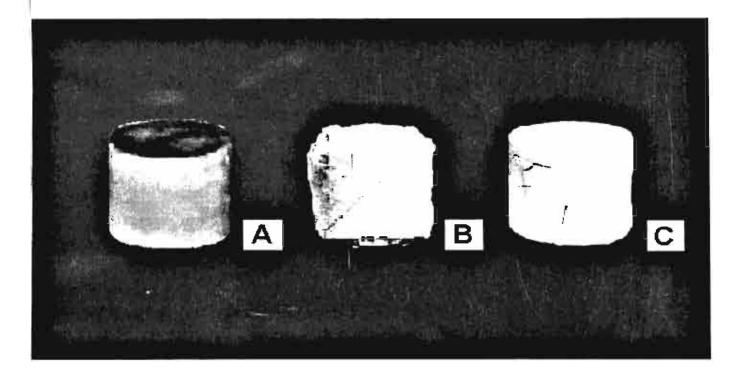


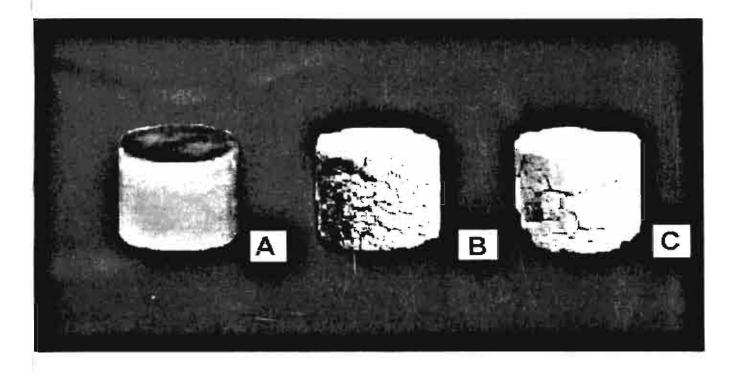
รูปที่ 19 อิทธิพลของฝุ่นซิลิกาควบแน่นต่อการความลึกของการกัดกร่อนของก้อนหล่อแข็งของเสีย ที่สัมผัสกับกรดในตริก

- (ก) ก้อนหล่อนขึ้งของเสียที่มีฝุ่นซิลิกาควบแน่น
- (ข) ก้อนหล่อแข็งของเสียที่มีฝุ่นซิลิกาควบแน่นและตะกั่วไฮดรอกไซด์
- (ค) ก้อนหล่อแข็งของเสียที่มีฝุ่นซิลิกาควบแน่นและโครเมียมใชครอกใชด์

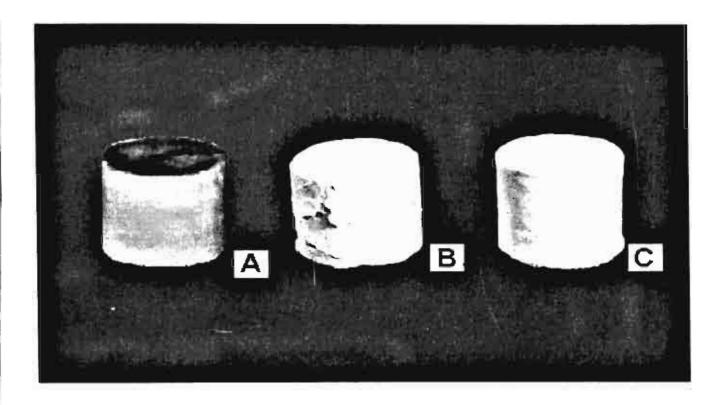

รูปที่ 20 อิทธิพลของฝุ่นซิลิกาควบแน่นต่อการความลึกของการกัดกร่อนของก้อนหล่อแข็งของเสีย ที่สัมผัสกับกรดซัลฟูริก

- (ก) ก้อนหล่อแข็งของเสียที่มีผุ้นซิลิกาควบแน่น
- (ข) ก้อนหล่อแข็งของเสียที่มีฝุ่นชิลิกาควบแน่นและตะกั่วไฮครอกไซด์
- (ค) ก้อนหล่อแข็งของเสียที่มีฝุ่นซิลิกาควบแน่นและโครเมียมไฮดรอกไซด์

3.2.3.3 การเปลี่ยนแปลงทางกายภาพของก้อนหล่อแข็งของเสีย


ลักษณะทางกายภาพของก้อนหล่อแข็งของเสียที่เปลี่ยนแปลงไปหลังจากที่สัมผัสกับกรดอะซิติก กรด ในตริก และ กรดซัลฟูริก แสดงในรูปที่ 21-23 ก้อนหล่อแข็งของเสียที่สัมผัสกับกรดอะซิติกจะเกิดการแตกร้าว และหลุดออกจากกัน (รูปที่ 21 A-C) เนื่องจากแคลเซียมซิลิเกตไฮเดรตซึ่งเป็นตัวยึดประสานเมื่อสัมผัสกับกรด ทำให้แคลเซียมออกไซด์ที่เป็นองค์ประกอบของแคลเซียมซิลิเกตไฮเดรตละลายเพื่อสะเทินกรด โดยลักษณะของ การกัดกร่อนจะเกิดขึ้นอย่างสม่ำเสมอโดยรอบก้อนหล่อแข็ง และชั้นที่ถูกกัดกร่อนจะหนาขึ้นเมื่อระยะเวลาที่ สัมผัสกับกรดนานขึ้น โดยชั้นที่ถูกกัดกร่อนจะเปราะบางและมีความพรุนสูง นอกจากนี้ผิวด้านนอกของก้อนหล่อ แข็งจะเปลี่ยนจากสีเทาเป็นสีสัมปนน้ำตาลหลังจากที่สัมผัสกับกรด สีสัมปนน้ำตาลนี้เป็นสีของ Fe(OH)3 ซึ่ง ตกตะกอนอยู่บริเวณผิวของก้อนหล่อแข็ง [19, 20]

ก้อนหล่อแข็งของเสียที่สัมผัสกับกรดในตริกจะเกิดการเปลี่ยนแปลงทางกายภาพในลักษณะที่ คล้ายคลึงกับก้อนหล่อแข็งของเสียที่สัมผัสกับกรดอะซิติก (รูปที่ 22 A-C) คือ บริเวณผิวด้านนอกของก้อนตัว อย่างที่สัมผัสกับกรดจะนิ่มและแตกง่าย ชั้นที่ถูกกัดกร่อนนี้มีสีขาวขุ่นและประกอบด้วยซิลิกอนไดออกไซด์เป็น ส่วนมาก นอกจากนี้มีสารประกอบของเฟอร์ริกออกไซด์ อลูมิเนียมออกไซด์ แคลเซียมออกไซด์ และแมกนีเซียม ออกไซด์ในปริมาณเพียงเล็กน้อย [19, 20] สำหรับก้อนหล่อแข็งของเสียที่สัมผัสกับกรดซัลฟูริกจะเกิดการบวม พอง เนื่องจากแคลเซียมไซดรอกไซด์ที่อยู่ในก้อนหล่อแข็งทำปฏิกิริยากับกรดซัลฟูริกเกิดสารประกอบแคลเซียม ซัลเฟตหรือยิปซั่มและตกตะกอนอยู่บริเวณผิวด้านนอกของก้อนหล่อแข็งของเสียที่สัมผัสกับกรด [42]


รู**ปที่ 21** ก้อนหล่อแข็งของเสียหลังสัมผัสกรดอะชิติกเป็นระยะเวลา 15 วัน

- A ก้อนหล่อแข็งของเสียที่ไม่ได้สัมผัสกับกรด
- B ก้อนหล่อแข็งของเสียที่ไม่มีฝุ่นซิลิกาควบแน่น
- C ก้อนหล่อแข็งของเสียที่มีฝุ่นซิลิกาควบแน่นร้อยละ 10 โดยน้ำหนัก

รูปที่ 22 ก้อนหล่อแข็งของเสียหลังสัมผัสกรดในดริกเป็นระยะเวลา 15 วัน

- A ก้อนหล่อแข็งของเสียที่ไม่ได้สัมผัสกับกรด
- B ก้อนหล่อแข็งของเสียที่ไม่มีฝุ่นชิลิกาควบแน่น
- C ก้อนหล่อแข็งของเสียที่มีฝุ่นซิลิกาควบแน่นร้อยละ 10 โดยน้ำหนัก

รูปที่ 23 ก้อนหล่อแข็งของเสียหลังสัมผัสกรดซัลฟูริกเป็นระยะเวลา 15 วัน A ก้อนหล่อแข็งของเสียที่ไม่ได้สัมผัสกับกรด

B ก้อนหล่อแข็งของเสียที่ไม่มีฝุ่นซิลิกาควบแน่น

C ก้อนหล่อแข็งของเสียที่มีฝุ่นซิลิกาควบแน่นร้อยละ 10 โดยน้ำหนัก

3.2.4 ผลการศึกษาความคงทนของก้อนหล่อแข็งของเสียต่อสภาวะแวดล้อมที่เปียกและแห้ง

การศึกษาคุณสมบัติของก้อนหล่อแข็งของเสียต่อสภาวะแวดล้อมที่เปียกและแห้งนั้นได้ทำการทดสอบตาม มาตรฐาน ASTM D 4843-88 [31] เพื่อให้มั่นใจว่าก้อนหล่อแข็งของเสียที่นำไปกำจัดในแหล่งฝังกลบจะมีความ ดงทนต่อการเปลี่ยนแปลงสภาวะแวดล้อมที่เปียกและแห้งได้ในระยะยาว

การเปลี่ยนแปลงน้ำหนักสะสมสัมพัทธ์ของก้อนหล่อแข็งของเสียที่มีตะกั่วและโครเมียมไฮดรอกไซด์ใน อัตราร้อยละ 0, 10, 20 และ 30% โดยน้ำหนักดังแสดงในตารางที่ 6 ผลการทดสอบความคงทนของก้อนหล่อ แข็งของเสียต่อสภาวะเปียกและแห้งพบว่าผลต่างของน้ำหนักสะสมสัมพัทธ์ระหว่างชุดทดสอบและชุดควบคุม เพิ่มขึ้นเมื่อความเข้มข้นของตะกั่วและโครเมียมไฮดรอกไซด์ในก้อนหล่อแข็งของเสียเพิ่มขึ้น โดยก้อนหล่อแข็งของเสียที่มีโครเมียมไฮดรอกไซด์จะมีความคงทนต่อสภาวะเปียกและแห้งได้ดีกว่าก้อนหล่อแข็งของเสียที่มีตะกั่ว ไฮดรอกไซด์ร้อยละ 30 โดย น้ำหนักจะมีผลต่างของน้ำหนักสะสมสัมพัทธ์ระหว่างชุดทดสอบและชุดควบคุมเท่ากับ 12.8% อย่างไรก็ดีผลต่างของน้ำหนักสะสมสัมพัทธ์ก็ยังอยู่ในระดับที่ยอมรับได้ตามมาตรฐาน ASTM ซึ่งกำหนดให้ผลต่างของน้ำหนัก สะสมสัมพัทธ์ระหว่างชุดทดสอบและชุดควบคุมไม่ควรเกิน 30%

จากการสังเกตลักษณะภายนอกของก้อนหล่อแข็งของเสียหลังจากทำการทดสอบจนครบ 12 รอบ พบว่า ก้อนหล่อแข็งของเสียที่มีตะกั่วไฮดรอกไซด์เกิดรอยแตกร้าวเล็กน้อยบริเวณผิวตัวอย่าง ทั้งนี้เนื่องจากตะกั่ว ไฮดรอกไซด์สามารถแทรกลอดปฏิกิริยาไฮเดรชั่นของปุ่นชีเมนต์ได้ดีกว่าโครเมียมมากทำให้ปฏิกิริยาไฮเดรชั่นของปุ่นชีเมนต์ปอร์ตแลนด์ไม่สามารถเกิดได้ตามปกติ ซึ่งส่งผลให้โครงสร้างของก้อนหล่อแข็งมีความพรุนสูง เมื่อ ก้อนหล่อแข็งของเสียต้องมาเผชิญกับสภาวะที่แห้งภายใต้อุณหภูมิ 60 ซ ทำให้น้ำระเหยออกจากของเปิดต่างๆ และจากผิวด้านนอกของก้อนหล่อแข็งทำให้บริเวณผิวด้านนอกเกิดการหดตัวมากกวาด้านในจึงส่งผลให้เกิดการแตกร้าวขึ้น [43, 44]

ตารางที่ 6 การเปลี่ยนแปลงน้ำหนักสะสมสัมพัทธ์ของก้อนหล่อแข็งของเสียที่มีตะกั่วและโครเมียมไฮดรอกไซด์ ในปริมาณต่าง ๆกัน

ตัวอย่าง	ผลรวมน้ำหนักก้อนทคสอบ ที่เปลี่ยนแปลง (%)	ผลรวมน้ำหนักก้อนควบคุม ที่เปลี่ยนแปลง (%)	ก้อนทดสอบ-ก้อนควบคุม (%)
OPC	9.3	5.46	3.71
OPC+10%Cr	12.29	7.73	4.56
OPC+20%Cr	15.16	11.82	3.34
OPC+30%Cr	24.41	18.75	5.69
OPC+10%Pb	10.24	2.61	7.63
OPC+20%Pb	14.29	7.02	7.89
OPC+30%Pb	29.89	17.09	12.80

การเปลี่ยนแปลงน้ำหนักสะสมสัมพัทธ์ของก้อนหล่อแข็งของเสียในสภาวะที่มีและไม่มีฝุ่นซิลิกาควบแน่น แสดงในตารางที่ 7 พบว่าเมื่อทำการทดสอบจนครบ 12 รอบ ผลต่างของน้ำหนักสะสมสัมพัทธ์ระหว่างชุด ทดสอบและซุดควบคุมเท่ากับ 3.71% ในขณะที่ก้อนหล่อแข็งที่มีการแทนที่ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่นใน ระดับ 5, 10 และ 20 %โดยน้ำหนักนั้น ความแตกต่างของน้ำหนักสะสมสัมพัทธ์ระหว่างชุดทดสอบและชุดควบ คุมเท่ากับ 1.66, 2.82 และ 3.78% ตามลำดับ จะเห็นได้ว่าก้อนหล่อแข็งของเสียที่มีการแทนที่ปุ่นซีเมนต์ด้วย ฝุ่นซิลิกาควบแน่นในระดับร้อยละ 5 และ 10% โดยน้ำหนักมีความคงทนต่อสภาวะเปียกและแห้งได้ดีกว่า นอก จากนี้ก้อนหล่อแข็งของเสียที่มีตะกั่วและโครเมียมไฮดรอกไซด์ร้อยละ 10 โดยน้ำหนักและมีการแทนที่ปูนซีเมนต์ ด้วยฝุ่นซิลิกาควบแน่นจะมีความคงหนต่อสภาวะเปียกและแห้งได้ดีกว่าในกรณีที่ไม่มีการแทนที่ปูนซีเมนต์ด้วย ที่เป็นเช่นนี้เนื่องจากผุ้นซิลิกาควบแน่นสามารถเกิดปฏิกิริยาปอสโซลานกับแคลเซียม ฝุ่นซิลิกาควบแน่น ไฮดรอกไซด์ให้แคลเซียมซิลิเกตไฮเดรตเพิ่มขึ้นจากการไฮเดรชั่นของปูนซึเมนต์ปอร์ตแลนด์ตามปกติ ชึ่งแคลเซียมซิลิเกตไฮเดรตจะไปแทรกตัวอยู่ตามช่องเปิดต่างๆของก้อนหล่อแข็งและส่งผลให้ก้อนหล่อแข็งมื ดังนั้นเมื่อก้อนหล่อแข็งขย^{ึ่}งเสียอยู่ภายใต้สภาวะอากาศที่แห้งและมีอุณหภูมิสูงถึง ความพรุนลดลง ทำให้น้ำที่อยู่ตามช่องเปิดต่างๆของก้อนหล่อแข็งระเหยออกไปได้ช้ากว่า ทำให้ก้อนหล่อแข็งเกิดการหดตัวได้ น้อยกว่ากรณีที่ไม่มีการแทนที่ปูนซึเมนต์ด้วยฝุ่นซิลิกาควบแน่น

