แบบจำลองพลศาสตร์นานาชนิดของแขนกลอ่อนตัวข้อต่อเดียว ชนิดแขนบาง

Multi-Dynamic Models of a Thin Single - link Flexible Manipulator

ภูวนาด คำรงพร ปีดีเขต สู้รักษา ภาควิชาเทคนิคอุคสาหกรรม คณะวิสวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารถาคกระบัง

บทถัดย์ก

บทความนี้ใช้ทฤษฎีคานของ Euler-Bernoulli ในการสร้างแบบจำลองพลศาสตร์นานาชนิดของแขนกลอ่อนตัวข้อ ค่อเคียวชนิดแขนบาง และผลกระทบของตัวหน่วง (Dampings) รวมทั้งวิเคราะห์และศึกษากลไกลักษณะโครงสร้างของ แขนกลอ่อนตัวในเชิงคณิตศาสตร์ มีตัวหน่วงสองชนิดที่นำมาร่วมพิจารณาในการสร้างแบบจำลองนี้คือ ตัวหน่วงโดย อากาศ (ตัวหน่วงภายนอก) และตัวหน่วงแบบ Kelvin-Voigi (ตัวหน่วงภายใน) และจำลองผลของแบบจำลองโดยโปรแกรม MATLAB เพื่อแสดงลักษณะการสั่นของแต่ละโหมดตามเงื่อนใชขอบเขตของชนิดของมอเตอร์ที่ยับ (Hub) และภาระ (Load) ที่ปลายแขน (Tip) พร้อมทั้งเปรียบเทียบการจำลองเงื่อนใชค่างๆด้วยกราฟ

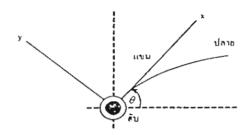
Abstract

In this paper, the Euler-Bernoulli beam theory is applied to investigate multi-dynamic models for a thin single-link flexible manipulator with dampings. Detailed analysis and derivation are given to support the dynamic models of this particular flexible mechanism. There are two significant damping effects for the arm models, which are air damping (as the external damping) and the Kelvin-Voigt damping (as the internal damping). The MATLAB simulation results for the modeling are performed to observe the significant vibration modes corresponding to various types of the motor (located at the hub) and loading conditions (at the tip of the arm). The results are compared graphically to each other.

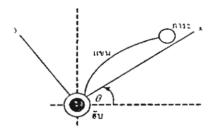
1. บทนำและภูมิหลัง

ในปี ค.ศ.1970 Gevarter [1] ได้ศึกษาโครงสร้าง เชิงกลอ่อนตัวเป็นคนแรก ต่อมามีผู้ศึกษาโครงสร้างที่เป็น แบนกลแบบอ่อนตัวซึ่งได้รับความสนใจจากนักวิทยา ศาสตร์ วิศวกร และนักวิจัย จากทุกมุมโลก [2,4,5,6.7] ปัญหาวิจัยปัญหาหนึ่งที่น่าสนใจคือ ปัญหาการสร้างแบบ

จำลองคณิตสาสตร์ สำหรับแขนกลอ่อนตัวข้อค่อเคียวเพื่อ ช่วยในการวิเคราะห์และออกแบบระบบควบคุมแบบใช้ แบบจำลองอ้างอิง [3] และแบบอื่นๆ


แขนกลอ่อนตัวข้อต่อเคียวสามารถพิจารณา เสมือนเป็นกานอันหนึ่ง ในส่วนของทฤษฎีได้บีผู้นำเอา ทฤษฎีคานของ Euler-Bernoulli มาประชุกศ์ใช้ ตัวอย่าง ของความพยายามในการสร้างแบบจำลองนี้คืองานวิจัยของ Bellezza et al. [8] ต่อมาได้มีผู้พัฒนาโดยนำเอา ทฤษฎีคาน ของ Rayleigh และทฤษฎีคานของ Timoshenko [9] โดย การนำความเฉื่อยของการหมุนและการเปลี่ยนรูปโดยความ เค้นเฉือนมาร่วมพิจารณาด้วยในการสร้างแบบจำลองทาง กณิคศาสตร์

