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Abstract

Project Code: PDF/29/2541

Project Title: Functional relation and dynamical relation of Newton's functions,

Successive approximations and Halley's functions

investigator: Piyapong Niamsup, Department of Mathematics, Chiangmai UNiversity

E-mail address: scipnmsp@chiangmai.ac.th

Project Periond: July 1, 1998 — June 30, 2000

Objectives: 1. To find functional relations for Newton's functions, Successive

approximations and Halley's functions

2. To find dynamical relations for Newton's functions, Successive approximations and
Halley's functions

3. To obtain numerical results to verify results in 1 and 2

Methodology: 1. Collect related papers and books

2. Study in details materials in 1 to obtain new topics and techniques

3. Do research to obtain new results

4. Submit papers for publications in international journals

5. Conclude and submit the final reports

Results: 1. We obtain some new relations betwveen Newton's functions, Successive
approximations and Hailey's functions for quadratic polynomials

2. We obtain the roll of Schwarzian derivative in controlling the rate of convergence of
the composition of Halley's functions and Newton's functions

3. We obtain rational solutions for certain functional equations related to Newton's
functions, Successive approximations and Halley's functions

Discussion Conclusion:

The results obtained in this research can be used in finding roots of quadratic
polynomials with our desired of the order of convergence and accuracy. Moreover, we
obtain new results on rational solutions of certain functional equations. Some of our
results extended results obtained by Prof.Dr.Julian Palmore and some results are truly
new
Suggestions/Further Implication/Implementation: We propose to study similar results
obtained to higher degree polynomials

Keywords: Newton's functions, Successive approximations and Halley's functions
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Some Relations Among Halley’s Method,
Newton’'s Method and Successive
Approximations

Piyapong Niamsup and Yongwimon Lenbury

June 30, 2000

1 Introduction

Let P(z) = (z —a)(z —b), where a, b € C such that 0 < |a| < |b]. Let

H{(z) =z — P P}&fflp,,m and N (z) = z — g%); be the Halley’s method and
ALY TP
Newton’s method of P and let S (z) = zJEib be a sticcessive approximation

of P. The following properties of S, N and H are well-known:

Proposition 2.1 From 0 < |a| < |b|, we have

(a) b is the repelling fired point of S.

(b) a is the attracting fized point of S. Moreover, a s the global atiractor
of S. In other words, limy_,., S*(z) = a for ail z € C— {b}.

Proposition 2.2 The following hold true for N:

(a) N has two superattracting fized points at a and b and has one repelling
fixed point at oco.

(b) The basin of attraction of a for N contains z = 0. In other words,
limx oo N* (0) = a. This is because 0 < |a| < |b| so that z = 0 is closer to a
then to b.

Proposition 2.3 The following hold true for H:

(a) H has two superattracting fized points at a and b and has two repelling

fized point at %ﬁ and co.



() The busen of attraction of a for H contains = = 0. [n other words,
limyg oo H* (0} = .

In general, A, N and S have orders of convergence equal to three, two
and one respectively. In this note, we will derive some interesting velations
among H, N and S and show an example on how the results can be used to
get faster convergence. In what follows let /7 (z), H(z), N (z) and S (z) be
as above. The i’ iterate of a function f will be denoted by f'. We will prove
the following relation between iterations of NV and §:

Theorem 3.1 N (57 (0)) = SOV =1(0) where ¢, j > 0.
For this purpose we need the following lemmata:
Lemma 3.2 (N o S)(z) = (S° o N)(z) for all = € CU{oc}.
Proof For the quadratic polynomial P (z) = (z — a) {z — b) we have N (z) =

2;72(;?.5)' It is straightforward to check that
ab) z2 — 2abla + b) z + ab{a + b)” — (ab)* Y

(a—!—b)39—2(09—|—ab—|—b2)z—(a+b)(a2+b2)

Lemma 3.3 (NoS*)(z) = (S* o N)(z) for all z € Cu{oo}.

Proof We prove by induction on i. For ¢ = 1 the result follows from Lemma
3.2. Assume the result is true for 7 > 1. Then

No St = (NO;SI) oS
= (s2=' o N) oS by Lemma 3.2
S5 o (N o S)
= 5”0 (5%0 N)
G20+1) o .
The proof is complete. 0

The following lemma can be proved by induction as in Lemma 3.3:
Lemma 3.4 (N'o S7)(z) = (SJ'T o Ni) (2) for all z € CU{ec}, i, j = 0.
Proposition 3.5 N'(0) = S%-1(0),: > 0.