ตารางที่ 7 การเปลี่ยนแปลงน้ำหนักสะสมสัมพัทธ์ของก้อนหล่อแข็งของเสียในสภาวะที่มีและ ไม่มีฝุ่นซิลิกาควบแน่น

ตัวอย่าง	ผลรวมน้ำหนักก้อนทดสอบ	ผลรวมน้ำหนักก้อนควบคุม	ก้อนทดสอบ-ก้อนควบคุม
	ที่เปลี่ยนแปลง (%)	ที่เปลี่ยนแปลง (%)	(%)
OPC+0%SF	9.3	5.46	3.71
OPC+5%SF	4.74	3.08	1.66
OPC+10%SF	7.14	4.31	2.82
OPC+20%SF	9.82	6.04	3.78
OPC+10%Cr+0%SF	12.29	7.73	4.56
OPC+10%Cr+5%SF	6.21	3.46	2.76
OPC+10%Cr+10%SF	8.12	4.76	3.53
OPC+10%Cr+20%SF	13.00	8.16	4.85
OPC+10%Pb+0%SF	10.25	2.61	7.64
OPC+10%Pb+5%SF	5.29	2.46	2.83
OPC+10%Pb+10%SF	6.81	2.25	4.56
OPC+10%Pb+20%SF	8.48	3.51	7.81

4 สรุปผลการทดลอง

- คะกั่วไฮดรอกไซด์รบกวนการไฮเดรชั่นของปูนซีเมนต์ในระดับที่รุนแรงกว่าโครเมียมไฮดรอกไซด์มาก ทั้งนี้ จากการศึกษาการเปลี่ยนแปลงความเข้มข้นของตะกั่วและโครเมียมในสารละลายปูนซีเมนต์พบว่าสาร ละลายปูนซีเมนต์มีความเข้มข้นของตะกั่วสูงกว่าโครเมียมประมาณ 1000 เท่าในระหว่างการเกิดปฏิกิริยา ไฮเดรชั่นตลอดระยะเวลา 24 ชั่วโมงที่ทำการสังเกต ทำให้อืออนของตะกั่วถูกดูดซับอยู่บนผิวหน้าของ อนุภาคปูนซีเมนต์ใด้มากกว่าโครเมียม ส่งผลให้น้ำซึมผ่านเข้าไปทำปฏิกิริยากับปูนซีเมนต์ใด้น้อยลง ดังนั้น ปฏิกิริยาไฮเดรชั่นของปูนซีเมนต์จึงลดลง เป็นผลให้ระยะเวลาในการก่อตัวของซีเมนต์นานขึ้น
- ผุ้นซิลิกาควบแน่นทำให้ระยะเวลาในการก่อตัวสุดท้ายของของผสมระหว่างปู่นซีเมนต์และตะกั่ว
 ไฮดรอกไซด์ลดลงอย่างมีนัยสำคัญ โดยระยะเวลาในการก่อตัวสุดท้ายลดลงเมื่อระดับการแทนที่ปู่นซีเมนต์
 ด้วยฝุ่นซิลิกาควบแน่นเพิ่มขึ้น ทั้งนี้เนื่องจากแคลเซียมไฮดรอกไซด์ซึ่งเป็นผลผลิตที่เกิดจากปฏิกิริยา
 ไฮเดรชั่นของปู่นซีเมนต์ถูกใช้ไปในการเกิดปฏิกิริยาปอซโซลานของฝุ่นซิลิกาควบแน่น ทำให้ความเป็นด่าง
 ของของผสมลดลง และส่งผลให้ความสามารถในการละลายของตะกั่วไฮดรอกไซด์ต่ำลง ดังนั้นไฮดรอกซี
 อิออนของตะกั่วจึงเข้าไปแทรกสอดปฏิกิริยาไฮเดรชั่นของปูนซีเมนต์น้อยลง
- ความสามารถในการรับแรงอัดของก้อนหล่อแข็งของเสียลดลงเมื่อความเข้มข้นของตะกั่วและโครเมียม ไฮดรอกไซด์ในของผสมเพิ่มขึ้น แต่ความสามารถในการรับแรงอัดของก้อนหล่อแข็งของเสียที่มีโลหะ ไฮดรอกไซด์ร้อยละ 10 เพิ่มขึ้นเมื่อมีการแทนที่ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่นในอัตราร้อยละ 5 และ 10 ตามลำดับ โดยที่ความสามารถในการรับแรงอัดจะสูงสุดเมื่อปูนซีเมนต์ถูกแทนที่ด้วยฝุ่นซิลิกาควบแน่นใน อัตราร้อยละ 10 โดยน้ำหนัก
- การรั่วไหลของโลหะหนักจากก้อนหล่อแข็งของเสียเป็นกลไกที่ซับซ้อนและถูกควบคุมโดยตัวแปรหลายตัว จากการทดลองจะสังเกตเห็นว่าพีเอชของสารละลายที่ใช้ซะโลหะหนักเป็นปัจจัยหนึ่งที่มีอิทธิพลอย่างมาก ต่อการรั่วไหลของตะกั่วและโครเมียม จากการทดลองพบว่าความเข้มข้นสะสมของตะกั่วในสารละลายกรด อะซีติกหลังจากที่สัมผัสกับก้อนหล่อแข็งของเสียเป็นเวลาต่าง ๆกันสูงกว่าโครเมียมประมาณ 30 เท่า ความ สามารถในการละลายต่ำสุดของตะกั่วและโครเมียมไฮดรอกไซด์อยู่ที่พีเอชประมาณ 9.5 และ 7.5 ตามลำดับ ในขณะที่พีเอชของสารละลายกรดอะซีติกหลังจากที่สัมผัสกับก้อนหล่อแข็งของเสียเป็นระยะเวลาต่าง ๆกัน อยู่ในช่วงระหว่าง 4.0 และ 4.8 ผลต่างของพีเอชระหว่างสารละลายกรดอะซีติกและความสามารถในการ ละลายต่ำสุดของตะกั่วไฮดรอกไซด์มากกว่าในกรณีของโครเมียมไฮดรอกไซด์ ดังนั้นตะกั่วไฮดรอกไซด์จึงมี แนวโน้มที่จะละลายและรั่วไหลออกจากก้อนหล่อแข็งของเสียได้มากกว่าโครเมียมไฮดรอกไซด์
- ก้อนหล่อแข็งของเสียทั้งที่มีและไม่มีการแทนที่ปูนซีเมนต์ปอร์ตแลนด์ด้วยฝุ่นซิลิกาควบแน่นมีความคงทน ต่อการกัดกร่อนโดยกรดเรียงตามลำดับจากมากไปน้อยได้ดังนี้ กรดซัลฟูริก > กรดอะซิติก > กรดในตริก โดยก้อนหล่อแข็งของเสียที่มีการแทนที่ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่นมีความคงทนต่อการกัดกร่อนโดย กรดซัลฟูริกได้ดีกว่าก้อนหล่อแข็งของเสียที่ไม่มีการแทนที่ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่น
- ก้อนหล่อแข็งของเสียที่มีการแทนที่ปูนซึเมนต์ด้วยฝุ่นซิลิกาควบแน่นมีความคงทนต่อสภาวะแวคล้อมที่
 เปียกและแห้งใต้ดีกว่าก้อนหล่อแข็งของเสียที่ไม่มีการแทนที่ปูนซึเมนต์ด้วยฝุ่นซิลิกาควบแน่น อย่างไรก็ดี
 ความคงทนต่อสภาวะเบียกและแห้งของก้อนหล่อแข็งของเสียทั้งที่มีและไม่มีการแทนที่ปูนซึเมนต์ปอร์ต
 แลนด์ด้วยฝุ่นซิลิกาควบแน่นอยู่ในเกณฑ์ที่ยอมรับได้

5 ความเห็นและข้อเสนอแนะ

กระบวนการทำเสถียรและหล่อแข็งกากตะกอนโลหะหนักโดยใช้ปูนซีเมนต์ปอร์ตแลนด์เป็นตัวยึดประสาน นั้นเป็นการจำกัดความสามารถในการละลาย และการเคลื่อนตัวของโลหะหนักจากก้อนหล่อแข็งของเสีย ซึ่งเป็น ผลมาจากการเปลี่ยนรูปกากตะกอนโลหะหนักไปเป็นก้อนของแข็งและในขณะเดียวกันก็เกิดปฏิกิริยาเคมีระหว่าง โลหะหนักกับตัวยึดประสาน การเปลี่ยนแปลงทางเคมีที่เกิดขึ้นระหว่างโลหะหนักและปูนซีเมนต์ปอร์ตแลนด์มีบท บาทสำคัญต่อการควบคุมคุณภาพของก้อนหล่อแข็งของเสีย สภาพพื-เอชที่ค่อนข้างสูงซึ่งเกิดขึ้นในระหว่าง ปฏิกิริยาไฮเดรชั่นของปูนซีเมนต์ปอร์ตแลนด์ส่งผลให้โลหะไฮตรอกไซด์ซึ่งส่วนมากมีคุณสมบัติ amphoteric บางตัวละลายกลับออกมาอีก โลหะหนักที่ละลายออกมาเหล่านี้เป็นตัวการสำคัญที่ไปรบกวนการไฮเดรชั่นของ ปอร์ตแลนด์ซึ่งส่งผลให้ความแข็งของก้อนหล่อแข็งของเสียลดลงและการชะละลายเพิ่มมากขึ้น

ในงานวิจัยนี้ได้มีการพัฒนาคุณภาพของก้อนหล่อแข็งของเสียโดยการนำฝุ่นซิลิกาควบแน่นมาใช้แทนปูน ซึเมนต์ปอร์ตแลนด์บางส่วน ซึ่งสิ่งที่น่าสนใจที่ได้พบจากการทดลองนี้คือฝุ่นซิลิกาควบแน่นทำให้ความเป็นด่าง ของระบบลดลง เนื่องจากแคลเซียมไฮตรอกไซด์ถูกใช้ในปฏิกิริยาปอสโซลานของฝุ่นซิลิกา ทำให้โลหะ ไฮตรอกไซด์ที่อยู่ในรูปที่เสถียรแล้วละลายกลับออกมาอีกในอัตราที่ลดลงในระหว่างการหล่อแข็ง ดังนั้นโลหะ หนักจึงไปรบกวนการไฮเดรชั่นของปอร์ตแลนด์ซีเมนต์ในระดับที่ลดลง และส่งผลให้อัตราการพัฒนากำลังอัดของ ก้อนหล่อแข็งของเสียเพิ่มขึ้นอย่างมีนัยสำคัญ นอกจากนี้ก้อนหล่อแข็งของเสียที่มีการแทนที่ปูนซีเมนต์ปอร์ต แลนด์ด้วยฝุ่นซิลิกาควบแน่นยังมีความคงทนต่อการกัดกร่อนโดยกรดชัลฟูริกได้ดีกว่าอีกด้วย

เนื่องจากยังไม่พบรายงานหรือบทความวิจัยอื่นที่เกี่ยวกับอิทธิพลของฝุ่นซิลิกาควบแน่นต่อคุณสมบัติของ ก้อนหล่อแข็งของเสียที่ใช้ปูนซึเมนต์ปอร์ตแลนด์เป็นตัวยึดประสานโลหะไฮดรอกไซด์ จึงเชื่อว่าสิ่งที่พบจากงาน วิจัยนี้เป็นเรื่องใหม่ที่น่าสนใจและควรที่จะมีการทำวิจัยในเรื่องนี้อย่างต่อเนื่องต่อไป ซึ่งสิ่งที่พบจากงานวิจัยนี้ทำ ให้เชื่อว่าคุณภาพของก้อนหล่อแข็งของเสียสามารถพัฒนาให้ดีขึ้นได้โดยการปรับเปลี่ยนองค์ประกอบทางเคมีของก้อนหล่อแข็งของเสีย ซึ่งสามารถทำได้โดยการนำวัสดุปอสโซลานซึ่งส่วนมากเป็นผลพลอยได้หรือกากของ เสียอุตสาหกรรมที่มีซิลิกาออกไซด์ และอลูมินาออกไซด์เป็นองค์ประกอบหลัก ตัวอย่างเช่น ฝุ่นซิลิกาควบแน่น เถ้าลอยลิกในต์ ขึ้เถ้าแกลบ หรือกากตะกรันเตาหลอมเหล็ก เป็นต้น

งานวิจัยที่จะทำต่อไปจะนำขึ้เถ้าแกลบมาใช้ในการศึกษาแทนฝุ่นซิลิกาควบแน่น เนื่องจากแกลบเป็นกาก ของเสียจากภาคเกษตรกรรมที่มีอยู่เป็นจำนวนมาก ถ้าหากมีการควบคุมสภาวะในการเผาแกลบให้เหมาะ สมจะได้ขึ้เถ้าแกลบที่มีซิลิกาออกไซด์อยู่ประมาณ 95-99% ซึ่งมีองค์ประกอบที่ใกล้เคียงกับฝุ่นซิลิกาควบแน่น และเห็นควรที่จะนำมาใช้แทนฝุ่นซิลิกาควบแน่นเพื่อลดการนำเข้าฝุ่นซิลิกาควบแน่น นอกจากนี้ยังเป็นการจัด การกากของเสียโดยการหมุนเวียนกลับมาใช้ใหม่อีกในการบำบัดของเสียอันตรายประเภทกากตะกอนโลหะหนัก ซึ่งสามารถช่วยลดค่าใช้จ่ายในการบำบัดกากตะกอนโลหะหนักได้อีกด้วย

