PDF/62/2540 Wi ;3. nOBWMUEIAT LAFTYgenATl

ci 12 D
T R

F= - ¥l (=2 I3
FNEITWIY EJ%U?JHNH?M

Tagans

a oY o faa '
wnAnsnLsdaanadnuasenmalwawindndniealan (Q-xy)’

The Semiclassical Behaviour of the Particle in the (Q-)(y)2 Potential

lay
HELAT.NOBILELAT OSSR

v g

ar A

o W s o 4 P a
AN INeIEIERS AMIINLIALIRYANEOL

* NWUEW 2545



's'\m'm%{fﬂaﬁuaaag‘mf

Tasans

wqﬁnﬁuma‘iﬂmaanﬁaam@ma‘luamuﬁnﬁﬁﬁmaﬂﬂﬂ (Q-xy)*

The Semiclassical Behaviour of the Particle in the (Q-xy)2 Potential

- [ e )
Ry ,,
munr!ﬂnu‘oooo ......
¢PF
E-‘un?cmnﬁaﬁn .......... L:;' .......................
Tay Ceb2
HA.AT.NOBIUZIAY 1IIYFSTR
0 G = [ = [ )
AWUNNITTINEIATAAT uwr:nmé'mauanuﬁ
NWeU 2545
dinanmainumiiuasemsIdy (an) I R,
AT AT 10T 1y NERIRTH :f"'"'}:l l
M MTY T LUl YL A !ljlﬁu1u !@-9'!
R TRNEY N738 Thdng >
§20X-0d53 INTAT 2080476 ’@
chere Paere i woawow gritorah

E-mat -t irorh /




Fyniaufl PDF/62/2540

wIdualiuany ol

Tasans

¢l

wa@nssansiiaara@nvasannialuawindndnitaralay (Q-xy)*

The Semiclassical Behaviour of the Particle in the (Q-xy)z Potential

Aacy s

ORET

u
HA.AT.NOBMSIAT WINASTRA

dnIT I insndaand avinsdeldvansol

alﬁ*uawufﬂuﬁ'lﬁ'm'mn BINUARUARUNTTIVY

[ 3 w o a (K-
(rsinlunsrmativiiiiveesdise and lisuiludasfindoanslyl)



L
unaneua

(svalasang)
(Holasan11)

fFarinisw

Email address:
stz 1IRlATING

# R o G cl -l
aunIanudsnsn

PDF/62/2540
wqﬁnﬁmmﬁﬂmaﬁnmmm&mﬂluﬂmuﬁhﬁﬁﬁmﬂm (Q-xy)’
NALATNOBULLAT IFYFDRNR

FUnITIinpeEa swineauIRuansol

8.¥YIFAI81 L UATASTIINTIT

jkrisana@wu.ac.th

37

Prof.Dr. George Rowlands

Department of Physics, Warwick University, Coventry CV4 7AL
United Kingdom

oo
Tasomsiiinguscasd

ol a Y -l . Q- 2
ek lasisfounniazaszuiuiWgrasaynaia gluauindng (@Q-xy) wzaule

- Y - o a & | L | "
suwuLWNandsen aUWQUdeﬂ'ﬂTNﬂ']UYIUﬂ']UﬂulLﬂ:ﬂ"lﬂ\lugq']u’lnuﬂ LUad9 nqo‘[ﬂQTL“ﬂ'ﬂrﬂJ

A ) G 1) ar o g B - d [ P 1
HANFIA YD UIUINNUNMTAIUIUIZAUNEIIU (Energy Eigenvalues) diaziiiumsitodaly

Keywords:

Chaos, Periodic Orbit Calculation, Periodic Orbit Family



Abstract

Project Code : PDF/62/2540
Project Title : The Semiclassical Behaviour of the Particle in the (Q-:v(y)2 Potential
Investigator : Asst.Prof.Dr. Krisanadej Jaroensutasinee

Institute of Science, Walailak University
Tasala, NakhonSiThammarat

Email address: jkrisana@wu.ac.th
Project Period 3 years
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FawnIWunuUInw  Prof.Dr. George Rowlands

Department of Physics, Warwick University, Coventry CV4 7AL
United Kingdom

Objectives of this project
To calculate macroscopic structure of the phase space of the dynamic of a single particle in
(Q-xy)2 potential. We consider the phase space which composes of orbits of short period.

