DETERMINATION OF TIME-DEPENDENT BIOT NUMBER

Once qw and 8 have been determined, B? can be obtained from

, 1)
(i) _ q
B = . 24
g0 (24)

It is interesting to note that B" is a nonlinear function of measured temperatures,

(n+r-1)p

@) 2T,
B = ——"(ﬁ);(—)-— 25)
1 - YT,

k=1
whereas q(‘) and 8" are linear functions of temperatures. Hence, the evaluation of

- . \ . .
statistical errors in B J, resulting from errors in temperature measurement, is more

\U!

complicated than the evaluation of statistical errors in qm and 6

It is useful to make the following statistical assumptions regarding temperature

measurement errors [15]:

1. Additive errors: T, =T, +g,

2. Zero mean errors: E(g;) =0

3. Constant variance: Var(g;) = o

4, Uncorrelated errors; E(gigr) =0ifj = &

5. Normal probability distribution for errors
6. Nonstochastic independent variable

As a result of these assumptions, the probability density function for errors is

2
1 1( e,
fley = oo exp{- 5 [—(-;—J } ) —00 < g < 0 (26)

In inverse heat conduction problem of estimating boundary heat flux or
boundary temperature, the quality of the solution is determined by two measures: the

deterministic bias and the variance of the solution. Deterministic bias represents the

i1



difference between the estimated solution and exact solution when temperature

measurements are error-free. The deterministic biases for qm and 8% may be defined,

respectively, as

Mg = \/{Z(q(tpm)—E(q‘”))z @7

and  Agp = \/{i(e(ipw)-E(e("’))2 (28)

=1

where
; (n+r-~l)p
() -
E(@) = af'7, (29)
k=1
; {a+r-1)p
and E@%) = YT, (30)

are the expected values of the estimated boundary heat flux component and the
estimated boundary temperature component. Thus, the deterministic bias depends on
the solution algorithm, but not the statistical errors present in actual input data. On the
other hand, the variance of the solution is a function of the variance of input data. As
a consequence of the above assumptions regarding temperature measurement errors,

the variances of boundary heat flux and boundary temperature are, respectively,

. {r+r-1)
vag® = o 3 (@) @31)
k=1
and
@ (mtr-l}p
va@®y = o Y (Yf (32)
k=l

STATISTICAL ERRORS IN ESTIMATED BIOT NUMBER

Define average Biot number component as
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(M-rz—‘:)p (')T
BY = _—(—“—r—",.irz.{ ; . (33)
BT,

k=1

Taylor series expansion for B yields

, ) 2 i)
(i) . —{,) aB ]. 3 B
B = BY + g, + — €, +
2o 2 2T o s
1« 8°BY 1 5*gl)
— £.,€8,€ + — O £ + ... (34
62,“‘6T6T6T Y ,Eﬂarjarkazarmi . SR 39

where each index in above summations and summations to follow runs from 1 to

(n+r-1)p. The expressions for derivatives of B are given below.

(0 o + g0
d [1-2@7}}
k
; @y ) o 3(0) - {8) Balp()
:;g: _ BWaY 4 pWlal +QB2 BB; 36)
e [I—ZBE)T:;]
£
&’B" 1 OpO 0 1 a0 + a6
AT oT.aT. = 71 BBy +B B ay’ + BB oy +
e [1—255:"21]
k
Bi.r)BSf)aSi)+B§i)l3f:)a(ki}+ﬁlf)ﬁf)ag) +6B(E)B8')Bg)ﬁsi) :' a7
643(0 1 D) ) L0 L alidn@ab) G
TarsTer - v BYBBYoL + BB B + BBl +
il S il |
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k

