- Massacci, A., Battistelli A., Loreto F., 1996. Effect of Drought Stress on Photosynthetic Characteristic, Growth and Sugar Accumulation of Field Grown Sweet Sorghum. Australian Journal of Plant Physiology 23: 331 340.
- Muller, J., Sprenger, N., Bortlik, K., Boller, T., Wiemken, A. 1997. Desiccation Increase Sucrose Levels in *Ramonda* and *Haberlea*, Two Genera of Resurection Plants in The Gesneriaceae. Physiologia Plantarum 100: 153-158.
- Mumtaz, S., Naqui, S.S.M., Sheereen, A., Khan, M.A. 1995. Proline Accumulation in Wheat Seedlings Subjected to Various Stresses. Acta Physiologiae Plantarum 17:17-20.
- Premachandra, G.S., Hahn, D.T., Rhodes, D., Joly, R.J. 1995. Leaf Water Relations and Solute Accumulation in Two Grain Sorghum Lines Exhibiting Contrasting Drought Tolerance. Journal of Experimental Botany. 46:1833-1841.
- Pugnaire, F. I., Endolz, L.S., and Pasdos, J. 1994. Constraints by water Sircss on Plant Growth. In Handbook of Plant and Crop stress. M. Pessarakli (ed.) pp. 247 257. Marcel Dekker Inc. New York.
- Sabry, S.R.S., Smith, L.T., Smith, G.M. 1995. Osmoregulation in Spring Wheat under Drought and Salinity Stress. Journal of Genetics and Breeding. 49: 55-60.
- Schubert, S., Serraj.R., Plies-Balzer, E., Mengel, K. 1995. Accumulation in N₂-fixing Alfalfa (*Mandicago sativa*). Journal of Plant Physiology. 146:541-546.
- Shinozaki, K. and Yamaguchi-Shinozaki, K. 1997. Gene Expression and Signal Transduction in Water Stress Response. Plant Physiology. 115:327-334.
- Taiz and Zeiger 1991. Stress Physiology. In Plant Physiology. The Benjamin/Cumming Publishing Company, Inc. Redwood City, USA.
- Tsuchiya, M., Munandra, Ogo, T. 1992 Growth Response of Rice Oryza Sativa L. to Drought
 II. Variatal Difference in Transpiration Under Water Strcss and Its Related Plant
 Characteristics. Japanese Journal of Crop Science 4: 676 682.
- Tyankova, L. 1980. Control of Proline, Free Amino Acid Total and Proline Nitrogen and Sugar as Function of The Time and Degree of Drying of Detached Tobacco Leaves. Soviet Plant Physiology. 27 (4):610-616.

Output ที่ได้

ผลงานวิจัยนี้ได้รับการ accepted ให้เสนอใน poster session ของการประชุมวิชาการ International Botanical Congress ครั้งที่ 16 ในหัวข้อเรื่อง

The Solute Accumulation: The Mechanism for Drought Tolerance in New Thai Rice (Oryza sativa L.) Cultivars.,

(Montakarn Vajarabhaya, Thavorn Vajarabhaya, Warunya Kumpun and Supachitra Chadchawan) ซึ่งจะจัดขึ้นระหว่างวันที่ 1-7 สิงหาคม 2542 ณ เมือง St.Louis ประเทศสหรัฐอเมริกา และกำลังอยู่ใน ระหว่างดำเนินการจัดทำเอกสารเพื่อ submit ต่อ วารสาร Plant Cell Report

ภาคผนวก

The Solute Accumulation: The Mechanism for Drought Tolerance in New Thai Rice (Oryza sativa L.) Cultivars.

Monthakan Vajarabhaya, Thavorn Vajarabhaya, Warunya Kumpun, and Supachitra Chadchawan

Dept of Botany, Faculty of Science. Chulalongkorn University, Bangkok 10330 Thailand.

Abstract

Four new Thai rice cultivars were selected from somaclonal variation in vitro. They had been selected under the drought pressure for 5 generations before the progenies were used for the experiments. After five weeks in the nutrient solution containing 150g/L.

PEG, the six week-old drought tolerant seedlings performed approximately 4 fold increasing in sugar content, while the original drought sensitive line had only 2.5 fold increasing, when compared to the non-stressed plants. Profine content was also determined in these rice lines. When the seedlings were grown under the drought condition for five weeks, nine to fifteen fold increasing in profine content was detected in the drought tolerant lines, while the original line showed about five fold increasing in profine content. These data suggested that the better ability in solute accumulation contributed to the better performance in drought tolerance of these new Thai rice varieties.

