

รายงานวิจัยฉบับสมบูรณ์

ความสัมพันธ์เชิงฟังก์ชันนัลและเชิงพลศาสตร์ของฟังก์ชันนิวตัน,
ฟังก์ชันการประมาณสืบเนื่อง และฟังก์ชันฮัลเลย์
Functional relation and dynamical relation of Newton's functions,
Successive approximations and Halley's functions

โดย ดร.ปิยะพงศ์ เนียมทรัพย์

°DF

41

8

*30 มิถุนายน 2543

รายงานวิจัยฉบับสมบูรณ์

ความสัมพันธ์เชิงฟังก์ชันนัลและเชิงพลศาสตร์ของฟังก์ชันนิวตัน,
ฟังก์ชันการประมาณสืบเนื่อง และฟังก์ชันฮัลเลย์
Functional relation and dynamical relation of Newton's functions,
Successive approximations and Halley's functions

คณะผู้วิจัย

สังกัด

1. ดร.ปิยะพงศ์ เนียมทรัพย์ ภาควิชาคณิตศาสตร์, คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

ชุดโครงการ ทุนวิจัยหลังปริญญาเอก

สารบัญ

	หน้า
1. กิตติกรรมประกาศ	1
2. บทคัดย่อภาษาอังกฤษ (Abstract)	2
3. บทคัดย่อภาษาไทย	3
4. หน้าสรุปโครงการ (Executive summary)	4
5. เนื้อหางานวิจัย และ ผลวิจัยที่ได้ (Output)	6
6. ภาคผนวก	7

กิตติกรรมประกาศ

งานวิจัยนี้สำเร็จได้ด้วยดีโดยความร่วมมือจากคณาจารย์และนักศึกษา และหน่วยงานที่
เกี่ยวข้อง โดยเฉพาะอย่างยิ่งข้าพเจ้าใคร่ขอแสดงความขอบคุณ ศ.ดร.ยงค์วิมล เลณบุรี, ภาควิชา
คณิตศาสตร์, มหาวิทยาลัยมหิดล ซึ่งเป็นอาจารย์ที่ปรึกษาโครงการ สำหรับการให้ข้อคิดและข้อ
เสนอแนะ ในการทำวิจัยในระยะเริ่มต้น ข้าพเจ้าขอแสดงความขอบคุณ Prof.Dr.Julian Palmore,
Department of Mathematics, University of Illinois, USA สำหรับการให้คำปรึกษาเกี่ยวกับเนื้อ
หาของการวิจัย ข้าพเจ้าขอแสดงความขอบคุณ สำนักงานกองทุนสนับสนุนการวิจัย ที่ได้ให้การ
สนับสนุนทุนวิจัยหลังปริญญาเอก ในการทำวิจัยนี้ ข้าพเจ้าหวังเป็นอย่างยิ่งว่าผลวิจัยที่ได้จะเป็น
ประโยชน์ต่อนักคณิตศาสตร์ที่ลนใจ และทำให้ผู้ที่ศึกษาคณิตศาสตร์ได้เริ่มทำวิจัยกันอย่างจริงจัง

Abstract

Project Code: PDF/29/2541

Project Title: Functional relation and dynamical relation of Newton's functions,

Successive approximations and Halley's functions

Investigator: Piyapong Niamsup, Department of Mathematics, Chiangmai UNiversity

E-mail address: scipnmsp@chianqmai.ac.th

Project Periond: July 1, 1998 - June 30, 2000

Objectives: 1. To find functional relations for Newton's functions, Successive approximations and Halley's functions

- 2. To find dynamical relations for Newton's functions, Successive approximations and Halley's functions
- 3. To obtain numerical results to verify results in 1 and 2

Methodology: 1. Collect related papers and books

- 2. Study in details materials in 1 to obtain new topics and techniques
- 3. Do research to obtain new results
- 4. Submit papers for publications in international journals
- 5. Conclude and submit the final reports

Results: 1. We obtain some new relations between Newton's functions, Successive approximations and Halley's functions for quadratic polynomials

- 2. We obtain the roll of Schwarzian derivative in controlling the rate of convergence of the composition of Halley's functions and Newton's functions
- 3. We obtain rational solutions for certain functional equations related to Newton's functions, Successive approximations and Halley's functions

Discussion Conclusion:

The results obtained in this research can be used in finding roots of quadratic polynomials with our desired of the order of convergence and accuracy. Moreover, we obtain new results on rational solutions of certain functional equations. Some of our results extended results obtained by Prof.Dr.Julian Palmore and some results are truly new

Suggestions/Further Implication/Implementation: We propose to study similar results obtained to higher degree polynomials

Keywords: Newton's functions, Successive approximations and Halley's functions

บทคัดย่อ

รหัสโครงการ: PDF/29/2541

ชื่อโครงการ: ความสัมพันธ์เชิงฟังก์ชันนัลและเชิงพลศาสตร์ของฟังก์ชันนิวดัน, ฟังก์ชันการ-ประมาณสืบเนื่อง และฟังก์ชันฮัลเลย์

ผู้วิจัย: ดร.ปิยะพงศ์ เนียมทรัพย์, ภาควิชาคณิตศาสตร์ม มหาวิทยาลัยเชียงใหม่

E-mail address: scipnmsp@chianqmai.ac.th

ระยะเวลาการวิจัย: 1 กรกฎาคม 2541 – 30 มิถุนายน 2543

วัตถุประสงค์:

- 1. หาความสัมพันธ์เชิงฟังก์ชันนัลของการประมาณสืบเนื่อง, ฟังก์ชันนิวตัน และฟังก์ชันฮัลเลย์
- 2. หาความสัมพันธ์เชิงพลศาสตร์ของการประมาณสืบเนื่อง, ฟังก์ชันนิวตัน และฟังก์ชันฮัลเลย์
- 3. หาคำตอบเชิงตัวเลขเพื่อทดสอบผลเชิงทฤษฎีที่ได้

วิธีการวิจัย:

- 1. รวบรวมเอกสารที่เกี่ยวข้องกับการวิจัยเพิ่มเดิม
- 2. ศึกษาเอกสารเพื่อหาเทคนิคและหัวข้อวิจัยใหม่ ๆที่เกี่ยวข้อง
- 3. ทำวิจัยเพื่อให้ได้ผลเชิงทฤษฎีใหม่ๆ
- 4. เสนอผลงานเพื่อการดีพิมพ์ในวารสารวิชาการระดับนานาชาติ
- 5. สรุปผลและจัดทำรายงานฉบับสมบูรณ์

ผลการวิจัยที่ได้รับ:

- 1. ได้ความสัมพันธ์ใหม่ๆ ระหว่างฟังก์ชันฮัลเลย์, ฟังก์ชันนิวดัน, และฟังก์ชันการประมาณสืบ เนื่อง ของฟังก์ชันพหุนาม
- 2. ได้ลักษณะการควบคุมการลู่เข้าของรากของฟังก์ชันคอมโพสิตระหว่างฟังก์ชันฮัลเลย์และ ฟังก์ชันนิวตัน โดยอนพันธ์ชวาเซียน
- 3. ได้คำตอบที่เป็นฟังก์ชันตรรกยะของสมการเชิงฟังก์ชันที่เกี่ยวข้องกับฟังก์ชันฮัลเลย์, ฟังก์ชันนิวดัน, และฟังก์ชันการประมาณสืบเนื่อง

สรุปผลและอกิปรายผล:

ผลการวิจัยที่ได้สามารถนำไปใช้ในการหารากของฟังก์ชันพหุนามที่มีดีกรีเป็นสอง โดย ได้อัตราการลู่เข้าดามที่เราต้องการ และมีค่าความถูกต้องสูง อีกทั้งยังได้ความสัมพันธ์ในเชิง ทฤษฎีของ ฟังก์ชันอัลเลย์, ฟังก์ชันนิวตัน, และฟังก์ชันการประมาณสืบเนื่อง โดยผลที่ได้มีทั้งใน ส่วนที่ขยายผลจากงานวิจัยของ Prof.Dr.Julian Palmore และ ทั้งส่วนที่คิดใหม่ทั้งหมด ข้อเสนอแนะ: ศึกษาผลที่ได้กับฟังก์ชันพหุนามที่มีดีกรีมากกว่าสองขึ้นไป คำหลักของการวิจัย: ฟังก์ชันอัลเลย์, ฟังก์ชันนิวตัน, และฟังก์ชันการประมาณสืบเนื่อง

หน้าสรุปโครงการ (Executive Summary)

1. ชื่อโครงการ

(ภาษาไทย) ความสัมพันธ์เชิงฟังก์ชันนัลและเชิงพลศาสตร์ของฟังก์ชันนิวตัน, ฟังก์ชันการ-ประมาณสืบเนื่อง และฟังก์ชันฮัลเลย์

(ภาษาอังกฤษ) Functional relation and dynamical relation of Newton's functions, Successive approximations and Halley's functions