6 เอกสารอ้างอิง

- 1. กรมควบคุมมลพิษ, 2535, สถานการณ์มลพิษในประเทศไทย พ.ศ. 2535 หน้า 36-41.
- Coner, J.R., 1990, Chemical Fixation and Solidification of Hazardous Wastes. New York, Van Nostrannd Reinhold, pp. 2, 26-32, 36.
- 3. Hills. C.D., Koe, L., Sollars, C.J. and Perry, R., 1992 "Early Heat of Hydration During the Solidification of a Metal Plating Sludge" Cem & Concr. Res., 22 pp. 822-832.
- Fowler, G.D., Asavapisit, S., Cheeseman, C.R. and Perry, R., (deceased), 1995, A Study of The Chemical Effect of Metal Hydroxide upon Cement Hydration Reactions In: Proceedigs of the International Congress on Waste Solidification-Stabilization Process., J.M. Cases and F. Thomas Eds., Nancy, France, pp.40-45.
- 5. Taylor, H.F.W., 1990, Cement Chemistry. Academic Press Limited, Great Britain
- Hanna, R.A., Barrie, P.J., Cheeseman, C.R., Hills, C.D., Buchler, P.M. and Perry, R., 1995 "Solid State ²⁹Si and ²⁷Al NMR and FTIR Study of Cement Pastes Containing Industrial Wastes and Organics", Cem.& Concr. Res., 25, pp. 1435-1444.
- 7. Asavapisit, S., Fowler, G.D. and Cheeseman, C.R., 1997, "Solution Chemistry During Cement Hydration in the Presence of Metal Hydroxide Wastes", Cem & Concr. Res., 27, pp. 1249-1260.
- 8. Tashiro, C., Oba, J. and Akama, K., 1979, "The Effects of Several Heavy Metal Oxides on the Formation of Ettringite and the Microstructure of Hardened Ettringite", Cem & Concr. Res., 9, pp. 303-308.
- 9. Thomas, N.L., Jameson, D.A. and Double, D.D.,1981, "The Effect of Lead Nitrate on the Early Hydration of Portland Cement", Cem & Concr. Res., 11, pp. 143-153.
- Birchall, J.D., Howard, A.J. and Double, D.D., 1980, "Some General Considerations of a Membrane/Osmosis Model for Portland Cement Hydration", Cem & Concr. Res., 10, pp. 145-155.
- Cartledge, F.K., Butler, L.G., Chalasani, D., Eaton, H.C., Frey, F.P., Herera, E., Tittlebaum, M.E. and Yang, S.L., 1990 "Immobilization Mechanisms in Solidification/Stabilization of Cd and Pb Salts Using Portland Cement Fixing Agents", *Environ. Sci. Technol.*, 24, pp. 867-873.
- Ortego, J.D., Barroeta, Y., Cartledge, F.K. and Akhter, H., 1991 "Leaching Effects on Silicate Polymerization FTIR and ²⁹Si NMR Study of Lead and Zinc in Portland Cement", *Environ. Sci. Technol.*, 25, pp. 1171-1174.
- Odler, I. And Schmidt, O., 1980, "Structure and Properties of Portland Cement Clinker Doped with Zinc Oxide", J. Am. Cer. Soc., 63, pp. 13-16.
- Mollah, M.Y.A., Tsai, Y.N., Vempati, R.K., Lin, T.C. and Cocke, D.L., 1995, "The Interfacial Chemistry of Solidification/Stabilization of Metals in Cement and Pozzolanic Material Systems" Waste Management., 15, No.2, pp. 137-148.
- 15. Roy, A., Eaton, H.C., Catipiedge, F.K. and Tittiebaum, M.E., 1992, "Solidification/Stabilization of Hazardous Waste: Evidence of Physical Encapsulation", *Environ.Sci. Technol.*, 26, pp. 1349-1353.
- Bishop, P.L., 1988, "Leaching of Inorganic Hazardous Constituents from Stabilized/Solidified Hazardous Wastes", Haz. Wastes & Haz Mater., 5, No.2, pp. 129-143.

- 17. Cheng, K.Y., Bishop, P.L., 1992, "Sorption, Important in Stabilized/Solidified Waste Forms", Haz. Wastes & Haz Mater., 9, No.3, pp. 289-296.
- Roger D. Spence (Ed.), 1993, Chemistry and Microstructure of Solidified Waste Forms. London, Lewis Publishers, pp. 72-77.
- 19. Van der Sloot, H.A., de Groot, G.J. and Wijkstra, J., 1989, Leaching Characteristics of Construction Materials and Stabilization Products Containing Waste Materials. In: Environmental Aspects of Stabilization and Solidification of Hazardous and Radioactive Wastes. T.M. Gilliam and C.C. Wiles, Eds, ASTM STP 1033, American Society of Testing and Materials, Philadelphia pp. 125-149.
- Stegemann, J.A., Caldwall, R.J. and Shi, C., 1995, Laboratory and Field Leaching of Solidified Wastes In: Proceedings of the International Congress o Waste Solidification-Stabilization Process., J.M. Cases and F. Thomas Eds., Nancy. France, pp. 339-343.
- 21. Means, J.L., Smith, L.A., Nehring, K.W., Brauning, S.E., Gavaskar, A.R., Sass, B.M., Wiles, C.C. ans Mashni, C.I., 1995, The Application of Solidification/Stabilization to Waste Materials, Lewis Publishers, U.S.A.
- 22. Mehta, P.K. and Manmohan, D., 1980, Pore Size Distribution and Permeability of Hardened Cement Paste: Proceedings 7" International Congress on the Chemistry of Cement, Vol. III, pp. VII-1 to VII-5, Paris
- 23. Brichall, J.D., 1981, Flexural Strength and Porosity of Cements, Nature 289, pp. 388-390.
- 24. Alford, N.McN., Groves, G.W. and Double, D.D., 1982, "Physical Properties of High Strength Cement pastes", Cem & Concr. Res., 12 pp. 349-358.
- 25. Young, J.F., 1992, Dense High Strength, Low Permeability Cement-Based Materials for Containment In: Cement Industry Solutions to Waste Management. Canadian Portland Cement Associatio, Calgary, Alberta, Canada, Oct., 7-9, R.W. Piggott Ed., pp. 359-372.
- Cheeseman, C.R., Asavapisit, S. ad Knight, J., 1998, "Effect of Uniaxially Pressing OPC Pastes Containing Metal Hydroxides on Porosity, Density and Leaching", Cem & Concr. Res., 28 pp. 1639-1653.
- 27. Macphee, D.E., 1990, "PRC-pore reduced cement:density cement pastes following fluid extraction", *Advances in Cement Research*, vol.3,No. 12, pp. 135-142.
- 28. American Society For Testing and Material, 1997, ASTM C305-94: Standard Practice for Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency In "Annual book of ASTM Standard", section 4, Vol. 04.01, Philadelphia, ASTM, pp. 196-198.
- 29. American Society For Testing and Material, 1997, ASTM C191-92: Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle, In "Annual book of ASTM Standard", section 4, Vol. 04.01, Philadelphia, ASTM, pp. 162-164.
- 30 American Society For Testing and Material, 1997. ASTM D1633-96: Standard Test Method for Compressive Strength of Molded Soil Cement Cylinders. in "Annual book of ASTM Standard", section 4, Vol. 04.08, Philadelphia, ASTM, pp. 151-153.

- 31. American Society For Testing and Material, 1997, ASTM D 4843-88 (Reapproved1994): Standard Test Method for Wetting and Drying Test of Solid Waste. In "Annual book of ASTM Standard", section 11, Vol. 11.04, Philadelphia, ASTM, pp. 72-75.
- Atlassi, E.H., 1995, Nonevaporable Water and Degree of Cement Hydration in Silica Fume-Cement Systems", In: Fly Ash. Silica Fume. Slag. and Natural Pozzolans in Concrete, Proceedings Fifth International Conference, Wisconsin, U.S.A., pp. 703-717.
- 33. Thomas, N.L., and Double, D.D., 1981, "Calcium and Silicon Concentrations in Solution During the Early Hydration of Portland Cement and Tricalcium Silicate", Cem. & Concr. Res., 11, pp. 675-687.
- 34. Omotoso, O. E., Ivey, D.G. and Mikula, R., 1995, "Characterization of chromium doped tricalcium silicate using SEM/EDS, XRD and FTIR", *J. Hazardous Materials*, vol. 42, pp. 87-102.
- 35. Mehta, P. K., 1995, Condensed Silica Fume In, Concrete Technology and Design:Cement Replacement Materials, R. N. Swamy Ed., Surrey University Press, Vol. 3, pp. 134-170.
- 36. Cheng, K. Y. and Bishop, P.L., 1996, Morphology and pH Changes in Leached Solidified/Stabilized Waste Forms, In: Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, T. M. Gilliam and C. C. Wiles, eds., ASTM STP 1240, American Society of Testing and Materials, Philadelphia, Vol. 3, pp. 73-79.
- 37. Bager, P.G., Bishop, P.L., 1997, "Prediction of metal leaching rates from solidified/stabilized wastes using the shrinking unreacted core leaching procedure", *Haz. Wastes.& Haz Mater.*. 52. pp. 311-333.
- 38. Stegemann, J.A., Ramesh perera, A.S., Cheeseman, C., Buenfeld, N.R., 2000, "1/8 Factorial Study of Metal Effects on Acid Neutralization by Cernent", *Journal of .Environmental Engineering.*, vol.,126, No.10, pp.925-933.
- 39. Pavlik, V., 1996, "Corrosion of Hardened Cement Paste by Acetic Acid and Nitric Acids. Part II: Influence of Water/Cement Ratio", Cem. Concr. Res., vol.26, pp.475-490.
- Pavlik, V., 1994, "Corrosion of Hardened Cement paste by Acetic Acid and Nitric Acids. Part III: Formation and Chemical Composition of the Corrosion Products Layer", Cem. Concr. Res., vol.24, pp. 1495-1508
- 41. Pavlik, V., 1994, "Corrosion of Hardened Cement Paste by Acetic Acid and Nitric Acids. Part I: Calculation of Corrosion Depth", Cem. Concr. Res., vol.24, pp. 551-562.
- 42. Geslin, N.M., Israel, D., Lachowski, E.E. and Macphee, D.E., 1997, "Durability and Microstructure of Pore Reduced Cements (PRC). *Mat. Res. Soc. Symp. Proc.*, Vol. 370, pp. 237-244.
- Klich, I., Batchelor, B., Wilding, L.P., and Drees, L.R., 1999, "Mineralogical Alterations that Affect the Durability and Metals Containment of Aged Solidified and Stabilized Wastes", Cem. Concr. Res., vol. 29, pp. 1433-1440.
- 44. Neville, A.M. and Brooks, J.J., *Concrete Technology*, Addison Wesley Longman Limited, London, UK., pp. 237-259.

7 Output จากโครงการวิจัยที่ได้รับทุนจาก สกว

- 1. เกิดองค์ความรู้ใหม่ที่นำไปสู่ความเข้าใจที่ดีขึ้นเกี่ยวกับปฏิกิริยาที่เกิดขึ้นระหว่างโลหะหนักและปูนซีเมนด์ ปอร์ตแลนด์ในระหว่างกระบวนการหล่อแข็งทากตะกอนโลหะหนัก ซึ่งมีอิทธิพลอย่างมากต่อคุณภาพของ ก้อนหล่อแข็งของเสีย และนำไปสู่การพัฒนาคุณภาพของก้อนหล่อแข็งของเสีย ต่อไปได้ในอนาคต
- 2. ได้ข้อมูลพื้นฐานที่สามารถนำไปใช้เป็นแนวทางในการจัดการของเสียอันตรายที่เหมาะสม และสามารถนำ ใปขยายผลให้เกิดประโยชน์ต่อหน่วยงานที่ทำหน้าที่เกี่ยวกับการบำบัดของเสียอันตราย
- 3. สามารถผลิตบัณฑิตระดับปริญญาโทใด้จำนวน 2 คน
- 4. สามารถผลิตผลงานวิจัยซึ่งนำไปสู่การเผยแพร่ในวารสารระดับนานาชาติได้ 1 เรื่อง และวารสารในระดับภูมิ ภาคได้ 2 เรื่อง
 - 4.1 S. Asavapisit, W. Nanthamontry, and C. Polprasert, Influence of condensed silica fume on the properties of cement-based solidified wastes. Cem.& Concr. Res., vol. 31, pp.1-6, (2000).
 - 4.2 S. Asavapisit, M. Boonjam, and C. Polprasert, Effects of lead and chromium hydroxides on cement-based solidified waste properties. Thammasat Int. J. Sc. Tech., vol. 5, no.3, pp.1-9, (2000).
 - 4.3 S. Asavapisit, M. Boonjam, and C. Polprasert, Corrosion of cement-based solidified wastes due to different acid attack. (to be submitted to JIJST).
- ทำให้เกิดกลุ่มงานวิจัยทางด้านการทำเสถียรและหล่อแข็งกากของเสียอันตรายซึ่งประกอบด้วยนักศึกษา ระดับปริญญาโทประมาณ 12 คน และทำให้เกิดผลงานวิจัยซึ่งสามารถนำใปสู่การเผยแพร่ได้อย่างต่อเนื่อง

ภาคผนวก

การคำนวณค่า effective diffusion coefficient

การคำนวณค่า effective diffusion coefficient (De) สำหรับ OPC+10% Pb(OH)₂

จากความสัมพันธ์ของแบบจำลอง (Shinking Unreacted Core Model) [37]

Mt = [(2DeCo²fmo²I(t))/β]^{1/2} x t^{1/2}

Mt = contaminant release per unit surface (mg/cm²)

De = effective diffusion coefficient (for acid species)(cm²/s)

Co = solid contaminant concentration (mg/cm³)

fmo = leachable fraction (dimensionless)

I(t) = acid exposure, acid concentration multiplied by the leaching time

CH x t (mol.day/I)

β = acid neutralization capacity (kmol eq/ m³)

จากกราฟและตารางในภาคผนวกสามารถหาได้ดังนี้ การคำนวณค่ำ acid neutralization capacity (ANC)

 $ANC_{pH7} = 6.5 \text{ eq/kg}_{(dry solid)}$

น้ำหนักสมมูลของกรดอะซีติก = 60

ความหนาแน่นก้อนหล่อแข็ง = 1.8 g/cm³

ทั้งนั้น ANC_{pH 7} ของ OPC+10%Pb(OH)₂ = $(6.5 \text{ eq/kg}_{(dry \text{ solid})})x(1 \text{ mol-eq/ } 60 \text{ g-eq})x(1.8 \text{ g/cm}^3)$ = $0.195404 \text{ kmole-eq/m}^3$

พื้นที่ผิวของก้อนตัวอย่างรูปทรงกระบอก

จากสูตร $2r\pi h + 2\pi r^2 (cm^2)$

ดังนั้น ก้อนหล่อแข็งของ OPC+10%Pb(OH)

มีพื้นที่ผิว = 2x1.368cm $x\pi x2.57$ cm + $2x\pi x1.368$ 2 cm 2

 $= 33.38 \text{ cm}^2$

ปริมาตรของก้อนตัวอย่างรูปทรงกระบอก

จากสูตร Tr2h (cm3)

