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Abstract

Project Code : PDFI0O7/2541
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Project Period : 1 July 1988 — 30 June 1999

The problem of interest is the inverse time-dependent linear heat conduction
problem in one or more dimensions, which generally means the problem of determining
boundary heat flux from boundary or interior temperature measurements, The main ob-
jective of this research is to develop a computational method for solving the inverse
heat conduction problem that is both efficient and easy to implement. This research be-
gan with the review of previous relevant research efforts. A method with the potential for
further development was found io be the sequential function specification method. It
was found that by modifying the basis function and the stabilization scheme, the solu-
tions by the resulting method were more accurate and more stable than the solutions by
the original method. Another result from this research is the solution to the problem of
determining time-dependent heat transfer coefficient from temperature measurements.
The theoretical analysis of the solution showed that if there was variance in temperature
measurements, there would be not only variance but also nonlinear bias in the solution.
For multidimensional problems, the time-dependent formulation of the boundary element
method was developed, which resulted in an efficient method that was easy to imple-
ment. Future researches should focus on the experimental implementation of the
method developed in this research. At the moment, conventional measurements of heat
transfer coefficient are gquite complicated. The technique of determining heat transfer
coefficient from boundary temperature measurements has already been shown to be
computationally feasible in this research, experiments should be carried out to verify the
viability of this technique, which is more flexible and reguires a simpler setup than con-

ventional techniques.

Keywords : inverse heat conduction, Boundary element method



Executive Summary

The inverse heat conduction problem generally means a problem in which the
geometry of the problem, thermophysical properties, initial condition, and part of the
boundary condition are known. In addition, temperature measurement data are avail-
able. However, part of the boundary condition is unknown and to be solved for. Since
temperature measurements always contain random errors, the solution will contain
some errors too. The inverse heat conduction problem is ill-posed because small errors
in measured temperatures can cause large errors in estimated heat flux. There have
been several research works on finding methods that produce accurate and stable solu-
tions. The main objective of research is to develop an efficient computational method.

Afler reviewing most of the methods currently in use, it was found that the se-
quential function specification method appeared tc have the best potential to be devel-
oped into an efficlent method that is also convenient to implement in computer pro-
grams. The improvement of this method was accomplished by changing the basis func-
tion from the piecewise constant function to the piecewise linear function and using the
assumption of linearly varying estimated components over future times instead of the
assumption of constant estimated components over fulure times. Comparison between
the new method and the existing method in solving a one-dimensional inverse heat
conduction problem was made using computer programs. The new method was found
to be superior to the existing method because it was able to give a more accurate and
more stable solution without requiring more programming effort.

The method was used to solve the one-dimensional problem of determining
time-dependent heat transfer coefficient from temperature measurements. The solution
can be shown to be a nonlinear function of temperatures. If there were errors in tem-
perature measurements, the theoretical analysis indicated that the solution contained
not only variance but also nonlinear bias, which was the difference between the correct
estimate and the expected value of the estimate. The relations between both quantities
and variance in temperature measurements were given for the case when errors in
temperature measurements were normally distributed and uncorrelated. It was found
that both quantities increase monotonically with variance in temperature measurements.
However, it was possible to reduce the variance and the nonlinear bias by increasing
the ratio of the time step for heat transfer coefficient components o the time step for

temperature measurements.



An important quantity needed in solving the one-dimensicnal problem of deter-
mining "eat transfer coefficient is the analytical relation between boundary heat flux and
temperature. For the multidimensional problem, the analytical relation is available only if
the geometry of the problem is very simple. Generally, the numerical determination of
the relation between boundary heat flux and temperature is required. If temperature
measurements are taken at the boundary, the numerical method that should be used to
obiain this relation is the boundary element method because it relates boundary tem-
perature to boundary heat flux explicitly. The time-dependent formulation of the time-
dependent boundary element method was developed in this research, and used to solve
a sample probiem.

One possible application of the results of this research is in the employment of
the experimental technique for determining heat transfer coefficient from surface tem-
perature measurements. This technique requires the computational solution of the re-
lated problem, which can be obtained by using the proposed computational method.
Heat transfer coefficient is an important quantity in thermal design and analysis. Cur-
rently, its determination usually requires complicated experimental setup and expensive
instruments. Since the new technique has the potential to become a better alternative

for determining heat transfer coefficient, it deserves more research and development.



Background

A direct time-dependent heat conduction problem is characterized by known
thermophysical properties, initial condition, and boundary condition. The solution to
the problem yields temperature distribution. On the other hand, when part of the
boundary condition is unknown, and temperature measurement data are available, the
problem is known as the inverse heat conduction problem. Such a problem arises
when the boundary condition, which may be boundary temperature or boundary heat
flux, is to be determined, but direct measurements of boundary temperature or bound-
ary heat flux using sensors are difficult or impossible. Examples of situations when the
physical characteristics of the surface make it unsuitable for attaching a sensor or
when the accuracy of a surface measurement may be severely impaired by the pres-
ence of a sensor include measurements at the inner surface of a heat pipe, at the inside
of a ccmbustion chamber, at the outer surface of a re-entry space vehicle, and at the
tool-work interface of a cutting machine. In these situations, it is better to select loca-
tions accessible to sensors from which temperature measurements are taken, and de-
termine the desired boundary condition by solving the inverse heat conduction prob-
lem.

