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Abstract
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Rotatory or rotational oscillations of several axi-symmetric bodies in axi-
symmetric, viscous, incompressible flows at low Reynolds number have been
investigated. One prominent appilication of the study of oscillating bodies is the oscil-
lating disk viscometer. In this instrument, a thin cylindrical disk suspended by a thin
wire executes torsional oscillation in the fluid. The torque on the disk can be predicted
theoretically by solving the equation of fluid flow together with appropriate boundary
conditions.  Viscosity of the surrounding fluid can be obtained from experimental
measurements of certain parameters and comparisons of their values with those
calculated from the predicted torque. Accuracy of the viscosity, hence, relies heavily on
the value of the torque. Exact solutions for torque are existent only for a sphere and
limiting cases of cylinders; an infinite disk and an infinite cylinder. In this research, a
numerical method based on the Green's function technique is used to calculate the
torque on oscillating bodies in both unbounded and bounded fluids and with slip at
boundaries. The numerical method makes possible the accurate calculations of the
torque for arbitrary axi-symmetric bodies. Numerical results have been benchmarked
against known analytical solutions and are founded to be very accurate. It is found that
in alt cases, slip reduces torque, and increasingly so with the increasing frequency of
oscillation. On the other hand, the increment of frequency of oscillation increases

torque.

Keywords: Oscillation, Green's function, Slip, Axi-symmetric flow, Unsteady Stokes’
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Executive Summary

Rotatory or rotational oscillations of several axi-symmetric bodies in axi-
symmetric, viscous, incompressible flows at low Reynolds number have been
investigated. One prominent application of the study of oscillating bodies is the oscil-
lating disk viscometer. Here, a thin cylindrical disk suspended by a thin wire executes
torsional oscillation in the fluid. The torque on the disk can be predicted theoretically by
solving the equation of fluid flow together with appropriate boundary conditions.
Viscosity of the surrounding fluid can be obtained from experimental measurements of
certain parameters and comparisons of their values with those calculated from the
predicted torque. Accuracy of the viscosity, hence, relies heavily on the value of the
torque. Exact solutions for torque are existent only for a sphere and limiting cases of
cylinders; an infinite disk and an infinite cylinder.

In this research, a numerical method based on the Green's function technique is
used wherein the relevant Helmholtz equation, as obtained from the unsteady Stokes
equation, is converted into Fredholm integral equations of the second kind and then
reduced to a system of linear algebraic equations. Gaussian quadrature is used to de-
termine local stresses at each nodal point. Total torque on the body is finally obtained
by summation of the local stresses. The calculations are performed by Mathematica
program on a Pentium [11-450 MHz computer. Mathematica. is selected because of its
ease of use and convenient built-in functions. The technique is benchmarked against
known analytical solutions, and accurate numerical results for local stress and torque on
spheres, prolate spheroids, oblate spheroids and cylinders in an unbounded fluid as a
function of the oscillating frequency and the slip coefficients are obtained. Numerical
results for torques on a sphere, prolate spheroids, and oblate spheroids in bounded
environments of identical geometries with the same aspect ratios are subsequently ob-
tained. The corresponding results for a thin cylindrical disk used in the oscillating disk
viscometer can be obtained from the results of the flat oblate spheroid of the same as-
pect ratios. The accuracy of this approximation is tested for the unbounded case.

It is found that in all cases, slip reduces torque, and increasingly so with the
increasing frequency of oscillation. On the other hand, the increment of frequency of

oscillation increases torque.



Background

Problems of oscillation of axi-symmetric bodies in axi-symmetric, viscous,
incompressible flow at low Reynolds number with and without slip boundary condi-
tions have been widely studied. Two important modes of oscillation involve the
translational and rotatory oscillations. In translational osciilation, the body perform-
ing oscillation displaces the fluid around the body. On the other hand, the body per-
forming rotatory oscillation does not displace the fluid. The problem of rotatory os-
cillations is of interest because of its application in oscillating disk viscometers. Here,
a finite cylinder in the form of a circular disk is suspended by a thin wire attached at
the center of one face and executes torsional oscillation in the fluid being measured.
The dimensional torque on the disk due to the fluid, 77, is dependent upon the
viscosity and can be predicted theoretically by solving the equation of fluid flow
together with appropriate boundary conditions. The exact motion of the disk under

the influence of the torque can be determined from

16(t)+ (L, + L)a(r)+ Ky [oe(t) - et ] = 0
where ¢, is the initial angular deflection of the disk, / is the moment of inertia of the
disk, L, is the damping factor of the suspension wire, L =7T’/Q is the damping factor
of the fluid, and K, is a constant. Note that L,, L, and K, are time-independent.
By substituting L =L, +iL, and & =a,exp|(-A+i)w:?] into Eq. (48), L, and L,
can be obtained as functions of A and 7, where A is the damping decrement of the
amplitude in the fluid and 7 is the period of oscillation in the fluid. By equating L to

the torque obtained from the calculation, the viscosity can be determined provided

that the damping decrement and the period of oscillation are measured. This



relationship centers around an accurate prediction of the torque, 7A"=T’/(Q)ua3),
exerted on the disk by the surrounding fluid during its oscillation. The accuracy of
viscosities obtained via this technique also depends upon the accuracy of the
associated damping decrement measurements.

When the body dimension is only about an order of magnitude larger than
molecular mean free path of the fluid, one must, however, consider fluid slip at the
surface. The slip at boundaries occurs when the Knudsen number ( Kn ) is in the order

of 0.1. The Knudsen number is defined as the ratio of molecular mean free path of
the medium ()Lg) and the characteristic length of the body (a), i.e. Kn = /'tg /a . The
flow regimes classified by the Knudsen numbers include the free molecular
(Kn >>1), the transition (Kn ~ 1), the slip (Kn ~0.1), and the continuum flow

regime ( Kn <<1). The molecular mean free path of the gas medium is defined as

/2
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where u is the viscosity, p is the pressure, k£ is the Boltzmann's constant, T is the

temperature, and m is the mass of the medium. The slip boundary condition at the
surface of a body involves both the molecular mean free path and the slip coefficient,

¢..» Which can be represented with accuracy within 1%, by (Loyalka, 1990)

‘. = 3;—“[(1—a)”7"2+ac(1)]

where a is the momentum accommodation coefficient, and ¢ (1), corresponding to
@ =1, has a value between 0.9875 and 1.02, depending on the nature of the gaseous
intermolecular interaction. If (1) is replaced by N / 2, the above equation becomes

Maxwell's relation (Maxwell, 1879). The slip becomes of greater significance as the

pressure decreases below atmospheric, particularly for the value of Kn ~ 0.1.



Exact solutions to the osciliation problem both with and without slip, however.
are limited to certain bodies with simple geometnes. For a typical cylindncal body
which has been regularly used in the oscillating disk viscometer, no exact solutions
are existent. Some approximations have been attempted but these approximations

lead to significant discrepancies in most cases. A numencal technique 1s then un-

avoidably necessary.

Problem Description
The problem for the oscillation with small amplitude where the Reynolds
number is very small arises from the same principle that involves the solutions to the

unsteady Stokes equations,

Zzéz—Vp+\7:u (1)
ot

where A’ =wa’/v is the dimensionless frequency parameter. Here, a is the
charactlenstic length of the body and @ is the frequency of oscillation.
The Unsteady Stokes' equation for a time-dependent, dimensionless, ¢ -

component velocity obtained from Eq. (1) can be writlen as

, du a3 1 9 1 9
,'{- ¢ = o _ -
ot [8{32 +m ow m? +822 ¢ (2)

The slip boundary conditions at the body surfaces (Fig. 1) are
a,(r, )=, cos(r)+(cmlg )Id', (r,) (3)
iy (r,2)=(c.4,),6,(r,,) (4)
Here, i, is the dimensionless velocity in ¢ -direction, T is the oscillation period, ¢,
is the slip coefficient, A, is the molecular mean free path of the surrounding gas, and

subscripts 1 and 2 indicate the inner and outer bodies, respecuvely. In this problem,



the length, time, velocity, and pressure are nondimensionalized in terms of a. @
U =|Qa =Qa.and uU/a . respectively.
The dimensionless. time-dependent torque on the inner an outer bodies can be

cvaluated. respectively. from

T(r)=-27[@’G (J.t)ds )

T.(t)= —lfrj.wzd:(g.r)d s (6)

where d({. 1) is the local stress defined from

Y <

Fig. 1 Coordinate system for the oscillation of an axi-symmetric body inside and co-

axial 1o the identical, larger and fixed body



The dimensionless time-independent torque (T') is obtained by dropping the term,

exp(it), from the time-dependent torque (f)
By mathematical manipulations, Eq. (2) can be written in the form of the
Helmholtz equation,
(V2 +k%)w=0 (8)
The slip boundary conditions at the surfaces of the bodies the become
wir,) ={o, +(e,A, ) 0., eos(@,,) 9)
wir,) ={eca2,),0.( eos(@,,) (10)

Here, we have used w(@,z,0)= u, (@,z)cos(¢), k? = ~iA* =~iwa®/v, and

o(g'):mi(u—"} (11)
on| @
The Helmholtz equation (8) can be solved by the defined Green’s function,
(V2 + &2 Wy (rr)=—4ns ([ —r’) (12)
N expl—ikr—r

After extensive mathematical manipulations and applying the singularity subtraction

technique, the Helmholtz equation becomes (See details in Appendix A)

s )-2nleat, ) Jou )+ [ 606 o 6 ) - @) ]ac,

+ Ile[Cl, ¢/ ]02 (‘:zI ]dgz' o w ) (14)

and

e 6)-2nc, ) Jou 60)+ [ 62,8 0 £ )- 0 )]ac

+.[Lz:(Cz,C.’]o,[gl']dgl' -0 (15)



where

g”(cl)=jlﬂ[cl,¢f]dc,' (16)

g2(0)=] Ln(cz,f:z']dcz' (17)

The integral equations (14) and (15) are converted to a system of linear
algebraic equations by the use of Gaussian quadratures together with collocation at
each nodal point of the quadrature. The stress, o{), is determined at the nodal
points of the quadrature. The torques on the inner and outer bodies can then be

determined from the stresses using Eqgs. (5) and (6), respectively.

Previous Research Work

The first study undertaken of an oscillating body involved the translational
oscillation of a flat plate which was investigated by Stokes (1851) and subsequently
by Lord Rayleigh (1911), Landau and Lifshitz (1959), Schlichting (1979), Kanwal
(1955 and 1964), William (1966), Lawrence and Weinbaum (1986, 1988), Pozrikidis
. (1989a and 1989b), Loewenberg (1993a, 1993b, 1994a and 1994b), Davis (1993),
Lovalenti and Brady (1993a and 1993b), and Zhang and Stone (1998).

The rotatory oscillation of an axi-symmetric body was discussed by Lamb
(1932). He developed the Helmholtz equation resulting from the unsteady Stokes
equations for a sphere executing a rotatory oscillation about an axis passing through
its center while bounded by another concentric hollow sphere. Kanwal (1955) studied
the rotatory oscillation of several axi-symmetric bodies including a sphere, a prolate
spheroid, and a thin cylindrical disk using the Stokes stream function. Landau and
Lifshitz (1959) described the rotatory oscillation of a free thin circular disk about its

axis by solving for the angular velocity and torque that are applicable in the high



frequency limit (A >>1) whereas Kanwal (1970) obtained the asymptotic torque on a
free thin circular disk and a thin cylindrical disk bounded by a cylinder of large radius
in the low frequency limit (A <<1). Kanwal (1955) used the Stokes stream function
to obtain the motions of fluids due to rotatory oscillations of several different free axi-
symmetric bodies. Further, Hocquart (1976) obtained a series solution for the torque
on a spheroid oscillating in an axi-symmetric flow by solving the unsteady Stokes
equation assuming a constant pressure. Kestin and Persen (1956) studied torsional
oscillation for several bodies, both in an unbounded fluid and in bounded
environments, i.e. an infinite disk between two fixed plates, an infinite cylinder inside
another cylinder, and a sphere inside another sphere. The simplified Navier-Stokes
equation with constant pressure for a slow moving fluid and the equation of body
motion, neglecting wire damping, were solved in cylindrical coordinates using the
Laplace transform technique. Shah (1971) obtained slip solutions for some simple
geometries in Laplace transform domain.