ดังนั้น ก้อนหล่อแข็งของ OPC+10%Pb(OH)₂

มีปริมาตร = π x1.368 2 cm 2 x2 .57cm

 $= 15.10 \text{ cm}^3$

ปริมาณโครเมียมและตะกั่วเริ่มต้น (Co)

จากการวิเคราะห์หาความเข้มข้นของโลหะหนักในกากตะกอนสังเคราะห์พบว่าความเข้มข้นเริ่มต้นของ

Pb = $369.41 \text{ mg/g}_{(dry \text{ sludge})}$

Cr = 228.41 mg/g_(dry sludge)

ความเข้มขันเริ่มต้นของตะกั่วที่อยู่ในก้อนหล่อแข็งของเสีย

= (369.41 mg/g_(dv sludge))x(0.1)xน้ำหนักก้อนหล่อแข็ง/ปริมาตรก้อนหล่อแข็ง

= $(369.41 \text{ mg/g}_{(dry \text{ sludge})})x(0.1)x27.24gx15.10cm³$

= 66.63 mg/cm³ solid

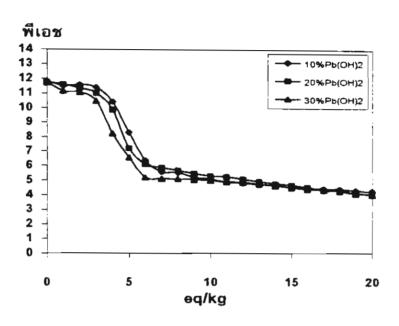
```
ปริมาตรของกรดอะซิติกที่ใช้ชะ
ปริมาตรของกรดต่อพื้นที่ผิวของก้อนตัวอย่าง = 20:1
ดังนั้นในการทดลองการรั่วใหลของโลหะหนักจากก้อนหล่อแข็งของเสียต้องใช้ปริมาณกรดอะซิติก
                                        = 33.38 \text{ cm}^2 \text{x} = 20 \text{cm}^3
                                        = 676.63 \text{cm}^3
Contaminant release per unit surface, Mt (mg/cm²)
Mt = ปริมาณโลหะหนักที่วัดได้ในน้ำชะ(mg/l)xปริมาตรของน้ำชะ(cm³)x(1l/1000cm³)/พื้นที่ผิวตัวอย่างcm²
ดังนั้น ปริมาณ Contaminant release per unit surface
                                        =100 \text{mg/k}676.63 \text{cm}^3 \text{x} (11/1000 \text{cm}^3)/33.38 \text{cm}^2
                                        = 2.0 \text{ mg/cm}^2
Leachable fraction, fmo
                               ปริมาณโลหะหนักที่ถกชะ
leachable fraction =
                         ปริมาณโลหะหนักเริ่มต้นในก้อนตัวอย่าง
โดยที่ ปริมาณโลหะหนักที่ถูกชะ (mg) = <u>ปริมาณโลหะหนักที่วัดได้ในน้ำชะ(mg/l)xปริมาตรของน้ำชะ(cm³)</u>
และปริมาณโลหะหนักเริ่มต้นในก้อนตัวอย่าง = Co(mg/cm<sup>3</sup> said) x ปริมาตรของก้อนตัวอย่างเริ่มต้น (cm3)
ดังนั้น leachable fraction
ของก้อนหล่อแข็ง OPC+ 10%Pb(OH)<sub>2</sub>
       100mg/lx676.63cm<sup>3</sup>
    1000cm<sup>3</sup>
66.63 mg/cm<sup>3</sup> solid x 15.10 cm<sup>3</sup>
```

= 0.067241

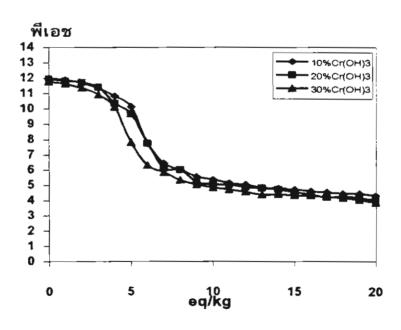
การหาค่า acid exposure, l(t)

acid exposure = acetic acid concentrationxleaching time = Chxt (mol.day/l) ดังนั้นก้อนหล่อแข็ง OPC+10%Pb(OH)₂ ที่ระยะเวลา 1 วัน มีค่า I(1day)

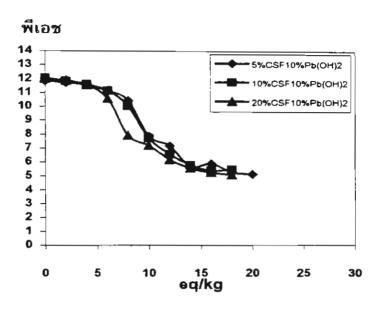
- = 0.2Nx1day
- = 0.2 mol.day/l

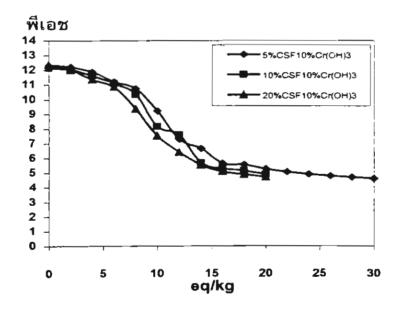

แทนค่าต่างๆ

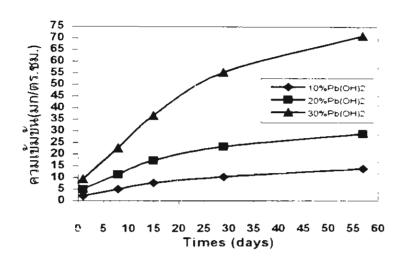
ดังนั้นค่าeffective diffusion coefficient ของก้อนหล่อแข็งของ OPC+10%Pb(OH)₂ ที่ระยะเวลา 1 วัน

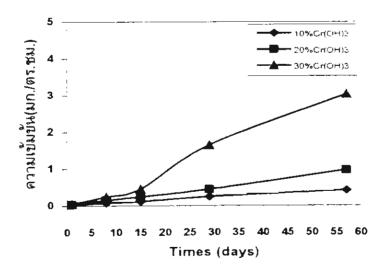

 $(2.000 \text{ mg/cm}^2)^2 \times 0.195404 \text{ kmol-eg/m}^3$

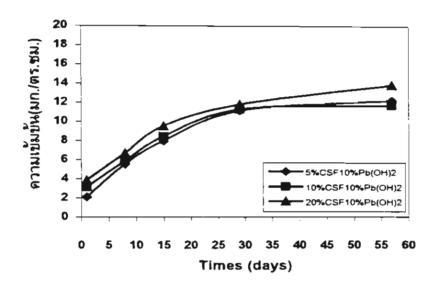
 $2x(66.63 \text{ mg/cm}^3)^2x(0.067241)^2x0.2 \text{ mol-eq/l } x1dayx(86400second/1day)$

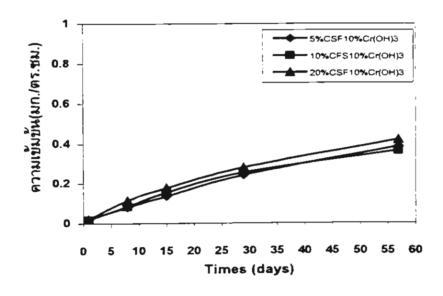

 $1.13 \exp 10^{-6} \text{ cm}^2/\text{s}$


รูปที่ ก-1 ความสามารถในการสะเทินกรดของก้อนหล่อแข็งของเสียที่มีตะกั่วไฮดรอกไซด์ในระดับต่าง ๆ


รูปที่ ก-2 ความสามารถในการสะเทินกรดของก้อนหล่อแข็งของเสียที่มีโครเมียมไฮดรอกไซด์ในระดับต่างๆ


รูปที่ ก-3 ความสามารถในการสะเทินกรดของก้อนหล่อแข็งของเลียที่มีตะกั่วไฮตรอกไซด์ 10 เปอร์เซ็นต์โดยน้ำหนักและผู้นซิลิกาควบแน่นในระดับต่างๆ


รูปที่ ก-4 ความสามารถในการสะเทินกรดของก้อนหล่อแข็งของเสียที่มีโครเมียมใชดรอกไซด์ 10 เปอร์เซ็นต์โดยน้ำหนักและผุ้นซิลิกาควบแน่นในระดับต่างๆ


รูปที่ ก-5 อัตราการรั่วใหลของตะกั่วจากก้อนหล่อแข็งของเสียหลังจากที่สัมผัสกับกรดเป็นเวลาต่าง ๆกัน

รูปที่ ก-6 อัตราการรัวใหลของโครเมียมจากก้อนหล่อแข็งของเสียหลังจากที่สัมผัสกับกรดเป็นเวลาต่าง ๆกัน

รูปที่ ก-7 อัตราการรั่วใหลของตะกั่วจากก้อนหล่อแข็งของเสียไม่ผสมผุ้นชิลิกาควบแน่น หลังจากที่สัมผัสกับกรดเป็นเวลาต่าง ๆกัน

รูปที่ ก-8 อัตราการรั่วไหลของโครเมียมจากก้อนหล่อแข็งของเสียผสมฝุ่นซิลิกาควบแน่น หลังจากที่สัมผัสกับกรดเป็นเวลาต่าง ๆกัน

ตารางที่ ก-1 ความสามารถในการสะเทินกรดของก้อนหล่อแข็งของเสียในสภาวะที่มีและไม่มีการแทนที่ ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่น

ตัวอย่าง	ANC ที่ pH 7 (eq/kg _{solid})	ANC ที่ pH 7 (kmol-eq/m³)
OPC+10%Pb(OH) ₂	6.5	0.195
OPC+20%Pb(OH) ₂	6	0.182
OPC+30%Pb(OH) ₂	5.4	0.161
OPC+10%Cr(OH) ₃	7.3	0.219
OPC+20%Cr(OH)₃	7.1	0.191
OPC+30%Cr(OH)₃	6.1	0.168
OPC+ 5%CSF+10%Pb(OH) ₂	12	0.357
OPC+10%CSF+10%Pb(OH)_	10.4	0.303
OPC+20%CSF+10%Pb(OH) ₂	10.4	0.318
OPC+ 5%CSF+10%Cr(OH) ₃	12.7	0.401
OPC+10%CSF+10%Cr(OH) ₃	12.3	0.368
OPC+20%CSF+10%Cr(OH) ₃	10.3	0.3 26

ตารางที่ ก-2 ขนาดโดยเฉลี่ยของก้อนหล่อแข็งของเสียที่ใช้ในการทดสอบ

ต ัวอย่าง	รัศมี	ความสูง	พื้นที่ผิว	ปริมาตร	น้ำหนัก
	(ชม.)	(ชม.)	(ชม.)	(ສ ນ ³)	(กรัม)
OPC+10%Pb(OH) ₂	1.37	2.57	33.83	15.10	27.24
OPC+20%Pb(OH) ₂	1.37	2.54	33.74	15.04	27.40
OPC+30%Pb(OH) ₂	1.37	2.58	34.05	15.25	27.33
OPC+10%Cr(OH) ₃	1.37	2.56	33.98	15.20	27.34
OPC+20%Cr(OH) ₃	1.39	2.6	34.83	15.77	25.40
OPC+30%Cr(OH) ₃	1.38	2.61	34.58	15.61	25.80
OPC+ 5%CSF+10%Pb(OH) ₂	1.37	2.54	33.64	14.97	26.72
OPC+10%CSF+10%Pb(OH)	1.37	2.66	34.67	15.68	27.39
OPC+20%CSF+10%Pb(OH) ₂	1.35	2.5	32.64	14.31	26.28
OPC+ 5%CSF+10%Cr(OH) ₃	1.35	2.51	32.73	14.36	27.21
OPC+10%CSF+10%Cr(OH) ₃	1.37	2.53	33.55	14.91	26.80
OPC+20%CSF+10%Cr(OH) ₃	1.35	2.45	32.22	14.02	26.66

ตารางที่ ก-3 อัตราการรั่วไหลของตะกั่วและโครเมียมจากก้อนหล่อแข็งของเสียที่ไม่มีการแทนที่ ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่น

ระยะเวลา	อัตราการรัวใหล(มก./ตร.ชม.)					
(days)	10%Рь(ОН);	20%Pb(OH);	30%Pb(OH);	10%Cr(OH)	20%Cr(OH),	30%Cr(OH)
1	2.00	4.94	9.22	0.02	0.03	0.04
8	4.86	11.22	22.46	0.07	0.15	0.24
15	7.70	17.24	36.46	0.11	0.23	0.44
29	10.28	23.24	55.22	0.24	0.43	1.63
57	13.76	28.76	70.96	0.41	0.96	3.02

ตารางที่ ก-4 อัตราการรั่วไหลของตะกั่วและโครเมียมจากก้อนหล่อแข็งของเสียที่มีการแทนที่ ปูนซึเมนต์ด้วยฝุ่นซีลิกาควบแน่น

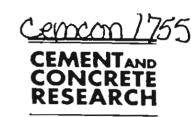
ระยะเวลา	อัตราการรั่วไหล(มก./ตร.ชม.)					
(days)	5%CSF 10%Рь(ОН):	10%CSF 10%Pb(OH) ₅	20%CSF 10%Pb(OH)2	5%CSF 10%Cr(OH):	10%CSF 10%Cr(OH) ₃	20%CSF 10%Cr(OH),
1	2.09	3.14	3.82	0.02	0.02	0.02
8	5.51	5.86	6.67	0.08	0.08	0.11
15	7.92	8.42	9.53	0.14	0.15	0.18
29	11.14	11.27	11.78	0.24	0.25	0.28
57	12.20	11.68	13.84	0.38	0.37	0.42

ตารางที่ ก-5 Leachable fraction ของตะกั่วและโครเมียมจากก้อนหล่อแข็งของเสียที่ไม่มีการแทนที่ ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่น

ระยะเวลา	Leachable fraction (fmo)					
(days)	10%Pb(OH);	20%Pb(OH) ₂	30%Рь(ОН) _:	10%Cr(OH);	20%Cr(OH);	30%Cr(OH),
1	0.068	0.082	0.104	0.0009	0.0009	0.0009
8	0.163	0.187	0.253	0.0039	0.0043	0.0046
15	0.259	0.288	0.410	0.0060	0.0070	0.0087
29	0.346	0.388	0.621	0.0129	0.0130	0.0319
57	0.463	0.479	0.798	0.0224	0.0287	0.0591

ตารางที่ ก-6 Leachable fraction ของตะกั่วและโครเมียมจากก้อนหล่อแข็งของเสียที่มีการแทนที่ ปูนซีเมนต์ด้วยฝุ่นซิลิกาควบแน่น