2. ชื่อหัวหน้าโครงการ หน่วยงานที่ สังกัด ที่อยู่ หมายเลขโทรศัพท์ โทรสาร และ e-mail นายปิยะพงศ์ เนียมทรัพย์ ภาควิชาคณิดศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ จ.เชียงใหม่ 50200 โทรศัพท์ (053)943327 โทรสาร (053)892280 e-mail:scipnmsp@chiangmai.ac.th

3. สาขาวิชาที่ทำการวิจัย

พลศาสตร์เชิงดิสครีด (Discrete dynamical systems)

4. งบประมาณทั้งโครงการ

400,000 บาท

5. ระยะเวลาดำเนินงาน

2 1

6. ได้เสนอโครงการนี้ หรือโครงการที่มีส่วนเหมือนกับเรื่องนี้บางส่วนเพื่อขอทุนต่อ แหล่งทุนอื่นที่ใดบ้าง

ไม่ได้เสนอ

7. ปัญหาที่ทำการวิจัย และความสำคัญของปัญหา

ในการศึกษาระบบพลศาสตร์เชิงดิสครีต ตัวอย่างของระบบที่ได้รับการศึกษาอย่างมากได้แก่

1. พลศาสตร์เชิงดิสครีตของฟังก์ชันนิวตัน (Newton's functions) ของฟังก์ชันเชิงช้อน (Complex functions) โดยเฉพาะฟังก์ชันโพลิโนเมียล (Polynomials), ฟังก์ชันเอนไทมร์ (Entire functions), หรือ ฟังก์ชันมีโรมอร์ฟิค (Meromorphic functions) โดยประโยชน์ ของการศึกษานี้คือ ทราบโครงสร้างของเซดของจำนวนเชิงซ้อนที่ลู่เข้าสู่รากของ ฟังก์ชันภายใต้การทำช้ำของฟังก์ชันนิวดัน

- 2. พลศาสตร์เชิงดิสครีตของการประมาณสืบเนื่อง (Successive Approximations) ของ ฟังก์ชันโพลิโนเมียล โดยประโยชน์ที่ได้คือการประมาณสืบเนื่องเน่นวิธีที่ง่ายในการหารากของโพลิโนเมียล
- 3. พลศาสตร์เชิงดิสครีตของฟังก์ชันอัลเลย์ (Halley's functions) ของพังก์ชันเชิงซ้อน ซึ่ง เป็นฟังก์ชันที่ดัดแปลงมาจากฟังก์ชันนิวตันเพื่อเพิ่มอัตราการลู่เข้าหารากของฟังก์ชันที่ ศึกษา

อย่างไรก็ตาม การศึกษาความสัมพันธ์ของฟังก์ชันทั้งสามยังมีน้อย แต่ประโยชน์ของ ฟังก์ชันเหล่านี้สามารถใช้ได้อย่างกว้างขวาง จึงน่าที่จะศึกษาความสัมพันธ์ของฟังก์ชัน เหล่านี้ทั้งในเชิงฟังก์ชันนัล (Functional relation) และเชิงพลศาสตร์ (Dynamical relation) รวมถึงอธิบายถึงพลศาสตร์ของฟังก์ชันเหล่านี้

8. วัตถุประสงค์

- 8.1 หาความสัมพันธ์เชิงฟังก์ชันนัลของการประมาณสืบเนื่อง, ฟังก์ชันนิวตัน และฟังก์ชันฮัล เลย์
- 8.2 หาความสัมพันธ์เชิงพลศาสตร์ของการประมาณสืบเนื่อง, ฟังก์ชันนิวตัน และฟังก์ชันฮัล เลย์
- 8.3 หาคำตอบเชิงดัวเลขเพื่อทดสอบผลเชิงทฤษฎีที่ได้

9. ระเบียบวิธีวิจัย

- 9.1 รวบรวมเอกสารที่เกี่ยวข้องกับการวิจัยเพิ่มเดิม
- 9.2 ศึกษาเอกสารเพื่อหาเทคนิคและหัวข้อวิจัยใหม่ ๆที่เกี่ยวข้อง
- 9.3 ทำวิจัยเพื่อให้ได้ผลเชิงทฤษฎีใหม่ๆ
- 9.4 เสนอผลงานเพื่อการดีพิมพ์ในวารสารวิชาการระดับนานาชาติ
- 9.5 สรุปผลและจัดทำรายงานฉบับสมบูรณ์

10. จำนวนโครงการที่ผู้สมัครกำลังดำเนินการอยู่

เนื้อหางานวิจัย และ Output

การศึกษาทฤษฎีการทำซ้ำ (Iteration theory) ของพังก์ขันวิเคราะห์ เล่นสมุท์ , function) f(z) บนระนาบเชิงซ้อนขยาย (Extended complex plane) โดยทั่วไปเรามักจะให้ความสนใจในพฤติกรรมของเซต $\{f^*\}_{k\geq 0}$ ของฟังก์ขันการทำซ้ำ (Iterating functions) ของ f(z) เช่น การลู่เข้าหา จุดตรึงคึงดูด (Attracting fixed point) หรือการมีพฤติกรรมแบบอลวน (Chaotic behavior) ของ ฟังก์ขัน f(z) บนเซตจูเลีย (Julia set)

ประโยชน์ที่เห็นได้ชัดข้อหนึ่งของการศึกษาทฤษฎีการทำซ้ำ คือการหารากของฟังก์ชัน
วิเคราะห์บนระนาบเชิงซ้อนขยาย ซึ่งวิธีการหารากนั้นมีหลายวิธีด้วยกัน เช่น การประมาณสืบเนื่อง
(Successive approximation), ฟังก์ชันนิวตัน (Newton function) และ ฟังก์ชันฮัลเลย์ (Halley function) โดยมีงานวิจัยมากมายได้ศึกษาการลู่เข้าสู่รากของฟังก์ชันโดยการทำซ้ำของวิธีการเหล่า นี้

วัตถุประสงค์ของงานวิจัยนี้คือการศึกษาความสัมพันธ์เชิงฟังก์ชันนัล และเชิงพลศาสตร์
(Functional and dynamical relations) ของวิธีการดังกล่าวข้างต้น โดยผลที่ได้สามารถนำไปเพิ่ม
ความมีประสิทธิภาพของการลู่เข้าของวิธีการดังกล่าวได้

ผลงานวิจัยในรอบ 18 เดือน ที่ได้คือ ความสัมพันธ์ที่สำคัญระหว่าง การประมาณสืบเนื่อง และฟังก์ชันนิวตัน , ความสัมพันธ์ระหว่างการประมาณสืบเนื่องและฟังก์ชันฮัลเลย์ และคำตอบ f ของสมการเชิงฟังก์ชัน $f \circ s = s^k \circ f$ โดยที่ s คือการประมาณสืบเนื่องของโพลิโนเมียลดีกรี สองที่มีรากไม่ซ้ำกัน และ k คือจำนวนเต็มบวก โดยได้ทำการส่งผลงานวิจัยเพื่อการตีพิมพ์ จำนวน 3 ผลงาน โดยผลงานวิจัยที่ได้รับระหว่างการวิจัยมีดังนี้

- Some relations among Halley's method, Newton's method, and successive approximations, by Piyapong Niamsup and Yongwimon Lenbury (submitted to SEAMS Bulletin)
- The composition of Halley's and Newton's functions and its Schwarzian derivative, by Piyapong Niamsup, Julian Palmore and Yongwimon Lenbury (submitted to Complex Variables)
- A relation between successive approximation and certain root finding methods, by Piyapong Niamsup and Julian Palmore (in preparation)
- Rational solutions for certain functional equation, by Piyapong Niamsup and Julian Palmore (accepted for publication in Complex Variables)

ภาคผนวก

ผลงานวิจัยที่ได้รับ

piyapong

From:

Esther Tam <esthertam@cuhk.edu.hk>

To: Sent: <scipnmsp@chiangmai.ac.th>

Senti

11 มีนาคม 2543 10:06

Subject:

Fw: 2914

> Dear Prof. Miamsup:

>

> Thank you for your jointed paper "some relations among halley's method, newton's method and successive approximations", we have received on Feb, 2000. We will let you know

> the outcome of your paper when the referee's report has been obtained.

If

> you have any further correspondence of the above paper, please let me know > your Ref no: 2914.

> .

> Thank you.

>

> Esther Tam

>

>

Some Relations Among Halley's Method, Newton's Method and Successive Approximations

Piyapong Niamsup and Yongwimon Lenbury

June 30, 2000

1 Introduction

Let P(z) = (z-a)(z-b), where $a, b \in \mathbb{C}$ such that 0 < |a| < |b|. Let $H(z) = z - \frac{P(z)}{P'(z) - \frac{P(z)P''(z)}{2P'(z)}}$ and $N(z) = z - \frac{P(z)}{P'(z)}$ be the Halley's method and

Newton's method of P and let $S(z) = \frac{-ab}{z-(a+b)}$ be a successive approximation of P. The following properties of S, N and H are well-known:

Proposition 2.1 From 0 < |a| < |b|, we have

- (a) b is the repelling fixed point of S.
- (b) a is the attracting fixed point of S. Moreover, a is the global attractor of S. In other words, $\lim_{k\to\infty} S^k(z) = a$ for all $z \in \mathbb{C} \{b\}$.