Whereas the analytical solutions of the direct heat conduction problem of
various geometries exist in the literature, there are very few analytical solutions for
the inverse heat conduction problem. The well-known analytical solution, given by
Burggraf [1], is for one-dimensional problem of determining boundary heat flux from
temperature measurement at one interior location. It reveals the dependence of
boundary heat flux on all orders of time derivatives of interior temperature and related
heat flux. One disadvantage of the analytical solution is that it requires the numerical
evaluation of these derivatives. Moreover, it is not applicable when the problem is
overspecified; i.e. when there are more than one temperature measurement. For such
a problem and f(;r multidimensional problems of complicated geometry, the numerical
method is generally appropriate. Since the numerical method often requires much
computation, the interests in the solution techniques have only emerged after the re-
cent advances in computer technology.

In applying numerical treatment to the inverse heat conduction problem, cer-



tain characteristics of the problem must be considered. The heat conduction process is
normally described by a parabolic differential equation. The nature of the equation is
such that effects from disturbances at the boundary are damped at an interior location.
Conveisely, effects of disturbances at an interior location are magnified as the un-
known boundary condition is calculated. This behavior of the inverse heat conduction
problem makes it an ill-posed problem. Since, in practice, disturbances in interior
temperature measurements always occur as a result of measurement errors, the nu-
merical method must be able to handle the ill-posed nature of the inverse heat con-
duction problem. This means that the principal aims of the numerical method consist
of not only accuracy (the small difference between the calculated solution and the
analytical solution) but also stability (the small sensitivity of the solution to errors in
input data). Early attempts at solving the problem resulted in numerical methods that
yvielded the solution close to the exact solution if there were no errors in input data
[2]. However, when the input data were corrupted with errors like those resulting
from statistical fluctuation, the solution was found to be unstable. In other words, the
accuracy of the solution diminished quickly as the errors in input data increased.
Modern numerical methods are therefore designed to produce stable solutions. Un-
fortunately, the two aims are often in conflict [3]. A good numerical method must
therefore allow a trade-off between accuracy and stability via the adjustment of one or

more parameters in the method.

Problem Description

Consider a solid object with part of its boundary I'; subjected to known heat
flux g’ and the remaining part of the boundary I'; subjected to unknown heat flux. Let
p denote density of the object, ¢ denote heat capacity, and k denote thermal conduc-
tivity. Suppose that all thermophysical properties are constant, making the problem a

linear one. The heat conduction process can be described by the following equations.

pe TCL) Sl ,00) ?
7'(7',0) = T 7



avVTE.) = g F.), (3)

0
where 7 is the cutward pointing unit vector normal to boundary Iy, and 75 is the ini-
tial temperature. Since the problem is linear, it is advantageous to nondimensional-ize
the problem. Let o be the reference length and 7, be the reference temperature (which
differs from Ty). Define 7 = 7'/r,, t = xl[per}, T= (T"-T)/(T. - T,), and g =
g'/x(T, - T,). The heat conduction process can then be described by the following

nondimensionalized equations.

e L gy @)
ot
7(7,0) =0 (5)
AVT(F, rjr} = g1, (6)
In order to render the problem solvable, the temperature measurements on I, are
specified.
T, ja) = 1Y ™

where 7 is a sensor position vector, Af is the measurement time step, and Y is

measured surface temperature at the sensor position and time jAs. Equations (4) — (7)
constitute the inverse heat conduction problem, which may be solved for unknown

heat flux components q;.[’ " at T,

Previous Research Works

Although the inverse heat conduction problem has been known for quite some
time, its significance was brought into attention by Beck et al. [3]. Since the appear-
ance of Ref. 3, there has been continuing progress in the inverse heat conduction re-
search. Some of the important previous works are reviewed below.
¢ Errors in temperature measurement can be divided into systematic errors, which

are due to calibration, physical presence of sensor, and conduction and convection
losces, and random errors, which are due to human errors, disturbances to the in-
strument, and fluctuating experimental conditions. For the purpose of analyzing

the solution, it may be assumed that systematic errors are well controlled to be



negligible so that only random errors are significant. Furthermore, Beck et al. [3]

proposed the following statistical descriptions of the errors:

1. Errors are additive,

2. Errors have constant variance, which is known.

3. Errors are uncorrelated.

4. Distribution of errors can be represented by the normal probability density

function.

The solution to the inverse heat conduction problem can be considered as the op-

timization problem with the objective function fbeing defined as
n M,

S o= X30-rty ®

e

where 1’;“ ) is calculated temperature, # is the number of time levels, and M, is the

number of temperature sensors. Note that since 7'} is a function of heat flux

components, f is also a function of heat flux components. The optimization of /
will therefore give heat flux components, which are the desired solution.

For one-dimensional problem with one sensor and unknown heat flux at one
end of the domain, Eq. (8) can be rewritten as '

f = Z":(T(J} _Y(I))l 9)
j=t
of which optimization yields qm, qm, q("). This method gives the same solution
as the Stolz method [2]. Hence, the solution is very sensitive to errors in tem-
perature measurements Yi“ ). In other words, the method produces unstable
solutions.