ระยะเวลา		Leachable fraction (fmo)					
(days)	5%CSF	10%CSF	20%CSF	5%CSF	10%CSF	20%CSF	
	10%Pb(OH) ₂	10%Ръ(ОН) _г	10%Pb(OH) ₂	10%Cr(OH) ₃	10%Cr(OH) ₃	10%Cr(OH);	
1	0.071	0.107	0.129	0.0010	0.0009	0.0011	
8	0.188	0.201	0.224	0.0042	0.0046	0.0060	
15	0.270	0.288	0.320	0.0071	0.0084	0.0093	
29	0.380	0.386	0.396	0.0127	0.0139	0.0147	
57	0.416	0.400	0.465	0.0203	0.0200	0.0222	


ภาคผนวก ข

ผลงานวิจัยที่เผยแพร่ในวารสารวิชาการ

Pergamon

RETURN THIS PROOF WITH YOUR CORRECTIONS WITHIN 48 HOURS TO

Cement and Concrete Research (2001) 1-6

ence of condensed silica fume on the properties of cement-based solidified wastes

Suwimol Asavapisita, Weena Nanthamontrya, Chongrak Polprasertb

womental Technology Division, School of Energy and Materials, King Mongkut's University of Technology Thonburi, Bang mod, Tasburana,
Bangkok 10140, Thailand

cipl of Environment, Resources, and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Patumthani 12120, Thailand

Received 26 June 2000; accepted 11 May 2001

was investigated. Final setting, unconfined compressive strength, and leachability of the synthetic lead and chromium hydroxides remined. CSF was used at 0, 5, 10, and 20 wt.%. substitution for Portland cement. A water-to-solid ratio (w/s) of 0.45 was used for Experimental results showed that the severe retardation effect on ordinary Portland cement (OPC) hydration caused by lead to has been minimized due to the pozzolanic effect and, as a result, the time to final setting has been significantly reduced. In prompressive strength of the solidified wastes was increased to the highest with 10% cement replacement but decreased to lower than evithout CSF at 20% replacement. Leaching of the amphoteric lead and chromium hydroxides is primarily determined by leachate pH nefore lead was found in the leachates at higher concentration than chromium. © 2001 Elsevier Science Ltd. All rights reserved.

in: Stabilization/solidification; Condensed silica fume; Portland cement; Strength; Leachability

moduction

Common controlling the quality of cement-based solidified to products [1-6].

he most important factor in determining whether a icular cement-based S/S process is effective in treating ven waste is the reduction in the short- and long-term hing of the waste. Leaching involves solubilization of ties present in solid phases into the pore water and their sport through the network of connected pores within the 1 into the bulk leachant by diffusion [7-9]. Porosity and

pore size distribution have been reported to influence water permeability of cement pastes. Low permeability is associated with low porosity and pore size distributions that are fine enough to minimize the transport of fluids and ions into and from the material [10-13].

The chemistry of S/S waste also plays a key role in controlling leaching. The presence of calcium hydroxide maintains high pH conditions in the pore water and this ensures that waste components such as heavy metals present as hydroxides will remain insoluble [7]. The ingression of acidic leachant into the pore water disturbs the chemical equilibrium formed with the surrounding solids and this results in solubilization of insoluble metals. Calcium hydroxide, which is the most readily available alkali material in the solidified waste, is rapidly leached out [14]. This dissolution of calcium hydroxide into the pore water results in an increasing degree of capillary pore connectivity and leads to further ingress and exposure of CSH gel, calcium hydroxide, and encapsulated waste to the leachant.

The replacement of Portland cement by pozzolanic materials such as silica fume, fly ash, and blast furnace slag is known to result in the consumption of calcium hydroxide and alkali during pozzolanic reactions. This contributes to

Corresponding author. Tel.: +66-2-470-8652; fax: +66-2-470-8660. [-mail address: suwimol.asa@kmutt.ac.th (S. Asavapisit).

1.	igns	1227	9/_1
11	14.112	ı wı.	/0/

(CSF (g)	$Pb(OH)_2$ (g)	$Cr(OH)_2$ (g)	w/s
	0	0	0	0.45
	5	0	0	0.45
	10	0	0	0.45
	20	0	0	0.45
1	0	10	0	0.45
1	5	10	0	0.45
	10	10	0	0.45
i	20	10	0	0.45
- 1	0	0	10	0.45
	5	0	10	0.45
	10	0	10	0.45
	20	0	10	0.45

poduction of secondary CSH gel to fill the void space cuses further reduction of capillary pores [15–18]. It is each that the addition of condensed silica fume (CSF) rodify the chemical composition of the solidified waste duts by providing a neutral to mild alkaline environment of the encapsulated wastes. As a result, the concensic gradient between the pore water in the solidified and the water quality of the surroundings is minimal and therefore leading to reduce leaching of the wastes]. In this work, the effects of CSF on final setting, so fined compressive strength, and leaching characteristic cement-based solidified wastes were investigated.

Eperimental procedure

. faterials

Odinary Portland cement (OPC) Type 1 was supplied by e iam Cement Public and the CSF is from the Microic; JV in Australia.

Lad and chromium hydroxides were prepared by presition from 1 M lead nitrate and chromium nitrate into the lift the solution. The slurries of lead and chromium divides were thoroughly mixed to achieve pH values 5 ± 0.1 and 7.5 ± 0.1 . The slurry was vacuum filtered togh Whatman No. 1 filter paper and the filter cake was in evernight at 105° C before being ground to a particle teof 500 μ m.

?Sample preparation

olidified waste samples were prepared by mixing 5, 10, 20 wt.% of CSF and 10 wt.% of synthetic lead and minum hydroxides with OPC. A water-to-solid ratio (w/f 0.45 was used to maintain good workability during sferring the sample into a cylindrical plastic mould. The designs are summarized in Table 1. The slurry was ded following the standard test method ASTM C 305-94 achieve a uniform distribution of the solidification

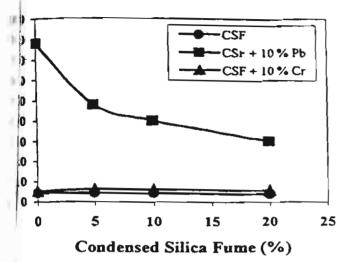
binders and the metal waste before being transferred to the plastic mould. The cement solidified metal wastes were allowed to solidify in the sealed plastic moulds to avoid carbonation prior to testing.

2.3. Time of setting of hydraulic cement by Vicat needle

The standard test method ASTM C 191-92 was modified to determine the time of setting of the cement metal waste mixes. The cement metal waste mixes were prepared at w/s ratio of 0.45. The mixture was then transferred into the ring and the excess mix was removed. The penetration of the needle into the samples was determined every 15 min. The final setting time was obtained when the needle did not sink visibly into the mix.

2.4. Unconfined compressive strength

The unconfined compressive strength of the solidified wastes was done following ASTM D 1633-96. A cylindrical sample with diameter of 50 mm and height of 100 mm was used. The compressive strength of the solidified waste samples was determined after curing for 1, 3, 8, 15, 29, 57, and 91 days. A set of five samples was used for compression test at each curing duration and the arithmetic average was made from five observations.


2.5. Dynamic leach test

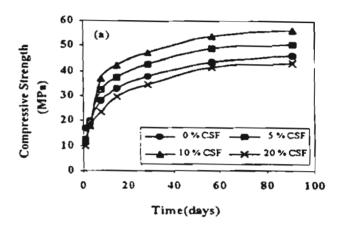
Metal leaching from the solidified wastes was assessed using a modified ANSI/ANS 16.1 leach test on the samples cured for 28 days. Cylindrical samples (25 mm diameter and 25 mm height) were suspended in a plastic net in 0.2 N acetic acid solution, at a leachant volume-to-surface area ratio of 20:1. The leachates were removed to determine the pH and metal concentration was analyzed using atomic absorption spectrophotometry. Leachant was replaced periodically after intervals of static leaching. The leachants were renewed at 1, 8, 15, 29, and 57 days, in order to produce severe leaching conditions and allowing assessment of leaching performance over long time periods. Leach testing was done in duplicate to ensure the reproducibility of the data.

3. Results and discussion

3.1. Final setting of the solidified wastes

The effects of CSF on final setting of the cement metal waste mixes are shown in Fig. 1. The time to final set of control OPC was found to increase from 4 to 4.25 h when 5 wt.% of CSF was used, but it decreased to 4 and 3.75 h with 10 and 20 wt.%, respectively, substitution for Portland cement. A similar effect of CSF on the final setting time of OPC-Cr mixes was observed. It was noticed that the

ffect of CSF on final setting of cement-based solidified wastes.


the control OPC and OPC-Cr mix when compared of the OPC-Pb mix.

ad hydroxide has been reported to cause severe hydratardation of OPC [1,4]. For a 10-wt.% addition of lydroxide to OPC, an increase in final setting time nt to 78 h has been observed. Lead, which is an olderic metal, is extensively resolubilized in a highly alle environment of cement and is adsorbed onto the iring surface of cement clinker particles and therefore in the availability of water for hydration reactions [1]. It sibserved that the time to final set of OPC-Pb mixes pased from 78 to 48, 40 and 30 h when the CSF was at 0, 5, 10, and 20 wt.% replacement for Portland ant, respectively. The consumption of calcium hydrodand alkali by CSF during pozzolanic reactions reduced elkalinity of the OPC-Pb system. It was possible that eeduction in alkalinity decreased the resolubilization of ahydroxide and reduced the interfering effect on hydraoretardation.

Unconfined compressive strength of solidified wastes

Fig. 2a-c show the effect of 0, 5, 10, and 20 wt.% alacement of CSF for Portland cement on the compressive ength of the solidified wastes during the 1- to 91-day ring periods. The results clearly show no significant effect CSF on compressive strength during the 1 to 3 days of ring (Fig. 2a). The hardened cement incorporating 5- and 1-wt.% substitution during the 3 to 91 days of curing had gher strength than that of the control. From this investigation, the highest strength was obtained at the replacement red of 10% with an increased strength of about 33%, 25%, and 22% gained at the curing ages of 8, 29, and 91 days, spectively. This was considered to be the beneficial effects f pozzolanic reactions on strength, which occurred mostly uring these curing durations [20].

In addition, a reduction in strength of the specimens with 20% cement replacement by CSF was observed. It was possible that the CSF, an extremely fine particle, acted as filler and occupied the pore space. The reduced pore space in the OPC/CSF systems probably affected both the OPC hydration and the pozzolanic reactions. This is because hydration products can only grow and occupy the space available to them. Hydration will cease

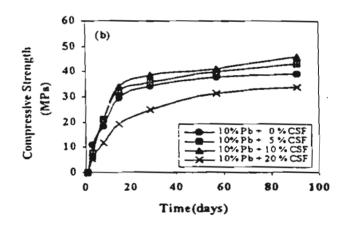
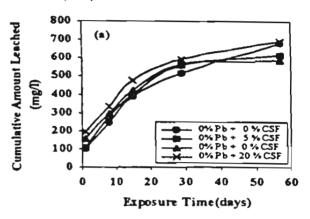


Fig. 2. Strength development of the solidified waste at different CSF content: (a) OPC/CSF mixes, (b) OPC/CSF/Pb mixes, and (c) OPC/CSF/Cr mixes.

are space is filled [21]. This effect probably and to the lower degree of hydration and caused reduction.

fir effects of CSF on strength were observed for IL/CSF/Pb and OPC/CSF/Cr systems, as shown in and c. Compressive strengths of the specimens in the of Pb and Cr hydroxides were lower than those invaste at all levels of cement replacement by CSF. two possible explanations to this observation. The s at interfering effects caused by Pb and Cr hydroadsorption onto the hydrating surface of cement marticles incorporated into the CSH gels [1]. As a these CSH gels are different from those obtained inrmal cement hydration. Another explanation is that viration of clinkers in the presence of lead nitrate an increase gel formation. This increased gel ann was associated with volume change in the speci-, rading to microcracking and therefore a decrease in pissive strength [22].

Inchability of metals from solidified wastes


the pH of the solidified wastes after each interval of the to 0.2 N acetic acid is shown in Table 2. The mative amount of lead and chromium leached from the died wastes as a function of exposure duration is seted in Fig. 3a-b.

It pH of leachants from the control OPC/Pb systems and from an initial pH of 2.9 to approximately between ad 4.8 after each interval of static leaching (Table 2), icrease of leachant pH was a result of dissolution of cim hydroxide produced in large quantities during the dition reactions of OPC. Calcium hydroxide and the ph of the pore water provided a buffering capacity to blidified waste forms against acid attack [9].

Smilar variations in leachate pH were observed for the P/CSF/Pb and OPC/CSF/Cr systems except that leachate Hwere lower than that without CSF. This is because hum hydroxide, an OPC hydration product, was partly onumed by CSF during pozzolanic reactions and therefore

thate pH of the solidified wastes at each interval of exposure

	Leachate pH						
uple (% CSF)	Initial	Day 1	Day 8	Day 15	Day 29	Day 57	
IJPb system							
5	2.9	4.4	4.8	4.6	4.5	4.4	
1	2.9	4.1	4.6	4.5	4.4	4.4	
1	2.9	4.1	4.6	4.4	4.4	4.4	
	2.9	4.0	4.4	4.4	4.4	4.3	
C/Cr system							
	2.9	4.3	4.6	4.6	4.4	4.3	
	2.9	4.2	4.6	4.5	4.4	4.4	
	2.9	4.2	4.5	4.5	4.4	4.4	
	2.9	4.2	4.4	4.4	4.3	4.3	

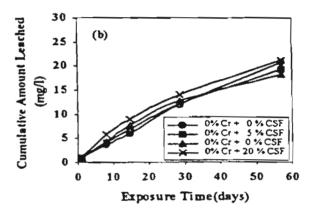


Fig. 3. Cumulative amount of heavy metals leached from the solidified wastes: (a) OPC/CSF/Pb and (b) OPC/CSF/Cr systems.

the acid neutralization capacity of the systems with CSF was decreased. The development of secondary CSH during pozzolanic reactions between CSF and calcium hydroxide resulted in an increased amount of isolated pores and a shift to finer pores. This also affects acid neutralization capacity due to increased resistance to the diffusion of available alkalinity [23].

The cumulative amounts of Pb leached from the solidified waste after leaching for 57 days were 678, 610, 584, and 692 mg/l at 0%, 5%, 10%, and 20% cement replacement, respectively (Fig. 3a). During leaching tests of the monolithic samples, the ingress of the acetic acid leachant through the open and connected porosity led to a reduction in the pH of the internal pore water causing desorption and resolubilization of heavy metals.