Proposition 2.2 The following hold true for N:

- (a) N has two superattracting fixed points at a and b and has one repelling fixed point at ∞ .
- (b) The basin of attraction of a for N contains z = 0. In other words, $\lim_{k\to\infty} N^k(0) = a$. This is because 0 < |a| < |b| so that z = 0 is closer to a than to b.

Proposition 2.3 The following hold true for H:

(a) H has two superattracting fixed points at a and b and has two repelling fixed point at $\frac{a+b}{2}$ and ∞ .

(b) The basin of attraction of a for H contains z = 0. In other words, $\lim_{k\to\infty} H^k(0) = a$.

In general, H, N and S have orders of convergence equal to three, two and one respectively. In this note, we will derive some interesting relations among H, N and S and show an example on how the results can be used to get faster convergence. In what follows let P(z), H(z), N(z) and S(z) be as above. The i^{th} iterate of a function f will be denoted by f'. We will prove the following relation between iterations of N and S:

Theorem 3.1
$$N^{i}(S^{j}(0)) = S^{(j+1)2^{i}-1}(0)$$
 where $i, j \ge 0$.

For this purpose we need the following lemmata:

Lemma 3.2
$$(N \circ S)(z) = (S^2 \circ N)(z)$$
 for all $z \in \mathbb{C} \cup \{\infty\}$.

Proof For the quadratic polynomial P(z) = (z - a)(z - b) we have $N(z) = \frac{z^2 - ab}{2z - (a + b)}$. It is straightforward to check that

$$(N \circ S)(z) = \frac{(ab) z^2 - 2ab (a+b) z + ab (a+b)^2 - (ab)^2}{(a+b) z^2 - 2 (a^2 + ab + b^2) z - (a+b) (a^2 + b^2)} = (S^2 \circ N)(z). \quad \Box$$

Lemma 3.3
$$(N \circ S^i)(z) = (S^{2i} \circ N)(z)$$
 for all $z \in \mathbb{C} \cup \{\infty\}$.

Proof We prove by induction on i. For i = 1 the result follows from Lemma 3.2. Assume the result is true for i > 1. Then

$$N \circ S^{i+1} = (N \circ S^{i}) \circ S$$

 $= (S^{2i} \circ N) \circ S$ by Lemma 3.2
 $= S^{2i} \circ (N \circ S)$
 $= S^{2i} \circ (S^{2} \circ N)$
 $= S^{2(i+1)} \circ N$

The proof is complete. \Box

The following lemma can be proved by induction as in Lemma 3.3:

Lemma 3.4
$$(N^i \circ S^j)(z) = (S^{j\cdot 2^i} \circ N^i)(z)$$
 for all $z \in \mathbb{C} \cup \{\infty\}$, $i, j \ge 0$.

Proposition 3.5 $N^{i}(0) = S^{2^{i-1}}(0), i \ge 0.$

Proof From Lemma 3.4 we have, for $i \ge 1$, that

$$N^{i}\left(0\right) = \left(S^{2^{i}} \circ N^{i} \circ S^{-1}\right)\left(0\right)$$

$$= (S^{2'} \circ N') (S^{-1}(0))$$

$$= (S^{2'} \circ N') (\infty)$$

$$= S^{2'} (N'(\infty))$$

$$= S^{2'} (\infty)$$

$$= S^{2'} (S^{-1}(0))$$

$$= S^{2'-1}(0).$$

This is valid because S is one-to-one and $S^{-1}(0) = \infty$. This finishes the proof.

Proof of theorem 3.1 From Lemma 3.4 we have $(N^i \circ S^j)(0) = (S^{j \cdot 2^i} \circ N^i)(0)$. Thus

$$N^{i}(S^{j}(0)) = S^{j \cdot 2^{i}}(N^{i}(0))$$

= $S^{j \cdot 2^{i}}(S^{2^{i}-1}(0))$ by Proposition 3.5
= $S^{(j+1) \cdot 2^{i}-1}(0)$.

This completes the proof of the theorem.

Remark 1. Proposition 3.5 is proved in [2] by using the technique of topological conjugacy which can also be used to prove our result (Theorem 3.1). In this work, we present a simpler proof by observing that one iteration of N followed by two iterations of S is equivalent to one iteration of S followed by one iteration of N (Lemma 3.2).

Remark 2. If we replace S(z) with $T(z) = \frac{(a+b)z-ab}{z}$, the inverse of S, which is also a Successive approximation of P, then we have similar results as follows:

Proposition 3.6 The following hold true for T:

- (a) a is the repulsive fixed point of T.
- (b) b is the attractive fixed point of T. Moreover, b is the global attractor of T.

Proposition 3.8 The following hold true:

(a)
$$(N^i \circ T^j)(z) = (T^{j \cdot 2^i} \circ N^i)(z)$$
 for all $z \in \mathbb{C} \cup \{\infty\}$ and $i, j \ge 0$.
(b) $N^i \left(T^j \left(\frac{ab}{a+b}\right)\right) = T^{(j+1)\cdot 2^i - 1} \left(\frac{ab}{a+b}\right)$ where $i, j \ge 0$.

(b)
$$N^{i}\left(T^{j}\left(\frac{ab}{a+b}\right)\right) = T^{(j+1)\cdot 2^{i}-1}\left(\frac{ab}{a+b}\right)$$
 where $i, j \geq 0$

With the same argument as above, we obtain the following relations among H, N and S:

Theorem 3.9 The following hold true:

- (a) $(H^i \circ S^j)(z) = (S^{j\cdot 3^i} \circ H^i)(z)$ for all $z \in \mathbb{C} \cup \{\infty\}$, $i, j \ge 0$.
- (b) $H^{i}(S^{j}(0)) = S^{(j+1)3^{i}-1}(0)$ where $i, j \ge 0$.
- (c) $H^i(S^{j\cdot 2^i-1}(0)) = N^i(S^{j\cdot 3^i-1}(0))$ where $i, j \ge 0$.
- (d) $(H \circ N)^i(z) = (H^i \circ N^i)(z) = (N \circ H)^i(z)$ for all $z \in \mathbb{C} \cup \{\infty\}$, $i \ge 0$.
- (e) $(H^i \circ N^j \circ S^k)(z) = (S^{k\cdot 2^j \cdot 3^i} \circ H^i \circ N^j)(z)$ for all $z \in \mathbf{C} \cup \{\infty\}$, $i, j, k \ge 0$.
 - $(f)(H^i \circ N^j)(S^k(0)) = S^{(k+1)\cdot 2^{j-3^i-1}}(0) \text{ where } i, j \text{ and } k \ge 0.$

Remark 3. It is natural to ask if there are similar relations among Halley's method, Newton's method and successive approximations of polynomials of degree 3 or higher. The answer seems to be negative. One reason is because for polynomials of degree 3 (or higher), successive approximations of this polynomial have degree 2 (or higher). From which it follows that degree of $N \circ S$ is not equal to degree of $S^2 \circ N$ hence Lemma 3.2 does not hold.

2 An Example

Let P(z) = (z-1)(z+2). Then $H(z) = \frac{z^3+6z+2}{3z^2+3z+3}$, $N(z) = \frac{z^2+2}{2z+1}$ and $S(z) = \frac{2}{z+1}$. The convergent sequences to the root z=1 starting from initial point z=0 produced by iteration of S is as follows:

```
S:0,2,\frac{2}{3},\frac{6}{5},\frac{10}{11},\frac{22}{21},\frac{42}{43},\frac{86}{85},\frac{170}{171},\frac{342}{341},\frac{682}{683},\frac{1366}{1365},\frac{2730}{2731},\frac{5462}{5461},\frac{10922}{10923},\frac{21846}{21845},\frac{43690}{43691},\frac{87382}{174762},\frac{174762}{349525},\frac{349526}{699051},\frac{1398102}{1398101},\frac{2796202}{2796203},\frac{5592406}{5592405},\frac{11184810}{11184811},\frac{22369622}{22369621},\frac{44739242}{44739243},\frac{89478486}{89478485},\frac{178956970}{178956971},\frac{357913942}{357913941},\frac{715827882}{715827883},\frac{1431655766}{1431655765},\dots
```

For illustration, if we start from the initial points z = 0, $z = \frac{2}{3}$ and $z = \frac{6}{5}$ then the convergent subsequences (of sequences above) to the root z = 1 starting from these initial points produced by iterations of N and H are as follows:

```
\begin{array}{l} N:0,2,\frac{6}{5},\frac{86}{85},\frac{21846}{21845},\frac{1431655766}{1431655765},\dots\\ N:\frac{2}{3},\frac{22}{21},\frac{1366}{1365},\frac{5592406}{5592405},\frac{93824992236886}{93824992236885},\dots\\ H:0,\frac{2}{3},\frac{170}{171},\frac{44739242}{44739243},\frac{805950546409752783137450}{805950546409752783137451},\dots\\ H:\frac{6}{5},\frac{1366}{1365},\frac{22906492246}{22906492245},\dots\end{array}
```