Beck et al. [3] argued that one reason why the Stolz method yielded unstable
solutions was that it did not take into account the effects of temperature meas-
urements taken in the future on the estimate of the heat flux component at the
current time_ level. They presented the sequential function specification method,

which used the following objective function.

n+r-|

/= Z (T(;) 4Y(J')]2 (10}
=1

where r is known as the future time parameter, and r > 1. The optimization of f

also gives n estimated heat flux components. The calculation of T,(” requires a



certain assumption regarding the unknown heat flux component q(""_l). Beck et

al. [3] assumed that

qwk) = q(") k=12,..,r-1) (11)

It was shown that although a larger r results in a more stable solution, it also re-
sults in a less accurate solution. Hence, the sequential function specification
method permits the trade-off between stability and accuracy via the future-time
parameter. An additional advantage of this method is that it is applicable when
more than one sensor is used.

Instead of fixing parameter r in the sequential function specification method,
Blanc et al. [4] allowed r to vary during the course of heat flux estimation. They
showed that a better solution might be obtained this way.

In Tikhonov regularization method [5], a penalty term is added to the objective
function in Eq; (10). This penalty term will become large when the estimated heat
flux, the derivative of the heat flux, or the second derivative of the heat flux is
large. The optimization of the modified objective function will therefore give a
stable solution. However, the solution will also be less accurate because of the
modification to the objective function.

Osman et al. [6] presented a method for solving the two-dimensional inverse heat
conduction problem. Their method combined the sequential function specification
method with the Tikhonov regularization method. The discretization scheme used
was the finite element method.

A different approach to solving the inverse heat conduction is provided by the it-
erative regularization method [5]. This method seeks to optimize fin Eq. (9) it-
eratively using the conjugate gradient method. The gradients of f, which are nec-
essary in the iterative scheme, are determined by solving the adjoint problem.
Since the fully optimized solution is unstable, a partially optimized solution is
solved for instead. The number of iteration will determine how close the solution
is to the fully optimized solution. Thus, it can be viewed as the adjustable pa-
rameter that influences the stability of the solution.

There are also methods that solve Egs. (4) — (7} without formulating the optimi-
zation problem as the above methods do. Among them, the well-known method is

the space-marching method [7, 8]. This method divides the domain into direct re-



gion, for which all boundary conditions are known, and inverse region, from
which part of the boundary condition is to be determined. The solution in the di-
rect region can be relatively easily obtained. The temperature measurement data at
sensor locations, along with the calculated heat flux at those locations from the di-
rect solution, are used as the starting input for the algorithm that calculates tem-
perature field along the front moving from the part of the boundary where sensors
are located to the part of boundary where heat flux is to be determined. The
space-marching method has been used to solve one-dimensional problems [3] and
two-dimensional problems [7]. In order to stabilize the solution, the digital filter
technique may be used to smooth the temperature data and their derivatives [7].
Other methods for solving the inverse heat conduction problem include the New-
ton’s method [8], the mollification method [9], the method of lines [10], the dy-
namic programming method [11], and control theory method [12], the genetic al-
gorithm [13].

Apart from the above methods, other contributions to the inverse heat conduction
research inciude the determination of heat transfer coefficients from solving in-

verse heat conduction problems [14-19].

New Developments from This Research

In Ref 20, the sequential function specification method was generalized. The
structure of this method was shown to consist of the basis function and the as-
suruption regarding the variation of heat flux over future time. In the classical se-
quential function specification method [3], the basis function is a piecewise step
function, and heat flux is assumed to remain constant over future time. A com-
parison among three algorithms having different basis functions and/or assump-
tions regarding the variation of heat flux over future time was carried out. It was
found that the algorithm, in which the basis function was piecewise linear, and
heat flux was assumed to vary linearly over future time, gave a more accurate and
more stable solution than the classical algorithm.

In Ref 21, the one-dimensional inverse heat conduction problem was solved for-

time-dependent heat transfer coefficient. The method used was the sequential



function specification method similar to the method described in Ref. 20. In addi-
tion to the future-time parameter, the method presented the ratio between the time
step of estimated heat transfer coefficient components and the time step of tem-
perature measurements as another tunable parameter. An increase in the latter pa-
rameter was shown to increase both the accuracy and the stability of the solution.
The estimated heat transfer coefficient was found to be a nonlinear function of
measured temperatures. As a result, when there were statistical errors in tem-
perature measurements, the estimate would contain not only deterministic bias but
also nonlinear bias.

In Ref. 22, the inverse heat conduction problem of determining time-dependent
heat transfer coefficient on the surface of a multidimensional body was consid-
ered. Since temperature sensors were located on the surface, the problem was
well-posed. The discretization scheme used was the boundary element method, for
which the time-dependent formulation was constructed. This problem has a prac-
tical significance because of the difficulty in measuring heat transfer coefficient by

conventional means.

Suggestion for Future Research

It was shown in Ref. 21 that an efficient numerical method was available for solv-
ing the inverse heat conduction problem of determining heat transfer coefficient.
Future research should be directed toward testing this new method for estimating
heat transfer coefficient from surface temperature measurements with experiments
and comparing the results with those obtained by conventional methods.