MacWood (1938a, 1938b) obtained an approximate solution for a thin
cylindrical disk with slip by use of edge correction where some accuracy was lost.
Mariens and van Paemel (1956) analyzed a disk oscillating in an unbounded fluid
without slip with inclusion of edge effects. Kestin and Wang (1957) showed that the
results of Mariens and van Paemel (1956), though providing a significant
improvement over preceding theories, retained a noticeable margin of error. They
formulated a correction theory by solving the equations for the fluid flow and the disk
motion using Laplace transforms in the manner described by Kestin and Persen
(1956). Edge correction factor for a disk was introduced.

Zhang and Stone (1998) have provided a range of useful solutions for bodies

in several modes of rotation. These authors reported results for local stresses and



torques on the bodies. The recent numerical work by Tekasakul er al. (1998) on
rotatory oscillations of arbitrary axi-symmetric bodies in an unbounded fluid in a
continuum regime using a Green's function technique is a major step towards the
improvement of previous solutions. Torques on a sphere, a prolate spheroid, an oblate
spheroid, a thin circular disk, a long cylinder, and a finite cylinder were calculated.
The accuracy of the technique was verified against some known analytical solutions.
Their work provides an excellent numerical method for solving oscillation problems
associated with complicated axi-symmetric systems. Previous investigations on rota-

tory oscillations are summarized in Table 1.



Table 1. A summary of previous (analytical) works for rotatory oscillations of axi-

symmetric bodies.

Investigators Body (ies) Flow Nature of solution
considered regime (torque)
Lamb a sphere continuum exact
(1932)
MacWood a thin disk shp approximate
(1938) (edge correction)
Kanwal a sphere, an infinite continuum exact and approximate
(1955) circular cylinder, a prolate
spheroid, an oblate
spheroid, and a thin
circular disk
Kestin and Persen an infinite disk, an infinite  continuum exact
(1956) cylinder, a sphere, and a (Laplace transform)
stack of infinite disks
an infinite disk berween
two fixed plates, an
infinite cylinder inside
another cylinder, and a
sphere inside another
sphere
Mariens and a thin disk continuum approximate
van Paemel (edge correction)
(1956)
Kestin and Wang a thin disk continuum approximate
(1957) a finite disk with a narrow (edge correction)
spacing
Landau and Lifshitz an infinite circular disk continuum exact
(1959) high frequency limit
Kanwal a free thin circular disk continuum exact
(1970) a thin cylindrical disk Low frequency limit
bounded by a cylinder of
large radius
Shah a sphere, an infinite disk slip exact
(1971) and an infinite cylinder (Laplace transform)
an infinite cylinder inside
another cylinder, and a
sphere inside another
sphere
Clark et al. a thin disk continuum approximate
(1977) (edge correction)
Tekasakul et al. a sphere, a prolate continuum Numerical
(1998) spheroid, an oblate
spheroid, a thin cylindrical
disk, an infinite circular
cylinder, and a finite
cylinder
Zhang and Stone a cylindrical disk, continuum Numerical
~ (1998) nearly spherical particles




New Developments from This Research

New developments from this research can be summarized as follows:

1. Complete numerical procedure for rotatory oscillations of axi-symmetric
bodies in axi-symmetric, viscous, incompressible flows at low Reynolds number in
bounded environments with slip boundary conditions has been developed (See Ap-
pendix A). The numerical technique was fully benchmarked with know analytical
solutions and was found to be very accurate. Accuracy of the technique can be en-
hanced by increasing the number of Gaussian quadrature points on the bodies but
computational time would be longer as well. Appropriate number of the Gaussian
quadrature points needed for calculations has been displayed for all cases.

2. Analytical solution for a sphere oscillating in an unbounded fluid with a
slip boundary condition was derived from the no-slip solution. This was used as one
of the analytical solutions for benchmarking stated in the previous section.

3. Numerical results for torques on a sphere, prolate sphéroids, oblate sphe-
roids, and cylinders in an unbounded fluid were obtained. See the manuscripts in
Appendices B and C for details.

4. Numerical results for torques on a sphere, spheroids in bounded environ-
ments of identical geometries with the same aspect ratios were obtained. The corre-
sponding results for a thin cylindrical disk used in the oscillating disk viscometer can
be obtained from the results of the flat oblate spheroid of the same aspect ratios. The
accuracy of this approximation is tested for the unbounded case. See results in Ap-
pendix D. Numerical results for typical cylinders are now under development.

5. Approximate solutions for evaporation from nearly spherical particles us-
ing techniques that were used in the problem of oscillations were developed. See the

manuscript in Appendix E.



Suggestion for Future Research

Results of this research have shown great effectiveness of the numerical
method that is based on the Green’s function. Any problems arising from the Helm-
holtz equation with similar boundary conditions can be solved by this method. Prob-
lems of evaporation and neutron diffusion are a few examples of possible applica-
tions. Continuation of the problem of oscillations of typical cylinders is necessary as
well. This is ongoing with significant progress towards the final results. Problem
with more complex boundary conditions including oscillating outer body is also of

interest, and although more complicated, its solution is also possible.

Conclusion

The problem of rotatory oscillations of axi-symmetric bodies in axi-
symmetric, viscous, incompressible flows at low Reynolds number in bounded envi-
ronments with slip boundary conditions has been studied. A possible application of
this study 1s the oscillating disk viscometer. Accuracy of the torque on the disk pre-
dicted theoretically is vital to accuracy of the viscosity of the surrounding fluid to be
measured by the viscometer. Exact solutions for torque are existent only for a sphere
and limiting cases of cylinders; an infinite disk and an infinite cylinder. Several ap-
proximations were attempted to determine torques on oscillating disks but these ap-
proximations are either limited to a range of oscillating _frequency or inaccurate. An
accurate numerical method is then unavoidably necessary. In this research, numerical
method based on the Green's function was used. The Helmholtz equation was con-
verted to Fredholm integral equations of the second kind and then reduced to a system
of linear algebraic equations. Gaussian quadrature was used to determine local
stresses at each nodal point. Total torque on the body was finally obtained by sum-

mation of the local stresses. The numerical results have been benchmarked against



known analytical solutions and are founded (o be very accurate. It is found that in all
cases, the increment of frequency of oscillation increases torque. The presence of
slip, however, reduces torque, and increasingly so with the increasing frequency of

oscillation.
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Rotatory Oscillations of Axi-symmetric Bodies in a Bounded Axi-symmetric

Viscous Flow with Slip: Numerical Solutions

I. STATEMENT OF THE PROBLEM

The Unsteady Stokes' equation for a time-dependent, dimensionless, ¢-component

velocity is

du ? 1.d 1 &
2 779 S - _ o 1
A at [8w3+w3w ca2+8z2Ju° M

Boundary conditions with slips are

i,(r, )= @, exp(it) + (cmzlg)t &,(r,,) (2)

aé(rsl) = (Cmﬂ'g )2 6—2([-52) (3)
where subscripts 1 and 2 represent the inner (oscillating) and the outer (stationary) bodies,

respectively.

The dimensionless, time-dependent, torque 1s

T:-J'(rsxP)-dS:-L(erPn)dS (4)

or in scalar form:
T,(t)=-27 [ @} 6,(¢.7)ds (5)
T,()=-27 [ @} 6,({,7)ds (6)

where 6((, 7) is the time-dependent, dimensioniess local stress:

5(¢.7)= an[ ”‘] @)
and T = T’/Qua’ is the time-dependent, dimensionless torque. The time-independent torque
(T) is obtained by dropping the term, exp(iz), from the time-dependent torque (7T) and the
time-dependent local stress (o) is obtained by dropping the term, exp(it), from the time-
dependent local stress 6({, 7) = o({) exp(i7).
Assume

iy (@,2,7) = exp(it) u,(w,z) ®)



Substitution of the above ansatz into Eq. (1) yields

J LS J __ | +a:]+k3 u, =0
Jo’ w@dw o I ’

where k* = —iA’ = —iwa’ /v is the dimensionless complex-valued frequency parameter.

Applying the Jeffrey transformation

w(@,2,¢) = u,(@,z) cos(¢)

we have

Vi = i +l J + I + I u COS((D)
Jo wiw w I¢° 97)°

=( az,+i o __1 + J° Ju cos(¢)
o wow @ d)°

which then leads to the Helmholtz equation
(VP +&)w=0
while the boundary conditions become

r,) [&r + c, ;t (r,,)]cos(c),,)

w(rn) = [(cm’lg )2 g, (rsz )]COS( ?.. )

where

II. NUMERICAL PROCEDURE
Define the Green's function:

(V? + &) y(r,r') = -4z 8(r—r)

such that
exp(—ik|r—r’))
=

w(r.r)=
Applying the Green's second identity:
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. we have, for r — r,, (inner body surface):

, dw r: a![f 5T ,
—J‘I[W(rsl'rsl)%_]""(rtl)%:,drsl

b

nl
.y In(rs) ,\ ow(r,,.r,) ,
II‘ _J‘zl:w(rﬂ’rs:)T;:“"(rsz)—(o-,nl,z—z dri, =2mw(r,)

i and, for r — r, (outer body surface):
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For i =1 (inner body), we have

20e) o o)+ 2] 2
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-w,l+(c,,/1 )a,( r,)

F1]

= cos(9, )o,(r, )+

} o [P cos(0,)]

[ (cm/'l.‘)I al(r
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1}
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| For i =2 (inner body), we have
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i Substituting Egs. (22) and (23) into Eqs. (19) and (20), respectively, with use of the boundary

" conditions (13) and (14), we obtain

{(en,), 02 (r20)]cos(9r) 2AEEe)

I
on,

= Zﬂ[wﬂ + (Cm/lg )1 a,(r“)]cos(qb“) (24)

and

__[1

o) {cos(e»:.)ol(r;) oo | 1o cos(co;])]}
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dr,

Equation (24) and (25) can be rearranged to
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= 27[[(%)“3 )2 02 (r‘2 )] COS( ¢’2)

According Tekasakul ef al. (1998) and Tekasakul ez al. (ZAMP, 1999)
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Then Eqgs. (26) and (27) become

(et {cosw;z)az(r;z) . {(C'"’“E;S(“” } 2 [otecos(o )J}

_J‘2

—[(cm/lg )2 crz(rjz)]cos((b:z) _(WE;—:I',) dr/,
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Since,
dr,=Jd{d¢

then Eqgs. (30) and (31) become
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Eqgs. (32) and (33) become
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We thus have
[L(€.)0(¢)a g+ [ La(¢. &) 0x(¢)d &~ 27(c,A,), 00(8) = -k2W(C)
and
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Applying the singulanity subtraction technique, we can write
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[2(¢) = 271(caA,), Jou(¢) + [ L6 E0[00(80) - o0(¢)]a &

(40)
+qu2 (£.¢)ox(80)d s = =k7¥(¢)

and

[£22(62) — 27(cat, ), |oa (6) + [ (620 0) [ 02(82) = 02(&2)]a & )
+[ L& 8 o8 dg) =
where

()= [ L(&.¢nd e (42)

and
= [ L& ¢0)d g (43)

The integrals in Eqgs. (40) and (41) are thus converted to summations by the use of Gaussian
quadratures and Egs. (40) and (41) are then reduced to systems of linear algebraic equations by
applying collocation at the nodal points of the quadrature. The integrals in Eqs. (42) and (43)

are determined 1n the Cauchy principal value sense. The local stress, O'(C_,'), 1s determined at

each nodal point and the torque is finally determined from Eqgs. (5) and (6).
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Abstract

Rotatory oscillations of several axi-symmetric bodies in axi-symmetric viscous
flows with slip are investigated. A numerical method based on the Green's function
technique is used wherein the relevant Helmholtz equation, as obtained from the
unsteady Stokes equation, is converted into a surface integral equation. The technique
is benchmarked against a known analytical solution, and accurate numerical results for
local stress and torque on spheres and spheroids as function of the wave number and
the slip coefficients are obtained. It is found that in all cases, slip reduces stress and
torque, and increasingly so with the increasing wave number. The method discussed

here can be potentially extended to the realistic case of an oscillating disk viscometer.