ในระยะต่อมามีผู้สึกษาพบว่าในกานที่มีพื้นที่ หน้าคัดเป็นรูปสี่เหลี่ยมผืนผ้าจะมีผลกระทบจากการแปร รูปของกวามเก้นเฉือนต่อการสั่นของคานเป็นสามเท่าของ ผลกระทบกวามเฉื่อยของการหมุน |10] ตัวอย่างของแบบ จำลองหางคณิตศาสตร์ของแขนกออ่อนตัวข้อค่อเคียวที่มี การพิจารณาผลกระทบคังกล่าวนี้ศึกษาโดย Sooraksa (11)


ในปีก.ศ. 1988 Bavo [12] ได้สร้างแบบจำลอง คณิตศาสตร์สำหรับแบบกลอ่อนตัวข้อค่อเคียวโคยวิธีไฟ ในท์ อิลีเมนท์ (finite element method) ปี ค.ศ. 1992 Jiang [13] ได้สร้างแบบจำลองของแขนกลอ่อนตัวชนิคนี้โคยใช้ หลักของ Hamilton และแกลกูลัสของการแปรผัน ในปีก.ศ. 1994 Lin และ Lewis [14] ได้สร้างหฤษฎีโดยอาศัยวิธีการ สมมดิโหมค และปีค.ศ. 1999 Ibrahimbegovic และ Mamouri [15] ใช้เทคนิคตัวถูญของลากราน (Lagrange multiplier technique) ในการสร้างแบบจำลองคณิคศาสตร์ อย่างไรก็ตามยังไม่มื สำหรับแชนกลอ่อนด้วข้อค่อเคียว แบบจำลองใคคังกล่าวข้างต้นครอบคลุมถึงกรณีการใช้ มอเดอร์แบบไฮเกียร์ (high gear) และแบบใคเร็กไคร์ฟ (direct drive) ทั้งแบบที่แขนกลมีและไม่มีภาระงานโดย พิจารณาทั้ง 4 กรณีควบคู่กันไป งานวิจัยนี้จะศึกษาถึงกรณี ค่างๆคั้งกล่าวให้ครอบคลุมเงื่อนไขขอบเขตดามรูปแบบที่ ใช้งานจริงในสภาวะต่างๆ

ในงานวิจัยนี้ได้นำเอาทฤษฎีคานของ Euler-Bernoulli มาใช้ในการวิเคราะห์และศึกษาโครงสร้างกลไกการสั้นของแขนกลอ่อนตัวข้อต่อเคียวชนิดแขนบางตาม เงื่อนไขของการเลือกใช้มอเตอร์และภาระ คังรูป I และ รูปที่ 2 ในแบบจำลองนี้ ลักษณะเนื้อของคาน (beam) ที่ใช้ ทำลำแขนเป็นคานเอกรูป (uniform beam) มีน้ำหนักเบา และบาง การเคลื่อนที่ของแขนเป็นการเคลื่อนที่จากจุดหนึ่ง

ไปยังจุดหนึ่งอยู่ในแนวระนาบ x-y (x-y plane) โดยไม่ทำ ให้เกิดแรงคึงในแนวแกนและแรงอัดตัวที่ทำให้เสียรูป โดย มีตัวหน่วงสองชนิดที่นำมาร่วมพิจารณาในการสร้างแบบ จำลองของแขนกลนี้คือ ตัวหน่วงโดยอากาศ (Air damping) และ ตัวหน่วงแบบ Kelvin-Voigi

รูปที่) แสดงลักษณะของแขนกลอ่อนตัวข้อค่อเคียว เมื่อไม่มีการะที่แขน

รูปที่2 แสดงลักษณะของแขนกลอ่อนตัวข้อต่อเคียว เมื่อมีภาระที่แขน

บทความนี้ลำคับการนำเสนอเนื้อเรื่องคังนี้ ส่วน ที่2 กล่าวถึงทฤษฎีที่เกี่ยวข้อง ส่วนที่3 เป็นการสร้างแบบ จำลองคณิตศาสตร์ในงานวิจัย ส่วนที่4 เป็นการจำลองผล โดยคอมพิวเตอร์ ส่วนที่5 และ ส่วนที่6 เป็นการอภิปราย และสรุปผลที่ได้จากงานวิจัยนี้ ตามลำดับ