The inverse heat conduction problem described so far is also known as the bound-
ary inverse heat conduction problem. Another important problem that has a high
potential for applications and deserves more attention is the coeflicient inverse
heat conduction problem. Such a problem is characterized by known initial and
boundary conditions but unknown thermophysical properties. There have been
very few published works related to this problem [23,24]. One reason that makes
this problem a highly challenging one is the fact that the problem is nonlinear, and

an efficient numerical scheme must be devised to handle it.



Conclusion

The inverse heat conduction problem has been under continuing interest.
Many of the contributions in this research area have been new and modified methods
of solving the problem. The nature of this problem is such that there is a trade-off
between the accuracy and the stability of the solution. Each method usually offers at
least one parameter that can be adjusted to improve the solution. However, it is pos-
sible that one method may yield a more accurate and more stable solution than an-
other method. This was shown in Ref. 20. Therefore, the challenge of the inverse heat
conduction research is to keep finding the method that yields a more accurate and
more stable solution. Nevertheless, the computational efficiency of the method should
also be taken into consideration since it is almost certain that the method must be im-
plemented in computer programs. -
With a repertoire of solution methods available, the applications of the re-
search knowledge to real-world problems should be facilitated considerably. One such
application is the determination of heat transfer coefficient from temperature meas-
urements. Unlike conventiona! experimental methods, which require expensive and
complicated setup, the inverse method requires only temperature measurements,
which are less expensive and more flexible. The analysis performed in Ref. 21 showed
that care must be exerted when solving this type of problem because of the existence
of nonlinear bias. Further development of this technique should include experimental
verifications and comparisons with previous results. It will make this technique a reli-

able alternative way of determining heat transfer coefficient.
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COMPARISON OF THREE SEQUENTIAL FUNCTION SPECIFICATION
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(Communicated by J.P. Hartnett and W.J. Minkowycz)

ABSTRACT
Three algorithms for implementing the sequential function specification method of
estimating boundary heat flux in the inverse heat conduction problem are compared. They
differ from one another in the type of piecewise function used to describe the heat flux and
the assumed variation of heat flux over future time. The results of the comparison show that
the algorithm that makes use of linear piecewise function for the heat flux and assumes
lincarly varying heat flux over future time performs slightly better than the other two
algorithins. © 1999 Elsevier Science Lid

Introduction

The determination of heat flux or temperature at the boundary of an cbject given sufficient temper-
aturc measurement data inside the object is known as the inverse heat conduction problem (THCP). Since
the salution to JHCP does not depend continucusly on input data, JHCP is an ill-posed problem. Over the
years, much research has focused on determining a stabilized solution of THCP. Various methods for doing
so have been proposed [1-3]. Among these, a simple and sufficiently effective method is the sequential
function specification method {1]. For the determination of boundary heat flux, this method makes no as-
sumption about the variation of the boundary heat flux over the entire time domain, unlike some other
methods. Instead, it assumes that the heat flux is a piccewise function of time, and atiempts to obtain the
beat flux components sequentially at each time level. In doing so, it employs of measurement data at future
time, When only one measurement at the next time Jevel is used to estimate the heat flux component at the
current time level, the solution is generally unstable. However, the solution will become more stable as the
number of future measurements used in the estimation increases. Thus, the number of future data serves as

a stabilizing parameter.
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Although the sequential function specification method as described by Beck et al. (1) does not sti-
pulate the piecewise function to be assumed for boundary heat flux and the relation between heat flux com-
poncnts at futare time and the beat flux component at the current time, so far most applications of this
method have used a piecewise constant function for heat flux and assumed that heat flux components at
future time are constant, In this paper, the linearly varying piecewise function for heat flux and the linearly
varying future heat flux will be considered in the implementation of the sequential function specification
method. Three different algorithms will be compared to see whether a different algorithm will result ina
better solution of THCP than the commonly used algorithms

Sequentisl Function Specification Method
Consider a one~dimensional inverse heat conduction problem of the following dimensionless form:

ar{x,1) _ 871(x,1)

o - o’ )
T(x, 0) = 4 )
oT(x,1) _

ox x=| B ° (3)
Txg, ) = 5.0 . 4

where 0 <x; < 1. The solution to Egs. {1)+{4) will yicld heat flux atx = 0:

o7(x,1) _ A
‘TLO = g )

Although the analytical solution to Eqs. (1){(4) exists [4]. The expression for g(/) is quite complicated, re-
quiring higher-order derivatives of f{1). In praciice, temperatures at x, are measured sequentially at time in-
terval Af from Af to mAr. Designate these temperature by ¥,. Equation (4) is replaced by

T(xg, (AN = Y, (6
for 1 <i<m. As a consequence, the solution for heat flux at x =0 becomes

ar(x.iaf)| ]
--—H T qUiAs) ™

for | <7 <n < m. Since different functions 1) can produce the same ¥, in Eq. {6), it follows that g{/} in
Eq. (7) are not unique. Furthermore, ¥, are likely to deviate from “truc” temperatures duc to measurement
errors. The goal of a solution method for THCP is to obtain g(¢) that is a good approximation to g{#) and
not sensitive to temperature measurement Errors.