Introduction

Plant growth and productivity are negatively affected by water stress and other environmental stress (Boyer, 1982). Genetic improvement of water stress tolerance is important to agricultural plants.

Dehydration tolerance has been investigated using three main approaches in plants:
examining tolerant systems, such as seeds and resurrection plants, analyzing mutants from
genetic model species, and analyzing the effects of stress on agriculturally relevant plants
(Ingram and Bartels, 1996). The elucidation of how plants tolerate to water stress leads to crop
improvement in the future.

Water loss from plant tissues under drought conditions results in growth inhibition and in a number of other metabolic and physiological changes. These include ABA accumulation (Mansfield and McAinsh, 1995), stomatal closure (MacRobbie, 1991), changes in leaf water potential (Premachandra et al, 1995), the decreased photosynthesis (Hsiao, 1973) and solute accumulation (Skriver and Mundy, 1990; Bray, 1991).

It was proposed that metabolite accumulation is one of the mechanisms for stress tolerance (Ingram and Bartels, 1996). Several solutes can be accumulated for osmoprotectant, such as proline (Mattioni et al, 1997; Irigoyen et al, 1992; Griousse et al, 1992), glycine betaine (Bohnert et al, 1995). And sugars (Premachadra et al, 1995; Pelah et al, 1997; Irigoyen et al. 1992).

Here, we demonstrated that four new drought tolerant rice lines, originated from somaclonal variation in vitro, have better ability in solute accumulation than the original line.

Thus, it leads to their drought tolerant property.

Materials and Methods

Plant Materials

Five rice (*Oryza sativa* L.) lines were used for all experiments. Four of them were drought tolerant lines, selected from RD23 regenerated seedlings *in vitro*. RD23 rice plants were induced for callus formation, then the calli were regenerated to the whole plants *in vitro*. Seeds produced from these *in vitro* regenerated lines were used for drought tolerant selection in later generations. It was expected that genetic changes resulted from somaclonal variation *in vitro* during the plant tissue culture process led to the drought tolerant character.

The original line, RD23, obtained from Rice Department, Thailand, was used as a control in all experiments.

Selection for drought tolerant lines

Drought tolerant lines were selected under artificial drought stress condition using polyethylene glycol 6000 (PEG6000). Seven day-old seedlings, with 1 centimeter-long coleoptiles were grown in the modified WP (Vajarabhaya and Vajarabhaya, 1991) nutrient solution, containing 150 g/L PEG6000, under 1500lux light intensity, 12/12 photoperiod, at temperature of 31-33 degree Celsius for one month. Within this growing condition, the original line, RD23 has approximately 3% survival, while the regenerated lines, having higher percent survival, were considered as drought tolerant lines. The seedlings, survived from the drought stress, then were sand grown and supplemented with modified WP nutrient solution, in the greenhouse for seed production. The progeny of each drought tolerant line was further selected in the drought condition as above for 4 generations. Seedlings of three independent drought tolerant lines, and one sibling tolerant line, RD23A1, RD23B1, RD23C1, and RD23B2, obtained from the last selection, were used for the experiments.

Proline and total soluble sugar measurement

Free proline was quantified in leaf tissues, according to Bates et al (1973), and total soluble sugar (TSS) was determined by anthrone method (Irigoyen et al, 1992).

Experimental design

The solute concentration determination experiment was designed for Factorial in CRD (Factorial in Completely Randomized Design) with six replicates. Five rice lines, which were four of the drought tolerant lines, and the original line RD23, were used for testing. Seven-day old seedlings, with 1 cm. long coleoptiles were subjected to drought stressed condition as used for the selection. Determination of solute accumulation in leaves was done once a week for six weeks. Seedlings grown in the nutrient solution without PEG6000 in the same condition were used as controls. After six weeks in the stressed condition, seedlings were transferred to the normal nutrient solution, and the solute measurement was done after growing in the non-stressed condition for a week.

Statistical Analysis

Each solute concentration was subjected to analysis of varie4nce, and Duncan's New Multiple Range Test (DMRT) was used to test for differences among lines under stress or non-stress condition.

Results

Drought tolerant lines have the higher survival rates in drought stressed condition than the original line.

Seedlings of drought tolerant lines and the original line, RD23, are similar when growing in the non-stress condition. However, drought tolerant lines showed the better characters after a month under drought stress as shown in Fig.1. Most of the RD23 died after one month of drought treatment. Only 3-5% seedlings survived with green leaves. The fifth generation seedlings of drought tolerant lines, RD23A1, RD23B1, RD23B2, and RD23C1 had drought survival percentage of 99, 71, 55, and 64, respectively.