2. ทฤษฎีที่เกี่ยวข้อง

2.1 ชนิดของตัวหน่วงสำหรับกาน

2.1.1 คัวหน่วงโคยอากาศ (Air Damping) หรือ เรียกอีกอย่างหนึ่งว่า คัวหน่วงอากาศแบบหนือ (Viscous air damping) เกิดจากแรงค้านอากาศจัดเป็นผลกระทบภาย นอกที่มากระทำต่อแขนกล ซึ่งเขียนได้ในรูปทั่วๆไปคือ $\gamma y_i(x,t)$ ซึ่ง γ เป็นคำคงที่ของคัวหน่วงอากาศ และ

 $y_i(x,t)$ เป็นคำความเร็วของแขนในทิศทางสวนทางกับทิศทางกรเคลื่อนที่ของแขน

2.1.2 คัวหน่วงแบบ Kelvin-Voigt หรือเรียกอีก อย่างหนึ่งว่า คัวหน่วงแบบอัคราความเครียค (strain-rate damping) ซึ่งเป็นคัวหน่วงที่เกิดจากกลใกการเสียดทาน ภายในของเนื้อสาร รูปแบบสมการเขียนในรูปเขียนในรูป ทั่วๆไปได้คือ $\zeta T \frac{\partial^3 y}{\partial x^2 \partial t}$ ซึ่ง เ คือค่าโมเมนต์ของ ความเนื่อยและ ζ คือค่าลัมประลิทธิ์ของคัวหน่วงแบบ Kelvin-Voigt

2.2 สมการกานของ Euler

แขนกลอ่อนตัวข้อก่อเคียวสามารถพิจารณาได้ เป็นคานและแบบจำลองคณิตศาสตร์ของคานสามารถ บรรยายได้ด้วยทฤษฎีของ Euler Theory [9] สมการกาน ของ Euler เป็นสมการที่บรรยายปรากฏการณ์ทางกายภาพ ของกาน ในรูปแบบที่มีการสั่นควมขวางของคาน

โคยมีสมการการเคลื่อนที่ของการลั่นในแนว ขวางเป็น

$$EI\frac{\partial^4 y}{\partial x^4}(x,y) = -\rho A\frac{\partial^2 y}{\partial t^2}(x,t) \tag{1}$$

โดยที่ E คือ มอคูลัสของความยึดหยุ่น, I คือ โมเมนด์ของความเฉื่อย, A คือพื้นที่ภากตัดขวาง, ho คือ ความหนาแน่นของวัสคุ, M คือโมเมนต์

ในสมการการเคลื่อนที่ จะมือนุพันธ์อันคับสอง
ที่เทียบกับเวลา และมีสมการอนุพันธ์อันคับสี่ เทียบกับ x
คังนั้นจึงมี สองเงื่อนไขเริ่มค้น และ สี่เงื่อนไขขอบเขค
เพื่อหาคำคงที่ตามที่เราค้องการสำหรับสมการ (1) โคย
สามารถแก้สมการค้วยวิชีสมมติโหมคการสั่นเป็น

$$y(x,t) = \sum_{i}^{\infty} \phi_{i}(x)q_{i}(t)$$
 (2)

แทน (2) ใน (1) จะได้คำคอบของสมการเป็น

$$y(x,t) = \sum_{i=1}^{\infty} c_1 \cosh k_i x + c_2 \sinh k_i x + c_3 \cosh_i x + c_4 \sinh_i x \right) q_i(t)$$
 (3)

โคยสัมประสิทธิ์ c หาได้จากเงื่อนไขขอบเชต และ q(t) เป็นฟังก์ชันของเวลา โคย i = 1,2,3,4,...

