บทคัดย่อภาษาไทย

การจราจรหนาแน่นในช่วงเวลาเร่งด่วน เป็นปัญหาที่เรื้อรังที่สามารถบรรเทาได้ด้วยการจัด การจราจรที่ดี โดยการควบคุมการจราจรที่มีประสิทธิภาพ ถึงแม้ว่า จะมีระบบควบคุมการจราจรใน ปัจจุบัน แต่ยังไม่ทราบประสิทธิภาพของการควบคุมสัญญาณไฟในสภาพการจราจรหนาแน่นชัด การ วิจัยครั้งนี้ทดสอบวิธีการควบคุมสัญญาณไฟภายใต้สภาพการจราจรต่าง ๆ กัน โดยเน้นศึกษาสภาพ การจราจรหนาแน่น การทดสอบกระทำบนโครงข่ายถนน 3 ประเภท คือ ทางแยกเดี่ยว ทางสายหลัก สายเดี่ยว และ โครงข่ายถนน(ตาข่าย) วิธีการควบคุมสัญญาณไฟที่นำมาทดสอบมีหลายวิธีตั้งแต่วิธี การควบคุมสัญญาณไฟแบบคงที่ จนถึงวิธีควบคุมปรับเปลี่ยนได้โดยใช้ข้อมูลแบบทันกาล ปริมาณ การจราจรที่ใช้ทดสอบแบ่งเป็น 2 ประเภทใหญ่ ๆ คือ ปริมาณการจราจรคงที่ และ ปริมาณการจราจร เปลี่ยนแปลงตามเวลา การทดสอบมุ่งหาประสิทธิภาพของการจราจรกายใต้การควบคุมวิธีการต่าง ๆ โดยวิเคราะห์ทำโดยโปรแกรมจำลองสภาพการจราจร และ เปรียบเทียบตัวซี้วัด เช่น ความล่าช้า แถว คอย อัตราการเผาผลาญเชื้อเพลิง และ อื่น ๆ ผลของการควบคุมสัญญาณไฟแต่ละวิธีนำมาเปรียบ เทียบเพื่อหาวิธีที่เหมาะสมที่สุดในแต่ละสถานการณ์การจราจร ผลที่ได้จากการวิจัยจะชี้นำวิธีการควบ คุมและจัดการจราจรที่จะช่วยลดปัญหาการติดขัดได้

บทคัดย่อภาษาอังกฤษ (Abstract)

Urban traffic congestion during peak period is the perpetual problem that could be alleviated by better management through more efficient traffic signal control. Although there are many traffic control systems available, the efficiency of their control in saturated traffic conditions are not recognized. This research investigates several traffic control methods under various traffic volume conditions, with focus on saturated traffic conditions. Several signal control techniques are tested under three road configurations, an isolated intersection, a corridor, and a grid network, during the period of traffic saturation. The signal control methods range from fixed time to real-time adaptive control. Two main types of volume scenarios are tested; constant and time-dependent. The efficiency of traffic operations in various traffic conditions and signal control methods are then obtained. The analyses are mainly conducted using CORSIM simulation. The impacts of the control on delay, queue, fuel consumption, and other indicators are assessed. The results of each control are compared and the control that yields the highest performance in each traffic scenario is disclosed. The results of the research will lead to the better traffic control and operation which accounts for congested conditions.