the orbits of a
h'ar;.,ed particle moving u a cusp magnetie held, The particle orbits pass close
o or through a reaion of zero magnetic ficld before being reflected 10 remons
'hcre the magnetic field 15 strong. Lumpnmm with nunterically evalunted
‘Orbltb shows that the analvtical formula s surprisingly good and captures all
; _'thc‘ man teatures of the partice motion. A map desceribing the long fime

hehaviour of =uch orbits 1s obtaimed,

motion ol clirsed particles i spatially varvimg magnetic felds has
[ . . T ’ ; - :
C(‘(‘I\'t‘d a ffn-'m arnounl of u.Llc-ann Precnnse ut 1t~ r‘f‘]t‘\'ilnt't‘ Lo pl-:qmn tu=sion

&mphﬁ 117 :Lb\\lll[][ll-LUH. W l‘.lth 5 gmui when Lht, ratio of thc Larmor I'-U]IUH Lo
:)\‘: seale ten; 'th deserthing the spatial varatinon of the m,;_um_-n_(: Iwh]..c, 1= small,
ENE s that the so-cialied achalmtu invariant s 15 constant. This l.nltnl“dl:l.tvl}' lesuls
5- .0 ‘an explanation ot charged-particle containment in the Van Allen radiation
; f]L"{ and in muagnetic mirror fusion devices. For Larger values of ¢, it has been
‘und that the acdiabatic invariant undergoes jumps Ay where g changes rapidly

in JusL a few Larmor periods in wpuual rcglon:: of syrmetry, but otherwise /; 18

He () before i jump 10 the valucs (,u“l 1 Pa. i) after a jump. Hcro 0 19 an u.nble
tpecifying the Larmor phase of the particle. It is found that, to a reasonable
grapproximation (terms of order exp(—2/c) being neglected), that one can write

3 fones = fhn+Bp 080,

twherse, of course, Ag is a function of x,. In many applications, it ix sufficient to
. estTict attention to changes in 4 that are small, so that one may lincarize the
va.luv of x#, awbout a chosen mean. Then the ahove cquation reduces to

Sty = Spig + R conél {1

Al

Un+l = Un+6#n11' (2)
* Present address: Walaik University, Thailand.
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In the above, A is a constant whose valuc is determined by the field
configuration and energy of the particle.
The above map (du, 0) is the Chirtkov map, and 15 used to study the long-time
behaviour of newrly adiabatic particles in spatially vacying magnetic fields. For 2
sufficiently small values of A, it is [ound that the particle maotion is such that
i changes periodically about a constant value (superadiabatic). For lacger .
values. the motion can become chaotic; and for suthciently large values, the
motion of the charged particle can be understood in terms of a diffusion in 54
momentium  space  with diffusion coefhcient  proportional to exp(—1/e).
Nimnerous examnples of this tvoe of behaviour have now been studied 1o detail, f4
and arc described in the book by Lichtenberg and Lieberman (1983). 2

Tt must be stressed that the direct numerical solution of the particle-orbit -
equations becomes prohibitively expensive in mg ichine time because one has to
follow the particle around its Larmaor orbit, wherecas it 153 the motion of the
guiding centre that is reailv needed. Adiabatic and weakly non-adisbatic 3
theory overcome this problem by essentially introducing a suitahle averaging ?
procedure to remove the fast motion sssoctated with motion about the Larmor
orbit.

However, the whole theory is totally inadequate 1f, during its motion, a
particle can move in a region where the field strength is small or even zero. An
example of such a field is the two-dimensional cusp deseribed by the vector
potential A = ryk, where k 1z a unit vector along the z axis. For such a {4,
B = (x, —4,0), and the motion of a charged particle in this ficld is governed by
the reduced Hamiltomun (Jarovnsutasinee and Rowlnnds, 199:4)

[T = 3£+ +(Q—xy)?}, (3)

where ¢ is 4 constant proportional to the z component of the momentum and
#=dr/di. An immediate consequence of the constanc v of 11 (whlch in the _:- ;
following we normalize to }} is that the particle motion is confined to regions i
between the curves y = (@ +1)/x. Thus, for @ > 1, the particle is excluded from - -
- the origin, the position of the zero of the ma.gnetl( field. Tor @ > 1, adiabatic
theory apphes and the value of the ]ump Ap was gwen 80mo tlme ago by
" Howard (1971)7 A typ:cal otbit is khown in Fig.. 1(d). - T
“For @ < 1, the origin is no longer excluded, and® pa.rtlc]e orbits may pass
through or close to.the. zcro-magnetic-feld region. Some typical orbits are
“ghown in Fig. 17 A suhset of these orbits (Figs 1a, b}’ are such that they remain - -8
“¢losc to the x axis, and it is for this type of orbit that we now develop a novel .
a.na.lytlcal approach. The cuse Q = () is developcdm detail, n.lt.hough ‘the method -,
mapphcabie:‘tOdllQ<L o 3 e e L
:Ifhe exa,ct equatnons of motnon are, mmply R

- - dt;c=-—-17y:,.- - ﬁ=—x"y,

d“l .

“hxlst the adiabatic invariant g (the ratio of the perpendicular kinetic energy
to the magnitude of the’ magnetic field) is given by

. . |
Jz ?W[(ﬁ+ﬂy)’+rzy’(rz+y’)]- Co ()




6 :
@ ®)

Flgure 1. Typu,a.l orbits in the lmca.r cusp ficld: {a) @ = 0 (b) 0.4; (c} 04; (d) Dotted lines

Q:t /=
¢ Tur the tvpe of orbit undcr dmcusmon we write y = g(x) and take g to be a

T nonotone function of x. Thpp using the GQUdtIOIlb of mot,lon we find tha,t /]
sa.tlsﬁes thc fo]lov_',mg dxﬂ'erentm] equatlon. -

e -here. nndB are constant.s a.nd J -1’, ]
i) que.ver, such. &solutlon forallzis Lota.lly ma.ppropn&te., smce it ex;:_ludes the o

% bility 6f the: particle bemg reflected:in: regioris.of high: ma;:gnetl field (large " .
.2);“which is. clesrly the case as shown it Figs 1. On the-othei hand; ity in'such -

“‘T‘m.eg'mns that adiabatic: t,heory ia valid? Thusfin, the: following:"we obtain, an."

Fe ppmxmate snalytical expression forthe WhOIﬁ—OI’blt of aparticle by combmmg

’“t’:heabove form,. valid-for small , Wlth a.n expressnon va.hd foc_large a:,

1

-l
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¢’(z). This is then substituted into the expression for g, as given by (4), to givg-
the exact relution

(I—x¢*) {gt+zxg’ )"

(p—zg®) 2 = [+y'2 (7N :'_ 3

The turning point of a trajectory (x = Z) 13 where ¢ =0 and ¢’ = . The
above oqua.tmn g]vcs HE = 1 g0 the tummg point 18 uniquely qpcmﬁed by the

rearranged to glvc

Ln

5 1) —
g (_r,,)‘ T

On the other hand, if x,, is the position of mth zero of ¢’(x), then, neglecting P 5
and g{x,) compared with z,,, (7) reduces Lo

'
Il’?l )

Flem) =

This is a good approximation hocauw, as scen from Fig. 1, the pd.l"thJCS move .

deep into the regions where the magnetic ficld is large v.here y is small. ‘

We now use thase values of g and ¢, obtained at spectfic points, to fit y(x) for &

all large valucs of z to o foun suggested by the numerical results shown in Fig.

- 1, numc]}

ylx) = D(:r.)c:os[ ( Alzydx'+ ¢], (8)
. Jo -

where I)(I) and A are to be taken as slowly varying functions of x. To obtain

_expressions for D(:c) und A(x), we cquate the value ofy (z) calculated at values

‘of 2’ where y(z) =0 na.mcly /\{.:)D(x) w1th the va,l-xe obta.med above at the'-
"dlscrete vn.luca x, .‘Thus :

'l"“r‘\ - ,' o L T S o ":r—'

= = A

'a” s

- Sunxlnrly, at the'zcroa of : y (x) We obt.a.m the'relatxou D(a:)

Lk o TLee

&thls caso, we - have neglectcd t;erms of”ord’erl/:o’” ’[‘hua- R

Ly,

' 95“ \To obt.a.m.‘a. ;Iut.mn foiua.llﬂr wé’éomb:}m the- fea.tures of the- so]utxon ,for -
'-Emall :c,fgs gwen* By (6),w1th tha.f: for large- zias g:ven by LS) and\progose a

i »."Fm- ama]l’x, Whererh(::) —u}x’ this rcducea to (4-5 Whllbt companson of this fornr )
ca :m the a.symptot_ac regmn whcm z and h(x) are mucb larger than umty, w:th (8) \"‘

.;\ a Mo
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Error

-0.01

-0.02
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- _ . B/A—i—u S e : LT o
tang = TR ‘e )

‘n_f}..‘I‘hus thc analvtjcul exprmsmon fot: t.he orblb as gn’en b)’(Q)
: eesl\»\ath u.duhahc tl:eory for large z and.the exact, aolutmn in the reglon of
mall 'z and ’sma.ll "~y The - quant:tlcs ‘A and B’nn:- obtained from finitial -4
gonditions® as expreéa”ed for‘éxnmple by the va.lue& of 4 andy(t) at z/=: 'whllsb“ e '

