รหัสโครงการ : PDF/15/2541

ชื่อโครงการ: การออกแบบยาดามโครงสร้างสำหรับสารด้านโรคมาลาเรียในฐานะสารยับยั้ง

เอนไชม์ใดไฮโดรโฟเลทรีดักเทส

ชื่อนักวิจัย : พรเทพ สมพรพิสุทธิ์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: pornthep.S@chula.ac.th

ระยะเวลาโครงการ: กรกฎาคม 2541 – ดุลาคม 2542 และ ดุลาคม 2545 - กรกฎาคม 2546

ความเข้าใจอย่างลึกซึ้งในระดับโครงสร้างของโมเลกุลจะช่วยในการออกแบบโมเลกุลของยาที่มี ประสิทธิภาพในการรักษาโรคมาลาเรีย โดยเฉพาะยาในกลุ่มสารด้านโฟเลดซึ่งกำลังประสพภาวะการดื้อ ยาเนื่องจากเอนไซม์จากเชื้อมาลาเรียเกิดการกลายพันธุ์

งานวิจัยนี้เสนอผลของการออกแบบโมเลกุลในกลุ่มของสารยับยั้งเอนไซม์ได้ไฮโดรโฟเลตรีดัก เทสจากเชื้อมาลาเรียพลาสโมเดียมฟัลซิพารัม โดยใช้เทคนิคการออกแบบยาตามโครงสร้างของเอนไซม์ เป้าหมาย โครงสร้างของเอนไซม์ไดไฮโดรโฟเลตรีดักเทสของเซื้อมาลาเรียสร้างขึ้นโดยอาศัยเทคนิคการ เทียบลำดับกรดอะมิโน โดยนำเอนไซม์ไดไฮโดรโฟเลตรีดักเทสจากสปีซีส์อื่นๆ ที่ทราบโครงสร้างรังสี เอ็กซ์มาเป็นแม่แบบ จากนั้นจึงสร้างโครงสร้างโมเลกุลของไพริเมธามีน และ ไซโคลกวานิลซึ่งเป็นสาร ยับยั้งเอนไซม์ของเชื้อมาลาเรีย และออกแบบให้ยาเข้าไปจับยึดกับเอนไซม์ตามข้อมูลรังสีเอ็กซ์ของ เอนไซม์กับยาหรือเอนไซม์กับซับสเตรท ทำการจำลองระบบให้โมเลกุลเอนไซม์อยู่ในสภาวะสารละลาย โดยการคำนวณด้วยวิธีพลวัติระดับโมเลกุล เพื่อศึกษาโครงสร้าง สมบัติทางพลวัติ และความเสถียรที่ เกี่ยวกับอันตรกิริยาระหว่างยากับเอนไซม์ จากนั้นจึงออกแบบอนุพันธ์ของสารยับยั้งโดยใช้การวิเคราะห์ อันตรกิริยาที่น่าจะเป็นไปได้กับกรดอะมิโนต่างๆ ที่อยู่ในบริเวณจับยึดของเอนไซม์ ในกระบวนการการ คัดกรอง อนุพันธ์ที่ออกแบบไวจะถูกคัดออกจากกลุ่มถ้ามีคะแนนอันตรกิริยาด่ำกว่าเกณฑ์ที่กำหนด หรือเหมือนกับอนุพันธ์ที่ออกแบบโดยใช้เอนไซม์จากคน

โครงสร้างของเอนไซม์จากเชื้อมาลาเรียทำให้เข้าใจในระดับโมเลกุลถึงลักษณะการจับยึดที่สำคัญ ของยาต่อเอนไซม์ สามารถอธิบายสาเหตุของการดื้อยาของเอนไซม์กลายพันธ์บางชนิดได้ เมื่อเปรียบ เทียบกับโครงสร้างที่ค้นพบไม่นานมานี้จากเทคนิครังสีเอ็กซ์พบว่าโครงสร้างทั้งสองคล้ายคลึงกัน ผล การสืบค้นหมู่แทนที่ปรากฏว่าได้อนุพันธ์ของสารยับยั้งจำนวน 7 อนุพันธ์ ในจำนวนนี้มีเพียง 1 อนุพันธ์ คือหมู่เฟนิลโพรพิลที่สามารถทดสอบได้ และพบว่าค่าคงที่ของการยับยั้งของอนุพันธ์นี้ต่อเอนไซม์ชนิด ไวด์ไทปใกล้เคียงกับค่าคงที่ของการยับยั้งของไพริเมทามีน การออกแบบสารยับยั้งโดยใช้โครงสร้างรังสี เอ็กซ์กำลังดำเนินการศึกษาและวิจัยในลำดับถัดไป

คำหลัก: การออกแบบยาตามโครงสร้าง, มาลาเรีย, ไดไฮโดรโฟเลตรีดักเทส, พลาสโมเดียมฟัลซิพารัม

Project Code: PDF/15/2541

Project Title: structure-based drug design for the antimalarial leads as dihydrofolate

reductase inhibitors

Investigator: Pornthep Sompornpisut

Faculty of Science, Chulalongkorn University

E-mail Address: pornthep.S@chula.ac.th

Project Period: July 1998 – October 1999 and October 2002 - July 2003

Understanding the structural basis of protein-ligand complex will help to design an efficient drug against malaria disease. Particularly, the resistance to antifolate drugs is due to the mutation of the malarial enzyme.

This research presents the results of designing inhibitors for malarial dihydrofolate reductase from *Plasmodium falciparum* (PfDHFR) by means of structure-based drug design. The three-dimension structure of PfDHFR was constructed using sequence alignment and x-ray structures of dihydrofolate reductase from other species as the structural template. Structures of the malaria inhibitors, pyrimethamine (PYR) and cycloguanil (CYC), were built and then docked into the PfDHFR's binding site by adopting similar orientation to the DHFR's substrate or the inhibitors from x-ray structural data of the DHFR complexes. Molecular dynamics calculation was performed to simulate the enzyme in solution and to study the structure, dynamics, and the stability of the enzyme-drug interactions. On the basis of identifying possible interactions with amino acids in the enzyme binding sites, PYR's and CYC's derivatives were designed. In the screening process, an inhibitor will be eliminated from the designed list if the interacting score is below the cutoff or the derivative is as same as that designed from Human DHFR.

The homology model of PfDHFR provided an insight into the molecular basis of drug binding to the enzyme. The model can be used to describe the cause of drug resistance to some PfDHFR mutants. A comparison between the model and recent x-ray data of PfDHFR showed that both structures were considerably similar. Fragment-search analysis gave a total of seven derivatives, of which only one, phenylpropyl substituent, can be experimentally examined. The inhibition constant of this derivative complexed to the wildtype enzyme was similar to that of pyrimethamine. Inhibitor design using the x-ray data of PfDHFR is currently in progress.

Keywords: structure-based drug design, malaria, dihydrofolate reductase, *Plasmodium* falciparum