This knowledge is important when computing semiclassical energy eigenvalues which is the
object of further study.

Keywords: Chaos, Periodic Orbit Calculation, Periodic Orbit Family
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A New Method for Cycle Calculation

Dr Krisanadej Jaroensutasinee
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Salaya Centre, Mahidol University, NakronPratom 73170 Thailand
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Abstract

Cycles or periodic solutions play a very important role in the mod-
elling of nature using differential or difference equations. These special
orbits have the nature to exist without any other indicators, hence making
them extremely hard to search for, especially the unstable ones. We have

" developed a novel method to compute both stable and unstable cycles nu--
merically. This new method is equiped with a special searching technique
that is similar to simulated annealing. This special technique allows us
to probe as many cycles with a given period as the computational limits
impose. For small cycles, we expect to discover all of them. The method

has been applied to the well-known logistic map and the results are shown
here.

1 Periodic Orbits and Their Importance

Knowledge of “Periodic orbits” (POs) in a chaotic system is the most important
key to understanding chaos in such a system. Many researchers (e.g. Wintgen D
1988 or Dahlqvist and Russberg 1991) are riow using periodic orbits to compute
semiclassical eigenvalues of classically chaotic systems. Other researchers use
POs to determine the fractal dimension of a complicated strange attractor (e.g.
Parker and Chua 1989). The diffusion rate in the standard map is also found to
connect with POs (Eckhardt 1993).

It is known that although a system under consideration is chaotic, its POs are
regular and attainable. POs can be classified into 2 groups, stable and unstable.
It is easier to calculate stable POs numerically, and sometimes analytically, than
to calculate unstable POs. Nevertheless, stable POs are much less used in chaotic’
systems since one definition of chaos is that almost no stable POs exist.

To calculate unstable POs is not a simple task. A number of methods for
computing these UPQOs have been invented but which one is the generally best
method is still arguable. Moreover, the methods are normally invented to study
some specific systems. We present here a novel method that can be applied
generally to maps and the Poincaré sumiface of section. The method can be used
to compute both stable and unstable POs. We have applied it to study the

logistic map which is a 1-d map. The study gives us many interesting results
which are to be presented later on in this paper.
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Figure 1: (a) Bifurcation Diagram of Logistic Map. (b} An example of Dp.y plot for
the Logistic map.

2 The new method

We define a function Dp.s, which we call the DirectD function, as

Dpes(X, z,n) = Fy(z) — z. (1)

where n is the period of POs, F represents the mapping function, A is the control
parameter, z is the state variable, and F(z) = Fi(... n times ...(x)).

Obviously, POs result from the condition that simply requires the function
to be zero. This makes it easy to visualise the problem which is one of the two
convenient points of this DirectD approach. The other point is that stable or
unstable POs appear to be the same ia this aspect. So, the task is now just to
search for zeros of the DirectD function.

One can assume the task is simple because it is possible to employ the zeros
finding algorithm such as the Gauss-Newton method that converges to the solu-
tion very quickly but needs a very good initial guess. However, technical problems
can prevent one from obtaining a meaningful result easily. Technical problems
are, for example, traps caused by the local minima and numencal overflow due
to high values of gradient around UPOs.

There are a number of approaches that can be applied to increase the degree
of convergence of the Gauss-Newton method such as the damped-Newton method
(Dennis and Schnabel 1983) and some authors use the recurrence theorem to find
good initial guesses for the routine. In general it is found that computing costs
can be very high, not only due to these technical problems, but also as a resuit
of a dense set of POs in one particular region of interest.