'lue:fur/z (or’®) is obt_amed in-terms of 4. and B using (11) The form, for-

equations of IIlOtJOIl fdl: z a.nd y h.n,vc been_mtegra.ted numer:cally,*usmg"—::ﬁ '

ymblwt ¢ mtcgrntmg routme (walandn ‘1991 ) st,artuig at i =0 wﬂ:l'h:r
j 'x(O) = p a.nd y(O)* = l‘-—}u’ Such an. orb:t corre.sponda tcr tbe ca.se

v 31;_ .

ntegmtor conserved energy to one’ part in 10" Amorblt 80" obtamed s
wu in Fig. 2, wherc lt is- also compu.red w:th an orblt. obtained from the :
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analytical expression given by (9). The value of p is chosen to give a value of
¥ = 10, and it is this value that is used in (10) to uniquely determine A(z). The
agrecment is surprisingly good over the whole range of possible values of 2.
Equation (9) specifies an orbit that starts from x = 0 in terms of the twy

constants A and 5. Eventually, the particle is reflected at 2 = #, and then
continues until it returns to the = 0 plane, but in general with different valuey
of ¥(0) and g(0). Importantly, the sume equation (7) describes this return orbit.
but now specified by different values of 4 and B, which we denote by 4 and 8.
These new values can be related to 4 and £2 simply by imposing continuity on
the particle orbit. Thus we demand that hoth orbits give rise to the same value

" tor y when x = T and u valuc for y(¢) cqual in magnitude, but opposite in sign,
corrcspondmrr to a reflection at,x = ¥. These conditions lead to a phase change
-in ¢ in the expression for y as.given by (8) such that the new value 95." fie
27 —2h(2) — . Since the meng?omt of both orbits is the same, both orbits =~ 3 k
‘have the same value of g, The adiabatic invariant x# does not change at the :
reflection point — only the phuase does. Using (11) and (12), it is now possible to
relate (4, I3) and (4, B), and we find

£~=.4’+R"+x/§Ab'=A‘2+B~3+\/§xf}§’ (13)
X . .
and _
w(—,' ) (1 by = —‘22(1—1)) o (14)
A4 7 .

where b = tan{§x*). ) . : - o
The orbit illustrated in IMig. 2(a) has been followed numerically until it
returned to the z = 0 plane. With initial conditions corresponding to A4 = 0.2802
and B =0, the numerically obtuincd solution gave values of A = 0.3848
“and B =0.1670 as Jthes partlcle passed through . the: z = 0 plane after one -~
_ rcfection at ils- nnrmr point z = F and of the order ‘of 20 Larmor orbits. I‘he :
- corresponding values. ‘obtained using (9} are 0. 3697 and 0.1604 respeetwc!v"
" This excellent sgreement has been obtained- w;tbout mtroducmg any scalmg T
'pa.mmctcrs but’ “merely- dema.ndmg that both orbits have thé same injtial .
*. conditions;This ¢ same agreement; bas heen foundfor’ a rangé of d.lffOl‘GDt orbxts :
. ‘éhowmg that (9). mv"‘s—m’ﬁna‘lytmal expressmn Wlnch captures a]l the mmn"'
¥ features Ofithe true orbiti & U RN SRR T
-The,; ahtlcle inow; labelled;

iy i
. FNOW elle ;y (A B)k,contml;:as t;oA s . ,
N negu.twer fra]f x: spacetbutr “this is exacﬂy eqmvaljent:_ﬁof (intcnng tha Bomtn e
~ half = spacerw:tha. tumple._'himge in.the d.u:ectmn ofithe x componcnt? 'of the:
“"veloeity.. The particle maynow be com;dered as movmg" 1o’ the rightin poq:tn'e
space, but-labelled by (=d, B).soin 205 e St .
S UThus'we éan ‘specify. thenigtion of i pa):tlcre in¢ udmg;ma.ny,m-ossmgs of the
“. & = 0:plane by.a map re]a.tmg 4,Bto(—A, B) Thm map-is essentm]ly given by
_".(13) and’ (14);7However; it can. be simplified by considering: pa.rmclcs moving .
: through the z. = plane i the poq:mve dlrect.lon only Thus Lf (A _ ) Iabe]s the
‘nth such: crossu g;'we-find” :

h ’; '_-_5""'-‘11“1 ——\/—A coshr +Bn(smk -—-(.oshu), , (10)
L B“H—A (cosk +smh )—«/”B cosh,, . . (16)
where &, =3%2 a :and depends on (Au,_. )a.sexpressed hy (13). One can use t,hlas.e

‘-ﬂ

T’
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However, it is limited to orbits that always remain in the ‘z’ arms (or, by
Waymmelry, the ‘y ' arms) of the tield. Such orbits arc shown in Figs 1(a, b).

: This map has been studied numerically, and shows chaotic behaviour for
:most initial conditions. 1t is found that the value of & gradually inercases owing
“to chaotic diffusion, which means that ¥ decreascs and the particle is reflected
: -' at & smaller value of . This ean lead to the particte moving into an arm of the
,,I.ISP at right-angles to its present one. An example of such an orbit is shown in
Rig. 1(c). However, once it is in the ‘y’ arm, it moves initially such that z is
'all and then mto un &dlabatu, region with ].u'gc. Thus the a.na,lytlcal f‘nrm

'.1,-?" 7

~.:§;~ :::1 B+a AJ Slmple a.locbm then bhows th at 4 = 1/&{.4 andb’ = —B/o:, 4.

: C arm to a 'y’ arm lf‘ Lhe slopc of the orbit neur x = 0 is gnu.l,tcr l.han unity,
n,t is @, 2 > 1, one can construct a map that generalizes that given above to
low for transfer between arms. This takes the for e

A wumerica estlga.tloth&é b-cen.made uamg thm map. It-ls
-that part"cles are; cont_a.med ina fimte p(frhon ofthe relev ant. pbasc spme -
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,p_artlcle‘ Or])lfii -dueto; energy comervamon. The pha.se—apace plots 0[" typma.l .
/ ‘blts ‘thW" htﬁevstrﬂljcture,i B

A prohm ma.nyﬁnumcncu].-\mv

. n*:oprommube ‘but: a,n.ﬂytwal cxpn*%mon has been obtmned descnbmg orbnts
iof charged particles.moving imr the neighbourhood. of'a null point-in’ u..mu.gnetm.-

ﬁgld: Comparisori with-direct- numerical evaluation of particle orbits-show that -
his analytical ] form js surprisingly. accurate, Typical orbits have been followed -
,ven a time interval that. mc]udes many T..a.rmor osml]&twns wﬂ:h a resultmg

accnru.cy of a’ fuv peroent - o
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This analytical form has been used to obtain a map that specnﬁea an orblt,
the vicinity of the magnetic field null in terms of two quantities (An+1’Bn+1),
and relutes thcso to the prewous values (A,.,B ) when the par’clcle was in ths'
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Abstract
The simple form of (Q — xv)® potential in classical Hamiltonian framework can surprisingly

generate complicated particle behavior. In this work, various visualization techniques and
theoretical simplification are combined to understand the dynamic of particle behavior. 3D
graphic generation is employed to visualize particle trajectories and phase space. A cluster of
PCs, whose OSs are both Windows and Linux, are parallelly utilized to generate Poincare
surface of section and Fermi mapping which are in general required large computing tirne.

1 Introduction

Visualization is a very important tool when one comes across a classical system with high
degree of non-linearity. In this work the simple form of potential (Q — xy)* in a classical
Hamiltonian framework is sclected for study. Due to non-linearity in the form of this
potential, the motion of particle in this potential can surprisingly generate complicated particle
behavior. O appeared in the potential is a constant which origins from the constancy of the
momentum in z direction and x and y are the other coordinate variables in the rectangular
system. The Hamiltonian is

H=—(p>+q* +(0-v)), (1)

B | —

where p and ¢ are the corresponding momenta in x and y. The cquations of motion are:

_, yv(Q - xy)
dt dr
(2)
oy Y o-n)
d dt

In this work, various visualization techniques and theoretical simpiification are combined
to understand the dynamic of particle behavior. 3D graphic generation is employed to
visualize particle trajectories and phase space. Computation has been done in 2 developing
cluster environments, Java and Mathematica[1]).

2 Normal Orbits and Periodic Orbits
As mentioned. thts simple form ot potenual yields manv classes of particle orbits. First, by
analysis the stability of a special class of periodic orbits that 1s defined by the relation x =2y

in this potential, Jaroensutasinee and Rowlands [2] proved that there exist ranges of Q where
these orbits are stable. However. this work shows that these orbits are not so useful in the
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original problem in which the particle moves in a cusp magnetic field. 3D visualization shows
that the periodic orbits are simply not penodic in the x-y-z space, but iniricately weave into a
net on the x ==y plane. Nonetheless, mathematically these orbits are still useful in sense of

the 2D potential of this class.

3 Multiple Scale Perturbation and Global Behaviour

In this system the particle is allowed to move very far away trom the center. In other words,
the particle space and, hence, the phase space are unbounded. The particle can go to infinity in
both x and y direction. And in Plasma Physics research this is the situation where the loss
from the cusp magnetic contamment OCCurs.

