SET Specific Assumptions
(A8) Client and merchant believe that they have order description and price, and all participants

believe that they are internal parties.

Q befieves Q has (0D, Price) Where Q@ stands for Cand M.
R belfeves R -is-internal-party Where R and R'stand for A, C, and M

{A9) Every participant believes that client has sent PReg and received PRes, merchan! has sent

AuthReq and received AuthRes, and acquirer has received AuthReq and sent AuthRes.

P believes C says PReg P believes M sees PReq
P believes M says AuthReq P believes A sees AuthReq
P believes A says AuthRes F befieves M sees AuthRes
P believes M says PRes P believes C sees PRes

Client Privacy
{A10) Client does not believe that merchant has payment information, and client and merchant do

not believe that acquirer has order description.

—C believes M has P/

- belleves A has OD Where @ stands for client and merchant.

General Assumptions for Proving Money Authorizations
(A11} Every participant believes that he can prove to verifier that if client has sent the message
containing Merchant's 1D, price, and the date of execution, then client has authorization on

payment ordering.

P believes P CanProve [C says (M, Price, Date) —> C authorized payment(C, M, Price, Date)] to V
General Assumptions for Proving Goods Authorizations
(A12) Every paricipant believes that he can prove to verifier that if client has sent the message

containing Merchant's |ID, order description, and the date of execution, then client has

autharization on goods ordering.

£ pelieves P CanProve [C says (M, OD, Date) — C authorzed goods-orden(C, M, OD, Date} jto V

81

Proving Money Accountability in SET

Proving accountability in SET, we focus on analyzing one of primitive transactions, which is C
authorized payment (C, M, Price, PRegDate). This means that client has authorization on making

payment on the goods amount Price on the date of making the request Date.

The goal of proof:
M believes M CanFrove (C authorized paymenl(C, M, Price, PRegDate)} to V

Where I/ stands for any external verifier.
In order to show that M befieves M CanProve (C authorized payment(C. M, Price, PRegDale)) to

V, it suffices to show that
M betieves M CanProve (C says (M, Price, PRegDate)} to V {x)

It is easy to see that M believes M CanProve (C says h(Pl)) to \/ follows mainly by axiom P3.
Since (M, Price, PReqDate}is in Pl (x) may thus be shown by using axiom P4.

However, the proof for M believes M CanProve (h{P!)-rs-fingerprint-of-FPl) fo V'in axiom P4 would
fail since it is not the case that M befieves M has K ;' which is required to show that M believes M
has (h{P!), Pf). Note that Pfis encrypted with A,. Note also that if it were the case that M befieves M
has K ;I, the proof would stilt fail since it would require A befieves (V has F/), due to A4, which
contradicts {o our assumption A7.

it is also easy to see that M believes M CanFrove (C says Qf) to V follows mainly by axioms P4
and P3. Since (OO, Price)is in Of the proof for M believes M CanProve (C says Frice) to V' may
be shown by using axiom P4. However, such proof would require A befieves V has OO due to A4,

which contradicts to our assumption A7.

Proving Goods Accountability in SET and iKP

The goal of proof:
M believes M CanFrove (C authorized goods-orderfC, M, OD, PReqDate)) to V

We shall discuss the goods accountability in SET first. Similarly to the proof for M befieves M
CanProve (C says Price) fo V discussed in section 4.2, the proof for M believes M CanFrove (C
authorized goods-order(C, M, OD, PReqgDate)) to V would fail since it would require Af believes VV
has Price which contradicts to our assumption A7.

IKP [BP et al 00] lacks of goods accountability due to similar reason to that in SET. The following

shows a payment request from client € to merchant M.

82

Payment C—> M. PL/PI h{O[)}A.__,

Where F/ stands for payment information. 27 contains (Price, #(O!l). Client's Credit-card
h.g/é}ri.lr.:{.'r'on,'h-7', O stands for order information. Of contains ¢7/0, Price, ClieaiiD, MerchantiD,
Date, InvExpDate, h{OD)). InvExpDate stands for invoice (offer) expiration date specified by
merchant. Date stands for the date of inveice (offer) issued by merchant.

It is easy to see that M believes M CanProve (C says H{O!)) fo V follows mainly by axiom P3.
Since (Frice, h(OD)is in O, the proof for M befeves M CanProve {C says Of) to V' can be shown
by using axiom P4. However, such proof would require M believes V' has Price due to A4, which

contradicts to our assumption A7.

Goals of SET and iKP as Accountability

In this section, we discuss the use of the accountability for specifying and analyzing the goals of
SET and iKP protocols. For such kind of accountability, a verifier is an internal party, which involves
in e-commerce protocols. Recall that the goal of e-commerce protocols is to ensure that all parties
are convinced that they have authorized messages concerning primitive transactions relevant to

them after the completion of the protocols.

After sending some messages to intended recipients, the originator must be able to prove the
association of the originator with an intended action (or an intended message) to intended recipient
{s}. Such intended actions are just about primitive transactions. Such proof would ensure the

originator that the intended recipients would recognize the originator's infention regarding to primitive

fransactions.

This intuition is formalized by axiom F2° The axiom states explicitly the preconditions for the
sending and receiving of messages. The rule also caters for the case where the intended recipient

receives messages from an intermediate party.

Thus, the goals of e-commerce protocols can be expressed by the following:

aj} C believes C CanFrove (C authorized payment(C, M, Price, Date)) to M

b} M believes M CanProve (M authorized payment(C, M, FPrice, Date)}) fo C

c) C beliaves C CanProve (C authorized vailue subtraction(A, C, Price, Date)) fo A
d) A believes A CanFrove (A authorized value subtraction(A, C, Price, Date)) fo C
e) M believes M CanFrove (M authorized value claimi{A, M, Frice, Date)) to A

f) A believes A CanProve (A authorized value claim(A, M, Price, Date)} fo M

g) C believes C CanProve (C authorized goods-order{C, M, OD, Date}) fo M

h)} M believes M CanProve (M authorized goods-receipt(C, M, O, Date)) to C

83

It is not hard to see that in SET these goals cannot be shown due to similar reason to those for
the accountabiiity for dispute resolving discussed in sections 4.2 and 4.3. However, these goals can

be shown for iKP,

With provable authorization in the present of private information, our logic can be used to specify
and analyze goals of e-commerce protocols efficiently in that the originator can ensure that the
recipient recognizes the intention about primitive transaction without revealing private information.
This will be much benefit to protocol designers in that he can design a protocol with intended

purposes.
What we demonstrate below is the analysis of client privacy using our logic,
Proving Client Privacy of SET

Client privacy can be understood as the accountability where a client is a prover, both a
bank and a merchant are verifiers, and the proving statement is about the payment authorization.
SET achieves client privacy if merchant cannot infer client's payment information (7/), and acquirer
cannot infer goods description (0D} from the protocol. We thus start proving client privacy by stating

the goals of the proofs from a)and ¢). In order to prove a), it suffices to show that

C befieves C Canfrave (C savs (M, Frice, PReqDate)) to M

It is easy to see that C befieves C CanProve (C says (Price, PReqDalz)) to M follows mainly by
axioms P4 and P3. Although the proof is not successful because of the lacking of merchant's D,
merchant cannot infer A/ from the receiving message. We prove ¢J in the same way as proving a). It

is not hard to see that acquirer cannot infer OO, which is client's private information, from the

receiving message.

As a result, our logic can analyze client privacy, which is an essential property of SET protocal, in

that verifier can get only necessary information to prove without getting any private information.

Conclusion

In this research, we show that the existing logics for reasening about accountability are inadequate
to deal with real world e-commerce protocols. We then propose an extension of the existing logics to
deal with such real-world protocols, Furthermore, we demonstrate the practicality of our logic by
showing that the result obtained from Herreweghen's informal analysis [H99a] can be also obtained

formally from our fogic.

84

Our logic can be used not only for reasoning about dispute resolution amongst parties, but also
for reasoning about the goals of e-commerce protocols, in particular, client privacy property. [ndeed,

bath kinds of reasoning can be captured wuniformiy in our logic.

For reasoning about dispute resolution, we show /formally that SET lacks of the money
accountability whereas iKP does not. Moreover, we show that both SET and iKP lack of the goods
accountability. The lack of the goads accountability in our sense means that the two protocels can
stili provide enough evidence tokens to resolve disputes on goods description, but in order to resolve
such disputes, provers must reveal their private infarmation to verifiers. In some situations, this is

undesirable.

For reasoning about the goals of e-commerce protocols, we show that such kind of reasoning can
be considered as a special case of the accountability. Thus, the accountability can be seen as a
fundamental property for analyzing e-commaerce protocols. Indeed, other kind of properties such real-
world e-cammerce protocols, for example each party’s requirement {[MS98], has also been studied

by using our logic presented here.

35

= LN s
UNN 7 421071 30b

In this chapter, we discuss experimental results obtained by applying our software prototypes 1o
some case studies. We focus on the experimental results obtained from specification and verification

for access control in Windows NT and network firewalls.

7.1) HanInAaaItenuwad MIussvulianns [n43]

We have developed a software prototype and applied it to an internet service providing system at
computer center in King Mongkut's University of Technotogy Thonburi (KMUTT). The system is

about configuring access control system for the following services.

1} Home Directory Services
This service is to provide a place to keep files for users. Users include students, lecturers, etc.
In this service, users can use telnet and ftp service to get to their home directories.

2) Electronic Mail Services

3} Web Services

4} Dial-up Connection Service
This service is to allow users to connect into computer systems at the university from their

homes.

According to the study, the existing system has the following problems.

1} The difficuity in checking the correctness of configurations. This is because there are a large
quantity of users and objects. Moreover, the test is manual and thus it takes a lot of times.

2) Attacks. There are attacks coming from both outside and inside that cannot be detected.

3} The difficulty in extending the existing systems for new hardware or new groups of users. This is
because of the lack of sysiematic policy. When there are new computer hardware obtained or

new groups of users, the configurations have to be reconstructed. The extension of the system

is unsystematic

Our method can solve the first problem effectively. This is because the checking for the correctness

of configurations can be done by using software. This faciliiates the correctness analysis.

The following shows some experimental result. We have developed a software proiotype which can
be used o test whether or not an access control configuration in Windows NT satisfies poticy. In the
following, the policy that we are interested in is that “an authorized user for highly sensitive
information is allowed to access such information from the machine that hosted the infarmation

oniy". Such policy is selected by the following window.

86

& AnudukodwhhinfbsmﬁuﬂmhnkMbmmﬂmmlmhmﬁlh&iﬁdwh
" lotmalion oy

2
TS

Fe An authodsed utet can acCess sansitiva oloimation from & sacue machine; however | the same uter cannol accass e
T vame nfomation from a non-securelpossibiy pubiic) machine

Figure 6

Highly sensitive information can be defined by the following.

o B et AT L
authoripad uiar jor highly sansibee mfomeatan i &lowed fo accass,
@ inlormation anly

Ciramaceos s (LA AND HighlySensthalnio{Oy AND TuclsdSublacy
Localarraes(UA Q) ANO NOT GiobalAocns e()A O) ARD NOT Oom

Figure 7

After the program has analyzed the configuration, it shows the following output.

87

i Gane Dt obiect Divell hoor machnn 3 has GrandFight Logo _otebs o tuactaim - Fabor

Globotocn: > Lt Anmrisator can Aecess ThivShae conc: Devel loc sed on machae Maghtat 22 Sobe@hs L0 nom > Rasg

Demerdcceds » Lzer hamevisior can Arcea: T he S5r ye stiect Deeel ocaled on machee Macrng” o5 Dumsedu ressfaon - Fale

U - Guest

orafcoess > Lises Guest can Daeclicen:ss sbiect iveC fom machne 3ac hett Staresgnt Loy Localy on mackioa : Faise

Rt > U Graed can SocesaThuChae ool Dhivell oealnd o machee Machnz? 35 Bobadoce:aFiom > Fase

Lomandcoer -+ User e canAcceszTheuSnae ot fivel bealed an gachs Mechrel 2 Digivmsacressfiom - Falre

Liwer - Adrarsatigior

Locaieoets > User Adeanetialon cen Dvecliecess obiect Divel] ow mactme anc has Drart™gnt Logon Locely on macrers - [odir
-7 LHer : £ ThiuShane obysc Divel oz ated on mattene Machine? a3 Glabatosassim > F e

Domenicesm: 3 L Adwnatrator canAcces ThisS Rao obect (vl ocated of hatheo Machne? o2 Domardccessfiom 3 Fase

Locsdhoonat > Uses Gumar can Directizos = obiost Zrivel Irom machine and ks Grantflaht Lanon Localy onmachize - False
Digbaltcras -+ User Guom can Beroxt TS hor object DrivelC localed on mach Mathine 2 o Giobsicctaifiom -+ Faia
Tamanticeses o Woer (et oo Acpews T hase cvoct Drival fxcaled on machew Machmne? oz DomarforesiFiom + Fata

T e A

Figure 8

7.2) Han1snaaaviinisuuvasinzanaasdmivinitead [nas)

We have developed a software prototype for analyzing the effect of firewall configurations. The

foliowing shows the firewall topalogy.

192.168.0.0
255.255.255.0

168.0.2.0
255.255.255.0

172.0.00
255.255.255.0

Figure 9

202.4480
255.255.255.0

There are three firewall routers, namely A, B and C. The following shows configuration rules for

firewall A.

88

FOrder Source Dest Service Direcﬁon Action Interface i
1 V 168.0.2.7 ‘192.168.0.7‘ TCP - IH_I}\TM o wPERMlT — '10,0,3.3 f
2 168027 | 19218807 | TP lout | PERMIT | 10031 |

(s 2024488 19216808 TCP N | PERWT | 10035
4 202.44.8.8'"‘ 192.16-3—8-.(018‘ " TC:P—__! OU% PE;QMIT 1C.O.3.1 I

-5) 1'.7.-2.0_0_1 202.44 8.0#% TCFT ;_.er - PERMIT 10.0#37.-2\”“"_

255.255.25 :
150 '
6 172.0.0.1 202.44.8.08 | TCP ouT PERMIT 10.0.3.5
255.2565.25
5.0
Table 1 : Rule for router A
The foliowing shows configuration rules for firewall B.
QOrder Source Dest Service Direction Action Interface
1 202.44.8.8 192.168.0.8 | TCP IN PERMIT 202.44.12.3
2 2024488 192.168.0.8 | TCP ouT PERMIT 20244125
3 172.0.0.1 202.44.80# | TCP IN PERMIT 20244125
255.255.25
5.0
4 172.0.0.1 20244 B0# | TCP QuT PERMIT 20244123
255.255.25
5.0
5 Any Any TCP IN DENY 20244 .12.4
Table 2 : Rule for Router B
The following shows configuration rules for firewall C.
OCrder Source Dest Service Direction Action interface
1 172.0.0.1 202.44.8.0# | TCP IN PERMIT 10.1.11
255.255.25
50
2 172.0.0.1 202.4480# | TCP QuUT PERMIT 10.1.1.3
255.255.25
L 5.0

89

Table 3 : Rule for router C

The following shows the effects of all firewall configuration rutes.

LT I | TaewdFake N Fercwall Howet 1

Figure 15

90

uUni 8 w31l
8.1) Conclusion

We have developed formal specification and verification for information security systems which are
in use in real world. In particular, we have developed formal specification for access control in

Windows NT, network firewalls and electronic payment protocols.
The following concludes the novel contribution of our research.

1} Our formal specification for Windows NT can deal with distributed access control whereas

existing specification can deal with centralized access control.

2) Our formal specification for network firewafls is the first model that predicts the effects of
firewall configurations thoroughly and rigarously. Furthermore, ocur model can analyze the
redundancy and inconsistency of firewall rules and can analyze the wvulnerability of

configurations for IP spoofing attacks.

3) OQur formal specification for credit card-based electronic payment protocol is capable of
analyzing SET whereas existing specification cannot. Many kinds of properties including

client privacy can be captured.

8.2) Future work
1) To study formal methodology for internet security which focuses on the analysis of attacks

occurring in the internet.

2) To study formal methodoiogy for secure electronic government system,

91

UITWIUNTN

_ o w5 & a = 3
fnd 3] wignsnun ‘I](ﬂ‘wu'ﬁ, UWIUNT B ‘J')"JW@W?HRQQ WAZ WA T IFNT ﬂﬁm‘j{i’r{ MIPFIIFALUNITUN
=& 4 A e > = ¥ i £ o = [an =
fetfayauuszuudjuiinsiuled wawil lasiuuitrasrasinseans, TnubwurzaulILIeT

Jhaunnsanu 2543

= a d & o a
[r45] HWJETQQE{EJ"I ’H']ﬂi']I'i’ﬂ‘I RRZWIUANENT 19310, 1RT2IUSEIWIUNTIOTIIRDULIETIIR TN

vastiir3a, Inonfimufszaudiuanad Biunifnwy 2545

[ABLP93] M. Abadi, M. Burrows, B. Lampson and G. Plotkin, A Calculus for Access Control in
Distributed Systems, ACA Transactions on Programming Language and Systems, Vol. 15 No. 3,

1993,
[AES] Advanced Encryption Standard, hitp://www.nist.gov/aes

[AHS98] N. Asokan, E. V. Herreweghen, and M. Steiner. Towards A Framework for Handling
Disputes in Payment Systems. In the Proceedings of the 37 UseNIX workshop on Electronic

Commerce, Boston, Massachusette, August31-September3, 1998,

fB00] E.Bertino, S.Castano, E.Ferrari, M.Mesiti, "Specifying and Enforcing Access Control Policies
for XML Document Sources”, World Wide Web Journal (Baltzer Publ .}, Vol.3(3), 2000.

[BANSO] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions in
Computer Systems, February 1990.

[BBFRY9] E. Bertino, F. Buccafurri, E. Ferrari and P. Rulio, A Logical Framework for Reasoning on

Data Access Control Policies, i Proceedings of IEEF Compulter Securty Foundation Workshop,

1999.

[BBFROO] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo, A Logic-Based Approach for Enforcing
Access Control, Journal of Computer Security, B(283), 2000.

[BG et al. 00] M. Bellare, J. A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik,
E. V. Herreweghen, and M. Waidner. Design, Implementation, and Deployment of the KP Secure

Electronic Payment System. /EEE Joumal of Selected Areas in Communications 2000.

[Big6] P. Bieber, Formal Techniques for an ITSEC-E4 Secure Gateway, in Proceedings of National

Cormnputer Security Conference, USA, 1956.

92

(BJS96] E. Bertino, 3. Jajodia and P. Samarati, “Supporting Multiple Access Control Policies in
Database System” Proceedings of IEEE Symposiuny on Research in Security and Privacy, Oakland,

Califomia. May 1996. pp. 94-107.

[BMNWO9] Y. Bartal, A. Mayer, K. Nissim and A. Wool, Firmato : A Novel Firewall Management
Toolkit, frr proceedings of 20" 1EeE Symposivm on Security & Privacy, Oakland, CA, 1999.

{BVO7] Y. Bai and V. Varadharajan, A Logic for State Transformation in Authorization Policies. in

Proceedings of IEEE Computer Security Foundation Workshop, 1997.
[C94] J. Cooper, 1984, "Computer-Security Technology”, 2" edition, 166 p.

[CB84] W.R. Cheswick and S.M. Bellovin, Ffirewalfs and Inlemet Security : Repelling the Wiy
Hacker, Addison-Wesley, 1994.

[CFMS385] S. Castano, M.G. Fugini, G. Martella and P. Samarati, Database Security, Addison
Wesley- ACM press, 1995.

|ICZ85] D.B. Chapman and E.D. Zwicky, Building Infernet Firewal/, O'Reilly & Associates, 1995.

[DDY98] D.E. Depning and P.J. Denning (editors), /nternet Besieged: Countering Cyberspace
Scofflaws, Addison-Wesley, ACM Press, 1998.

[FB97] D.F. Ferraiolo and J.F. Barkley, Specifying and Managing Role-Based Access Control within

a Corporate Intranet, /n Froceedings of ACM Workshop on Role-Based Access Controf, ACM press,

1997.

[FCKE5] D.F. Ferraiolo, J.A. Cugini, D.R. Kuhn, Role-Based Access Control (RBAC): Features and
Motivations, /n Proceedings of IEEE Computer Securify Applications, IEEE Computer Society press,
1995,

[GB98] S.1. Gavrila and J.F. Barkiey, Formal Specification for Role Based Access Control User/Role
and Role/Role Relationship Management, /n Proceedings of ACM Workshop on Role-Based Access
Controf, ACM press, 1998.

[GMP92] J. Glasgow, G. MacEwen and P. Panangaden, A Logic for Reasoning about Security, ACM

Transactions on Computer Systems, Vol. 13, No. 3, 1892,

[GY98] J. Gross and J. Yellen, Graph Theory and ifs Applications, CRC Press LLC, 1998

93

[Gu27] J.D. Guttman, Fitering Postures : Local Enforcement for Global Policies. /n proceedings of

17" i€EE Sympasium on Security & Privacy. Oakland, CA. 1997.

[H81] G.J. Holzmann, Design and Validation of Computer Prolocols, Prentice Hall Software Series,

1991.

[H9%9a)] E. V. Herreweghen. Non-Repudiation in SET: Open lssues. In the Proceadings of the

Financial Cryplography 1998,

[H99b] E. V. Herrewaghen. Using Digital signatures as Evidence of Authorizations in Electronic

Credit-Card Payments. Research report 3156, IBM Research, June 1999,

[HRU76] M.A. Harrison, W.L. Ruzzo and J.D. Ullman, Protection in Operating Systems,
Communication of ACM, 19(8), 1976.

[J85801] S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrabmanian, Flexible Support for
Multiple Access Control Policies, in ACM Transactions on Database Systems, vol. 26, n. 2, June

2001, pp. 214-260.

[TS9) ITSEC Warking Group. /7TSEC: Information Technology Security Evaluation Criteria, version
1.2, Sep 1991.

[46897] S. Jajodia, P. Samarati and V.5. Subrahmanian, A Logical Language for Expressing

Autherizations, In Proceedings of IEEE Syrmposium on Research in Securify and Privacy, 1997.

[K96] R. Kailar. Accountability in Electronic Commerce Protocols. /EEE Transaction on Software

Engineering 1996.

[KG28] L.L Kassab and S. J. Greenwald, Towards formalizing the Java Security Architecture of JDK
1.2, In proceedings of European Symposium on Research in Computer Security (ESORICS),
Springer-Verlag, 1998.

[KN98] V. Kessler and H. Neumann. A Sound Logic for Analyzing Eiectronic Commerce Protocols. In

the Proceedings of ESORICS 98
[M97] F. Massacci, Reascning about Security : a Logic and a decision method for Role-based

Access Control, in Proceedings of the lnternational Joint Conference on Qualitative and Quantitative

Practical Reasoning (ECSQARU/FAFPR), Spinger-Verlag, 1997.