Proof From Lemma 3.4 we have, for : > 1, that

N'(0) = (32‘01\/*'05—1) (0)

2



This is valid because § is one-to-one and S~ !'(0) = ~c. This finishes rhe
proof. O

Proof of theorer ;1.1 From Lemma 3.4 we have (N o 57) (0) = (SJ"-" ) N’) (0).
Thus

N ($2(0)) = &7 (N(0))
= Si¥ (52'_1 (0) ) by Proposition 3.5
5'(J+])-2'—I (0) )
This completes the proof of the theorem. a

Remark 1. Proposition 3.5 is proved in [2] by using the technique of topo-
logical conjugacy which can also be used to prove our result (Theorem 3.1).
In this work, we present a simpler proof by observing that one iteration of
N followed by two iterations of S is equivalent to one iteration of S followed
by one iteration of N (Lemma 3.2).

Remark 2. If we replace S (z) with T (z) = 1“—“’3_2——“&', the inverse of 5,
which is also a Successive approximation of P, then we have similar results
as follows:

Proposition 3.6 The follounng hold true for T:

(a) a is the repulsive fized point of T.

(b} b is the attractive fized point of T. Moreover, b is the global attractor
of T.

Proposition 3.8 The following hold true:
(a) (N'oT?)(2) = (T7% ONi) (z) for all z € CU {oo} and i, j > 0.

(b) N* (Ti (2 ) = TU+H2-1 (ﬂ—b) where i, j > 0.

a+b



With the same argument as above, we obtain the following relations
among H. N and S

Theorem 3.9 The following hold true:

(a) (H 0 S7)(2) = (S o H')(2) for all - € CU{x}, ) =0

(b) H'(S?(0)) = SUDF 110y where 1. j > 0.

(c) H' (S7371(0)) = N*(S7371(0)) where 1. j = 0.

(d) (HoNY(z) = (H'oN)(z) =(NoH)(2) forall : € CU{>}. 1>

(e) (H' o N7 o S¥)(z) = (S¥¥ Y o H' o ;\-’)(h} for all - & CU{x
i k>0,

(f) (H' o NIYS*(0)) = SEHD="32100) where 10 ) and b = 0.

n.
'

Remark 3. It is natural to ask if there are similar relations among Halley's
method, Newton's method and successive approximations of polynomials of
degree 3 or higher. The answer seems to be negative. One reason is because
for polynomials of degree 3 (or higher), successive approximations of this
polynomial have degree 2 (or higher). From which it follows that degree of
N o S is not equal to degree of 5% o .\ hence Lemma 3.2 does not hold.

2 An Example

Let P( } = (z—1)(z+2). Then H(z) = q—"*%;—q N(z) = £ and
S{z) = z+1 The convergent sequences to the root z = 1 starting from initial

point z = 0 produced by iteration of S is as follows:
50,2, 2 6 10 22 42 8 170 342 682 1366 2730 5462 10922 21846 43600

3757110 217 43 857 1717 341 683" 1365 2731’ 5461 10923 " 21815 43691
87382 174762 349526 699050 1398102 2796202 5592406 11184810 22369622 44739242
87381 174763 349525 699051 ' 1398101 ' 2796203 3592405 ° 111848117 223696217 44739243
80478486 178956970 357913042 715827882 1431655766
89478485 178056971 357913941 715827883 1431655765
For illustration, if we start from the initial points z =0, z = % and = =

then the convergent subsequences (of sequences above) to the root = =
starting from these initial points produced by iterations of N and H are as
follows:

— UL

53 857 21845 1431655765
22 1366 5592406 93821992236886

072 198 AR A Rr483AAARR8 75 07k 5750
g

.2 6 86 21846 1431655766

) wr O

Y3 171 447392437 805950546400752783137451° " °°
1366 22906492246

13657 22906492245 -

Sellle e




As an example, we have the following correspondences hetween N oand

VI(0)=2=SHO),N2(0) =% = SOV AP (0) = 22 = STy Ny -
21846 _ O (Y 2 2y 22 on N2

UG — S19(0), .. and NO(3) =3 = ST(0). NV (3) = = 87 (0). N (1) -
1366 1t 3 __ 5502406 A f2) _ 03821002046886 _ o7

=5 (0) N ( ) 5502405 T = 5 (( ) N (i) TTOO3RNOCIABARS T S0

As we have scen., if we want a fast convergence to roots of F7, then we

select an initial point in the form S7(0) (or 77(* b 7))} and then apply cither

N or H successively.