1 Introduction

There have been several studies of oscillations of axi-symmetric bodies in axi-
symmetric, viscous, incompressible flow at low Reynolds number with no-slip
boundary conditions. Two important modes of oscillation involved the translational, 1n
which the body performing oscillation displaces the fluid around the body, and rotatory
oscillations, in which the body performing oscillation does not displace the fluid.
Details of translational oscillation studies can be found in the literature (Kanwal, 1955
and 1964; William, 1966; Lawrence and Weinbaum, 1986 and 1988; Pozrikidis, 1989a
and 1989b; Loewenberg, 1993a, 1993b, 1994a and 1994b; Davis, 1993; Lovalenti and
Brady, 1993a and 1993b). The problem for the oscillation with small amplitude where
the Reynolds number is very small arises from the same principle that involves the
solutions to the unsteady Stokes equations (Tekasakul, et al., 1998; and Zhang and
Stone, 1998),

Ju
2_
A ot

2 _ 2 . : . .
where A’ = wa®/v is the dimensionless frequency parameter. Here, a is the

= _Vp+Viu . (1

characteristic length of the body and w is the frequency of oscillation.



Rotatory oscillations of a body in a fluid are of interest in studies of oscillating
disk viscometer, Brownian motion, ultrasonics, and electroacoustics. The analytical
solutions to the oscillation problem are limited to certain bodies with simple geometries.
Some approximations are employed for more complicated bodies in order to facilitate
analytical solutions. Recently, Tekasakul, et al. (1998) have solved the problem of
several axi-symmetric bodies numerically from the unsteady Stokes equations for no-
slip boundary conditions, and Zhang and Stone (1998) have provided a range of useful
solutions for bodies in several modes of rotation. These authors reported results for
local stresses and torques on the bodies. Comparison showed that the accuracy of the
numerical method was excellent. When the body dimension is only about an order of
magnitude larger than molecular mean free path of the fluid, one must, however,
consider fluid slip at the surface. The previous works (Lamb, 1932; Kanwal, 1970;
Kestin and Persen, 1956; Mariens and van Paemel, 1956; Kestin and Wang, 1957;
Clark, et al., 1977), as it turns out, have emphasized the problem with no-slip
boundary conditions with a few exceptions. MacWood (1938a and 1938b) obtained an
approximate solution for a thin cylindrical disk with slip by use of edge correction
where some accuracy was lost. Shah (1971) obtained slip solutions for some simple
geometries in Laplace transform domain.

The slip at boundaries occurs when the Knudsen number ( Kn) is in the order of
0.1. The Knudsen number is defined as the ratio of molecular mean free path of the
medium (A, ) and the characteristic length of the body (a), i.e. Kn=A4_/a. The flow
regimes classified by the Knudsen numbers include the free molecular ( Kn >>1), the
transition ( Kn ~ 1), the slip (Kn ~ 0.1), and the continuum flow regime (Kn<<1).

The molecular mean free path of the gas medium is defined as

2
A = _Pi(z"_Tj

] p m
where u is the dynamic viscosity, p is the pressure, k is the Boltzmann's constant, T

is the temperature, and m is the mass of the medium. The slip boundary condition at



the surface of a body involves both the molecular mean free path and the slip

coefficient, ¢, which can be represented with accuracy within 1%, by (Loyalka, 1990)
2-« m'?
c, = T[(l - a)T + ag'(l)]
where « is the momentum accommodation coefficient, and (1), corresponding to
a =1, has a value between 0.9875 and 1.02, depending on the nature of the gaseous
intermolecular interaction. If (1) is replaced by V7 /2, the above equation becomes
Maxwell's relation (Maxwell, 1879). The slip becomes of greater significance as the
pressure decreases below atmospheric, particularly for the value of Kn ~ 0.1.

In this paper, we investigate calculations of local stresses and, hence, torques
on axi-symmetric bodies performing rotatory oscillation in an unbounded fluid medium
and in viscous flow with slip boundary condition. The geometnies of our interest are
sphere, oblate spheroid and prolate spheroid. The numerical technique is based on that
used by Tekasakul, et al. (1998).

In the next section, the problem is described. In Sec. 3, analytical solutions for
a sphere with constant slip on the surface are obtained from the technique employing the
solutions from the no-slip case. In Sec. 4, numerical procedure for this problem is
discussed and solution technique is outlined. In Sec. 5, numerical results and available
analytical results for local stresses and torques for a sphere, an oblate spheroid and a
prolate spheroid are presented. We discuss and conclude the present work in Sec. 6,

together with suggestions for possible future work.

2 Statement of the problem
We consider an axi-symmetric body with a characteristic length, a, oscillating

with frequency, w, about its axis of symmetry (defined as the z-direction) in an
unbounded gas with kinematic viscosity, v = u/p, slip coefficient, c_, and molecular

mean free path, A_, where u is the dynamic viscosity and p is the mass density of the
fluid (Fig. 1). The angular velocity of the oscillating body is given by Q cos(w t). The
Unsteady Stokes' equation for a time-dependent, dimensionless, ¢ -component velocity

obtained from Eq. (1) can be written as Tekasakul, et al. (1998)
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The slip boundary condition at the body surface is
i,(r,) = @, cos(1)+ (cm/lg )&(rs) (3)
while, far away from the body,
lim i2,(r}=0 (4)

r—ro

Here, the length, time, velocity, and pressure are nondimensionalized 1n terms of a,
0™, U=|Qa=Qa, and uU/a, respectively. For a sphere, the characteristic length,
a, is a radius whereas for prolate and oblate spheroids the equatorial radii are used.

The solution is assumed to be of the form:

u,(w,z,7) = exp(it) u,(@.z) . (5)

With the Jeffrey transformation (1915):

w(@,2,9) = u,(.2) cos(9)

and following the manipulation of Tekasakul, et al. (1998), we can wrnte the form:

g2 1 3 1
V2w=(awl +Eam—w_, +822Ju¢ cos(¢) (6)

which leads to the Helmholtz equation:

(V2 +k*)w=0 (7)

The slip boundary condition at the surface of such a body the becomes

w(r,) = [m, + (cm/lg)o(rs )]cos(gb,) (8)

and the limiting condition of the fluid far away from the body is

lim w(r)=90 (9)

r—e

Here A* =wa?/v is the dimensionless frequency parameter and k% = —iA? is the

dimensionless complex-valued frequency parameter. The dimensionless, time-

independent local stress is defined as



i
o(g):m—(—ﬂ (10)
while the dimensionless, time-independent torque on the body can be evaluated from

T=2n|w o(¢)ds (11)

Here, ¢ is a coordinate specifying a point on the meridian contour of the body for
which -1<{<1. Note that the dimensionless, time-independent torque has been

nondimesionalized by Q @’ and the transient term exp(it) has been dropped.

3 Analytical solutions for constant slip

The solution of an oscillating sphere in an infinite fluid medium with slip can be
obtained from the solution of the oscillation sphere with no-slip. We consider two

separate problems, one with no-slip and the other with non-zero constant shp,

simultaneously. For the no-slip case, Eqs. (7) to (9) with cm)ts = 0, can be written as

Luy, =0 (12)

The no-slip boundary condition at the surface of the sphere becomes

u, =sinf (13)

-]

where @ is the polar angle and far away from the sphere:
limu, =0 (14)

r—ye

For the constant-slip, the problem can be written as

Lu, =0 (15)
The slip boundary condition at the surface of the sphere is
u,, =sin@+c,sin@=(1+c,)sin6 (16)

and the limiting condition of the fluid far away from the sphere is
u,, =0 (17)

where ¢, and ¢, are constants, subscripts 1 and 2 represent the no-slip and constant
slip cases, respectively, and the operator L is

a2 1 2 1 J°
L=+ 2 _ 2
[3ml+waw m2+8z2]+k




Substituting u,, = (1 +c,)u,, into Egs (15) to (17), the slip problem becomes the no-

slip problem. Therefore the relation

Uy, :(1+C2)M¢l (18)

is the solution for the slip problem.

From Eq. (8) for the slip case, the constant, c¢,, can be written as
(c A ) (c A ) 3 u,.
* sin® °  sin@ on\ @ (19)
Now in Eq. (18), dividing by @ and differentiating with respect to the normal direction

and multiplying by @, we get

a (U, a u,,,.]
—| 2 =(l+c,)o—| = 20
wc?n[ w} (1+e) c?n[ w (20)
that 1s,
¢, A
o, =[1+.—*’ onot 1)
sin &
And we get,
o, o (22)

— 1
1- 0, (cmﬂ.g)/sin 0
The above equation shows that the stress on the oscillating sphere for the constant-slip

case { 0,) can be determined from the knowledge of the stress for the no-slip case ( 5,)

Since the local stress for the no-slip case is (Lamb, 1932; and Tekasakul, et al.,

1998)

k? .
O rerostip = O1 = —{3 - s ik]sm ) (23)

The local stress for the slip case becomes

-[3— k- ]sin@
1+ik
l+(c. A )| 3—

(C"‘ ‘){ 1+ik]

Torque on the sphere can then be evaluated straightforwardly from

stip — T2 =




T = 2n£_w30ds

2
n —[ - k_ }sin@
= 27[sin* @ Itk 40
1*(%/13)[3_ K }
1+ ik
8 3_lﬁik
=-—=7 (25)

k2
1+(cm13)[3_1+ik}

These simple forms of relationship do not appear to hold in general for
spheroids, for which even the no-slip case leads to complicated eigenfunction

expansions. We have thus not reported such results here.

4 Numerical solutions

The numerical method used in the present work is based on the Green's
function approach (Tekasakul, et al., 1998; Tekasakul, et al., 1999). The Green's
function for this problem is defined by

(V? + &%) y(rr) =47 5(r-r') (26)

such that

exp(— — ) 27)

w(r.r’)=

Following the procedure of Tekasakul, et al. (1998) [see their Eqs. (23)-(26)],

and applying the slip boundary condition, the problem becomes

catg)o(r)) | 3 )
—I[ {cos(cb)a( r)+ [( - } o7 LT cos(0 )J}

(et )o(e:)]cos(s) M] ar’
= 27?[&! + a(r )]cos(¢)

+I[W(l‘,,l‘:)aa [m’cos(tp )] @, cos(¢’ )—M}dr; (28)

Using Green's second identity and



Via cos(¢/)=0 (29)

Equation (28) becomes

.| (ede)o(r) | o ,
_J'[ {cos o )a(rs)+[ o }&1: [chos(ﬁb )]}

_[(Cm)-g )cr(rj )]cos(qb’) awg;;’ - )] dr!

= Zﬂ[(cmﬂ.g)o(rs )]cos(q)) — kZJ. w(r,.r) @] cos(¢’) dr; (30)

or,

—f{ )eos( )G(C’){l+(T.J)?DJHJ dgiag

+j{[ )cos( o,(g)]%‘ns")}mwc

= 27r(c A )G(r,)cos(qb)-kzj w(r,.r) @ cos(¢!) J/d¢’d (31

m g

since dr, =Jd{d¢.

We define,

(cuty) 0wy

felemmoe w, Jn]

A
cos(¢)

H — J: [J‘ aW(ar:” r;)cos(¢;)d ¢I]

cos @, n,

[[ w(r..x)cos(07)d o]

and

Y=

Uurr r,)@, cos(¢’)d ¢’ dC]

cos ¢

Therefore Eq. (31) can be written as

JLE.¢)Ya(8)d g = —k*¥(8,87) + 27(c, A, )o() (32)
where |

L(8,8") =~F($)K(G. &)+ (cnh, JH(L.7)



Equation (32) 1s a Fredholm integral equation of the second kind. Applying the
singularity subtraction technique (Loyalka and Griffin, 1993; Loyalka and Griffin,

1994; Tekasakul, et al., 1998; Tekasakul, et al., 1999), the above equation becomes

8($)o(Q)+ [ L&) o(&) - o(O))a L = -k () + 2(c, A, ) o (&)

or

[8(0) - 27(c,4,)|o(&) + [ L(&. &) [o(¢) ~ o(¢)]d g = -k W(8.L)  (33)

where,

2(¢) = [L(¢.¢)d¢ (34)

The integrals in Eq. (33) are converted to summations by the use of Gaussian

quadratures. Together with collocation at the nodal points of the quadrature, Eq. (33)

then reduces to a system of linear algebraic equations. The stress, 0'( C) is determined
at the nodal points of the quadrature. The total torque can then be determined from the

stresses using Egs. (10) and (11).