94

[M598] C. Meadows and P. Syverson. A Formal Specification of Reguirements for Payment

Transactions in the SET Protocol. In the FProceedings of Financial Cryptography, February 1998,

(MWZ00] A. Mayer. A. Wool and E. Ziskind, Fang : A Firewall Analysis Engine, /n proceedings of
21" IEEE Symposium on Security & Privacy, Qakland, CA, 2000.

[NCS85] Naticnzl Cemputer Security Center, Dapartment of Defense Trusted Computer Security
Evaluation Criferia, Dol 5200.28-STD, 1985.

[R97] C. Rutstein, Windows NT Security : A practical guide to securing Windows NT servers and
workstations, McGraw-Hill, 1997,

{R0O1] C. Rujimethabhas, A graph-based methodology for Hardware-based Firewalls, Master thesis,
Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok,
Thailand, 2001.

[RS98] €. Ramaswamy and R. Sandhu, Role-Based Access Control Features in Commercial

Database Management Systems, /n Proceedings of National Computer Security Conference, 1898,

[S94] Bruce Schneier.Applied Cryplography. Protocols, Algorithms and Source Code /n C. John
Wiley & Sons, 1994

[S897] T. Sheldon, Windows NT Security Handbook, McGraw-Hill, 1997.

[S97] S. Sutton, Windows NT Securify Guide, Addison-Wesley Press, 1997.

[598] R.S. Sandhu, Role-Based Access Control, Advances in Computers, M. Zerkowitz (ed.}, Vol
48, Academic Press, 1998.

[SCFY96]} R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, Role-Based Access Control
Models, JEEE Computer, 29(2), Febuary 1996.

[SET97] Secure Electronic Transaction Specification, Version 1.0, May 19987. (available at

http:/fwww visa.com/set).

[SS94] R.S. Sandhu and P. Samarati, Access Control: Principles and Practice, /EEE
Communications 32(9), pp. 40-48, 1994,

95

[SSL] The SSL Proteocol Version 3.0 < http://home. netscape.comfeng/ssl3/ssi-toc.html >

[St03] W. Stallings, CRYPTOGRAPHY AND NETWORK SECURITY: PRINCIFLES AND PRACTICE,
Prentice Hall, 2003.

[TOO] O. Tunsungwon, A Formal Method for Dynamic Access Controf in Windows NT, Master
Thesis, Department of Computer Engineering, King Mongkut's University of Technology Thonbur,

Bangkdk Thailand. 2000.

[WL93] T.Y.C. Woo and 5.5. Lam, Authorization in Distributed Systems: A new approach, Jowmal of
Computer Security, 2{2,3), 1993.

96

1

2)

2)

3)

4)

3)

5)

4)

5)

av o
Output fla
HRITWARNW W1 5815 3BT el sEina

Yongyuth Permpoontanalarp. Reasoning about Access Control in Windaws NT, Engineering

Transactions, Mahanakomn University of Technotogy, Vol 4, No.1(10)}, 2001.
rasm AR Inn s szgnizintsensdsaing

Yongyuth Parmpoontanalarp and Chaiwat Rujimethabhas, A Unified Methodology for Verification
and Synthesis of Firewall Configurations, /n Proceeding of The Third International Conference
on Information and Communications Security (ICICS) China, Lecture Notes in Camputer
Science, Springer Verlag, 2001.

Supakorn Kungpisdan and Yongyuth Permpoontanalarp, Practical Reasoning about
Accountability in Electronic Commerce Protocols, /n Froceedings of fthe 4ith internationat
Conference on Inforrmation Securffy and Cryptology (fCISC}) , Seoul, South Korea, Lecture Notes
in Computer Science, Springer Verlag, 2001,

Yongyuth Permpoontanalarp and Chaiwat Rujimethabhas, A Graph Theaoretic Model for

Hardware-based Firewalls, in Proceedings of the 9" IEEE intemational Conference on Networks

(/CON), Thailand, IEEE Computer Press, 2001.

nasmARNNundszgad s msiulszine

Voravud Santiraveewan and Yongyuth Permpoontanalarp, A Verification Methodology for
Analyzing IP Spoofing Attack, In Proceedings of the 7" Nationat Computer Science and
Engineering Conference, Chonburi, Thailand, 2003.

aanuimand puisficzdelUnssrsdeirnmmmiwné

Yongyuth Permpocntanalarp, A Graph-based Methodology for Firewalls (In Preparation).

=4 a e W g = =) =y c‘é = . P - fi
srpBanndgnwifladgnsonsdnsilagarsiinsinudsndnd 1nuienosawian lu

Tassnasi

seauBunnin

1.

WIIFIDTITI AUFIITOL
Fav9oinuriiwus A Formal Method for Dynamic Access Control in Windows NT

DRsumIans 2543

97

2. wwdaian sAwmma
%aﬁa‘ﬁafmmﬁwu‘g A Formal Methodology for Hardware-based Firewalls
Disunisfinun 2543
3. WIWANNT NIRAN
%aﬁﬁa%ﬂmﬁwuﬁ: Accountability as Fundamentat Property for Electronic Commerce Protocols
PAaunsdinu 2544
4. W16 FUAATITIOL
' %aﬁ’rﬁmﬁnﬁyﬁﬂwuf A Graph-based Methadology for Analyzing IP Spoofing Attacks
ffaunafinun 2546
=auianad
1. wWnINUN 'qﬁﬁuﬁ, WIINNEAT BITRIAWAMANS KRZU LTINS ATEUTIR
Fowdainmiinug msereseunsuideaysuussuuy iansiuled wud lasnuydiaes
NHATINEAFAT
Yfsumsans 2543
2. WHEINFW 771053 1593 wazwsemans nasm

Lo

= ¢ o & o ar w 4
watpUSganfiwud wissladmmiunasssaunasmiainngvasiiiias

FRrunsdnmn 2545

98

AANUIN

99

Reasoning about Access Control in Windows NT

Yongyuth Permpoontanalarp
Logic and Security Laboratory
Department of Computer Engineering
King Mongkut's University of Technology Thonburi
81 Suksawasd 48, Ratburana, Bangkok 10140 Thailand
yongyuth@cpe. eng kmutt.ac.th , ypber@yahoo.com

Abstract

In this paper, we study a logical methodology for access
control in a real-world application, namely Windows NT
(NT). In particular, we extend existing logical
specifications for access control in order to deal with
distributed access control in NT. Then, we propose
practical verification propertics for analyzing access
contro] configurations in NT. The results obtained show
that our logical methodology has several benefits. In
patticular, our logical specification for NT helps
clarifying the access control mechanism in NT.
Moreover, our reasoning methodology helps system
administrators not only to analyze access control
configurations, but also to sef up an access control
configuration which has desirable properties.

Keywords: Access Control, Tools for analyzing the
security of access control in Operating systems and
Formal Methods for Computer Security

1) INTRODUCTION

During the past decades, several researchers have
studied the development and the applying of formal
methods to computer security. Those studies have
focused on two major areas of computer securily : access
control aud cryptographic protocels. ‘In this paper, we
study the use of formal methods for access control.

Most of the existing works (eg. [1 - 7]) on formal
methods for access control do not study the use of formai
methods in the context of real-world applications. Very
few of them do study formal methods for real-world
applications however, for example [8].

In addition, most of the existing works emphasizes
either on the development of specifications for access
control or on the reasoning about access control policies
for their properties which are not concerned with the
security aspect. In particular, [1, 3, 5] studied the use of
formal methods mainly for specifications. Moreover, {2,
6, 7] studied the reascning about conflicting access

control policies and a method to resolve such conflicts.
A few of them however studied the verification of access
control policies concerning their security aspects, for
example [9]. However, those works on the verification
are of theoretical interest.

In this paper, we aim to study the use of formal
methods for computer security in the context of a real-
world application. In particular, we study a logical
specification for access control in Windows NT [10, 11,
12} (NT). Moreover, we study practical verification
properties in order to analyze access control
configurations in NT.

Our specification is based on JSS’s Authorization
Specification Language (ASL) [4] which deals with
access control in general setting, and logic-based Role-
based Access Control (RBAC) specifications {13, 14]. In
particular, we extend JSS's ASL and the RBAC
specifications to deal with distributed access control in
NT. In particular, our specification captures the two
concepts: namely access transparency and authority to
deal with the distributed access control in NT. Access
transparency is concerned with the ability of a user to
access an object stored at 2 machine from any machine
in a distributed system. Moreover, authority is concemned
with the scope of the power that each administrator in
NT has in order to manage the system. In other words,
authority is about distributed administration of a system.

Qur specification offers a benefit in that it clarifies
the access control mechanism in NT precisely. As a
result, our specification provides a befter understanding
on the NT access control rmechanism, than the non-
formal approach. The non-formal approach would be to
read many books on NT and to carry out some test data
in order to understand the access control mechanism.
Moreover, the natural language (English) that is used to
describe the NT mechanism in those books 1s ambiguous
and unclear.

Furthermore, we propose practical r1easoning
methodology to help system admunistrators to analyze
access control configurations in NT. In particular, we
propose verification properties of access control
configurations and we propose a synthesis methodology

which can be used to generate new access conirol
configurations. The verification properties proposed can
be used to analyze the correctness and the secuarity of
access control configurations. Moreover, the verification
properties include policy satisfaction which aims to
verify that a given access control configuration satisfies
desirable security policies designed for an organization.
The remainder of this paper is organized as follows.
Section 2 provides some background for the rest of the
" paper. In section 3, we discuss our logical specification
and we illustrate our reasoning methodology in section

4, We discuss a method to test that our specification’

corresponds to the NT system in section 5 and make a
conclusion in section 6.

2) BACKGROUND
2.1) Windows NT Access Control

Windows NT (NT) is an operating system designed
for distributed systems. In particular, NT provides
services for users and machines both of which disperse
geographically but coordinate to share resources and
information. It provides security services, eg. access
control and authentication, In this paper, we concern
with access control only.

NT offers a systematic approach to manage a
distributed system by grouping not only machines but
also users. In particular, a domain is a collection of
machines which are managed by an administrator. For
example, machines in a department may be grouped into
one domain. In a domain, there is a machine acting as a
domain controlier.

Similarly, a user group {or just group) is a collection
of users who share similar privileges. There are two
main kinds of groups : local and global groups. A local
group is a group that is recognized by a particular
machine only whereas a global group is a group which is
recognized by ail machines in a particular domain. The
same concept is applied to user accounts also, ie. local
users and global users. -

It is useful to classify privileges into three kinds :
ACL permissions, rights and abilities. ACL permissions
are concerned with permitted actions that a user can
petform on an object, eg. files and directories, in a
system. Rights and abilities are concemned with
permissions required for managing and maintaining a
system. We shall discuss these three kinds of privileges
in section 3.

Access contrel mechanism for resources in NT is
based on Discretionary Access Control. In particular, an
owner of an object decides who may have certain ACL
permissions on the object.

NT provides a distributed approach for
administering the system. For each domain, there are
many groups of adnunistrators which hold different
responsibilities for administering the system. For
example, tape backup operators are responsible for
backing up files and directories into a tape, and restoring
thermn later. Each group of admiristrators is granted
certain permissions in order to perform their tasks.
Groups of administrators who are in charge of domain
controllers are different from those who are in charge of
non-domain controllers.

As a matter of terminology, we vse the term
permissions to refer to ACL permissions, rights and
abilities in general.

In this paper, we shall discuss details of NT which
are sufficient for our purpose only. Further details on NT
can be found in [10 - 12].

2.2) Authorization Specification Language (ASL)

JSS’s ASL [4] is a general logical specification for
modeling a discretionary access control system. Several
kinds of access control policies can be captured by the
specification. ASL consists of several kinds of rules.
Conceptually, ASL is divided into layers and each layer
1s formulated by one kind of rules. There are five main
kinds of rules, namely authorization rules, derivation
rules, resolution rules, access control rules and integrity
rules.

Authorization rules are at the bottom layer and they
provide information on an access control configuration
which is set up by a user. Such a configuration defines
access permission that a subject has on an object. On top
of the authorization rules, there are derivation rules
which take permissions obtained from the authorization
rules as an input and then propagate the permissions
assigned for a group into the group members.

Resolution rules on the other hand are concermed
with resolving conflicting permissions obtained from the
derivation rules. Access control rules provide final
decisions for an access. Integrity rules state conditions
required in order to maintain the integrity of an access
control system.

Even though ASL offers a general specification for
dealing with access control, it deals with access control
in a centralized stand-alone system. Thus, in order to
apply ASL to model access control in NT, it requires an
extension of ASL to deal with access control in
distributed systems.

2.3) Role-based Access Control (RBAC)

RBAC (eg. [13, 15]) is a new kind of access control
model which offers the controlling of accesses based on

roles that individual users take on n an organization.
Roles stand for job titles in an organization. RBAC uses
the concept of roles as a link between users and
permissions on an object. A user i3 granted an access
permission for an object if such penmission is required in
order for the user to perform his or her job functions. It
has been employed in several applications, for example
access control in Databases [16] and Intranet [17]. A
logical formulation of RBAC was studies in [14].

We observe that NT approach for the administration
of a system is closely related to RBAC in that each
administrative group can be considered as a role, ie.
administrative role.

3) THE LOGICAIL. SPECIFICATION FOR NT
ACCESS CONTROL

Our logical specification represents two kinds of
information : an access control configuration and the
access control mechanism. An access control
configuration is mostly represented by facts that are

specified by atomic predicates whereas the access
control mechanism is represented by rules that are
specified by f{irst-order formulas. Access control
configurations that are specified here are absfracr in that
they represent only main and important parts of actual
access contrel configurations that have many details.
Moreover, our specification deals with static access
control in that it considers an access control
configuration given at a specific instance of times.

In general, our logical specification i1s divided into
three parts and each part deals with each kind of
permissions, ie. ACLL permissions, rights and abilities. In
particular, our specification employs J58’s ASL to deal
with ACL permissions and rights, and it employs GB’s
RBAC to deal with abilities.

As a matter of notations, predicate, function and
constant symbols begin with lower case letters. Variable
symbols start with upper case letter. All varables in a
sentence are assumed to be umversally quantified with
scope the entire sentence.

cando-perm

cando-right

v !

dercando-penn

dercando-right

b v

do-perm

do-right

v

logon-as-local-usr
logon-as-global-usr
logon-as-domains-usr

v

grant-right

v v

direct-access
access-thru-share

'

local-access
global-access
dormains-access

v

grant-access

3
Right Transparency
S Access
3 Transparency
ACL
/ Transpareocy
7 J

Fig. I Structure of Specification for ACL Permissions

The figure 1 illustrates the general structure of our
specification for dealing with ACL permissions and
rights.

In figure 1, predicates cando-perm and cando-rights
are parts of an access control configuration and they are
defined by objects” owners and administrators.
Maoreover, other predicates eg. dercando-perm are used
to specify the access control mechanism in NT. Details
of access control configurations are discussed in section
4,

We extend JSS’s ASL by providing an additional
level called Access Transparency on top of JSS’s ASL.
The Access Transparency will be discussed tn section
3.3

We shall discuss the detail of our specification
sufficient for our purpose here. Further details of our
specification can be found in [18].

3.1) ACL Permissions

For our purpose here, it is useful to classify ACL
permissions into two kinds: primitive and standard
permissions. Primitive permissions are basic
permissions, for example » on an object stands for the
permission to read data in the object. On the other hand,
standard permissions are high-level permissions, for
example, change on an object stands for the permission
to modify and read data in the object. A standard
permission is defined by primitive permissions.

The following is an authorization rule which stands
for the assignment of ACL permissions on an object to a
user (subject) by an owner of the cobject or by an
adrmimstrator. The rule is specified by the cando-perm
predicate.

cando-perm(S, P, Q)

where S stands for a subject, P stands for an ACL
permission and () means an object.

There are two kinds of derivation rules. The first
kind is for the propagation of permissions into group
members, and it is formulated as follows:

dercando-perm(S1, P, Q) [cando-perm(S2, P, O) A
in*(S1, 8§2) }

where 81, §2, P and O stand for two subjects, an ACL
permission and an object, respectively, and predicate in*
ig the reflexive closure of predicate dirin, and predicate
dirin{S1,52) means that subject §7 is a member of group
S§2 and it is assigned by an administrator..

Intuitively, this rule means that if subject S2 is
assigned ACL permission P on object (7 and subject S/
is in the group of 52, then S/ is also assigned P on Q.

The following is the other kind of derivation rules
which is to derive primitive permissions from a standard
permission.

dercando-perm(S, P, O) & [dercando-perm(S, P1, O) A
std-perm-defn(PI, P2) AP € P2}

where std-perm-defn(P1,P2) means that set P2 of
primitive permissions defines standard permission P/,
eg. std-perm-defuf{change, {r.w.x,d}).

The following rule is called the conflict resolution
rule (do-perm) which aims to resolve conflicts amongst
ACL permissions.

do-perm(8, P, Q) « [dercando-perm(S, P, O) A
—dercando-perm{S , none , Q)]

Intuitively, this conflict resolution rule states that
the standard permission none assigned to subject S on
object O cancels all other permissions given for subject §
on object 0. Note that none permission means no access,
and 1t is to prevent any access to an object.

3.2) Rights

User rights are permissions that allow a user to use
services provided by a system, for example, the right to
log on a machine locally. Moreover, some of the user
rights are permissions used for maintaining a system, for
example the right to back up files and directories into a
tape. Each administrator has some predefined rights for
their administrative tasks. However, additional rights can
be assigned to a user or an administrator, and they can
also be revoked later. The assignment of rights to a user
can be seen as a form of delegation.

The assignment of right R on object O to subject §
by an administrator is formalized by the following
predicate.

cando-righ?(S, R, Q)

where 8 R and @ stand for a subject, a right and an

object, respectively. . ‘
Similar to that for ACL permissions, there is the

derivation rules for rights as follows.

dercando-right(S1, R, O) « { cando-righttS2, R, O}
in*Si, 52) J

Before we discuss rules for conflict resolution, we
need to discuss the concept of user properties. When a
user account is created by an administrator, certain
properties of the user account can be specified, eg.
allowed logon hours and machines that the user can leg
on to.

The following is the conflict resolution tule for the
right to logon locally (/7). Intuitively, it states that either

the absence of the user property /ogon-ro or the presence
of the user property account-disabled assigned to subject
5 on machine M cancels the right to log on locally for
subject § on machine M.

do-right(S, R, M) « [dercando-righi(S. R. M) A
R = "Il A has-usr-prop(S, logon-to, M) A
—flas-1sr-prop(S, account-disubled. M)]

where predicate has-usr-prop(S, logon-to, M) means that
that user § has the user property logon-to to machine M.

For other rights, there is no conflict resolution rules
and this is captured by the following,

do-right(S, R, M) « [dercando-right(S, R. M) A
R="ll"]

3.3) Access Transparency

Access transparency is concerned with the ability of
a user to make an access to an object stored at a machine
from any machine in a distributed system. Access
transparency involves two kinds of transparency : ACL
permission transparency (or just ACL transparency) and
right transparency.

ACL transparency is about whether or not an ACL
permission is transparent (usable) to a user at a machine
in a distributed system. In other words, ACL
transparency means that a user can use an ACL
permission to access an object from any machine in a
distributed system. Right {transparency however is
concerned with whether or not a right is transparent to a
user at a machine in a distributed system.

As illustrated in figure 1, ACL transparency layer is
to determine whether a subject can access an object with
an ACL permission locally, globally or across domains.
The right transparency layer however is to determine
whether a subject can use a right as a local user, a global
user or a domain user.

By a domain user, we mean a kind of a global user.
The difference between domain users and global users is
discussed in section 3.3.2.

3.3.1) ACL Transparency

The following rule is for ACL transparency and it is

called distributed access control rule.

grant-access(U, A, O) &> [local-access(U, 4, O) v
global-access(U, A, Q) v
domains-access(U, 4, Q)]

where ¥/, 4 and O stand for a subject, an ACL
permission, and an object, respectively.

Predicate grant-access(U, A, Q) means that user {J
is granted an ACL permission 4 on object O if and only

if such a distributed access is granted focally, globally or
across domains,

Local access means that a user can access an object
from a machine that hosts the object. 1t is formalized as
follows:

lfocal-access(U, 4, Q) & 3N | direct-access(U. 4, Q) A
object-of{O, M) ~ grant-right(U, Il, M)]

where direcr-access(U, A, O) stands for the grant of a
direct access 1o subject (J on ohject O with ACL
permission A, object-of(O, M) means that object O is
located in machine A, and grant-right(U, /I, M} means
that user {J is granted right // at machine M.

A direct access is an access made directly 1o the
desired object whereas an indirect access is an access
made to the desired object via another object (ie. share).
Such indirect access i1s formalized by predicate access-
thru-share and the concept of indirect access will be
discussed below.

On the other hand, global access means that a user
can access an object from a machine which does not host
the object, but it is in the same domamn as the machine
that hosts the object.

global-access(U, 4, Q) < 30" M/[
access-thru-share(U, A, O, Q) A
glob-access-from(U, O, M)]

where predicate access-thru-share{U, 4, O, Q') means
that subject U is allowed to access object O via share O’
with ACL permission 4, and predicate glob-access-from
(U, O, M) means that machine M allows subject U to
make a global access to object O.

A share is an object which acts as a link (or an
entry) to an actwal object that locates in another
machine. Any access to a machine that hosts the object
from another machine must be made through a share. A
share can be assigned ACL permissions, Thus, it can be
used as an additional filter 1o control an access from
other machines.

Domain access means that a user can access an
object from a machine which locates in a different
domain than that of the machine that hosts the object.

domains-access{ U, A,0) > JO° M|
access-thru-share(U, 4, O, O') A
dom-access-from(U, O, M} [

where predicate dom-access-from(U, O, M) means that
machine M allows subject U/ to make a domain access to

object O.
The following two rules show definitions of global
and domain accesses from certain machines,

respectively.

glob-access-from(U, O, M) <> ID.M' [
object-aff O, M) A machine-ofi M, D) A
arane-rightfU. acn, M') A
global-user-offU,D) A machine-ofiM. D) A
M2 M’ A grant-right(U, 11, M) /

where predicate machine-of¢fM, D) means that M is a
machine 1n domain D, predicate giobai-user-oftU, D)
means that subject {/ is a member in domain D, acn
shorts for the right to access a machine across the
network.

Intuitively, this rule states that subject 1/ can access
object O from machine M globally if and only if U can
logon at machine M which is in the same domain as
machine M’ that hosts O, and U has the right to access
M’ across the network.

dom-access-from(U, O, M) &3 301, D2.D3.M" [
object-of(0, M’) A machine-of(M', D1) A
global-user-afilt, D3} A DI #D3 A
rust(DI,D3) A grant-right(U, acn, M’) A
machine-offM, D2) A grant-right(U, lI, M)
Atrust*(D2, D3)]

where predicate zrust* is the reflexive closure of
predicate rruss, and predicate rrusty(DI,D2) means that
domain D/ trusts domain D2 in that domain D/ allows
user accounts from domain D2 to make an access to /.

