บทคัดย่อ

สัญญาเลขที่ PDF/27/2541

โครงการ "ระบบเชื่อมโยงมาตรฐาน สำหรับ โปรแกรมวิเคราะห์ และ จำลองการทำงานของ วงจรรวมแบบผสมวงจรย่อย อนาลอก ดิจิทัล และ วงจรย่อยระดับสูง" จัดทำโดย

ดร. ชูเกียรติ การะเกตุ ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ บางเขน กรุงเทพฯ **e-mail** fengcgg@ku.ac.th Dr. Mark Zwolinski Department of Electronics and Computer Science

University of Southampton England

มิถุนายน 2541 – กรกฎาคม 2543

โครงการวิจัยนี้มีวัตถุประสงค์ที่จะศึกษา และพัฒนาวิธีการเพื่อนำมาใช้ในการวิเคราะห์ วงจรรวมที่ประกอบด้วยภาคอนาลอกและดิจิทัลรวมอยู่ในไอซีชิพเดียวกัน วิธีการที่นำเสนอ เป็นการขยายขอบเขตของการจำลองวงจรรวมแบบตัวจำลองการทำงานเดี่ยว มาเป็นแบบหลาย ตัว โดยกำหนดมาตรฐานการเชื่อมต่อที่ใช้ได้กับทั้งตัวจำลองการทำงานแบบอนาลอกและดิจิทัล

แผงเชื่อมโยงตัวจำลองการทำงาน ที่พัฒนาขึ้นในโครงการเป็นสภาพแวดล้อมที่ใช้ ประสานการทำงานของตัวจำลองการทำงานแบบต่างๆ เพื่อให้สามารถจำลองการทำงานของวง จรรวมแบบผสม อนาลอก และ ดิจิทัล ในสภาพแวดล้อมของแผงเชื่อมโยงนี้ ตัวจำลองการ ทำงานของวงจรรวมแต่ละตัว สามารถที่จะทำงานแยกกันเป็นขบวนการ และ อัลกอริธึม ที่อิสระ จากกัน โดยอาศัยแผงเชื่อมโยงเป็นตัวส่งผ่านข้อมูลระหว่างกัน แผงเชื่อมโยงจะมีหน้าที่หลัก ในการควบคุมให้แต่ละตัวจำลองที่มาเชื่อมต่อสามารถทำงานร่วมกันได้ และสามารถที่จะสร้าง ผลการจำลองการทำงานที่ถูกต้อง โดยตัวจำลองที่นำมาเชื่อมต่อแต่ละตัวจะถูกควบคุมให้ ทำงานสอดคล้องกันด้วยวิธี ล็อก-สเตปประยุกต์ ข้อมูลที่แลกเปลี่ยนกันระหว่างวงจรส่วน อนาลอก และ ดิจิทัล จะส่งผ่านการแปลงข้อมูลแบบ เทรชโฮลด์-ฟังก์ชั่น และ บูลีน-คอนโทรล-สวิทช์ ข้อมูลที่ส่งผ่านระหว่างอนาลอก กับ อนาลอก ด้วยกันเอง จะใช้เทคนิคการตรวจสอบ ลาเทนซี่

แผงเชื่อมโยงตัวจำลองการทำงานนี้ประสบความสำเร็จในการเชื่อมโยงตัวจำลองการทำ งานทั้งแบบ อนาลอก ดิจิทัล และ แบบบรรยายพฤติกรรมระดับสูง และได้นำไปใช้งานจริงกับวง จรประยุกต์แบบผสมสัญญานที่มีการป้อนกลับระหว่างวงจรส่วนต่างๆ ซึ่งผลที่ได้จากการทดลอง ได้แสดงให้เห็นถึงความสามารถ และ ประสิทธิภาพของเทคนิคที่ได้นำเสนอ

ข้อจำกัดสำคัญของการนำไปประยุกต์ใช้คือ ความเร็วในการประมวลผลที่ยังต้องปรับ ปรุง อย่างไรก็ดี แผงเชื่อมโยงตัวจำลองที่นำเสนอ มีข้อดีคือง่ายในการพัฒนา ให้ผลถูกต้อง เชื่อถือได้ เป็นระบบเปิดที่สามารถขยายผลพัฒนาต่อไปได้ และ สามารถปรับประยุกต์ใช้กับ ปัญหาวิเคราะห์วงจรได้หลากหลายรูปแบบ

คำสำคัญ จำลองการทำงาน วงจรรวม อนาลอก ดิจิทัล ผสมสัญญาณ

Abstract

Contract Number PDF/27/2541

Project "Standard Interface System for Integrated Circuit Simulators of Mixed Analogue Digital and High-level Subcircuits(Simulation Backplane)"

By

Dr. Chugiat Garagate Department of Electrical Engineering Faculty of Engineering Kasetsart University Bangkok 10900 **e-mail** fengcgg@ku.ac.th

Dr. Markk Zwolinski Department of Electronics and Computer Science University of Southampton England

June 1998 - July 2000

The objective of this research project is to study and develop a technique for the simulation of Integrated Circuits(IC) with mixed analogue and digital parts. The technique proposed is to change the simulation methodology that employs a single simulator to that uses multiple simulators. The standard interface machanism is used to combine operations of both analogue and digital circuit simulators.

Simulation Backplane is an integrated simulation environment that combines multiple simulators of different abstraction levels to perform mixed-signal circuit simulation. In the backplane environment, circuit simulators run as separate processes, using their own algorithm and exchanging simulation data through the backplane. A consistent mixed-signal simulation is obtained by using backplane controls. The Applied Lock-step algorithm was adopted to synchronise the simulation processes. Digital and Analogue simulators exchange simulation data by employing a standardised signal conversion scheme, which is based on threshold functions and Boolean-controlled switches. Latency detection technique is used to define analogue events.

Several circuit simulators were integrated into the environment, including a logic simulator, a behavioural simulator and a de-facto analog circuit level simulator. Simulations of practical mixed-signal applications including circuits that contained feedback loops were carried out successfully. The results convincingly showed the capability and flexibility of the approach.

Limitation of this scheme is the computation speed which needs to be improved. However, the advatages of the technique are its ease of development, the reliable simulation results, open systems and also applicable to varities of circuit problems.

Keywords simulation, analogue, digital, mixed-signal, integrated circuits