4.1 Determination of f

Sphere

For the case of a sphere, we can write

z=rcos@
w=rsin0
and
19w, 19e| _
w, on, @, Or|,.,
then
f=1+(c,A,) (35)
Spheroids

For spheroids with the geometries shown in Fig. 2, we have

z=cA{

w= c[(l +A)(1- Cz)]w

10



ol A7 -1 Prolate spheroid
1- A~ Oblate spheroid

A, = at surface
1[ 1+ A2 ]"3
hg = 1 2
cl &+ A°

lam 1,am—

J\
@, on, @, "°IA|,

X

and,

Hence;
(C"’)'-f) "{'U
c [(1 +2Lf))(§3 +/13)]U2

f=1+

4.2 Determination of K

From Tekasakul, et al. (1998), the expression of K can be wnitten as

K(.0)= oy T wlrr) cos(e) @0
= K, (¢.¢)+ K.(8.¢)
where,
K, (5.0)= C‘”(‘”l dg’ = J%Ql,z( )
and

cxp —i k|, - |)-—1

K, (£.¢) = cos(¢) _[ cos(¢’) d¢’

J 2ncxp( ik[2 @, o (v -cos(p— ¢’ )|]”2)
cos(¢) [2 w, @(y —cos(¢ — ¢’ ))]”2

r: r:I

cos(¢’) do’

(36)

(37)

(38)

(39)

Here, Q,,(y) is an Associated Legendre function of fractional order with the argument

B
2w, o)

L 1

y=1+

in which

11



4.3 Determination of H

The expression of H can be written as

— J: allf(rs’r;) ’ ’
= cos(¢) ['[ on’ cos(¢;)d ¢’}

Since,

Therefore,

where t =|r_—r]|.

dw(r,ry) _ (1+ikr)exp(-ikt) i[l)
on! "

= (1+ikt)exp(—ik?) [_ (ri-r,) ?;umard}

For general spheroids (including sphere)

HE8) =~y [0k exaloikr) [z, (1 - cos(o- )] ™

|:[Z; - Z:] [f.l—z—z:d]IT A+ w: — W, COS(Q) — ¢’):{ COS(¢’)Jd d)’ (40)
—Z

5

4.4 Determination of ¥

From Tekasakul, et al. (1998), we have

exp(-i k|r' - |)

¥(&) cos(¢)=—1—f(tﬂ, cos(9)) - I @ cos(¢’)dr’  (41)

inside
body

r'—r,

Sphere

et L1111t (-1

i 3\ exp(—i2k),., . .
+ z(1+F]—T(3t—6k—51k:!+2k3)} (42)

12



Prolate spheroid (see Happel and Brenner, 1965)

W({)cos(9) =
3 £ r Im
_%[mscos(qb)]—gz— _l‘dé’_[dn’ {w’

exp(_i k|2, @, (v~ cos(¢ - ‘?’))]”2)

* [2{35 mj(y-cos(q&—q)’))]m

x @’ cos(¢”) [cosh(Zé') —cos(2 TI)] sinh(&”) sin( ")

Oblate spheroid (see Happel and Brenner, 1965)

¥({)cos(o) =
s & ,, 2n
—4—2[05 cos(c;b)]-— J‘d?,’"[dﬂl J‘dﬁb'

x @’ cos(¢’) [cosh(2£”) + cos(2n’)] cosh(&”) sin(n’)

S Local stresses and torques

(43)

(44)

Our main goal in this paper was to study the effect of the slip on the local stress

on the surface and torque exerted on an oscillating sphere and spheroids, and to assess

the accuracy of a numerical technique. We have benchmarked the accuracy of the

method against known solution for a sphere. The results of this benchmarking are

reported below and are followed by our results for the prolate and oblate spheroids.

Numerical results for the dimensionless time-independent torque (7)) are

presented as functions of the multiplication of slip coefficient and molecular mean free

path (c_A,) for the dimensionless frequency parameter (A?) between 0.01 to 100.0.

Since k* = —iA?, only the positive root of k is used, i.e.:

13



k=+(1-DA/N2 . (45)

The time-independent torque is obtained by dropping the term, exp(it). The

real part of torque is a component that varies in phase with body motion while the
imaginary part is the out-of-phase component and then does not contribute to energy

dissipation (Zhang and Stone, 1998).

5.1 Sphere

Since the analytical solution for an oscillating sphere with slip can be obtained
from the no-slip solution, we first benchmark the accuracy of the numerical method
against the analytical solutions for a sphere for values of cm/'Lg ranging from 0.001 to
0.1 and values of A’ ranging from 0.01 to 100.0. In these calculations, 20 potint
Gaussian quadratures were used for A° <10.0 and 30 point quadratures were used for
A? =100.0. Both the torques and the local stresses on the sphere are calculated and
compared to the corresponding analytical values.

Numerical results for the real and imaginary parts of the torque on a sphere are
given in Figs. 3(a) and 3(b), respectively. Analytical values for this sphere that have
been determined from Eq. (25) are also included for comparison. In general the
agreement is very good. The numerical results differ from the analytical values by a
maximum of 4 %. In this section, values of A’ is displayed instead of &’ since &’ is
complex. Values of torques increase as the values of A’ increase as expected
(Tekasakul, et al., 1998). As seen in Figs. 3(a) and 3(b), the values of torques
decrease as the slip term ¢, A, becomes greater. The decrease of the real part of torque
ranges from 23% for A> =0.01 to 41% for A* =100.0, while, for the imaginary part,
the decrease ranges from 41% for 4> = 0.01 to 76% for A’ =100.0. It is obvious that
the effect of slip is significant for the range considered (0.001 < ¢, A, £0.1) and
becomes greater for an oscillation with higher frequency. Numerical results for the real
and imaginary parts of the local stress on a sphere for which A* =1.0 have been
obtained via our numerical technique and are compared with values calculated from Eq.

(24) in Figs. 3(c) and 3(d), respectively. The agreement is generally very good with

14



errors less than 1% over the entire range of { except for ¢, A, = 0.1 where the error

increases to about 5%.

The good agreement between the numerical and analytical values for the case of
a sphere demonstrates that the order of quadrature used are appropriate. The errors are
quite small for small values of A° and increase noticeably only for the largest values of
A%. The errors at large values of A° are due to the relative thinness of the oscillatory

viscous boundary layer which requires a higher number of Gaussian quadrature points

for accurate modeling.

5.2 Prolate Spheroid

Twenty-point Gaussian quadratures were also used in these calculations.
Numerical results for the real and imaginary parts of the torque on a typical prolate
spheroid with A = 0.5 are given in Figs. 4(a) and 4(b), respectively. Tekasakul, et al.
(1998) showed that for the prolate spheroid with the same aspect ratio, value of the
torque increases as the value of A° increases. As shown in Figs. 4(a) and 4(b), the
value of torque decreases as the slip term ¢, A, becomes greater, as in the case of the
sphere. The decrease of the real part of torque ranges from 16% for A* = 0.01 to 31%
for A*> =100.0, while, for the imaginary part, the decrease ranges from 35% for
A’ =0.01 to 72% for A* =100.0. The effect of slip for a prolate spheroid is similar to
the case of a sphere in the previous section for the range considered
(0,001 cm/lE <0.1). Numerical results for the real and imaginary parts of the local
stress on the same prolate spheroid for which A* =1.0 are also shown in Figs. 4(c) and
4(d), respectively. The results are similar to those of a sphere as one should reasonably

expect.

5.3 Oblate Spheroid

We used 20-point Gaussian quadratures in the calculation for an oblate spheroid
also. Numerical results for the real and imaginary parts of the torque on a typical oblate
spheroid with A =2.0 are given in Figs. 5(a) and 5(b), respectively. As also shown

by Tekasakul, et al. (1998), value of the torque increases as the value of A° increases.

15



The value of torque for the oblate spheroid decreases as the slip term ¢, A, becomes

greater, as in the case of the sphere and the prolate spheroid considered previously.
The decrease of the real part of torque ranges from 29% for A> =0.01 to 44% for
A? =100.0, while, for the imaginary part, the decrease ranges from 51% for A* = 0.01
to 76% for A> =100.0. The effect of slip for an oblate spheroid is also similar to the
case of a sphere and a prolate spheroid in the previous section for the range considered
(0.001 =< cmzlg <0.1). Numerical results for the real and imaginary parts of the local
stress on the same oblate spheroid for which A* = 1.0 are shown in Figs. 5(c) and 5(d),

respectively. The results are similar to those of a sphere and a prolate spheroid.

6 Discussions and conclusion
We have shown that the numerical technique used in the calculations of torques
and local stresses on axi-symmetric bodies undergoing slow rotatory oscillations about
their axes of symmetry in unbounded viscous fluids with slip is accurale by
benchmarking against exact solution for a sphere. The numerical results for spheres
agree well (maximum error less than 4%) with the corresponding analytical values as
shown in Figs. 3(a)-3(d). The accuracy of the calculations can be improved for high
oscillating frequency ( A*) by increasing number of Gaussian quadrature points. In the
present work, we have used 20-point quadrature throughout for the values of A? as
high as 100.0 except for the case of a sphere where the 30-point quadrature was used
for the case of A* =100.0. In the range of slip we have studied (0.001< ¢4, <0.1),
_it is apparent that the increase of slip always lowers the values of torques and the effect
is greater for higher value of A>. The reduction of torque due to the presence of slip at
the body surface therefore shortens the period of oscillation of the bodies. The effect of
slip for a typical prolate spheroid (A =0.5) and a typical oblate spheroid (A =2.0)
were found to follow the same trend as in the case of a sphere.
This work is a continuing effort in the investigation for the complete solutions
for the problem of axi-symmetric bodies undergoing oscillation used previously in
calculations of the torque on axi-symmetric bodies undergoing oscillation in an

unbounded fluid without slip on the surface of the bodies (Tekasakul, et al., 1998).
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One of the most notable applications of rotatory oscillation of an axi-symmetric body,
as stated earlier, is the oscillating disk viscometer. We are planning to extend the work
of this paper to viscometer in the near future, and this should facilitate the extraction of
the velocity slip and tangential momentum accommodation coefficients also from the
data in the same manner as has been accomplished by the use of spinning rotor gauge

(Loyalka, 1996; Tekasakul, et al., 1996).
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igure CAPTIONS

:"lgure 1. The coordinate system used in the present work for a general axi-symmetric body
sscillating in an unbounded fluid with slip.

)

fFigurc 2. The spheroidal geometries that are considered in this work. (a) Prolate spheroidal

coordinates. (b) Oblate spheroidal coordinates. In both cases, the aspect ratiois A = a¢/b.

|
Figure 3. A comparison of the numerically determined torques and local stresses on a sphere with

'the corresponding values determined analytically. Symbols indicate numerical results while

' vartous lines indicate corresponding analytical results. (a) The real parts of the torques for

A =0.01 to 100.0. (b) The imaginary parts of the torques for A*> = 0.01 to 100.0. (c) The real
parts of the local stresses for A> =1.0 and ¢4, =0.001,0.01, and O.1. (d) The imaginary parts

. of the local stresses for A*> =1.0 and ¢, A, =0.001,0.01, and 0.1. The number of Gaussian

quadrature points used in the numerical calculations was 20. Due to symmetry, only the stress

values for the upper haif of each body have been shown. Here, { is the coordinate that specifies

' points on the meridian contours of the bodies, and A’ = wa?®/v is the dimensionless frequency

parameter.

Figure 4. Numerical results for torques and local stresses on a prolate spheroid with A =0.5. (a)
The real parts of the torques for 4> = 0.01 to 100.0. (b) The imaginary parts of the torques for

A? =0.01 to 100.0. (c) The real parts of the local stresses for A?=1.0 and
c.A, =0.001,0.01,and 0.1. (d) The imaginary parts of the local stresses for A = 1.0 and

c,A, =0.001,0.01, and 0.1. The number of Gaussian quadrature points used in the numerical

calculations was 20.