There 1s another side effect. To generate Poincare surface of section of an unbounded
system can become a very long computing time job. So, in order to obtain a kind of global
map of particle behavior, one needs to resort to a mixture of analytical and numerncal
techniques.

By considering the fact that this system is denived from a charged particle motion in a
non-uniform magnetic field, the guiding center approach is highly appropriate. In this system
the guiding center system is simply the Hyperbolic coordinate system.

Once transformed into the Hyperbolic system, fast and slow time scales are made
explicit by introducing multiple scale perturbation. In this perturbation scheme the first
adiabatic invariance also comes out naturally and it is, of course, the magnetic moment.
Adiabatic motion is the case when the magnetic moment is kept constant.

3.1 Nonadiabatic Motion

All above perturbation seems to work well when describing the motion until the particle
crosses the so-called mid plane where the magnitude of magnetic field is smallest. The
particle executes a magnetic moment jump when crossing the plane. and so the adiabatic
approximation 1s no longer working. In other words, the particle executes a constant magnetic
moment until it arrives near the point where B is minimum. Tuen, it makes a jump to a new
value. This is known as “non-adiabatic” behavior. And for Q > | we can compute the jump
analytically. That 1s the jump of magnetic moment can be calculated analytically from its time
derivative with some helps from complex analysis[5]. It is found that the jump relates to the
Larmor phase at the minimum B crossing.

If the change of the Larmor along the guiding center is approximated, then we can
derive a form of mapping. This resulting map is very similar to the Fermi Map. In short, from
the prediction of multiple scale perturbation study, we obtain Fermi-like map, which accounts
both adiabatic and non-adiabatic behavior, hence global behavior of the particle. The mapping
equations are:

urwl = lun +g(1u'rt )COSBH,
) 0, +d(u, +1), (3)

n+t

where
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; (4)
d(/x) — 2QJ' (ml")-‘ dS

’ D=0+ s )

We tested the resonances with numerically integrated results from the full equations of
motion in the onginal domain (x,y.p.¢) and found very good agreements. It is worth noting
that this map can be linearized around a resonance to give the standard or Chirtkov (named
after the first discoverer) mapping.

4  Visualization _

4.1 Difficulties associate with this system

This system is unlike a chaotic system in which one can employ a personal PC to study it. It is
highly chaotic. In fact it was long-time believed that this system for Q = O is ergodic, where
there is no stable periodic solution at all, until a stable periodic orbit was found [4]. However,
the main problems, that make it hard to tackle this system, are not only the chaotic property
but also the unbounded property of the space. Both problems lead one to require extensive
computing in both accuracy and speed when dealing with this system.

4.2 Crunching the numbers

As mentioned above, a cluster of PCs, which are both Windows and Linux based, are utilized
parallelly to study this system. We create software in Java and Mathematica [1] environments.
The main tasks are to generate Poincare surface of section and Fermi mapping which are in
general required large computing time on a single computer. For Java, we create a smali
applet which, when run, will connects itself to a Java scrver program (which we call it
mCenter). Once connected, mCenter will parse on the task to the applet via TCP/IP network.
When the applet finishes the calculation, it will communicate the results back to mCenter. The
connection can be extended to multiple computers on network and each connection will run
on its own thread. Because the program is in the form of applet, we can use any available
computers on the network as our workforce, no matter what operating systermn the machine 1s
running. Java promises across platform compatibility, it is ready for numerical computing and
its speed on certain platforms can out-perform some optimized C/C++ programs[6].

The other way of exploiting our cluster is to use Mathematica via Parallel Computing
Toolkit. The front-end-and-kemel concept makes Mathematica immediately available on a
cluster. Multiple kernels can run separately on each machine and all of the kemnels connect to
a master kernel, which, of course, also connects to a front-end. Parallel and distributed
application can be developed right away with the unified concept of Mathematica
programming{7]. We use thus method to produce our Fermi-like map and some visualization
of particle orbits. Mathematica version 4 has provided a new function of real (ime

visualization of 3D graphic using OpenGL standard. This function is provided on both
Windows and Unix platforms(8]
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; Conclusions

“his work 1s a starting point of our research using a cluster of computer. Two methods have
een developed and employed in the study of a selected chaotic system. We found that most
sethods" are suitable to our research computing environment where linux is not only the
ption for our OS and each node is normally used in various forms of applications.
‘omputation time is reduced as long as communication between nodes is kept minimum
'hile computation load on each node is kept maximum. However, real time visualization, that
¢ used here, still works on a single computer. Future development is needed so that cluster
isualization of large numbers of component can be done in real time.
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Figure 1. 3D views of the potenual and their contours:
@<l foralyand1a2), @ = [ fortblrand ¢b2) and for ecl) and ic2) we set O>1
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1 nire 2. (a) 3D views of particle trajectory shows that channels, which the particle follows,
+ ot necessarily lie down on the same plane. Instead these channels are similar to a number
arcular rods sticking up and down honzontally to a pole. Figure (b) 1s the stable pertodic
¢ bt for O = 0. Figure (c) shows the ume series view for x, y, and z variable while (d) 1s the
" [ construct of (¢) which indicates true penodic nature of this orbit. Figure (e) is a typical
¢ rcare section for O = 0 where the horizontal axis is x and the vertical axis is p. The section

1s taken at v = 0.
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(©)
Figure 3. (a) 3D visualization in a rectangular coordinate of a particle trajectory
for @ = 0.6. The plane where the trajectory lies 1s defined by x =%y . Figure (b) shows a torus

construct of the same trajectory in phase space (x, y, p) and (c) shows a band construct of two
nearby trajectones where the twist along the band can be clearly seen.
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Abstract: How wlooal parucie tehavior n (Q ~ v} potenual depending on & 15 invesugated by the muluple scale

perurbaton analvsis e found that the zlobal thaouc behavior occupv larger region in the Fermi map when @ gets
smaller

Methodulogy:

The Harmultorian descnbing the mouon i {0~ xy)° potennal s H(x,_v.p.q)=l/2(p: +q° +(Q—xy)z) Once
Kiosna Uie Flasnidoman, the aquatons of meten 2an B¢ sbtained 2asdy and they are ordinary differenual equauons
However, the analvuc solution to thus set of diferenual equations 15 not as easy to obtan. Hence, wt 15 difficuit 1o
understand the global behavior Muluple Scale Perturbavon anatysis 1s applied to study thus global behavior. To apply' the
multiple scalz perturbation. the equations of motion are transformed (o the hyperbolic coordinate system. And the glebal

dvnamuc can be studied in terms of the first adiabatic invanant - 4 magnetic moment This dynamuc is.captured in thus
mapping equations u_., = &, vg{u }sin @, and &, =8, +d{u_.,) where # s the Larmor radius when the partcle

cresses the mirumum magneuc fietd plane while g and d wnvolve complicated 1ntegral related to motion along the
guiding center Thus guiding center Lies on the hyperbolic curve xy = ¢

Results. Discusvion and Conclusions:

Globa! behaviar of the parucle for (0 = 3.4 15 depicted in
Fig 1 and 2 Thus 1s tvpical behavior where the mouon for
hugh w15 regular (hines and islands) As « decreases to

nermalized value of K > 4 where ¢ 15 called 1, when

the normalized map becomes the standard map, the
behavior becomes completely chaotic and w can dnit

down 1o a very small value whuch normally can take

infinte bme to vace the trajectory In Fig 3w, moves

v
up to the value 0 5 when Q s approactung 1| Thus means
that the gicbal chaotic behavior occupy the larger area in
the map Ln other ward, parucle mouon 1s more regular
when 2 is large
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Fig 3 Resonance positions (Dots} vs } These dots are
special because parucle behaves chaoucally for the value |
) . u of less than tus The number labels beside the dots are
the resonance number associated with each of the dots
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Cluster Computing with Mathematica
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i grallel computing performance of Mathematica for a
1:mple problem is tested on a cluster of 6 866 MH=z
Vientium Il XFON workstations. Overhead time is
omputed and compared. The computing tasks are to
nmerically generate Standard Map and represents
bincare Surface of Section of 2D chaotic system. 't is
Jund that Mathematica provides sufficient tools 1o
prform parallel tasks such as managing parallel process
od shared memory. Cluster computing is found to be
Ister but efficiency and speedup factors are reversed
wen the number of nodes is more than 2. The optimum
nmber of nodes for this problem is 3.

1  Introduction

Most parallel computation carmied on a cluster nowadays
ves MPI which stands for Message Passing [nterface, or
F/M (Parallel Virtual Machines). MPI works on message
rssing basis (see [1] for example) and programmers are
rovided with a low-level communication library such as
MPT_Bceast in order to comununicate between nodes.
Fawever, MPI is not the only option for today parallei and
cister computation. Mathematica [2] offers an aiternative.

Although Mathematica appears to be a
cmmercial package, Mathematica ,i1s also both a
rogramming language and a computing environment.
hathematica  provides  programumers  with  many
pogramrming styles such as the procedural style like C, the
foctional programming style like Lisp and also rule-based
pogramming style like Prolog [3). Nevertheless, fine-
naing to maximize Mathematica performance is a delicate
tsk and programmers need to master the functional style
¢ programming.