The heat flux may be assumed to be a piecewise function of time, From the Duhamel’s theorem, it
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can be shown that [1}

Y, = ji:}q;z--,+a {8
where the subscripts denote time indices. Suppose that beat flux components ¢, to ¢,., are known from
earlier calculations, and g, is to be determined in the next calculation. Equation (8) can be rewritten as

o= 2qz + 3920 ©

The sequential function specification method uses r future temperature measurements ¥, (where / ranges
from & to k + r — 1) 1o estimate q,. Equation (9) actually represents r equations with r unknowns {(g,. q,.,,
wes G ey} In order to reduce the number of unknowns to one, the relations between g4, 1, §yaz. o Fouroy
and q,, q,, ..., g, must be specified:

Qrey, = (g1, 92, 9e) forj=1,2, .,r-1 (10)
Equation (9} becomes ’

[+ P ) = Y- E:-‘L'B.—m.m ) (i1}
5=

fori =k k +1, ., k+r - 1. The coefficients a; and B, , depend on piecewise heat flux function and $.
Eguation {11) may be solved by the linear least square method to obtain the heat flux components g, (k=
1,2, .., 1)

To evaluate the stability of the solution vielded by the sequential function specification method, it
is useful to express ¢, in terms of only temperatures.

=]
9 = ‘ibhr]’l (12)
=i

Straightforward algebraic manipulation of Eqgs. (11) and (12) yields the following equation from which &, ,
can be determined:

S
=1

with . = : {14}

it

1 kgr=21 min(k-LE+r-1-4)
'icphlx - i{ djbkq'.:]ji (13)

=k =l y=t

and 4, = T (15)
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Variance and Deterministic Bins

Two measures of the quality of a solution to THCP are variance and detcrministic bias. Variance

measures the sensitivity of the solution 1o temperature measurement errors. Consider one such measure-

ment al time jAr when ¥, is the measured temperature, 7, i3 the exact temperature, and s, is the random
error.

Y, = T +g (16)

In order to evaluate the sensitivity of calculated heat flux to measurement errors, it is useful to make the

following statistical assumptions about the errers. Assume that measurcment etrors have a constant

variance:

Ve, = o un
and that the errors arc uncorrelated:

cov(E,.E ) = 1} fori#j (18)
It can then be shown that the variance in the estimated value of ¢, is

V4. = cr’*fbf., (19)

2=l
When measurements are error-free, ¥, = T, and the calculated heat flux should closely approximate the
truc heat flux. Deterministic bias D indicates how good the approximation is.

4 = Rl el eo

where i, is representative time between (7 — 1)Af and jA?. The vanance of an algorithm tells us how
sensitive the calculated heat flux is to measurement errors, and the deterministic bias of the algorithm
correlates with the accuracy of the algorithm. Both measures may be used to compare different algorithms
for IHCF [5, 6]. '

Description of Three rithms
Different algorithms for implementing the sequential function specification method result from
difference in (1) the function form of the piecewise heat flux g(f) may differ from algorithm to algorithm,
and (2) the assumed relations of future heat flux components (g1, 9402, -\ §y+r-1) 10 the beat flux com-
ponent g, that is being estimated. Three algorithms will now be described.

Alporithm |

The simplest form for g{¢) is the piccewise constant function.
g = 4, o fore, <i <y, n
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This function gives the following expression for Z,.
Z; = Ui(xian - U, (x.(-1)A0)

where

Uixn

t+ zicos(jmr]{l - e'j']"I'J

m )

Future heat flux components are assumed equal to the current heat flux component.

Qrer-1 T Guer-2 T = Ts
It can be shown that this assumption results in
a, = ZZJ fori=1,2,..,r
=1
and
P, = Z,. fori=1,2, .,r,andj=1,2, ., n-1
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22

@3)

(24)

23)

@6)

The resulting algorithm is the classic sequential function specification algorithm [1]. The pictorial

represemtation of this algorithm is shown in Fig. 1.

9 ittty
> £
RS o b
FIG. |
Pictorial representation of Algorithm {
Algorithm 2
Another simple form for g(r) is the piecewise linear function,
(f _ta-l)

a0 = a-gqa)gTm e foregsesy,
where ¢, = 0 This function gives the following expression for Z,.

zZ, = Us{x,it) = 2U(x(i-1)A1) + U, (z.(-2)A0)

where

@n

28
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oo W( .xe,)
—_— - x4+ = -2 ! R fart20
Uty = { { 3J 2 () ) } o 29
fors <0

Future heat flux components are assumed cqual 1o the current heat flux component as in Algorithm 1. Con-
sequently, Eqs. (25) and (26) give the expressions for &, and B, ;, respectively. The pictorial representation
of this aigorithm is shown in Fig. 2.