BYBI B + BBLBY o) + B8Rl + BB ) + BYBBY o

B(f B(x)ﬁ{r) )+B( )[3 r)B(r) @ +B(f)B{e}B(:) {i) +B(:}B(r)5(:) (f)+B§a')ﬁ5_}Bg)a(f)+
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BB B al” + BRI al? + BLIBYBY o) + BB ) + UIBB o
PR + 20 | a8
Expected value for B is given by

i 6} 2 pli)
B = EEY)+ ZB (;) ZaB

or, | *OT T, E(‘c'f‘e‘*) *

1 o*BY
- fE(ajaks,J + 2 ,g‘,. oT AT.OTAT,|. . E(ajaka,sm) + .
LRy T, 70T,

1y, 087 a*gY

6 {107,067, 0T,
(39

Note that, in addition to the first moment of g;, which is the zero mean, and the second

moment of ¢;, which is the variance, the right hand side contains the third moment and

the fourth moment of &;. With the density distribution function f{g;) given in equation

(26), they can be simply evaluated.

E(ei) = Te?,.f(e j)de ;= ¢ (40)

|

_[s“f daj = 3¢ 40

gl
mn

-

R
]

Hence, the second term on right hand side of equation (39) vanishes. As a
consequence of the zero correlation between measurement errors, the fourth term also

vanishes. The third and fifth terms can be rewritten as

7 i} 1 azB(:)
1 ;TgT E(Ejek) = 24 a7 (83)
2 jk J Tﬂﬂ . J J 'f'j
1 pli}
= =, gﬁ_z_ (42)
2 45 aT! |

T

and
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Expected value for B  can now be expressed in terms of temperature measurement
. 2
variance o .

a4 Bl
or?

c* 5*BY
8 | Zariary|.

Tk

‘ 2 2 /()
Dy =i (o] o‘B

E(B) = BY + — E

&) 2 5 o1} |

y
+ 0(c) (49
It is interesting to note that variance in measurement errors will cause the expected
value, E(Bm), of the estimated Biot number component to deviate from the true
average value, BY, of the estimated Biot number component. The difference between

E(B™) and B” may be called the nonlinear bias A”). If terms of order O(c") and

higher are neglected,
A = g%~ BY
8*BY 3*B% 8*BY 45
= — +
orT; . 8 ,Z,; ar’or! - 2,: er;? . 43)

In the estimation of boundary heat flux or boundary temperature, where the
dependence on measured temperatures is linear, nonlinear bias is zero. However, in a
nonlinear estimation such as the problem considered here, nonlinear bias cannot be

ignored unless variance of measurement errors is negligible.
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The variance of B can be determined from the following definition.

(i f i
va8® = E@ED)- @B (46)
The right hand side of equation {46) will now be evaluated term by term.
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Substitute equations (48) and (49) into (46), and retain terms of order 0(02) and

0(c™).
(i) @) ’
o 1| OB" o 1| 8°BY 88" &'Bv
Var(B = o —— + o'l —- + — —
&) ‘?‘-’[62 2;[&@2 ;‘BT. o or’
T, T Hr, 4 7
2
2 pli} (1} 3 i)
, 15| 2B +ZGB| 532| (50)
27| oT,0L |, . ot |, erery|,
RESULTS AND DISCUSSION
Let the Biot number distribution be described by the following function:
2t 0<¢<05
B() = <20-1) 05<r<0.75 (51)

0.5, 0.75=<1<1
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The direct problem, described by equations (6)-(8) and (10}, is solved by the explicit
finite-difference method with uniform grid, Ax = 0.01, and Az = Ax2/6. This choice of
At results in the solution that is accurate to fourth order in Ax. An inverse heat
conduction problem can be constructed using equations (6)-(9). The temperature
measurements at xp = 1 in equation (9) rare obtained from the solution to the direct
problem. The inverse problem is then solved for Biot number components using the
algorithm described above. The quality of the solution can readily be determined
since the exact solution is known.

The quality of the estimation depends on A% (nonlinear bias), Vax(Bm)

(variance), and Agp (deterministic bias). The deterministic bias may be defined as

Mep = %:ZI(B(fpm)—F“’)z (52)
wﬁere B(t) is given by equation (51), and B @ is the expected value of estimated Biot
number at time ipAt when the variance (0'2) of input data is zero. There are three
tunable parameters in the present method, n, r, and p. The effects of 7 on the quality
of the solution are quite predictable. Hence, the number of # is set at 50, and only the

effects of 7 and p on the solution will be considered.