This rule captures two cases of the domain access.
The first case is that user I/ in a domain which is trusted
by the domain hosting object (accesses from a machine
in s domain. The second case is that user I/ in a
domain trusted by O’s domain accesses object O from a
machine which locates in yet another domain that trusts
/s domain. Note that in the second case, there are three
domains involved.

3.3.2) Right Transparency

For right transparency, we deal with the right 1o
logon locally () and the right to access a computer from
network (acn) separately from other rights.

The following rule deals with the right acn.

grant-right(U, acn, M) « do-right(U, acn, M)

where predicate grant-right(U, R, M} means that subject
U/ is granted right R that can be used at machine M.

This rule captures the most straightforward kind of
Tight transparency.

The following rule deals with the right /. It should
be noted that it shares some similarity with grant-access.

grant-vight(U, 1, M} — [logon-as-local-usr(U, M) v
logon-as-global-usrit. M) v
logon-as-domains-usr(U, M)]

where logon-as-local-usr(U, M), logon-as-global-usr(U,
M) and logon-as-domain-usr(t/, M)} mean that user {f
can {ogon at machine M as a local user, a global user or a
deinain user, respectively,

Since the right transparency 1s concerned with
whether or not a user can use a right at a machine, the
concept of local users, global users and domain users has
to be discussed with respect to machines.

A local user at a machine is simply a local user at
the machine. A global user at machine M is a global user
of the same domain as M whereas a domain user at
machine M’ is a global uwser of other domain different
from the domain in which M’ is.

The following two rules show definition of logon-
as-local-usr and logon-as-global-usr, respectively. We
omit the definition of logon-as-demains-usr here.

fogon-as-local-usr(U, M) < [do-right(U, I, M) A
locai-user-offt/, M)

where local-user-offU, M} means that {7 is a local user at
machine M.

logon-as-global-usriU, M} & 3D [do-right(U, I, M} A
machine-ofiM, D) A global-user-oftU, D)]

The following rule deals with all the other rights, ie.
those except the right // and acn.

grant-right(U, R, M} « do-righttU, R, M) AR 21l A
R = acn A grant-right(U, i, M) |

This rule means that apart from the rights / and
acn, the granting of any other rights requires the right /.
In other words, a user requires the right // at a machine in
order to obtain all the other rights at the machine.

3.4) Abilities

Abilities [11] can be considered as a special kind of
rights. However, the difference between rights and
abilities is that rights are permissions used for
maintaining a system whercas abilities are permissions
used for significant administration of a system.
Examples of abilities are the ability to create and remove
local user accounts, and the ability to assign user rights
to users.

Abilities are assigned to each type of administrators
according their administrative functions. For example,
account operators are assigned the ability to create and
manage user accounts. Moreover, abilities are predefined
for each type of administrator and they are unrevokable,
unlike user rights which are revokable.

Thus, abilities can be considered as authority that
each type of administrators has in order to manage the
NT system.

Each type of administrators can be thought of as a
role. Therefore, they can be dealt with naturally in the
moedel of RBAC.

The figure 2 shows the relationship between four
entities, 1e. roles, users, abilities (administrative
permissions) and supervisees (objects), that is employed
in our logical specification. The relattonship establishes
that a user due to its role has an administrative
permission (ability) on an object (supervisee},

Roles
()
(1
- 3 .
Users Abilities Supervisees
(Permission) (Obiects)

\%

Fig.2 Relation between roles, users, abilities and
supervisees

Intuttively, the figure 2 shows that there are two
kinds of relations between the four entities. In particular,
the first kind of relation, denoted by a single line, is
based on the inhentance of roles whereas the second
kind of relation denoted by a double line is just an
ordinary type matching which relates the types of
abilities to the types of their supervisees.

Our specification extends existing logic-based
specifications [13, 14] for RBAC to deal with the
relationships :

4) between rtoles/users

(supervisees) (2),

b} between roles and permissions (1), and

¢} between permissions and objects (3).

The figure 3 illustrates the general structure of our
specification for dealing with abilities.

{supervisors) and objects

~
inherits
l Propagation using
assigned-roles ” the inheritance of
assigned-op inherits* roles
assigned-sup inherits**
v [
authorized-roles
authorized-op op-sup
authorized-sup
grant-ability

Fig. 3 Structure of Our Specification for Abilities

Referring to figure 3, predicates inherits(Role, Role),
assigned-roles(User, Role), assigned-op(Role, Ability),
assigned-sup(Supervisor, Supervisee) and op-sup
(Ability, Supervisee} are parts of an access control
configuration whereas other predicates, eg. authorized-
rofes, represent the access control mechanism.

There are two kinds of access control configurations
for dealing with abilities : fixed and varied. Fixed
configurations are those which do not change but are
predefined whereas varied configurations are those that
can be defined and changed later by system
administrators. Predicates inherits, assigned-op,
assigned-sup and op-sup express fixed configurations

but predicate assigried-roles{User, Role} specifies varied
configurations.

The following 1s a top-level rule for dealing with
abilities.

gramt-ability(U, Ab, 8} > IR [
authorized-roles(U, R) a authorized-op(R, Ab} A
{ authorized-sup(U, §) v authorized-sup(R, 8}) A
op-sup(Ab, §) 7

where U, 45, 8, R staud for a subject {user), an ability, a
supervisee (object), a role, respectively, and predicate
grant-ability(U, Ab, §) means that subject {J is granted
ability 4b over supervisee S.

Intuitively, this rule means that such ability over §
is granted to subject U if and only if U is quthorized for
role R for which the ability is authorized, and either R or
U is aurhorized 1o manage supervisee {(object) S.

Following [14], the rule for the authorization of
users and roles is formulated as follows:

autharized-roles(U R) > JR " [assigned-roles(U R’} A
inherits*(R’,R) 7

where authorized-roles(U R} means that subject U is
authorized for role R, assigned-roles{U,R’) means that
role R’ 1s assigned to subject U, and inherit* is the
reflexive and transitive closure of predicate inherits, and
inherits(R1,R2} means that role RI inherits abilities from
role R2 in the sense that R1 is superiorto R2.

Intuitively, this rule means that user U/ is authorized
for not only an assigned role but also any role which is
inferior to the assigned role. Predicate assigned-roles is
definable by a system administrator.

Predicates authorized-op and authorized-sup are
defined similarly to predicate authorized-roles, and their
definitions are given as follows:

authorized-op(R Ab) « IR’ [assigned-op(R",Ab)
inherits*(R.R’) 7

where authorized-op(R AB} means that ability Af is
authorized for role R, and assigned-op(R’, Ab) means
that role R’ is assigned to ability 4b.

authorized-sup(51,52) ¢ 35 [assigned-sup(§,52) »
inherits**(§1,5) 7

where authorized-sup(§1,52) means that supervisor S7 is
authorized to manage supervisee S2, assigned-sup(S, 52)
means that supervisor S 15 assigned to manage supervisee
82, inkerits** is the reflexive and transitive closure over
two predicates inkerits and ind-inherits. Predicate ind-
inherits expresses a kind of inheritance and its detail is
omitted here.

Predicate op-sup(Op,S) is used to capture the
relation between abilities and supervisees. It matches

type of abilities to type of supervisees. The fotlowing
shows an example.

op-sup(Op. §) & [local-account-ability(Op) A
is-focal-account(S) |}

This rule is used to match abilities concerning local
user account to local user accounts, for example the
ability to create and manage local user accounts is paired
up with tocal user accounts. :

The following are examples of three predicates :
inherits, assigned-op and assigned-sup.

inherits(domain-admin(D), local-admin-ctri(C))
controller-offC, D)

where C and D stand for a2 machine acting as a domain
controller and a domain name, respectively, and domain-
admin(D) and local-admin-ctri(C) stand for domain
administrator role and local administrator rote,
respectively.

assigned-op(power-user(M), mla} ¢ machine(M)

where mla stands for the ability to create and manage
local user accounts, and power-user(M) stands for power
user role at machine A

assigned-sup(power-user(M}, G) « [(G = guest) v
(G = users) v (G = power-user(M))]

where & and M stand for a user group and a machine,
respeciively,

4) REASONING ABOUT ACCESS CONTROL

We discuss two kinds of reasoning about access
control configurations. The first kind is to verify
properties of a given access controf configuration. The
second kind is to generate a new access control
configuration.

4.1) Verification of Access Control Configurations

We propose novel and practical verification
propertics for helping object owners and system
administrators to analyze access control configurations
in NT. Moreover, our methodeology is practical in thar it
deals with the use of an access control system.

Formally, the verfication of properties of access
control configurations can be understood as follows:

MUAEP

where M stands for our logical specification of NT
discussed in the previous section, A stands for an access
control configuration, and P stands for properties that we
are interested in verifying.

Intuttively, an access control coufiguration is
considered as a set of assumprions and our specificarion
discussed in the previous section is thought of as a set of
axioms. Thus, any logical conseguence derived
(deductively) from the set of axioms and such a set of
assumptions 15 considered as a property provable from
the given access control configuration and the access
control specification.

An access control configuration is defined by
predicates cando-perm, cando-right, dir-in, has-user-
prop, global-user-of, local-user-of, trusi, assigned-roles,
machine-of, object-of, local-group-of. global-group-of,
inherits, controller-of. assigned-roles, assigned-op,
assigned-sup and op-sup. Some of these predicates are
defined by objects’ owners but others are defined only
by system administrators.

4.1.1) Correctness

This property aims to analyze whether an NT
configuration defined by an administrator or an abject
owner is correct with respect to the administrator’s or
the object owner’s intention, respectively. The intentions
represent high-level requirement of object owners and
administrators on access control in the system. We argue
that in general the intention of owners of objects is to
allow only trusted users to access some of their

information. For convenience here, we shall use the term
“uwsers” 1o rtefer to both object owners and
administrators.

An access control configuration is correcs if it
captures users’ intention. Users’ intention is defined by
using predicate infended-access(S, P, O) where § stands
for trusted subject, O stands for information whose
accessibility the owner is concerned about, and P stands
for access permission : ACL permissions and rights. The
concepts of rtrust subjects and owmer-concerned
information are application-dependent and are up to
users to define who should be trusted and what objects
whose accessibility are concerned.

We argue that it is intwitive to consider owner-
concerned information to represent users’ intentiomn,
since users are normally concermned with the control of
access to some of their information (objects), not all of
objects.

The correctness property of a configuration can be
defined by the following formulae.

intended-access(U, P, Q) — grant-access(U, P, O)

Intuitively, these formulae ensure that permissions
intended by users are granted by an access control
configuration.

4.1.2) Security : Confidentiality and Integrity

The security property consists of two components :
confidentiality and integrity. The confidentiality property
is expressed as follows:

[grant-access(U, P, O) A sensitive-info(0)] —
trusted-subject(U)

Intuitively, this means that onfy trusted subjects can
access sensitive information. In other words, if sensitive
object can be accessed by a subject, then the subject
must be a trusted (authorized) one. Note that as in the
correctness property, it is up to users to define which
objects are sensitive.

On the other hand,
expressed as follows:

[grant-access(l/, P, O) A
sensitive-info(O) A trusted-subject(U)] —
intended-access(U, P, O)

the integrity property is

Intuitively, this ensures that an authorized {trusted)
subject is allowed to access to sensitive information in
an aquthorized manner only. In other words, it guarantees
that permissions granted by an access control
configuration are those intended by users. Note that this
property can be seen as a converse of the correctness

property.

4.1.3) Policy Satisfactien

This kind of property aims to show that an access
control configuration satisfies a desirable security policy
defined by a security manager for an organization. Such
security policy represents high-level security
requirements of a system. Security policy for NT can be
defined systematically, but it is beyond the scope of our
paper here. In the following, we shall consider examples
of security policy, instead.

1) The policy “an authorized user for highly sensitive
information is allowed to access such information
from the mackine that hosts the mformanon anly”
can be expressed as follows: :

[grant-access(U, P, O}
highly-sensitive-info(Q) A trusted-subject{lU) } —
[local-access(U, P, O) A
—global-access(U, P, O} A
—domain-access(U, P,)]

2} The policy “an authorized user can access sensitive
information from a secure machine; however, the
same user cannol access the same information from
a non-secure (possibly public) machine” can be
captured by the following two statements.

{ grant-access(lUi, P, O] A
sensitive-info(Q) A trusted-subject{U)] —
M [secure-machine(M) A access-from(U, Q. M)]

{ grant-access(U, P, O) A sensitive-info(0) A
trusted-subject(U} A —secure-machine(M) | —
—access-from(U, O, M)

where access-from{U, O, M) means that subject UJ can
access cbject O from machine M.
4.1.4} Granted

Finding an Explanation of

Permissions

This kind of property aims to find an explanation of
certain permissions granted by a given access control
configuration. Such explanation would be a part of a
given configuration responsible for the grant of
permissions. In other words, such explanation would
clarify the cause of the grant of such permission in the
configuration. This property is classified as verification
of access control configurations since it is about an
analysis of an existing configuration.

Let consider an example of this property. An
administrator would like to find out why John, a user in
the system, has ACL permission r to file grade. One
explanation might be that John is granted the permussion
by the owner of the file directly, or John is a member of
a local group granted the permission.

Formaily, this property can be understood as
follows.

Definition 1 Explanation

Given an access control configuration A’ and a
permission Q such that M A’ I: O where M stands for
our logical specification for NT, an explanation for the
grant of permission is A that satisfies the following :
MuAdAkQandAcA”

There may be several explanations for the grant of
some permission. However, the kind of explanations that
are useful is the minimal one, which is defined by the
following definition.

Definition 2 Minimal Explanation
An explanation A for the grant of permission @ is
minimal 1f and only if there is no other explanation D
which satisfies MU D fQand D c 4

Note that if a minimal explanation of the grant of a
permission is an empty one, then this means that the
permission is pre-defined, eg. the ability of
administrators.

Example 1 Finding an explanation

Suppose that A = { objecr-of! ‘c:\data\salary.db’, tiger),
has-usr-prop(john, logon-ro, tiger), cando-right(john, Il
tiger), local-user-offjohn, tiger), cando-perm(john, r.
‘edata\salary.dh’), cando-perm{manager, r,
‘c\data\salarv.db’), dirin{john, manager) }. Suppose
further that 0 is grant-access(john, F,
‘c:\data\salary.db’). There are two minimal explanations
for the grant of @, which are Al = { object-of
(‘c:\data\salary.db’, tiger), has-usr-propfjohn, logon-to,
tiger), cando-right(john, 1, tiger), local-user-ofjohn,
tiger). cando-permjohn, r, ‘c:\data\salary.db’) | and A2
= { object-of{’c:\data\salary.db’, tiger), has-usr-prop
(john, logon-to, tiger), cando-right(john, If, tiger), local-
user-offjohn, tiger), cando-perm(manager, r,
‘c.\data\salary.db’), dirin(john, manager) }.

4.2) Synthesis of Access Control Configurations

This property aims to generate a new access control
configuration that grants a set of desirable permissions.
This property would help a novice administrator to
configure an access control system.

It is wuseful to consider situations where
administrators are given a partial configuration and are
asked to generate the rest of the configuration. Such a
situation may be that an administrator mast design a
configuration with the presence of some constraints. For
exarmple, in some system, it requires that users are
divided into two groups : students and staffs,

Moreover, another example of such situation is that
there is a change of the system environment, eg. new
machines, new printers or new users. In that case, a
partial configuration represents an existing and
unchanged part of environment.

Definition 3 Synthesis of an access control configuration
The partial synthesis of an access control configuration
is the generation of A in the presence of a given partial
configuration A’ such that M v A U A’F G and
A N A" = (Z where G represents a set of desirable
permissions.

Example 2 Synthesis of Access Control Configurations
Suppoese that a given partial configuration A’ = { object-
off ‘c\data\salary.db’, tiger), machine-offtiger, jungle),
global-user-offjohn, jungle} }. This partial configuration
means that the file salary.db locates in machine figer
which is the domain jungle, and jim ts a global vser in
domain juwmgle. Suppose that G is gramr-aqccess(jim, r,
‘c-\data\salary.db’). One possibility of the rest of the
configuration A is that { has-usr-prop(jim, logon-to,
tiger), cando-right(fim, I, rtiger), cando-perm(jim, r,
‘e \data\salary.db’) }

The new configuration {A) obtained from the
synthesis must satisfy the following two properties:

Property 1 Desirable Synthesized Configurations
1) Ais minimal with respect to set inclusion, ie. there is
no other configuration /[which satisfies

MuDOUA FGandDc A
2) A satisfies some set of integrity constraints (1C), ie.

M UAUA'E IC.

Intuitively, the first condition means that the
configuration generated 1s mimimal in that there 15 no
smaller configuration that grants the same permissions.
Note that if a minimal configuration that is synthesized
is an empty one, then this means that an existing partial
configuration A’ can already produce desirable
permissions G.

There are many kinds of integrity constraints. Some
is for the purpose of maintaining the consistency of the
system. For example, the following constraint means that
a tocal user which is assigned to be a member of a locat
group must be the local user at the same machine as the
local group.

[dirin(S, G} ~ is-local-user(S) A is-local-group(G)] —
M [local-user-oftS, M) » local-group-offG, M)]

Other kind of integrity constraints may express the
policy on the synthesis of the new configuration. For
example, such policy may be that ACL permissions
should be assigned to a group of users rather than to
users directly. This policy aims to cbtain a configuration
which is easy to maintain. Such policy can be expressed
as the following integrity constraint:

grani-access(U, P, Q) —
3G f dir-in(1),G) A is-group(G) »
cando-perm(G, P, Q) A —cando-perm(U, P, O) |

5) Conformance Testing

The conformance testing [19] aims to ensure that a
specification corresponds exactly to’ an actudl
implementation. In particular, the conformance testing
would guarantee that a spectfication is both correct
(sound) and complete with respect to an actual
implementation.

A specification is correct with respect to an
implementation if and only if what the specification
describes is an actual behavior of the implementation.
Moreover, a specification is complete with respect to an
implementation if and only if the specification is capable
of describing all aspects of tha behavior of the
implementation.

[n the conformance testing [19], there are two kinds
of tests : functional test and structural test. We discuss

how the conformance testing can be applied to our
specification here. However, we argue that the
conformance testing emplayed here ensures that our
specification is correct with respect to the NT system,
but it does not guarantee that our specification is
complete with respect to the NT system.

5.1) Functional Tests

Functional tests aim to ensure that & specification
corresponds to an implementation in terms of their

functionality. Since our specification is about access

control, we argue that the following is the main
functionality of our specification.

The specification (and the implementation} must grant a
permission 1o access an object fo a subject if and only if
the permission is authorized by the owner of the object.

Qur methodology to carry out the functional test is
first to create test data one for each kind of
authorization which could possibly be given by an
object’s owner. Then, such test data are taken as inputs
to both our specification and the NT system.

Our approach to classify types of authorization is to
classify types of subjects, permissions and objects those
of which can be allowed by an owner of the objects. For
example, subjects are divided into two main kinds :
individual users and groups.

The functional test reveals the main aspecr of the
correspondence between our specification and NT since
it addresses the functionality of the two. However, this
kind of test is subjective to test data.

5.2) Structural Tests

Structural tests aim to ensure that a specification
corresponds to an implementation in terms of their
behaviors. In other words, the structural tests should deal
with how a specification and an implementation achieve
the desired access control. Since our specification is
divided into layers and each layer performs certain tasks,
it is intuitive to test our specification for each of its
layers with respect to the NT system.

For example, the structural tests should include tests
on the conflict resolution rule, the derivation from
standard ACL permissions, and etc. Similarly to the
functional test, a group of test data is created which
cover each possibility of the condition of each rule.

Even though the structural test is also subjective to
test data, it reveals the correspondence between our
specification and NT more systematically than the
functional test does.

5.3) Discussion

The result obtained [20] for both the functional test
and the structural test shows that our specification
presented here produces the same output as the NT
system as far as the test data are concerned. This shows
that our specification is correct with respect to the NT
system. However, since we cannot enumerate all
possible functionalities and behaviors of the NT system
and we cannot create test data which cover all such
possibilities, we cannot guarantee for the completeness
of our specification. It is commonly recognized that the
enumeration of all possible behaviors of a bhlack-box
implementation is impossible [19]. As a result, the
guarantee for the incompleteness of such kind of
implementation, inclading NT, is not possible also.

However, we argue that it is sufficient to consider
just a correct specification in order te perform the
reasoning about access control discussed in section 4. In
particular, if it can be verified that a configuration
satisfies the wverification properties (eg. cormrectness,
security and policy satisfaction), then the result is correct
due to the correctness of our specification. However, if it
cannot be verified that a configuration satisfies the
properties, then it may be due to either an error in the
configuration or the incompleteness of our specification.
In such situation, human assistance to examine the actual
cause is required.

6) CONCLUSION AND FUTURE WORK

In this paper, we have carried out a study on a
logical methodology for access comtrol in NT. The
contribution of this paper is a logical specification for
distributed access control in NT and a reasoning
methodology for analyzing access control configurations
in NT. The logical specification developed here is new in
that it deals with the distributed access control system
whereas existing specifications deal with access control
in a centralized systemn. The benefit of our specification

is that it provides a precise and clear understanding in

the access control mechanism in NT.

Moreover, our reasoning methodology helps system
administrators to analyze access control configurations.
In particular, the reasoning methodology helps venifying
whether access control configurations have desirable
properties, such as correctness and security. Moreover, it
helps generating new access control configurations that
have desirable properties. We argue that our reasoning
methodology is not only practical but also new.

Our specification is static in that it deals with an
access control cenfiguration given at an instance of
times. Therefore, several verification properties, in
particular the security, are restricted to the static notion.
However, a dynamic version of our specification has

been developed in [20] and several properties for
dynamic access contre] have been studied there.

Furthermore, a prototype of our methodelogy has
been developed also, and our methedology has been
applied to a case study, namely, an internet service
providing system at KMUTT university. The results
obtatned show that our methodology has several
benefits. In particular, it provides a systematic and
automatic approach to deal with the analysis of access
control configurations. Moreover, it can avoid errors that
might occur in manual analysis of access control
configurations. The details of the prototype and the case
study can be found in [21].

As a future direction, we plan to apply our logical
methedology for other kinds of access control
applications, namely Dwatabase systems. Moreover, it
would be interesting to study this logical methodology
for other areas in computer security.

Acknowledgement

I would like to thank Professor Phan Minh Dung,
Professor Bob Kowalski and Dr. Mark Halls for their
helpful and encouraging discussions. Moreover, I would
like to thank Chukiat Yangyuenbangchan and Orawan
Tunsungwon for the discussion on access control in NT.
The research reported in this paper is supported by
Thailand Research Fund, National Research Council of
Thailand and King Mongkut’s University of Technology
Thonburi.

Reference

[l] J. Glasgow, G. MacEwen and P. Panangaden, A
Logic for Reasoning about Security, ACM
Transactions on Computer Systems, Vol. 13, No. 3,
1992.

