Abstract

Project Code:

PDF/19/2541

Project Title:

'Preparation of Poly(vinyl chloride) / Clay Nanocomposites'

Investigator:

Dr. Arunee Tabtiang, Faculty of Science, Mahidol University

Mentor:

Prof. Dr. Orapin Rungsimon, Faculty of Science, Mahidol University

E-mail Address:

scatt@mahidol.ac.th

Project Period:

2 years 2 months

Objectives: 1. To prepare a carrier resin, poly(methyl methacrylate) (PMMA) with a fine dispersion at the molecular level of the clay for use as reinforcing additives in PVC.

2. To control the stabilisation of the clay dispersion in the PMMA / clay hybrids through the use of functional co-monomers.

Methodology:

1. Preparation of the PMMA / clay hybrids through free radical solution polymerisation and direct melt intercalation of PMMA and characterisation of these hybrids

- 2. Characterisation of the PVC / clay composites prepared through incorporation of the PMMA / clay hybrids into the PVC during compounding.
- Stabilisation of the clay dispersion in the PMMA/clay hybrids through the use of functional co-monomers.

X-ray diffraction patterns of the PMMA / clay composites showed that the clay Results: particles were greatly expanded, i.e. exfoliated, in the reaction products. The exfoliated structure created during polymerisation was unstable under the processing conditions and consequently reordered into a more stable form. The final interlayer spacings were determined by the orientation and lengths of the pre-intercalated alkylammonium ions. These effects were also found to control the interlayer spacings within the clay aggregates in the PMMA / clay composites prepared through direct melt intercalation of PMMA. However, a finer degree of dispersive mixing of the clay in the polymerisation system was inferred. The chain branching in the polymerisation system was the principal reason for the differences in the thermomechanical behaviour of the two composites. These samples were compounded into PVC formulations. In comparison with the unmodified clay, the PMMA / clay hybrids conferred pronounced increases in dimensional stability to the products at very low clay contents, as indicated by enhanced tensile modulus at 25°C and flexural modulus at elevated temperatures. This effect was thought to be related to the enhanced clay dispersion in the hybrid containing formulations and to the branching of the PMMA.

The functional monomers, namely glycidyl methacrylate (GMA) and maleic anhydride (MA), were copolymerised with MMA in the hybrids in an attempt to stabilise the clay dispersion during melt processing. It was found that the presence of GMA could limit the reaggreagation of the clay. The highly reactive oxirane groups of the GMA led to the formation of a gelled structure during polymerisation. It was found that MA contents of 10 wt% in the copolymer could limit the reaggreagation of the clay. When prepared in the presence of clay, the relaxation characteristics of the latter copolymer were altered, probably due to the reaction of succinic anhydride groups with the amine that was bound to the organophylic clay. The product of this reaction was heterogeneous resulting in the formation of copolymer fractions with different glass-rubber transition temperatures.

Keywords: PVC, nanocomposite, PMMA/clay hybrid

บทคัดย่อ

Project Code:

PDF/19/2541

Project Title:

การเตรียมนาโนคอมพอสิตของพอลิไวนิลคลอไรด์กับดิน

นักวิจัย

ดร. อรุณี ทับเที่ยง

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ที่ปรึกษา

ศ.ดร. อรพินท์ รังสิมันต์

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address:

scatt@mahidol.ac.th

ระยะเวลาที่ทำวิจัย

2 ปี 2 เดือน

วัตถุประสงค์

1. เตรียม carrier resin คือ พอลิเมธิลเมธาไครเลต (พีเอ็มเอ็มเอ) ที่มีการ กระจายตัวของชั้นดินดีมากระดับโมเลกุล ใช้เป็นสารเสริมแรงที่เดิมในพอลิไวนิลคลอไรด์ (พีวีซี)

2. ควบคุมเสถียรภาพของการกระจายตัวของดิน ในไฮบริดระหว่างพีเอ็มเอ็มเอ

กับดิน

ขอบเขตการวิจัย 1. เตรียมไฮบริดระหว่างพีเอ็มเอ็มเอกับดินโดย free radical solution polymerisation และ การแทรกตัวของพีเอ็มเอ็มเอหลอมเข้าไปในชั้นของดินโดยตรง