Without drought stress, all rice lines showed no difference in solute accumulation.

After one week-old seedlings were subjected to the modified WP nutrient solution without PEG, proline and TSS levels were determined every week for six weeks. The results were shown in Table1 and 2. No significant difference of proline accumulation level was detected among lines. The similar result was also observed with the TSS level data.

Table 1 Proline accumulation level (mole/g fresh weight) in rice seedlings grown in non stress condition for 6 weeks

Rice Line	Proline level (mole/g fresh weight)						
	Weeki	Week2	Week3	Week4	Week5	Week6	
RD23A1	4.37	3.53	4.13	4.81	4.81	4.77	
RD23B1	4.01	3.97	3.20	4.73	5.26	5.26	
RD23B2	3.45	4.45	3.37	4.13	5.30	5.09	
RD23C1	3.37	4.21	3.53	4.93	5.18	4.85	
RD23	3.97	4.37	4.21	5.05	4.61	4.61	

Fig. 1 Morphology of rice seedlings after one month of drought stress condition. From left to right, RD 23A1, RD23A2, RD23A3, RD23B1, RD23B2, RD23B3, RD23C1, and RD23

Table2 Total soluble sugar accumulation level (µmole/g fresh weight) in rice seedlings grown in non stress condition for 6 weeks

	Total soluble sugar level (µmole/g fresh weight)						
Rice Line	Week 1	Week2	Week3	Week4	Week5	Week6	
RD23A1	85.69	75.23	72.55	72.67	87.61	112.49	
RD23B1	80.81	72.84	69.35	67.55	85.63	110.22	
RD23B2	69.88	73.54	68.13	71.91	86.21	112.72	
RD23C1	70.05	87.78	66.33	75.69	90.98	108.19	
RD23	83.48	87.73	64.53	68.95	85.22	114.99	

Drought stress induced the increase of solute content in rice leaves

After a week under drought stress, all rice lines accumulated higher proline level than what grown in non-stress condition (Fig. 2). The data showed that the proline level had been increased for 5 weeks and then dropped down in the sixth week (Fig. 2 and Fig.3). The proline accumulation level in original RD23 was significantly different from what in the tolerant lines, when plants were grown in the same condition as shown in Table 3 and Fig.3.

The similar response was also observed when the total soluble sugar level was determined (Table 4, Fig.4 and Fig.5).

Table 3 Proline accumulation level (μ mole/g fresh weight) in rice seedlings grown in stress condition for 6 weeks

Rice Line	Proline level (µmole/g fresh weight)						
	WeekI	Week2	Week3	Week4	Week5	Week6	
RD23A1	7.62ª	15.69ª	20.59ª	32.52ª	72.95ª	60.5°	
RD23B1	7.1ª	17.22*	19.99ª	30.31	70.42	58.58ª	
RD23B2	6.9ª	17.46*	20.23*	31.87*	69.05*	59.18°	
RD23C1	7.1ª	16.58*	20.07ª	33.16ª	72.71	60.86*	
RD23	4.77 ^b	7.67 ^b	12.6 ^b	14.17 ^b	21.44 ^b	17.54 ^b	

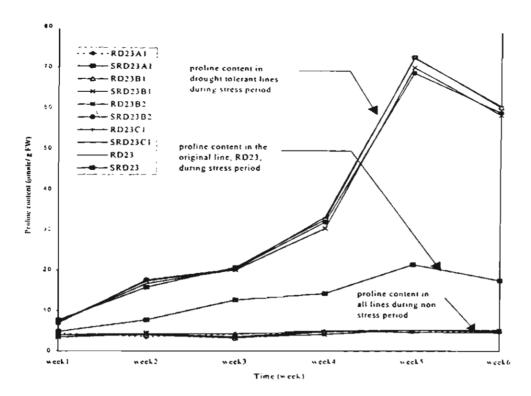


Fig. 2 The comparison of proline content (μ mole/g FW) in stressed and non-stressed plants during 6 weeks of the treatments.

Fig. 3 Proline content (μ mole/g FW) in drought stressed seedlings during 6 weeks of the drought treatment.