We resort to the method of simulated annealing to solve the local minimum
problem. By slowly cooling the system down, we assume that the local minima
can be avoided. Then, we take the points as initial guesses for further refinement
in which we employ the Gauss-Newton algorithm. Roughly speaking, we choose
points at random over the domain of interest, calculate the total energy.which is
defined by the sum of the square of Dp.; and let them cool down by rearranging
the configuration so that the total energy reduces slowly. Then we take ‘all the
points as initial guesses for Gauss-Newton methods in which the refinements
take place. The combination of these two numerical methods and the DirectD
definition to calculate POs is the new method we propose here. We call it the
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Figure 2: (a) The hidden bifurcation of period-3 cycles. (b} Full Bifurcation Diagram
for Period 8 4 2 1.

DirectD method.

3 Application to Logistic Map

The logistic map is a l-dimensional map that has a rich structure due to the
presence of nonlinearity. It also has a bifurcation route (Fig.1a) to chaos. The«
most important thing is that it is very simple, and is hence widely used to demon-
strate period doubling, n-period oscillation, universality, and chaos. One of the
mapping equations has the form:

Tpt1 = AZn(l — z,) (2)

where z 1s the state variable ranging from 0 to 1, A is the control parameter
taking the domain from 1 to 4, and n is the index of iteration.
For the logistic map, we have

Dpes(hz,n) = F{{(z) — z, (3)

where Fy(r) = Az(1l — z) and n is the period of POs of interest. Fig. 1b gives an
idea of what the DirectD function looks like for A = 3.2 and n = 8. Note that
when we define n = 8, the function effectively includes the periods 4, 2, and 1
as well. We have used the method to calculate period 3 and period 1 POs for As
around the well-known Period-3 structure, and found that this cvele bifurcated
further into stable period-3 and unstable period-3 orbits. We don’t usually see
this additional branch in the bifurcation diagram (Fig. 1a). The reason is that
one of the branches that corresponds to the just-bifurcated cycle is unstable, and
therefore missing from the bifurcation diagram. The result is shown graphically

in Fig. 2a. The full bifurcation diagram (including unstable cycles - Fig. 2b) can
also be obtained by the method.

4 Conclusions

For the logistic map, we perform a simulation by choosing a uniform distribution
of 50000 points over the domain 0 to 1 and then iterating the map on each point

jogd g
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Figure 3: (a) Distribution function obtained from simulation of 50000 points at A =
3.25 where the cycle-2 dominates. {(b) at A = 3.6 where chaos is present. (¢) at A = 4.0
where chaos completely dominates and no stable orbits are present.

1000 times. A histogram with 1000 bins of these points is then obtained. At
A = 2.5 it is found that the histogram is dominated by the only stable cycle.
This domination of POs in the histogram can be seen more clearly in Fig. 3a at
A = 3.25 in which the period-two cycles and the single unstable period-one cycle
have a great influence. The situation when we have the mixing of chaos and
stable cycles is shown in Fig. 3b. Notice the shallow curve in the middle of two
sharp peaks. Fig. 3c gives the picture when all stable cycles disappear.
Analytical equations for the determination of properties of POs after knowing
their positions will be the subject of future investigation. Amnalytical formulas
that link the first derivative to the Lyapunov number are also waiting to be
found. One can also speed up the method by employing a different approach in
the simulated annealing part. Generalisation of this method to apply to two-
dimensional problems such as the standard map and the 2D Poincarg surface of

section for the flow of 2D Hamiltonian system is another very interesting avenue
for further work.
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Abstract

Generating the Bifurcation diagrams of the Logistic map is an easy computational task. The
mapping equation is very simple and the algorithm requires only the power of a desktop
computer. Nevertheless, the diagram is found to be very complicated. It is fractal and contains
a number of interesting structures apart from the well-known bifurcation route to chaos. One
example of such structures is the birth of the period 3 cycle which appears immediately afler
chaos. For this reason this structure can be clearly noticed in the diagram. There are other
structures of other periods tnn. But these structures are not obvious - they are hidden in the
diagram. By employing the DirectD method, these structures can be calculated easily and so
they are revealed. The prime cycles are chosen for detailed calculation. The structures found
by the method are very interesting. For no obvious reason, they appear in the diagram,
bifurcate, and disappear in the bifurcation diagram. The strength of the method is that -pecific
peniods can be chosen and it can also detect the unstable cycles. These unstable cycles are
needed to connect up the structures.