2. ศึกษา คอมพอสิตของพีวีซีกับดินที่เตรียมจากการผสม ไฮบริดระหว่างพี เอ็มเอ็มเอกับดิน เข้ากับพีวีซีในขณะที่หลอม

3. ทำให้เกิดเสถียรภาพของการกระจายตัวของชั้นดินในไฮบริตระหว่างพีเอ็ม เอ็มเอกับดินโดยใช้ โมโนเมอร์ที่มีหมู่ฟังค์ชัน ร่วมด้วย

X-ray diffraction patterns ของคอมพอสิตของพีเอ็มเอ็มเอกับดินที่ได้จากการ ผลจากการวิจัย สังเคราะห์ แสดงให้เห็นว่า ชั้นของดินอยู่ห่างกันมาก นั่นคือ exfoliated โครงสร้างที่ได้มาขณะสังเคราะห์สารนี้ ไม่เสถียร ภายใต้ขบวนการผสมและขึ้นรูป ทำให้เกิดการเรียงตัวกลับคืนสู่สภาวะที่มีเสถียรภาพสูงกว่า ระยะ ห่างระหว่างชั้นดินหาได้จากการจัดเรียงตัวและความยาวของอัลคิลแอมโมเนียมอิออนที่แทรกอยู่ในชั้นดิน ผลนี้ ก็ควบคุมระยะห่างระหว่างชั้นดิน ของคอมพอสิตของพีเอ็มเอ็มเอกับดินที่ได้จาก การแทรกตัวของพีเอ็มเอ็มเอ หลอมเข้าไปในชั้นของดินโดยตรงด้วย พบว่า "ไฮบริดที่เตรียมจากการสังเคราะห์จะมีการกระจายตัวของชั้นดิน ดีกว่า การมีสาขาของสายโช่โมเลกุลของพอลิเมอร์ที่ได้จากการสังเคราะห์เป็นผลสำคัญที่ทำให้เกิดความแตก ต่าง thermomechanical behaviour ของคอมพอสิตสองชนิดนี้ เมื่อรวมไฮบริดนี้กับพีวีซี พบว่าผลิตภัณฑ์ที่มี ดินผสมน้อยมาก มีโมดูลัสที่ 25°C และ flexural modulus ที่อุณหภูมิสูงขึ้นมีค่าเพิ่มขึ้น เมื่อเทียบกับพีวีซีที่ ผสมกับดินที่ไม่ปรับสภาพผิว ผลนี้ควรเป็นผลที่เกี่ยวข้องกับการกระจายตัวของชั้นดินที่ดีขึ้น และ พีเอ็มเอ็มเอ ที่มีสายโช่สาขา การใช้โมโนเมอร์ที่มีหมู่ฟังค์ชั่นได้แก่ไกลซีดิลเมธาไครเลต (จีเอ็มเอ) และ มาลีอิกแอนไฮด ราย (เอ็มเอ) สังเคราะห์พอลิเมอร์ร่วมกับ พีเอ็มเอ็มเอ เพื่อให้เกิดเสถียรภาพของการกระจายตัวของชั้นดินใน ขณะที่พอลิเมอร์หลอม พบว่า จีเอ็มเอ ช่วยลดการกลับคืนการเรียงดัวของชั้นดิน กลุ่ม oxirane ในจีเอ็มเอ ไว ต่อปฏิกิริยามาก ทำให้เกิดโครงสร้างที่เป็นร่างแหขึ้น ในกรณีที่มี เอ็มเอ ผสมอยู่ 10%โดยน้ำหนักพบว่าช่วย ลดการกลับคืนการเรียงตัวของชั้นดิน relaxation characteristics ของโคพอลิเมอร์ดัวหลังที่เตรียมขณะที่มีดิน อยู่ด้วยจะแตกด่างไป อาจเนื่องมาจากปฏิกิริยาระหว่าง กลุ่ม succinic anhydride กับ เอมีนที่ดิดอยู่ที่ผิวของ ดินที่ปรับสภาพ ผลิตภัณฑ์ของปฏิกิริยานี้เป็นเนื้อผสม ทำให้ มีส่วนของโคพอลิเมอร์ที่มี glass-rubber transition temperatures แตกต่างไป

Keywords: PVC, nanocomposite, PMMA/clay hybrid