Table 4 Total soluble sugar content (µmole/g fresh weight) in rice seedlings grown in stress condition for 6 weeks

	Total soluble sugar level (µmole/g fresh weight)						
Rice Line	\ Week!	Week2	Week3	Week4	Week5	Week6	
RD23A1	162.37ª	158.59°	234.35ª	266.38ª	3.58.53ª	337.07ª	
RD23B1	135.80ª	131.44ª	.234.93ª	255.86ª	364.17ª	332.71ª	
RD23B2	155.75ª	153.25ª	225.80ª	250.62ª	343.82ª	326.90ª	
RD23C1	152.32ª	156.50ª	232.49ª	261.79ª	369.63ª	323.82ª	
RD23	100.11 ^b	100.05 ^b	117.14 ^b	179.93 ^b	194.17 ^b	213.13 ^b	

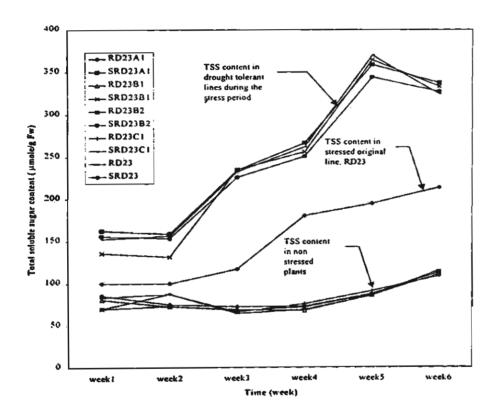


Fig. 4The comparison of total soluble sugar (TSS) content (μ mole/g FW) in stressed and non-stressed plants during 6 weeks of the treatments.

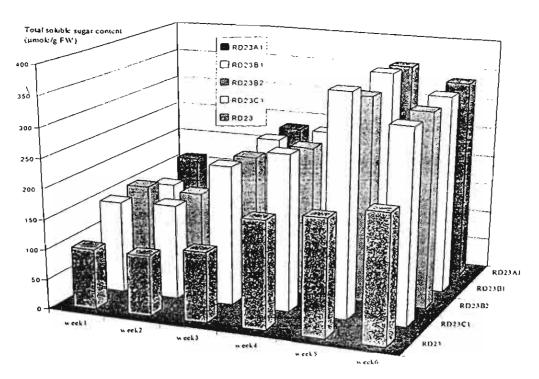


Fig. 5 Total soluble sugar content (μ mole/g FW) in drought stressed seedlings during 6 weeks of the drought treatment.

The solute concentration levels were decreased, when stressed plants were rewatered.

After six weeks under drought stress, all rice seedlings were moved to grow in the nutrient solution containing no PEG. A week later, the proline and TSS content in leaves were measured. It was found that the proline and TSS accumulation levels were similar to what found in the non-stress plants (Fig. 6 and Fig. 7).

Discussion

The proline and total soluble sugar accumulation, occurring during drought stress in rice seedlings is similar to the response in other species; for example wheat (*Triticum durum*) (Mattioni et al, 1997), sorghum (*Sorghum bicolor*) (Premanchandra et al, 1995) and alfalfa (*Medicago sativa*) (Irigoyen et al, 1992).

The drought tolerant lines accumulates up to fifteen fold of proline content after five week of dehydration stress while the original line, RD23 showed about five fold increasing (Table5).

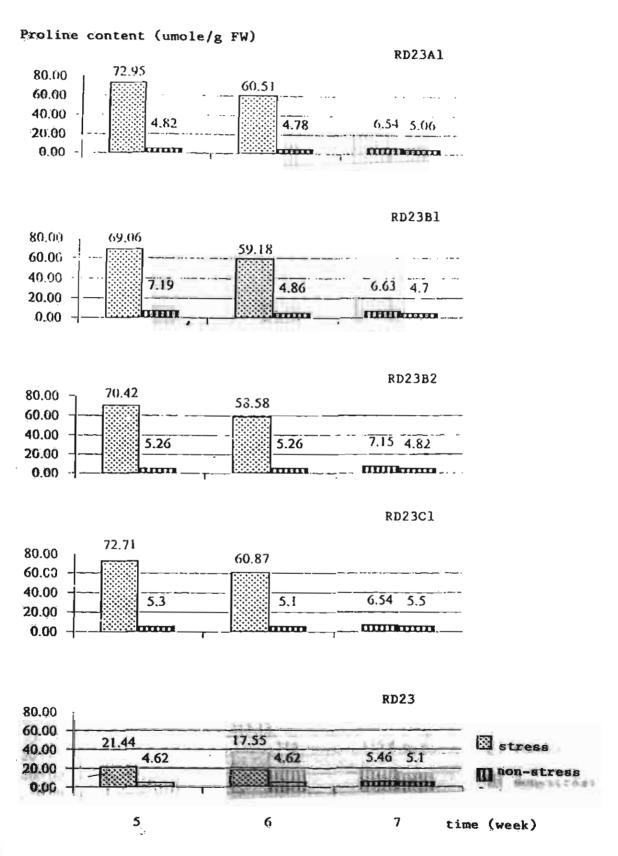


Fig. 6 Proline content in stressed and non stressed plants during week5-week7. After the sixth week, the drought stressed plants were moved out of the stress condition.