Figure 3 shows the variations of A" and Var(Bm) with i forp =1, » =20, and
62 = (.01. In general, both nonlinear bias and variance vary from component to
component. For this particular form of B{f), both A(,‘;) and Vax(B(i)) reach maximum at
i = n. To compare results obtained with different p and r, it is sufficient to compare

(4}

maximum AY and Var(8").

The future-time parameter r acts as a stabilizing parameter in the sequential

function specification method. This is apparent from Table 1, where it is shown that
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increasing r, while keeping p constant, results in a more stable solution (lower
maximum variance}, but a less accurate one (higher deterministic bias). It is
interesting to note that a more stable solution also has lower maximum nonlinear bias.
When p is increased, and # is kept constant, Table 2 shows that variance, nonlinear
bias, and deterministic bias all decrease. This means that, with the same number of
Biot number components to be estimated, taking more measurements at one sensor
location can lead to a more stable and accurate solution. Although the accuracy of the
solution does not appear to improve much with p, the solution becomes noticeably
more stable when p is increased. However, one should be cautioned that when p
becomes too large, the time step for temperature measurements may be too small,
causing correlation among different measurements, which will probably invalidate the
above conclusion. Nevertheless, stabilizing the solution without deteriorating its
accuracy by letting p equal to 2 or 3 is worth taking into consideration when
designing an experiment since it is less costly and more convenient than increasing

/

the number of sensors.

In Fig, 4, three different plots of E(B”) obtained with 6 = 0, 0.005, and 0.01
are compared with exact Biot number function. The parameters used in obtaining
these results are n = 50, » = 12, p = 1, and xo = 1. It can be seen that, without taking
nonlinear bias into consideration, the quality of estimated Biot number components is
expected to worsen as the variance of temperature measurements increase, This is in
contrast with the estimation of boundary heat flux or boundary temperature, where the
expected value of the solution does not depend on the variance of temperature
measurements.

Obviously, it is desirable to have as small o as possible. From the relation

between T; and 7', one can see that the variance of actual temperature measurement
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T; can be related to the variance of dimensionless temperature T via the relation

: _ ValD)

Var(T; =
ity ° -1,

(33)

Thus, besides decreasing the variance of actual temperature measurement, increasing
the difference between the ambient and the initial temperatures will also result in less

variance in estimated B(').

CONCLUSIONS

The solution to the one-dimensional inverse heat conduction problem of
estimating time-dependent heat transfer coefficient has been presented. Estimations of
boundary heat flux and boundary temperature are performed by using the sequential
function specification method with piecewise linear basis functions and the
assumption of linearly varying boundary heat flux or boundary temperature
components. They are then used to obtain the solution for Biot number. 1t is found
that, in addition to variance and deterministic bias, the solution is characterized by
nonlinear bias, which results from the nonlinear dependence of the solution on
measured temperatures. If certain statistical assumptions regarding the measurement
errors are made, it has been shown that variance and nonlinear bias can be expressed
as functions of variance of temperature measurements. For a given number of Biot
number components to be estimated, the method of solution offers two tunable
parameters. Whereas an increase in parameter r results in decreasing variance,
decreasing nonlinear bias, and increasing deterministic bias, an increase in parameter
p results in decreasing variance, decreasing nonlinear bias, and slightly decreasing

deterministic bias.
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Table 1. Variations of maximum variance, maximum nonlinear bias, and deterministic

bias with parameter ». (n =50, p=1, xp= 1.0, o= 0.01)

r [Var(8"Ylmax [AD ) Ads
10 7.02139 0.83771 0.01775
i1 3.07827 0.43058 0.02202
12 1.57819 0.25020 0.02676
13 0.90504 0.15850 0.03178
14 0.56385 0.10705 0.03696
15 0.37418 0.07595 0.04232
16 0.26093 0.05603 0.04792
17 0.18936 0.04266 ' (05381
18 0.14195 0.03334 0.06005
19 0.10929 0.02664 0.06663
20 0.08605 0.02168 0.07352
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Table 2. Variations of maximum variance, maximum nonlinear bias, and deterministic

bias with parameter p. (n = 50, 7= 12, xo = 1.0, 5 = 0.01)

p [Var(B ) Imax [AD e Aap

1 1.57819 0.25020 (.02676
2 0.78634 0.13100 0.02573
3 0.51912 0.08846 0.02536
4 0.38661 0.06674 0.02518
5 0.30775 0.05356 0.02506
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FIGURE CAPTIONS