Mathematica operates on the idea of a front end and
krnel basis where communication between front end and
krnel rests upon a special communication protocol called
Yathlink. This protocol is a high level communication
yotocol for data exchange and can be used to connect
rultiple kernels of Mathematica running parallel on many
rachines or many processors on a single SMP machine to
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fully take all power of available central processing units.
Moreover, with its Parallel Computing Toolkit[d4] where
high level job distribution and queuwing functions are
provided, programmers can use Mathematica to perform
parallel and cluster computation over SMP computers and
a group of computers networked together. This work aims
at testing the performnance of the Mathematica paralle]
environment. The details of the hardware of our cluster

wili be presented in the following section.

Methematica beruel

oW

Mothematica bren) end Mathiiok

Figure 1. Front end and kernel communication via
MathLink in a Mathematica session.

2. The Designing Principle of Mathematica

Normally, Mathematica operates on the front end and
kermel concept. This makes Mathematica immediately
avatlabie on a cluster. Wltip[c kernels can run separately
on each machine and all of the kemnels connect to a master
kernel, which, ¢f course, also connects to a front end.
Parallel and distributed application can be developed nght

away with the unified concept of Mathematica
programming.
Moreover, Parallel Computing Toolkit instantly

brings parallel computation to anybody having access to
mere then one computer on a network. It implements
many paralle!l programming primitives, and includes high-
level commands for parallel execution of operations such
as animation, plotting and matrix manipulation. The toolkit
also supports many cuwrent popular programming
approaches such as parallel Monte Carlo simulation,
visualization,  searching and  optimization. The
implementations for all high-level commands in the
Parallel Computing Toolkit are provided in Mathematica
source form, and serve as templates for building additional
paralle! programs.



J. Platforms

'he parallel computing toolkit on a cluster of 6 high
erformance workstation 1s tested. Each node is a Compag
wdel SP750 that has an Intel Pentium III XEON CPU,
66 MHz, Intel 840 chipset with 133-MHz front side bus,
ual memory channels, dual-peer PCI buses, and 64-bit
Cl with 18 GB Ultra SCSI-3 bhard disk. It also has a
emory of ECC PC800 RDRAM 256 MB with built-in
itel Pro 100+ network card. The master kernel runs on
1¢ node so there are 5 nodes left for parallelization. All of
ese machines operate on Windows 2000 Professional.
here is a plan to install Linux on these machines in the
«ar future. All machines are linked up via 10/100 mbits
* AN with a single normal 100 mbits -hub. Connection is
..ne via TCP protocol to link all the kernels with specific
<uts generated on-the-fly by starting Mathematica kernel
(the Mathlink mode.

On the Windows platform, one can use a
:mmercial remote shell daemon to start remote kermnels
womatically. Additionally, Mathematica allows the so-
#led passive mode to start the remote kerneis. Once
mnpected with the control kernel, these kernels are called
‘aves”. The parallel toolkit is loaded in the control kernel
tiding on the control machine of the cluster. The front
11, which provides the cluster interface to the user, is
wnected to the control kernel locally.
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‘jure-2. Variation of the overhead time of kernel to
»al kernel to service one trivial process. The overhead
mz approaches 0,003 s. The noisy data above the line
smed by connecting normal data resulted from the

10 computing process interrupted by background
i,

. Performance Measurement

eore testing our cluster with a real problem, a tnivial task
xsuring the overhead time of the cluster is performed.
vrhead time is defined as the time to service one trivial
reess. Listing 1 lists a section of Mathematica code that
si this overhead time. Results can be seen in Fig. 2 and

. was found that the overhead time of the cluster was
S seconds.

Listing 1. Mathematica code for computing
overhead time of 200 number of tries.

With[{n=200,t=AbsoluteTime (]},
ParallelMap{Identity,Range([n)}; (AbscluteTime{]-

t)/n

1

5. Test Problem

The application of cluster computers is generally expected
to require intensive computing resources in terms of local
memeory, shared-memory and computing time, but in this
research a linear test case is selected. The term “linear” in
this case means the computing time increases linearly with
the size of the problem. The main reason for choosing a
linear case is that our cluster efficiency can be traced more
accurately. Nonlinear cases can obscure non-linearity
features of our cluster and hence key improvements cannot
be specified clearly.

There are a number of linear problems that ons
can use. We choose the standard map:

' pnl+l =pn +K Singn
qn+l =(Qn.+pn+l)m0d (27"'-)

to test the performance of our cluster. p and g are
normalized real variables related to the momentum and
position accordingly: This map 1s a linearization around a
resonance which provides a standard version of Poincare
Surface Section generated by collecting cutting points of a
trajectory 1n phase space with a specific plane. The
trajectory is usually generated by solving nonlinear
differential equations. _

The domain for p and ¢, that is [0,27]x[0,27], is
divided into the number of nodes and lets each node
produce the result for the required iteration. X in the
eguation is a constant. Without a loss of generality, one
can keep K = 0.9, which is the value for the map at the
starting point of  becoming  globally chaotic.
ParallelMap [] is the function to distribute our parallel
computing. The function is one of the many functions
provided by the parallel computing toolkit.

(1)

6. Results

It was found that the calculation time varies with the size
of the problem linearly for all 5 cluster configurations. The
slopes of the fiting lines to the data are important here
because these slopes are used to calculate speedup and
efficiency fdctors of our clusters. The speedup factor is the
ratio of sequential time to total parallel execution tume,
wiile the efficiency factor is the ratio of the bbserved
speedup to the number of processors. Numerical results’are
shown 1n Table I.
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Figure 3. Variation of overhead time with a number of
. tests of a kernel-to-remote-kernel configuration. The
overhead time approaches 1.53 seconds. The curve is
described by the equation y(x)=1.53-6.14 Exp(-x).

7. Counclusions

it was found that although most cluster operating systems
are Linux, Windows clusters do have their places in cluster
somputing. First of zll, all these machines do not need to
be “reserved” to be used only for clustcr computing.
Converting machines to Linux often reduces the size of the
software pool that one can use. Secondly, Windows
u§ually comes pre-installed, therefore, there is not much
time needed to customize all hardware components before
sluster computing can start. Thirdly, there is the
wvailability issue. There are always a noumber of idle high
serformance computers such as Pentium III around. It is,
therefore, fruitful if cluster approach is not too strict on
Jne operating system and one limited environment. An
open approach such as the Java environment is one of the
most attractive cluster environments [6], while this work
has shown that Mathematica is another one. Although
Mathematica belongs to a commercial firm, its notebooks
and files are open. One can easily open them in any text
editors and can understand their structure very quickly.
Mathematica link to Java is also available via Jlink[5].

Table 1. Speedup and efficiency factors of
various cluster configurations.

Cluster configuration | Slope (s) | Speedup | Efficiency
1 node 0.000327 1 1
2 nodes 0.000195 | 1.67495 | 0.837476
3 nodes 0.000130 | 2.50847 | 0.836157
4 nodes 0.000162 | 2.02508 | 0.506269 |
5 nodes 0.000181 | 1.80862 | 0.361723

From Table 1, it can be concluded that cluster
computing with Mathematica is an effective environment.
It is generally faster even though the speedup is not at the
factor of the number of nodes used. This is due to the fact
that there is always time used in communication among
nodes and with the-master kernei. The allocation of jobs
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for each node plays an important role here. As our results
indicate, if the more nodes the task splits into, the more
communication tasks are needed, and so the less efficient
the cluster will be. Future work will include testing the
virtual shared memory and packed array(5]. In addition,
the number of nodes of our cluster will be increased and it
will be possible to further explore different cluster models
which are based on how all nodes are connected.
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Figure 4. Computing time of the test problem for
various cluster configurations. The triangular
symbols are for 1 node, the box symbols are for 2
nodes, the diamond, star and cross symbols are
for 3, 4 and 5 nodes respectively.
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Abstract
Mathematica computing environment allows a user to implement an algorithm in virtually all
- style of programming, however, only certain specific styles of programming can utilize the
power of Mathematica fully. In this work, we implemented the 4" order Runge-Kutta method

in Marhematica environment with various programming styles such as procedural, functional,
. and rule-based and tested their performance. We found that the functional programming

implementation of the 4™ order Runge-Kutta method worked best and the size of the code was
the smallest. We examined these implementations with a non-linear dynamical system. These

results are foundations for the following most efficient implementation of the Poincaré
surface of section algorithm.

1 Introduction

1.1 Mathematica computing environment

Mathematica is a technical computing environment that is widely used today. Mathematica
incorporates features from all major programming styles[1]. In a way, this is an advantage,
however, Mathematica cannot provide its full computing power for all programming styles.
Hence, choosing proper programming styles for the task is a very important issue.

Moreover, Mathematica is essentially an expert system. Failure to realize this fact
always results in inefficient implementation of programs in this technical computing
environment. For example, Procedural Programming style (PP) extensively uses assignment
constructs. PP style assignment constructs involve fundamental data types e.g. integer, byte,
etc. In a for loop, such as fori =1 to 10, a simple counter, say 1, can be just a register in the
processor resulting in extremely fast access when updating its value in the assignment
construct.