Figure 5. Numerical results for torques and local stresses on an oblate spheroid with A = 2.0.
(a) The real parts of the torques for A* =0.01 to 100.0. (b) The imaginary parts of the torques
for A =0.01 to 100.0. (c) The real parts of the local stresses for A% = 1.0 and



-‘../1‘ =0.001, 0.01, and 0.1. (d) The imaginary parts of the local stresses for A* = 1.0 and
Cathg = 0.001, 0.01, and 0.1. The number of Gaussian quadrature points used in the numerical

salculations was 20.
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Abstract -- Rotatory oscillations of cylindrical bodies in axi-symmetric viscous flows
with slip are studied numerically using a technique based on the Green's function. This
technique reduces the unsteady Stokes equation into a Helmholtz equation which is then
converted to the Fredholm integral equation of the second kind. Gaussian quadratures
were used to calculate local stresses at the nodal points and the torque on the body is
then determined. Results have shown that no analytical or approximate solutions are
sufficiently accurate to predict the torque and this can then result in erroneous evaluation
of viscosity of a fluid using typical oscillating disk viscometer. Numerical results from
this work should then lead to accurate prediction of viscosity if used with data obtained

experimentally by an oscillating disk viscometer.

I. Introduction

The problems of rotatory oscillations of axi-symmetric bodies has been
extensively studied. In the previous work (Tekasakul and Loyalka, 2000), oscillations
of spheroidal bodies with the presence of slip on the body surfaces was studied. The
results show influence of slip to the torques exerted on the bodies. This indicates that
the viscosity of a fluid has been affected by the presence of the slip. In this paper,
extension to such oscillations on cylindrical bodies will be investigated. The cylindrical
disk has been widely used in the oscillating disk viscometer due to geometric simplicity.

The problem for the slow oscillation with small amplitude involves the solutions

to the unsteady Stokes equations (Tekasakul, et al., 1998; and Zhang and Stone, 1998),
).z-a—u—=—Vp+V’u . (D)
ot

where A* = wa?’/v is the dimensionless frequency parameter. Here, a is the

characteristic length of the body and @ is the frequency of oscillation.
After mathematical manipulations, the time-dependent, dimensionless, ¢-
component velocity obtained from Eq. (1) reduces to the Helmholtz equation

(Tekasakul, et al.,1998):
(V2 +k*)w=0 (2)



with the slip boundary condition at the surface,

w(r,) = [ta, + (cmlg)o(r‘ )]cos(gﬁ,) (3)

and the limiting condition of the fluid far away from the body,

lim w(r)=0 (4)

F— o
Here, A’ =wa’/v is the dimensionless frequency parameter, k&’ = —iA® is the

dimensionless complex-valued frequency parameter, and w(@,z,¢) = u,{@,z) cos(¢).

The dimensionless, time-independent local stress is defined as

()= 5 %] ®

@
while the dimensionless, time-independent torque on the body can be evaluated from
T=27r_[w1 o({)ds (6)
Here, { is a coordinate specifying a point on the meridian contour of the body for

which ~1<{ <1. Note that the dimensionless, time-independent torque has been

nondimesionalized by Q u a’ and the transient term exp(it) has been dropped.

II. Analytical Expressions
Shah (1971) derived expressions for several body shapes including infinite
cylindrical disk and infinitely long cylinder in terms of D{s) where s is the Laplace

operator. The definition of D(s) is given as
&’ oQ
D(S)=—stI.[§2_§,1_dS Q)

where & = (w/a.)0 )uz is the boundary layer thickness, I is the moment of inertia of the
body, £ is the dimensionless radial coordinate (r/&), € is the dimensionless angular
velocity, and § is the body surface area. By replacing s with —k?, and using the
definition of (Kestin and Wang, 1957),

5
m=7zp;8 5;

expression for torque can be obtained from



T

mk?

T =D(-k*)

(8)

Note that in this paper, every length dimension is nondimensionalized by the body
radius instead of boundary layer thickness as used by Shah (1971).
1. Infinite Cylindrical Disk

Shah (1971) obtained an expression for an infinitely large cylindrical disk

oscillating with slip in an infinite fluid as

m53/2

T+ (oA, )

D(s)=

By using Eq. (9), we have an expression for torque which is applicable at high
frequency:

7(tk)

+(cnky J(iK) ®

Another approximation given by MacWood (1938) for an infinite disk with

corrections for extertor fluid to the disk and edge friction is

S p+(cmlg):(4ik/A)(cm/18)p (10)
l+(cmﬂ.s) p2+2(cm).8)p

where p=2+ik and A is the aspect ratio (radius/half-thickness) of the disk.

2. Infinitely Long Cylinder
The expression for an infinitely long cylinder was also obtained by Shah (1971)

Ky(&s") }

4
D(‘)=Z"“”[K,(aosm+(cmag)sz2(aosW)

which can be converted to the torque:

4 Ky (k) ,
T=—3m "){ K, () + (oo, )(ik)Kz(ik)} ab

Equations (9) to (11) will be used to benchmark our numerical results for

cylindrical bodies at both geometry extremes.



HI. Numerical Procedure
The numerical method used in the present work is based on the Green's
function approach (Tekasakul, et al., 1998; Tekasakul, et al., 1999; Tekasakul and

Loyalka, 2000). The Green's function for this problem is defined by

(V2+k2)w(r,r')=—47r S(r—r’) (12)
such that
expl—ik|r—r’
w(rr)= p(|r'_ |r ) (13)

Following the manipulation of Tekasakul and Loyalka (2000), the problem
leads to the Fredholm integral equation of the second kind that contains singularities.

Applying the singularity subtraction technique to the equation, it becomes

[8(¢) - 27(c,,)|o(6) + [ LG O)o(¢) - o(D]a g = —4¥(£.0) - (s
where,

2(¢)=[1(¢.¢)a¢ (15)

L(£.8) = —f($)K(L. &) +(car, JH(S.C) | (16)

The integrals in Eq. (14) are thus converted to summations by the use of Gaussian
quadratures and Eq. (33) is then reduced to a system of linear algebraic equations by
applying collocation at the nodal points of the quadrature. The local stress, o({), is
determined at each nodal point and the torque is finally determined from Eq. (6).

There are several components in above equations that require simplification for
different geometrical bodies.

The parameter f in Eq. (16), for a cylinder, can be determined from

(ca?,) o

o on (7

f=1+

Surface of a cylinder can be divided into three separate surfaces; bottom, side and top
surfaces. The parameter f for all three cylinder surfaces are then



1 top surface

f=ql+c,A, sidesurface (18)

1 bottom surface

The expression of K in Eq. (16) was obtained by Tekasakul, et al. (1998):

K(£.¢)= o Iw(r,,r)cos(¢)d¢'
- KL(C,C)+KH(C,§) (19)
where,
, cos((b) 20
K,(6.¢) = COS(¢)I = To 57 Q) (20)
and

X -1
KH(C’C’)— COS ¢) J‘e P r — |r:) COS(¢’) d¢’

5

7 2nexp(—1 k [2 w, @, (y —cos(¢p— ¢ ))]UZJ

7 )de’ (21)
cos(¢) o [25:, (Y —cos(¢p— ¢ ))] : cos(¢") do

Here, Q,,(7) is an Associated Legendre function of fractional order with the argument

B
=1+
T e, @

in which
B=(w -@,) +(z.-2)

The expression of H in Eq. (16) can be written as

. J_: aw(rs ? l';) ’ r
= 2os(?) [ | o cos(¢;)d ¢,J (22)

Since,

)= exp(-ikt)

W(r.r ’ r.r !

where ¢ =|r, —r/|. Therefore,



% (1+ikt)exp(-ikt) [J

3

= (1+ikt)exp(—ikt)| -

oumadJ (23)

For a cylinder,

w,

"= cos(qb)

[J.(l +ikt)exp(—i [ J cos(¢’)d qb’} (25)

in which

J m _ (o) 0

3
an’\ t r -r

5 L)

_ (z-z) 5z ;  bottom surface
[2@,0" (v — cos(p - ¢))]
@, — @, cos(¢p — ¢’)
[2 o, (y(— cos(;& —~ ¢))]
.[2 w,w’ (y —cos(¢ - ﬂﬁ'))]y2 ;

(24)

77 side surface

top surface

For a cylinder, an expression for ¥ in Eq. (14) can be calculated from

¥(&) cos(¢)

—iklr -
= _1_,2! (@, cos(9)) - in!dc exp{ :, — ;, r.)) @’ cos(¢’) dr’
= —1—? [@, cos(¢)]
(AR)" 2x 1 exp(—i k [ZﬁJ‘, m;(y —cos(¢ - ¢'))]”2)
dz |d¢’ |[do — o’? cos(¢’) (26)
—(A.[)"z { ‘[ [2w, @ (v —cos(¢ - ¢))] (#)

VI. Torques on cylinders

Torque on a cylinder is of great importance in operation of an oscillating disk
viscometer since it can be used to predict the viscosity of the fluid surrounding the disk
under periodic oscillation. Accuracy of viscosity measurement lies heavily on the

evaluation of the torque. The thin disk is generally used in the oscillating disk



viscometer but torque on the disk were typically approximated and some accuracy was
sacrificed. No exact analytical solution for an oscillating disk is obtained for a wide-
range frequency. Some expressions were derived but with limitation of applications in
an extreme frequency and geometries (MacWood, 1938 and Shah, 1971). We thus
have used the outlined numerical scheme to calculate exact values of the torques on
several cylinders with different aspect ratio, ranging from a thin disk with large aspect
ratio to a long cylinder that has a small aspect ratio. In this work, the presence of slip,
where the velocity of the fluid adjacent to the surface of the body does not match the
velocity of the body itself, has been included.

Results for a reasonably thin disk (A = 200) are shown in Figs. (1) to (3).
Numerical results for a thin oblate spheroid with identical aspect ratio and approximate
results from MacWood (1938) and Shah (1971) are also shown for comparison.
Agreement between the real parts of torque for a disk using the number of Gaussian
quadrature, N  Nyse ' Noiom = 25:2:25 and an oblate spheroid using the number of
Gaussian quadrature, N = 30 is reasonably well with maximum deviation of about 5%
as expected. This was previously confirmed by Tekasakul et al. (1998) for the no-slip
case as the solution for a thin disk can be reasonably approximated by the oblate
spheroid of the same aspect ratio. The imaginary parts of the torque [Figs. 1(b) - 3(b)]
are the out-of-phase component and play no significant role but the results are also
shown for comparison and completeness purpose. The values obtained from
MacWood's expression agree quite well with the disk results for high frequency limit
(A? =1000.0) with error less than 10% as show in Fig. 1a. The high-frequency
approximation results obtained from Shah's expression also agree well (10%) with the
numerical results at this limit. Both expressions are, however, give poor results at
lower frequencies with error as high as 100% [Figs. 2(a) and 3(a)]. The MacWood's
expression yields better results but still not sufficiently good. It has been shown that no
analytical expression is good for entire range ;)f osc;llaﬁon frequency. To predict a
good value of viscosity by using an oscillating disk viscometer then requires a

numerical calculation of the torque exerted on the disk by a fluid. The presence of slip



has lowered the value of the torque and the influence of the slip is increasingly so at a

higher oscillation frequency.

Numerical results for a long cylinder (A=0.02) using

Ny Noae : Nyonom = 2:30:2 are shown in Fig. 4 along with values obtained analytically

side
from Shah's expression for A> =107, 0.1. The values of A> =0.1 is considered high
frequency since the nondimensionalized length is the radius of the cylinder which is
considerably low for a long cylinder compared with the thin disk of comparable size.
The agreement is very good (1%) for the real parts of the torque as shown in Fig. 4(a)
while the error for imaginary parts is as high as 50%.