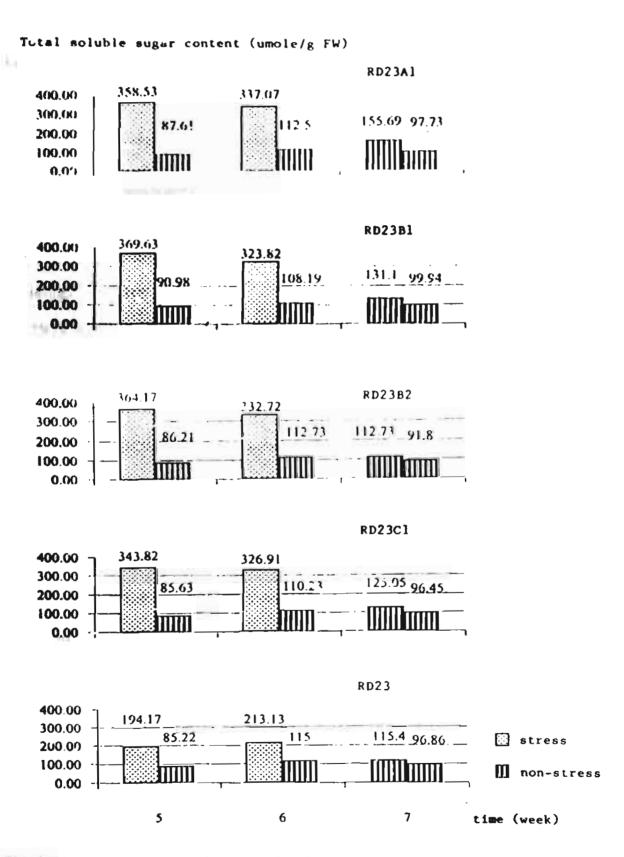


Fig. 7 Total soluble sugar content in stressed and non stressed plants during week5-week7. After the sixth week, the drought stressed plants were moved out of the stressed condition.

References

- Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
- Bohnert, H.J., Nelson, D.E., and Jensen, R.G. 1995. Adaptation to environmental stress. The Plant Cell. 7: 1099-1111.
- Bray, E. A.1991. Regulation of gene expression by endogenous ABA during drought stress. In Abscisic acid: Physiology and Biochemistry (W.J. Davis and H.G. Jones, eds), pp81-98. Bios Scientific Publishers, Oxford.
- Griousse, C., Bournoville, R., and Bonnemain, J. 1996. Water deficit-induce changes in concentrations in proline and some other amino acid in the phloem sap of alfalfa. Plant Physiology. 111: 109-113.
- Hsiao, t.C. 1973. Plant Response to Water Stress. Annual review of Plant Physiology. 4: 519-570.
- Ingram, J. and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants.

 Annual Review of Plant Physiology and Plant Molecular Biology 47: 377-403.
- Irigoyen, j.J., Emerich, D.W., Sanchez-Diaz, M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum 84: 55-60.
- MacRobbie, E.A.C. 1991. Effects of ABA on ion transport and stomatal regulation. In In Abscisic acid: Physiology and Biochemistry (W.J. Davis and H.G. jones, eds), pp153-168.
 Bios Scientific Publishers, Oxford.
- Mansfield, T.A.and McAinsh, M.R. 1995. Hormones and regulators of water balance. In Plant Hormones physiology, Biochemistry and Molecular Biology (Davies, P.J. ed.) pp 598-616.

 Academic Pub.

- Mattioni, C., Lacerrenza, N.G., Troccoli, A., De Leonardis, A.M., Di fonzo, N. 1997. Water and salt stress-induced alterations in proline metabolism of *Triticum durum* seedlings.Physiologia Plantarum 101: 787-792.
- Pelah, D., Wang, W., Altman, A., Shoseyov, O., Bartels, D. 1997. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 99: 153-159.
- Premachandra, G.S., Hahn, D., Rhodes, D., and Joly, R. 1995. Leaf water relations and solute accumulation in two grain sorghum lines exhibiting contrasting drought tolerance.

 Journal of Experimental of Botany 46: 1833-1841.
- Skriver, K. and Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress.

 The Plant Cell 2: 503-512.
- Vajarabhaya, M.and Vajarabhaya, T. 1991. Somaclonal variation of salt tolerance in rice. In Y.P.S. Bajaj, (ed.) Biotechnology in Agriculture and forestry. 14: 368-382.