As an example, we have the following correspondences between N and S:

$$N^{1}\left(0\right)=2=S^{1}\left(0\right), N^{2}\left(0\right)=\frac{6}{5}=S^{3}\left(0\right), N^{3}\left(0\right)=\frac{86}{85}=S^{7}\left(0\right), N^{1}\left(0\right)=\frac{21846}{21845}=S^{15}\left(0\right), \dots \text{ and } N^{0}\left(\frac{2}{3}\right)=\frac{2}{3}=S^{2}\left(0\right), N^{1}\left(\frac{2}{3}\right)=\frac{22}{21}=S^{5}\left(0\right), N^{2}\left(\frac{2}{3}\right)=\frac{1366}{1365}=S^{11}\left(0\right), N^{3}\left(\frac{2}{3}\right)=\frac{5592406}{5592405}=S^{24}\left(0\right), N^{4}\left(\frac{2}{3}\right)=\frac{93824992236886}{93824992236885}=S^{17}\left(0\right), \dots \text{ As we have seen, if we want a fast convergence to roots of } P, \text{ then we select an initial point in the form } S^{j}\left(0\right) \text{ (or } T^{j}\left(\frac{ab}{a+b}\right)) \text{ and then apply either } N \text{ or } H \text{ successively.}$$

3 Acknowledgement

The first author is supported by the Thailand Research Fund during the preparation of this work. He would like to thank Prof.Dr.Yongwimon Lenbury, Mahidol University. Thailand for many valuable suggestions.

4 References

- [1] Devaney, R.L., An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Publishing Company, 1988.
- [2] Palmore, J., A Relation Between Newton's Method and Successive Approximations for Quadratic Irrationals. In: From Topology to Computation: Proceedings of the SMALEFEST, ed. by Hirsch, M., Marsden, J., and Shub, M., Springer NY, pp. 254-258
- [3] Wong, S., Newton's Method and Symbolic Dynamics, Proc. Amer. Math. Soc. 91: 245-253, 1984.

Department of mathematics, Chiangmai University, Chiangmai, 50200, Thailand

email:scipnmsp@chianmai.ac.th

Department of Mathematics, Mahidol University, Bangkok, 10600, Thailand

COMPLEX VARIABLES AN INTERNATIONAL JOURNAL

IT P GILBERT, CO-MANAGING EDITOR TMENT OF MATHEMATICAL SCIENCES RSITY OF DELAWARE RK, DELAWARE 19716
Tibers Cmath udel edu

June 1, Price

Piyapong Niamsup Intment of Mathematics Ingmai University ANGMAI, 50200 THAILAND

CV-1450 "The composition of Halley's and Newton's functions and its Schwarzian derivatives

Dr. Niamsup,

letter is to acknowledge receipt of the manuscript you have submitted for publication to our journal uplex Variables. (Professor Gilbert feels it is better suited for CV than AA.)

ve forwarded your paper to our reviewer for his comments, and I will contact you as soon as I receive a y.

bur paper is accepted we may ask to have it retyped as Complex Variables is an electronically prepared nal. We will also ask that the paper be retyped and in one of the following computer languages: Tex. EX, or AMS-Tex. We require a hard copy and a 2 1/4 inch floppy disk of your manuscript.

nk you for your interest in our journal.

cerely,

ncy Page

torial Assistant to

bert P. Gilbert

The Composition of Halley's and Newton's Functions and its Schwarzian Derivatives

Piyapong Niamsup, Julian Palmore, and Yongwimon Lenbury

June 30, 2000

keywords Newton's function, Halley's function, Schwarzian derivative 1991 Mathematics Subject Classification. Primary 26A18; Secondary 58F03.

1 abstract

The composition between Newton's function and Halley's function is studied. We show that the composition function has the order of convergence to a simple root of a function f equal to or exceed 6. We show that the Schwarzian derivative of f and the second derivative of f evaluated at the zero of f are the factors which determine the order of convergence.

2 Introduction

Let f be a differentiable function on C. The Newton's function, Halley's functions and the Schwarzian derivative of f will be denoted by $N\left(z\right)$, $H\left(z\right)$, and $S\left(z\right)$ and are defined by

$$N(z) = z - \frac{f(z)}{f'(z)}$$

$$H(z) = z - \frac{f(z)}{f'(z) - \frac{f(z)f''(z)}{2f'(z)}}$$

$$S(z) = 2\frac{f'''(z)}{f'(z)} - 3\left(\frac{f''(z)}{f'(z)}\right)^{2}.$$

Assume that f has a simple zero at ζ so that $f'(\zeta) \neq 0$. In [2] and [3], the role of Schawarzian derivatives of N and H in controlling the order of convergence of N and H to ζ are studied respectively. The main results in [2] and [3] are as follows:

Theorem 2.1 [3] Let f be a differentiable function on C. Let N and S be the Newton's function and the Schwarzian derivative of f. If f has a simple zero ζ such that $f'(\zeta) \neq 0$, then $N'''(\zeta) = S(\zeta)$. If $f''(\zeta) = 0$, then N has convergence to ζ of order 3 or greater. If $S(\zeta) = 0$, then N has convergence to ζ of order 4 or greater.

Theorem 2.2 [2] Let f be a differentiable function on C. Let H and S be the Halley's function and the Schwarzian derivative of f. If f has a simple zero ζ such that $f'(\zeta) \neq 0$, then $H'''(\zeta) = -2S(\zeta)$. H has convergence to ζ of order 4 or greater if and only if $S(\zeta) = 0$.

In theorem 1.2, the formula for $H'''(\zeta)$ is incorrect; the correct formula is $H''''(\zeta) = -\frac{S(\zeta)}{2}$. From theorem 1.1 it follows that the Schwarzian derivative of f at ζ controls the order of convergence of N in cases where the first two derivatives of f at ζ are nonzero. In this paper we study the role of Schwarzian derivatives of composition function between H and N, namely $H \circ N$ and $N \circ H$, in controlling the order of convergence to the simple root ζ of f.

3 Main result

In this section we will prove the following main result:

Theorem 3.1 Let f be a differentiable function on C. Let H, N and S be the Halley's function, Newton's function and Schwarzian derivative of f. If f has a simple zero ζ such that $f'(\zeta) \neq 0$, then the values of the first five derivatives of $H \circ N$ at ζ are zero, and $(H \circ N)^{(6)}(\zeta) = -\frac{15}{2} \left(\frac{f''(\zeta)}{f'(\zeta)}\right)^3 \cdot S(\zeta)$. Therefore, $H \circ N$ has order of convergence to ζ equal to G or greater. The order of convergence of G is controlled by value of the second derivative and value of the Schwarzian derivative of G evaluated at G.

Proof. From [2], $H(z) = \frac{2N(z) + zN'(z)}{2 + N'(z)}$ and from theorem 2.2, $H(\zeta) = -\frac{S(\zeta)}{2}$. We know that $N(\zeta) = \zeta$, $N'(\zeta) = 0$, $H'(\zeta) = 0$, $H''(\zeta) = 0$ and $H'''(\zeta) = -\frac{S(\zeta)}{2}$. With these information and the chain rule, the first six derivatives of $H \circ N$ at ζ are

$$(H \circ N)'(\zeta) = H'(N(\zeta)) \cdot N'(\zeta) = 0.$$

$$(H \circ N)''(\zeta) = (N'(\zeta))^2 \cdot H''(N(\zeta)) + H'(N(\zeta)) \cdot N''(\zeta) = 0.$$

$$(H \circ N)'''(\zeta) = 3N'(\zeta) \cdot N'''(\zeta) \cdot H'''(N(\zeta)) + (N'(\zeta))^3 \cdot H''''(N(\zeta)) + H''(N(\zeta)) + H''(N(\zeta)) \cdot N'''(\zeta)$$

$$= 0.$$

$$(H \circ N)^{(4)}(\zeta) = 3H''(N(\zeta)) \cdot (N''(\zeta))^2 + 6(N'(\zeta))^2 \cdot N''(\zeta) \cdot H'''(N(\zeta)) + 4N'(\zeta) \cdot H''(N(\zeta)) \cdot N'''(\zeta) + (N'(\zeta))^3 \cdot H'''(N(\zeta)) + H''(N(\zeta)) \cdot N'''(\zeta) + H''(N(\zeta)) \cdot N'''(\zeta) + H''(N(\zeta)) \cdot N'''(\zeta) + H''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) \cdot N'''(\zeta) + H'''(N(\zeta)) +$$

Therefore, $H \circ N$ has order of convergence to ζ equal to 6 or greater. Clearly, the order of convergence of $H \circ N$ is controlled by the second derivative and the Schwarzian derivative of f at ζ . This completes the proof.