T.Y.C. Woo and S.S. Lam, Authorization in
Distributed Systems: A new approach, Journa! of
Computer Security, 2(2,3), 1993,

M. Abadi, M. Bumrows, B. Lampson and G.
Plotkin, A <Calculus for Access Control in
Distributed Systerns, ACM Transactions on
Programming Language and Systems, Vol. 15 No.
3, 1993,

[4] S. Jajodia, P. Samarati and V.S. Subrahmanian, A
Logical Language for Expressing Authorizations,
In Proceedings of IEEE Symposium on Research in
Security and Privacy, 1997.

F. Massacci, Reasoning about Security : a Logic
and a decision method for Role-based Access
Countrol, in Proceedings of the International Joint
Conference on Qualitative and Quantitative

(2]

(3]

[5]

[6]

(7]

(8]

(9]

{10]

{11]

(12]

[13]

(14

(15]

[16]

[17]

(18]

[19]

Practical Reasoning (ECSQARU/FAPR), Spinger-
Verlag, 1997.

Y. Bai and V. Varadharajan, A Logic for State
Transformation in Authorization Policies, in
Proceedings of IEEE Computer Security
Foundation Workshop, 1997

E. Bertino, F. Buccafurri, E. Ferrari and P. Rullo, A
Logical Framework for Reasoning on Data Access
Control Policies, in Proceedings of IEEE Computer
Security Foundation Workshop, 1999.

L. Kassab and §. J. Greenwald, Towards
formalizing thé Java Secunty Architecture of JDK
1.2, In proceedings of European Symposium on
Research in Computer Security (ESORICS),
Springer-Verlag, 1998.

M.A. Harrison, W.L. Ruzzo and J.D. Ullman,
Protection in Operating Systems, Communication
of ACM, 19(8), 1976.

C. Rutstein, Windows NT Security : A practical
guide to securing Windows NT servers and
workstations, McGraw-Hill, 1997,

T. Sheldon, Windows NT Securiry Handbook,
McGraw-Hill, 1997.

S. Sutton, Windows NT Security Guide, Addison-
Wesley Press, 1997.

D.F. Ferraiolo, L. A. Cugini, D.R. Kubn, Role-Based
Access Control (RBAC); Features and Motivations,
In Proceedings of I[EEE Computer Security
Appiications, IEEE Computer Society press, 1995.
S.1. Gavrila and J.F. Barkley, Formal Specification
for Role Based Access Control User/Role and
Role/Role Relationship Management, In
Proceedings of ACM Workshop on Role-Based
Access Control, ACM press, 1998.

R.S. Sandhu, Role-Based Access Control,
Advances in Computers, M. Zerkowitz (ed.), Vol.
48, Academic Press, 1998.

C. Ramaswamy and R. Sandhu, Role-Based Access
Control Features in Commercial Database
Management Systems, fn Proceedings of National
Computer Security Conference, 1998.

D.F. Ferraiolo and J.F. Barkley, Specifying and
Managing Role-Based Access Control within a
Corporate Intranet, J/n Proceedings of ACM
Workshop on Role-Based Access Control, ACM
press, 1997

Y. Permpoontanalarp, 4 Logical Methodology for
Access Control in Windows NT, Technical Report,
Department of Computer Engineering, King
Mongkut’s University of Technology Thonburi,
2000.

G.J. Holzmann, Design and Validation of
Computer Protocols, Prentice Hall Software Series,
1991.

(20]

[21]

O. Tunsungwon, 4 Formal Method for Dynamic
Access Control in Windows NT, Master Thesis,
Department of Computer Engineering, King
Mongkut’s University of Technology Thonburi,
Bangkok Thailand, 2000.

K. Chutipan, XK. Banjerdpisarnkul and D.
Srinarong, A software tool jor analyzing access
control in Windows NT and its application to an
KMUTT internet service - providing system,
Bachelor Thesis, Department of Computer
Engineering, King Moongkut’s University of
Technology Thonburi, Bangkok Thailand, 2001.

A Graph Theoretic Model for Hardware-based Firewalls

Yongyuth Permpoontanalarp and Chaiwat Rujimethabhas
Logic and Security Laboratory
Department of Computer Engineering
King Mongkut's University of Technology Thonburi
91 Suksawasd 48, Ratburana, Bangkok 10140 Thailand
yongyuth(@cpe.eng. kmutt.ac.th, s1410008@cc.kmutt.ac.th

Abstract

Firewalls offer a protection for private networks against
external attacks. However, configuring firewalls is a
difficult task. The reason is that the effects of a firewall
configuration cannot be easily seen during the
configuration time. As a result, errors and loopholes in
Sirewall configurations, if exist, are discovered only afier
they actually happen at the execufion time. In this paper,
we propose a preliminary yet novel model and its
methodology for hardware-based firewalls. Our model
offers precise and simple understanding of effects of
firewall configurations. Moreover, our methodology
offers an analysis of effects of firewall configurations. In
particular, it provides reasoning aboul the correctness of
firewall configurations. Also. the redundancy and
inconsistenicy of firewall rules can be reasoned about. As
a result, many kinds of errors and loopholes of firewall
configuratiors can be detected during the configuration
time.

1. Introduction

Nowadays, firewalls (eg. [1,2]) become a widely used
mechanism to achieve Internet security. Most, if not all,
organizations whose computers have an Intermnet access
are currently using firewalls. Firewalls locate between an
internal network and an external network. Firewalls offer
a protection for private (and internal) networks against
external threats. In particular, firewalls ensure that only
authorized information flows between internal networks
and the external network are allowed.

Firewalls can be classified into two kinds : hardware-
based and software-based. Hardware-based firewalls are
routers that are also capable of filtering packets passing
through the routers. Software-based firewalls are
computers installed software for filtering packets. Such
computers may be a gateway or a server. Normally,
hardware-based firewalls are more complicated than

software-based firewalls since the former is primitive and
is not easily extensible. [n this paper, we focus on
hardware-based firewalls.

Even though firewalls could provide protections
against external attacks, configuring firewalls is a difficult
task. In general, a configuration for firewalls consists of a
set of filtering rules and a set of activation rules. Filtering
rules are rules that determine which packets will be
allowed (or disallowed) to pass through a firewall. On the
other hand, activation rules are rules stating the activation
of an ordered set of filtering rules at a particular direction
of a firewall.

The cause of the difficulty in configuring firewalls is
that the effects of a firewall configuration cannot be easily
seen during the configuration time (or before the
execution time).

Usually, there are many filtering rules activated at a
specific direction of a firewall. These filtering rules are
ordered since a firewall processes those rules from top to
bottom in order to decide whether or not a packet should
pass through the firewall. In other words, an upper rule
takes precedence over a lower one. Therefore, in order to
understand the effects of a ser of those filtering rules,
every rule in the set must be taken into account and a
mechanism to calculate the total effects of those Tules is
not straightforward.

Furthermore, in order to see the effects of all filtering
rules at all directions of every firewall in a system, the
effects of filtering rules at each direction of each firewall
have to be calculated first. Then, the combined effects of
those filtering rules are computed, which is not simple at
all.

Since the effects of a firewall configuration cannot be
seen at the configuration time, many firewall
configurations often have errors and loopholes. Most
often, such errors and loopholes are discovered only after
they actually happen at the execution time. This causes
severe damage to the system.

Furthermore, it is difficult to maintain existing
configurations written by someone else. Firewall

administrators cannot be sure of the actual effects of a
filtering rule.

We argue that these problems occur because of the
lack of firewall model and its methodology to understand
and to analyze the effects of firewall configurations. In
this paper, we propose a graph theoretic model and
methodelogy for reasoning about hardware-based firewall
configurations. Even though our model proposed here is
preliminary, it is novel is that it is formal and it can
analyze effects of firewall configurations in details.

Our model offers precise and simple understanding of
effects of firewall configurations. Moreover, our
methodology provides reasoning about the correctness of
firewall configurations. Also, the redundancy and
inconsistency of firewall rules can be reasoned about.

We discuss the background in section 2, and our model
in section 3. Our methodology is discussed in section 4
and the justification that our model corresponds to actual
firewalls is given in section 5. Related works and
conclusion are discussed in section 6 and 7, respectively.

2. Background

2.1. Hardware-based firewalls

Hardware-based firewalis are routers which are
capable of filtering packets. Such hardware-based
firewalls may have many interfaces attached, and each
interface applies a set of filtering rufes in order 1o filter
packets. Examples of hardware-based firewalls are Cisco
firewalls and Nokia firewalls.

The model that we shall present is general for all
hardware-based firewalls. However, for the ease of the
presentation here, we shall present our model for Cisco
routers. In the following, we shall discuss a simplified
version of Cisco firewall configurations.

Cisco Firewall Rules are represented by (SFR, S4R)
where SFR stands for a set of filtering rules and SAR
stands for a set of activation rules.

In definition i, words in boldface mean keywords and
words in italic mean variables. {a | &#! means a choice
between a and &, Moreover, [x / means that x is optional.

Definition 1 Filtering and Activation Rules

Filtering rules are rules that define either the permission

or prohibition of the flow of packets from one place to

another whereas activation rules are rules which apply
filtering rules to particular direction of certain router
interfaces.

a) Filtering rules : Each filtering rule is assigned a
number, called access-list-number. Many filtering
rules can be grouped together by assigning the same
access-list-number. A filtering rule is defined by the
following:

access-list access-list-number {deny | permit }

{ source-address |

(protocol { source-address | any } [Op Source-port]
{ dest-address |any } [Op Dest-port] } }
where

- source-address and dest-address stand for IP address
which originates a packet, and IP address to which a
packet is sent, respectively, and they can be specified
by either a specific IP address (ie. host /P-address) or
a range of 1P addresses (ie. }P-address Netmask).

- protocol stands for a session-layer protocol, eg. fcp.

- Op stands for a binary operator such as = and =.

- Source-port and Dest-port mean a port at source-
address and a port at dest-address, respectively.

b} Activation rules : One activation rule is defined for
an interface, and it can activate only one access-list
number for each direction (ie. in or out). An
activation rule is defined by the following:

interface Nante

ip address interface-address

ip aceess-group gccess-list-number { in | out }

where interface-address stands for a specific [P address

that is assigned to the interface Name.

Example 1 Filtering and Activation rules
The following shows an example of activation rules.
interface Ethernet /0
description Router A
ip address 202.44.8.1
ip access-group 100 in
ip access-group 101 out
The following shows an example of filtering rules.

access-tist 100 deny tep host 34.1.2.2

host 202.44.9.2 eq 80
access-tist 100 permit tcp 34.1.0.0 255.255.0.0

host 202.44.9.2 eq 80

access-list 100 deny ip host 203.155.33.1 any
access-list 100 permit ip any any
access-list 101 deny ip any host 203.155.33.1
access-list 101 deny ip any host 202.144.255.1
access-fist 101 permit ip any any

3. Model

Our model is based on graph theory (eg. [3]). In
particular, since network topology can be represented by a
graph, we argue that a firewall configuration rule can be
understood as a set of paths in the graph. By treating
firewall configuration rules as paths, reasoning about
effects of those rules can be achieved easily.

We propose the following generalized firewall rule
which can be considered as a general representation of
firewall configurations. Such generalized firewall rules
would facilitate our task here.

Definition 2 Generalized Firewall Rules

A generalized firewall rule for Cisco consists of the

following:

(Source, Destination, Service, Direction, Action, FH

Interfaces)

where

- Source and Destination stand for sender’s 1P address
and receiver’s IP address, respectively. Note that any
means any 1P address.

- Service consists of a protocol and ports.

- Direction stands for the direction of flow from
Source to Destination via FW Interfaces, and it can
be either inbound or outbound.

- Action stands for whether flow is allowed or not, ie.(
permit or deny).

- FW Interfaces stand for firewall interfaces which
perform packet filtering.

For each activation rule AR in SAR, we build a set of
generalized firewall rules in the same order as the filtering
rules activated by the rule AR. Thus, only ore set of
generalized firewal! rules is defined for an activating
firewall object. Moreover, the order of fiitering niles in
simplified Cisco rules is preserved in the set of
generalized firewall rules.

Definition 3 Converting from Cisco rules to generalized
Sirewall rules

For each activation rule AR = SAR and for each filtering
rule FR & SFR which is activated by AR, we can obtain
the corresponding generalized firewall rule as follows:
{Source, Destination, Service, Direction, Action, FW
Interfaces)

where Source, Destination, Service and Action can be
obtained from corresponding items in FR, and Direction
and FW Interfaces can be obtained from corresponding
items in AR, which activates FR.

Example 2 Converting from Cisco rules to generalized

Sfirewall rules . _

The first four filtering rules in example | can be

converted to the following generalized firewall rules.

Ha' (34.12.2.2, 202.44.9.2, htip, inbound, deny, 202.44.8.1)

#b: (34.1.0.0 255.255.0.0, 202.44.9.2, http, inbourd,
permit, 202.44.8. 1)

#e: (203.155.33.1, any, any, inbound, deny, 202.44.5.1)

#d: (any, any, any, inbound, permit, 202.44.8.1)

The following shows the definition of network
topology.

Definition 4 The Network Topology for Cisco

The network topology for Cisco is a labeled and
undirected graph where a vertex (node) in the network
topology is labeled with a set of IP addresses, and an edge
(arc) between two vertices represents a communication
link between two sets of IP addresses.

-where Source, Destination,

For an internal network, a vertex is labeled with a set
of a single 1P address. Such a vertex intuitively stands for
an interface to either a computer or a network device. For
the external network, there is a special vertex called alf
representing a set of all valid IP addresses. The aff vertex
is Jabeled with set {x | x is a valid IF address}. From now
on, we use alf to denote the set.

Intuitively, a vertex labeled with a set of 1P addresses
means that the vertex can represent any 1P addresses in
the set.

The figure 1 illustrates an exampie of the network
topology. In figure 1, there is a symbol next to each IP
address. For simplicity of our discussion here, such
symbol is used to represent such [P addresses, and a set
consisting of a single I[P address is represented by the
single IP address. For example, x200 means [P
203.155.33.1. There is a requirement for the network
topology. All firewall interfaces appearing in generalized
firewall rules must be present as vertices in the network
topology.

The following shows that Cisco firewall rule can be
considered as a set of directed and rnon-cyclic paths
defined at a particular interface in a network topology.
Since such a set of directed paths is defined at a particular
interface, it 15 considered as a local set.

Definition 5 A Cisco firewall rule as a local set of

directed and non-cyclic paths

Given a generalized firewall rule GR (for Cisco) and a

network topology T, a local set of directed paths which

corresponds to GR is a set of all directed and non-cyclic

paths in 7 that

a) begin with Source vertex,

b) end at Destination vertex,

c) pass through FW fnterfaces vertex in specified
Direction, and

d) are labeled with Service,

Service, Direction, FW

[nterfaces are those stated in GR.

Definition 6

A path that begins with Source vertex in rule GR is the

path that satisfies the following:

a} if Source is a specific IP address (ip), then SIP = {ip},
where S/P is a set of IP addresses represented by the
initial vertex of the path, or

b) if Source is a set (gip) of IP addresses, then SIP =
{ip’}, where ip’ € gip.

c) if Sourceis “any”, then SIP can be of any set.

Note that SIP can be understood as an instantiated
label of the vertex for the path by generalized firewall ruie
GR. Note also that the definition for a path that ends at
Destination vertex can be given similarly to this
definition.

w104 -

iP 34,122

100
I# 34,011

104
P 34130

EE]

TP 202.44.8.1 P 202.44.10.1

P 202.44.1057 1P 202.44.10 66 IP 202.44.1068 1P 262.44.10.78

Figure 1. The network tepolagy

Example 3 A Cisco firewall rule as a local set of directed
and non-cyclic paths

The local set of paths that corresponds to the generalized
firewall rule #a in example 2, ie. (x/04, a20!, hitp,
inbound, deny, al), is [(<x]04, xI103, x100, al, a2
a20]>)}, whereas the local set of paths that corresponds to
rule #b in example 2, le. ({xJ00.xI04}, a20l, hup,
inbound, permit, al), is {<x100, al, a2, a201>, <x10},
x100, al, a2, a201>, <x102, x101, xI100, al, a2, a20]>,
<xl03, x100, al, a2, a20I>, <xI04, x103, x100, al, a2,
a2@l>}.

Note that <nJ, n2 n3> represents a path beginning at
vertex representing n/ and ending at vertex representing
n3, and such path visits vertex that represents n2.

It should be noted here that the transformation of a
firewall rule to a set of paths requires the presence of
firewall objects in the network topology. Such
requirement ensures that such directed paths obtained
correspond to actual paths that packets can travel.

Since there may be many rules activating at an
interface, we need to compute effects of those rules at
such an interface. This is dealt with by the concept of
effective paths. Note that we shall focus on the effective
paths which are permitted at an interface, rather than
those which are prohibited at an interface. However,
simtlar definition for prohibited paths can be given also.

The following shows a definition to compute locally a
set of effective and permitted paths from a set of
generalized firewall rules defined at an interface.

Definition 7 A focal set of effeciive and permitted paths
Given an ordered set SGR of generalized firewall rules at
an interface, a local set of effective and permitted paths at
the interface is P, where

- nis the number of rules in SGR,

- GR; for § such that 1 < f and j < » is the j-th
generalized firewall rule in the ordered set SGR,
- LP; is a local set of directed and labeled paths
generated from the generalized firewall rule GR,,
- Pyissimply &, and
~ ForeachisuchthatO <iandi<an,
if GR,;is a “deny” rule, then P, = P,— LP,,
if GR,,, is a “permif’ rile, P;.) = P, CLP,;

We assume that the resultant set P, is minimal, since
the set may result from the set subtraction that could
remave some paths out.

Example 4 4 local set of effective and permitted paths
Suppose that at interface af, there are only rules #a and
#b shown in example 2. Thus, the local set of effective
and permitted paths at interface al is {<xI100, al, a2,
al2Ql>, <xI1QI, xI00, al, a2, a201> <x102 x10], xi0g,
al, a2, a201>, <x[03, x100, al, a2, a201>).

We argue that the process of calculating effective paths
13 similar to the process of evaluating nested expresstons.
Note that nested expressions can be seen as ordered
expressions.

Intuitively, this definition can be seen as a
transformation from an ordered set of firewall rules to
nested expressions of se! operations on paths. In
particular, the top most firewall rule would become some
sub-expression at the out most level. Moreover, the
bottom most firewall rule would become some sub-
expression at the inner most level.

Example 5 Order of rules as order of expressions

Consider the firewall rules in example 2. Suppose that
there are only those rules. The definition of finding
effective paths would transform the ordered set SGR of
those rules into nested expression { ((&« LPJ — LPy v

LP;) — LP, where LP, is the local set of paths that
corresponds to the i-th rule in SGR.

The concept that an upper rule takes precedence over a
lower rule is still preserved in nested expressions in that
an outer sub-expression could cancel the effect of an inner
sub-expression.

Moreover, the set operations on paths can be simplified
to corresponding set operations on vertices in those paths.

Example 6

Suppose PI = [<all aif, a3, bl, b2, b20I> }, P2 =
{<xi00, al, a3, bl, b2, 6201>} and P3 = { <x300, al, a3,
b1, b2, b201> }. Thus (Pi «/P2) - P3 = {<all - {x300}
,al, a3, bl b2, b201> }.

The following shows the definition to compute a global
set of effective and permitted paths from every local set of
effective and permitted paths. Intuitively, a global set of
effective and permitted paths stands for directed paths that
are permitted by all Cisco firewalls.

Definition 8 4 global set of effective and permitied paths
for every local set LEP of effective and permitted paths

and for every path P € LEP, if

Pe (\Lem
i e fw-interface(p}
then P is in the global set of effective and permitted paths,
where LEP; is a local set of effective and permitted paths
at interface i and fiw-interface(P) indicates a set of
vertices in path P, which are interfaces to firewalls.

Intuitively, this definition states that a path in a local
set of effective paths would be in the global set of
effective paths if the path is permitied at every interface
through which the path visits.

Example 7 A global set of effective and permitted paths
Suppose that the local set of effective and permitted paths
at interface a2 is {<x100, al, a2, a20i>, <xI10!, x100, al,
a2, a201>, <xi02, x101, x100, al, a2, a201>, <x]03,
x100, af, a2, a201>, <b20!, b2, bl, a3, a2 a20i>,
<b301, b3, b1, a3, a2, a20i>, <b30l, b3, bl a3, a2,
a201>, <b501, b3, b1, a3, a2, a201>, <b30], b3, bi, a3,
a2, a201>, <b401, b4, b1, a3, a2, a201>, <b402, b4, b1,
a3, a2, a201>, <b4i], b4, bI, a3, a2, a201>, <6412, b4,
bi, a3, a2, a20f>}. Moreover, suppose that there are only
two local sets of effective and permitted paths (at
interfaces a/ and a42). Thus, the global set of effective and
permitted paths is {<x!00, al, a2, a201>, <x101, xJ00,
al, a2 a20i>, <xi102, xI07, x100 al, a2, a20/>, <x[03,
x100, al, a2, a201>}.

4, Reasoning methodology

Our methodology provides an analysis of effects of
tirewall configurations in such a way that given a network
topology and Cisco firewall rules, all the effects of those
rufes are produced in terms of paths. Once those paths
which are effects of firewall rules are obtained, many
kinds of analysis can be further performed, which will be
discussed below.. ’

An information flow can be represented by either a
path or a triple (source, destination, service). Such a triple
sepresents a kind of information flow that is independent
of paths. For simplicity here, we shall focus on the
information flow represented by paths.

One simple kind of reasoning offered in our model is
to allow administrators to test whether an information
flow is permitted by a set of generalized firewall rules.
This can be done by testing the membership of such
information flow in the global set of effective and
permitted paths.

4.1. Correctuess of firewall rules

This kind of reasoning aims to test that effects of a set
of firewall rules are those that are intended by a firewall
administrator. Initially, a firewall administrator has to
define a set of intended information flow, and then
calcutated effects of firewall rules will be compared with
this set of intended information flows.

Defirition @ Correctness

Given a set IF of paths that are intended as permitted
information flow, a set SGR of generalized firewall rules
is correct iff IF = GEP where GEP is the global set of
effective and permitted paths generated from SGR.

Note that this definition of correctness is defined for
the context of closed policy, since the closed policy
expresses only what is permitted and assumes that what is
not permitted must be denied.

4.2. Redundancy and inconsistency of rules

This kind of reasoning allows firewall administrators
to examine whether a set of firewall rules contain some
rules that produce no effects. If there is such rule, it can
be eliminated.

Definition 10 Redundancy (Inconsistency)

Firewall rules R and R2 are redundant (inconsistent) iff

a} RJ and R2? are defined for the same kind of actions,
services and directions (1 and R2 are defined for the
same kinds of services and directions but they are of
different kinds of action, respectively) and

b) either LP/ & LP2or LP2 ¢ LPJ

where LPJ and LP2 stand for the local sets of paths

generated from rules R7 and RZ, respectively.

Example 8 Redundancy and Inconsistency

Consider rules in example 2. Suppose that those rules are
reordered into #b. #a, #c and #4. Thus, rule #b and rule #4
are redundant, and rule #&6 and #a are inconsistent.

