บทคัดย่อ

Project Code : PDF/01/2541

Project Title : การสะสมน้ำตาลและโพรลีนในข้าวสายพันธุ์ทนแล้งสายพันธุ์ใหม่ที่ได้จากการผันแปร

ของเซลล์ร่างกายในหลอดทดลอง

Investigators :ศุภจิตรา ชัชวาลย์

ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address : Supachitra.C@chula.ac.th

Project Period : 1 กรกฎาคม 2541 – 30 มิถุนายน 2542

Objectives : 1. เพื่อเปรียบเทียบความสามารถในการสะสมน้ำตาลและโพรลีนในข้าวสายพันธุ์ทนแล้ง

ที่ได้จากsomaclonal variation ของข้าว กข.23 กับข้าว กข.23 สายพันธุ์ดั้งเดิม

2.เพื่อศึกษาว่าการสะสมน้ำตาลและโพรลีนในข้าวสายพันธุ์ทนแล้ง และ กข.23 มีการ

ดอบสนองต่อภาวะแล้งอย่างไร

Methodology:

ในการวิจัยครั้งนี้ จะทำการศึกษาการสะสมน้ำตาลและโพรลีนในดันกล้าข้าว ซึ่งมีอายุ
ประมาณ 2 - 6 สัปดาห์ ในภาวะแล้งทุกสัปดาห์ ซึ่งช่วงอายุดังกล่าวถือว่าเป็นช่วงที่กล้าข้าวมีความ
sensitive ต่อความแล้งมาก โดยจะเปรียบเทียบความสามารถในการสะสมน้ำตาลและโพรลีนของข้าวสาย
พันธุ์ทนแล้งที่คัดเลือกได้จาก Somaclonal variation กับข้าว กข. 23 ซึ่งเป็นพันธุ์ดั้งเดิมของข้าวทนแล้ง
ชุดนี้ วางแผนการทดลองและวิเคราะห์ผลการสะสมปริมาณน้ำตาลและโพรลีนแบบ factorial in completely
randomized design โดยมีจำนวนซ้ำ (replication) อย่างน้อย 6 ช้ำ

Results:

ในสภาวะแล้ง ข้าวสายพันธุ์ทนแล้งที่คัดเลือกได้จากการผันแปรของเชลล์ร่างกายในหลอดทุดลองมี ความสามารถในการสะสมโพรลีนได้สูงกว่าข้าว กข 23 สายพันธุ์เดิมประมาณ 3-4เท่า และสามารถสะสมน้ำ ดาลสูงกว่า กข23 ประมาณ 1.6 เท่า แต่ในสภาวะปกติ ข้าวทุกสายพันธุ์ที่ทำการทุดสอบมีความสามารถใน การสะสมน้ำตาลและโพรลีนไม่แตกต่างกัน

Discussion Conclusion:

ในสภาวะแล้งข้าวทุกสายพันธุ์ที่ทำการศึกษามีการสะสมทั้งโพรลีนและน้ำดาลในใบสูงกว่าข้า สาย พันธุ์เดียวกันที่มีการเจริญในภาวะปกติ แต่ข้าวสายพันธุ์ทนแล้งมีความสามารถสูงกว่าในการสะสมสารทั้ง สองชนิด อย่างไรก็ตามความสามารถในการสะสมสารเหล่านี้มีอยู่ในระยะเวลาจำกัดคือประมาณ 5 สัปดาห์ ภายใต้สภาวะแล้ง จากนั้นกล้าข้าวส่วนใหญ่จะไม่สามารถอยู่รอดต่อไปในสภาวะแล้งได้

ความสามารถในการทนแล้งที่มีความสัมพันธ์กับความสามารถในการสะสมสารที่เป็นตัวถูกละลายที่ สูงขึ้นนี้สอดคล้องกับงานวิจัยที่พบในพืชอื่น เช่น ยาสูบ อัลฟัลฟา และข้าวฟาง เป็นต้น

Suggestion/ Further Implication/ Implementation : การทราบ kinetics ของกลไกการตอบสนองของ การทนแล้งนี้จะนำไปสู่การศึกษาชีววิทยาระดับโมเลกุลของการทนแล้งต่อไป

Keywords: drought tolerant, proline, sugar, solute accumulation, rice

Abstract

Project Code: PDF/01/2541

Project title: Sugar and Proline Accumulation in New Drought Tolerant Rice Cultivars, Obtained

from Somaclonal Variation In vitro

Investigators: Supachitra Chadchawan

Department of Botany, Faculty of Science, Chulalongkorn University

E-mail Address: Supachitra.C@chula.ac.th

Project Period: 1 August 1998 – 30 June 1999

Objectives: 1. To compare the proline and sugar accumulation ability in drought tolerant rice lines, obtained from somaclonal variation in vitro with the same ability in the original rice line, RD23

 To determine the response of proline and sugar accumulation of the drought tolerant rice lines and the original line, RD23 during the drought stress

Methodology: The levels, of proline and sugar accumulation in 2-7 week-old rice seedlings, grown under stress condition, were determined every week. At this stage, the rice seedlings are very sensitive to drought stress. The comparisons of the proline accumulation level and sugar accumulation level in each rice line were statistically analysed, using the factorial in completely randomized design with 6 replicates.

Results: Under drought stress, the drought tolerant lines, selected from somaclonal variation in vitro of the RD23 rice callus, showed 3-4 fold higher level of proline, and 1.6 fold higher level of sugar, than the original line did in the same growing condition. However, at normal condition, every rice line showed no significant difference in proline and sugar accumulation ability.

Discussion Conclusion: The higher proline and sugar accumulation levels could be detected in leaf tissues of every drought stressed rice line, when compared to the levels detected in the leaves of the same plant line, grown under the normal condition. However, the drought tolerant lines showed the higher levels of both solutes than the original rice line. The ability in accumulating the solutes of these plants lasted in 5 weeks under stress condition. After 5 week period, most rice seedlings could not survive under drought condition.

Drought tolerant ability that shows the correlation with the solute accumulation performance was also found in other plant species, for example, tobacco, alfalfa, and sorghum.

Suggestion/ Further Implication/ Implementation: The kinetics of drought response mechanism from this research will lead to the molecular study of drought tolerance in rice.

Keywords: drought tolerant, proline, sugar, solute accumulation, rice