Theorem 3.2 Let f be a differentiable function on C. Let H, N, and S be the Halley's function, Newton's function, and Schwarzian derivative

of f, respectively. If f has a simple zero ζ such that $f'(\zeta) \not\models 0$, then the values of the first five derivatives of $N \circ H$ evaluated at ζ are zero, and $(N \circ H)^{(6)}(\zeta) = 10 \left(\frac{f''(\zeta)}{f'(\zeta)}\right) (H'''(\zeta))^2 = -\frac{15}{2} \left(\frac{f''(\zeta)}{f'(\zeta)}\right)^3 \cdot S(\zeta)$. Therefore, $N \circ H$ has order of convergence to ζ equal to δ or greater and the order of convergence is controlled by value of the second derivative and value of Schwarzian derivative of f evaluated at ζ .

Proof The proof is similar to that of Theorem 3.1 and will be omitted. \square **Remark** It is natural to further consider the roles of Schwarzian derivative and derivatives of f in controlling order of convergence of $H^i \circ N^j$ where $i, j \geq 0$.

4 Example

Let $f(x) = (x-1)(x+2) = x^2 + x - 2$. In this example, we have $N(x) = \frac{x^2+2}{2x+1}$, $H(x) = \frac{x^3+6x+2}{3x^2+3x+3}$, and $S(x) = -3\left(\frac{2}{2x+1}\right)^2$. By computation, we get $(N \circ H)(x) = (H \circ N)(x) = \frac{x^6+30x^4+40x^3+90x^2+60x+22}{(2x+1)(3x^4+6x^3+27x^2+24x+21)}$. Since $S(1) = S(-2) = -\frac{4}{3}$, $\frac{f''(1)}{f'(1)} = \frac{2}{3}$, and $\frac{f''(-2)}{f'(-2)} = -\frac{2}{3}$, we get $(N \circ H)^{(6)}(1) = (H \circ N)^{(6)}(1) = -\frac{15}{2} \cdot \left(\frac{2}{3}\right)^3 \cdot \left(-\frac{4}{3}\right) = \frac{80}{27}$ and $(N \circ H)^{(6)}(-2) = (H \circ N)^{(6)}(-2) = -\frac{15}{2} \cdot \left(-\frac{2}{3}\right)^3 \cdot \left(-\frac{4}{3}\right) = -\frac{80}{27}$. Hence, the order of convergence of $N \circ H$ and of $H \circ N$ to the zeros of f is 6.

5 Acknowledgement

This work is supported by Thailand Research Fund.

6 References

- [1] Palmore, J., A relation between Newton's Method and Successive Approximations for Quadratic Irrationals. In Hirsch, M., Marsden, J., and Shub, M. (eds), From Topology to Computation, Springer, NewYork, 1993, 254-259.
- [2] Palmore, J., Halley's Method and Schwarzian Derivatives, Applicable Analysis, 61 (1996), 111-114.

[3] Palmore, J., Newton's Method and Schwarzum Derivatives, Journal of Dynamics and Differential Equations, Vol. 6, No.3, 1994, 507-511.

Department of Mathematics Chiangmai University Chiangmai 50200 Thailand email:scipnmsp@cmu.chiangmai.ac.th

Department of Mathematics University of Illinois Urbana, IL 61801 U.S.A. email:palmore@uiuc.edu

Department of Mathematics Mahidol University Bangkok, 10400 Thailand email:scylb@mahidol.ac.th

A RELATION BETWEEN SUCCESSIVE APPROXIMATION AND CERTAIN ROOTS FINDING METHODS

PIYAPONG NIAMSUP AND JULIAN PALMORE

ABSTRACT. In this paper, we give some interesting relation between successive approximation and certain roots finding method for quadratic polynomials.

1. Introduction

For a function f(z), the Halley's method and Newton's method of f are defined as follows:

$$H(z) = z - \frac{f(z)}{f'(z) - \frac{f(z)f''(z)}{2f'(z)}}, \text{ and}$$

$$N(z) = z - \frac{f(z)}{f'(z)}$$

respectively. A successive approximation of f(z) can be obtained by letting f(z) = 0 and write this equation in a form z = S(z) where S(z) will be called a successive approximation of f. For example, if f(z) = (z - a)(z - b) where, $a, b \in \mathbb{C} - \{0\}$, $a \neq b$, then we obtain a successive approximation $S(z) = \frac{-ab}{z - (a + b)}$. Halley's method, Newton's method and successive approximation are iterative method which are used to find certain roots of f in which we choose an initial guest x_0 and then iterate these method to x_0 to obtain a sequence $\{x_n\}$ which usually converge to certain roots of f (the choice of initial guest x_0 is essential for the convergence of the sequence, see [1], [9] and references cited therein). In general, the orders of convergence of Halley's method, Newton's method and successive approximation are three, two and one respectively. In [3], an interesting relation between Newton's method and successive approximation was obtained as follows:

Date: June 30, 2000.

¹⁹⁹¹ Mathematics Subject Classification. 30D05, 58F08, 30B70.

Key words and phrases. Successive approximation, Halley's method, Newton's method.

Theorem 1.1 Let $\zeta^+ = \frac{a+\sqrt{b}}{c}$, $\zeta^- = \frac{a-\sqrt{b}}{c}$ be quadratic irrationals where a, b, and c are integers satisfying a < 0, b > 0, b is not the square of an integer, and $c \neq 0$. Let $P(z) = (z-\zeta^+)(z-\zeta^-)$, g(z) be the Newton's method of P and $h(z) = \frac{-\zeta^+\zeta^-}{z-(\zeta^++\zeta^-)}$ be a successive approximation of P. Then for all $n \geq 0$, we have

$$g^n(0) = h^{2^n - 1}(0)$$

where f^i denotes the i^{th} iterate of function f.

Theorem 1.1 was proved using the concept of topological conjugacy where we say f and g are topological conjugacy if there exists a Möbius transformation h such that $f \circ h = h \circ g$. If f and g are topological conjugate, then they have the same dynamical behavior such as they have the same type of periodic points, see [1] for more details. In this paper, we will give some interesting relation between successive approximations and certain root finding methods for quadratic polynomials which extend Theorem 1.1 to general root findings method of order of convergence equal to $k, k \geq 2$.

2. MAIN RESULTS

Let P(z) = (z - a)(z - b) where $a, b \in \mathbb{C}$ satisfying 0 < |a| < |b| be a quadratic polynomial. We first introduce the following rational function

$$f_k(z) = \frac{a(z-b)^k - b(z-a)^k}{(z-b)^k - (z-a)^k}.$$

We can see that f_k is topological conjugate to the map $w \mapsto w^k$ by the Möbius transformation M(z) that sends w = 0 to a and $w = \infty$ to b, where $M(z) = \frac{bz-a}{z-1}$ and $M^{-1}(z) = \frac{-z+a}{-z+b}$. In other words, we have

$$f_k(z) = M([M^{-1}(z)]^k).$$

Note that, when k = 2, f_k is the Newton's method of P and when k = 3, f_k is the Halley's method of P. In this section, we will prove the following main result:

Theorem 2.1 The order of convergence of f_k to the roots a starting from $z_0 = 0$ is equal to k. More precisely, we have

$$f_k^i(S^j(0)) = S^{(j+1)k^i-1}(0)$$

for all $i, j \ge 0$, where $S(z) = \frac{-ab}{z - (a+b)}$ is a successive approximation of P.

In order to prove this theorem, we need the following lemma:

Lemma 2.2 For the successive approximation S, the point b is the repulsive fixed point of S and a is the global attractor of S, that is

 $\lim_{k\to\infty} S^k(z) = a$ for all $z \in \mathbb{C} - \{b\}$. Moreover, S is topological conjugate to the map $w \mapsto \frac{a}{b}w$ by the Möbius transformation $M(z) = \frac{bz-a}{z-1}$. that is

$$S^{k}(z) = M\left(\left(\frac{a}{b}\right)^{k} M^{-1}(z)\right)$$
$$= \frac{ba^{k}(-z+a) - ab^{k}(-z+b)}{a^{k}(-z+a) - b^{k}(-z+b)}.$$

Proof It is routine to see that b is the repulsive fixed point of S, a is the attractive fixed point of S and that

$$S(z) = M\left(\left(\frac{a}{b}\right)M^{-1}(z)\right)$$

that is S is topological conjugate to the map $w\mapsto \frac{a}{b}w$ by the Möbius transformation $M(z)=\frac{bz-a}{z-1}$. Since 0<|a|<|b|, it follows that $\lim_{i\to\infty}w^i(z)=\lim_{i\to\infty}\left(\frac{a}{b}\right)^iz=0$ for all $z\in\mathbb{C}$. Hence, 0 is the global attractor of the map $w\mapsto \frac{a}{b}w$. Since S is topological conjugate to the map $w\mapsto \frac{a}{b}w$ and M(0)=a, it follows that a is the global attractor of S. \square