2.3 เงื่อนใจขอบเขตของกาน

ก.ปลายอิสระ (free end)

โมเมนต์คัศ (bending moment)

$$EI\frac{\partial^2 y}{\partial x^2} = 0$$

แรงเฉือน (shear force)

$$EI\frac{\partial^3 y}{\partial x^3} = \frac{\partial M}{\partial x} = 0$$

ข ปลายหนุน (ครึ่ง) (simply supported (pinned) end) ระยะไก่งงอ (deflection)

โมเมนฑ์ทัศ (bending moment)

$$EI\frac{\hat{c}^2}{\hat{c}x^2} = 0$$

ก ปลายคิดแน่น (fixed (clamped) end)

ระยะโก่งจอ (deflection)

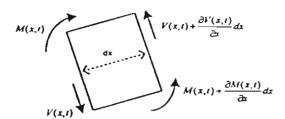
$$v = 0$$

กวามชัน (slope)

$$\frac{\partial y}{\partial z} = 0$$

จากการทคลองของ Krishnan และ Vidyasagar [16] พบว่าเงื่อนไขการเลือกใช้มอเตอร์ที่ใช้ขับแขนหุ่น ยนด์ที่โกนแขนและเงื่อนไขภาระที่ปลายแขนสอดคล้อง กับเงื่อนไขขอบเขตดังดารางที่1 ดังนี้

คารางที่) เงื่อนไขขอบเขคที่สอคกล้องกับเงื่อนไข


ทางภายภาพของแขน

การใช้มอเตอร์	ภาระที่ปลายแขน	เงื่อนไขขอบเขต
Direct Drive	มื	หนุน-หนุน
Direct Drive	ไม่มี	หนุน-อิสระ
High Gear	มี	ติคแน่น-หนุน
High Gear	ไม่มี	ติดแน่น-อิสระ

3. แบบจำลองคณิตสาสตร์ของแขนกลอ่อนตัวข้อ ต่อเดียวชนิดแขนบาง

3.1 แบบจำลองคณิตศาสตร์ของแขนกลอ่อนตัวข้อต่อเดียว ชนิดแขนบางเมื่อพิจารณาผลกระทบของตัวหน่วง

พิจารณาชิ้นส่วนของเนื้อคานของลำแขนดังรูปที่ 3 และจากกฎข้อสองของ Newton จะได้

รูปที่3 แสคงชิ้นส่วนหนึ่งของเนื้อคานของท่อน แขนกลอ่อนคัว

$$V - (V + dV) - \gamma \frac{\partial y}{\partial t}(x, t) dx = \rho A(x) dx \frac{\partial^2 y}{\partial t^2}(x, t)$$
 จากความสัมพันธ์ของ $y = \frac{\partial M}{\partial x}$ แทนในสมการ จะได้

$$-\frac{\partial^2 M}{\partial x^2} - y \frac{\partial y}{\partial t}(x,t) = \rho A(x) dx \frac{\partial^2 y}{\partial t^2}(x,t)$$
 (5)

โดยโมเมนต์รูปใหม่จากคัวหน่วงแบบ Kelvin-Voige (M_{kv}) คือ

$$M = M_{KV}(x,t) = EI \frac{\partial^2 y}{\partial x^2} + \zeta_{At} I \frac{\partial^2 y}{\partial t \partial x^2}(x,t)$$
 (6)

โดยที่ ζ_M ถือค่าสัมประสิทธิ์ของตัวหน่วงแบบ Kelvin-Voigi γ ถือค่าสัมประสิทธิ์ของตัวหน่วงโดยอากาศ, \vee ถือ แรงเฉือน

จากการแก้สมการ (5) และ (6) โดยวิธีสมมติ โหมค คังหัวข้อ 2.2 และใช้เงื่อนไขของขอบเขตในหัวข้อ 2.3ได้ทำตอบของสมการดังนี้คือ

3.1.1กรณีใช้มอเดอร์ใดเร็กไครฟ์และมีภาระที่ปลายแขน

$$y(x,t) = \sum_{i=1}^{n} \sqrt{2}e^{\lambda_i t} \sin \mu_i t \sin \omega_i t \sin k_i t$$
 (7)