Fig. 1 One-dimensional inverse heat conduction problem to be solved for A(¢")

Fig. 2 Pictorial representation of the sequential function specification algorithm

Fig. 3 Variations of variance and nonlinear bias of estimated Biot number
components. Calculations were performed usingx=1.0,n=50,r=12,p=1,
and " = 0.01.

Fig. 4 Comparison between the expected values of estimated Biot number
components at three different o and the exact Biot number distribution.

Calculations were performed using xo = 1.0, n=50,r=12, andp=1
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Determination of heat transfer coefficient from surface

temperature measurements

SOMCHART CHANTASIRIWAN
Department of Mechanical Engineering

Thammasat University, Pathum Thani 12121, Thailand

ABSTRACT

The unknown time-dependent heat transfer coefficient on the surface of a

multidimensional body is determined from surface temperature measurements.

Locating sensors at the surface causes the deterministic biases in the estimation of

surface heat flux and the subsequent determination of heat transfer coefficient to be

negligible. The boundary element method is used as the method of discretization since

it provides an explicit expression between boundary heat flux and boundary

temperature. The statistical analysis of the estimate is described and applied to a

sample problem.

NOMENCLATURE

A diagonal matrix

a coefficient that depends on location of £
E(y) expected value of random variable y

G fundamental solution

g known boundary heat flux

h heat transfer coefficient

i jok dummy indices



L the number of nodes in an element

M, the number of unknown heat flux components at given time

M, the number of additional heat flux components at corner or edge nodes
M, the number of boundary elements

M, the number of boundary nodes

m dimension of the problem

N number of time intervals

73 outward pointing unit vector normal to boundary

P RS coefficient matrices

q boundary heat flux into the domain

!

position vector

o reference length

T temperature

Ty temperature

To temperature

t time

XY Z coefficient matrices

Var(y) variance of random variable y

Greek symbols

o thermal diffusivity

A nonlinear bias

€ temperature measurement error

o) interpolating function

¢ function relating boundary temperature to boundary temperature



r boundary

I part of the boundary where heat flux is known

Iy part of the boundary where heat flux is to be determined

K thermal conductivity

e surface temperature due to heat flux g alone

o variance in temperature measurement

i function relating boundary temperature to boundary heat flux
£ position vector

Subscripts and superscripts
2D two-dimensional
3D three-dimensional

i,j ki m indices

INTRODUCTION

The experimental determination of heat transfer coefficient can be
accomplished by measuring surface heat flux or by employing techniques that make
use of the analogy between convective mass transfer and convective heat transfer [1].
In comparison with temperature measurement, heat transfer coefficient measurement
requires more expensive experimental equipment.

There exists an alternative approach to determining heat transfer coefficient,
which requires 0nfy temperature measurements. However, it also requires the solution
of an inverse heat conduction problem. Although this approach is more
computationally intensive than conventional approaches, it has an advantage in a

much simpler setup and less expensive equipment. Several previous works on the



inverse problem of determining heat transfer coefficient have appeared in the
literature [2-8]. Most recently, Chantasiriwan [8] studied the one-dimensional
problem of estimating time-dependent Biot number from interior temperature
measurements. He showed that Biot number could be expressed as a nonlinear
function of temperature measurements. As a result, the inverse estimation of Biot
number effected the nonlinear bias, in addition to deterministic bias inherent in the
solution of a linear inverse heat conduction problem. Furthermore, the variance of the
estimate depended on higher order terms of statistical errors in temperature
measurements.