1. Introduction

I.1 The Logistic Map

[t 1s now widely known that simple mathematical models can possess very complicated

behavior. May [8] was one of the pioneers to point this out to the scientific society. The
difference equation of the form:

x ., = Ax (1 —-x)) (1)

was the first to be used to illustrate this point where x is the state variable having the domain
from 0 to I, A is the control parameter taking the domain from 1 to 4, and » is the index of
iteration. This equation is known as “the Logistic equation”. This equation can be used to
model various situations ranging ffom physics to biology. It also illustrates many of the
phenomena found in realistic models of physics [12].

Mathematically speaking, the Logistic map is a 1-dimensional map that has the nich
feature of nonlinearity. It has a bifurcation route to chaos. The most important thing is because
of its simplicity, it is widely used to demonstrate period doubling, n-period oscillation,

universality, and chaos. It contains many bifurcation sequences and has been explored in
detail since its discovery [5,8]
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1.2 Importance of cycles

It is known that although a system under consideration is chaotic. its POs are regular and
attainable. Therefore, knowledge of “Periodic orbits” (POs) in a chaotic system is the most
important key to understanding chaos in such a system. POs can be classified into 2 groups,
stable and unstable. It is easier to calculate stable POs numerically, and sometimes
analytically, than to calculate unstable POs. However, stable POs are much less used in
chaotic systems since one definition of chaos is that no stable POs exist. . .

Many researchers (e.g. [1,13]) are now using periodic orbits to compute semiclassical
eigenvalues of classically chaotic systems. Other researchers use POs to determine the fractal
dimension of a complicated strange attractor [10]. Diffusion rate in the standard map 1s also
found to connect with POs [4]. Cycies are the key structure of bifurcation diagram (fig.! and
. fig.4). For the Logistic map, special consideration was given to cycles. Very fine details of
cycles of many period were given in May [8].

1.3 Prime cycles

Prime numbers have always been special. It is widely noted that the period 3 emerges out .Of
chaos in the bifurcation diagram. Other prime period cycles such as period 5 are noted to exist
but buried in the chaotic bands of the diagram, therefore it is hard to observe those cycles. In
our work, we have revealed these structures and we discovered their convergence, by
numerical means, to the value of the control parameter 3.6786. In the following, the first
hundred prime numbers are presented.

23

29

2 3 5 7 11 13 17 19

31 37 41 43 47 53 59 &1 &7 71
73 79 83 a9 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
213 219 241 251 257 263 269 271 277 281
283 293 307 311 313 317 3131 337 347 149
353 359 167 373 379 3E3 389 397 401 409
419 421 431 4313 419 443 449 457 461 463
467 179 487 491 499 503 509 521 523 S41

Table 1 The first hundred prime numbers.

2. Cycle calculation

2.1 Survey of the methods

Up to now, there are a number of numerical tecﬁm'ques for calculating cycles or periodic
solutions for a system of ordinary differential equations and also for 2 map. Each technique
has its own advantages. The simplest method is to let the system execute until it reaches the
cycle. This method is called the “Brute-force method”[10] and just like mamy other
techniques, it has some advantages despite its simplicity. This method is easy to code in a
programming language and it is relatively general because it can locate many different types
of cycles (equilibrium point, cycles of period one or more). For the Logistic Map, cycles are
he results of the iteration of the map after having the transient removed by ignoring the first
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few hundred iterations. Nevertheless, the method has many problems. It obviously cannot be ..
used for conservative Hamiltonian systems since for such systems the state of the systems Wlll 3
never reach an asymptotic state and can go quasiperiodic. Next, the method is slow for hghtfy =
dampcd systems. Furthermore, in many cases it is not possible to say that the system has 3
reached an asymptotic state. Most importantly, the method can only locate stable cyles. '“