In contrast, due to the sophisticated nature of the requirements of an expert system, an
assignment in Marhematica normally requires a great deal of computing resources because the
assignment construct can possibly involve sophisticated abstractions e.g. symbols, symbolic



expressions, rule constructions, and/or infinite accuracy numbers. Therefore, resulting internal
codes, that are as efficient as those compiled with PP languages, cannot always be guaranteed.
Nevertheless, Mathematica provides a way to reach simular (at the same time produces more
elegant and high level of abstraction source codes) internal codes through FP constructs such
as Mapl], Nest[], etc. Apart from the assignment problem, there is a number of widely used

PP implementations that can significantly slow down Mathematica such as adding a record of
data to a large list inside a loop construct[2].

1.2 Numerical solutions for ordinary differential equations (ODEs)

One of the most popular applications in Mathematica is solving ODEs numerically with

various styles of programming (see [1] and [3] for example), however, discussion on the
performance and practicality remains an issue.

Numerical ordinary differential equations integrators such as Runge-Kutta scheme or
others are very important basis for higher level diagnostic tools, for example, Poincaré surface
of section (PSS) method that is an important tool to classify motions in nonlinear dynamical
systems, especially for 2D Hamiltonian systems. This study aimed at identifying the most
efficient implementation of ific 4" order Runge-Kutta method so that higher level functions
could be derived from this most optimized resulting code.

Normally Runge-Kutta method is coded in the Procedural programming (PP} style. PP
languages originate directly from assembly language. Procedural programming style (PP) can
be noticed from extensive use of PP constructs such as assignments, loops, conditional
staternents, and subroutines. All of these PP constructs can be translated to assembly language
easily. It is of important to note that FP is generally the least familiar programming style to
most scientists, because FP often neglected in traditional Science education. As a result, most
scientists normally use PP style to create their programs in Mathe::atica environment even
though PP is inefficient in this environment.

Another different but more sophisticated approach 1n programming style is a so-called
Functional programming (FP) style originated from LISF. LISP and FP languages are used
mainly in the field of artificial intelligence and in symbolic computation. There is also another
srogramming style that worth mentioning in this article. It is a declarative programming style

such as Prolog. In Marhematica, this programming style is widely known as the rule-based
Jrogramming style.

2 Types of Numerical Solutions for ODEs in Mathematica

2.1 Internal NDSolve[} Function

Mathematica internal function for ODEs NDSolve[] is a very powerful function. With the
yption Method is set to automatic, NDSolve[] can switch between a non-stiff Adams method
ind a stiff Gear method. Runge-Kutta-Fehlberg order 4-5 Runge-Kutta method can be
:mployed for non-stiff equations. The code for NDSolve[] is very sophisticated, but efficient
ind according to Marhematica manual 1t is about 500 pages long,.



2.2 Dynamic Programming Approach

In order to speed up calculation in Mathematica, one can use dynamic programming capability
of the computing environment. Combinations of Set[] (symbol “=") and SetDelayed[] (symbol

eh,

:="") are used extensively and thus can be seen explicitly in the code such as in Table 1. [4]

Table 1 A section of an example of dynamic programming coding of the 4th Runge-Kutta method.

Ki(n_] :=kl[n] = £(t[n], x[n], ¥[(n)];

kd[n_] :=k4[n] = £[t[n] +h, x[n] + hk3[n], ¥(n] + hm3[n]];
mi(n ] := ml[n] = g[t[n], x(n], y(n]];

: h hkl[n] hml[n]
m2[n_] :-_-m2[n]=g[t[n]+—2—,x[n]+ 5 , ¥[O]+ —— |

2
B12(n] hm2(m)

h
m3{n_] :=m3[n] = g[t[n] v x[n] + 5’ y[n] +

md[n ] := md[n] = g(t[n] + h, x[n] +hk3[n], y[n] +hm3[n]];

This approach exchanges the speed with the extensive use of memory. This 1s, hence, not
practical where a large list of result is required.

2.3 Runge-Kutta integrators in MathSource

There are examples of impiementation of Runge-Kutta algorithm for Mathematica in the
extensive knowledge base known as MathSource website (http://www.mathsource.com/).
Runge-Kutta package[5] and Runge-Kutta-Nystrom integrator[6] are such examples. In this
work we compared the computing time of Runge-Kutta package which 1s written by Maeder
[S] with our implementations.
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Table 2 An implementation of Runge-Kutta method from MathSource{5].

BeginPackage ["RMPackages  RMRungeKutta " ]“

RMRungeKutta: iusage = "RungeKutta{{el,e2,..}, {y1l,¥2,..}, {al,a2,..}, {tl, dt}]
numerically integrates the ei as functions of the yi with inital values ai.
The integration proceeds in steps of dt from 0 to t1.
RungeKutta[{el,e2,..}, {y¥l,y2,..}, {al,a2,..}, {t, to, t1, dt}] integrates
a time-dependent system fraom to0 to t1."

Begin[" "Private “]
R:KSt'ep[f_l Y__: Yo_l dt'_] =
Block[{ k1, K2, k3, k4 },

k1 = dt N[ £ /. Thread[y -> y6] 1;

k2 =dt N[ £ /. Thread[y -> y0 + k1/2] ]:
k3 =dt N[ £ /. Thread[y -> y0 + k2/2] ]:
k4 = dt N[ £ /. Thread[y -> ¥0 + k3] 1:
YO + (k1 + 2 k2 + 2 k3 + kd) /6

1
RRungeKutta[f List, y List, y0 List. {t1 , dt_}] :=
NestList[ RKStep[f, y, #, N[dt]]&, N[y0], Round[W[t1/dt]]l ] /:
Length[f] = Length[y] =— Length[y0]

RMRungeKutta[f List, y List, y0 List, {t_, t0_, t1 , dt_}] :=
Block[{res},
res = FMRungeKutta[ Append[f, 1], Append[y, t], Append[y0, t0], {tl1l - tO0, dt} ]
(* Drop[#, -1]& /@ res - Do not drop the time from the list %)
3} /: Length[f] — Length[y] = Length[y0]

End[]
Protect [FMRungeKutta]
EndPackage []

3 Lorenz Attractor
Lorenz attractors can be constructed by solving the Lorenz equations.

dx dy dz
—=-3x—-vy}) L =—-xz+ax-—-y, —=Xy—2Zz
dt ( y) dr ’ dr Y

This model arises in a highly simplified model of a convecting fluid and was first introduced
by Edward Lorenz. This model involves in modeling convection in the atmosphere and is used
to demonstrate a very simple set of equations that yields a highly complicated behavior
including chaos[7]. In this work we chose a =26.5.

In Table 3, Code #1 implemented the problem definition in terms of function ff] while
rk|] implemented Runge-Kutta step (similar to RKStep[] in Table 1). Code #2 implemented
the functon to interpolate grid points and return InterpolatingFunction[]. Code #3 and #4
were examples of possible possible FP implementations of Runge-Kutta method. Loop
construct was implemented via Table[] and NestList[] calls. Finally, Code #5 and Code #6
were PP constructs. The difference of these 2 codes was that Code #6 pre-allocated memory
for output while Code #5 retained the flexibility of expanding the size of the list as needed.




Table 3 Various implementations of the 4” Runge-Kutta method. See text for detail.

Code # | Implementation

1 alpha = 26.5; t0=0.0; tmax=10.0; dt=0.0001;h=At:h2=h/2.:h6=h/6.:

fl{x , ¥ ,2 ,t }]:={-3(x-¥), -xz+alphax-¥, xy-z, 1);

rk[x ] := (ki=f[x]; k2 = f[x+h2k1]: k3 = f[x+ h2k2]): k4 = £[x + h k3]:
x+h6 (k1+2. k2 +2. k3 +k4))

2 LorenzSolution[solPoints ] := Thread[Rule[{x, ¥, z},
Map [Interpolation,
Transpose[Apply [{{#4, #H1}, {#1, H2), (#4, #3}) &,
so0lPoints, {13}]1]111

3 KJ1 : = LorenzKdResultl - Block{{x1}, Timing{

X1 = x0; LorenzK.JPointl =

Prepemi[Table [x1 =rk[x1], {Round[Hf{(tmax -to0) fdt]]}], x0]:
LorenzKJSolutionl = Thread[Rule[{x, ¥, 2},
Map[Interpolation,
Transpose [Apply[{{H4, #1}, {#1, #2), {#4, H3)}} &,
LorenzKJPointl, {1}1]1111
]

1

4 KJ? : = LorenzKJResult 2 = Block[{}, Timing[
LorenzKJPoint2 = HestList[rk, x0, Round[H[ {(tmax - t0) /dt]]];
LorenzKJdSolution? = LorenzSolution[LorenzikJPoint2]

1]
5 PP1[tmax ] := LorenzPPResultl - Block[{x=s, i, iMax},
Timi ng [
iMax = Round [H[ (tmax - t0) /dt]]:
x= = X0;

LorenzPPPointsl = {xs}:
For[i=1, 1i=<iMax, 1++,
xs = rk[xs]:
AppendTo [LorenzPPPointsl, xs]:
1:
LorenzPPSclutionl = LorenzSolution[LorenzPPPoints1l]

1




6 PP2[tmax ] := LorenzPPResult?2 = Block[{xs, i, 1Max},
Timing[
iMax = Round[H[ (tmax - t0) fdt]];
ug = x0;
LorenzFPPoints2 = Table[xs, {ilMax +1}];
LorenzPPPoints2[[1]] = xs;
For{i=1, i< iMax, i++,
x5 =rk[x=s]:
LorenzPPPoints2[[1 + 1]] = xs:
1:
LorenzPPSolution2 = LorenzSolution[LorenzPPPoints2]

11

4 Results

‘We tested these implementations on a notebook computer with Pentium Il processor running
‘at 866 MHz. The Front side bus speed was 100 MHz with SDRAM of 384 MB. We used
"Mathematica professional version 4.1 on Windows 2000 Professional operating system.