In this paper, the multidimensional inverse heat conduction problem of
determining time-dependent heat transfer coefficient is considered. Typically, in an
inverse problem, part of the boundary condition is unknown, and is to be determined
from temperature measurements at interior locations. Such a problem is an ill-posed
problem, causing the numerical solution to the problem to become unstable if the time
step used is too low. However, if the sensors are located at the part of the boundary
with unknown condition, the problem becomes well posed, meaning that a stable
solution is possible at an arbitrarily small time step. Since, in many circumstances,
placing sensors on the surface where heat transfer coefficient is to be determined are
easier than placing sensors at subsurface locations, the problem of estimating heat
transfer coefficient from surface temperature measurements both has practical -
applications and is much more amenable to numerical treatment.

Many different methods for solving an inverse heat conduction problem are
available. The method used by Chantasiriwan [8] requires the determination of
sensitivity coefficients of temperatures to boundary heat flux components. However,

the problem considered by Chantasiriwan [8] is the one-dimensional problem, for



which analytical expressions for sensitivity coefficients are readily available. For the
multidimensional problem to be considered in this paper, sensitivity coefficients must
be solved for numerically. The chosen numerical method will be the boundary
element method. In addition to being able to handle a general problem of arbitrary
geometry, this method is computationally efficient for the problem to be considered
because it requires boundary mesh generation instead of domain mesh generation, and
it provides an expression that relates boundary heat flux components to boundary
temperatures explicitly. The following sections will present the statement of the
problem, the boundary element formulation of the problem, and the expression
relating heat transfer coefficient to surface temperature measurements. It will be
found that such a relation is a nonlinear one. Hence, the method for analyzing the
statistical errors in the estimated heat transfer coefficient, similar to the one given by
Chantasiriwan [8], will be used. Finally, a sample problem will be discussed, and

conclusions will be given.

STATEMENT OF THE PROBLEM
Consider a solid object with part of its boundary I'; subjected to known heat
flux and the remaining part of the boundary I'; subjected to unknown convective heat
flux. Suppose the;t the object has constant thermophysical properties, making the
problem a linear one. Let 7, ¢, 7, g, and g denote dimensionless quantities, whereas

all other variables denote quantities with dimensions, and define 7 = 7'/r, . t=

ar'/r?, and T= (7'~ T,)/(T, - T,). The dimensionless heat conduction process can

then be described by the following equations.

[}

T(7.1)

= VT(F, 1) (N
ot




7(7,0)

Il
<

(2)
AVT(F, ’)lr, = gl7.0). (3)
where # is the outward pointing unit vector normal to boundary and g is the known

boundary heat flux. In order to render the problem solvable, the temperature

measurements on I'; are specified.

TG, ja) = 1Y )
where 7 is a sensor position vector, Af is the measurement time step, and 7V is
surface temperature at the sensor position and time jAf. Equations (1) ~ (4) are

sufficient for determining heat flux ¢!/} at I';, which will yield heat transfer

coefficient from the Newton'’s law of cooling:

()
B = [—ﬁ-jq" _Jl‘— ()
1-T ) r,

BOUNDARY ELEMENT METHOD
The boundary element formulation for a time-dependent linear heat

conduction problem is given by [9]
arf1) = [[q¢.)GF-Er-Jawdr - [[TEDFIGEF-Ei- )i (6)
r r

where a depends on the location of E and the fundamental solution G is

= ) B e—(F*E)z fa{e) (7
T oo )

and m is the dimension of the problem. Divide the boundary I into M, boundary

elements and time ¢ into N equal time intervals. Equation (6) becomes



o

all) - f{

1=t

S b r)a(f_z;mm)dt]d; ;

i]{z\f: j{} e TG NiVG(F - E NAr - 'c]dtJdi" (8)

where front subscript denotes element index. Now, let’s approximate ;¢ and 7 by

piecewise linear functions in time.