Numerical values of the torques on typical finite cylinders are shown in Fig. 5
for A=2.0 and in Fig. 6 for A=10.0. In both case, the number of Gaussian

quadrature used is N, ;i Ny i Nyuom = 25:15:25. The influence of slip is the same as in

the previous cases of a thin disk and a long cylinder and also the spheroids (Tekasakul
and Loyalka, 2000). For the case of a cylinder with A =2.0, when the slip (c,A,)
increases from 0.0 (no slip) to 0.1 the torque (real part) decreases about 23% for
A? = 0.01 and about 40% for A*> =100.0. The decreases for a cylinder with A =10.0
are about 28% and 32%, respectively.

Unfortunately, there is no experimental data for an oscillating disk viscometer
that can be used for comparison purpose. It has been known that the viscosity is
weakly dependent on the pressure. For the case where slip is significant, the pressure
must be reasonably low and, from our results, we have shown that the slip has

influenced the torque which, in turn, affects the value of the viscosity.

V. Conclusion

Accurate values for torques on various cylindrical bodies were obtained
numerically using the Green's function technique to reduce the dimensionality of the
problem. Existing analytical expressions are reasonably good only in some cases but
are largely erroneous. Both MacWood's and Shah's expressions for a thin disk are
applicable only at high frequency (A = 1000.0) below that the errors are quite large.
The results of a flat oblate spheroid agree well with those of the thin disk with identical



aspect ratio, as expected. Shah's expression for a long cylinder, however, yields a fair
agreement with numerical results. Numerical results for all cylinders show similar
influence of the slip to the torque. That is the torque is reduced by the presence of slip
and its influence is larger at a higher frequency. The results for torques on cylindrical
bodies can be used together with oscillating disk viscometers to predict more accurate
values of viscosity of fluids in the slip flow regime.

This work has completed the problem of axi-symmetric bodies undergoing slow
rotatory oscillations about their axes of symmetry in unbounded viscous fluids with
slip. Tekasakul, et al. (1998) investigated the problem of axi-symmetric bodies in
continuum flow regime while the recent work (Tekasakul, 2000) was to study the
problem of spheroidal bodies in slip flow regime. The future work involves the
problem in bounded environment, for instance, a sphere oscillating inside a sphere, a
spheroid oscillating inside a spheroid, and a cylinder oscillating inside a cylinder, with
the outside bodies are generally stationary. The setup of cylinder and cylinder is also

used in an oscillating disk viscometer as well as the cylindrical disk in an infinite fluid.
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FIGURE CAPTIONS

" Figure 1. A comparison of numerically calculated torques on a thin cylindrical disk and a flat

oblate spheroid both with A =200 for A’ =1000.0 with the corresponding values determined
from Eqgs. (9) and (10). (a) The real parts. (b) The imaginary parts. The number of Gaussian

. quadrature points used in each numerical calculation was 52 (N,,,: Ny ' Vyoom = 25:2:25) for

| the thin cylindrical disk and 30 for the oblate spheroid. Here, N, N, ,and N, represent

W == = ey o=

the number of Gaussian quadrature points on the top, side, and bottom surfaces of the

cylindrical disk, respectively. Here, A’ = wa’/v is the dimensionless frequency parameter.

Figure 2. A comparison of numerically calculated torques on a thin cylindrical disk and a flat
oblate spheroid both with A =200 for A? =10.0 with the corresponding values determined
from Eqs. (9) and (10). (a) The real parts. (b) The imaginary parts. The number of Gaussian
quadrature points used in each numerical calculation was 52 (N, N, ' Nyyo, = 25:2:25) for

the thin cylindrical disk and 30 for the oblate spheroid.

Figure 3. A compaﬁson of numerically calculated torques on a thin cylindrical disk and a flat
oblate spheroid both with A = 200 for A> = 0.1 with the corresponding values determined from
Egs. (9) and (10). (a) The real parts. (b) The imaginary parts. The number of Gaussian
quadrature points used in each numerical calculation was 52 (NN i N o = 25:2:25) for

the thin cylindrical disk and 30 for the oblate spheroid.

Figure 4. A comparison of numerically calculated torques on a thin cylindrical disk with
A=0.02 for A> =107° and 0.1 with the corresponding values determined from Eq. (11). (a)

The real parts. (b) The imaginary parts. The number of Gaussian quadrature points used in
each numerical calculation was 34 (N,: N Mo = 2:30:2).

Figure 5. Numerical results for torques on a typical finite cylinder with A =2.0. (a) The real

parts. (b) The imaginary parts. The number of Gaussian quadrature points used in each
numerical calculation was 65 ( N,,,: Nyt Vo = 25:15:25).



Figure 6. Numerical results for torques on a typical finite cylinder with A =10.0. (a) The real

Lparts. (b) The imaginary parts. The number of Gaussian quadrature points used in each
numerical calculation was 65 (N, Ny  Nypor = 25:15:25).
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Appendix D

Results: Rotatory Oscillations of Axi-Symmetric Bodies in
A Bounded Axi-Symmetric Viscous Flow with Slip: Numerical Solutions

for Sphere and Spheroids



Rotatory Oscillations of Axi-symmetric Bodies in a Bounded Axi-symmetric

bl
)

Viscous Flow with Slip: Numerical Solutions

Numerical Procedure: Two Bodies with Slip

From numerical procedure in Appendix A, the problem for two bodies can be fully

' written out in the following manner.

and

where

and

Here,

[2(6) - 27(c,2,), Jou () + [ L (6. 6D [0 &) - au(g)]a &

(1)
+[La(80 ) 0u( &) a5 = k(L)
[822 Cz 27[ ]Gz +J‘[Q2(Cz,c::)[o'z(§2’)_Gz(gz)]dg 2
+J.L21 CZ'gl a:(é’l)dgl’:
2n(¢) = [ Li(&.80)d g (3a)
82(8) = [ Ln(2 85)d & (3b)
L,($. &) = ~fu(EDKW (50 &) + (caty ) H(SE) (4a)
L‘lz(gl!g;)=—'f2(§2 12 ‘:1 gz (C Ag)zH (:: Cz (4b)
L, (Cz Cl)_ -fi gl 21 Cz C: +(cm'13)|H(¢2 gz (4c)
qu(Cz-Cé) fz(;‘z)K Cz Cz (C A’g)zH . 83) (4d)
A
fi =l+(c"'m:)i ‘;:?Ei ' (5)
il



7 a , ’
= J, D llf(r, r,)cos(gb:)d(p:} 7

B cos(¢) on’
and
\ 1 , N 7oA wr g
l{l—cos(q))“ w(r,.r))a; cos(¢))J;d ¢;d {'] (8)

'| The integrals in Eqs. (1) and (2) are thus converted to summations by the use of Gaussian
; quadratures and Eqgs. (1) and (2) are then reduced to systems of linear algebraic equations by

: applying collocation at the nodal points of the quadrature. The integrals in Eqgs. (3a) and (3b)

| are determined in the Cauchy principal value sense. The local stresses, 0,(¢) and ,(&), are
determined at each nodal point and the torques on the inner and outer bodies are finally

determined, respectively, from

T,=-27[a} 6,(5)ds (5)

T,=-27 [@} 0,(¢)ds (6)

1. Determination of f

The radius ratio is defined as the ratio of the (equatorial) radius of the outer body to that

of the inner body,

a=% (9)
a,
a) Sphere
fi=1+(c,2,), (10a)
fr=1-(c,A,). e (11b)
b) Spheroids
z=cA{

@ = c[(l +A3)1-¢* )]W

1-A7 Oblate spheroid
cl = (12a)

A7 -1 Prolate spheroid

8]



2 az(l - A:r_z) Oblate spheroid
oo az(A{z - 1) Prolate spheroid
2 (A12 - 1)_1/2 Oblate spheroid
B (1- Af)_v2 Prolate spheroid
1 (A7 - 1)_1/2 Oblate spheroid
" (1 -4 )_Uz Prolate spheroid
: Therefore,
(Cm/ls) A
fi=1+ ! ol =
! I G [(I + lol)(g .)]U2
and
| P ) Ao
| 2

| N (RN (=R

| 2. Determination of K (From Tekasakul, er al., 1998)

K(£.¢)= cos(¢) _[ul r}) cos(¢’) do’

= K,(£.¢)+ K, (.¢)
where,
__J. cos(¢) 2J;
K. (6.4)= cos( ¢)'[ r,—r] ¢’ = \/T Q,2(7)
and

y exp zk|r [)
KH(Q'C) COS(¢)I l', r:l

. pesltleo mly-ento- o))

! cos(¢’) d¢’

= cos(¢) o '[2&75 lD’; y - cos(¢ o ))]uz

(12b)

(13a)

(13b)

(14a)

(15b)

(16)

17

(18)
cos(¢’) d¢’



3. Determination of H (Tekasakul, er al., 1999))

- a) Sphere and spheroids
Yy — m:l rd
Hu(CvCl)" COS | A

—_

0

’

5

']

L&)

N

A e P { (1+ik sy exp(=ik ) [2@,0% (1 - cos(o— 02))] ™
[[z:z ~ 2] (wa )Z;""_ =k A, + @, — @, cos(9, - ¢;)] Cos(ﬂo:z)]d o
Ba(6end) = oy ﬂ(l viker) exp(=ik 1) [2m,,07 (v —cos(6, —97))]
[[z:. ,2][ o = 0 cos(9, ¢,)}cos(¢:l)}a¢:
Ha(6 &)=~ 1{(1+:kr)exp( ik ) [2@,,0% (v - cos(¢, - #))|

’
232

[[Z:2 - Z;z] [( A,

4. Determination of ¥

) -

]

From Tekasakul, er al., 1998., we have

¥(¢) cos(9) = -

(m cos(9)) -

f

body

exp(—i k|r" -

{(1+:kr exp akt [ZEI,IIDT(Y—COS(%_‘P{))]_M

|:[Z:1 —Zy [_FZ”,W A + &Ts’l -, COS(¢1 - ¢’1’)} COS(‘D:I)}d ¢|’
y — <&

7 A, + 0], — T, cos(@, — ¢;)J cos(¢;z)]d o;

)ta’cos(qb Ydr’

I~

r

1

(19)

(20)

(21)

(22)

(23)



(a) Sphere

W(£) cos() = 27T <o3(#) {—2+[1 +i] + exp(—i 2 k) (1 —éj

kZ
_ . (24)
+ i(1+%j —M(Bi—&k—&' k? +2k3)}
k k k
(b) Oblate spheroid
¥(£)cos(9) =
3 & 7 i
4% o] Jag far fas
k 2 % 0 0
cxp(—i k [2 o, O, (‘y —cos(¢ — ¢'):|]”2)
x 1/2
[2@, @ (v - cos(¢ - ¢)))] 25)
X &’ cos(¢”) [cosh(2§’) + cos(2 n’)] cosh(&’) sin(n")
(c) Prolate spheroid
¥(¢)eos(9) =
3 & n 2x
4 ’ ’ ’
—k—f [w, cos(¢)] —% _(I;dﬁ .‘[d n _{[dfb
cxp(—i k [2&7, o, (y —cos(¢ — ¢"))]”21
X 142
[2@, @ (v — cos(p — ¢"))] (26)

x @’ cos(¢’) [cosh(2&") - cos(27)] sinh(&”) sin(n’)

Analytical Solutions
Analytical solution for torque on an oscillating inner sphere while the outer sphere is

fixed was obtained by Shah (1971). He derived an expression of D(s) as

2 1 \
Ds) = gmﬁ [Pl 0, + M, N, }[N‘ K (8o's) = P 1y (865 27)



where

M, = Ky (&5 )+ (e, ) Vs Ky (£,35)
My 1 (E3)  (ea, ) 5 o (E045)
P, = =Ky (E35) + (6,4, ) V5 Kon(£,45)
0, = 1 (E05) (60 V5 1 5)

Here I and K are the modified Bessel function of the the first and the second kind,

respectively, &, =a,/6, and &, =a,/d. Equation can be transformed into torque by using the

following transformations:

s=—k"
50:1
& =a=a,/q

The torque on an inner sphere can then be determined from

T,= D(-#7)-75

(28)

8 . 1 , . .
= 3 7'((1 k)li PO+ M{N;’:I[Nl Ks/z(’k) - Pl’lm(zk)]

where
M=K, (ik)+ (cmlg)l(z'k)Ks L(ik)
N{ = Ly(ika)+(c,A,) (ik) L, (ika)
P =-K,,(ika)+ (cmlg)l(ik)Ksﬁ(z‘k @)

o = 3/2(”‘) - (Cm’lg),(ik) 15/2(”5)



| Results: Sphere

Since the analytical solution for an oscillating sphere in a bounded sphere with slip

boundary conditions can be obtained analytically (Shah, 1971), we first benchmark the

) accuracy of the numerical method against the analytical solutions for a sphere for values of

¢,A, ranging from 0.001 to 0.1 and values of A’ ranging from 0.01 to 100.0. In these

calculations, 20 point Gaussian quadratures were used for A’ <10.0 and 30 point quadratures
were used for A* =100.0.