We needed to obtain the solutions not only in terms of grid points of the time interval
0of 0.0001 from t = 0.0 to t = 10.0 but also in terms of Mathematica InterpolatingFunction[] in
order to arrive at equivalent quality and quantity of the outputs. This is because NDSolve[]
always produces InterpolatingFunction[] as its output while the other methods normully
produce grid points of equal interval. Table 4 shows the result of our test. For each

.mplementation, we ran 3 tests to ensure that background jobs did not significantly interfere
with our tests.

Time Complexity of PP constructs

QSF'

20

time {second)

0 2000 4000 6000 8000 10000
no. of points

Figure 1 Different time complexity of PP constructs. Squares and Dots are correspond to Code #5 and
Code #6 of Table 3 respectively.



Table 4 Computing time (for 3 runs) of each implementations.

Method used Time used (second)
NDSolvel] 8.712,8.812, 8.852
RM Runge-Kutta Package 74.096, 74.277, 74.507

Our implementation 1 (Table) Code #3 in Table 3 41.690, 41.569, 41.700
Our implementation 2 (NestList) Code #4 in Table 3 41.250,41.319, 41.320
Our implementation 3 (PP) Code #5 in Table 3 N/A

Our implementation 4 (PP) Code #6 in Table 3 44204, 44,263, 44.244

5 Conclusion

Table 4 indicates that internal function call to NDSolve[] was clearly the most efficient way to
obtain ODESs solutions. Whenever any internal function call was not desirable, FP constructs
worked best. '

The PP construct (Code #5 in Table 3) took too long when called to computing
100001 gnd points. Interpolation of computing time vs grid points with a polynomial function
of the order up to x* suggested that it would take 16.154.000 second to complete 100,001 grid
points. And this was obviously unpractical. However, one can fine tune the PP construct to
produce speed of computing at the same level of Table[] and Nestlist|] constructs. This was
achieved by the implementation that takes the advantage of pre-allocated data and the make
use of PackedArray[][10]. PackedArray is an add-on feature to accelerate numerical
computing in Marhematica by forcing machine precision to numerical objects. Code #6 in
Table 3 implements these features, however, with exchange to speed, we lose generality by
pre-allocating the data beforehand, hence the size must be known in advance and there will be
unnecessary computing time (o initialize these pre-allocated data, while the other two FP
implementations do not. Moreover, PP construct also has more lines of code than FP ones.

In conclusion, this article encourages the implementation that makes use of internal
function calls whenever possible, in this case, NDSolve[]. FP approach then comes as a
second choice while PP should be the last way to implement any numerical algorithm in
Mathematica.
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ABSTRACT
Poincaré Surface of Section (PSS8) is a very important tool for studying nonlinear behavior of a
2D Hamiltonian system. In general, it is constructed by numerical integration of the
corresponding differential equations that describe the motion in the phase space. The numerical
integration is usually coded in a Procedural Programming (PP) approach in a normal
programming environment such as C++ or Java. In this work, we approach the problem in a
different way by using Functional Programming approach (FP). FP is intrinsically a must in a
powerful computing enviroiiment such as Lisp, Mathematica and Prolog. Constructing PSS by
using PP is extremely popular but highly impractical in such an environment, while FP is much
more appropriate and at the same time keeps the speed of computing as fast as possible. Our
results indicate that FP shows a very significant speed improvement over PP.

KEY WORDS - Poincaré Surface of Section Calculation, Functional Programming, Mathematica

1. Introduction

Poincaré surface of section (PSS) method is an impontant tool to classify motions in nonlinear dynamical
systems, especially for 2D Hamilionian systems. Generally PSS method requires extensive use of numerical
ordinary differential equations integrators such as Runge-Kutta scheme or others. Choosing the right
implementation of the integrator is the key to obtain quality PSS as of equal importance is to obtain the right
implementation of the PSS method itself. It is the purpose of this study to identify the right implementation of
PSS method which can be used to study nonlinear dynamical systems in Mathematica environment so that
Mathematica parallel compultation and powerful visualizatton capabilities can be applied promptly.

Normally PSS method is coded in the Procedural programming (PP) style. PP languages originate
directly from assembly language. Procedural programming style (PP) can be noticed from extensive use of PP
constructs such as assignments, loops, conditional statements, and subroutines. All of these PP constructs can be
translated to assembly language easily. Another different but more sophisticated approach in programming style
is a so-called Functional programming (FP) style originated from LISP. LISP and FP languages are used mainly
in the field of artificial intelligence and in symbolic computation. There is also another programming style that
worth mentioning in this article. It is a declarauve programming style such as Prolog. In Mathematrica, this
programming style is widely known as the rule-based programming style.

Mathematica is a technical computing environment that is widely used today. Mathematica incorporates
features from all major programming styles (see for example Maeder 2000 and Gray 1997). In a way, this is an
advantage, however, Mathematica cannot provide 11s full computing power for all programming style. Hence,
choosing proper programming styles for the task 1s an important issue. It is of important to note that PP is
generally the most familiar programming style 1o most scientists because FP often neglected in traditional
Science education. As a result, most scientists program with PP style in Marhematica environment even though
PP is inefficient in this environment. This work will show the most efficiency FP algorithms for PSS method in
Mathematica environment.
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2. Poincaré Surface of Section Method via Functional Programming

Mathematica 1s essentially an expert system. Failure 1o realize this fact always results in inefficient
implementation of programs in this technical computing environment. For example, PP style extensively uses
assignment constructs. In PP languages, PP style asstgnment constructs involve fundamental data tvpes e.g.
integer, byte, etc. For example. in a for loop, such as for i = 1 to 10, a simple counter, say 1, can be just a register
in the processor resulting in extremely fast access when updatng its value in the assignment construct.

In contrast, due to the sophisticaled expert system nature, an assignment in Marhemnatica normally
requires a great deal of computing rescurce because the assignment construct can involve sophisticated
abstractions e.g. symbols, symbolic expressions, nile constructions, and/or infinite accuracy numbers. Therefore,
resulting internai codes, that are as efficient as those compiled with PP languages. cannot be guaranteed.
Nevertheless, Mathematica provides a way to reach similar (at the same time produces more elegant and high
level of abstraction source codes) internal codes through FP constructs such as Map, Nest, etc.

Apart from the previous example, there i a number of inefficient PP that can significantly slow down
Mathematica such as adding a record of data to a larce list inside a loop construct (see for example Wagner
1996). There are also a number of work done 1n applying Marhematica 1o solve ODEs numernically with various
styles of programming (see for'example Abell and Braselton 1993 and Gray, Mezzino and Pinsky 1997),
however, discussion on the performance and practicality remains an issue. Jaroensutasinee and Rowlands (2002)
shows that PP constructs of Runge-Kutta integrator is slowest while the use of internal ODE integrator,
NDSolvel], is the fastest and a simple combination of rule-based and functional construct falls between. In this
work, after ODEs are solved simultaneously, PSS methods are implemented in FP constructs. NestWhile[] is
used instead of While[] loop and the conditions for cutting the section are implemented through rules
construction (PSScond[] rules in the following examples) instead of using a side effect via inefficient vanable
assignments and calling If[].

2.1 The First Example: The Lorenz Attractor
Lorenz attractors can be constructed by solving the Lorenz equations

dx dy :
A —-3(x - v), . —XI+ax—y, 4 =xy-—_z.
dt ) dr di

In this work we chose @ = 20.5 and the section was chosen at ¥ = 0. Table } shows the source codes for this
system.