Unlike lead hydroxide, the concentration of chromium cumulated in leachates during each interval of static leaching was much lower (Fig. 3b). This was because lead and chromium hydroxides are amphoteric metals and their solubilities are strongly dependent on leachate pH [7,8]. Lead and chromium hydroxides have minimum solubility around pH 9.5 and 7.5, respectively, whereas the leachate pH of the solidified wastes were between 4.0 and 4.8. The pH difference between the minimum solubility of lead hydroxide and the leachates was large com-

that of chromium hydroxide. As a result, lead was from the solidified waste products at a higher rate formium.

eabove data clearly indicated that there was no unit effect of CSF on leaching characteristics of lead homium when 5 and 10 wt.% of CSF were used, elease was determined by chemical interactions in the material and the leachant and by the microaal properties of the material. The resistance of a materix to acid attack depended on porosity, tortuos-tolbility, and acid neutralization capacity of the matrix ocents. In particular, acid neutralization capacity was that to have a major influence on the rate of contamilaching [7,23].

oclusions

- If following conclusions can be drawn from this emental study:
- SF had a significant effect on final setting of the C'b samples. The final setting of OPC/Pb mixes resed with increasing level of cement replacement from 30 wt.%. This is because the consumption of calcium incide by CSF during pozzolanic reactions reduced the ality of the OPC/Pb systems. As a result, the interfering et on hydration retardation caused by lead hydroxide seduced.
- •The highest compressive strength was obtained at the %replacement of cement by CSF, but decreased at the %cement replacement. It was possible that the excess Foccupied the pore spaces and reduced the available at for the hydration products and therefore limiting the stet of hydration.

Leaching of the amphoteric lead and chromium hydroids was strongly influenced by leachate pH.

The replacement of cement by CSF resulted in edcing acid neutralization capacity of the solidified waste rduct. There are two possible explanations to this bervation. The reduced calcium hydroxide, which was ally consumed by CSF during pozzolanic reactions, esited in decreasing acid neutralization capacity of the yems with CSF. Another explanation is that the development of the secondary CSH during pozzolanic reactions calted in an increased amount of isolated pores and finer sees in the solidified product. This affects acid neutralization capacity due to increased resistance to the diffusion of milable alkalinity.

• Leachability of lead hydroxide was 30 times higher that of chromium hydroxide, despite a similar variation leachate pH for both OPC/CSF/Pb and OPC/CSF/Cr (stems. This was because leachate pH of the OPC/CSF/) samples were much lower than the minimum solubility if of lead hydroxide itself and therefore lead hydroxide as likely to be resolubilized more into the leachates.

Acknowledgments

The authors would like to thank the Department of Civil Engineering and the Department of Civil Technology Education, King Mongkut's University of Technology Thonburi, for providing access to their laboratories and for their assistance with the experiments. The authors would also wish to gratefully acknowledge the Thailand Research Fund for provision of financial support to this work.

References

- [1] S. Asavapisit, G. Fowler, C.R. Cheeseman, Solution chemistry during cement hydration in the presence of metal hydroxide waste, Cem. Concr. Res. 27 (1997) 1249-1260.
- [2] R.A. Hanna, P.J. Barrie, C.R. Cheesernan, C.D. Hills, P.M. Buchler, R. Perry, Solid state ²⁹Si and ²⁷Al NMR and FTIR study of cement pastes containing industrial wastes and organics, Cem. Concr. Res. 25 (1995) 1435-1444.
- [3] C.D. Hills, L. Koe, C.J. Sollars, R. Perry, Early heat of hydration during the solidification of a metal plating sludge, Cern. Concr. Res. 22 (1992) 822-832.
- [4] F.K. Cartledge, L.G. Butler, D. Chalasani, H.C. Eaton, F.P. Frey, E. Herrera, M.E. Tittlebaum, S.L. Yang, Immobilization mechanisms in solidification/stabilization of Cd and Pb salts using Portland cement fixing agents, Environ. Sci. Technol. 24 (1990) 867-873.
- [5] C. Tashiro, H. Takahashi, M. Kanaya, I. Hirakida, R. Yoshida, Hard-ening property of cement mortar adding beavy metal compound and solubility of heavy metal from hardened mortar, Cem. Concr. Res. 7 (1979) 283-290.
- [6] C.S. Poon, A.I. Clark, R. Perry, Investigation of the physical properties of cement-based fixation processes for the disposal of toxic wastes, Public Health Eng. 13 (1985) 108-110.
- [7] H.A. van der Sloot, G.J. de Groot, J. Wijikstra, Leaching characteristics of construction materials and stabilization products containing waste materials, in: T.M. Gilliam, C.C. Wiles (Eds.), Environmental Aspects of Stabilization and Solidification of Hazardous and Radioactive Wastes, ASTM Spec. Tech. Publ. 1033, American Society of Testing and Materials, Philadelphia, 1989, pp. 125-149.
- [8] J.A. Stegemann, R.J. Caldwell, C. Shi, Laboratory and field leaching of solidified wastes, in: J.M. Cases, F. Thomas (Eds.), Proceedings of the International Congress on Waste Solidification—Stabilization Process, Nancy, France, 1995, pp. 339-343.
- [9] K.Y. Cheng, P.L. Bishop, Morphology and pH changes in leached solidified/stabilized waste forms, in: T.M. Gilliam, C.C. Wiles (Eds.), Stabilization and solidification of hazardous, radioactive, and mixed wastes, ASTM Spec. Tech. Publ. 1240, American Society of Testing and Materials, Philadelphia, 1996, pp. 73-79.
- [10] P.K. Mehta, D. Manmohan, Pore size distribution and permeability of hardened cement pastes, Proc. 7th Int. Congr. Chem. Cem., Paris III, 1980, pp. VII-1-VII-5.
- [11] B.K. Nyame, J.M. Illston, Capillary pore structure and permeability of hardened cement paste, Proc. 7th Int. Congr. Chem. Cem., Paris III, 1980, pp. VI-181-VI-185.
- [12] I. Odler, M. Robler, Investigation on the relationship between porosity, structure and strength of hydrated Portland cement pastes: II. Effect of pore structure and of degree of hydration, Cem. Concr. Res. 15 (1985) 401-410.
- [13] J.F. Young, A review of the pore structure of cement paste and concrete and its influence on permeability, in: D. Whiting, A. Walitt (Eds.), Permeability of Concrete, Am. Concr. Inst., SP 108-1, American Concrete Institute, Detroit, MI, 1988.

vertégat, C. Richet, P. Gégout, Effect of pH on the durability of d pastes, Cem. Concr. Res. 22 (1992) 259-272.

gataki, C. Wu, A study of the properties of Portland cement rorating silica fume and blast furnace slag, in: V.M. Malhotra. Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, tedings of the Fifth International Conference, Milwaukee, Wist, USA, 1995, pp. 1051-1068.

ang, D.M. Roy, Microstructural aspects of high-performance rent-based materials, Mates. Res. Soc. Symp. Proc. 370 (1995) 124.

Touse, T.A. Bier, C.A. Knepfler, J.F. Young, R.L. Berger, Pore source of low porosity DSP cement pastes, Mater. Res. Soc. Symp. 137 (1989) 449-456.

Young, Dense high strength, low permeability cement-based ma-

Floung, Dense high strength, low permeability cement-based maris for containment, in: R.W. Piggott (Ed.), Cement Industry Soluto Waste Management, 1992 (Calgary, Alberta, Canada).

van der Sloot, D.S. Kosson, P.A.J.P. Cnubben, D. Hoede, O.

- Hjelmar, Waste characterization to modify waste quality prior to disposal, in: S. Margherita di Pula (Ed.), Proceeding Sardinia 97, Sixth International Landfill Symposium, Cagliari, Italy, 1997, pp. 315-328.
- [20] P.K. Mehta, Condensed silica fume in concrete technology and design, in: R.N. Swamy (Ed.), Cement Replacement Materials, vol. 3, Surrey Univ. Press, 1995, pp. 134-170.
- [21] E.H. Atlassi, Nonevaporable water and degree of cement hydration in silica fume-cement systems, in: V.M. Malhotra (Ed.), Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Proceedings of the Fifth International Conference, Milwaukee, Wisconsin, USA, 1995, pp. 703-717.
- [22] N.McN. Alford, A.A. Rahman, N. Salih, The effect of lead nitrate on the physical properties of cement pastes, Cem. Concr. Res. 11 (1981) 235-245.
- [23] C.R. Cheeseman, S. Asavapisit, J. Knight, Effect of uniaxially pressing ordinary portland cement pastes containing metal hydroxides on porosity, density, and leaching, Cem. Concr. Res. 28 (1998) 1639-1653.

Author Query Form

Aicle No.: 1755

ed Author,
ung the preparation of your manuscript for typesetting some questions have arisen. These are listed below. Please bek your typeset proof carefully and mark any corrections in the margin of the proof or compile them as a separate st This form should then be returned with your marked proof/list of corrections to Capital City Press. Please use black thorall comments on proofs and other documents.
i) ik use
nome instances we may be unable to process the electronic file of your article and/or artwork. In that case we have, officiency reasons, proceeded by using the hard copy of your manuscript. If this is the case the reasons are indicated new:
Disk damaged
W have proceeded as follows:
☐ Manuscript scanned ☐ Manuscript keyed in ☐ Artwork scanned ☐ Files only partly used (parts processed differently:)
Boliography
Iffiscrepancies were noted between the literature list and the text references, the following may apply: The references listed below were noted in the text but appear to be missing from your literature list. Please complete the list or remove the references from the text.
Uncited references. This section comprises references which occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section.
Averies and/on remarks

deries allu/of Telliai Ks

Yanuscript age/line	Details required	Author's response
	Please provide the publisher's name and location of Refs. 8, 15, 19, and 21.	
	Please provide the page range of Refs. 13 and 18.	
	Please provide the publisher's name of Ref. 18.	
	Please provide the publisher's location of the Surrey Univ. Press in Ref. 20.	

Offices of Lead and Chromium Hydroxides on Cement-Based Solidified Waste Properties

Suwimol Asavapisit, Manop Boonjam

Environmental Technology Division, School of Energy and Materials, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

Chongrak Polprasert

School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Patumthani 12120, Thailand

Abstract

Experiments were completed to investigate the effects of synthetic lead and chromium hydroxides the properties of cement-based solidified wastes. Synthetic lead and chromium hydroxides have een mixed with Ordinary Portland Cement at 10, 20 and 30 % by weight and a water-to-solid ratio of 45 has been used throughout the experiments. The final setting, strength development and metal achability of the solidified wastes were determined using vicat needle, unconfined compressive rength and a modified ANSI/ANS-16.1 respectively. It was found that the addition of lead and hromium hydroxides interferes with the normal hydration reaction of OPC by prolonging the final etting time from 4 hours to 78 and 100 hours at 10 and 20% by wt. addition of lead hydroxide and etting was not observed up to 150 hours when a 30 % by wt. was added. Chromium hydroxide also auses similar interference but the effect is significantly less than that of lead hydroxide. The sydration retardation caused by the addition of lead and chromium hydroxide results in the nicrostructural development of the solidified wastes to be different from that of normal cement sydration and therefore the compressive strength of the solidified wastes has been reduced. Leaching of lead and chromium from the solidified wastes is determined primarily by leachate pH. The ingression of acidic leachant through connected porosity of the solidified wastes causes desorption and resolubilization of lead and chromium.

Keyworks: Stabilization/Solidification, lead, chromium, Portland cement, setting, strength, leachability

1. Introduction

There has been increasing concern in recent years associated with the management and disposal of hazardous industrial wastes and the control of their potential impact on both public health and the environment. This has led to the introduction of waste related laws and regulations in many countries which have controlled the disposal options available for hazardous wastes and made waste producers and waste management companies develop more environmentally safe disposal methods. Consequently there will be significant emphasis on the elimination of hazardous wastes from

manufacturing processes and increased reliance on reuse and recycling

Stabilization/solidification (S/S) processes are potential treatments for the hazardous wastes produced by a range of different industries. Wastes suitable for this form of treatment include many types of industrial sludges and treatment residues which contain high levels of inorganic components but relatively low levels of organics. The technology aims to prevent the release of hazardous components from the solidified wastes after disposal in a landfill by limiting the solubility and mobility of the This results from contaminants. transformation of the waste into a monolithic solid material and the chemical interactions

eveen the waste and the solidification binders radditives. The chemical changes that take the as a result of the interaction between waste apponents and Portland cement play an nortant role in controlling the quality of ent-based solidified waste products [1-6].

Current solidification processing normally polves simply mixing wastes with binders, and in generally produces relatively poor materials. By are mechanically very weak in comparison with structural concretes and their information normally contain high levels of posity [7]. Slight variations in process in in increase consisting the product of the pro

The leachability of waste constituents from enent-based S/S products after landfilling is th most important factor determining the exctiveness of the treatment process. Leaching prontaminants may occur when cement-based S products are in contact with landfill chate. Several leach testing procedures have ben developed to simulate the landfill evironment and take into account the mnolithic nature of S/S wastes [9]. These tests aess both the short and long-term evironmental impact due to leaching of hzardous constituents from S/S treated wastes. lithis work, the interfering effects on setting thes, strength development and leachability of cment-based solidified waste forms caused by to addition of lead and chromium hydroxide wre investigated.

Materials and methods

1 Synthetic Lead and Chromium Hydroxides

Lead and chromium hydroxides were repared by precipitation from 1M lead nitrate and chromium nitrate solution by adding 10M adium hydroxide to control the pH of the plution. The slurries of lead and chromium ydroxides were thoroughly mixed to achieve a H of 9.5 ± 0.1 and 7.5 ± 0.1 . The slurry was acuum filtered through Whatman No.1 filter aper and the filter cake dried overnight at 05° C before being ground to a particle size of < $00~\mu$ m.

2.2 Sample Preparation

Solidified waste samples were prepared by mixing synthetic lead and chromium hydroxides with OPC at 10, 20 and 30% by weight. A water to solid ratio of 0.45 was used to maintain good workability when transferring the sample into a cylindrical plastic mould. The slurry was mixed following the standard test method ASTM C 305-94 to achieve a uniform distribution of metal waste before being transferred to the plastic mould. The cement solidified metal wastes were allowed to solidify in the sealed plastic moulds to avoid carbonation prior to testing.

2.3 Time of Setting of Hydraulic Cement by Vicat Needle

The standard test method ASTM C 191-92 has been modified to determine the time of setting of cement metal waste mixes. The cement metal waste mixes were prepared at w/s ratio of 0.45. The mix was then transferred into the ring and the excess mix was removed. The penetration of the needle was determined every 15 minutes for the control cement paste and every 30 minutes for the cement metal waste mix. The final setting time is obtained when the needle does not sink visibly into the mix.

2.4 Unconfined Compressive Strength

The unconfined compressive strength of the solidified wastes was done following ASTM D 1633-96. The size of the cylindrical sample was modified to a diameter of 50 mm. and height of 100 mm. The compressive strength of the solidified waste samples was determined after curing for 1, 3, 8, 15, 29, 57 and 91 days.

2.5 Dynamic Leach Test

Metal leaching from the solidified wastes has been assessed using a modified ANSI/ANS 16.1 leach test on the samples cured for 28 days. Cylindrical samples (25 mm. diameter and 25 mm. height) were suspended in a plastic net in 0.2N acetic acid solution, at a leachant volume to surface area ratio of 20:1. The leachates were removed to determine the pH and metal concentration and the leachant was replaced periodically after intervals of static leaching. The leachants were renewed at 1, 8, 15, 29 and 57 days. This produces severe leaching conditions and allows assessment of leaching performance over longer time periods.