Lemma 2.3 For all $z \in \mathbb{C} \cup \{\infty\}$ and $i \geq 0$, we have

$$(f_k^i \circ S)(z) = (S^{k^i} \circ f_k^i)(z).$$

Proof From (2.1) and Lemma 2.2, it follows that $f_k \circ S = S^k \circ f_k$, hence (2.3) holds true for k = 1. Assume that (2.3) holds true for $0 \le i \le N - 1$. Then we have

$$\begin{split} f_k^N \circ S &= f_k \circ (f_k^{N-1} \circ S) \\ &= f_k \circ (S^{k^{N-1}} \circ f_k^{N-1}) \text{ by induction argument} \\ &= (f_k \circ S^{k^{N-1}}) \circ f_k^{N-1} \\ &= (f_k \circ S) \circ S^{k^{N-1}-1} \circ f_k^{N-1} \\ &= S^k \circ (f_k \circ S^{k^{N-1}-1}) \circ f_k^{N-1} \text{ since (2.3) holds true for } i = 1. \end{split}$$

Continue this process inductively, we obtain $f_k^N \circ S = S^{k^N} \circ f_k^N$. This completes the proof. \square

Proof of Theorem We will prove this by induction on i and j. First, we let j = 0 ad show that

$$f_k^i(0) = S^{k^i - 1}(0)$$

for all $i \ge 0$. The equation (2.4) is trivially true for i = 0. Suppose that (2.4) holds true for $0 \le i \le N-1$. Let $\alpha = k^{N-1} - 1$. Then we have

$$f_k^N(0) = f_k(f_k^{N-1}(0))$$

$$= f_k(S^{\alpha}(0)) \text{ by induction argument}$$

$$= \frac{a(S^{\alpha}(0) - b)^k - b(S^{\alpha}(0) - a)^k}{(S^{\alpha}(0) - b)^k - (S^{\alpha}(0) - a)^k}$$

$$= \frac{a\left(\frac{ba^{\alpha+1} - ab^{\alpha+1}}{a^{\alpha+1} - b^{\alpha+1}} - b\right)^k - b\left(\frac{ba^{\alpha+1} - ab^{\alpha+1}}{a^{\alpha+1} - b^{\alpha+1}} - a\right)^k}{\left(\frac{ba^{\alpha+1} - ab^{\alpha+1}}{a^{\alpha+1} - b^{\alpha+1}} - b\right)^k - \left(\frac{ba^{\alpha+1} - ab^{\alpha+1}}{a^{\alpha+1} - b^{\alpha+1}} - a\right)^k} \text{ by Lemma 2.2}$$

$$= \frac{a(b^{\alpha+1}(b-a))^k - b(a^{\alpha+1}(b-a))^k}{(b^{\alpha+1}(b-a))^k - (a^{\alpha+1}(b-a))^k}$$

$$= \frac{ab^{k(\alpha+1)} - ba^{k(\alpha+1)}}{b^{k(\alpha+1)} - a^{k(\alpha+1)}}$$

$$= \frac{ab^{k^N} - ba^{k^N}}{b^{k^N} - a^{k^N}} = S^{k^{N-1}}(0).$$

Therefore, (2.4) holds true for all $i \ge 0$. Next, we suppose that (2.2) holds true for $0 \le j \le N-1$ and for all $i \ge 0$. Then, for $i \ge 0$, we have

$$f_k^i(S^N(0)) = (f_k^i \circ S)(S^{N-1}(0))$$

= $S^{k^i}(f_k^i(S^{N-1}(0)))$ by Lemma 2.3
= $S^{k^i}(S^{Nk^i-1}(0))$ by induction argument
= $S^{(N+1)k^i-1}(0)$

which implies that (2.2) holds true for j = N and for all $i \ge 0$. This completes the proof. \square

Remark 2.1 When a and b are quadratic irrationals corresponding to $a = \frac{u+\sqrt{v}}{w}$ and $b = \frac{u-\sqrt{v}}{w}$ where u, v, and w are integers, u < 0 and v > 0, b is not the square of an integer, and $w \neq 0$, it was shown in [6] that f_k , $k \geq 2$, is the rational function of integers u, v, and w and that $\lim_{i\to\infty} f_k^i(0) = a$. This is important because we can generate a computable orbit that converges to a.

Remark 2.2 If we replace S(z) with $T(z) = \frac{(a+b)z-ab}{z}$, the inverse of S, which is also a Successive approximation of P, then we have similar results as follows:

Theorem 2.4 The order of convergence of f_k to the roots b starting from $z_0 = \frac{ab}{a+b}$ is equal to k. More precisely, we have

$$f_k^i(T^j(\frac{ab}{a+b})) = T^{(j+1)k^i-1}(\frac{ab}{a+b})$$

for all $i, j \geq 0$, where $T(z) = S^{-1}(z) = \frac{(a+b)z-ab}{z}$ is a successive approximation of P.

Remark 2.3 It is natural to ask if there are similar relations between f_k and successive approximations of polynomials of degree 3 or higher. The answer seems to be negative. One reason is because for polynomials of degree 3 (or higher), successive approximations of this polynomial have degree 2 (or higher). From which it follows that degree of $f_k \circ S$ is not equal to degree of $S^k \circ f_k$ hence Lemma 2.3 does not hold.

3. An Example

Let P(z) = (z-1)(z+2). Then $f_3(z) = \frac{z^3+6z+2}{3z^2+3z+3}$, $f_2(z) = \frac{z^2+2}{2z+1}$ and $S(z) = \frac{2}{z+1}$. The convergent sequences to the root z=1 starting from initial point z = 0 produced by iteration of S is as follows:

 $S:0,2,\tfrac{2}{3},\tfrac{6}{5},\tfrac{10}{11},\tfrac{22}{21},\tfrac{42}{43},\tfrac{86}{85},\tfrac{170}{171},\tfrac{342}{341},\tfrac{682}{683},\tfrac{1366}{1365},\tfrac{2730}{2731},\tfrac{5462}{5461},\tfrac{10922}{10923},\tfrac{21846}{21845},\tfrac{43690}{43691},$ $\frac{87382}{87381}, \frac{174762}{174763}, \frac{349526}{349525}, \frac{699050}{699051}, \frac{1398102}{1398101}, \frac{2796202}{2796203}, \frac{5592406}{5592405}, \frac{11184810}{11184811}, \frac{22369622}{22369621}, \frac{44739242}{44739243}, \frac{11184811}{1184811}, \frac{11184811}{$ $\frac{89478486}{89478485}, \frac{178956970}{178956971}, \frac{357913942}{357913941}, \frac{715827882}{715827883}, \frac{1431655766}{1431655765},$

For illustration, if we start from the initial points $z=0, z=\frac{2}{3}$ and $z=\frac{6}{5}$ then the convergent subsequences (of sequences above) to the root z = 1 starting from these initial points produced by iterations of f_2 and f_3 are as follows:

 $f_2:0,2,\frac{6}{5},\frac{86}{85},\frac{21846}{21845},\frac{1431655766}{1431655765},\dots$ $f_2:\frac{2}{3},\frac{22}{21},\frac{1366}{1365},\frac{5592406}{5592405},\frac{93824992236886}{93824992236885},\dots$ $f_3:0,\frac{2}{3},\frac{170}{171},\frac{44739242}{44739243},\frac{805950546409752783137450}{805950546409752783137451},\dots$ $f_3:\frac{6}{5},\frac{1366}{1365},\frac{22906492246}{22906492245},\dots$

As an example, we have the following correspondences between Nand S:

 $f_2^1(0) = 2 = S^1(0), f_2^2(0) = \frac{6}{5} = S^3(0), f_2^3(0) = \frac{86}{85} = S^7(0),$ $f_2^4(0) = \frac{21846}{21845} = S^{15}(0), \dots \text{ and } f_2^0\left(\frac{2}{3}\right) = \frac{2}{3} = S^2(0), f_2^1\left(\frac{2}{3}\right) = \frac{22}{21} = S^5(0), f_2^2\left(\frac{2}{3}\right) = \frac{1366}{1365} = S^{11}(0), f_2^3\left(\frac{2}{3}\right) = \frac{5592406}{5592405} = S^{24}(0), f_2^4\left(\frac{2}{3}\right) = \frac{93824992236886}{93824992236885} = S^{47}(0), \dots \text{ As we have seen, if we want a fast convergence to see the of B. Here, we have$ gence to roots of P, then we select an initial point in the form $S^{j}(0)$ (or $T^{j}(\frac{ab}{a+b})$) and then apply either f_2 or f_3 successively.

4. ACKNOWLEDGEMENT

The first author is supported by the Thailand Research Fund and a research grant from the Faculty of Science, Chiangmai University during the preparation of this paper. He would like to thank Prof.Dr.Yongwimon Lenbury, Mahidol University, Thailand for many valuable suggestions.