Definition 1) Redundandy(inconsistently)inefiective rules
Given a set SGR of generalized firewall rules at an
interface, rule GR in SGR is redundantly (inconsistently)
ineffective if and only if there is GR” in SGR such that

a) GRand GR’ are redundant (inconsistent, resp.) and

k) GEP =GEP"

where GEP and GEP' are the global sets of effective and
permitted paths generated from SGR, and (SGR — GR},
respectively.

Example 9 Ineffective rules

Consider the rules discussed in example 8. Rule #a is
inconsistently ineffective, but rule #b and rule #d4 are not
redundantly ineffective. Thus, rule #a can be removed.

4.3. Explanation of flows in terms of firewall rules

Qur model allows us to reason about firewall rules that
are the causes for either allowing or disallowing particular
flows. For simplicity, we shall consider the kinds of
explanations for allowing particular flows only.

Definition 12 An explanation of a flow in terms of

Sfirewall rules

Given a set SGR of generalized firewall rules and a path

F e GEP, an explanation for allowing path P 1s the set
{GR| GR = SGR, GR is a permit-type rule, GR is not

ineffective and P = LPgg }

where LPgg is a local set of paths generated from rule GR,

and GEP stands for the global set of effective and

permitted paths.

Intuitively, rule GR is an explanation for path P if the
effect of rule GR includes path P.

5. Conformance testing

The conformance testing {4] aims to ensure that a
model is both correct {sound) and complete with respect
to an actual implementation. The correctness means that a
model correctly captures an implementation whereas the
completeness means that a model captures all aspects of
an implementation.

We have carried oul conformance testing by creating
test data which cover main functionality and behavior of
firewall, and comparing the outputs obtained from our
meodel with those from Cisco firewall.

The results obtained show that our model] is correct
with respect to Cisco firewalls. However, we cannof

ensure the completeness. This is because it is impossible
10 construct test data which cover all possibilities of the
functionality and the behavior of firewalls.

6. Related works

The most related work to ours is Fang [5]. Fang is a
software tool which &aims to analyze firewall
configurations. Fang’s approach is to simulate the final
effects of a firewall configuration in terms of a set of
packets allowed to pass through firewalls. A user must
submit a query on a particular set of packets to Fang, and
based on the query, Fang will generate the output
consisting of packets in the query that are allowed to pass
through firewalls.

Fang’s approach is ad hoc in that it can only produce
the final effects of a firewall configuration. It does not
provide an explanation of the processing of ordered rules
activated at an interface. Moreover, it does not offer an
explanation of the processing of filtering rules at all
interfaces of every firewall. In addition, it cannot reason
about the redundancy and inconsistency of filtering rules.
Fang cannot reason about an explanation of a flow in
terms of filtering rules.

7. Conclusion

We have presented a preliminary but novel model for
firewalls and its methodology. The model is based on
graph theory. Qur model provides simple and precise
understanding of firewall configurations. Also our
methodology offers a thorough analysis of firewall
configurations

We have applied our methodology to case studies [6].
Currently, we are implementing a software prototype of
our model. As a future work, we aim to apply our model
to other kinds of firewalls, ie. software-based firewalls.

Acknowledgement

The first author would like to acknowledge supports
from The Thailand Research Fund and The National
Research Council of Thailand.

References

[1] W. Cheswick and $.Bellovin, Firewalls and Internet Security
- Repelling the Wily Hacker, Addison-Wesley, 1994,

|2] D.B. Chapman and E.D>. Zwicky, Building Internet Firewall,
O’Reilly & Associates, 1995,

[3]). Gross and I. Yellen, Graph Theory and its Applications,
CRC Press LLC, 1998,

4] G.}. Holzmann, Desigrn ard Validation of Computer
Protocels, Prentice Hall Software Series, 1991.

[5] A. Mayer, A. Woel and E. Ziskind, Fang : A Fircwall
Analysis Engine, in proceedings of 21" [EEE Symposiunt on
Securiny & Privacy, Oakland, CA, 2000,

[6] C. Rujimethabhas. A graph-based methodoiogy for
Hardware-based Firewalls, Master thesis, Department of
Computer Engincering, King Mongkut's University of
Technology Thonburi, Bangkok, Thailand, 2001.

A Unified Methodology for Verification and
Synthesis of Firewall Configurations

Yongyuth Pertnpoontanalarp and Chaiwat Rupimethabhas

Logic and Security Laboratory
Department of Coruputer Engineering .
King Mongkut’s University of Technology Thonburi
9t Suksawasd 48, Ratburana, Bangkok 10140 Thailand
yongyuth@cpe.eng . krutt.ac.th and si1410008Qcc.kmutt.ac.th

Abstract. Firewalls offer a protection for private networks against ex-
ternal attacks. However, configuring firewalls correctly is a difficult task.
There are two main reasons. One is that the effects of a firewall configu-
ration cannot be easily seen during the configuration time. Another one
is the lack of guidance to help configuring firewalls. In this paper, we
propose a general and unified methodology for the verification and the
synthesis of firewall configurations. Our verification methodology offers
a way to foresee and analyze effects of firewall configurations during the
configuration time. Furthermore, our synthesis methodology can gener-
ate firewall configurations that satisfies users’ requirements. As a result,
firewall configurations that are free of many kinds of errors and loopholes
can be obtained easily.

1 Introduction

Nowadays, firewalls (e.g.[1,2]) become a widely used mechanism to achieve In-
ternet security. Mast, if not all, organizations whose computers have an Internet
access are currently using firewalls. Firewalls locate between an internal network
and an external network. Firewalls offer a protection for private (and internal)
networks against external threats. In particular, firewalls ensure that only au-
thorized information flows between internal networks and the external network
are aliowed.

Even though firewalls could provide protections against external attacks,
configuring firewalls correctly is a difficult task. There are two main reasons.
One is that the effects of a firewall configuration cannot be easily seen during
the configuration time. Another one is the lack of guidance to help configuring
firewalls.

Since the effects of a firewall configuration cannot be seen at the configuration
tirne, many firewall configurations often have errors and loopholes. Most often,
such errors and loopholes are discovered only after they actually happen at the
execution time. This causes great damage to the systern.

Due to the lack of guidance to help configuring firewalls, to configure them
requires a great deal of experience which is certainly not available to novice

administrators. Moreover, configuring firewalls can be a complex and time- con-
suming task due to the large number of host computers, required services and
firewalls. Furthermore, the networks of computers in any organizations are al-
ways changed due to the change of the structure of organizacions themselves
and the replacement for new equipment. Most often a change of such networks
requires a new fArewall configuration. Thus, this worsens the situation.

We argue that all these problems oceur because of the lack of firewall method-
ology to analyze the effects of firewall configurations, and to help configuring fire-
walls. In this paper, we propose a general and unified methodology for verifying
and synthesizing firewall configurations.

In [3}, we proposed a graph-based model and its methodology to analyze
effects of Cisco firewall configurations. In this paper, we extend the model and
the methodology there in several aspects. Firstly, we extend the model to be able
to deal with both the verification and the synthesis within the same framework.
Secondly, we define the notion of correctness of firewall configurations in the
context of several kinds of policies whereas [3] deals with one kind of palicy only.
Those polices are useful not only for the verification but also for the synthesis.
Furthermore, we show here that our model is general in that it can be used to
analyze effects of Firewall-1 configurations also, not just Cisco firewalls.

Our approach is novel in that it is formal and it combines both verification
and synthesis within the same framework. We show that our approach is more
general than existing related approaches. Furthermore, we obtain the correctness
justification and proof for the verification and the synthesis, respectively.

We discuss the background in section 2, and present our model in section
3. Our verification and synthesis methodology is discussed in section 4 and 3,
respectively. The correctness of our methodology is discussed in section 6, related
works are discussed in section 7 and conclusion is given in section 8.

2 Background

2.1 Firewall-1 Firewalls

Firewall-1 firewall is a software-based firewall since it is a computer installed
software for filtering packets.

Definition 1. Firewall-1 rules are represented by tuple (SFR, SPR) where SFR
stands for a set of filtering rules and SPR stands for a set of firewall property

rules.

Definition 2. A firewall-1 filtering rule consists of the following - (Source, Des-
tination, Service, Action, Activating FW objects} where

- Source and Destinetion stand for senders’ IP addresses and receivers’ IP ad-
dresses, respectively,

- Service consists of a protocol and o port,

- Action stands for whether flow from Source to Destination is allowed or not,
i.e.(permit or drop), and

- Activating FW abjects stand for names representing firewall objects which per-
form the filkering of the flow of packets.

Intuitively, a filtering rale defines the permission or prohibition of flows from
Source to Destination via Activeting FW Objects for Service. Note that any can
be used to specify sources and/or destinations and it means any [P address.

A Firewall-1 property rule defines not only a set of interfaces of a firewall
object, but also the direction of the ﬁlterihg of the flow of packets at all interfaces
of the firewall object. Note that the direction is defined for all interfaces of a
firewall. Moreover, all interfaces of a Firewall-1 firewall object enforce the same
set of filtering rules.

Definition 3. A firewall property rule for firewall-1 is defined by (FW object,
Interfaces, Direction), where

- FW object stands for a name representing o firewall object,

- Interfaces stands for a set of all interfaces of FW object, and

- Direction stands for the direction of packet filtering, i.e. {in or out).

3 Our Model

Our model is based on graph theory (e.g. [4]). In particular, network topology can
be represented by a graph. Then, we argue that a firewall configuration rule can
be understood as a set of paths in the graph. By treating firewall configuration
rules as paths, we can reason about the verification and the synthesis of firewall
rules intuitively and easily.

First, we propose a general form of firewall rules, called generalized firewall
rules as a representation of firewall rules which will be used for the verification
and the synthesis. We shall show that Firewall-1 rules can be converted into
our generalized firewall rules. The following shows the definition of generalized
firewall rules.

Definition 4. A generalized firemall rule consists of the following: (Source, Des-
tination, Service, Direction, Action, FW Interfaces) where

- Source, Destination, Service, Action are identicel to those defined for Firewall-
1 rules,

- Direction means similarly to that in Firewall-1 rule, but it can be imbound,
outbound or both {bound), and

- FW Interfaces stand for a set of firewall interfaces which perform (or activete)
the filtering of the flow.

Note that the direction beth means that packet filtering is performed in both
directions at specified firewall interfaces. In particular, both is defined by both
inbound and outbound. Such a rule with both directions is useful for the synthesis
of firewall rules in the context of either closed or open policies which will be
discussed later.

The conversion from Firewall-1 rules to our generalized firewall rules is straight-
forward, and is shown by the following definition. The resultant generalized fire-
wall rules preserve the order of filtering rules in firewall-1 rules.

Definition 5. Given tuple (SFR, SPR) of firewall-1 rules, for each filtering
rule FR € SFR and for each firewall property rule PR € SPR of which its FW
object appears in Actinnting FW objects of FR, we can obtain the corresponding
generalized firewel! rule GR in thot

- Source, Destsnation, Service and Action in GR are Source, Destination, Service
and Action in FR, respectinely, and

- Direction and FW Interfaces in GR ore Direction and Interfeces i PR, re-
spectively.

The following shows the definition of logical network topology. Our logical
network topology can capture the ability of sending packets between two parties
in the physical network topology.

Definition 6. The network topology is a lubeled and undirected graph (V.E)
where a vertez in V stands for a set of IP eddresses, and an edge between two
vertices stands for a communication link between two sets of IP addresses.

Indeed, the set V of vertices is defined by the power set of the set of all valid
IP addresses. Hence, a vertex is represented by the set of IP addresses that the
vertex stands for. An edge between two vertices means that an IP address in the
former vertex can send a packet (or information) to another 1P address in the
latter vertex.

For the internal network, a vertex is represented by a set of a single IP
address. Such a vertex intuitively stands for an interface to either a computer
or a network device. For the external network, there is a special vertex called all
standing for a set of all valid IP addresses. In particular, ell = { z| zis a valid
IP address}.

It is required that all firewall interfaces appearing in generalized firewall rules
must be present as vertices in the network topology.

Ezample 1. Physical Network Topology

Rl
N ipl ___/ ip4

Fig. 1. Network Topology

In figure 1, Rf and R2 represent two firewall objects. 21, h2, A% and k4 stand
for host computers. ¢pl, ip2, ..., ipl0 denote IP addresses. In particular, ipf, ip2,

ip3, ipd are IP addresses of four firewall interfaces of firewall object R1. ip7, ip8,
ipd and ip 10 are [P addresses of interfaces of host computers A, 12, h3 and h{,
respectively. Tt is easy to represent this topology using our definition of logical
network topalogy. This network topology will he nsed as examples throughout
this paper.

It should be noted that the connections between all firewall interfaces (e.g.
in!l, ip2, ip3 and ipf) of firewall object 21 are determined by a routing tahle.
For convenience here, we assume that such information is present. Any paths
passing through those firewall interfaces can be determined, and they visit only
necessary firewall interfaces that perform the actual packet filtering.

Since an edge between two vertices represents an ability of sending a packet,
the edge is closed under the membership of its vertices. This is expressed by the
following definition.

Definition 7. The logical network topology has the following properties:
DVuunlv2e Vil CvoAvBCovAuINu2=0rAul#0A02#0 >
dec E (f{e} = {u, v}) ¢ el e E { fle1) = {u, vi} A fle2} = {u, v2})]
where f is a funcltion mapping from an edge to its vertices.
2)-3e€ Effle) ={u, v} andu =2]

Definition 8. We use a special name w te represent all possible non-cyclic paths
labeled with all possible services in the network topology. t is treated as o path
itself.

The following shows properties of w paths.

Definition 9. The following are propertiecs of w.
1) PU{PI} = PU {w} iff [initial(P1) = initialfw) A terminal(P1) = terminalfw)]
where £ and P1 stands for a set of paths and a path, respectively, and ini-
tial(P1) and terminal(P1) denote initial and terminal verter of P1, respectively.
2) PUP =PuU{PI}if
2.1) [initial{P1} = initial(w) A terminal(P1) = v A
for all paths P2 in T { (terminal(P2) =uv) > (P2¢€ P))]
where T, v and P stand for a network topology, a vertex, end n set of paths,
respectively.
2.2) [initial(P1) = v A terminal{P1l) = terminal(w) A
for all paths P2 in T ((initial{P2) = v) & (P2e P))}
23) [PL =w A for all paths P2 (P2in T & P2e€ P)]

Note that property I) defines the initial and terminal vertices of the w path.
Property 2) however defines the meaning of the w path. For example, 2.1) states
that a path of which its initial is initialfes), but its terminal is an ordinary vertex
u is equivalent, to all paths in the network topology ending at v.

We argue that a generalized firewall rule can be considered as a set of (either
permitted or prohibited} paths in a network topology, and such paths are defined
at a particular interface. Since such a set of paths is defined at a particolar
interface, it is called a local set of paths. The following definition shows the
equivalence between a generalized firewall rule and a local set of paths.

Definition 10. Given a network tepology T, a local set of paths which corre-
sponds to a generelized firewall rule GRewinierfaces 2€fined for interfare FW
Interfoces is a set of all non-cyclic paths +n T which
o) begin with Source verter,
) end at Destination verter,
) pass through FW Interfaces vertices in the specified Direction, and
d) are laheled with Service,

where Source, Destination, Service, Direction, FW Interfeces are those stated
in GRF'an..'.erfaces -

The following defines precisely paths that begin with Source vertex, end at
Destination vertex, and pass through FW Interfaces vertices in the specified
Direction.

Definition 11. A path that begins with Source (5} vertez, ends at Destination
(D) wertexr, and passes through FW Interfaces vertices tn the specified Direction
is the path P that satisfies the following:
a) 5 (D) is o specific IP address (ip} iff initial(P) = ip (terminal(P) = ip, resp.).
b) 8 (D) is a set {gip) of IP addresses iff
initial(P) = sip (terminal(P) = sip, resp.), where sip C gip.
¢} S5 (D) is “any” iff initial{P) = initial{w) (terminal(P} = terminal{w), resp.).
d) Direction = inbound {f IF € FW_Objects i. 1 < i < n
[vertex;(FP) C FW Interfaces A FW Interfaces C Inierfaces-of(F) A
vertex(i—1) (P) € Interfaces-of(F)]
where n is the length of path P, and vertez;(P1) means i-th vertez in path P1.
e) Direction = both off [initial(P) = initial{t:} A terminal(P) = terminalv} A
AF € FW_Objects { FW Interfaces C Interfaces-of(F) }]

Intuitively, a path that satisfies d) must be a path that travels to the desig-
nated FW Interfaces of a firewall from a vertex which is not in FW Interfaces of
the same firewall. The definition of the outbound direction is omitted here due
to space limit, but it is similar to that for the inbound direction.

As a matter of notations, we use a single IP address to represent the set of
the single IP address.

Example 2. The local set of paths that corresponds to rule (ip15, ip9, fip, in-
bound, permit, ipl)is {<ipl5, ipl, ip{, 1p5, ip6, ip9>}. Note that this path
exists due to definition 7. Moreover, the local set of paths that corresponds to
rule ({ip9, ip10}, any, hitp, inbound, permit, ip6)is {<ip9, ip6, terminalfw)>,
<ipl0, ip6, terminal{w)>, <{ip9, ipl0}, ip6, terminal(w)> }. In addition, the
local set of paths that corresponds to rule (any, any, hitp, inbound, permit, ip6)
is {<initial(w), ip6, terminal{w}>}.

Definition 12. Paths that correspond to o generslized firewall rule obtained
from Firewall-1 firewall rules are undirected.

Note that the undirected paths of Firewall-1 mean two-way communications
hetween Source and Destination parties, initiated by Source and responded by
Destination.

The set operations on paths can be simplified to corresponding set aperations
on vertices in those paths. Such simplification is useful for the vertfication of
firewall rules.

Definition 13. Path erpressions can be reduced to verter expressions as follows:
1) Pt op P2 = P3if -
o) paths P1, P2 and P2 ore of the same lengih (i.e. n).
b) there is at most one verter i such that vertex;(P1) # vertez; (P2) and
Vi# i 1 <j<nfoertex;(Pl) = vertex; (P2)]
c) path P3 is ezactly like path P? (or P2), except that vertez; (P3) =wvertex;{P1)
op vertex;(P2), where op is a set operation {e.g. U or -).
2) PU {P1} = P if 3i foertezi(P1) =], where P is a set of paths, and P{ is
a path.

Ezample 8. Suppose that path PI = {<all, ipl, ip{, ip5, ip6, ipg>}, path P2
= {<ip17, ipl, ip4, ip5, ipb, ip9>} and path P3 = {<ipl3, ipl, ip4, ip5, ipb,
ip9>}. Thus (P1 U P2) - P8 = {<all - {ip18}, ipl, ip4, ip5, ipb, ip9> }.

Since there may be many rules activating at an interface, we need to process
those rules in order to obtain actual effects of those rules at the interface, A set
of effective paths at an interface is used to represent the actual effects at the
interface, and it is defined as follows.

Definition 14. A local set of effective and permitted {prohibited) paths at in-
terface fu-i for which en ordered set SGRp,_; of generclized firewall rules is
specified, is defined by P, that satisfies the following two conditions:

e} Vi. 0 < i< n/[rule GR;U__i‘ has LP,_; as the local set of puths
= (Piyy =P - LP,_; +> GR}‘J:‘- is a drop {permnif, resp.) rule } V
{ Piyy =P, ULP,_; & GR?w__‘,- s a permnit (drop, resp.) rule)]
b) P, is minimal tn that there is no P', that satisfies o) and P',, C Py,.
where
- n 45 the number of rules in SGRs,_;,
- GR}W—; is the j-th generalized firewall rule in SGRp, i, defined at fuw-i,

- Fy is simply 0.

Note that in condition &), P, that satisfies condition a) means that such
P, is obtained from the same set expressions as Py, according to condition a).

There might be several possible sets of paths that satisfy a) in this definition.
By requiring the minimality of the resultant set of effective paths, we can ensure
that a set of effective paths must be the one that consists of paths which have
been simplified from path expressions to vertex expressions by definition 13 as
much as possible. It should be noted that if the subtraction on sets is evaluated
correctly, the resultant set would be smaller than that which would have been
ohtained incorrectly.

Example 4. The followings are examples of local scts of effective paths:

a) Suppose (ordered set) SGR;,s = {(ip9, uny, hitp, inbound, drop, ip6), ({ipd,

inl 0}, any, http, inbound, permit, ip6)}. The local set of eflective and permitted

paths at interface ip6 is {<ip B, ip6, terminal(w)>}. Note that this set satisfies

the minimal requirement in h).

b} Suppose SGR,,6 = {(ip9, any, hitp, inbound. drop, ip6), (any, any, hitp, in-

bound, permit, ip6)}. The local sct of effective and permitted paths is { <initial(w)-
in9, ipl, terminal(w)>}.

Intuitively, definition 14 can be seen as a transformation from an ordered set
of firewall rules to nested expressions of set operations on paths. The concept
that an upper rule takes precedence over a lower rule is still preserved in nested
expressions. Further discussion on definition 14 can be found in [3].

The following shows the definition to compute a global set of effective and
permitted paths from every local set of effective and permitted paths. Intuitively,
a global set of effective paths stands for paths that are effective at all firewall
interfaces through which the paths visit.

Definition 15. The global set of effective and permitted (prohidited) paths is
GEP that satisfies the following:

¥P[P € GEP « M LEF;]
i€ fw—interfoce{ P)
where
- LEP; is a local set of effective and permiited (prohibited, resp.) paths at inter-
face i, and

- fw-interface(P) denotes n set of vertices in path P, which are interfaces to some
firewalls,

4 Verification of Firewall Configurations

Before we discuss the verification of firewall configurations, we need to discuss
the concept of information flows, first.

Definition 16. An information flow can be represented by either a path or e
triple (source, destination, service).

The triple represents end-fo-end information flow which is regardless of paths
hetween the two ends. For simplicity here, we shall focus on the information flow
represented by paths, called path-based information flows.

4.1 Correctness of Firewall rules

This kind of reasoning aims to test that effects of a set of firewall rules are those
that are intended by a firewall administrator. Initially, a firewall administrator
must define a set of intended information flow, and then calculated effects of
firewall rules will be compared with the set of intended information flows.

Definition 17. An intended information flow is tuple (PIF, NIF) where PIF
and NIF are two finile sets which represent positive and negative information
fows, rvespectively, for each service.

Intuitively, positive and negative information flows represent. permitted and
prohibited information Aows, respectively. Moreover, an intended information
flow can also be defined for a particular service.

Definition 18. The intended information flow has the following properties:
a) PIFU NIF £
B) PIFN NIF =@

We argue that our definition for intended information flows is adequate for
its purpose since it can easily capture the correctness of firewall configurations
in the context of many kinds of policies. Intuitively, those kinds of policy offer
different ways to characterize the global set. of effective and permitted paths.

The following shows the definition of the correctness in the context of closed,
opern, openly neutral and closely neutral policies.