Results and Discussion

Time of Setting of the Solidified Wastes

Time of setting of ordinary Portland cement (PC) in the presence of 10, 20 and 30% by sight of synthetic lead and chromium droxides are presented in Figure 1 and 2. The fal setting time of mixes with 10 and 20% by additions of lead hydroxide were 78 and 100 hurs compared to 4 hours for control OPC hereas those mixes with 10, 20 and 30% by wt. adition of chromium hydroxide were 5, 6.5 and b hours respectively. It is noticed that the final sting time of the lead doped OPC is much Inger than that of the chromium doped OPC ad the final setting had not occurred up to 150 hurs of observation when a 30% by wt. of lead droxide was added. This suggests that lead Idroxide causes more interference on normal Idration of OPC than chromium hydroxide.

Both lead and chromium hydroxides are aphoteric metals which were extensively solubilized under highly alkali environment of ment and adsorbed onto the hydrating surfaces cement clinker particles causing hydration tardation [1, 10]. It is possible that the isorption of hydroxy lead ion onto the ydrating surfaces of cement clinker particles ads to the formation of less permeable coatings hich cause more severe retardation of normal ement hydration than that of chromium.

.2 Unconfined Compressive Strength of the Solidified Wastes

Figure 3 and 4 show the compressive trength of the solidified wastes doped with 10, 0 and 30% by weight of lead and chromium hydroxides as a function of curing time. The interfering effect of lead and chromium hydroxides on OPC hydration results in a lower ate of strength development of the solidified waste forms compared to control hardened between the two found that strength has not been developed during the first day of curing when lead hydroxide was added at 10 and 20% by weight, and up to 3 days of curing with 30% by weight addition.

It was also noticed that there is a decrease in compressive strength of the solidified waste forms with an increase in the concentration of lead and chromium hydroxides addition. It is possible that lead and chromium hydroxides which were adsorbed onto the hydrating surface of cement clinker particles were incoporated into the CSH gels. It was reported that hydration of clinkers in the presence of 16% by weight of lead nitrate induced an increased gel formation [11]. This increased gel formation is associated with volume change in the solidified waste forms which leads to micocraking and as a result, a decrease in compressive strength was observed.

3.2 Leachability of Metals from the Solidified Wastes

Leachate pH of the solidified wastes after each interval of exposure is shown in Table 1. The cumulative amount of lead and chromium leached from the solidified wastes as a function of exposure duration is presented in Figure 5 and 6.

The pH of leachants from control OPC samples changed from an initial pH of 2.9 to approximately between 4.2 and 4.7 at different exposure duration. Similar variations in leachate pH were observed for both lead and chromium doped OPC samples. An increase of leachant pH is a result of dissolution of calcium hydroxide which is produced in large quantities during the hydration reactions of OPC. Calcium hydroxide and the high pH of the pore water provide a buffering capacity to the solidified waste forms against acid attack [12].

The cumulative amounts of lead and chromium leached from the solidified wastes in the presence of 10, 20 and 30% by weight of lead and chromium hydroxides after leaching for 57 days were 688, 1,438, 3,548 and 21, 48, 151 Metal hydroxides are mg/l respectively. amphoteric metals and their solubilities are strongly dependent on leachate pHs [13]. Lead and chromium hydroxides have minimum solubility around pH 9.5 and 7.5 whereas leachate pHs of the solidified wastes were between 4.4 and 4.8. The difference between minimum solubility of lead hydroxide and leachate pH is large compared to that of chromium hydroxide. As a result, lead was released from the solidified wastes at a higher rate than chromium.

It is also possible that lead hydroxide causes more severe hydration retardation than chromium hydroxide and this results in poor microstructural development of the solidified wastes which contain a high level of porosity. During leaching tests of monolithic samples the ingress of the acetic acid leachant through the

the pH of the internal pore water causing orption and resolubilisation of heavy metals.

Conclusions

The following conclusions can be drawn from this work:

- Lead hydroxide causes more severe hydration retardation than chromium hydroxide as is indicated by the longer final setting time and lower rate of strength development of the solidified wastes.
- The interfering effects caused by the addition of lead and chromium hydroxides increase with the increasing addition of heavy metals.
- Lead and chromium hydroxides interfere with the norma! cement hydration by adsorption onto the hydrating surface of cement clinker particles and thus reducing the inward diffusion of water to the cement grains.
- Compressive strength of the solidified wastes decreased with increasing waste loading. Although strength requirements for solidified wastes are not as important as those for structural concretes, failure to obtain adequate strength is an indicator of a poor microsturcture and may be expected to lead to increase leaching.
- Leaching of the amphoteric lead and chromium from the solidified wastes is strongly dependent on leachate pH.

Acknowledgements

The authors would like to acknowledge Thailand Research Fund for provision of financial support to this work. The Department of Civil Engineering and Department of Civil Technology Education. Faculty of Engineering, KMUTT are also deserved appreciation for providing access to their laboratories and for their assistance with the experiments.

6. References

[1] Asavapisit, S., Fowler, G. and C. R. Cheeseman, Solution Chemistry during Cement Hydration in the Presence of Metal Hydroxide Astes, Cement and Concrete Research, Vol. 27, pp. 1249-1260, 1997.

- [2] Hanna, R. A., Barrie, P. J., Cheeseman, C. R., Hills, C. D., Buchler, P. M. and R. Perry, Solid State ²⁹Si and ²⁷Al NMR and FTIR Study of Cement Pastes Containing Industrial Wastes and Organics, Cement and Concrete Research, Vol. 25, pp. 1435-1444, 1995.
- [3] Hills, C. D., Koe, L., Sollars, C. J. and R. Perry, Early Heat of Hydration During the Solidification of a Metal Plating Sludge, Cement and Concrete Research, Vol. 22, pp. 822-832, 1992.
- [4] Cartledge, F. K., Butler, L. G., Chalasani, D., Eaton, H. C., Frey, F. P., Herrera, E., Tittlebaum, M. E. and S. L. Yang, Immobilisation Mechanisms in Solidification/Stabilisation of Cd and Pb Salts Using Portland Cement Fixing Agents, Environ. Sci. Technol, Vol. 24, pp. 867-873, 1990.
- [5] Tashiro, C., Takahashi, H., Kanaya, M., Hirakida, I. and R. Yoshida. Hardening Property of Cement Mortar Adding Heavy Metal Compound and Solubility of Heavy Metal From Hardened Mortar, Cement and Concrete Research, Vol. 7, pp. 283-290, 1979.
- [6] Poon, C. S., Clark, A. I. and R. Perry, Investigation of the Physical Properties of Cement-Based Fixation Processes for the Disposal of Toxic Wastes, Public Health Engineer, Vol. 13, pp. 108-110, 1985.
- [7] Cheeseman, C. R., Asavapisit, S. and J. Knight, Effect of Uniaxially Pressing Ordinary Portland Cement Pastes Containing Metal Hydroxides on Porosity, Density, and leaching, Cement and Concrete Research, Vol. 28, pp. 1639-1653, 1998.
- [8] Wiles, C. C. and E. Barth, Solidification/ Stabilization: Is It Always Appropriate?, In: Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, Gilliam, T.M. and Wiles, C.C. (Eds.), ASTM STP 1123, American Society of Testing and Materials, Philadelphia, pp. 18-32, 1992.
- [9] Means, J. L., Smith, L. A., Nehring, K. W., Brauning, S. E., Gavaskar, A. R., Sass, B. M., Wiles, C. C. and C. I. Mashni, The Application of Solidification/ Stabilization to Waste Materials, Lewis Publishers, U.S.A., 1995.

- 0] Fendorf, S. E., Lamble, G. M., Stapleton, M. G., Kelley, M. J. and D. L. Sparks, Mechanisms of Chromium (III) Sorption on Silica. 1. Cr(III) Surface Structure Derived by Extended X-ray Absorption Fine Structure Spectroscopy, Environ. Sci. Technol., Vol. 28, pp. 284-289, 1994.
- 11] Alford, N. McN., Rahman, A. A. and N. Salih, The Effect of Lead Nitrate on the Physical Properties of Cement Pastes, Cement and Concrete Research, Vol. 11, pp. 235-245, 1981.
- 12] Cheng, K. Y. and P. L. Bishop, Morphology and pH Changes in Leached Solidified/Stabilized Waste Forms, In: Stabilization and Solidification of

- Hazardous, Radioactive, and Mixed Wastes. Gilliam, T.M. and Wiles, C.C. (Eds.), ASTM STP 1240, American Society of Testing and Materials, Philadelphia, pp. 73-79, 1996.
- [13] Kosson, D. S. and H. A. Van der Sloot, Selection of Leaching Tests for Evaluation of Treatment Processes and Waste Management, In: Proceedings of the International Congress on Waste Solidification-Stabilization Process. Cases, J.M. and Thomas, F. (Eds.), Nancy, France, pp. 344-351, 1995.

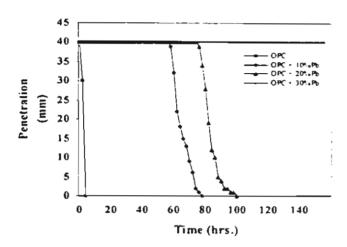


Figure 1. Time of setting of OPC in the presence of lead hydroxide

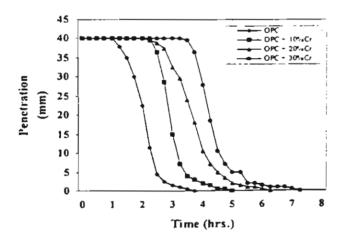


Figure 2. Time of setting of OPC in the presence of chromium hydroxide

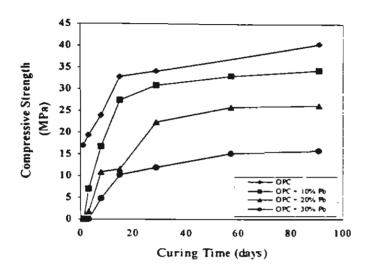


Figure 3 Compressive strength of the OPC/Pb waste mixes as a function of curing time.

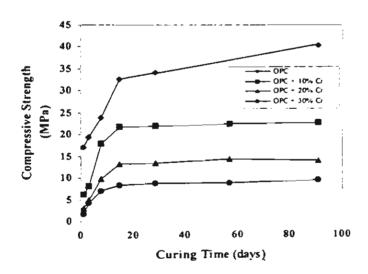
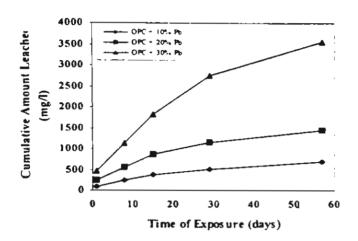



Figure 4 Compressive strength of the OPC/Cr waste mixes as a function of curing time.

Table 1 Leachate pHs of the solidified wastes at each interval of exposure.

· · · · · · · · · · · · · · · · · · ·						
Sample	Leachate pHs					
	initial	Day 1	Day 8	Day 15	Day 29	Day 57
OPC	2.9	4.2	4.7	4.6	4.6	4.6
OPC + 10% Pb(OH) ₂	2.9	4.3	4.7	4.6	4.4	4.5
OPC + 20% Pb(OH) ₂	2.9	4.3	4.7	4.3	4.3	4.4
OPC + 30% Pb(OH) ₂	2.9	4.3	4.6	4.2	4.3	4.3
OPC + 10% Cr(OH) ₃	2.9	4.4	4.8	4.4	4.4	4.5
OPC + 20% Cr(OH) ₃	2.9	4.4	4.8	4.5	4.5	4.5
OPC + 30% Cr(OH) ₃	2.9	4.4	4.6	4.4	4.4	4.5

iere 5 Cumulative amount of Pb leached after exposure to 0.2 N acetic acid leachant

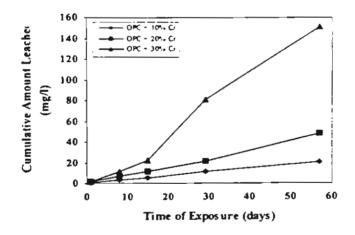


Figure 6 Cumulative amount of Cr leached after exposure to 0.2 N acetic acid leachant

Suwimol Asavapisit, Manop Boonjam

Environmental Technology Division, School of Energy and Materials. King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

Chongrak Polprasert

School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Patumthani 12120, Thailand

Abstract

Durability of cement-based solidified wastes against different acid attack was investigated. The cement-based solidified wastes containing synthetic lead and chromium hydroxides at 0, 10, 20 and 30 wt.% were exposed to 0.5N acetic, nitric and sulfuric acid solutions. The percentage weight change of the cement-based solidified wastes after exposure to acids for different duration was determined and the physical appearance was inspected. Experimental results showed that sample weight loss increased with increasing exposure duration in acetic and nitric acids, but at a decreasing rate. An increasing weight loss was also observed from samples with high concentration of lead and chromium hydroxides. Exposure to sulfuric acid resulted in the deposition of insoluble gypsum on the surface of the solidified wastes and as a result a gain in weight was found. In addition, resistance of the cement-based solidified waste matrices against acid attack was in the following order: sulfuric > acetic > nitric acid.

Keyworks: Stabilization/Solidification, lead hydroxide, chromium hydroxide, Portland cement, acid attack

1. Introduction

Landfill remains the major method used for the disposal of hazardous industrial wastes in Thailand. Despite continuing efforts to promote waste reduction, recycling, reuse and clean manufacturing technologies, some wastes will always remain which require safe disposal to landfill. Pre-landfill treatment of hazardous industrial wastes is therefore likely to be required in order to ensure their long-term safe disposal.

The relative simplicity of cement-based solidification processes and the ability of ordinary Portland cement (OPC) and other pozzolanic materials to treat a wide variety of wastes, and particularly those containing heavy metals, has made this an attractive pre-landfill waste treatment technology for selected wastes. Environmentally solidified cement-based acceptable materials must retain waste components over very long time periods. This relies on both chemical mechanisms immobilization physical produced by the cementitious binder materials. The long-term durability of the materials under the imposed disposal conditions is also a key factor

controlling whether or not a waste has been successfully solidified.

Cement solidified waste materials are alkali in nature and therefore they are vulnerable to acid attack. The alkali materials in the pore water, and especially calcium hydroxide were consumed by the acid and rapidly depleted, resulting in the cement matrix being significantly decalcified [1-2]. The dissolution of calcium hydroxide crystal and the extensively decalcified calcium silicate hydrate (CSH) gels results in increased porosity and enlarged threshold capillary pores in the leached layers [3]. This causes self-accelerating leaching and matrix deterioration to occur [4]. changes would cause progressive microstructural breakdown and loss of mechanical strength which eventually leads to complete disintegration of the solidified waste and greatly increased geometrical surface area for leaching.

Durability of hardened cement paste, mortar and concrete against different chemical degradation was studied by several researchers [5-12]. Although extensively studied, the durability of the solidified waste materials is largely untested and therefore the long-term performance of

ement-based solidified wastes must remain open guestion.