Numerical results for the real and imaginary parts of the torque on an inner sphere are
given in Figs. 1(a) and 1(b), for & = a,/a, =2.0, and in Figs 2(a) and 2(b) for ¢ =10.0. In
the first case where a = 2.0, the spacing filled with fluid is of the same magnitude of the inner
sphere, while in the second case where o =10.0, the spacing i1s comparatively large.
Analytical values are also included for comparison. In general the agreement 1s very good with
error well below 1 %. Values of torques increase as the values of A° increase as expected

(Tekasakul, et al., 1998). The values of torques decrease as the slip term ¢, A, becomes

greater. It is obvious that the effect of slip is significant for the range considered
(0.001=<¢c,A, <0.1) and becomes greater for an oscillation with higher frequency. When
compared for the different values of ¢, the results show that for the low frequency (A*> = 0.01)
as the spacing is widened, the torques are slightly reduced. As the frequency increases, the
torques become almost identical. The case where & =10.0 can be considered as unbounded
with error well below 1 % when compared with the unbounded case previously obtained by
Tekasakul and Loyalka (Appendix B).

The good agreement between the numerical and analytical values for the case of a
sphere demonstrates accuracy of this method as it was proved in the case of the unbounded
fluid. The errors are very small for small values of A’ and increase slightly only for the largest
values of A*. The errors at large values of A’ are due to the relative thinness of the oscillatory
viscous boundary layer which requires a higher number of Gaussian quadrature points for

Y

accurate modeling.
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Figure 1(a) A comparison of the numerically determined torques on an inner sphere where

the radius ratio & = a, /a, = 2.0 with the corresponding values determined analytically.

Symbols indicate numerical results while various lines indicate corresponding analytical results:

The real parts of the torques for A’ = 0.01 to 100.0. The number of Gaussian quadrature

atiims used in the numerical calculations was 20 for A> =0.01 and A* =10.0, and 30 for
=100.0.
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Figure 1(b) A comparison of the numerically determined torques on an inner sphere where
the radius ratio o = a, /a, = 2.0 with the corresponding values determined analytically.
Symbols indicate numerical results while various lines indicate corresponding analytical results:

The imaginary parts of the torques for A> = 0.01 to 100.0. The number of Gaussian
quadrature points used in the numerical calculations was 20 for A*> =0.01 and A’ =10.0, and

30 for A* =100.0.
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Figure 2(a) A comparison of the numerically determined torques on an inner sphere where

the radius ratio o = a, /a, = 10.0 with the corresponding values determined analytically.
Symbols indicate numerical results while various lines indicate corresponding analytical results:

The real parts of the torques for A*> = 0.01 to 100.0. The number of Gaussian quadrature
points used in the numerical calculations was 20 for A* =0.01 and A* =10.0, and 30 for
A* =100.0.
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Figure 2(b) A comparison of the numerically determined torques on an inner sphere where
the radius ratio @ = a, /a, = 10.0 with the corresponding values determined analytically.
Symbols indicate numerical results while various lines indicate corresponding analytical results:

The imaginary parts of the torques for A’ = 0.01 to 100.0. The number of Gaussian
quadrature points used in the numerical calculations was 20 for A*> =0.01 and A =10.0, and
30 for A* =100.0.
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Results: Prolate Spheroid
Twenty-point Gaussian quadratures were used in the calculations for a prolate spheroid.
Numerical results for the real and imaginary parts of the torque on an inner prolate spheroid
. with A= 0.5 are given in Figs. 3(a) and 3(b) for @ =a,/a, = 2.0, and in Figs 4(a) and 4(b)
for & =10.0. Results show identical effects of slip and oscillation frequency for the prolate

| spheroid as in the case of a sphere for the range considered (0.001<¢,A, <0.1).
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Figure 3(a) Numerical results for torques on an inner prolate spheroid. The aspect ratios of
both the inner and outer spheroids are A, = A, = 0.5 while the equatorial radius ratio is

@ =a,/a, =2.0. The real parts of the torques for A*> = 0.01 to 100.0. The number of
Gaussian quadrature points used in the numerical calculations was 20.
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Figure 3(b) Numerical results for torques on an inner prolate spheroid. The aspect ratios of
both the inner and outer spheroids are A, = A, = 0.5 while the equatorial radius ratio is

a =a,/a, =2.0. The imaginary parts of the torques for A*> =0.01 to 100.0. The number of
Gaussian quadrature points used in the numerical calculations was 20.

14



| | L] I L] L) L] ¥ L T T T' 1 ¥ L L] L} Ll L ] ‘
150 Prolate Spheroid -
i A =A =0.5 ]
- l 2 -
i a=10.0 ]
L A%=100.0 ]
o I . = |
I ° ;
100 5 i
:“ i o ]
R _
I - A’=10.0 -
[ A A A A A :
| A i
50 - a2=0.01 S ]
N (] (W] O a 7
i 1 2 1l M 1 5 x a2l 1 L1 Lo 1 a2l i

0.001 0.01 0.1

((:m?Lg)1

Figure 4(a) Numerical results for torques on an inner prolate spherqid. T}_lc aspect ratios of
both the inner and outer spheroids are A, = A, = 0.5 while the equatorial radius ratio is

@ =a,/a, =10.0. The real parts of the torques for A* =0.01 to 100.0. The number of
Gaussian quadrature points used in the numerical calculations was 20.
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Figure 4(b) Numerical results for torques on an inner prolate spheroid. The aspect ratios of
both the inner and outer spheroids are A, = A, = 0.5 while the equatorial radius ratio is

@ = a,/a, =10.0. The imaginary parts of the torques for A* = 0.01 to 100.0. The number of
Gaussian quadrature points used in the numerical calculations was 20.



Results: Oblate Spheroid

Twenty-point Gaussian quadratures were also used in the calculatons for an oblate
spheroid. Numerical results for the real and imaginary parts of the torque on an inner oblate

, spheroid with A = 0.5 are given in Figs. 5(a) and 5(b) for a = a./a, = 2.0, and 1n Figs 604
and 6(b) for a =10.0. Results show 1dentical effects of shp and osailtation frequency for the
oblate spheroid as in the case of a sphere and a prolate spheroid tor the range considered

(0.001<c A, <0.1).
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- Figure 5(a) Numerical results for torques on an inner oblate spheroid. The aspect ratios of
both the inner and outer spheroids are A, = A, = 2.0 while the equatorial radius ratio is
a = a,/a, =2.0. The real parts of the torques for 4> =0.01 to 100.0. The number of
Gaussian quadrature points used in the numerical calculations was 20.
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Figure 5(b) Numerical results for torques on an inner oblate spheroid. The aspect ratios of
both the inner and outer spheroids are A, = A, = 2.0 while the equatonal radius ratio is

a = a,/a, = 2.0. The imaginary parts of the torques for A> =0.01 to 100.0. The number of
Gaussian quadrature points used in the numerical calculations was 20.
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Figure 6(a) Numerical results for torques on an inner oblate spheroid. The aspect rau’os of
both the inner and outer spheroids are A, = A, = 2.0 while the equatonial radius ratio is

a =a,/a, =10.0. The real parts of the torques for A* =0.01 to 100.0. The number of
Gaussian quadrature points used in the numerical calculations was 20.
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Abstract — Two approximation methods for calculations of evaporation rate from nearly
_ spherical particles situated in an infinite expanse of an absorbing gas without jump boundary
conditions are proposed. The first method assumes a unit sphere inscribed in the particle while
1 the second method employs the sphere of equivalent volume. Both approximations are proved
to be accurate for spheroidal particles with aspect ratios between 0.8 and 1.2 by compaiing the

results with numerically calculated values from literature.
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1. INTRODUCTION

" The problem of evaporation or condensation of nonspherical particles has been of major interest
for aerosol researchers. Recently, evaporation from nonspherical particles situated in an
infinite expanse of an absorbing gas was numerically studied by Tekasakul et al. (1999). The
results show excellent agreement with known solutions of a spherical particle with jump
boundary conditions. For the problem of evaporation without jump boundary conditions,
however, it would be very useful if simple approximate solutions can be obtained. Zhang and
Stone (1998) used the equivalent-volume sphere approximations to study oscillatory motions of
nearly spherical particles. Approximate analytical expressions for the hydrodynamic resistance
and torque were obtained for translational and rotational oscillatory motions of nearly spherical
particles, respectively. Results show good agreement with numerical values for prolate-
spheroids and oblate spheroids with aspect ratios close to one. This nearly spherical
approximation can be modified to obtain approximate analytical expressions for evaporation
rate from nearly spherical prolate and oblate spheroid particles. Through private
communications With Zhang and Stone (1997), the inscribed sphere approximation has been
introduced. Tekasakul er al. (1998) has adopted this technique to derive approximate analytical
expression for torques on prolate and oblate spheroids under rotational oscillatory motions and
obtain good agreement with numerical results for the spheroids with aspect ratios in the range
of 0.8 to 1.2. This method is also modifiable to evaporation problem.

In this paper we use both the inscribed sphere and equivalent-volume sphere
approximations to calculate total evaporation rates from nearly spherical prolate aﬁcl oblate
spheroidal particles situated in an infinite expanse of an absorbing gas without jump. Values
from both expressions are compared with numerically calculated values obtained by Tekasakul
et al. (1999). Approximate analytical expression is also obtained for cylindrical particles using

the equivalent-volume sphere approximation.

-~
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2. INSCRIBED SPHERE APPROXIMATION
In this method, a sphere of unit radius is assumed to be inscribed in the nearly spherical
particle in which radius of the sphere i1s equal to the minimum cross-sectional radius of the
' nearly spherical particle, as seen in Fig. 1. This method has been suggested by Zhang and
"Stone (1997) for calculations of forces and torques on oscillating nearly spherical particles.

The diffusion equations for the inscribed unit sphere (due to the particle) and the nearly

spherical particle (due to the sphere) are, respectively,

V-J-k’¢=0 , ¢= ¢, on the surface of the particle, (1)

V-J-k*¢=0 , ¢=¢,, onthe surface of the sphere, (2)

- where, J=—-V¢ and J=-V¢ are the dimensionless local current on the nearly spherical
particle and inscribed unit sphere, respectively. Here ¢ and ¢ are the dimensionless vapor

number density on the nearly spherical particle and inscribed unit sphere, respectively, and & is

the inverse diffusion length defined as &k = (an /D)uz, where v is the molecular average
thermal speed, Z_ is the cross-section for vapor absorption by the gas and D is the diffusion

coefficient of the vapor in the gas.
Applying reciprocal theorem to Eqs. (1) and (2), we have
(V-3)¢-(V-J)p=0. 3)
Let V represent the fluid volume surrounding the arbitrarily shaped particle, V be the fluid
volume external to the sphere and V, = V — V. Integrating the above equation over the

volume V enclosed by S, the surface of the inscribed unit sphere, and a distant surface §_,

and then applying the divergence theorem, leads to

[(v-3)éds+[(n-)pdS=0. (4)

VeVy 5

Here n is the unit vector directing into the fluid volume (Fig. 1). The fluid volume is enclosed
by S,, the surface of the particle and S_, and V,, is enclosed by S, and S. Again, applying

the divergence theorem, we can write, for the evaporation problem,
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-[(a-Déds+[(n-T)oas+ [v-(3§)av=0. 5)

4 thl

The surface of the nearly spherical body is described in the spherical coordinates as

r=1+¢£(0,¢). (6)
where € << 1 and f(0,) is in the order of one and describes the detailed particle shape.