=
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1 abstract

The composition between Newton’s function and Hallev's function is
studied. We show that the composition function has the order of convergence
to a simple root of a function f equal to or exceed 6. We show that the
Schwarzian derivative of f and the second derivative of f evaluated at the
zero of f are the factors which determine the order of convergence.

2 Introduction

Let f be a differentiable function on C. The Newton's function, Halley's
functions and the Schwarzian derivative of f will be denoted by N (z). H (z),
and S (z) and are defined by

£1(z) - B



[7(z) (f"(z))‘*

fr(z) f(z)

Assume that f has a simple zero at { so that f'(¢) # 0. In [2] and [3],
the role of Schawarzian derivatives of NV and H in controlling the order of

convergence of N and H to ¢ are studied respectively. The main results in
[2] and [3] are as follows:

Theorem 2.1 [3] Let f be a differentiable function on C. Let N und S be
the Newton’s function and the Schwarzian derivatwe of f. If f has a sunple
zero ¢ such that f'({) # 0, then N ({) = S(). If f"({) =0, then N has
convergence to { of order 3 or greater. If S(() = 0, then N has convergence
to ( of order 4 or greater.

Theorem 2.2 [2] Let f be a differentiable function on C. Let H and S be
the Halley’s function and the Schwarzian derivative of f. If f has a simple
zero ¢ such that f'({) # 0, then H" ({) = —25({). H has convergence to (
of order 4 or greater if and only if S ({) = 0.

In theorem 1.2, the formula for " () is incorrect; the correct formula is
H"(¢) = —%Q. From theorem 1.1 it follows that the Schwarzian derivative
of f at { controls the order of convergence of N in cases where the first,
two derivatives of f at ¢ are nonzero. In this paper we study the role of
Schwarzian derivatives of composition function between H and N, namely
Ho N and N o H, in controlling the order of convergence to the simple root

¢ of f.

S(z) = 2

3 Main result

In this section we will prove the following main result:

Theorem 3.1 Let f be a differentiable function on C. Let H, N and S be
the Halley’s function, Newton’s function and Schwarzian derivative of f. If
f has a simple zero ( such that f'({) # 0, then the values of the first five

derivatives of H o N at { are zero, and (H o N)® (¢) = — 12 (%(%1)3 -5 (¢).
Therefore, H o N has order of convergence to { equal to 6 or greater. The
order of convergence of H o N is controlled by value of the second derivative

and value of the Schwarzian derivative of f evaluated at (.



Proof From [2]. H{z) = '%l and from theorem 2.2, H (¢) = —2ad
We know that AN (J) = NI =0 H () =0 H'({})=0and H" () =
— ==L With these information and the chain rule. the first six derivatives of

Ho N at ¢ are

(HoNY(Q) = H(NN-N{() =0
(HoN) (&) = (N H (NG +H (NG -N'(Q) =0
(H o N)"(() SNT(CY - NI HUUN () + (NG HTIN () +
H (N(Q))- N (1)
= 0.
(H>N)M () = 3H(N(O) (N () =60V ()7 - N - H (N () +

(HoN)®(¢) = 15N'(¢)- (N (G HT (N (Q)) + 10H" (N () - N"(C)- N (¢) +
10 (N (O)* - H" (N () - N (§) + 10(N"())” - N (Q) - HH (N (Q)) +
N'(C)- H' (N () - N (Q) + (N (¢)° - HB(N(¢)) +
H' (N (C)) N (¢)

= 0, and

(HoN)Y®(() = 15(N"()*- H" (N (C)) + 60N (¢)- N”(¢) - H" (N ({)) - N (¢) +
10H" (N (€)) - (N ())* + 45 (N'())* - (N"(C)* - HY (N (¢)) +
20 (N (€))% - N™ () - HW (N () + 15H" (N (¢)) - N”(¢) - N (¢) +
15 (N (EN*- H” (N (€)) - N (Q) + 15 (N'(O)* - N (¢) - HO (N (Q)) +
6N’ (C) - H" (N (C)) - N®(Q) + (N () - HO (N () +
H' (N () -N®(Q)