3.1.2กรณีใช้มอเคอร์ไฮเกียร์และมีภาระที่ปลายแขน

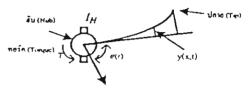
$$y(x,t) = \sum_{i=1}^{\infty} e^{it} \sin \mu_i \sin \omega_i f(\cosh k_i x - \cos k_i x) - \alpha_i (\sinh k_i x - \sin k_i x) \Big]$$

$$\alpha_i = \frac{(\sinh k_i t + \sin k_i t)}{(\cosh k_i t + \cos k_i t)}$$
(8)

3.1.3กรณีใช้มอเคอร์ไดเร็กใครฟ์และไม่มีภาระที่ปลายแขน

$$y(x,t) = \sum_{i=1}^{\infty} e^{xx} \sin \mu_i \sin \omega_i / [\sin k_i x - \alpha_i \sinh k_i x]$$

$$\alpha_i = \frac{\cos k_i l}{\cosh k_i l}$$
(9)


3.1.4กรณีใช้บอเคอร์ไฮเกียร์และไม่มีภาระที่ปลายแขน

โดยที่

$$\chi(x,t) = \sum_{i=1}^{\infty} e^{\lambda t} \sin \mu_i t \sin \mu_i \int_{-\infty}^{\infty} \cos k (x - \cos k, x) - \alpha_i (\sinh k, x - \sin k, x) \Big]$$

$$\alpha_i = \frac{(\cosh k, l + \cos k, l)}{(\sinh k, l + \sin k, l)}$$

กำ k,l ก็อกำลงที่ของโหมคการสั่นหาได้จากการ แก้สมการโคยวิธีทางกราฟ กำ µ, และคำ Д. หาได้จากการ แก้สมการถวอคราติกจาก (5) และ (6) ด้วยวิธีแยกตัวแปร (Separation of variables) ได้รากลอนจูเกตจำนวนเชิงซ้อน 3.2 แบบจำลองทางพลสาสตร์ของระบบ

รูปที่4 แสคงการเกลื่อนที่ของฮับ

พิจารณารูปที่ 4 เราจะได้สมการการเกลื่อนที่ของ อับ เป็น

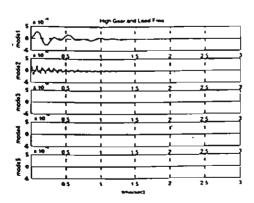
$$-EI\frac{\partial^2 y(x,t)}{\partial x^2}\bigg|_{x=0} + T = I_H \ddot{\theta}$$
 (11)

โดยที่ พจน์แรกของสมการ (11) เป็นปฏิกิริยาของ Moment Reaction ของคานที่เกิดกับฮับ T คือแรงบิค, I_{μ} คือ ความเฉื่อยของฮับ, $\ddot{\theta}$ คือความเร่งเชิงมุมและ y คือระยะ โก่งงอสอดคล้องกับสมการ (7) ถึง (10) คามแต่ เงื่อนไข

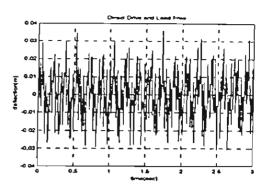
4. ผลการจำลองด้วยคอมพิวเตอร์

ในการจำลองผลด้วยถอมพิวเตอร์กำพารามิเตอร์ ต่างๆที่ใช้เป็นของแขนกล คังนี้

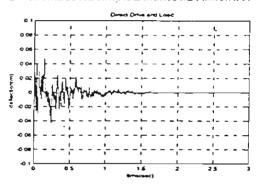
	· ·				
	มอดูลัสของความยึคหยุ่น (E)	7x10 ¹⁰	Pa		
	โมเมนต์ของความเฉื่อย (1)	2x10 ⁻¹¹	kg.m²		
	พื้นที่ภากตัดขวาง (A)	9x10 ⁻⁵	m²		
	ความยาวของแขน (L)	1.0	m		
	ความหนาแน่นของมวล (ho)	2712.6	kg.m		
	ความเฉื่อยของฮับ (I _н)	1.7628x10 ⁻³	kg.m²		
	ตัวหน่วงโดยอากาส (<i>y</i>)	1.024	kg.m ⁻¹ .sec		
	ตัวหน่วงแบบ Kelvin-Voigt (ζ) 2.05x10 ⁵	kg.m ⁻¹ .sec		
ผลการจำลองที่ได้แสคงในรูป 5 -10					