4. = L[ 6) - g Mar) + NN - +1) - g TN )

TED) = L [196) - 100 Na) + TGN - 1) — KN )

where superscript denotes time index. Next, approximate ¢ and . 7U) over element

i, making use of interpolating function ®y, as follows.

i(xkq )cD (r (11)

k=1

")

I

S (700, () (12)

k=1

796)

I

where % is local node index, and L is the number of nodes in an element. Substituting

equations (9)-(12) into equation (8) yields

ar(f,i) - ik {J{Zfﬂr [T SLIY —j+l)der}¢k(F)dF}(,kq")j -
s I )[(—ti—t‘“‘—‘) + (N~f)]GdT}¢k(f)dr}(wq‘f D

ifi,}m(%‘ﬁ—‘) + (V- j+I)JﬁﬁGdri\(Dk(F)d}'}(tkT(,-)) +

zMg - [(‘*NA‘) L w- ,)jnw,dz}p (r)dr}( ) s

(9)
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If equation (13) is evaluated at a point Ek on the boundary or inside the object,

the resulting equation after the assembly process can be written as

M, My, +M,

a, 1M = i O, 7. (W - Jad)T) i v, 7. (N - Jar)g  (14)

J=0 i=l j=0 =
where back subscript denotes global node index, A, is the number of boundary nodes,
and M, is the number of additional heat flux components at corner or edge nodes.
Note that coefficient a;, becomes unity if Ek is inside the object. For two-dimensional
problems, each corner node can have two heat flux components; therefore, M. is equal
to the number of comers. For three-dimensional problems, each edge node can have
two heat flux components, and each corner node can have three heat flux components.
Functions ¢ and v are obtained from the evaluation of integrals shown in equation
(13). The evaluation of time integrals can be done exactly as shown in the Appendix,
whereas the evaluation of boundary integrals should be performed using the Gaussian
quadrature.

Equation (14) is now written for M, boundary node points, resulting in the

following matrix equation.

Af(N) = iP{N*J)T(!} + i Nf) + ZSNJ () (15)

-0 =0

where A is diagonal matrix of coefficients a; T is the vector of temperatures on the
boundary; g is the vector of —boundary heat flux components that are to be
determined; g is the vector of specified boundary heat flux components; and P , R,
and S are coefficient matrices.

Let 6 be the boundary temperature responses when § = 0.

AW = P L $ gzl (16)
. ;=0




If g is known as a function of time, dimensionless temperature 6 can be determined

by a time-stepping procedure. Note that 6 = 0 only if g = 0. Subtracting equations

{16) from (15) results in
[m N]] _ < (w-;)["(f) *(n] - pv-1)51)
AT = Y PP -V + 3 RWg (17
Jj=0 =0

Applying a time-stepping procedure to equation (17) yields the following relations

between boundary temperatures and the unknown boundary heat flux.

— . — k . .
Tlei _ gle) - ZX(kﬁJ)q,(J) (18)

=0
In order to make the computation of heat transfer coefficient straightforward, heat flux

is expressed in terms of boundary temperatures as follows.

) i y H)( J)) (19)
q 2,
where Y% = (X (0])—1
yi - _(X(DJ)“EXU-A'JYUJ (1<i<k-1) (20}
J=0

Heat transfer coefficient can now be expressed in terms of temperature measurements

by substituting equation (19) into equation (5).

=
>
=
i
Ay
i\_
-
M
o

S S (0] _ gt
ZZYU ) (T.r -ej ) »

H @1
where V;, is a component of matrix ¥, and M, is the number of temperature sensors on
the surface, which is equal to the number of unknown heat transfer coefficient

components. Since Y scales with ro, equation (21) can be rewritten as

4

Aol ri - )

KZ T 3]
3 IZO: j (22)
‘ 1- 7%

!

il
I




where Z = Vir,.

STATISTICAL ERRORS IN THE ESTIMATE
The estimated heat transfer coefficient will contain a statistical error because
even a well-calibrated temperature-measuring device will give a result that is
subjected to statistical fluctuation. In order to evaluate this statistical error, it is

expedient to model the probability density function for temperature measurement

error as follows.

1 1 (kY
€@ - e

where error £/ is the difference between actual temperature measurement and the

mean temperature at the same time and location.
o= e g 9
This model results in the following implications.
1. Error has zero mean:
E(ef"]) =0

2. Variance of error is constant: Var(af")) =g’

3. Temperature measurement errors at different time or location are uncorrelated:
E(el%el) = 0 ifizjork=!

Note that it has been assumed that other relevant parameters such as location of
sensor, time of measurement, ambient temperature, and thermophysical properties do
not contain statistical errors.