Table 1. FP stvie codes for PSS calculation for Lorenz svstem.
Code # | Implementation

! £({x, ¥ ,Z,t )] :={-3(x-y), -xz+alphax-y, xy-z, 1};

rk({_, x }] :=

{x, (Kl=f[x]; k2= f[x+h2kl];k3=f[x+N2k2];kd =£f(x+hk3];
X+he (k1 +2.k2+2.k3+kd))}

2 Remove [ PSScard] ;

PSScand([{({x1_,yl , =zl ,tl1 }, (2 ,¥y2 , 22 , 2 }}] :=

(True) /; ((¥1>y¥2) && ((¥y1y2) <0.0));

PSScanxd({t_, _}] := False;
3 pssFunc{xl_] := NestWhile[rk, x1, (! PSScond[#2]) &, 2, 100000)
1 iming|

pssl = NestwhileList [pssFunc[#] &, (x0, x0}, (#[[2]][(4]] < tmx) &, 1, 20];]

5 LorenzNDSolveResult = Timing|(

LarenzNDSolveSolution =

NDSolve[{x [t] == ~3.0 (x[t] -¥[t]), ¥ [t] = -x([t] z[t] +alphax(t] -y[t],
z [t] = x[t) ¥[t) - z(t], x{0) == 0.0, ¥[0) == 1.0, z{0] == 0.0},
(X, ¥, 2}, (t, £0, tmx}, MaxSteps » Infinity, MaxStepSize » dt,
Method - RungeRutta] [([1]]
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6 sol = y /. LorenzNDSolveSoluticon
7 fullsol = Append[#([{2]] [t] & /@ Flatten[LorenzNDSolveScluticn], t]
pssFuncND[t_) :=
NestwWhile[ (#+dt) &, t,
(! ((sol[#1] > sol[#2]) && (s0l[#1] sol[#2] < 0.0)) && (H#2 <= tmax- &)) &,
2, 100000]

2.2 The Second Example: The CUSP magnetic field

The motion of a charged particle in a CUSP magnetic field can be generated by the following equations of
moton:

dax _ av

a7 dr ’

d d
—p=y(Q—xy), —q=X(Q—xy),
dr dr

where (x, V) is the position of the particle in the rectangular coordinate and ( p,q) are the corresponding
momentum in both directions. (J is a constant related to the z direction momentum which is conserved during

the motion. In this work we chose (@ =0 and the section was chosen at y = (. Table 2 shows the source codes
for this system,

Table 2. FP stvle codes for PSS calculation for CUSF svstem,
Code # | Implementation

| NDSclveResult = Timing|
NDSolveSoluticon = NDSolve| {
x'[t] == p[t], P'[t] =¥([t] (@Q-x[t] ¥[t]),
Y'[t] =qi{t], q'[t] ==x[t] (Q-x[t] ¥([t]),
x[{0.0] == xIn, ¥[0.0] == yIn, p[0.0} == pIn, g[0.0] = qIn},
{x, ¥, P, d}, {t, £0, tmen<}, MaxSteps » Infinity, MaxStepSize - dt,
Method - RungeRutta) [[1]]
17
2 Remove [ PSScard] ;
PSScand[{{xl , vl , pl ,ql ,tl }, {2 ,¥y2 ,p2 ,q2 ,t2 }}] :=
(True) /; ((¥y1>y2) && ((yly2) <0.0));
PSScond[{t_, _}] := False;
3 s0l = ¥y /. NDSolveSolutian;
fullSol = Append[#[[2]] [t] & /@ Flatten[NDSolveSoluticn], t];
pssPuncND([t_] := NestWhile[ (#+dt) &, t,
(! ((sol[#1] > sO1[#2]) && (SOL[#1] sOL[#2] < 0.0)) && (#2 <= tmax - At)) &,
2, 100600]; :
4 pssiD =
Drop ([ Drop [ NestWhileList [ (pssFuncND{#]) &, £0, (# <= tmax - dt) &, 1, 10000007,
-11, 1];
pssND = Transpose[fullSol /. t -> pssND] ;

3. Results

We tested the implementations on a notebook computer with Pentium HI processor running at 866 MHz. The

Front side bus speed was 100 MHz with 384 MB. We used Marhemarica professional version 4.1 on Windows
2000 Professional operating system.

For Lorenz system, the computing time used to calculate PSS for 7 starts from 0 to 10.0 was 47.007
second for the integrator proposed in Jaroensutasinee and Rowlands (2002), that is FP constructs for Runge-

vy
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Kutta method (rk[_._] in Table 1). Results for NDSolve[] technique were more tmpressive. It takes only 6,029
second which was the tolal time of 3.395 second for PSS search plus 2.634 second for NDSolve[] itself.
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Figure 1. Time series of v(1) obtained from solving Lorenz system with cuts (red lines and dois) from PSS
computation.

And for CUSP magnetic field case, time used to calculate PSS for ¢ starts from 0 to 100.0 was 1.623
second. More interesting results were (1) the computing time was 385.655 second for 7316 cuts and (2) the time
was 674.189 second for 12249 cuts. The last two examples signify that this implementation 1s of practical use,
however, the mcthods shown in Table 2 were modified to the practical {evel by dividing the maximum time into
smaller chunks for better accurasy in NDSolve[].
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Figure 2. (a) Time series v obiained from solving CUSP svstem with cuts (red lines and dots) from PSS
computation. (b) 3D visualization of the trajectory in (x, v, p) showing its periodicitv. (c) 3D visualization
showing PNS curs, the PSS plane and the trajectory.
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Figure 3 Poicaré Surface of Section. (a} and (b) illustrate quasi-periodicity of the trajectory for different initial
conditions. This quasi-periedicity is only revealed by computing PSS cuts many hundred times to form the island
structure {each island corresponds to one initial conditions).

4. Conclusion

Combination of a series of internal function call to NDSolve[] with FP style coding to collect PSS points can
generate PSS results of practical use. Only slight modification of the codes can bring them to parallel computing
environment via Parallel Computing Toolkit and visualization of PSS cuts can be accomplished promptly as
shown in Figure 2 and 3.
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Parallel Construction of Poincaré Surface of Section Method on WAC16P4
Cluster

Abstract

i Parallel computing performance of Mathematica on Walailak University Cluster of 16 nodes Pentium
4 (WACI6P4) is measured. Cluster Operating System is NPACI ROCK 2.21. Overhead time is
i computed and compared. The computing tasks are to generate Poincaré Surface of Sections for a
‘:highly nonlinear system by a functional programming code. Speed-up and efficiency of the cluster

(WACI6P4) is computed and discussed.

1. Introduction

In previous work [1] parallel computation in a cluster of personal computer (PC) can be achieved in
Mathematica computing environment [2] if it is operating with an access to more than one computer
" on a network. Mathematica provides both a programming language and a computing environment

with many programming styles such as the procedural style like C. the functional programming style
. like Lisp and also rule-based programming style like Prolog [3]. Fine-tuning to maximize
' Mathematica performance is a delicate task and programmers need to master the functional style of
programming.

‘Parallel Computing Toolkit is a tool designed to support this functional programming style
~ with many high-level commands for parallel execution of operations such as ParallelMap|)
using the concept of Frontend and Kernel design philosophy of Mathematica with MathLink as the
standard protocol. Parallel programming primitives including animation, plotting and matrix
' manipulation functions are also provided. Currently, the toolkit supports many current popular
programming approaches such as parallel Monte Carlo simulation, visualization, searching and
optimization. The implementations for all high-level commands in the Parallel Computing Toolkit are
provided in Marhemarica source form, and serve as templates for building additional parallel
programs [4].

As a summary, Mathemarica computing environment with the Parallel Computing Toolkit is
based on the functional programming style and, in fact, functional model is one the most powerful
model of parallel computation |3].

This work furthers the performance testing of the Parallel Computing Toolkit that is done in
sur previous work [1] with a different cluster configuration and with a different application. Qur new
cluster configuration is expanded to 16 nodes. so called Walailak University P4 Cluster (WAC16P4),




and the test problem is also closer to real research problems. That is Poincaré Surface of Section
calculation.

3. Poincaré Surface of Section (PSS) calculation via Functional Programming

Poincaré surface of section (PSS) method is an important tool to classify motions in nonlinear
dynamical systems, especially for 2D Hamiltonian systems. The detail of this method is clarified with
our test problem in the next section. Generally PSS method requires extensive use of numerical
ordinary differential equations integrators such as Runge-Kutta scheme or others [6]. Choosing the
right implementation of the integrator is the key to obtain quality PSS as of equal importance is to
obtain the night implementation of the PSS method itself. The practical implementation of PSS
method, which can be used to study nonlinear dynamical systems in Mathematica environment, was
identified in {7]. The implementation is in Functional Programming style ([8], [9]. and [10]), so it is
ready to utilize Mathematica parallel computation and powerful visualization capabilities.

3. Test problem

{The motion of a charged particle in a CUSP magnelic field can be generated by the following
ordinary differential equations which is also called the equations of motion:

dx _ dy _
& P ar
dp

dq
=V — = x(Q — xv),
o = Q- xy). o @-x
where (x.vy) is the position of the particle in the rectangular coordinate and (p,q) are the

<corresponding momentum in both directions. Q is a constant related to the z direction momentum

which is conserved during the motion. All these variables are in the normalized form. It is vital to
point out that each variable nceds not be identified physically the same as above. This problem can be
treated and studied as a class of ODE and the same ODEs can be found in many other applications.

In this system we have four independent variables with four differential equations. Nevertheless,

tt is easy to clarify that the quantity H = p’ +q° +(Q—.r_v): is always a constant. This signifies that
the system only has three indcpendent variables, hence the motion is essentially 3 dimensional. If one
variable is fixed as in the form of a plane in 3D, then one can study the system with only two
wariables. In essence, each time the trajectory in 3D cuts the plane, the program records the cutting
"bosilion and collects all these cutting points (see Figure 1(b) and (c) for illustration). This algorithm
an be viewed as a form of mapping and can be used to classify motions e.g. a finite set of point
indicates a periodic trajectory, a line indicates a quasi-periodic one, while a messy output indicates a
thaotic trajectory. This is a powerful method and Poincaré was the first to use this method, hence the
‘nethod was named after him. In this work we choose Q =0 and the section is chosen at y =0. Detail
implementation of this PSS method can be found in [7]. Parallelization can be achieved simply by
treplacing Map [ ] with ParallelMap|[]), which is the function to distribute our computational
‘»asks The function is one of the many high level functions provided by Parallel Computing Toolkit.
Llgurt: 1(a) shows the time series of y variable. It also illustrates the positions (dots on the axis) where
28S method collects the data.