" 3
= @ WO = -3 (58

f’(C)) Sl

Therefore, H o N has order of convergence to { equal to 6 or greater. Clearly,
the order of convergence of H o N is controlled by the second derivative and
the Schwarzian derivative of f at (. This completes the proof. 3

Theorem 3.2 Let f be a differentiable function on C. Let H, N, and
S be the Halley’s function, Newton’s function, and Schwarzian derivative

3



of f. respectieely. If f has a simple zero C such thai [7(C) /=0, then the
values of the first five dorvicatives of N o I cealuated at ¢ oare zero, and
i - T - 2 O e 4 ' - 1

(‘NOH)(L)(C-) IO(I( )){H <)) :—l—_;(‘;—;:')l) -SHC). Therefore, No H
has order of convergence to ( cqual to 6 or greater and the order of conver-
gence 1s controlled by value of the second dervative and value of Schwarzian
derwative of [ evaluated at .

Proof The proof is similar to that of Theoren 3.1 and will be omitted. 0O

Remark [t is natural to further consuler the roles of Schwarzian derivative
and derivatives of fin controlling order of convergence of H' o N/ where
>0

4 Example

Let f(r) = (z— 1){z+~2) = r* + r — 2. In this example, we have
N (z) = 27;‘:—1, H(z) = %’% and S(z) = _5(>:+1)2' By computa-
tion, we get (N o H)(z) = (Ho N)(x) = G BRI, Since
S(1) = S(=2) = -2, f','gll) = % and G = — 2 we get (No H)W (1) =
(Ho.N>‘6>(1)=—%-(%)d-(—%):'—andon) O (~2) = (H o N)® (~2) =
-2 (~—2 ’ —%) = — 89 Hence, the order of convergence of N o H and of

H o N to the zeros of f 1s 6.
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A RELATION BETWEEN SUCCESSIVE
APPROXIMATION AND CERTAIN ROOTS FINDING
METHODS

PIYAPONG NIAMSUP AXND JULIAN PALMORE

ABSTRACT. In this paper. we give some interesting relation be-
tween successive approximation and certain roots hinding method
for quadratic polynomials.

1. INTRODUCTION

For a function f(z), the Halley’s method and Newton’s method of f
are defined as follows:

f(z)
H = — G ;,and
(Z) ) f'(z) - ‘;f'(z)z
_ f(z)
N(z) = =z-— F1(2)

respectively. A successive approximation of f(z) can be obtained by
letting f(z) = 0 and write this equation in a form z = S(z) where
S(z) will be called a successive approximation of f. For example, if
f(z) = (z — a){z — b) where , a,b € C — {0}, a # b, then we obtain a
successive approximation S(z) = Z_‘(ﬁb). Halley’s method, Newton’s
method and successive approximation are iterative method which are
used to find certain roots of f in which we choose an initial guest g
and then iterate these method to z, to obtain a sequence {z,} which
usually converge to certain roots of f (the choice of initial guest z; is
essential for the convergence of the sequence, see [1], [9] and references
cited therein). In general, the orders of convergence of Halley's method,
Newton’s method and successive approximation are three, two and one
respectively. In [3], an interesting relation between Newton’s method

and successive approximation was obtained as follows:

Date: June 30, 2000.
1991 Mathematics Subject Classification. 30D05, 58F08, 30B70.
Key words and phrases. Successive approximation, Halley’s method, Newton's
method.
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2 PIYAPONG NIAMSUP AND JULIAN PALMORE

Theorem 1.1 Let (7 = "—*?é. (T = “J(i’ be quadratic (rrationals
where a, b. and ¢ are integers satisfyinga < 0.0 > 0. & 15 not the squure
of an wnteger. and c # 0. Let P(2) = {z—={" ) (2= ). gz} be the New-

L

o . - — -y N - <o O - N
ton’s method of P and h(z) = —>— T be a sucessive approrimation
- “

of P. Then for all n > 0. we have
g"(0) = A*"7H(0)

where f* denotes the I'" iterate of function f.

Theorem 1.1 was proved using the concept of topological conjugacy
where we say f and ¢ are topological conjugacy if there exists a Mdbius
transformation h such that foh = hog. If f and g are topological
conjugate, then they have the same dynamical behavior such as they
have the same type of periodic points. see [1] for more details. In this
paper, we will give some interesting relation between successive approx-
imations and certain root findinig methods for quadratic polvnomials
which extend Theorem 1.1 to general root findings method of order of
convergence equal to k, &k > 2.