Definition 19. Given an intended information flow (PIF, NIF), a set of gen-
eralized firewall rules is correct in the confext of
a) closed policy iff PIF = GEP
b) apen policy iff -3F € NIF [F € GEP], and
YF € AllFlows(T) [F & NIF - F € GEP}

¢) openly neutral policy iff (PIF C GEFP), end ~3F € NIF [Fe GEP]
d) closely neutral policy iff (GEP C PIF), and -3F € NIF [Fe GEP]

where GEP is the global set of effective and permitted paths generated from
the generalized firewall rules, and AllFlows(T) denotes the set of all possible
fows in netwerk topology T.

Intuitively, the closed policy states that PIF is exactly the only set of flows
globally permitted. On the other hand, the open policy states that what is not
in NIF is globally permitted. The neutral policies however do not state what
globally permitted flows (GEP) exactly consist of, but it requires that N/F must
not be globally permitted. In particular, the openly neutral policy states that
(GEP can be any superset of PIF. On the other hand, the closely neutral policy
states that GEP can be just any subset of PIF.

4.2 Ineffective Firewall Rules

Our model can reason about rules that produce no effects. We call those rules
ineffective.

Definition 20. Given a set SGR of generalized fircwall rules at an interface,
rule GR in SGR is ineffective if and only if GEP = GEP' where GEP and GEP
are the global sets of effective and permitted paths generated from SGR, and
(SGR - GR}, respectively.

Frample 5. Rule (ip8, ip7, http, outhound, permit, ipd) is ineffective since all
the paths from 8 to ip7 visit dp4 in the dnbound direction according to the
network topology.

5 Synthesis of Firewall rules

The synthesis methodology takes intended information flows as input, and pro-
duces an ordered set of generalized firewall rules that satisfies the intended in-
forrmation flows. In other words, such set of generalized firewall rules abtained is
correct, with respect to those intended information flows.

Before we discuss the synthesis methodology, we need to understand somne
notations.

Definition 21. We use LEP} and LEP to represent local sets of effective and
permifted (and prohibited, respectively) paths at interface i.

Definition 22. The local scis of effective and permitted (and prohibited) paths
have the following properties:

) For any interface i, LEP}Y U LEP] = {w}.

b) For any interface i, LEPT 1 LEP; = {.

Proposition 1. For any interface i, LEP} = ({w} - LEP;)

It should be noted that an intended information flow (PIF, NIF) can he
considered as two global sets of effective and permitted {and prohibited, respec-
tively)} paths. The following shows the definition for the synthesis of firewall
configurations in the context of many policies.

Definition 23. Given an intended information flow (PIF, NIF) defined for a
particular service, the synthesis of a set of generalized firewall rules consists of
the following two steps:
1) Decompose two glabal sets of effective paths (PIF, NIF) into local sets of
effective paths (PIF;, NIF;) at firewall interface i, by using definition 15.
2) Generate an ordered set SGR; of generalized firewall rules defined for firewall
interface § fromn local set (LS) of effective paths, obtained from 1), at the interface
j by using definition 14, and the following:
2.1) For the closed policy, LS is LEP] = ({w} - PIF;).
2.2) For the open policy, LS is LEP] = ({w} - NIF;).
2.8) For the openly neutral policy,
If PIF, # 0,
then LS is LEP} = (PIF; U PIF,) - NIF;, where PIF, C {w}.
else LS is LEP; = {w) - PIF, , where PIF; C {w} - NIF;.
2.4) For the closely neuiral policy,
If PIF; # 8,
then LS is LEP} = PIF,; - NIF; where PIF, C PIF; and PIF, # 0
else LS is LEP; = {w} '

Fzomple 6. Suppose that PIF = {<ip7, ip2, ip4, ipd, b, ipd>1}, and its service
label 15 Aftp. Suppose we want to generate a set of firewall rules that implement,
the closed policy. Thus, it follows from step 1) that PIF = PIF . = PIF,,, =
PIFp5 = PIF 6. Let consider only PIF ;. By 2.1}, LEP, = {w} - PIF ;.
Since this local set of effective paths is for prohibited paths, it follows from
definition 14 that a rule defined for g6 that corvesponds to PIF 4 is {(ip7, ip9,
hitp, autbound, permit, ip6). As a result, SGR,s = { (ip7, ip9, hitp, ovibound,
permit, ip6), {any, any, hitp, both, drop, ip6) }.

Definition 24. The following are required desirable properties of o set SGR of
generalized firewall rules that is obtained from our synthesis methodology.

1) Finiteness : SGR must be finite.

2) Effectiveness : SGR must be free of any ineffective rules.

3) Minimal : SGR must be minimal in that there is no other set SGR' of gen-
eralized firewall rules such that GEP = GEFP and |SGR'| < |SGR| where GEP
and GEFP are global sets of effective paths generated from SGR and SGR', resp.

6 The Correctness of the verification and synthesis

The conformance testing technique [5] is employed here to ensure that the model
presented in this paper for verification is correct with respect to actual firewall
products. Conformance testing is a general technigue to ensure that a specifica-
tion corresponds to an actual implementation.

Similar to the conformance testing done in {3] for Cisco routers, the con-
formance testing here is carried out by constructing test data and comparing
the outputs obtained from our model with those from the actual Firewall-1 fire-
wall. The result obtained shows that the model for verification presented here is
correct with respect to the Firewall-1 firewall.

We prove the correctness of the synthesis in the following. Due to space limit,
we omit the proof details here.

Theorem 1. A set SGR of generalized firewall rules thet is generated by our
synthesis methodology produces the global set GEP of effective paths that satisfies
the correctness property for each kind of policy.

7 Related Works

Firmato [6] offers a synthesis methodology for firewall rules. It offers the use
of role-based policy for specifying intended information flows. Such role-based
policy is a high-tevel policy. However, Firmato deals only with the synthesis in the
context of closed policy. Furthermore, it does not analyze any desirable properties
of synthesized firewall rules at all. It would be interesting to incorporate the use
of role-based policy to specify intended information flows into our framewaork.
Filtering postures [7] offers both verification and synthesis of firewall rules.
However, the kind of firewall rules that are verified or synthesized is order-

insensitive, and thus those rules are very different from actual firewall rules. As
a result, it does not offer any understanding on the effect of rule nrdering. unlike
our approach. Fiirthermore, the only verificarion offered by filtering postures
is identical to the correctness in the context of closely neutral policy in our
approach. It does not analyze about properties of synthesized firewall rules.
Fang [8] is a software toal which aims to verify firewall rules. The main
verification that Fang offers is the generation of final effeces of firewall rules.
However, Fang’s approach is ad hoe in that it simply simulate the final effects
of firewall rules without giving any explanation of the effects of ordered rules.

8 Conclusion

We have presented a general and unified methodology for verifying and synthe-
sizing firewall configurations. Our methodology has several benefits in that it can
analyze the correctness of firewall configurations and also generate configurations
in the context of many kinds of policies.

We have applied our verification methodology to case studies in [9]. We are
currently implementing a software prototype of our model. Also, we are applying
our synthesis methodology Lo case studies.

Acknowledgement

The first author would like to acknowledge supports from the Thailand Research
Fund, and the National Research Council of Thailand.

References

1. Cheswick W.R. and Bellovin $.M., Firewalls and Internet Security : Repelling the
Wily Hacker, Addison- Wesley, 1994.

2. Chapman D.B. and Zwicky E.D., Building Internet Firewall, O’ Reilly & Associates,
1995.

3. Permpoontanalarp Y. and Rujimethabhas €., A Graph Theoretic Model for
Hardware-based Firewalls, In proceedings of 9th TEEE International Conference
on Networks (ICON), Thailand, 2001.

4. Gross J. and Yellen J., Graph Theory and its Applications, CRC Press LLC, 1998

5. Holzmann G.J., Design and Validation of Computer Protocols, Prentice Halt Soft-
ware Series, 1991.

6. Bartal Y., Mayer A., Nissim K. and Wool A., Firmato : A Novel Firewall Man-
agement Toolkit, In proceedings of 20th [EEE Symposium on Security & Privacy,
QOakland, CA, 1999.

7. Guttman J.D., Filtering Postures : Local Enforcement for Glohal Policies; In pro-
ceedings of 17th IEEE Symposium on Security & Privacy, Oakland, CA, 1997.

8. Mayer A., Wool A. and Ziskind E., Fang : A Firewall Analysis Engine, In proceedings
of 2ist IEEE Symposium on Security & Privacy, Oakland, CA, 2000.

9. Rujimethabhas C., A Graph-based Methodology for Hardware-based Firewalls,
Master Thesis, Department of Computer Engineering, King Mongkut’s University
of Technology Thonburi, Bangkok, Thailand, 2001.

Practical Reasoning about Accountability in
Electronic Commerce Protocols

Supakorn Kungpisdan' and Yongyuth Permpoontanalarp?

Logic and Security Laboratory
Department of Computer Engineering
Faculty of Engineering
King Mongkut’s University of Technolagy Thonburi
91 Pracha-utit Rd. Bangmod, Thoongkru, Bangkok, 10140, Thaitand
‘hotkeng@hotmail . com
*yongyuth@cpe.eng.kmutt.ac.th

Abstract. Accountability in electvonic commerce (e-commerce) protocols is
concerned with the ability to show that particular parties who engage in the
protocols are responsible for some transactions. Traditionally, it is used only for
resolving disputes amongst parties. Many logics were proposed for reasoning
about the accountability. However, these logics lack of the application to real-
world e-commerce protocols. In this paper, we show that these logics are
inadequate to analyze the accountability property of such real-world protocols.
We then propose a modification of the existing logics to deal with such real-
world protocols. Furthermore, we propose a novel use of the accountability for
specifying and analyzing the goals of e-commerce protocols, in particular client
privacy property.

Keywords: Formal methods for security protocols, analysis of electronic

commerce protocols

1 Introduction

In electronic commerce (e-cornmerce), every party requires a guarantee that any
transaction that occurs is carried out in a secure fashion. In fact, it is unavoidable to
prevent malicious behaviors of some parties. These malicious behaviors cause
“Disputes™. Although the system cannot prevent the dishonest party from modifying
transactions, it should allow honest parties to prove their rightfu! behavior when a
dispute amongst parties occurs. This property should be included in well-designed
protocols since it gives assurances to users in that each wser can prove what has
actually happened in a transaction to a verifier, who may be a court or someone acting
as a dispute solver. This property 18 called accountability.

Accountability in e-commerce protocols [1] is concerned with the ability to show
that particular parties who engage in such protocols are responsible for some
transactions. In particular, the accountability [1] involves the ability of a party, called
a prover to convince to anotber party, called a verifier, that a statement is true without
revealing any secret information to the verifier. Traditionally, the accountability 1s

used only to resolve disputes amongst parties. In such cases, a judge would act as the
verifier, and a defendant would act as a prover.

On one hand, many logics [1,3] were proposed for reasoning about the
accountability in e-commerce protocols. However, these logics lack of the application
to real-world e-commerce protocols. On the other hand, Herreweghen in [2] proposed
an analysis of two real world protocols: SET [8] and iKP [7] on the accountability
property. The analysis shows that SET lacks of the accountability whereas 1KP has
the property. The analysis is carried not informally since it does not use any formal
logic.

In this paper, we argue that the existing logics for analyzing the accountability are
inadequate to analyze real-world e-commerce protocols. In particular, we argue that
the existing logics are not able to reason about multiply encrypted and/or hashed
messages which are signed. Such messages are obtained from applying encryption,
digital signature, hash function, or a combination of them to a plain message. Indeed,
this kind of messages is that which is employed in most, if not all, e-commerce
protocols.

Moreover, in order to reason about the accountability in general, i requires
reasoning about verifiers whether a verifier would be convinced of some statement,
after a prover sends some non-secret or non-private information to the verifier.

We argue that Kailar's logic [1] does not provide reasoning about verifiers at all.
Even though Kessler and Neumann’s (KN) logic [3] offers reasoning about verifier’s
belief as a result of the receipt of some information, it does not address the issue
about proving without revealing secret or private information to verifiers. Note that
this issue is a part of the definition of the accountability [1].

In this paper, we propose a modification of KN’s logic to reason about the
accountability of real-world e-commerce protocols. Our logic can reason not only
about the accountability of complex cryptographic messages which are signed, but
also about verifiers’ beliefs as a resuit of the receipt of some information. Moreover,
our logic captures the provability without revealing any secret or private information
to verifiers naturally by using provers’ beliefs about verifiers” possession of
information. We demonstrate the practicality of our logic by showing that the result
obtained from the informal analysis [2] can also be obtained from our logic.

The practical aspect of the accountability that was discussed so far in the literature
[2,5] is about payment or money only. In particular, the money accountability is about
the authorized transfer of money from customer’s account to merchant’s account. In
this paper, we introduce another kind of accountability, called goods accountability,
which is about the authorized order of goods by a client. The goods accountability can
be used to resolve disputes on the mismatch between the goods which is ordered and
that which is delivered. By using our logic, we show that both SET and iKP lack of
the goods accountability.

Furthermore, we propose a novel use of the accountability for specifying and
analyzing the goals of e-commerce protocols, in particular elient privacy property.
The main goal of e-commerce protocols is to ensure that after the completion of the
protocols, all parties who engage in the protocols are convineed that they have
authorized messages concerning transactions refevant to them. We argue that this goal
can be understood as a special case of the accountability where the prover is the

originator of a message, the verifter is the intended recipient and the statement to be
proved is about some transactions.

The client privacy i1s concerned with clients’ provability of their authorized
payment for a ftransaction without revealing goods description and payment
information (e.g. credit card numbers) in the transaction to banks and merchants,
respectively. Thus, the client privacy can be understood as the accountability where a
client is a prover, both a bank and a merchant are verifiers, and the proving statement
is about the payment authorization. Moreover, both goods description and payment
information are considered as client’s private information, which must not be revealed
to the bank and the merchant, respectively.

This paper is organized as follows. Section 2 provides the background for the
accountability and the existing logics. Section 3 presents our logic. In section 4, we
applied our logic to analyze SET and iKP on the two kinds of the accountability, and
to specify and analyze SET on its goals. Section 5 presents the conclusion of our
work.

2 Background

2.1 Formal Approach to Accountability
Kailar’s Logie

Kailar {1] is probably the first who propose a modal logic to reason about
accountability. Kailar’s definition of accountability is concermed with the ability to
prove the association of an originator (of 2 message) with some action to a third party
without revealing any private information to the third party. The party who can prove
such a statement is called a prover whereas the third party who is convinced of the
proof is called a verifier. Kailar employs the modal operator ‘CanProve’ to formalize
the concept of accountability, i.e. P CanProve ¢ fo V where P and V stand for prover
and verifier, respectively, and ¢ stands for a general statement about some action.
However, Kailar’s logic [1] is not suitabie for analyze the real-world e-commerce
protocols because of the following two reasons: firstly, Kailar’s logic can analyze the
signed plain message only. However, messages in real-world e-commerce protocols
are not just signed plain messages, but they often are multiply encrypted and/or
hashed messages which are signed, i.e. (A(X)}x or {{X}y } ..., where K’ is public key

of a party and K/ is private key of another party. Secondly, Kailar's logic does not
reason about verifiers at all. Recently, it was pointed out in [2] that reasoning about
verifiers is essential for analyzing real-world e-commerce protocols. We shall discuss
this issue in detail in a later section.

It should be noted also that Kailar’s definition for accountability is general in that
the actions which are associated with an originator can be of any kinds.

Kessler and Neumann’s Logie

Following Kailar, Kessler and Neumann (KN) [3] employs a modal logic to reason
about the accountability. However, KN provides an alternative definition of the modal
operator “Canfrove’ by means of sending messages. KN’s goal to show the
accouniability is to show ‘P believes P CanProve ¢ to V' where P and ¥ stands for a
prover and a verifier, respectively. One way to show that P believes P CanProve ¢ to
¥ holds is for P to believe that P can convince V to believe ¢ by sending some
messages that P has to V. Thus, this logic offers reasoning about both prover's beliefs
and verifier's beliefs, and in particular, prover’s beliefs about verifier’s beliefs.

Even though KN's logic offers reasoning about the accountability of hashed
messages which are signed, its definition for dealing with such messages is too strong
in that verifiers are able to infer the input m of any hash h(m), which may be private
informarion. Cousider the following rule for dealing with such kind of message in
KN’s logic:

P CanProve (Q said h(X)) to V A V believes —(sees h(X)
— P CanProve (Qsaid X) to V

This rule states that if P can prove that { said the hash value of X] ie. A(X), and V
believes that { does not receive A{X) from anyone, then P can prove to V' that O said
X. We argue that this is not intuitive.

Generally, to prove that { said the input X of a hash function, both prover and
verifier need to know:

a) The hashed message A(X) and the input {X), and
b) That the hashed message is really obtained from applying hash function 4 to X.

Obviously, in KN’s approach, the verifier does not need to know g} and b) but
simply that the verifier must believe that the imtiator does not receive the hash of the
message from anyone in order to be convinced that the initiator originates the hashed
message and thus its input. The verifier is convinced even though to show b) requires
the knowledge of some private information, which should not be revealed to any third
party {(e.g. goods description).

Moreover, their logic does not deal with the accountability of encrypted messages
which are signed, i.e. {{X}¢ },. where K’ is public key of a party and X! is private

key of another party.

2.2 Herreweghen's Approach

Herreweghen [2,4] proposed the analysis of the accountability of the real-world e-
commerce protocols: SET [8] and iKP [7]. The analysis shows that SET lacks of the
accountability whereas iKP does not. The analysis is not formal since it is done
without using any formal logic. However, the analysis is presented partly in rule-
based styles.

Unlike the accountability in Kailar’s approach and KN's approach, the kind of the
accountability that is analyzed in [2] is specific in that it focuses on primitive
transactions (5], which are the core of e-commerce protocols. It was proposed in [5]
that a payment iransaction in any e-commerce protocol consists of three types of
primitive transactions:

o Payment: client makes the payment to merchant.
s Value subtraction: client allows acquirer to deduct money from his account.
e Value claim: merchant requests acquirer to deposit money to merchant’s account.

Thus, in order to show that an e-commerce protocol has the accountability for
resolving disputes, it suffices to show that at the completion of the protocol, each
party in the protocol must be able to prove the authorizations of primitive transactions
concerning the party to an extemnal verifier. The following shows such kind of
statements:

o M can prove “C authorized payment(C, M, Amount, Date, Ref) "
Merchant can prove that cliemt has sent authorized message on making the
payment to him,

s Ccan prove "M authorized payment(C, M, Amount, Date, Ref)”
Client can prove that merchant has sent authorized message on acknowledgement
of payment to him.

o A can prove "'C authorized value subtraction(d, C, Amount, Date, Ref)"
Acquirer can prove that client has sent authorized message on requesting himi o
deduct money from client’s account.

s (can prove "A authorized value subtractioniA, C, Amount, Date, Ref) "
Client can prove that acquirer has sent authorized message on acknowledgement of
requesting to deduct money from client’s account,

¢ A can prove “M authorized value claim(4, M, Amount, Date, Ref)”
Acquirer can prove that merchant has sent authorized message on requesting him
to transfer money to merchant’s account.

o M can prove “A authorized value claimfA, M, Amount, Date, Ref)”
Merchant can prove that acquirer has sent authorized message on
acknowledgement of transferring money to merchant’s account.

The analysis in [2] shows that SET lacks of the accountability because of the
following two problems:

Firstly, prover does not have key for decrypting the encrypted message, which
contains the necessary information. For example, prover wants to derive P/ from
{Pi}x ,but he does not have acquirer’s private key.

Secondly, prover has to reveal the private information to verifier in order to prove
the authorization. The source of this problem is that the required information is
hashed together with the information which is considered to be private information to
verifier e.g. h(Price,OD) where Price is the required information and ©OD is private
information. To derive Price, prover is required to send both Price and OD to verifier
to convince him. Thus the verifier knows the private information,

This problem does not occur in iKP. The message format in iKP is
h{Price, hfOD)). Thus, the prover can convince the verifier about Price without

revealing QD because it is hashed.

We argue that Herreweghen's analysis [2] is sensible because in order to solve
disputes, prover wants to send only the necessary evidence to judge. The unnecessary
private information is not what he wants to reveal for proving some statements. It is
intuitive in proving something to other parties.

The disadvantages of this approach are as the following:

1) It is unsystematic since the analysis is not formal.
2) It is specific to only SET and iKP. Those rules cannot be applied to other
protocols.

3 Our Logic

Our logic is based on KN's logic [3]. In particular, our logic can be seen as an
extension and a simplification of KN’s logic. It employs the concept of provable
authorization in the present of private information. In order to solve disputes, a
prover wants to send only the necessary information to prove some statements to a
judge who acts as a verifier without revealing the unnecessary private information.
With this concept, prover can prove the statement without revealing any private
information to verifier. We extend KN’s logic in two main aspects. Firstly, we
provide axiowms for the accountability of multiply encrypted and/or hashed messages
which are signed in order to reselve disputes. Secondly, we propose axioms for
dealing with the use accountability to specify and analyze the goals of e-commerce
protocols.

Syatax

Terms

— {P, Q ¥V} : A setof principles that cemmunicate with each other in the protocol.
— {X Y} : Messages or message components sent in the protocol.

— {¢ w} : The statements derived from messages.

— {Kp Ky} : A set of the public key of the principal P and Q, respectively.

— {K5'.KJ } : A set of private key of the principal P and Q, respectively.

— {X}x : The message X encrypted with key K.

~ h(¢X} : The hash function of a message X.

- Sg : Key K is the public key of Q.

~ P & Q: Kis the shared key between £ and .

— X-is-fingerprint-of-Y : X can be used as the representative (fingerprint) of Y (in
other words, X may be the hashed form of Y).

~ K-is-decrypting-key-for-{X}y : Key K can be used to decrypt the encrypted
message {X/x.

Formulae

— P believes ¢ : A principle P believes that the statement ¢ is true by deing some
actions.

— Psees X : Someone has sent a message X to P and P is able to read X,

-~ P has X : A principle P possesses a message X. He can send X to other principles or
use it for further computations.

— Psays X : A principle P has sent a message X.

— P CanProve ¢ to Q) : A principal P can prove to Q that the statement ¢ is true by
sending a message X to Q. After Q receives X, he believes that the statement @ is
tme.

- P authorized payment(P, O, Price, Date) : A principle P has authorization on
making the payment amount Price to J on date Date.

— P authorized goods-order(P, Q, OD, Date) : A principle P has authorization on
ordering goods as specified in order description OD to Q) on date Date.

Axioms

Modalities: KD45-logic

K: P believes ¢ » P believes (¢ — y) — P believes y
D: P believes ¢ — —P believes —p

4: P believes ¢ — P believes P believes ¢

8. =P believes ¢ — P believes —P believes ¢

Possession
Hl: Psees X > Phas X
H2: (PhasX1n ... APhas X)) > Phas (X, ..., X))
Where (X}, ..., X,,) stands for a list of message X}, X5, ..., X, respectively.
H3: Phas X — P has h(X)

The following axioms (H4, HS, and H6) are based on BAN logic [6] in order to
deal with cryptographic messages.