1. Materials and Methods

.1 Synthetic Lead and Chromium Hydroxides

Two synthetic waste sludges were prepared by recipitating lead and chromium from 1M Pb NO₃)₂ and Cr(NO₃)₃ solutions by adding 10M odium hydroxide to pH 9.5 ± 0.1 and 7.5 ± 0.1 . espectively. The sludges were vacuum filtered through Whatman No.1 filter paper and the filter cake dried overnight at 105°C before being ground into a particle size of $< 500 \,\mu$ m and stored in sealed glass bottles.

2.2 Sample Preparation

Solidified waste samples were prepared by mixing synthetic Pb(OH)₂ and Cr(OH)₃ with OPC at 0, 10, 20 and 30 wt.%. A water to solid ratio of 0.45 was used to maintain good workability during transferring the sample into a cylindrical plastic mould (25 mm high and 25 mm diameter). The slurry was mixed following the standard test method ASTM C 305-94 to achieve a uniform distribution of metal waste before transferred to the plastic mould. The cement solidified metal wastes were allowed to solidify in the sealed plastic moulds for 28 days to avoid carbonation prior to testing.

2.3 Corrosion Tests

Three acids were used to study the corrosion of the solidified waste samples. Acetic acid is a weak acid, which is generated during the decomposition of organic matters under anaerobic conditions. Nitric and sulfuric acid are strong mineral acid which were used to simulate acid rain. Each acid was used at a concentration of 0.5N. The initial pH of acetic, nitric and sulfuric acid solutions is 2.4, 0.5 and 0.8, respectively.

The weight and dimension of the cylindrical samples were recorded prior to testing and a constant volume of acid solution to sample surface area of 20:1 was used to ensure that all surfaces of the samples were contacted with solution. The solidified samples were suspended in the geometric center of the solution in a closed system under static condition. Three sets of 5 samples with the same composition were suspended in five different bottles containing each acid solution. Each set of samples was exposed to acetic. nitric and sulfuric acid solutions, respectively for 1, 8, 15, 29 and 57 days. One bottle from each set was removed after each exposure time for analysis. The tests were completed in duplicate to confirm the reproducibility of the test results.

3. Results and Discussions

3.1 Corrosion due to acetic acid

Weight change data of cement-based solidified wastes exposed to 0.5 N acetic acid as a function of time is shown in Figure la and b. Results showed that the percentage weight loss from the samples gradually increased with increasing exposure duration, but at a decreasing rate.

A cement-based solidified waste consists of the hydration products of various constituents. mainly CSH gel and calcium hydroxide, waste components, unreacted cement clinker phases and the residue of the water-filled pores. These pores present in the solidified wastes formed the capillary porosity. The ingression of an aggressive acetic acid leachant into the pore water disturbs the chemical equilibrium formed with surrounding solids and this may result in solubilization of insoluble components. Ca(OH)is the most readily available alkali material in the solidified waste and is solubilized when the pH drops below 12 [13]. The dissolution of Ca(OH)_a results in an increase degree of capillary pore connectivity and leads to further ingress of the acid leachant. As a result, an extensively dissolution of Ca(OH)2 and decalcification of CSH gels occurred. This leads to the formation of macropores and macrocracking present in the corroded laver.

It is observed that weight loss from the solidified wastes increased with increasing concentration of Pb(OH); and Cr(OH); in the mixes. The increase concentration of Pb(OH)2 and Cr(OH)3 resulted in a decrease cement content and therefore the ability of the solidified waste matrices to neutralize acid was reduced. In addition, the interfering effects of Pb(OH)₂ and Cr (OH)₃ on OPC hydration could induce a poor microstructure development of the solidified astes.[14] As a result, the resistance of a cement atrix to acid corrosion was reduced.

2 Corrosion due to nitric acid

Similar effect on all cement-based solidified vastes after exposure to 0.5 N nitric acid was bserved, but at a greater rate of weight loss than cetic acid (Figure 2a and b). Nitric acid is a trong mineral acid, which dissociates completely, ind form highly soluble calcium according to the higher solubility of calcium nitrate (266.0 g/100g water at 0°C) compared to calcium acetate (43.6 g/100g water at 0°C). calcium nitrate was likely to precipitate in the porous corroded layer of the solidified wastes less than calcium acetate [1]. This resulted in a lower diffusion resistance of the corroded layer and a greater rate of corrosion caused by nitric acid was observed

3.3 Corrosion due to sulfuric acid

Figure 3a and b show weight change data of cement-based solidified wastes at different exposure duration in 0.5 N sulfuric acid. A gain in weight of cement-based solidified wastes after exposure to sulfuric acid was observed. Similar observation was reported by several researchers that the weight gain was caused by the deposition of gypsum on the surface and in the porous corroded layer of the solidified wastes [5, 15, 16]. Gypsum, which is formed by the reaction between sulfate ion and calcium hydroxide, has very low solubility (0.22 g/100 g water, at 0° C) [1]. Formation of this insoluble gvpsum layer can prevent the solidified waste matrices from further deterioration upon contacted with sulfuric acid. However, gypsum layer was loosely this connected with the solidified waste and spall off spontaneously. This implies that the solidified waste was substantially deteriorated, although at a much slower rate compared to acetic and nitric acid.

3.4 The physical appearance of the solidified wastes after exposure to different acids

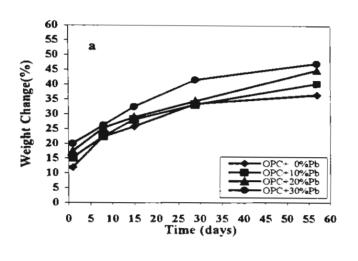
There were cracks formed on the surface of the cement-based solidified wastes after exposure to acetic and nitric acids (Picture 1). The cracking surface was soft, porous and lighter in weight than the control. This cracking surface was reported to be composed mainly of silicon dioxide with only small percentage of other oxides [2]. After dehydrated the tested solidified waste in air for a period of time, the cracking surface was easily split into fragments. In the case of sulfuric acid exposure, the solidified waste was swelling due to the formation of a layer of gypsum on the surface. In addition, the physical appearance is consistent with the weight change results.

4. Conclusion

Cement-based stabilization/solidification processes have clear advantages as pre-landfill waste treatment methods for certain types of hazardous industrial wastes. However, a lack of knowledge concerning immobilization and interfering mechanisms, and doubts over long-term performance have limiting the wider use and acceptance of this waste treatment technology.

Acknowledgements

The authors would like to thank Department of Civil Engineering and Department of Civil Technology Education. KMUTT for providing access to their laboratories and for their assistance with the experiments. The authors would also wish to acknowledge Thailand Research Fund for provision of financial support to this work.


References

- Pavli'k, V., Corrosion of Hardened Cement Paste by Acetic and Nitric Acids Part I: Calculation of Corrosion Depth, Cement and Concrete Research, Vol. 24, pp. 551-562, 1994.
- 2. Pavli'k, V., Corrosion of Hardened Cement Paste by Acetic and Nitric Acids Part II: Influence of Water/Cement Ratio, Cement and Concrete Research, Vol. 26, pp. 475-490, 1996.
- 3. Cheng, K. Y. and Bishop, P. L., Morphology and pH Changes in Leached Solidified/Stabilized Waste Forms. In: Stabilization and Solidification of Hazardous. Radioactive, and Mixed Wastes, Gilliam, T. M. and Wiles, C. C. (Eds.), ASTM STP 1240, American Society of Testing and Materials, Philadelphia, Vol. 3, pp. 73-79,1996.

- Geslin, N. M., Israel, D., Lachowski, E. E. and Macphee, D. E., Durability and Microstructure of Pore Reduced Cement (PRC), Mat. Res. Soc. Symp. Proc., Vol. 370, pp. 237-244, 1995.
- Israel, D., Macphee, D. E. and Lachowski, E. E., Acid Attack on Pore-Reduced Cements, J. Mat. Sci., Vol. 32, pp. 4109-4116, 1997.
- Sersale, R., Frigione, G. and Bonavita, L., Acid Depositions and Concrete Attack: Main Influences. Cement and Concrete Research, Vol. 28, pp. 19-24, 1998.
- Delagrave, A., Pigeon, M. and Reverte gat E., Influence of Chloride Ions and pH Level on the Durability of High Performance Cement Pastes, Cement and Concrete Research, Vol. 24, pp. 1433-1443, 1994.
- Bajza, A., Corrosion of Hardened Cement Paste by NH₄NO₃ and Acetic and Formic Acids, Mat. Res. Soc. Symp. Proc.. Vol. 137, pp. 325-334, 1989.
- Revertegat, E., Richet, C. and Gegout, P., Effect of pH on the Durability of Cement Pastes, Cement and Concrete Research, Vol. 22, pp. 259-272, 1992.
- Chandra, S., Hydrochloric Acid Attack on Cement Mortar - An Analytical Study. Cement and Concrete Research. Vol. 18, pp. 193-203, 1988.
- Pavli'k, V., Corrosion of Hardened Cement Paste by Acetic and Nitric Acids, Part II: Formation and Chemical Composition of the Corrosion Products Layer, Cement and Concrete Research, Vol. 24, pp. 1495-1508, 1994.
- 12. Grube, H. and Rechenberg, W., Durability of Concrete Structures in Acidic Water, Cement and Concrete Research, Vol. 19, pp. 783-792, 1989.
- Shi, C. and Stegemann, J.A., Acid corrosion resistance of different cementing materials, Cement and Concrete Research, Vol. 30, pp. 803-808, 2000.
- Asavapisit, S., Boonjam, M. and Polprasert, C., Effects of lead and chromium hydroxides on cement-based solidified waste properties, TIJSAT, Vol.5, No.3, pp. 1-9, 2000
- Tian, B. and Cohen, M.D., Does gypsum formation during sulfate attack on concrete

- lead to expansion?, Cement and Concrete Research, Vol. 30, pp. 117-123, 2000.
- 16 Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D. and Verstraete, W., Chemical, microbiological and in situ test methods for biogenic sulfuric acid corrosion of concrete, Cement and Concrete Research, Vol. 30, pp. 623-634, 2000.

Suwimol Asavapisit, Manop Boonjam and Chongrak Polprasert

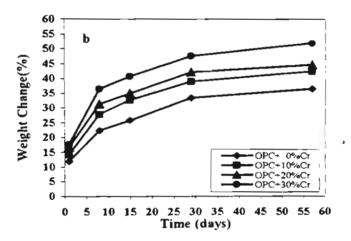
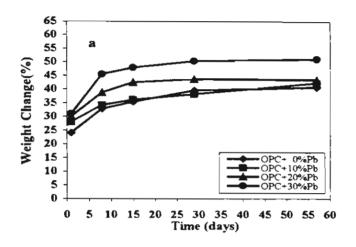



Figure 1 Effect of 0.5 N acetic acid on weight change of the solidified wastes in the presence of:

(a) Pb(OH)₂ and (b) Cr(OH)₃

Suwimol Asavapisit, Manop Boonjam and Chongrak Polprasert

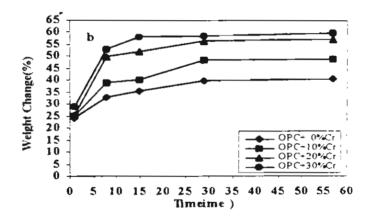
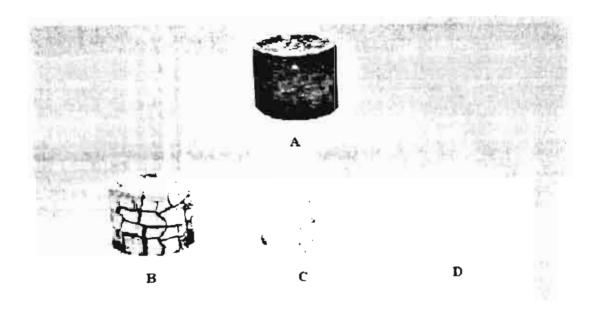
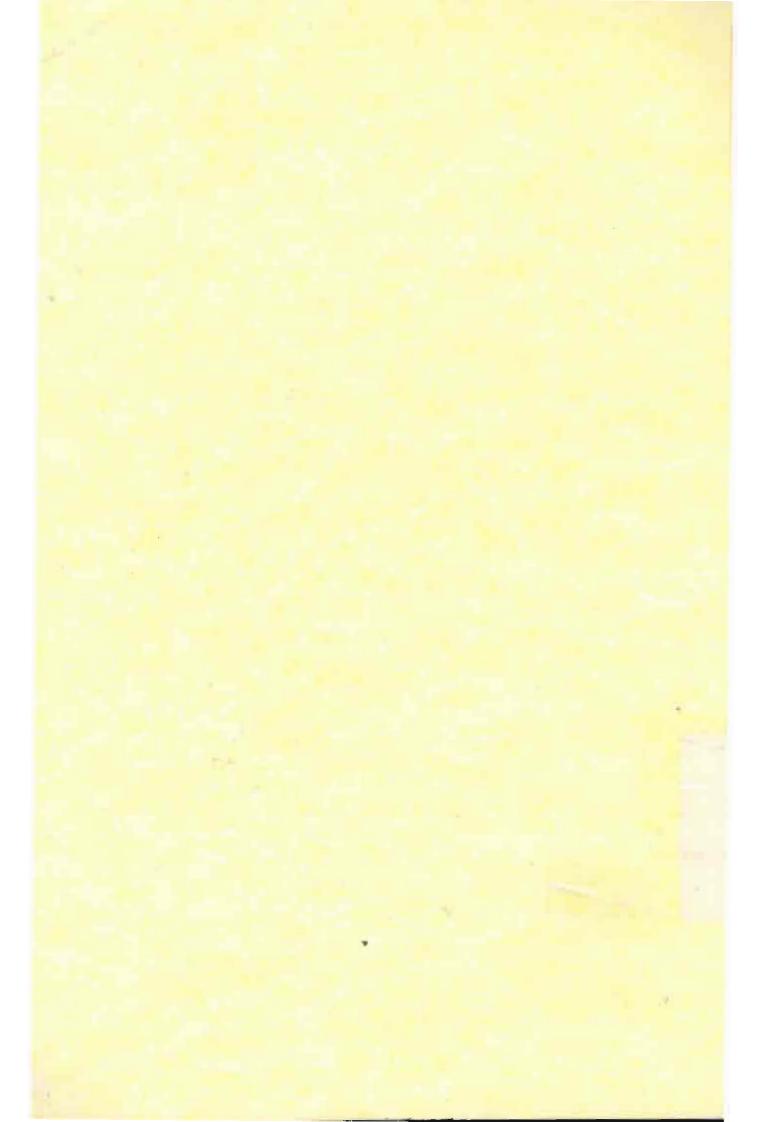



Figure 2 Effect of 0.5 N nitric acid on weight change of the solidified wastes in the presence of:


(a) Pb(OH)2 and (b) Cr(OH)3

Suwimol Asavapisit, Manop Boonjam and Chongrak Polprasert

Picture 1 The physical appearance of the solidified wastes after exposure to different acids for 8 days :

a) Control: b) acetic acid: c) nitric acid. and d) sulfuric acid