2. ANlaiNy RESULTS

Let P(z) = (z — a)(z — b) where a.b € C satisfving 0 < |a| < [b]
be a quadratic polynomial. We first introduce the following rational
function

a(z — b)* —b(z —a)"
fk(z)_ (7_b)k_(3_a)k

“

We can see that fy is topological conjugate to the map w — w* by the
Mbobius transformation M (z) that sends w = 0 to a and w = 2c to b,

where M (z) = b:T_la and M~1(z) = =22, In other words, we have

fulz) = M([M71(2)]h).

Note that, when k& = 2, fi is the Newton's method of P and when
k = 3, fi is the Halley’s method of P. In this section. we will prove
the following main result:

Theorem 2.1 The order of convergence of fi to the roots a starting
from zg = 0 is equal to k. More precisely, we have

fE(S7(0)) = SUHDF-1(0)

for all 1,5 > 0, where S(z) = z_“(”;’ib) 1s a successive approrimation of
P.
In order to prove this theorem, we need the following lemma:
Lemma 2.2 For the successive approrimation 5. the point b is the
repulsive fired point of S and a is the global attractor of S. that is
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klim Sk(z) = a for all z € C — {b}.Moreover. S is topological conjugate
O

to the map w +— fw by the Mdbius transformation M (z) = b;%“. that

LS 1
CHONE M((%)kﬁr‘(z))

ba*(—z +a) — ab®(—z + b)
ak(—z +a) — b(—z+b)

Proof It is routine to see that b is the repulsive fixed point of S, a is
the attractive fixed point of § and that

Sz) = ((3) M=)

that 1s S is topological conjugate to the map w — fw by the Mobius

transformation M{z) = ®=2  Since 0 < |a| < |b]. it follows that
limwi(z) = lim (2)'z = 0 for all z € C. Hence, 0 is the global
11— O0 T— OO

attractor of the map w — f$w. Since 5 is topological conjugate to the

map w — $w and M(0) = a, it follows that a is the global attractor of

S. O
Lemma 2.3 For all z € CU {0} and i > 0, we have

(fi o S)z) = (S* o fi)(2).

Proof From (2.1) and Lemma 2.2, it follows that fr o S = S* o fi,
hence (2.3) holds true for £ = 1. Assume that (2.3) holds true for
0<i< N —1. Then we have

o8 = fio(fff o9

= fro (8" o fN-1) by induction argument

= (froS* o g

= (feo8)o 8o V!

= S*o(fkoS* ' Y)o £V since (2.3) holds true for i = 1.
Continue this process inductively, we obtain f¥ oS = S*" o f¥. This

k k

completes the proof. O

Proof of Theoremm We will prove this by induction on ¢ and j. First,
we let 7 = 0 ad show that

fi(0) = S¥~1(0)
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for all 7 > 0. The equation (2.4) is trivially true for { = 0. Suppose
that (2.4) holds true for 0 < i < N - 1. Let @« = &AV¥-! — 1. Then we
brisve

K0 = f(f7H0)
= fx(8%(0)) by induction argument
a(S*(0) — b)* — b(52(0) — a)*
(52(0) = 0)F = (5(0) — a)*
q (bestioaberl k _p(batioavetl x
= ( A ) ( G ) by Lemma 2.2

bat+l —gpetl k ha®tl _ghotl k
( ao+l_patl b) - ( qoetl_pa+l (1')

a (bt (b — a))* — b (a®t (b —a))*
(b2+1(b — a))* — (a®*1(b — a))"

abk{a+l ) bak(a+1)

bk{o:+1) — gkla+l)

" — ba*" .

bk;\" _ akN

Therefore, (2.4) holds true for all : > 0. Next, we suppose that (2.2)
holds true for 0 < 7 < N ~ 1 and for all z > 0. Then, for « > 0, we
have

fi(SN(O) = (fieoS)SYTH0))
= S¥(fi(SN7'(0))) by Lemma 2.3
= S¥(SMF-1(0)) by induction argument
— S(N+1)k"—1(0)

which implies that (2.2) holds true for j = N and for all ¢ > 0. This
completes the proof. O

Remark 2.1 When a and b are quadratic irrationals corresponding
to a = %’@ and b = “—_w‘é where u, v, and w are integers, u < 0
and v > 0, b is not the square of an integer, and w # 0, it was shown
in [6] that fx, k& > 2, is the rational function of integers u, v, and w
and that 1_lirtxalo fi(0) = a. This is important because we can generate a

computable orbit that converges to a.