H4: If P has an encrypted message (X}x, P believes that X is shared between P’ and
0, and P has key K, then P has X.

(P has {X}x A P believes P"«>Q AP has K) »Phas X

HS: If P has an encrypted message /X}x, P believes that X is the public key of P’,
and P has its private key K/, then P has X.

(P has {X}x A P believes 5P APhas K') 5> Phas X

H6: If P has a signed message (X}, ., , P believes that K is the public key of P*, and P
has its verification key K, then P has X.

(P has {X),.. A P believes 5 P'’APhas K) ~ P has X

Comprehension
C1: If P has received X, P then believes that he receives X.

P sees X — P believes P sees X
C2: If P has sent X, he then believes that he has sent X.

Psays X —» P believes P says X

Seeing
SE1: Psees (X;,..., X)) € (P sees X; A Psees Xsn ... AP sees X}

Saying
SAl: Psavs (X, ... Xp) < (Psays X; APsays X; A ... APsays X))
SA2: Psavs X » Phas X

Provability
Pl: P CanProve (¢ — y)ito V
— (P CanProve ¢ to V — P CanProve y to V)

P2 (V-is-external-party) A (P has X} A (V sees X — V believes §)
— (P CanProve ¢ to V)

It can be seen that axiom P2 can be used to deal with the provability to an external
verifier. Thus, the axiom states the accountability for resolving disputes.

P2’: If ¥ is an internal party, P has sent a message X', V receives X, and if V receives
X, then he believes that ¢ is true and he has X", then P can prove to V that ¢ is

frue.

{(V-is-internal-party) » (P says X') ~ (V sees X} A
[Vsees X — (V believes g AV has X°)]
— (P CanProve ¢ to V}

It should be noted that the verifier V in this axiom is an internal party who engages
in the protocol, This axiom is intended to deal with the accountability for specifying
and analyzing the goals of e-commerce protocols. We shall discuss this issue and the

intuition of axiom P2’ in section 4.4.

P3: Phas{X}, .. » P has (K, X) » P CanProve (’5-» Cito V
— P CanProve (Q says X) to V

The following shows our axiom to deal with the provability about hashed
messages. Intuitively, it states that in order to prove a statement about a hashed
message, it Tequires both prover and verifier to know the input of the hash in order to
compare the input with such hashed message.

P4: If P can prove to V that O has sent A(X) and he can prove to F that ALY) is
represented as fingerprint of X, P then can prove to V that O has sent X.

P CanProve (Q says k(X)) to V A P CanProve (h(X)-is-fingerprint-of-Xj to V
— P CanProve (Qsays X) to V

The following shows our axiom to deal with the provability about encrypted
messapes. In order to prove a statement about an encrypted message, it requires both
prover and verifier to know the decrypting key for such encrypted message,

P5: If P can prove to ¥ that O has sent the encrypted message {X}x and he can prove
to V that the key X’ can be used to decrypt this encrypted message, he can prove
to } that { has sent message X.

P CanProve (Q says {X})to V A
P CanProve (K -is-decrypting-key-for-{X}y) to V
— P CanProve {Q says X} to V

P6: P CanProve (Qsays (X), ..., X,JtoV
[P CanProve (Qsays X)) to V A ... AP CanProve (Qsays X)) to V]

Inference Rules
MP: If pand ¢ — wthen
M: If ¢is a theorem then P believes ¢is a theorem
Where theorem is a formula, which can be derived from axioms alone.

The money accountability property can be specified by the following formula:

M believes M CanProve { Csays (M, Price, Date)
— C authorized payment{C, M, Price, Date)] fo V

If merchant believes that he can prove that client has sent merchant’s ID, price, and
date of execution, then the authorization on Payment in [2] can be proved. Proving
money accountability mainly concerns that the price can be proved to verifier. Goods
description (OD) is considered to be client’s private information. Similarly, the goods
accountability property can be specified by the following formula:

M believes M CanProve [C says (M, OD, Date)
— C authorized goods-order(C, M, OD, Date)] to V

Proving goods accountability mainly concerns that the goods description can be
proved to verifier. Price is considered to be merchant’s private information.

We argue that if money accountability in [2} is sensible, goods accountability is
sensible as well since goods accountability is focused on solving disputes on the
mismatch between the goods which is ordered and that which is delivered, which can
be occurred in practical transactions.

Apart from the axioms and rules of inference presented here, our logic contains a
set of assumptions. Some of these assumptions are general whereas others are specific
to protocols which are to be analyzed. For the ease of the presentation here, we
discuss both kinds of assunptions in the following section.

4 Practical Reasoning about Accountability

We demonstrate how our logic works by analyzing SET [8] and iKP [7], which are
the real-world and widely used protocols. In section 4.1, we describe the overview of
SET protocol and the set of assumptions used in the analysis. Section 4.2 and 4.3
illustrate the analysis of proving money and goods accountability, respectively.
Particularly, section 4.2 shows that the results obtained from Herreweghen’s analysis
[2] can also be obtained in our logic. Section 4.4 shows the analysis of accountability
for specifying goals of SET.

4.1 SET Protocol Overview

SET is the most widely used credit-card based protocol using public key cryptography
scheme. In SET, every participant has his own certificate. The basic SET protocol
model is shown as follows:

PinitReq: C—M: Initial Reguest

PinitRes: M-C: (TID)} P

PReq: CoM: TID,OL h(PI),{h(OI}, h{PL)}} i {h(O), Pl}¢

AuthReq: M—A: {{TID, Price. AuthRegDate, h(OI), Ol {h(OI), h(PD)} ki
{h(OD), P} }x; %,

AuthRes: A—->M: {{7ID, Price, AuthDate} X! A,

PRes: M—-C: {TID, AuthDate} X!

Vhere

— {4, C, M} stands for a set of acquirer (or bank), client, and merchant, respectively.

-~ (K4 K¢ K} stands for the set of public key of acquirer, client, and merchant,
respectively.

- {K ;f K &" K ,j, } stands for the set of private key of acquirer, client, and merchant,
respectively.

— Price stands for amount and currency of goods.

— OI stands for order information. OJ contains {7fD, A(OD, Price)}.

— PJ stands for payment information. P{ contains {TID, h¢OD, Price}, MerchantiD,
Price, Client’s Credit-card Information).

— TID stands for transaction ID. 7/D contains purchase request date (PRegDate),
which is the date of issuing purchase request.

— AuthReqDate stands for the date of making request by merchant for transferring
money.

~ AuthDate stands for the date of authorization made by bank.

Set of Assumptions

Netations

— P stands for any participant.

- {4, C, M} stands for a set of acquirer {or bank), client, and merchant, respectively.

— ¥ stands for a verifier.

— X stands for 4, C, or M.

— Certy stands for the certificate of principle X. Certy contains (X, Ky, where X is the
identity of a party X and Ky stands for the public key of X.

Assumptions
(A1) Every participant believes that he has the certificates of all participants.

P believes P has (Certy, Certe, Certy)

(A2) P believes that if ¥ has X"s certificate, he will believe that Ky is the public key
of X.

P believes (V has Certy — V believes (5'—'))())

(A3) Every participant believes that he has only his private key, and nobody believes
that he has the private keys of other participants.

P believes P has K ' —P believes P has (K5, Kg')
Where (; and (; are the parties, which are different from P.

(A4) Every participant believes that if } receives messages X and ¥ and the message
X is h(Y), ¥V will believe that X is fingerprint of Y.

P believes [(V has (X, Y} AX = h(Y)) = V believes X-is-fingerprint-of-Y]
(A5) Every participant believes that if V receives a message encrypted with key X

{({X}x) and the key X', and X’ can be used to decrypt {X}x, V will believe that X’
is the decrypting key for {X}«.

P believes (V has ((X}x, K') AX = {{X}x}x
— ¥ believes K '-is-decrypting-key-for-{X}x)

The assumptions A4 and A5 are general in that they can be used for analyzing any
protocol. Indeed, together with P4 and P§6, the two assumptions are used to reason
about the provability of hashed messages and encrypted messages.

{A6) Every participant believes that if ¥ has the signed message ({X} 1), the key K,

and the message X, and V believes that X is the public key of Q, then ¥ will
believe that O has sent X,

P believes [(V has {X},.. AV has (K, X} AV believe (55 Q))
— V believes (Qsays X) |

This assumption together with axiom P2 or P2’ can be used to derive sumilar
conclusion as the axiom P3. However, this assumption would derive the conclusion,
based on venfier’s possession of some information whereas the axiom P3 would
derive the conclusion, based on prover's possession of some information.

No Disclosure of Private Information to Verifier

(A7) Every participant does not believe that verifier has payment information and the
private keys of all participants, order description in case of proving money
authorization, and price in case of proving goods authorization.

—P believes V has Pl where F is not acquirer.
—P believes V has K5’ where ¥ is not the same party as P.

In case of Money Authorization, —P believes V has OD
In case of Goods Authorization, —P believes V has Price

By specifying the requirement “No disclosure of private information to verifier” as
a set of assumptions specific to protocols, our logic formalizes intuitively the concept
of the unrevealing private information to verifier when a prover proves a certain
staternent. This concept is essential in the accountability property for reasoning about
accountability in the present of party privacy.

SET Specific Assumptions
(A8) Client and merchant believe that they have order description and price, and all
participants believe that they are intermal parties.

Q believes Q has (OD, Price) Where O stands for C and M.
R believes R '-is-internal-party Where R and R’ stand for 4, C, and M.

(A9) Every participant believes that client has sent PReq and received PRes,
merchant has sent AuthReq and received AuthRes, and acquirer has received
AurthReq and sent AuthRes.

P believes C says PReqg P believes M sees PReqg

P believes M says AuthReg © P believes A sees AuthReq

P believes A says AuthRes P believes M sees AuthRes

P believes M says PRes P believes C sees PRes
Client Privacy

{A10) Client does not believe that merchant has payment information, and client and
merchant do not believe that acquirer has order description.

—C believes M has Pl
0 believes A has OD Where (stands for client and merchant.

General Assumptions for Proving Money Authorizations

(A1l) Every participant believes that he can prove to verifier that if client has sent the
message containing Merchant's ID, price, and the date of execution, then client
has authorization on payment ordering.

P believes P CanProve { C says (M, Price, Date)
— C authorized payment(C, M, Price, Date)] to V

Assumprtions for proving money authorizations for other primitive transactions are
shown in Appendix.

General Assumptions for Proving Goods Authorizations

{A12) Every participant believes that he can prove to verifier that if client has sent the
message containing Merchant's ID, order description, and the date of
execution, then client has authorization on goods ordering.

P believes P CanProve { C says (M, OD, Date)
— C authorized goods-order(C, M, OD, Date) J 10 V

Assumptions for proving goods authorizations for other primitive transactions are
shown in Appendix.

4.2 Proving Money Accountability in SET

Proving accountability in SET, we focus on analyzing one of primitive transactions,
which is C authorized payment (C, M, Price, PReqDate). This means that client has
authorization on making payment on the goods amount Price on the date of making
the request Date.

The goal of proof:
M believes M CanProve (C authorized payment{C, M, Price, PReqDate)) to V

Where I stands for any external verifier.
In order to show that M believes M CanProve (C authorized payment(C, M, Price,
FPRegDatey) to V, it suffices to show that

M believes M CanProve (C says (M, Price, PReqDate)) to V ()

It is easy to see that M believes M CanProve (C says h(PI}) to V follows mainly by
axiom P3._ Since (M, Price, PReqDate) is in Ff, (x) may thus be shown by using
axiom P4.

However, the proof for M believes M CanProve (h(Pl)-is-fingerprint-of~PI) to V in
axiom P4 would fail since it is not the case that M believes M has K’ which is
required 1o show that M believes M has (h(PI), PI}. Note that P/ is encrypted with K,

Note also that if it were the case that M believes M has K :,’, the proof would still fail
since it would require M believes (V has PI), due to A4, which contradicts to our
assumnption A7,

It is also easy to see that M believes M CanProve (C says Ol) to V follows mainly
by axioms P4 and P3. Since A(OD, Price) is in O, the proof for M believes M
CanProve (C says Price} to V may be shown by using axiom P4. However, such
proof would require M believes V has OD due to A4, which contradicts to our
assumption A7.

4.3 Proving Goods Accountability in SET and iKP

The goal of proof:
M believes M CanProve (C authorized goods-order(C, M, OD, PReqDate)) to V'

We shall discuss the goods accountability in SET first. Similarly to the proof for M
believes M CanProve (C says Price) to V discussed in section 4.2, the proof for M
believes M CanProve (C authorized goods-order(C, M, OD, PRegqDate)} to V would
fail since it would require M believes V has Price which contradicts to our assumption
A,

IKP [7] lacks of goods accountability due to similar reason to that in SET. The
following shows a payment request from client C to merchant M.

Payment C—>M: PL{PLKOD},,

Where PI stands for payment information. P/ contains {Price, h(Ol), Client’s
Credit-card Information}y, . OI stands for order information. O/ contains (71D,

Price, ClientID, MerchantiD, Date, InvExpDate, h(OD)). InvExpDate stands for
mvoice (offer) expiration date specified by merchant. Date stands for the date of
invoice {offer) issued by merchant,

It is easy to see that M believes M CanProve (C says h(0O])) to V follows mainly by
axiom P3. Since (Price, h(OD) is in O, the proof for M believes M CanProve (C says
O} to V can be shown by using axiom P4. However, such proof would require M
believes V has Price due to A4, which contradicts to our assumption A7.

4.4, Goals of SET and iKP as Accountability

In this section, we discuss the use of the accountability for specifying and analyzing
the goals of SET and iKP protocols. For such kind of accountability, a verifier is an
internal party, which involves in e-commerce protocols. Recall that the goal of e-
commerce protocols is to ensure that all parties are convinced that they have
authorized messages concerning primitive transactions relevant to them after the
completion of the protocols.

After sending some messages to intended recipients, the originator must be able to
prove the association of the originator with an intended action (or an intended
message) to intended recipient(s). Such intended actions are just sbout primitive
transactions. Such proof would ensure the originator that the intended recipients
would recognize the originator’s intention regarding to primitive transactions.

This intuition is formalized by axiom P2°. The axiom states explicitly the
preconditions for the sending and receiving of messages. The rule also caters for the
case where the intended recipient receives messages from an intermediate party.

Thus, the goals of e-commerce protocols can be expressed by the following:

a) C believes C CanProve (C authorized payment(C, M, Price, Date)} to M

b) M believes M CarnProve (M authorized payment(C, M, Price, Date)} to C

¢) C believes C CanProve (C authorized value subtraction(A, C, Price, Date)} to 4
d) A believes A CanProve (A authorized value subtraction(A, C, Price, Date)) to C
e} M believes M CanProve (M authorized value claim(d, M, Price, Date}) to A

) A believes A CanProve (4 authorized vailue claim{A, M, Price, Dare)) to M

g) C believes C CanProve (C authorized goods-order(C, M, OD, Date)) to M

h) M believes M CanProve (M authorized goods-receipt(C, M, OD, Date)) to C

It is not hard to see that in SET these goals cannot be shown due to similar reason
to those for the accountability for dispute resolving discussed in sections 4.2 and 4.3.
However, these goals can be shown for iKP.

With provable authorization in the present of private information, our logic can be
used to specify and analyze goals of e-commerce protocols efficiently in that the
originator can ensure that the recipient recognizes the intention about primitive
transaction without revealing private information. This will be much benefit to
protocel designers in that he can design a protocol with intended purposes.

What we demonstrate below is the analysis of client privacy using our logic.

Proving Client Privacy of SET

Client privacy can be understood as the accountability where a client is a prover, both
a bank and a merchant are verifiers, and the proving statement is about the payment

authorization. SET achieves client privacy if merchant cannot infer client’s payment
information (Pf), and acquirer cannot infer goods description (00) from the protocol.
We thus start proving client privacy by stating the goals of the proofs from a} and ¢).
In order to prove g), it suffices to show that

C believes C CanProve (C says (M, Price, PReqgDate)) to M

It is easy to see that C believes C CanProve (C says (Price, PRegqDate}) to M
follows mainly by axioms P4 and P3. Although the proof is not successful because of
the lacking of merchant’s ID, merchant cannot infer P7 from the receiving message.
We prove ¢/ in the same way as proving a). It is not hard to see that acquirer cannot
infer OD, which is client’s private information, from the receiving message.

As a result, our logic can analyze client privacy, which is an essential property of
SET protocol, in that verifier can get only pecessary information to prove without
getting any private information.

5 Conclusion

In this paper, we show that the existing logics for reasoning about accountability are
inadequate to deal with real world e-commerce protocols. We then propose an
extension of the existing logics to deal with such real-world protocols. Furthermore,
we demonstrate the practicality of our logic by showing that the result obtained from
Herreweghen’s informal analysis [2] can be also obtained formally from our logic.

Our logic can be used not only for reasoning about dispute resolution amongst
parties, but also for reasoning about the goals of e-commerce protocols, in particular,
client privacy property. Indeed, both kinds of reasoning can be captured uniformly in
our logic.

For reasoning about dispute resolution, we show formally that SET lacks of the
money accountability whereas iKP does not. Moreover, we show that both SET and
iKP lack of the goods accountability. The lack of the goods accountability in our
sense means that the two protocols can still provide enough evidence tokens to
resolve disputes on goods description, but in order to resolve such disputes, provers
must reveal their private information to verifiers. In some situations, this is
undesirable.

For reasoning about the goals of e-commerce protocols, we show that such kind of
reasoning can be considered as a special case of the accountability. Thus, the
accountability can be seen as a fundamental property for analyzing e-commerce
protocols. Indeed, other kind of properties such real-world e-commerce protocols, for
example each party’s requirement [9], has also been studied in [10] by using our logic
presented here.

As a future work, we aim to apply our logic to analyze other kinds of e-commerce
protocols, e.g. micropayment. Also, we aim to study an automnated tool for our logic.

Acknowledgement

The second author would like to acknowledge supports from Thailand Research Fund.

References

(1]
(2]
3]
(4]

(31

(]
[7]

R. Katlar. Accountability in Electronic Commerce Protocols. /TEEE Transaction
on Software Engineering 1996.

E. V. Herreweghen. Non-Repudiation in SET: Open Issues. In the Proceedings
of the Financial Cryptography 999

V. Kessler and H. Neumann. A Sound Logic for Analyzing Electronic
Commerce Protocols. In the Proceedings of ESORICS'98.

E. V. Herreweghen. Using Digital signatures as Evidence of Authorizations in
Elecwonic Credit-Card Payments. Research report 3156, IBM Research, June
1999,

N. Asokan, E. V. Herreweghen, and M. Steiner. Towards A Framework for
Handling Disputes in Payment Systems. In the Proceedings of the 3 USENIX
workshop on Electronic Commerce, Boston, Massachusette, August3l-
September3,1998.

M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. 4CM
Transactions in Computer Systems, February 1990.

M. Bellare, I. A, Garay, R. Hauser, A. Herzberg, H Krawczyk, M. Steiner, G.

- Tsudik, E. V. Herreweghen, and M. Waidner. Design, Implementation, and

[8]
91

[10]

Deployment of the /KP Secure Electronic Payment System. JEEE Journal of
Selecred Areas in Communications 2000.

Mastercard and Visa. SET Protocol Specifications.
http://www.setco.org/set_specifications.html

C. Meadows and P. Syverson. A Formal Specification of Requirements for
Payment Transactions in the SET Protocol. In the Proceedings of Financial
Cryptography, February 1998,

S. Kungpisdan. Accountability as Fundamental Property for Electronic
Commerce Protocols. Master Thesis, Department of Computer Engineering,
King Mongkut's University of Technology Thonburi, Thailand, 2001, (In
preparation).

Appendix

General Assumptions for Proving Money Authorizations

Every participant believes that he can prove to verifier that if merchant has sent the
message containing Client’s ID, price, and the date of execution, then merchant has
authorization on payment receipt.

P believes P CanProve | M says (C, Price, Date)

—> M authorized payment(C, M, Price, Date) [to V

Every participant believes that he can prove to verifier that if acquirer has sent the
message containing Client’s ID, price, and the date of execution, then acquirer has
authorization on value subtraction.

P believes P CanProve [A says (C, Price, Date)
~» A authorized value subtractionf4, C, Price, Date) [to V

Every participant believes that he can prove to verifier that if client has sent the
message containing Acquirer’s ID, price, and the date of execution, then client has
authorization on value subtraction.

P believes P CanProve [C says (A, Price, Date}
—» C authorized value subtraction(4, C, Price, Date)] to V

Every participant believes that he can prove to verifier that if acquirer has sent the
messapge containing Merchant’s ID, price, and the date of execution, then acquirer has
authorization on value claim.

P believes P CanProve { A says (M, Price, Date)
— A authorized value claim{4, M, Price, Date)] to V

Every participant believes that he can pnove to verifier that if merchant has sent the
message ¢ontaining Acquirer’s ID, price, and the date of execution, then merchant has
authorizanon on value claim.

P believes P CanProve [M says (A, Price, Date)
— M authorized value claim(A, M, Price, Date} [o V

General Assumptions for Proving Goods Authorizations

Every partcipant believes that he can prove to venfier that if merchant has sent the
message containing Merchant’s ID, order description, and the date of execution, then
merchant has authorization on goods receipt.

P believes P CanProve { M says (C, OD, Date)
— M authorized goods-receipt(C, M, OD, Date) } to V'

A Verification Methodology for Analyzing IP Spoofing Attack

Voravud Santiraveewan and Yongyuth Permpoontanalarp
Logic and Security Laboratory
Department of Computer Engineering
King Meongkut’s University of Technology Thonburi
91 Suksawasd 48, Ratburana, Bangkok 10140, Thailand
E-mail: voravuds@hotmail.com, yongyuth@cpe.eng. kmutt.ac.th

Abstract

Firewalls offer a protection for private networks
against both internal and external attacks. However,
configuring firewalls 10 ensure the protections is a
difficult task. The main reason is the lack of
methodology to anahze the security of firewall
configurations, IP spoofing attack is an attack in
network in which an attacker can impersonate
another person towards a victim. In this paper, we
propose a new methodology for verifying the
vulnerability of firewall configurations for IP
spoofing attacks. In particular, our methodology is
based on graph theory which provides a simple and
intuitive approach to the vulnerability analysis of the
attack. Furthermore, we propose a class of
configurations that are free of spoofing attacks. We
show that any configuration which is in the class is
also free of spoofing arracks.

Key-Wards: Network Security, Firewalls, IP
spoofing and Formal Method for Network Security

1. Introduction

Nowadays, firewalls (eg. [10, }1]) become a
widely used mechanism to achieve Internet security.
Most, if not all, organizations whose computers have
an intemet access are currently using firewalls.
Firewalls locate between an internal network and an
external network. Firewalls offer a protection for
private (and internal) nerworks against both internal
and external threats., In particular, firewalls ensure
that only authorized information flows between
intenal networks and the external network are
allowed.