More sophisticated methods tumn the problem of locating their cycles into a boundary &4
value problem (BVP). This method is natural and is extensively utilised in bifurcation studxicms‘-
of dynamical systems (see for example [2,6]). The condition of a cycle for the BVP is: TR

x(7) = x(0) (2)

There are two standard methods for solving two point boundary value problems[12]: thc )
shootmg method and the relaxation method. They both, however, are unsuitable for chaotlc
systems in general since the orbits are bound to be complicated, highly oscillating, which E
requires more time and more grid points. 13

prend

2.2 DirectD method and Prime cycles |

Calculation of unstable POs is more difficult. A method called DirectD method was
developed [7]. This method can be applied generally to maps and Poincare surfaces of section.
[n the present work, this method was used to compute both stable and unstable POs of thc :
Logistic map. For the Logistic map, a function D, , which we call the DirectD function, ca.q

e defined by

SRS S PP - P

D, (A x,n)=F'(x)—x ’- 3)

where n is the period of POs, F represents the mapping function, A is the control parameter
aind x is the state variable, and F](x)= F,(...ntimes...(x}). For the Logistic map
F, (x) = Ax(1— x) . POs result from the condition that simply requires the function to be zero.
Fig.2 gives an idea of what the DirectD function looks like for A = 3.2 and » = 8.

1.3 What are enclosed in Period »n DirectD calculation?

(n order to calculate unstable cycles, there is a price to pay. The DirectD function has one
major drawback. It cannot separate period 4 from period 8, nor cannot separate period 5 from
10. To determine the period of the output from the method is not difficult. Making the
drawback into a slight inconvenience. We simply need to generate the possible period
sequence and test the output one by one from the lowest to the highest period, ». It is also
possible to test their stability property at the same time.

The other soiution is simpie. We just concentraie our caicuiation on prime cycles,
since one drawback of this method is that it finds all the lower period cycles that can are

fractions of the given period. By focusing on primes, we then rule out this problem for the
calculation,
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3. Cycles

3.1 Existence of period 3

It can be seen from the bifurcation diagram (Fig.l) that for A in the range 3.8284 to 3.8495
there is a stable period 3 solution. What is not seen is the other period 3 solution that exists
but it is unstable. Even though they both seem to originate from the same origin, their
behavior is completely different. The stable one undergoes period doubling, just like another
Feigenbaum sequence, while the unstable just continues to exist for the rest of A. This resuit is
obtained analytically and shown in Drazin [3], but the more complete result is shown here in
fig.3. The visibility of this period 3 cycle leads to the discovery of other prime and interger
period cycles that are buried in the bifurcation diagram.

3.2 Low period prime cycles and the hidden skeleton

Fig.4 is the structure of POs period 8 4 2 1 that is hidden in the bifurcation diagram. The birth
of some structures can be clearly noticed and these are regular structures in chaotic region.
May [8] mentioned that the birth is produced by the tangent bifurcation process while the birth
of 2" cycles in the main bifurcation sequence before the critical value of the controlling
parameter (A.) is caused by the pitchfork bifurcation process.

The appearence of period 3 right after the Chaos at A around 3.8284 is very appealing.
It makes one wonder if this situation happens for the other prime cycles, or does it just
happens for this special cycle. By using our method we can reveal this prime structures at
ease.