Remark 2.2 If we replace S (z) withT (z) = K“—%zz_ﬂ, the tnverse of
S, which is also a Successive approximation of P, then we have similar
results as follows:
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Theorem 2.4 The order of convergence of fi to the roots b starting

from z, = a“—&) 15 equal to k. More precisely. we have
ab B ab
,. 7‘_’, — T(_}—Fl]k -1
R (%)

for all i,j = 0, where T(z) = S~ '(z) = latblzzab o cuccessive ap-
prorimation of P. i

Remark 2.3 [t is natural to ask if there are similar relations between
fr and successive approxrimations of polynomials of degree 3 or higher.
The answer seems to be negative. One reason is because for polynomials
of degree 3 (or higher), successive approximations of this polynomial
have degree 2 (or higher). From which it follows that degree of fr. o S
s not equal to degree of S* o fi hence Lemma 2.3 does not hold.

3. AN EXAMPLE
Let P(z) = (z — 1)(z + 2). Then f3(z) = Zpf8et2 £, () = 2242
2

32243243 241
and S (z) = Z7. The convergent sequences to the root z = 1 starting

from initial point z = 0 produced by iteration of S is as follows:
$:0,2 10 22 42 86 170 342 682 1366 2730 5462 10922 21846 43690

? 3’ g’ 117 217 437 857 171 341 683° 13657 2731 5461° 10923 21845’ 43691?
87382 174762 349526 699050 1398102 2796202 5592406 11184810 22369622 44739242
87381 1747637 3495257 699051 * 1398101 2796203 5592405° 11184811 22369621 ' 44739243

89478486 178956970 357913942 715827882 1431655766
89478485 178956971’ 357913941 ' 715827883 1431655765° " "~
2

For illustration, if we start from the initial points z = 0, z = 3 and

z = g then the convergent subsequences (of sequences above) to the
root z = 1 starting from these initial points produced by iterations of
f2 and f3 are as follows:

f 0 2 86 21846 1431655766
2- ' 5 85°? 21845 ' 1431655765 '

f2 2 22 1366 5592406 93824992236386

" 3 ? 21’ 136 ' 5592405 93824992236885 " " °
f3 170 44739242 B805950546409752783137450

’ 3 ' 171’ 44739243' 805950546409752783137451° °°°
f . 6 1366 22906492246
3 - 57 1365 22906492245°

As an example, we have the following correspondences between NV
and S:

f2 (0) S'(0), f(0) = S%(0), f3(0) = 8 = S7(0),
f2 (0) == Sls (0), can and f2 ( ) = 2 = S2 (0),f21 (%) == % -
07 0 e 2 0 5) ~ e 50 2 1) -
oanoaTas2cea®d = 85%7(0), ... As we have seen, if we want a fast conver-
gence to roots of P, then we select an initial point in the form 57(0)

(or T7(2% ) and then apply either f, or f; successively.

2
846
845

r"Ii

Il

wll\)
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Ratioanl Solutions of Certain Functional
Equation

Piyapong Niamsup and Julian Palmore

June 30, 2000

‘Abstract

In this paper we study a functional equation of the form foS = S*o

f where 5(z) = —Z_aab+b) 1s a Successive approximation of a qualratic

polynornial with roots @ and & such that 0 < [a| < |b] and f is a ratio-
apz+tae_ 12T '+ +a1z+tag
brzhdby_ 12Kl by s4bo

nal function of degree k of the form f(z) =
a;, b; € C, (ag, bg) # (0. 0).
1 Introduction

Halley’s method, Newton’s method of a given function P(z) are defined re-
spectively as follows

P(z)
) = 2o P(z) - Pzzpﬁlz')z |
N(z) = z- %_

A successive approximation of P(z), S(z) can be obtained by setting
P(z) = 0 then write this equation as z = S(z). For example, if P(z) is a
quadratic polynomial with roots @ and b such that 0 < |a| < |b| In general,
Halley’s method, Newton’s method and successive approximation are itera-
tive methods which can be used to locate roots of functions where the order
of convergence of these methods are three, two and one, respectively. In [5]
and [6], the roles of the Schwarzian derivative of Halley’s method, Newton’s



method and the composition between these two methods were studied in
controlling the order of convergence of these methods. In [2| and (4], the fol-
lowing relations between Halley's method. Newton’s method and successive
approximation for P(z) = (z — a)(z — b). a,b € C such that 0 < {a| < ||
were given. The following are some of these relations:

HoS=58%H.