1
q0) v

[P TR R fey 1y

FIG. 2
Pictorial representation of Algorithm 2

Algorithm 3
The function form of g{/) is also the piecewise linear function shown in Eq. (27). However, future
heat flux components are assumed to vary linearly with a uniform slope. That is,
q}ﬂ' = ZQHJ-I - ?h.-z forj = l- 2! [N A i (30)
The pictorial representation of this algorithm is shown in Fig. 3.

q{7)

e 1 4 fea L

FIG. 3
Pictorial representation of Afgorithm 3

The expression for Z; in Algorithm 3 is identical with that i Algonthm 2. However, due to a different as-
sumption regarding the future heat flux components, the expression for o, and i, ; are different. Substinne
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Egs. (28) and (30} into Eq. (9}, and rearrange the result in the form of Eq. (11) to obtain a, and B.,-

a, = 5:;‘2_”, fori=1,2, . r 31
e
and, forj=1,2,..,n-1,
B = Z.~ 2*2.,, (32)
B, = Z,., G=1 (33)

Numerical Results

The problem used to test the three algorithms is deseribed by Egs. (1)-(3), (5), and (6), with the ap-
plied heat flux g(r) as illustrated in Fig. 4. The three algorithms are used to determine 100 heat flux compo-
nents between £ = 0 and £ = 1.2. Thus, time interval A = 0,012, The only adjustable parameter in each al-
gorithm is the nuiﬁber of future temperature measurements r. Therefore, the total number of measurements
needed to determing 100 heat flux components 1s 99 + r. Since small values of 7 result in unstable solu-
tions, they are excluded from the presentation of the results.

gn 1t

] Aererasarnaraianeian,

FIG 4
Applied heat flux as a function of time in the test problem

Figure 5 compares variations of maximum variance, V., = max,(¥(q,)), with parameter r from r
= 15 to 26 of the three algorithma. It can be seen that ¥, decreases monotically with r, Increasing » will
therefore lead to a more stable solution in each algonithm. An interesting result from this study is that
Algorithm 3 produces a significantly more stable solution than Algorithm 1 and Algorithm 2 at the same r.
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FIG. 5
Variation of maximum variance (Vm“fﬁ'z) with r at x, =0.3 for the three algorithms

Figure 6 compares deterministic biases {D), which are calculated using Eq. (20) with /, equal to
{1 - 0.5)Ar. As expected, D increases with r, meaning that the solution becomes less accurate as it becomes
more stable i_n cach algorithm. Among the three algorithms, Algorithm 3 appears to produce the most accu-

rate solution.

0.12

0.10

FIG. ¢
Variation of deterministic bias (D) with r at x, = 0.5 for the three algorithms

Finally, the calculated heat flux components obtained by the three algorithms at » = 20 are
compared with the actual heat flux in Fig. 7. It should be noted that all algorithms predicted a peak in the
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heat flux function before it actually occurs. The solution yielded by Algorithm 3 clearly resembles the ac-
tual heat flux more than the solution by Algorithm 1 or Algonithm 2.

1.0

0.8

0.6

0.4

Heat NTux

0.2

FIG. 7
Comparison between actual heat flux and calculated heat fluxes

Discussion

For the same accuracy, Algorithm 3 produces a more stable solution than Algorithm 1 or 2; and
for the same variance, Algorithm 3 also produces a more accuratg solution than Algorithm 1 or 2. We may
therefore conclude that Algonthm 3 is a better algorithm. Beck et al. [6] showed that when the constant
piccewise function was used, the assumption of linearly varying future heat flux components did not give a
much better solution than the assumption of constant future heat flux components. The comparison
berween Algorithm 1 and Algorithm 3 in the present study, however, shows that changing both the
piecewise heat flux function and the assumed relation between future heat flux components and the current
hear flux component can lead to an improved algorithm. Despite a slightly more complicated formulation,
Algorithm 3 is computationally efficient and easy to use. Thus, it should be considered as altemative
algorithm for implementing the sequential function specification method. It is conceivable that an even
better sequential function specification algorithm may be obtained by using a more complicated piecewise
heat flux function and a more complicated assumption regarding the relation between future heat flux

components and the current heat flux component.
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Inverse heat conduction problem of determining time-

dependent heat transfer coefficient

SOMCHART CHANTASIRIWAN
Department of Mechanical Engineering

King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

Abstract

The time-dependent Biot number in a one-dimensional linear heat conduction
problem is obtained from the solutions of the inverse heat conduction problems of
determining boundary heat flux and boundary temperature. The sequential function
specification method with the linear basis function and the assumption of linearly
varying future boundary heat flux or temperature components is used to solve the
inverse problem. The expression for Biot number is found to be a nonlinear function
of measured temperatures. The variance in input data is shown to cause variance and
nonlineai bias in estimated Biot number. The method presented offers three tunable

parameters that may be used to improve the quality of the solution.

NOMENCLATURE

A response vector

B Biot number

C response vector

Cp heat capacity

D coefficient matrix

E() expected value of random variable y

f probability density distribution function
h heat transfer coefficient

L length



Lm dummy indices
n the number of Biot number components to be determined
)2 ratio of time step for estimated Biot number components to time step

for temperature measurements

gq boundary heat flux

v future-time parameter

S transformation matrix

T temperature

Ty initial temperature

Te ambient temperature

t time

Var(y) variance of random variable y

x location

Xo sensor location

Greek symbols

a(j") coefficient that relates estimated boundary heat flux component to
measured temperature

Bf,f') coefficient that relates estimated boundary temperature to measured
temperature

Mg deterministic bias

An nonlinear bias

€ temperature measurement error

) response function

K thiermal conductivity

6 boundary temperature

p density

o variance of temperature measurements



y response function

Subscripts and superscripts

Lkl m indices

INTRODUCTION

A heat conduction problem in a solid with the initial and boundary conditions
completely specified is a well-posed problem that can be solved by various analytical
and numerical methods. On the other hand, when the boundary condition is to be
determined from temperature measurement data inside the solid, the problem is an ill-
posed one known as the inverse heat conduction pfoblem (THCP) [1]. Although the
analytical solution of IHCP exists for the case éf one-dimensional problem {2], a
numerical method is generally preferable since it offers control over the accuracy and
the stability of the solution. Among the well-known numerical methods are the space-
marching technique [3], the frequency domain adjoint method [4], the mollification
method [5], the iterative regularization method [6], the direct sensitivity coefficient
method [7], and the sequential function specification method [1]. The aims of these
methods are to obtain a solution that is accurate and not very sensitive to changes in
input temperature data.