5. References

- [1] Devaney, R.L., An Introduction to Chaotic Dynamical Systems. 2nd ed., Addison-Wesley Publishing Company, 1988.
- [2] Niamsup, P., Palmore, J., Some Relations Among Halley's Function, Newton's Function and Successive Approximation, preprint.
- [3] Niamsup, P., Palmore, J., Lenbury, Y., The composition of Halley,s and Newton's Functions and Its Schwarzian Derivative, preprint (submitted for publication).
- [4] Palmore, J., A Relation Between Newton's Method and Sucessive Approximations for Quadratic Irrationals. In: From Topology to Computation: Proceedings of the SMALEFEST, ed. by Hirsch, M., Marsden, J., and Shub, M., Springer NY, pp. 254-258.
- [5] Palmore, J., Newton's Method and Schwarzian Derivatives, Journal of Dtnamics and Differential Equations. Vol.6, No.3 (1994), 507-511.
- [6] Palmore, J., Shadowing by Computable Orbits of Continued Fraction Convergents for Algebraic Numbers, Complex Variables, Vol.26 (1995), 359-366.
- [7] Palmore, J., Halley's Method and Schwarzian Derivatives, Applicable Analysis, Vol.61 (1996), 111-114.
- [8] Plamore, J., Shadowing by Computable Orbits of Continued Fraction Convergents for Algebraic Numbers II, Complex Variables, Vol.32 (1997), 363-372.
- [9] Wong, S., Newton's Method and Symbolic Dynamics, Proc. Amer. Math. Soc. 91: 245-253, 1984.

DEPARTMENT OF MATHEMATICS, CHIANGMAI UNIVERSITY, CHIANGMAI, 50200, THAILAND

E-mail address: scipnmsp@chiangmai.ac.th

Current address: Department of Mathematics, University of Illinois, Urbana, 61801 IL, USA

E-mail address: palmoreQuiuc.edu

piyapong

From:

Nancy Page <elisabeth_page@hotmail.com>

To:

<scipnmsp@chiangmai.ac.th>

Sent:

25 มิถุนายน 2543 22:50

Subject:

Paper acceptance

Dear Dr. Niamsup,

Your paper, "Rational solutions of certain functional equation",

has been accepted for publication in Complex Variables.

You will need to send this office a 3 1/2 inch floppy disk containing

the file for your paper as we will send both the required floppy and

a hard copy when we give it to the printer. A letter follows with

this information.

Sincerely,

Nancy Page

Editorial Assistant to

Robert P. Gilbert, Editor

Get Your Private, Free E-mail from MSN Hotmail at http://www.hotmail.com

Ratioanl Solutions of Certain Functional Equation

Piyapong Niamsup and Julian Palmore

June 30, 2000

Abstract

In this paper we study a functional equation of the form $f \circ S = S^k \circ f$ where $S(z) = -\frac{ab}{z-(a+b)}$ is a Successive approximation of a quadratic polynomial with roots a and b such that 0 < |a| < |b| and f is a rational function of degree k of the form $f(z) = \frac{a_k z^k + a_{k-1} z^{k-1} + \cdots + a_1 z + a_0}{b_k z^k + b_{k-1} z^{k-1} + \cdots + b_1 z + b_0}$, $a_i, b_j \in C$, $(a_0, b_0) \neq (0, 0)$.

1 Introduction

Halley's method, Newton's method of a given function P(z) are defined respectively as follows

$$H(z) = z - \frac{P(z)}{P'(z) - \frac{P(z)P''(z)}{2P'(z)}},$$

$$N(z) = z - \frac{P(z)}{P'(z)}.$$

A successive approximation of P(z), S(z) can be obtained by setting P(z) = 0 then write this equation as z = S(z). For example, if P(z) is a quadratic polynomial with roots a and b such that 0 < |a| < |b| In general, Halley's method, Newton's method and successive approximation are iterative methods which can be used to locate roots of functions where the order of convergence of these methods are three, two and one, respectively. In [5] and [6], the roles of the Schwarzian derivative of Halley's method, Newton's

method and the composition between these two methods were studied in controlling the order of convergence of these methods. In [2] and [4], the following relations between Halley's method. Newton's method and successive approximation for P(z) = (z - a)(z - b), $a, b \in C$ such that 0 < |a| < |b|were given. The following are some of these relations:

- 1. $H \circ S = S^3 \circ H$.
- $2 N \circ S = S^2 \circ N$
- 3. $(H \circ N) \circ S = S^6 \circ (H \circ N)$,
- 4. $H^{i}(S^{j}(0)) = S^{(j+1)3^{i}-1}(0), i, j \ge 0,$
- 5. $N^{i}(S^{j}(0)) = S^{(j+1)2^{i}-1}(0), i, j \ge 0,$ 6. $(H \circ N)^{i}(S^{j}(0)) = S^{(j+1)6^{i}-1}(0), i, j \ge 0.$

In [7] and [8], a rational function of the following form was studied:

$$f_k(z) = \frac{a(z-b)^k - b(z-a)^k}{(z-b)^k - (z-a)^k}.$$
 (1)

It was shown that when a and b are quadratic irrational numbers of the form

$$a = \frac{u + v^{1/2}}{w}$$
 and $b = \frac{u - v^{1/2}}{w}$

where u, v, and w are integers such that v > 0, v is not the square of an integer and $w \neq 0$, then $f_k(z)$ is a rational function of integers u, v, and w. This is important when we study a computable orbit converging to a under the iteration of f_k . It was also shown that

$$f_{k}^{(i)}(0) = S^{k^{i}-1}(0)$$

where $k \geq 2$ and $i \geq 1$. That is, the order of convergence of f_k to a is equal to k. Note that f_2 is the usual Newton's method of P and f_3 is the Halley's method of P. Motivating by these results, we propose to study a functional equation

$$f \circ S = S^k \circ f \tag{2}$$

where $k \geq 2$, S is defined as above and f is a rational function of degree k of the form

$$f(z) = \frac{a_k z^k + a_{k-1} z^{x-1} + \dots + a_1 z + a_0}{b_k z^k + b_{k-1} z^{k-1} + \dots + b_1 z + b_0},$$
 (3)

where $a_i, b_i \in C$, $(a_0, b_0) \neq (0, 0)$. In the next section, we will find all rational solutions f of (2).

2 Main Results

We begin by showing that (2) has a rational solution.

Theorem 1 The functional equation (2) has a solution, namely

$$f_k(z) = \frac{a(z-b)^k - b(z-a)^k}{(z-b)^k - (z-a)^k}.$$

Proof For $k \geq 2$, the function defined above is conjugate to the map $w \longmapsto w^k$ by the Möbius transformation that sends w = 0 to a and $w = \infty$ to b, namely

$$M(w) = \frac{bw - a}{w - 1}.$$

The inverse, M^{-1} , of M is given by

$$M^{-1}(z) = \frac{-z + a}{-z + b}.$$

We have the following commutative diagram

$$\begin{array}{ccc}
z & \longrightarrow & f_k(z) \\
M \uparrow & & \uparrow M \\
w & \longrightarrow & w^k
\end{array}$$

Therefore, for $k \geq 2$, we have $f_k(z) = M([M^{-1}(z)])^k$. The map S is conjugate to the map $w \longmapsto \frac{a}{b}w$ by the same Möbius transformation M as above. Therefore, we obtain

$$S^{k}(z) = M(\left(\frac{a}{b}\right)^{k} M^{-1}(z))$$

$$= \frac{ba^{k}(-z+a) - ab^{k}(-z+b)}{a^{k}(-z+a) - b^{k}(-z+b)}.$$

Hence,

$$S^{k}(f_{k}(z)) = \frac{ba^{k} \left(\frac{a(z-b)^{k}-b(z-a)^{k}}{(z-b)^{k}-(z-a)^{k}} + a\right) - ab^{k} \left(\frac{a(z-b)^{k}-b(z-a)^{k}}{(z-b)^{k}-(z-a)^{k}} + b\right)}{a^{k} \left(a - \frac{a(z-b)^{k}-b(z-a)^{k}}{(z-b)^{k}-(z-a)^{k}}\right) - b^{k} \left(b - \frac{a(z-b)^{k}-b(z-a)^{k}}{(z-b)^{k}-(z-a)^{k}}\right)}$$

$$= \frac{ab^{k}(z-b)^{k} - ba^{k}(z-a)^{k}}{b^{k}(z-b)^{k} - a^{k}(z-a)^{k}}$$

$$= f_{k}(S(z)).$$

That is f_k is a solution of (1) as desired.

From this theorem, we obtain the following result which is more general than the result in [4].

Corollary 2 For $k \geq 2$, we have $f_k^{(i)}(S^j(-\frac{ab}{z_k-(a+b)})) = S^{(j+1)k^i-1}(-\frac{ab}{z_k-(a+b)})$ for $i, j \geq 0$, where z_k is a fixed point of f_k . In particular, for $b_k = 0$, f_k has a fixed point at ∞ and hence $f_k^{(i)}(S^j(0)) = S^{(j+1)k^i-1}(0)$ for $i, j \geq 0$.

Proof. See [2] for the detail of the proof where mathematical induction was used to prove this corollary. See [4] for the detail of the proof where the concept of topological conjugacy was used to prove this corollary.

We now consider all rational solutions of (2) when k = 2. We obtain the following result.