NoS=5%aN,
(HoN)oS =58% (HoN),

HY(S7(0)) = SO+ =10y, i § >0,
CNY(SI(0)) = SUTT-1(0), 0 > 0,

(H o NY(S7(0)) = SU+De =10y i ; > 0.

AR AN ol e

In [7] and [8], a rational function of the following form was studied:

L _alz=br — bz —a)f
e = 2 =z —ar

(1)

It was shown that when a and b are quadratic irrational numbers of the
form

u+ vl/? u— vl/?
a=—and b= ——
w w
where u, v, and w are integers such that » > 0, v is not the square of an
integer and w # 0, then fi(z) is a rational function of integers u, v, and w.

This is important when we study a computable orbit converging to a under
the iteration of fi. It was also shown that

2 (0) = 5¥71(0)

where k > 2 and ¢ > 1. That is, the order of convergence of fi to a is equal
to k. Note that f5 is the usual Newton’s method of P and f3 is the Halley's
method of P. Motivating by these results, we propose to study a functional
equation

foS==S%af (2)
where k > 2, S is defined as above and f is a rational function of degree &

of the form
arz® + ar_125 1+ - + a1z + ag (3)

f(z) = brzk + by 1251 4+ .-+ bz + by’
where a;, b; € C, (ag, bo) # (0, 0). In the next section, we will find all rational
solutions f of (2).




2 Main Results
We begin by showing that (2) has a rational solution.
Theorem 1 The functional equation (2) has a solution. namely

a(z — b)" — b(z —a)*
(z =b)F —(z —a)&

fe(z) =

Proof For k > 2. the function defined above 1s conjugate to the map
w —— w” by the Mobius transformation that sends v = 0 to a and w = x
to b, namely

bu —
M(w) = ——2
w — 1
The inverse. M ™! of M is given by
—:+a
M7 z) =
(2) —z+b

We have the following commutative diagram

z —  fi(z)
M7 T M
k

w -— W

Therefore, for k£ > 2, we have fi(z) = M([M~'(2)])*. The map S is conjugate
to the map w —— %w by the same Mobius transformation A/ as above.
Therefore, we obtain

an k

Sk(z) = M((g) M=)

ba*(—z + a) — ab*(—z + b)
(—z+a) —b(—z+b)

Hence,
ba* ( alz=dlc=b(z—a)* _ abt (Lfb)hb(z—a)* i b)
S*(fi(2)) = === b oot
§ ak (g — ez=b)*—b(z—a}* . a(:-b)k—b(;_a)k)
(z—8)k —{z—a)* (z=b)Yk —(z—a)*
_ab(z — b)* — ba*(z — a)*
 bR(z — bk — ak(z — a)*

= fe(S(2)).



That 1s fi i1s a solution of (1) as desired. il
From thns theorem, we obtain the following result which is more general

than the result in [4].

Corollary 2 Fork = 2, we have f,i”(SJ(— ab__y) = SUTDE -1
for i,7 > 0, where z; is a fived point of fi. In particular, for b, =0,

ab
T —(a+b) zy —%ﬂer)
L Nas

a fired point at oo and hence f{V(S7(0)) = SUDE' =10 for i, j > 0.

Proof. See [2] for the detail of the proof where mathematical induction
was used to prove this corollary. See [-] for the detail of the proof where the
concept of topological conjugacy was used to prove this corollary. i

We now consider all rational solutions of (2) when £ = 2. We obtain the

following result.

Theorem 3 Let f> be a solution of (2), then fy 15 of the following form

(a) If a, # 0, then

z2 + (—2abby)z + (—ab + ab(a + b)b,)

fa(z)

T bo2? + (2 —2(a+ b)by)z + (—abby — (a + b) + (a + b)%by)

where by 1s any complex number. Moreover, if by = 0 then fy is the Newton's
method for P and if by is a nonzero complex number, then we obtain fy(z) =

T5(N(z)) where T2(z)

z—abbs

= bzt (l—(a+b)by)’
(b) If an =0, and a, # 0, then

f2(z) =

s
(o) + () = — (T

Note that fa(z) = (571 o N o S)(z).
(c) If az = a; = 0 and ag # 0, then there are no rational solutions for

(2) of this form.