Most of the inverse heat conduction problems that have been investigated so
far are concerned with the estimation of boundary heat flux. Another interesting
problem that has not yet received as much interest is the estimation of heat transfer
coefficient. Osman and Beck [8] treated the problem of estimating time-dependent
heat transfer coefficient in the quenching of a sphere as a nonlinear parameter

estimation problem. Heat transfer coefficient was assumed to be a piecewise constant



function of time. The unknown heat transfer coefficient parameters were estimated
one by one using the sequential function specification method. Naylor and Qosthuizen
[9] employed the temperature-time data measured at subsurface locations to determine
the heat transfer coefficient in a forced convective flow over a square prism. They
expressed the distribution of heat transfer coefficient in terms of several piecewise
constant functions. The coefficients were computed using an iterative algorithm.
Hernandez-Morales et al. [10] studied the one-dimensional problem of estimating the
transient heat transfer coefficient at the surface of steel bars subjected to quenching
using the sequential function specification method. They found that filtering the input
data led to improved estimation. Mehrotra et al. [11] estimated interfacial heat transfer
coefficient in solidification of a molten metal on a metal substrate. Their transient
one-dimensional problem was divided into a direct region and an indirect region. The
solution for the direct region was obtained using a conventional method. The
Burggraf solution [2] was then used to compute the temperature and heat flux at the
interface between the molten metal and the substrate, from which the heat transfer
coefficient could be determined in a straightforward manner. Xu and Chen [12]
studied the steady-state nonlinear problem of determining the heat transfer coefficient
in two-phase mixture flow in an inclined tube. Their algorithm was a simple iterative
procedure. Most recently, Martin and Dulikravich [13] employed the boundary
element method to set up the inverse problem of determining boundary heat flux and”
boundary temperature simultaneously in a steady-state muitidimensional problem.
The single value decomposition method was then used to obtain stabilized solutions
for boundary heat flux and boundary temperature, from which heat transfer coefficient
was determined.

In this paper, an algorithm for estimating time-dependent heat transfer



coefficient for a one-dimensional linear inverse heat conduction problem is proposed.
The method used is the sequential function specification method with the linear basis
function and the assumption of linearly varying future boundary heat flux (or
temperature) components. Recent results by Chantasiriwan [14] showed that this
method yielded better estimates of boundary condition than the well-known sequential
function specification method [1]. Hence, it is expected that the estimation of heat
transfer coefficient should perform better with the new method as well. The following
sections will describe the matrix formulation of the algorithm, which will facilitate
computer implementation. The method for analyzing the accuracy and stability of the
estimate will then be described. Sampie results and discussion of how to improve the
estimate will follow. Finally, the conclusions that can be drawn from this paper will

be given.

MATHEMATICAL FORMULATION OF THE PROBLEM

The problem to be considered is shown in Fig. 1. A one-dimensional object is
subjected to unknown time-dependent heat transfer coefficient at one end whereas the
other end is insulated. The ambient temperature is assumed constant throughout the
time period considered. The temperature measurement is made at a distance from the
boundary of unknown heat transfer coefficient. The measurement data along with the
known geometrical and thermophysical data give rise to the inverse heat conduction
problem, which can be mathematically described by the following goveming

equation, initial condition, and boundary condition.

ar'(x',t) _ a*T'(x',1")
P e o

'(x',0) T, )



aT'(x',¢')
= 0 3
o |, 3

Temperature measurements at sensor location x,,, which is between 0 and L, are
available at a regular time interval.
T'xgiar) = T (4)

The heat transfer coefficient at the convective boundary x' = 0 is to be determined.

The definition of (¢} is given by

—-K

aT'(x',t') - ' _ e
a1, MONL-T) )

Define dimensionless variables x = x/L, t= Kt'/ pc,l’, T= (1'-1,)/(T.-7,), and

B(n= h(t’)L/ « . Equations (1)-(5) can be rewritten in dimensionless forms.

3T (x,t) _ *T(x,1)

ot o ©)
T(x, 0) = 0 9
AT (x,t)

ax x=l O (8)
T(xg, IAD) = T; ®

_oT(x.t) B)(1-T) (10)
ax x=0

The goal of the IHCP solution is to determine B(t). Instead of devising an algorithm to
determine B(¢) directly, it is more convenient to estimate boundary heat flux g(¢) and
boundary temperature 0(z) at x = 0 from equations (6)—(9), and use them to obtain the

expression for B(z).