Now, let us consider Eq. (5) term by term. The density ¢ on S, in the first integral

' can be written in a Taylor series about r =1

- . 9 2
vy = Ol TES G, - +0(e*). (7
Since the solution for the sphere gives
¢ .
99 _ _(1+ik _
ar o1 ( t+1i )¢:.s
Therefore Eq. (7) becomes
$| —1+Ef = 65..\‘ - Ef(l + ik)&.r,: +O(62) b (8)
The term in the second integral is
)| —nf-n?
n-J_=n ( n 3"},:'
=(1+ik)g,, . o

The term in the last integral can be written as
v-(39)= $(v-3)+3-(vé)
=ki¢pp-J-J
=k’¢,. 9., (10)

for the volume inside the nearly spherical body in which we assume ¢ =¢, , ¢= 5,_, and

J = 0. Therefore, the integral becomes
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[v(38)av= [k, 6, dv

Ve &

= k2¢P.s &s.s (r_ l)dS + O(E:)

LY

= k9, &,',_[8de+0(£3). (1
5

Substituting Egs. (8), (9) and (11) into Eq. (5), we obtain

-[(0-0)[4,, - ef(1+ik)d, , |dS+ [(1+ik)§,, dS+k%p,,$,,[efdS=0,
5, 5 5

~[(a-DdS+(1+ik)[ef(n-T)dS=~(1+ik)[dS K0, [efas. (12)

Since, in our problem, we have normalized ¢,, =1 and ¢,, =1, then

IdS=4x,
and S
Jsf(n-J)dS= Isf(n-j)dS
' =(1+ik)_[£de.

Therefore the dimensionless total evaporation rate per unit surface area of the prolate spheroidal
particle is

Jp/S=[(n-2)dS=4n(1+ik)+k* [efdS+(1 +ik)2_[£de

5, H

= an(l+ik)+[k* +(1+ik) ][ fdS. (13)
3

2.1 Prolate spheroid approximation
For a prolate spheroid, we have

£f=r—l=%( - A*)cos’ 8.

We can write
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hence, .
A=1-¢,
ind
1- A% = (1- A)(1+ A)
=£(2-¢)
= 2€
= 2(1- A).

. Therefore,

Ef=(1-A)cos’ 0.
- Finally, we have
[efds=(1-4)cos*6ds
s 5
Znn
= (l—A)_[_I‘cos2 Osin8dOde
00

=4—:(1—A), (14)

where A = a/b is the aspect ratio of the spheroid. Then the dimensionless total evaporation

rate per unit surface area becomes

Jp/S= [(n-3)dsS

r

=4n(l+ik)+4T7r(1—A)[k2+(1+ik)2]. (15)

2.2 Oblate spheroid approximation

For an oblate spheroid, we have

, £f=r—l==[l——1-—] —1+ll[l+l]sin29 .
. A 2A A \

We can write



hence,

and

H(1+5]=a-ax2-2)
=2-3¢.

Therefore

& f = g[-1+(2 - 3¢)sin* 6],

[eras=e[[-1+(2-3¢)sin’ 8]ds

= &[[-1+(2-3¢)sin’ O]sin6 d6 d ¢
5

= s[—47r+ %’5(2 - 33)]

= —~—F
3

~ _4_"[1_lj_ (16)
30 A .

The dimensionless total evaporation rate per unit surface area of the oblate spheroidal particle is
then

J/S= [(n-J)ds

= 4n(1+ik)—-43—n[l—%) [€ +(1+ik)’]. (17)
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3. EQUIVALENT-VOLUME SPHERE APPROXIMATION

In &ﬁs secti\on, we assume the particle to be a sphere of equal volume. Figure 2 shows
the geometry of the particle and its equivalent sphere. In this approach, the sphere center
coincides with the center of mass of the nearly spherical particle. § and S, represent the
surfaces of the sphere and the nea;ly spherical particle, respectively. Portions of the nearly
spherical particle that extend beyb;ld the sphere are labeled V7, i=1,...,N, where N is the
number of bumps. These volume elements are enclosed by surfaces S” and S”. In the same
manner, V; represents the volume elements of the sphere that extend beyond the nearly

spherical particle and is enclosed by surfaces S, and S'. This method has been used by Zhang

and Stone (1998) for calculations of forces and torques on oscillating nearly spherical particles.

Using the above assumption of volume equivalent, Eq. (5) of the preceding section reduces to

—j(n-J)ads+j(n-j)¢ds=o. (18)
s, 5

or,

[(-3)$ds=[(n-T)ods. (19)
i

S,

The density on the particle surface because of the sphere can be written as

@ = 2 20
’Iv-l-nf 6"‘ + Ef%!nl + 0(82) over S,- i (20)
since SLI=3,,. The density on the sphere surface because of the sphere can be written as a
regular perturbation expansion in €:
¢ =9 + 24" +0(e?). (21)

A regular perturbation expansion about the boundary condition on the particle surface, as
shown by Zhang and Stone (1998), leads to

(0)
: o, =—ef"$r - (22)

The density field ev'aluated on the surface § of the equivalent-volume sphere (due to the
particle) is
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0,, over S

= (0)
\ s -&f ¢ ? +0(e?)  over§;. (29)
Substituting Eqgs. (20) and (23) into Eq. (19), we obtain
ZI(n D¢, dS+ ZI(“ J)[ef@| ] ds+ iI(n.J)tﬁ,_, ds
i=1 g~ s =t i=] g (24)
- - 0)
-3 [(a-3)¢,, a5+ 3 [(a-3)s,. a5~ 3 [(n J)[s 2 J as+ofe?)
i=l s i=] f, i=l § r=}
which can be written as
[-0),,d5=[(n-T)e,,ds
E 5
(25)

{Z,s‘[(n J){ef4| ]dS+§J(n .3) [gfag;ﬂm] ds]_,.o(ez).

Normalizing ¢,, =1 and ¢,. =1, and approximating S =S with the error of O(e’), the

aboveequaﬁonredt;omto

f(a-D3.,a5=((n-T)o,, a5~ (o J)[ej'ALJdS+O(£2)

J, =7, —!(n-j)[ef‘;f

Applying Eq. (9) to the above equation, we have

- 2
J,=},+e[ﬁL] [ ras+o(e?). (26)
or v 5

Becanse of volume equivalency, we have [ f dS =0 (Zhang and Stone, 1998), Eq. (26) then
3 _

]d5+o(s=).

rml

reduces to

I, =J,+0(e?), e1)



which means that the total evaporation rate on the nearly spherical particle can be approximated

by the total evaporation rate on a sphere of equal volume with the error of O(sz). This applies

\

for particle of arbitrary shapes.

4. RESULTS AND DISCUSSIONS

Results of the dimensionless evaporation rate per unit surface area from spheroidal
particles are given in Table 1 for the particles with aspect ratios ranging from 0.5 to 2.0, and
the dimensionless absorption parameter (A?) ranging from 0.0 to 107. Here, the
dimensionless absorption parameter is defined as A?> = —k*. Values obtained from both the
equivalent-volume sphere and the inscribed sphere methods are presented in comparison with
values obtained numerically by Tekasakul, et al. (1999). The values obtained from the
equivalent-volume sphere and inscribed sphere agree very well with the numerically calculated
values for the particles with aspect ratios between 0.8 to 1.2 which represent nearly spherical
spheroidal particles. The equivalent-volume sphere method yields slightly better results with
the agreement of 0.5% for A =0.8 to 1.1 while the results using the inscribed sphere method
agree within 1.5% of the numerical results. For particles that depart significantly from
spherical shape, the agreement becomes poorer as seen from the values for A=0.5 and 2.0
with an exception for the results obtained from the inscribed sphere method for A =2.0.

Since the equivalent-volume method works well with spheroids and since the
calculations are simple, we have calculated the dimensionless evaporation rate per unit surface
area for cylindrical particles using this method. The results are shown in Table 2 together with
corresponding numerical results. It can be seen that, for a cylindrical particle, the method fails
even for A=0.9 to 1.1. This is because the surface of a cylindrical particle is not continuously
defined as in the case of sphere or spheroids. Even for the cylindrical particle with aspect ratio
of 1.0, it differs significantly from a sphere, while the spheroid with aspect ratio of one is
six‘nply a sphere. However, the results for A = 2.0 is surprisingly good (1%). This could be
because the cylinder with high aspect ratio (thin disk) behaves as a thin oblate spheroid.
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5. CONCLUSIONS

Results for nearly spherical spheroidal particles using both the equivalent-volume
sphere and inscribed sphere methods have shown excellent agreement with numerical results,
though the results for cylindrical particles do not yield the same accuracy. This indicates that
the approximations can be used for calculations for evaporation rate from nearly spherical
particles without performing lengthy numerical procedure. However, these approximations are
limited to the case in which jump boundary condition is absent. If the jump plays significant
role, numerical technique suggested by Tekasakul er al. (1999) is necessary. The numerical

technique based on Green's function is applicable for arbitrary axi-symmetric particles.

Acknowledgements — This research was carried out with the financial support from the

Thailand Research Fund (TRF) through grant PDF/32/2541.
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Figure Captions

Fig. 1. Geometry for a unit sphere inscribed in the particle.

Fig. 2. Geometry for an equivalent-volume sphere.
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Table 1. Comparison of the dimensionless evaporation rate per unit surface area from
spheroidal particles, using numerical, volume-equivalent sphere, and inscribed sphere

methods.
J /S
A 22 Numerical Equivalent-volume Inscribed sphere
. sphere

0.5 0.0 0.7695 0.7371 0.6826
10~ 0.7695 0.7372 0.6826
1077 0.7698 0.7374 0.6828
1075 0.7727 0.7401 0.6850
1073 0.8019 0.7665 0.7072

0.8 0.0 0.9246 0.9204 09114
10~° 0.9246 0.9205 0.9115
1077 0.9249 0.9208 0.9117
10~ 0.9277 0.9236 0.9145
1072 0.9566 0.9518 0.9421

0.9 0.0 0.9646 0.9636 0.9614
107° 0.9646 0.9636 0.9614
1077 0.9649 0.9639 0.9617
1075 0.9677 0.9668 - 0.9645
1072 0.9965 0.9952 0.9928

1.1 0.0 1.0314 1.0306 1.0316
10~° 1.0315 1.0306 1.0316
1077 1.0318 1.0309 1.0319
105 1.0346 1.0338 1.0345
1072 1.0634 1.0622 1.0604

1.2 0.0 1.0594 1.0562 1.0601
10~ 1.0594 1.0563 1.0601
1077 1.0597 1.0566 1.0603
1075 1.0625 1.0594 1.0627
107 1.0913 1.0877 1.0864

2.0 0.0 1.1984 1.1502 1.2076
107 1.1984 1.1502 1.2076
1077 1.1987 1.1504 1.2077
1073 1.2015 1.1530 1.2091
1073 1.2300 1.1790 1.2228
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Table 2. Comparison of the dimensionless evaporation rate per unit surface area from
cylindrical particles, using numerical, and volume-equivalent sphere methods.

I /S
A 22 Numerical Equivalent-volume
sphere
0.5 0.0 0.6292 0.7631
10~° 0.6292 0.7632
1077 0.6295 0.7634
10-5 0.6323 0.7659
1072 0.6609 0.7908
0.8 0.0 0.7391 0.8700
10~ 0.7391 0.8700
1077 0.7394 0.8702
10- 0.7421 0.8727
1073 0.7697 0.8969
0.9 0.0 0.7681 0.8915
10~° 0.7681 0.8915
1077 0.7684 0.8918
1073 0.7985 0.9180
1.1 0.0 0.8181 0.9221
10~ 0.8181 0.9221
1077 0.8184 0.9223
107 0.8211 0.9246
1073 0.8482 0.9477
1.2 0.0 0.8398 0.9327
107° 0.8399 0.9327
1077 0.8401 0.9330
10 0.8428 0.9352
1072 0.8699 0.9579
2.0 0.0 0.9639 0.9615
10~ 0.9639 0.9615
1077 0.9641 0.9617
105 0.9668 0.9637
1073 0.9935 0.9834
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