Conversely, if T is any mapping such that ToS = SoT, then NoT and
T o N are solutions of (2).
Proof. We first assume that a; # 0. In this case we can assume that

fa(z) = gzziz;"fb’—fﬁfgg. From S(z) = —z_(“cf’+b) we substitute f; and S into (2)

and solve for the coefficients a,, ag, b2, by, and by we obtain

a)
Qp
by
bo

—2abbs,

—ab + ab(a + b)b,,

2 — 2(a + b)bs, and

—abby — (a + b) + (a + b)*by

4



where s is any complex number. That -

folz) = 224 (= 2abba)z + (- ab 4 abla + b)by)
2(2) = baz? + (2 —=2(a+ b)by)z + (—abby — (a + b) + (a + b)2by)
where b, € C is the set of all solutions of (2) for & = 2 when ay, # 0.
Now assume that a» = 0 and e, # 0. In this case we can assume that
fa(z) = ﬁ. Substitute fo and S and solve for aq, bg, by, and by we
obtain i

fz(z) = 1 - La_:_., . 24 b b2 .

(—5a) 27+ (55) = — (55)

For the cases, a; = a; = 0 and ag # 0. we can show stmilarly to previous two
cases that (2) doesn’t have rational solutions in this case. O

For general positive integer £, we have the following result
Theorem 4 Let fi be a rational solution of (2) of the form
(a) If ax # 0, then

fe =Tk o fox

where for(z) = aé;:g))::?iz—;;.zk, Te(z) = bkz+(:f_a(b;’ib)bk) and bye C.

(b) If ar =0, and ax_, # 0, then there is only one solution in this form
for (2) and we can explicitly find such the solution.

(c) If ax = ax—y = 0, then there are no nonzero rational solutions for (2)
of this form.

Conversely, if T is any mapping such that T oS = SoT, then fooT and
T o fo are solutions of (1).

Proof We first assume that a, # 0. Without loss of generality, we assume
that

£(z) = X a2 '+ a1z +ag
bizk + bp_125" 1 + -+ b1z + by

ki _ _ ;
From Theorem 1, §%(z) = bzk((_zizg_ﬁf:(_zit;’ ) and we obtain

abTi_o2z +abS,_,
Ti_1z + Sk

S*(2) =

where S; = f=0 a't’~* T; = —S; where j > 1. It follows that
abTi_o(z* +ap_ 125"V + -+ a2 + ap)+
abSi_y(bezk + b 125V 4+ - 4 bz + by)

Teo1(2* +ap_1 25V 4+ 4 a2 + ap)+
Se(biz® + be_1257 1+ - + b1z + bp)

SH(f(2)) =

3



Now we have

So {Zf_,(l)f' ( / ) (—ab)* I {a + b)Y ‘g } -

J—1

f(S02)) =

7

where ax = 1. By comparing first the coeflicients of z' in numnerators of
SH(f(z)) and fi(S(z)) and then the coefficients of ' in denominators of
S*(f(z)) and fi(S(z)) we have a system of equations which can be solved
explicitly to obtain the results of the Theorem in case (a). Case (b) and {c¢)
can be proved similarly to case (a). UJ

Remark 1. When k& = 3. fp3(z) is the Halley's method for P.

Remark 2. We have proved Theorem 4 by solving directly a linear
system of equations. It would be more interesting if we could prove Theorem
4 more analytically.

Remark 3. If P(z) is a polynomials of degree 3 or more with distinct
roots, then any successive approximation of P(z) would have degree 2 or
more. From which it follows that (1) does not hold (since degree of S is not
equal to degree of S%).

Remark 4. From [7]. [8] and Theorem 4. f; is a rational function with
integer coefficients if and only if by € Z, a = s—(%@ and b = s_(%m where
v,v,w,s € Z— {0}, u>0,v>0v¢gZ".

Remark 5. Consider R(z) = 1“—“’:—& = S57!(z) which is also a successive
approximation of P. By replacing S with R in (2), we obtain similar results
with the same argument of proof where we leave the details to interested
readers.

Remark 6. If T is a Mobius transformation which commutes with S,
then T(z) = Az —ab where A and C are complex numbers. When

Cz+(A—(a+b)C)”
A=1and C = b we obtain T = T.
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