4. Test Platform

WACI16P4 comprises of 16 identical personal computers, Each has a 1.3 GHz Pentium 4 Processor
for 400 MHz system bus with 256 KB L2 cache, a Gigabyte Dual Bios GA-8ITX3 for Pentium 4
Processor mainboard with 400 MHz system bus, a total RAM memory of 512 MB RIMM RDRAM
400 MHz system bus, two Intel Pro 100+ network cards (currently using only 1 card except the front-
end node), an ASUS ATA-100 supported DVD ROM drive and a Western Digital WD200 20 GB
ATA-100 harddisk. The cluster is networked through a single 24-port Accton CheetahSwitch
Workgroup-3526L 100 Mbits switch.

NPACI Rocks Linux [11] release 2.21 is our operating system for cluster installation. For the
computation, the Parallel Computing Toolkit is installed on the front-end node while Mathematica
4.1 Professional for Linux is installed. The master kernel needs to run on one node, hence, there are
15 nodes left for parallelization. The parallel computing toolkit utilizes the connection via TCP
protocol to link all the kernels with specific ports generated on-the-fly by starting Mathematica kernel
automatically in the Mathlink mode on each node with ssh command. Once connected with the
control kemnel, these kemels are called “slaves™. The parallel toolkit is loaded in the control kernel
residing on the front-end machine of the cluster. The front end, which provides the cluster interface to
the user, is connected to the control kernel locally.

Table 1 Network configuration for the front-end machine obtained on the front-end machine
with ifconfig command.

ethD Link encap:Ethernet Haaddr 00:02:83:95:58:69

inet acddr:10.1.1.1 Boast:10.255.255.255 Mask:255.0.0.0

UP BRORICAST RENDNG MULTICAST MIU:1500 Metric:l

X packets 4203200 ervors: 0 dropped:0 overruns:0 Erame:0
TX packets: 4130192 errors:0 droppad: 0 ovexruns:0 carrier:0
oollisions: 0 boueelen: 100

RX ytes: 346449607 (330.4 Mb) TX byues:31620216 (30.1 Mb)

Interript : 21 Base address:(a00)

ethl | Link encap:Ethesrmet Heakdr 00:02:B3:95:59:E3

inet addr:202.28.68.175 Boast:202.28.60.191 Magk:255.255.255.192
UP BROADCAST RUNONG MULTTCAST MIU: 1500 Metric:l

Rt packets:5143189 exvors:0 cdropped:0 overnuns: 0 frame:1

TX packets: 1502483 errors:0 dropped:0 overrune:0 carrier:0
ollisians: 0 ouaselen:100

FX bytes:1460362238 (1392.7 Mol TX hytes:150683776 (143.7 M)
Interrupt : 22 Base ackdress ; (=000

1o Link encap:local Loophack

inet acdr:127.0.0.1 Mask:255.0.0.0

UP LOOPEACY RENING MIU: 16436 Meteic:l

R packets: 1529436 errces:0 droppad:0 overnuem:0 frame:0

TX packets:1529436 erxows:0 dropped: ) overtuns:0 carrier:0
oollisions: 0 baueselan:0

FX bytes:1293172099 (1233.2 Mo) TX bytes:1293172099 (1233.2 Mo}

h’he front-end machine has 2 network cards, one for the connection with the internet (IP
202.28.68.175) and the other for cluster connection. IP numbers for the computing nodes are ranging
from 10.255.255.240 to 10.255.255.254. Table 1 gives detail information of network configuration of
the front-end machine using ifconfig UNIX command.



5. Performance Measurement

Overhead time (see the definition and Mathematica code in [1]) for local kernel for WACI16P4 is
computed. Then, for the test problem, we set up two different configurations for parallel task
distribution. The first should give results that are linear time complexity, while the other should give
results that are quadratic time complexity.

' 6. Results

For overhead measurement, Figure 2 shows that the overhead time is around 1.9 seconds and slowly
increasing but not at a significant level. It is important to note that this overhead time is significantly
' , higher than 0.03 seconds which 1s the result for the local kernel test reported in [1]. In case of remote
ikernel, the overhead time approaches 0.41 seconds for 4 nodes configuration and approaches 0.017
for 8 nodes configuration. Comparison with the overhead time of the 5 nodes configuration 1], which
Lwas 1.53 seconds, indicates that our new cluster has better connection speed over the old one.

For the test problem results are summarized in Table 2 and Table 3 together with Figure 3 and
Figure 5. Grouping of speed up is very obvious because all of the computing nodes have exactly the
same configuration. In other words, each node carry the same load capacity meaning load balancing
can be accomplished.

. Table 2. Speedup and efficiency factors of various cluster configurations. Efficiency
is calculated using the mean value of speed up.

#node Speedup Efficiency
Min | Max Mean

2 1.849056604 I 1.913043478 1. 8803853658 0.640426829
3 2925373134 3142857143 3024968389 1.008322796
4 3.563636364 4 3760440687 0.940110172
5 4.84 5.5 5028045161 1.005729032
6 4.780487805 55 5.004742722 0.834123787
7 4.75 5.5 4974097561 0.710585366
8 6.75862069 7.5625 7.278509852 0909813732
9 6.909090909 8.8 7554318182 () 839368687
10 7 8.8 7.531148459 0.753114846
1t 7117647059 838 7.5B3I000311 0.689363665
12 7.117647059 8.8 7.583000311 0.631916693
13 7 8.8 7.531148459 0.579319112
14 6.75862069 8.8 7. 482872597 1.5344909

[ 15 12.666606067 22 15.23555556 1.015703704

Table 3. Maximum speed up and efficiency of polynomial for the case with polynomial
time complexity.

#node | Maximum Speedup Efficiency

2 2.039783002 1.019891501
3 3.107438017 1.035812672
4 4.147058824 1.036764706
3 4925764192 0.985152838
6 6.197802198 1.032967033
7 6.635294118 0.94789916

8 7.726027397 0665753425
9 8 B52380952 0.994708995




i!

10 9.245901639 0.924590164
11 9170731707 0.833702882
12 11.87368421] 0.989473684
13 12 0.923076923
14 12.3956044 0.885400314
15 12.6741573 0.84494382

7. Conclusions

Figure 3 shows two different time complexities set up for this problem. For the linear time
complexity, further results are shown in Figure 5(a) which indicates that when supply enough tasks to
l, be distributed over the nodes, speed up near ideal case can be obtained. Therefore, in this set up speed

u

[ up and efficiency are nearly independent with the size of the problem. This is shown by almost flat
: lines in the figure. In fact the speed up can be actually decreased when the problem size is increased.
! This is due to the linear time complexity of this problem. The increase in time needed fcr computing
i in each node cannot compete with the increase in the network communication between the front-end

and the slave nodes to send and receive the results. It is important to note that since our parallelization
' is based on sending a number of tasks, in which each of them has a different set of initial conditions,
to operating node (so called Task-Farming [5]), grouping of speed up (e.g. for 8-14 node) can occur
. when the number of task is indivisible with the numbers of node.

For the quadratic case, Figure 5(b) shows the results. It is obvious in the figure that speed up
jcan be increased with the size of the problem. This is the normal case observed by many researchers.
 Grouping of speed up is also noticeable in this case. Figure 5 (a) and (b) are different visualizations of
Figure 4 (a) and (b} accordingly.

In conclusion, WAC16P4 operates with higher efficiency than the cluster we tested in the
previous work where efficiency was significantly decreased after 3 nodes [1]. Additionally, our
results indicate WAC16P4 behaves like an ideal Task-Farming parallelism. Therefore, we can expect
the bottled neck problem in the future. The solution to this problem is to extend the single master to a
set of masters, each of them controlling a different group of process slaves [5]. Further test with this
idea with the Parallel Computing Toolkit with Mathematica is needed.
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Figure 1 (a) Time series y(r) obtained from solving CUSP system with cuts (vertical lines

und dots) from PSS computation. (b) 3D visualization of the trajectory in (x, y, p) showing its
periodicity. (c) 3D visualization showing PSS cuts, the PSS plane and the trajectory.
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Figure 2 Variation of the overhead time of kernel to local kernel to service one trivial
process. (a) local kernel. The overhead time approaches 1.94s. The dotted line is calculated
 with noisy date removed. (b) 4 remote kernels. (¢) 8 remote kernels. The noisy data above
- the obvious line, formed by connecting normal data, resulted from interruptions of the main

computing process by background jobs.
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Figure 3 Computing time of the test problem for various cluster configurations. Marking
numbers above the plus sign signify the number of nodes used in computation. (a) for linear
time complexity. (b) for polynomial time complexity.

Figure 4. Speed up variation with the problem size. Marking numbers above the plus
sign signify the number of nodes used in computation.
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Figure 5. Speed up variation with various numbers of cluster configuration. Marking
numbers above the plus sign signify the problem size.
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