The analysis presented by Chantasiriwan [8] may be followed to show that the

expected value and the variance of the estimate are given by

10



M, k

_To)f(l— Ty {322('@’5" RIRE +3(KZ§°)+F,-(”)2} + o)

i j=1 I=0

M, k
33w -of)

7, (k) - j=1 1=l
h 7

!

27)

is the average heat transfer coefficient. Since it will be assumed that o is small,

higher-order terms in equations (25) and (26) may be neglected.

RESULTS AND DISCUSSION

The sample problem is illustrated in Fig. 1. A square object, which is insulated
on three sides, is subjected to convective heat flux on the remaining side. For
reference purpose, three positions along the side are denoted by letters A, O, and B.
The heat transfer coefficient on that side is to be determined from temperature
measurements taken on the same side. The object is made of aluminum, having x =
229 W/m-K, o = 8.93 x 10" m?s, and uniform initial temperature of 0 °C. The
ambient temperature is 100 °C, and the initial temperature of the object is 25 °C. The
actual heat transfer coefficient is a function of space and time, and shown in Fig. 2.
The boundary is divided into 40 elements of equal length, and the boundary element
method with linear interpolating function is used to calculate temperature distribution
on the non-insulated surface, which is then used as input data for algorithm for

determining heat transfer coefficient. It is found that the calculated heat transfer

il

@6)



coefficient matches the actual heat transfer coefficient. In other words, the
deterministic bias is negligible. This is to be expected from a problem in which the
unknown boundary condition is determined from temperature measurements taken on
the same boundary.

If the input temperature data are corrupted with statistical fluctuations, the
calculated heat transfer coefficient will be different from the actual one. According to
equation (23), the difference between the expected estimate and the desired estimate,

or the average coefficient, is equal to

Sz +7¥)

AlE}
! (-5, (1-T¥)

(28)

Since A*’ exists in only nonlinear estimate, it may be called nonlinear bias. Figure 3

shows the distribution of nonlinear bias in this sample problem, whereas Fig. 4 shows
the distribution of variance. Both distributions increase monotonically with time due
to their dependence on variance in earlier temperature measurements. The functional
form of heat transfer coefficient also causes both to reach maximum at point O, which

is the middle of the side.

Inspection of equations (26) and (28) reveals that if the geometry of the
problem, the heat transfer coefficient, and the variance in temperature measurements
are given, factors influencing variance and nonlinear bias of the estimate are the
difference between the ambient temperature and the initial temperature 7., — 75 and
thermal conductivity (x). Figures 5 and 6 show the effects of 7 — 75 on nonlinear bias
and variance of the estimate at point O. It is clear that increasing 7., — 75 reduces both
quantities. This suggests that an experiment employing this technique of determining
heat transfer coefficient should be designed so that 7., ~ 7 is maximized. In one

possible experimental design, the initial of the object may be kept at room

12



temperature initially, and the temperature of the surrounding fluid should be set as
high as practical. The other factor that influences variance and nonlinear bias of the
estimate is thermal conductivity. Figures 7 and 8 show variations of nonlinear bias
and variance of the estimate at point O for 5 hypothetical materials having different

thermal conductivities. Although equations (26) and (28) seem to suggest that

decreasing « leads to decreases in Var(h,.("}) and A¥), smaller x actually causes 7’

to increase. The net result is the slight decreases in Var(h,.(" )) and A*) at small 7 and

the progressive increases in both quantities at large 7. It is apparent that a suitable
material for determining heat transfer coefficient should have a high thermal

conductivity.