DETERMINATION OF BOUNDARY HEAT FLUX

The expression for boundary heat flux into the object is

6



i oT(x, 1)

q(0 a |

(1)

Chantasiriwan [14] described a sequential function specification algorithm for
estimating g(f). The algorithm makes use of piecewise linear function in estimating
boundary heat flux component by component. The solution is stabilized by employing
future-time temperature measurements as input data, and assuming that heat flux
components vary linearly. A distinctive feature of that algorithm and the conventional
sequential function specification algorithm [1] is the presence of future-time
parameter r, which is related to the number of future-time measurements used as input
data. This parameter acts as a stabilizing parameter in that the solution becomes more
stable as r increases. However, that algorithm is limited to cases in which the time
step of temperature measurements equals the time step of the estimated heat flux
components. Because more input data will probably lead to a more stable solution, it
may be advantageous to allow the former to be smaller than the latter. In the
algorithm to be used in this paper, the time step of temperature measurement is Az,
and the time step of the estimated heat flux components is pAz, where p is a positive
integer. The revised formulation for the sequential function specification algorithm

will be now described.

The ‘current’ heat flux component, qm (1 i <n),is estimated using r.p
‘future’ temperature measurements, 7_1)p+1, 1-1yp+2, - .., J(+=1)p. It 18 assumed that
the basis function of the boundary heat flux components is the piecewise linear
function and that future heat flux components vary linearly. (See Fig. 2.) Fori-1 <4 <

i+r-2 and 1 < m < p, temperatures at xg are related to boundary heat flux components

as follows.



Tipm = j"X[tb(xm((k J+Dp+mar) = 26{x,, (k- j)p +m)ar)

+ e, (&~ j-1)p +mias)] +

k—i+ (+J)

80, @~ -+ 1)p+mar)

2005y, (U~ i = fp+m)a) + 9o, (k=i — j = 1)p + m)ar)]
(12)

where
d(xo.0) = 2

is the temperature response at x = xp to the heat conduction problem described by

equations (6)-(8) and the condition that the linearly increasing heat flux having unity

slope is applied at x = 0. Since it is assumed that future heat flux components q(iﬂ},
(a+2), - q(HH) vary linearly, q(m) can be expressed in terms of qw and q(i'l) :
q(iﬂ) (+1 q(*') - fq(i_l) (14)

for 1 </ < r—1. Now, substitute equation (14) into (12), and simplify the result.

Tors = ;%q)(xo,((k— o D)p+ miad) +
9 [, (e =1+ 2)p -+ m)e) — 265, (k ~ + 1)p + m)Ar)]
DAt

(k- j+1)p+m)ar) -

Z

=1 P

20(x,, ((k - N)p +m)as) + o, (k- j-Dp+m)an)] (15



-1) (-2 I . . .
Because q(' ), q(‘ ), ey q( ) are known from previous calculations, equation (15)

represents an overdetermined system of linear algebraic equations with qm as the only

unknown for the current calculation. Let’s define the following vectors and matrices:

T
T = [T] T2 res T(n+r—1)p]

T
A = L eeea) e(xn280) ... olxyrpAr)]
pAt

o(xo, (p + 1)Ar)-24(x,, A7)
C(l) _ _1'_' d)(xo, (p +- Z)AI)— 2¢>(x0,2At)
' pAt :
¢(x0, (r + l)pAt)—- 2¢:(x0 R rp&t)

&g, (p + D)A?)=20(xy, (i = 1)p + 1)A0)+ lx,, (( - 2)p +1)A7)
o 1| oo i +2)a0)- 26, (i~ p +2)A1)+ 6x,, (( - 2)p + 2)81)

pit :
&(x,, (i + r)pAt)—?.tI)(xo, (i +r— 1)pAt)+ olx,, (i + 7 - Z)pAt)

for2<i<n-1,and

7P TOWS

00 ... 0|01 .. 06,00 ..

00 ..0/0O0..1]00..0

(i-1)p cotumns rp columns ; {n1)p columns ‘
for 1 <i < n. Equation (15) can now be rewritten as a matrix equation:
ST = g+ § g (16)
k=l
It is useful to express the unknown q(i} in terms of all other quantities.

. — i .
q(c) - (ATA) IAT[S{’)T*ZC(“"’q(”:l (17
k=1

Furthermore, let



& = T a8)

The coefficient matrix D(’), which relates the unknown heat flux component q(i) to
known temperature measurement data, 7', 73, ..., T{ur1)p, can be found from

equations (17) and (18).
¥ = (4T4)'4 ’[s“" -5 C(“')D("]} (19)
k=]
Knowledge of D(i) allows us to write q(j) in terms of Ty, Ty, ..., Timer-1)p-
o (rvr-1)p

YalT, (20)

k=l

DETERMINATION OF BOUNDARY TEMPERATURE
The expression for boundary temperature is
8(H = 7(0,8) 1)
Let y{xo,?) be the temperature response at x = xg to the heat conduction problem
described by equations (6)-(8) and the condition that the linearly increasing

temperature having unity slope is applied at x = 0. The expression for y(x,#) is

. zi sin((m - 0.5)11;60) (1 — gm0y e ), fort>0
¥ (xo.0) w (m~05))
0, fort<0

22)

With the replacement of ¢(x0,?) by w(x,?) in the expressions for 4 and Cm, the

procedure described previously can be used to determine boundary temperature 69 as
a function of temperature measurement data.
{n+r-1)p

3BT, | (23)

k
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