The results for other prime cycles show that they exist (but undergo unstable) to A
equals to 4. Thus, this can be treated as numerically proof of the complete chaotic state at this
value of A where all cycles exist but unstable:

The more intriguing result is when we overlap the prime cycles on the same plot
stamng from low period that is period 3, 5, 7 and so on. We found geometrically that the
sequence of A when the first time these cycles exist should converge to a special value of A.
By calculating these numerical values of A for each cycles from the period from 3 upward, we
found that these As converge to 3.6786. Surprisingly this value of A is reported in May (8]. It
is the first A where the first odd period cycle appears. Together with our result, we conclude

that the first odd cycle must have a very high period (infinity?). Numerical values of these As
are shown in Table 2 and plotted in Fig.6.

period _the first appearing A
3 3.828258
5 3.738068
7 3.701481
11 3.681572
13 3.679700
17 3.678679

Table 2 First appearing values of A for the prime cycles.
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4. Conclusion

To sum up, we have explored prime cycles structures in the bifurcation diagram of the
Logistic map. Some of the results accidentally confirm the first value of A where the first odd
cycle exist which was reported by May [8]. Further work includes (1) calculation of
Feigenbaum numbers using the DirectD method and (2) exploration of the fine siructure in the
bifurcation diagram more in detail. Then, the result can be compared with the result reported
in Metropolis, Stein and Stein [9].
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1. Bifurcation diagram of the Logistic map.
2. An example of Dpes plot for the Logistic map for period 8 and at A = 3.2.
3. The hidden bifurcation of period-3 cycles.
4. Structure of Period 84 2 1.
5. Structure of Period 1 3 5 7. (a) Period 3 (b) Period 5 and (c) Period 7.
6. Convergence of the sequence of the first apperence A of some prime cycles.
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Homoclinic Tangle Visualisation

Krisanadej Jaroensutasinee,
School of Science. Walailak University
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strﬂct
is proved mathematicallv that Homochinic Tangle (HT) 1s the source of chaos in nonlinear

_;tabie m:mumd and unstaple manifold causes this. It 1s possibie 10 make HT visibie in some
~ctems such as Henon Map by continuously iterating the map in which we choose manv
tial conditions that iie on the desired stable manifold. This method works well except it

pljed to the Standard Map (SM) and with slight improvement, this method can make HT
ery clearly visible. More over. global behaviour of the map at any value of K can be seen
th this same method. Pernodic orbits structure 1s also visiole. This 1s possible because both

[

global" behaviour of chaotic Hamiltoni:m svstems is certainlv noL an easy
" ‘Mau. the positions of noqlmeu: resonance in the phase sya . By using the Dt ru_LD Au\.uxOu. H
phase space Lqual t0 2 (these include the cases of 2d Poincare Su_rface of Section).

'¢2. Improving DirectD for 2 dimensional Map

The method of DirectD) is applicable effectivelv for the calculation of periodic orbits (POs) in
Eld dimensional systems [1.2]. Even though there is some references to methods similar to this
L method (see for example in [3]) but here I have improved the calculation in sense that it can
= help us 1o visualise the systems in a glebal view. The means we do not need to locate just one
!rparticular orbit but we calculate this tfunction for the whole domain. In this work, I calculate

3 this function for Standard Map (SM) in the all-possible domain of interest at any value of X

and then study the results. And unexpectly. this function gives the global picture of the

~dynamical behaviour of the svstemn automatically.

"?'

%2.1 DirectD Method of the Standard Map

“ The method begins with the definition of D, which [ called the DirectD function as the
followine - -

D K.g.p.m=0uiq.p)-q) ~(Plig.pri-pf




where 71 is the period of the orbit of interesi. QF. is the variabie ¢ afisr 2 iteration by the

mapping function of the Standard Map. Similarly. P¢ is the variable p afier the sap he

number of iteration with the same mapping functions. K is the control parameter of the suie

and by definition POs can be found by asserting the condition that requires this function §M

vanish. For SM the mapping functions are: to
p'=p+ Ksin(g)

" g'=(g+ p')mod2x

3. Results
Results are presenting in the following figures:

e ]

Fig. 1 The Standard Map.
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7.370 0.565
Fig 9. Homoclinic Tangle that appears in [4]