Even though firewalls could provide protections
against both internal and external attacks, configuring
firewalls to ensure the protections is a difficult task.
There are two main reasons. One is that it is difficult

to foresee effects of firewall configurations during
the configuration time. It requires administrators’
experience to figure out such effects of
configurations. Another reason is the lack of
methodology to analyze the security of firewall
configurations. We argue that the lack of such
methodology is caused by the lack of the
understanding on the relationship between firewall
configurations and attacks,

Several solutions eg. {1, 2, 3, 4] have been
proposed to offer a way to foresee effects of firewall
configurations. However, a systematic methodology
for analyzing the security of firewall configurations
remains unexplored. In this paper, we propose a
verification methodology of the analysis on the
security of firewall configurations. In particular, our
methodology offers the vulnerability analysis of
firewali configurations for [P spoofing attack.

IP spoofing attack is an atack in which an
attacker can impersonate another person towards a
victim. In other words, an attacker can impersonate
another person and then send a message to 2 victim
but after the victim receives the message, the victim
thinks that the message is sent from the impersonated
person. Bt is considered as a fundamental attack
because it can be combined with other kinds of attack
to create devastating effects to users.

In this paper, we analyze IP spoofing attack by
focusing on IP spoofing attacks which may occur in
private networks of an organization. We classify IP
spoofing attacks into three kinds: incoming, outgoing
and internal attacks. Incoming attack deals with the
attack by an external attacker to an intemal victim
whereas outgoing attack deals with the attack by an
internal attacker to an external victim. Internal attack
deals with the attack by an internal attacker to an
internal victim.

Then, we propose a novel methodology for
verifying the vulnerability of firewall configurations
for IP spoofing attacks. Our methodology offers the
vulnerability analysis of firewall configurations for

the three kinds of the attack. Our result shows not
only the characteristics {or signatures) of those attack
but also the causes of those attacks in terms of
firewall configurations. To the best of our
knowledge, these kinds of analysis have not been
studied before.

Furthermore, we propose a class of configurations
that are free of spoofing attacks. Then we show that
such class of configurations can actually prevent
spoofing attacks. Finally, to verify that a
configuration is free of spoofing attacks is to show
that the configuration is in the class.

Our methodology is based on Graph-based model
of firewall configurations [I, 2]. Since our approach
employs graph theory, it provides a simple and
intuitive approach to the vulnerability analysis of the
attack. Furthermore, our approach offers a number of
advantages over existing related works in that our
approach can verify the wulnerability of firewall
configurations for the attack for all cases.
Furthermore, the proposed class of configurations can
be used as a guidance to configure firewalls securely,

2. Background

Graph-based model [1, 2] employs graph theory
to describe effects of firewall configurations. In
particular, effects of firewall configurations are
expressed in terms of a set of paths permitted to pass
through firewalls.

Graph-based model proposed generalized firewall
rufes (GR) which consist of (Source, Destination,
Service, Direction, Action, FW Interfaces) to
represent firewall rules. In addition we represent
actual network as labeled and connected graph called
abstract network topology (NT).

In figure 1, R/ and R2 represent two firewall
objects. hl, h2, h3 and A4 stand for host computers.
ipl, ip2, ..., ipld denotwe [P addresses. In particular,
ipl, ip2, ip3, ip4 are IP addresses of four firewall
interfaces of firewsll object R1. ip7, ip8, ip9 and ipl0
are [P addresses of interfaces of host computers h/,
h2, h3 and k4, respectively.

Moreover, 4 local set of pathfLP) represent the
effect of each firewall rule as a path in network
topology. For example, The local set of paths that
corresponds to rule (ipl3, ip9, fip, inbound, permit,
ipl)is {<ipl5, ipl, ipd, ip5, ip6, ip9>}. A local set of
effective and permiited (prohibited) paths (LEP)
represents effect of all firewall rules in specified
firewall interface. In the other words, it represents
path that specified firewall interface permit or
prohibit. For example, Suppose (ordered set) SGR s
= {(ip9, ip7, http, inbound, permit, ip6), (any, any,
http, inbound, drop, ip6)}. The local set of effective

and permitted paths at interface ipé is {<ip9, ip6,ip5,
ip4, ip2, ip7>).
ip? ip8

ip2 ip3
o o—

ipl ip4 ips
ipl0
Figure 1. Abstract network topology

A global set of effective and permitted
{prohibited} paths (GEP) represents all paths that can
occur in the entire network. In the other word, it
represents all paths that was allowed by firewall
configuration.

3. Modified Graph-based model

Our concept of Graph-based provides the
methodology to verify the effect of firewall
configuration. However, those can not deal with IP
spoofing attack since they depend on network
topology that represent only legitimate path while IP
spoofing path is illegal path.

In order to dealing with IP spoofing attack, we
propose modified graph-based model that can capture
all kind of path in the actual network.

3.1 Abstract Configuration

An abstract configuration consists of a set of
firewall rules and networking topologies representing
network connections within an organization. A set of
firewall configuration was represented by the
generalized firewall rules (GR) in our former model.

There are two kinds of networking topologies in
our approach: namely abstract network topology and
abstract firewall topology. While the abstract network
topology represents a topology of computer networks
in an organization which include hosts, servers,
firewalls, networking devices and the internet, the
abstract firewall topology represents the topology of
only firewalls. Note that abstract network topology
was described in [1, 2].

As a matter of terminology, network or firewall
topologies mean abstract network or abstract firewall
topologies, respectively. In our approach, all graphs
are undirected.

Firewall Topology expresses the connections
between firewalls in a network topology. Indeed, FT
can be obtained from NT.

Definition 1 Abstract Firewall Topology (FT)

The abstract firewall topology is a labeled and
undirected graph (¥, E) where a vertex in ¥
represents an IP address of a firewall interface, and
an edge between t®wo vertices represents a
communication link between two firewall interfaces.

In order to obtain a firewall topology from a
network topology, we need to eliminate a network
(LAN) which does not have firewalls and locates
behind a firewall and to eliminate a network which
does not have firewalls and locates between any two
firewalls. An example of network between two
firewalls is a DMZ.

Definitien 2 Relationship between Network Topology
and Firewall Topology

Given network topology NT and firewall topology
FT, NT contains a subgraph which is homeomorphic
to FT, and both NT and FT have the same set of
firewall vertices.

It is important to noie that we use homeomorphic
(in particular elementary division) to remove
networks between two firewalls and we use sub-
graph to remove networks behind firewails.

Figure 2 shows an abstract firewal] topology. It is
easy to see that graph in figure | contains a sub-graph
which is homeomorphic o graph in figure 2. The rest
of examples in this paper use network topology in
figure 1 and firewall topology in figure 2.

ipl ipd ip> ipb
Figure 2. Abstract firewall topology

3.2 Graph-based
Configurations

Interpretation of

From modified graph-based model, we use
firewall topology (FT) to generate actual effects of
firewall configurations. In particular, the effect of a
firewall rule is described as a set of paths called a
local set of paths (LP)}. Furthermore, a local set of
effective paths (LEP} and a global set of effective
paths (GEP) still the same,

Those paths penerated from FT express actual
effects of firewall configurations but those paths may
not exist in network topology. Even though those
paths do not exist in N7, they must be normal form of
path [14].

The following is definition of new LP that based
on firewall topology

Definition 3 4 generalized firewall rule as a local set
of paths (LP) :

Given a firewall topology FT, a local set of paths,
called LP, which corresponds to a generalized
firewall rule GRey; =(Source, Destination, Service,
Direction, Action, FWI) defined for FWI interface 1s
a set of all paths in FT which

a) begin with Source vertex,

b) end at Destination vertex,

c) pass through FWI vertices in the specified
Direction, and

d) are labeled with Service

Example 1 Local Set of Path

The local set of paths that corresponds to rule
(ip9, ip7, FTP, outbound, permit, ip2) is{<ip9, ip6,
ip5, ipd4, ip2, ip7>, <ip9, ipl, ip4, ip2, ip7>,<ip%,
ip3, ip2, ip7> and<ip9, ipl, ip2, ip7>}. Note that the
local set of path show all possible paths that were
permitted by that rule that is <ip9, ip6, ip5, ip4, ip2,
ip7> which is the nommal packet flows from ip9 to
ip7 and <ip9, ipJ, ip4, ip2, ip7>,<ip9, ip3, ip2, ip7>,
<ip9, ipl, ip2, ip7> is the spoofed path.

4. IP Spoofing Attack

We classify IP spoofing attack into three main
kinds based on the location of attacker and victim.

1} Incoming attack is an attack from extemal
network to intermal network. So attacker is
external address and victim is internal address.

2) Outgoing anack is an attack from internal
address to internal network. So attacker is
internal address and victim is external address.

3) Internal attack is an attack within internal
network. So attacker and victim are internal
addresses.

Example 2 IP Spoofing

ipl1 (external host) impersonate ip7 (host hl -
internal host) toward #{p% (host h3 — internal host) is
consider as incoming attack. While ip8 (host h2 —
internal host) impersonate ip!2 (external host) toward
ipll (external host) is consider as owtgoing aftack.
Moreover, ipl 0 (host h4 — internal host) impersonate
ip8 (host h2 — internal host) toward ip7 (host hl —
internal host) is consider as infernaf attack.

The following shows our definition to verify the
vulnerability of firewall configurations for [P
spoofing attacks. The definition can be used to detect
the three kinds of attacks. To detect whether an
attacker can carry out 1P spoofing attack to a victim,
our approach is to generate a path from the attacker
to the victim. Then, we analyze on how many
firewalls along the path allow the attacker to

impersonate another entity and to send a packet to the
victim. If there exist some firewall(s) allowing that,
local IP spoofing occurs. However, if all firewalls
along the path allow that, global IP spoofing occurs.
Thus, our approach uses paths as a main concept to
detect TP spoofing attack.

Definition 4 Graph-based IP spoofing Vulnerability
Given an abstract configuration, an active entity 4
can impersonate (local and global) an entity (B)
towards another entity (C) where 4 = B (or A and B
do not belong to the same object) and 4 = C (or A and
C do not belong to the same object) iff
13 There is a non-empty set of paths, called SP,
from A to C in network topology NT, ie. SP
_G4Pm*, and
2) Consider the following kinds of spoofing:
2.1) For local 1P spoofing,
VP &S8P FFIeFW IP (P visits firewall
interface FI A there is a path from B to C in
LEP at FI)
2.2) For giobal 1P spoofing,
VP eSP VFIeFW _IP (P visits firewall interface
FI — there is a path from B to Cin LEP at Fi)
where LEP is generated from the abstract
configuration, and AP.y stands for the set of all
ordinary paths in a network topology.

Intuitively, this definition means that 4 can
impersonate B towards C if and only if 4 can send a
packet to C according to the network topology, and
firewall(s) along the path from 4 to C allow(s) B to
send the packet to C. Thus, A can send a packet to C
by impersonating B.

Global and local TP spoofing show different
degrees of vulnerability of configurations. Global IP
spoofing represents the real vulnerability in that a
firewall configuration for the whole firewall system
allows IP spoofing attack, and Jocaf IP spoofing
represents the potential vulnerability in that at least a
firewall configuration at a firewall interface allows IP
spoefing attack.

Example 3 Graph-based IP spoafing Vulnerability

Suppose that a configuration generates LEP,;; and
LEP,,; both of which contain path <ip3, ip3, ip2,
ip7>. The configuration is vulnerable to gioba! IP
spoofing because host k2 (ip8) can impersonate host
h3 (ip¥) toward host hl (ip7). The reason for this is
that there is a set of path P from h2 (ip8) to hl (ip7)
that is {<ip8, ip3, ip2, ip7>} and all firewalls in the
path (i.e. ip2 and ip3) allow ip8 to impersonate ip? 1o
ip7 due to the existence of path from ip? to ip7 in
LEprz and LEP;P_;_

Suppose that in another configuration, only
LEP;,; (not LEP,,,} contains path <ip9, ip3, ip2, ip7>.

The configuration is vulnerable to local IP spoofing.
Note that only firewall ip3 allows ip8 10 impersonate
ip9 to victim ip7, but firewall ip2 does not.

5. A Verification Methodology of
Configurations for IP spoofing Attack

We propose a verification methodology of
configurations for IP spoofing attacks. In particular,
we propose a class of configurations and show that
such classes are free of TP spoofing attack. Thus, to
verify that a configuration is free of IP spoofing is to
show that the configuration is in the classes.

5.1 Properties of
Configurations

IP Spoofing free

Before we discuss classes of IP spoofing free
configurations, we discuss desirable properties of TP
spoofing free configurations.

Definition 5§ Properties of IP spoofing free

configuration

1) An abstract configuration can prevent an
incoming attack if and only if it prohibits any
incoming packets with infernal sowrce address
from the external network to the internal
network.

2) An abstract configuration can prevent an
outgoing attack if and only if it irohibits any
internal host to send packets with source address
that does not belong to itself to the external
network.

It follows that a configuration that can prevent an
outgoing attack can also prevent internal attack since
it prohibits any internal host to attack any victim
including both external host and internal host.

5.2 Classes of IP Spoofing free Configurations

We propose two kinds of configurations that are
free of IP spoofing attacks, namely entry-point filer
and successive filter.

Entry-point filter means the filtering of permitted
flows passing through an organization network at the
entry-point of the organization network. The entry-
point of the network for a flow stands for a firewall
interface which is connected without any firewall to
the entity initiating the flow. Such filtering at an
enttry point must allow only entities which are
connected without any firewall to the entry point to
send packets through the entry point to anywhere.
Note that entry-point filter concerns with the filtering
at an entry point only, not at non-entry point nodes.

Definition & entry-point filter

Given an abstract configuration, a set of SGR is
called entry-point filter if and only if
for every entry point firewall interface i,

Flipe. ip; ipy) € LEP, ip, © non-

Sfirewali-connected-tofi)

where LEP, generated from SGR; and i is an entry
point firewall interface iff ipe non-firewall-
connected-tofi) and ip is an IP address of an active
entity.

It should be noted that entry-point filter does not
necessarily allow all entities which are connectred
without ary firewall to the entry point to send packets
through the entry point. Instead, it prohibits entities
which are not connected without any firewall to the
entry point to send packets through the entry point.

Since an Entry-point filter prohibits an active to
send a packet with source address that does not
belong to the active entity itself, it is not possibie that
the active entity can send any spoofed packets.

Example 4 entry-point filter

Suppose that SGRI = {(ipl0, ip8, fip, inbound,
permit, ip6)}. SGR1 is entry-point fiiter since LEP
= {(ipl0, ip6, ip5, ip4. ipd, ip8)} and ipi0 € non-
firewall-connected-to(ip6).

Successive filter means the filtering at successive
firewalls from the entry point to all firewall interfaces
connected to the entry poiat. It ensures that if a flow
is allowed 1o enter to the firewall topology, it reaches
its destination. This is because successive filter
ensures that any flows allowed to enter their entry
point are allowed to enter also all firewall interfaces
connected o the entry point.

Definition 7 successive filter

Given an abstract configuration, a set of SGR is
called successive filter iff
1) YFeFW_Object Vf e interfaces-offF)
[Vi v LEP™ o LEP}"' 7
in f A leint erfoces—of (F)
where LEP™ = {p | p € LEP, and p is a path passing
through interfuce i in outbound direction }

LEP™ = {p|p € LEP; and p is a path passing
through imterface i in inbound direction }, and
2) VF1,F2cFW _Object Vie interfaces-of(Fi) V je
interfaces-of(F2)

[FI#F2and | & non-firewall-connected-to(i)

and LEP" o LEP?]

(1) in this definition deals with a flow passing
through a firewall. Intuitively, it states that any
incoming packet entering to a firewall interface of a
firewall is allowed to leave the firewall at another

firewall interface. (2) deals with a packet flow from a
firewall to another firewall. Intuitively, it states that
any packet leaving a firewall from a firewall interface
fis allowed to enter into another firewall at firewall
interface which is connected without any firewall to f.

Example5 successive filter

Suppose that SGRI = {(ip9, ip7, fip, inbound,
permit, ip4), (ip9, ip7, fip, outbound, permit, ip2)}.
Clearly, SGR1 is successive since LEP,,™ D
LEP,” Suppose that SGR2 = {(ip9, ip7, fip,
outbound, permit, ip5), (ip9, ip7, fip, inbound, deny,
ip4)}. SGR2 is not successive since ipJe non-
Sfirewall-connected-to(ip4) but LEP s> @ LEP,,".

The two propositions, entn-peint filter and
successive filter, lead to the following definition.

Definition 8 A Verification Methodology of IP
spoofing

An abstract configuration is free of any kind of TP
spoofing attacks if and only if the set of firewall rules
in the configuration is both entry-point and
successive filters.

It i1s important to note that in order to venfy
whether a configuration is free of any IP spoofing
attack, we do not need to enumerate all possible
attackers and victims. To verify an abstract
configuration, our methodology simply checks
whether any source and destination in LEP at entry-
point firewall interfaces are in an allowed set
constructed by non-firewall-connected-to.
Furthermore, to verify successive filter it involves
only firewall interfaces used in an organization.
Those firewall interfaces are known and small.

Finally, both entry-point and successive filters
can be used as a guidance to configure firewalls to
avoid [P spoofing attacks.

6. Related Works

NetSTAT [5] is an intrusion detection system that
can deal with internal IP spoofing attack. The
difference between NetSTAT and our approach is
that NetSTAT detects attacks only when they occur
whercas our approach can detect anacks before they
occur. More importantly, to detect spoofing attack,
NetStat needs to enumerate each possible attacker
and victim. In other words, NetStat may work only if
the number of attackers and victims are small. This
assumption is too restrictive for the Internet and
attack situations nowadays.

Moreover, NetSTAT neither analyze the causes of
the attack nor offer any guidance on how to avoid the
attack whereas ouwr approach provides both

explanation on causes of the attack and guidance on
how to avoid the attack. Thus, our approach offers a
better understanding on the attack Finally, our
approach provides an assurance that network
configuration (firewalls in particular) is free of all
cases of IP spoofing attack whereas NetSTAT
cannot.

Fang [3] is a software too] which aims to analyze
firewall rules. Fang simulate attack scenarios cases
by cases. In particular, it offers attack scenarios for
specific attacker A, victim C and B, the entity that is
impersonated. Similar to NetSTAT, in Fang it also
assumes that the number of attackers and victims are
known and small, which is toc restrictive. Thus, it
cannot provide assurance that any configuration is
free of the attack for all cases. Furthermore, it offers
the vulnerability analysis of configuration for global
IP spoofing attack only. Moreover, it neither
discusses the causes of configurations for the attacks
nor provides any guidance to prevent the attack.

Ingress [12] and Egress filter [13] proposed
filtering configurations that can prevent incoming
and outgoing IP spoofing attacks, respectively. Both
kinds of configurations are concerned with boundary
routers only, and they use the classification inside
and outside to detect spoofing attack. Ingress filter
does not permit incoming packets with inside source
address whereas Egress filter does not permit
outgoing packets with non-inside source address.
However, inside and outside cannot deal with internal
attack for some network topologies, such as ring,
since the distinction between such inside and outstde
is not ¢lear. While their configurations deal only with
incoming and outgoing attacks, our filters can deal
with incoming, outgoing and internal attacks at once.

7. Conclusion

In this paper, we propose a verification
methodology for analyzing the vulnerability of
firewall configurations for IP spoofing attacks. Our
methodology can be used not only to verify existing
firewall configurations. Several kinds of IP spoofing
attacks are discussed. The relationship between the
attacks and firewall configurations is explained. Two
degrees of the wvulnerability for the attack are
discussed and formalized. Our approach offers a
proof-based assurance on the vulnerability of a
firewall configuration for the attack. Furthermore, we
propose a class of configuralions which are free of
the attacks. The class can be used as a guidance to
configure firewalls securely.

Currently, we are implementing a software
prototype for our method. As a future work, we aim
10 extend our method for analyzing other kinds of
attacks in network.

Acknowledgement

The second author would like to acknowledge
financial support from Thailand Research Fund and
National Research Council of Thailand.

Reference

[11 Y. Permpoontanalarp and C. Rujimethabhas, A Graph
Theoretic Model for Hardware-based Firewalls, In
proceedings of 9* IEEE International Conference on
Networks ({CON), Thailand, IEEE Press, 2001.

[2] Y. Permpoontanalarp and C. Rujimethabhas, A Unified
Methodology for Verification and Synthesis of
Firewall Configurations, In Proceedings of The Third
International Conference on Information and
Communications Security (ICICS), China, Lecture
Notes in Computer Science, Springer Verlag, 2001.

[3] Alain Mayer, Avishai Wool and Elisha Ziskind, Fang
A Firewall Analysis Engine, 21st IEEE Symposium on
Security & Privacy, Oakiand, CA, May 2000.

[4] J.D. Guttman, Filtering Postures : Local Enforcement
for Global Policies, In proceedings of 17* IEEE
Symposium on Security & Privacy, Oakland, CA,
1997.

{5] G. Vigna and R. Kemmerer, "NetSTAT: A Network-
based Intrusion Detection System”, Joumal of
Computer Security, 7(1}, IOS Press, 1999,

[6] CERT® Advisory CA-1995-01 IP Spoofing Attacks
and Hijacked Terminal Connections, CERT®
Advisory CA-1996-21 TCP SYN Flooding and IP
Spoofing Attacks

[7} John D. Howard. “An Analysis of Security Incidents
On The Internet 1989 — 19957, Carnegie Mellon
University, 1997,
htep:/fwww.cert.orgfresearch/THThesis/Start.html.

{8] P. PFerguson et al. RFC 2827. Network Ingress
Filtering: Defeating Denial of Service Attacks which
employ IP Source Address Spoofing. Technical report,
IETF, February 2000. Available at http://sunsite.cnlab-
witch.ch/fip/doc/standard/rfc/28xx/2827.

[91 SANS Institute. Egress filtering v 0.2, 2000. Available
at http://www.sans.org/y2k/egress.htm.

[10] W.R, Cheswick and S.M. Bellovin, Firewalls and
Internet Security : Repelling the Wily Hacker,
Addison-Wesley, 1594,

[11] D.B. Chapman and E.D. Zwicky, Building Internet
Firewall, O'Reilly & Associates, 1995.

[12]) P. Ferguson et al. RFC 2827 Newwork Ingress
Filtering: Defeating Denial of Service Attacks which
employ IP Source Address Spoofing. Technical report,
IETF, Febrvary 2000. Available at http//
$ un s i t e . ¢ n I a b -
switch.ch/ftp/doc/standardirfc/28xx/2827.

[13] SANS Institute. Egress filtering v 0.2, 2000. Available
at http://www.sans.org/y2k/egress.him.

[14] Voravud Santiraveewan, 2003, A Graph-based
Methodology for Analyzing IP Spoofing Attacks,
Master Degree Project, Computer Engineering,
Faculty of Engineering, King Mongkut's University of
Technology Thonburi.