Theorem 3 Let f_2 be a solution of (2), then f_2 is of the following form (a) If $a_2 \neq 0$, then

$$f_2(z) = \frac{z^2 + (-2abb_2)z + (-ab + ab(a+b)b_2)}{b_2z^2 + (2 - 2(a+b)b_2)z + (-abb_2 - (a+b) + (a+b)^2b_2)}$$

where b_2 is any complex number. Moreover, if $b_2 = 0$ then f_2 is the Newton's method for P and if b_2 is a nonzero complex number, then we obtain $f_2(z) = T_2(N(z))$ where $T_2(z) = \frac{z - abb_2}{b_2 z + (1 - (a + b)b_2)}$.

(b) If $a_2 = 0$, and $a_1 \neq 0$, then

$$f_2(z) = \frac{z - \frac{a+b}{2}}{\left(-\frac{1}{2ab}\right)z^2 + \left(\frac{a+b}{ab}\right)z - \left(\frac{a^2 + ab + b^2}{2ab}\right)}$$

Note that $f_2(z) = (S^{-1} \circ N \circ S)(z)$.

(c) If $a_2 = a_1 = 0$ and $a_0 \neq 0$, then there are no rational solutions for (2) of this form.

Conversely, if T is any mapping such that $T \circ S = S \circ T$, then $N \circ T$ and $T \circ N$ are solutions of (2).

Proof. We first assume that $a_2 \neq 0$. In this case we can assume that $f_2(z) = \frac{z^2 + a_1 z + a_0}{b_2 z^2 + b_1 z + b_0}$. From $S(z) = -\frac{ab}{z - (a+b)}$ we substitute f_2 and S into (2) and solve for the coefficients a_1 , a_0 , b_2 , b_1 , and b_0 we obtain

$$a_1 = -2abb_2,$$

 $a_0 = -ab + ab(a+b)b_2,$
 $b_1 = 2 - 2(a+b)b_2,$ and
 $b_0 = -abb_2 - (a+b) + (a+b)^2b_2$

where b_2 is any complex number. That is,

$$f_2(z) = \frac{z^2 + (-2abb_2)z + (-ab + ab(a+b)b_2)}{b_2 z^2 + (2 - 2(a+b)b_2)z + (-abb_2 - (a+b) + (a+b)^2 b_2)}$$

where $b_2 \in C$ is the set of all solutions of (2) for k=2 when $a_2 \neq 0$. Now assume that $a_2 = 0$ and $a_1 \neq 0$. In this case we can assume that $f_2(z) = \frac{z+a_0}{b_2z^2+b_1z+b_0}$. Substitute f_2 and S and solve for a_0 , b_0 , b_1 , and b_2 we obtain

$$f_2(z) = \frac{z - \frac{a+b}{2}}{\left(-\frac{1}{2ab}\right)z^2 + \left(\frac{a+b}{ab}\right)z - \left(\frac{a^2+ab+b^2}{2ab}\right)}.$$

For the cases, $a_2 = a_1 = 0$ and $a_0 \neq 0$, we can show similarly to previous two cases that (2) doesn't have rational solutions in this case.

For general positive integer k, we have the following result

Theorem 4 Let f_k be a rational solution of (2) of the form

(a) If
$$a_k \neq 0$$
, then

$$f_k = T_k \circ f_{0,k}$$

where $f_{0,k}(z) = \frac{a(z-b)^k - b(z-a)^k}{(z-b)^k - (z-a)^k}$, $T_k(z) = \frac{z-abb_k}{b_k z + (1-(a+b)b_k)}$ and $b_k \in C$. (b) If $a_k = 0$, and $a_{k-1} \neq 0$, then there is only one solution in this form

- for (2) and we can explicitly find such the solution.
- (c) If $a_k = a_{k-1} = 0$, then there are no nonzero rational solutions for (2) of this form.

Conversely, if T is any mapping such that $T \circ S = S \circ T$, then $f_0 \circ T$ and $T \circ f_0$ are solutions of (1).

Proof We first assume that $a_k \neq 0$. Without loss of generality, we assume that

$$f(z) = \frac{z^k + a_{k-1}z^{k-1} + \dots + a_1z + a_0}{b_k z^k + b_{k-1}z^{k-1} + \dots + b_1z + b_0}.$$

From Theorem 1, $S^k(z) = \frac{ba^k(-z+a)-ab^k(-z+b)}{a^k(-z+a)-b^k(-z+b)}$, and we obtain

$$S^{k}(z) = \frac{abT_{k-2}z + abS_{k-1}}{T_{k-1}z + S_{k}}$$

where $S_j = \sum_{i=0}^j a^i b^{j-i}$, $T_j = -S_j$ where $j \geq 1$. It follows that

$$S^{k}(f(z)) = \frac{abT_{k-2}(z^{k} + a_{k-1}z^{k-1} + \dots + a_{1}z + a_{0}) + abS_{k-1}(b_{k}z^{k} + b_{k-1}z^{k-1} + \dots + b_{1}z + b_{0})}{T_{k-1}(z^{k} + a_{k-1}z^{k-1} + \dots + a_{1}z + a_{0}) + S_{k}(b_{k}z^{k} + b_{k-1}z^{k-1} + \dots + b_{1}z + b_{0})}.$$

Now we have

$$f_{k}(S(z)) = \frac{\sum_{i=0}^{k} \left\{ \sum_{j=i}^{k} (-1)^{j-i} \binom{j}{j-1} (-ab)^{k-j} (a+b)^{j-i} a_{k-j} \right\} z^{i}}{\sum_{i=0}^{k} \left\{ \sum_{j=i}^{k} (-1)^{j-i} \binom{j}{j-1} (-ab)^{k-j} (a+b)^{j-i} b_{k-j} \right\} z^{i}}$$

where $a_k = 1$. By comparing first the coefficients of z^i in numerators of $S^k(f(z))$ and $f_k(S(z))$ and then the coefficients of z^i in denominators of $S^k(f(z))$ and $f_k(S(z))$ we have a system of equations which can be solved explicitly to obtain the results of the Theorem in case (a). Case (b) and (c) can be proved similarly to case (a).

Remark 1. When k = 3. $f_{0,3}(z)$ is the Halley's method for P.

Remark 2. We have proved Theorem 4 by solving directly a linear system of equations. It would be more interesting if we could prove Theorem 4 more analytically.

Remark 3. If P(z) is a polynomials of degree 3 or more with distinct roots, then any successive approximation of P(z) would have degree 2 or more. From which it follows that (1) does not hold (since degree of S is not equal to degree of S^k).

Remark 4. From [7], [8] and Theorem 4, f_k is a rational function with integer coefficients if and only if $b_k \in \mathbb{Z}$, $a = \frac{s(u-\sqrt{v})}{w}$ and $b = \frac{s(u+\sqrt{v})}{w}$ where $u, v, w, s \in \mathbb{Z} - \{0\}, u > 0, v > 0, v^2 \notin \mathbb{Z}^+$.

Remark 5. Consider $R(z) = \frac{(a+b)z-ab}{z} = S^{-1}(z)$ which is also a successive approximation of P. By replacing S with R in (2), we obtain similar results with the same argument of proof where we leave the details to interested readers.

Remark 6. If T is a Möbius transformation which commutes with S, then $T(z) = \frac{Az-abC}{Cz+(A-(a+b)C)}$, where A and C are complex numbers. When A=1 and $C=b_k$ we obtain $T=T_k$.

3 Acknowledgement

The first author is supported by the Thailand Research Fund and a research grant from the Faculty of Science, Chiangmai University during the preparation of this paper. He would like to thank Prof.Dr.Yongwimon Lenbury, Mahidol University, Thailand for many valuable suggestions.

4 References

- [1] Devaney, R.L., An Introduction to Chaotic Dynamical System 2nd ed., Addison-Wesley Publishing Company, 1988.
- [2] Niamsup, P., Palmore, J., Some Relations among Halley's Functions, Newton's Function and Successive Approximations, preprint, 1999.
- [3] Niamsup, P., Palmore, J. and Lenbury. Y., The Composition of Halley's and Newton's functions and its Schwarzian Derivative, submitted to Complex Variables.
- [4] Palmore, J., A Relation Between Newton's Method and Successive Approximations for Quadratic Irrationals. In: From Topology to Computation:Proceedings of the SMALEFEST, ed. by Hirsch. M., Marsden, J., and Shub, M. Springer NY, 1993, 254-258.
- [5] Palmore, J., Halley's Method and Schwarzian Derivatives. Applicable Analysis, Vol. 61, 1996, 111-114.
- [6] Palmore, J., Newton's Method and Schwarzian Derivatives, Journal of Dynamics and Differential Equations, Vol. 6, No.3, 1994, 507-511.
- [7] Palmore, J., Shadowing by Computable Orbits of Continued Fraction Convergents for Algebraic Numbers, Complex Variables, Vol.26, 1995, 359-366.
- [8] Palmore, J., Shadowing by Computable Orbits of Continued Fraction Convergents for Algebraic Numbers II, Complex Variables, Vol.32, 1997, 363-372.

Piyapong Niamsup
Department of Mathematics
Chiangmai University
Chiangmai, 50200
Thailand
email:scipnmsp@chiangmai.ac.th

Julian Palmore
Department of Mathematics
University of Illinois
Urbana, IL 61801
USA
email:palmore@uiuc.edu