* 4, Conclusions

~ 1did the calculation for vanous values of K and found that periodic points can be seen clearly
2" in the plots. As we change K, we found that when A’ is increased to | where chaotic behaviour

2 e

oy

(B7ae can be found in some regions. The plots show the intricate structures of the cutting between
_‘-:;{F-.‘-‘.;'- stable manifolds and unstable ones very distinctively. These structures are known as
289 Homoclinic Tangle (HT) as shown in figure 3. In this figure one could see }'Ts in many other
=22 regions in the plot but these HTs appear in smaller (fractal) sizes such as in the region when
=% g has the value between 1 10 2 and p is between 2 to 3. Another region is when g is between

U@E -2to-1and p is -3 to —2. [4] has a plot showing orbits that lie on stable manifold to give the
& clue how HT should be appeared. However, the DirectD method visualises HT a lot more
B clearly.

= And for stable cycles one could see a hollow smooth region in which the centre is the
EEC exact location of the POs. Cutting the hole quasi-periodic orbits can be recovered. In
fer conclusion, this method visually gives global dvynamical behaviour of the system.
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Charged-particle orbits near a
magnetic null point

JAROENSUTARINEE* and G ROWLANDS

Pepactiment of Physics, Univepaty of Warwick Coventry €0V 7ALLL UK
(Hecerved 10 Januacy 20000

Abstract. An approximate analytical expression is obtuined for the orbits of a
h'ar;.,ed particle moving u a cusp magnetie held, The particle orbits pass close
o or through a reaion of zero magnetic ficld before being reflected 10 remons
'hcre the magnetic field 15 strong. Lumpnmm with nunterically evalunted
‘Orbltb shows that the analvtical formula s surprisingly good and captures all
; _'thc‘ man teatures of the partice motion. A map desceribing the long fime

hehaviour of =uch orbits 1s obtaimed,

motion ol clirsed particles i spatially varvimg magnetic felds has
[ . . T ’ ; - :
C(‘(‘I\'t‘d a ffn-'m arnounl of u.Llc-ann Precnnse ut 1t~ r‘f‘]t‘\'ilnt't‘ Lo pl-:qmn tu=sion

&mphﬁ 117 :Lb\\lll[][ll-LUH. W l‘.lth 5 gmui when Lht, ratio of thc Larmor I'-U]IUH Lo
:)\‘: seale ten; 'th deserthing the spatial varatinon of the m,;_um_-n_(: Iwh]..c, 1= small,
ENE s that the so-cialied achalmtu invariant s 15 constant. This l.nltnl“dl:l.tvl}' lesuls
5- .0 ‘an explanation ot charged-particle containment in the Van Allen radiation
; f]L"{ and in muagnetic mirror fusion devices. For Larger values of ¢, it has been
‘und that the acdiabatic invariant undergoes jumps Ay where g changes rapidly

in JusL a few Larmor periods in wpuual rcglon:: of syrmetry, but otherwise /; 18

He () before i jump 10 the valucs (,u“l 1 Pa. i) after a jump. Hcro 0 19 an u.nble
tpecifying the Larmor phase of the particle. It is found that, to a reasonable
grapproximation (terms of order exp(—2/c) being neglected), that one can write

3 fones = fhn+Bp 080,

twherse, of course, Ag is a function of x,. In many applications, it ix sufficient to
. estTict attention to changes in 4 that are small, so that one may lincarize the
va.luv of x#, awbout a chosen mean. Then the ahove cquation reduces to

Sty = Spig + R conél {1

Al

Un+l = Un+6#n11' (2)
* Present address: Walaik University, Thailand.
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In the above, A is a constant whose valuc is determined by the field
configuration and energy of the particle.
The above map (du, 0) is the Chirtkov map, and 15 used to study the long-time
behaviour of newrly adiabatic particles in spatially vacying magnetic fields. For 2
sufficiently small values of A, it is [ound that the particle maotion is such that
i changes periodically about a constant value (superadiabatic). For lacger .
values. the motion can become chaotic; and for suthciently large values, the
motion of the charged particle can be understood in terms of a diffusion in 54
momentium  space  with diffusion coefhcient  proportional to exp(—1/e).
Nimnerous examnples of this tvoe of behaviour have now been studied 1o detail, f4
and arc described in the book by Lichtenberg and Lieberman (1983). 2