CONCLUSIONS

Heat transfer coefficient may be determined by a technique employing only
surface temperature measurements. Such a technique should require simpler setup and
provide more flexibility than conventional techniques. However, it requires a
numerical solution of a heat conduction problem. If the problem is linear, which
means that the solid material to be used in the experiment has constant thermal
conductivity and thermal diffusivity over a reasonable range of temperatures, the
solution of the problem by the boundary element method is quite straightforward. It
has been shown that estimated heat transfer coefficient can be expressed as ;1
nonlinear function of surface temperature measurements. Although locating sensors at
the surface causes the deterministic bias in the estimate to be negligible, the estimate
still contains nonlinear bias and variance. Both quantities increase monotonically with
time. Decreasing the difference between the ambient temperature and the initial

temperature of the object also increases them, whereas decreasing the thermal

13



conductivity of the material decreases them slightly when  is small, but increases
them when ¢ is large. Hence, the estimation of heat transfer coefficient should be

performed with highly conductive material in a high-temperature environment.
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APPENDIX
Analytical evaluation of time integrals in equation (12) will now be given

separately for two-dimensional and three-dimensional probléms.

Two-dimensional problems

From equation (6),

o {7-EF /a(e
Gy (r ~-E1- ‘L’) = m (29)

(7-EF 4(e-1)

81t(t 1) I

" I U R O = R 3
1) Gpdt 4n{El[4(N“j+1)AJ El[d'(N “j)NJ} o

J'JA! (NAt _ ‘C)G,ZDd‘c - (N - j + 1)At eA(;,E)z 4[N_J+1)A£ _ (N - _])At e_(;,Er;‘;(N,j)m
(j-1)a 4n 4n

F-E F— F_E
) () o
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I(ﬁ)m%mdr ) sz'rV|§ &'{ S e-(f-z)’f%w-;w} (33)

i o F-gvp-8 FoE F-E
j'(jm(NAtn-c)VGmdr = ———SJ——I E,[ﬁ%}lﬂ{%}ﬁ%” (34)

where E, is exponential integral, defined as

[

I

Ei(x)

Three-dimensional problems

From equation (6),

s B o7& fales)
Gm(r—& f—T) = W (35)
/4 =1
Vo, [F-Fr-1) = ——(—i——| -9 -§ (36)
16772 (¢ - 1)’
_ i -8 [ F-8

.[ e F09T 4rfF ¢ {erﬁ:[z\{@' - j+l)At1 B erfc[m}} &7
.[ (i-1)at (NAI 1)Gpdt = V- j; Las e_(F“EY‘IH(N""'”)A‘ -

Jv - JjN o B ety _

47t2

F-g) [ F-8 [ F-4
87 2\/(N j+1)At erk 2,f(V - j)ar (38)

ﬁf F- E‘ lF - E’ e_(;_g)‘,;kt[ij]N -
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2 F-g 2 F-E
o , = I S
e 0(2 N—j+1AtJ + &erfc{z N—jTA—tﬂ (39)

. 3 VlF - & F-¢
I(i:)m(NAt“T)VGJDdT = - |87c l{erfc[z AJI—J-'}-IAI] -

eﬁc{%} (40)

where erfc is complementary error function, defined as

It

erfc(x)

-j—;—fe'y';dy
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Fig. 1

Fig. 2
Fig. 3
Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

FIGURE CAPTIONS
A square object made of aluminum with the unknown heat transfer coefficient
on one side. Temperature sensors are located on that side. Letters A, O, B are
for reference purpose.
Distribution of heat transfer coefficient for the sample problem
Distribution of nonlinear bias of the estimated heat transfer coefficient
Distribution of variance of the estimated heat transfer coefficient
Effect of decreasing T on nonlinear bias of the estimated heat transfer
coefficient at point O. T is decreased from 150 °C to 100 °C, while 75 is kept
constant at 25 °C.
Effect of decreasing T« on variance of the estimated heat transfer coefficient
at point Q. T is decreased from 150 °C to 100 °C, while T is kept constant at
25 °C.
Effect of decreasing x on nonlinear bias of the estimated heat transfer
coefficient at point O. x is decreased from 200 W/m-°C to 100 W/m-°C.
Effect of decreasing k on variance of the estimated heat transfer coefficient at

point O. x is decreased from 200 W/m-°C to 100 W/m-°C.
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