Tt must be stressed that the direct numerical solution of the particle-orbit -
equations becomes prohibitively expensive in mg ichine time because one has to
follow the particle around its Larmaor orbit, wherecas it 153 the motion of the
guiding centre that is reailv needed. Adiabatic and weakly non-adisbatic 3
theory overcome this problem by essentially introducing a suitahle averaging ?
procedure to remove the fast motion sssoctated with motion about the Larmor
orbit.

However, the whole theory is totally inadequate 1f, during its motion, a
particle can move in a region where the field strength is small or even zero. An
example of such a field is the two-dimensional cusp deseribed by the vector
potential A = ryk, where k 1z a unit vector along the z axis. For such a {4,
B = (x, —4,0), and the motion of a charged particle in this ficld is governed by
the reduced Hamiltomun (Jarovnsutasinee and Rowlnnds, 199:4)

[T = 3£+ +(Q—xy)?}, (3)

where ¢ is 4 constant proportional to the z component of the momentum and
#=dr/di. An immediate consequence of the constanc v of 11 (whlch in the _:- ;
following we normalize to }} is that the particle motion is confined to regions i
between the curves y = (@ +1)/x. Thus, for @ > 1, the particle is excluded from - -
- the origin, the position of the zero of the ma.gnetl( field. Tor @ > 1, adiabatic
theory apphes and the value of the ]ump Ap was gwen 80mo tlme ago by
" Howard (1971)7 A typ:cal otbit is khown in Fig.. 1(d). - T
“For @ < 1, the origin is no longer excluded, and® pa.rtlc]e orbits may pass
through or close to.the. zcro-magnetic-feld region. Some typical orbits are
“ghown in Fig. 17 A suhset of these orbits (Figs 1a, b}’ are such that they remain - -8
“¢losc to the x axis, and it is for this type of orbit that we now develop a novel .
a.na.lytlcal approach. The cuse Q = () is developcdm detail, n.lt.hough ‘the method -,
mapphcabie:‘tOdllQ<L o 3 e e L
:Ifhe exa,ct equatnons of motnon are, mmply R

- - dt;c=-—-17y:,.- - ﬁ=—x"y,

d“l .

“hxlst the adiabatic invariant g (the ratio of the perpendicular kinetic energy
to the magnitude of the’ magnetic field) is given by

. . |
Jz ?W[(ﬁ+ﬂy)’+rzy’(rz+y’)]- Co ()




6 :
@ ®)

Flgure 1. Typu,a.l orbits in the lmca.r cusp ficld: {a) @ = 0 (b) 0.4; (c} 04; (d) Dotted lines

Q:t /=
¢ Tur the tvpe of orbit undcr dmcusmon we write y = g(x) and take g to be a

T nonotone function of x. Thpp using the GQUdtIOIlb of mot,lon we find tha,t /]
sa.tlsﬁes thc fo]lov_',mg dxﬂ'erentm] equatlon. -

e -here. nndB are constant.s a.nd J -1’, ]
i) que.ver, such. &solutlon forallzis Lota.lly ma.ppropn&te., smce it ex;:_ludes the o

% bility 6f the: particle bemg reflected:in: regioris.of high: ma;:gnetl field (large " .
.2);“which is. clesrly the case as shown it Figs 1. On the-othei hand; ity in'such -

“‘T‘m.eg'mns that adiabatic: t,heory ia valid? Thusfin, the: following:"we obtain, an."

Fe ppmxmate snalytical expression forthe WhOIﬁ—OI’blt of aparticle by combmmg

’“t’:heabove form,. valid-for small , Wlth a.n expressnon va.hd foc_large a:,

1
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