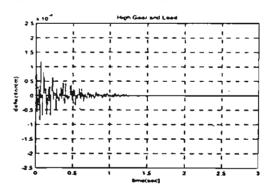

ร. อภิปรายการจำฉองผล

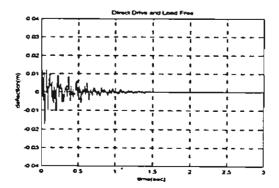
จากผลการจำลองผลค้วยคอมพิวเคอร์ในรูปที่ 5 จะเห็นได้ว่าแขนกลมีโหมคการสั่นมากกว่า 1 โหมดโดย โหมคที่สูงขึ้นจะมีขนาค (Amplitude) ลดลงเรื่อย ๆ บ่งนัย สำคัญต่อการประยุกต์ใช้โดยมีโหมดเด่นสองโหมดแรก ทำให้มีคือนันต์ของโหมดการสั้นลดรูปเป็นเพียงมิติจำกัด ซึ่งเอื้อประโยชน์ในการใช้งานภาคปฏิบัติ รูป 6 แสดงเพื่อ เปรียบเทียบกับรูป 7-10 ดังจะเห็นว่าผลกระทบของตัว หน่วงในกานสอดกล้องกับกวามจริงที่ว่า ไม่ว่าเงื่อนไข มอเตอร์และภาระจะเป็นเช่นไร ถานจะหยุดสั้นในที่สุดซึ่ง ถูกบังคับโดยหลักเอนโทรปี (Entropy) ด้องมากกว่าหรือ เท่ากับสูนย์ ซึ่งเป็นการลดทอนกุณภาพหลังงาน ทำให้แขน กลจะไม่สั้นแบบซิมเปิ้ลฮาร์โมนิต (Simple Harmonic) เหมือนรูป 6 และเป็นการขยายผลแบบจำลองในงานของ [2],[3],[16] อีกด้วย

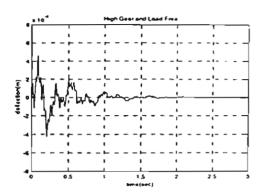

6. บทสรุป

งานวิจัยนี้ศึกษากลไกการสั้นของแขนและผล กระทบเนื่องมาจากตัวหน่วง สร้างแบบจำลองพลศาสตร์ ของแขนกลอ่อนตัวข้อต่อเดียวดามเงื่อนไขของมอเตอร์ที่ นำมาใช้และภาระที่ปลายแขน แบบจำลองที่สร้างขึ้นเป็น แนวทางในการนำไปประยุกต์ใช้งานในระบบควบคุมอ้าง อิงแบบปรับค่าได้ (Model Reference Adaptive Control)


แม้ว่าจะได้แบบจำลองที่ขยายผลครอบคลุมกรณี การหน่วงตามเงื่อนไขต่างๆ อย่างไรก็ตาม ข้อจำกัดของ แบบจำลองนี้อยู่ที่แขนอ่อนตัวเป็นแบบแขนบางซึ่งทำให้ ไม่เหมาะกับการใช้งานในกรณีที่ปลายแขนต้องรับภาระ มาก แบบจำลองที่ครอบคลุมถึงกรณีผลกระทบของแรง เก้นเฉือน แรงบิค แรงอัด และผลกระทบเชิงกลจากตัว หน่วงรูปอื่นๆในสามมิติยังคงเป็นปัญหาวิจัยในเพ่สต่อไป


รูปที่5 แสดงการเปรียบเทียบการสั่น5โหมคแรกของแขนกล กรณีใช้ มอเดอร์ไฮเกียร์และไม่มีการะที่ปลายแขน จะเห็นใด้ว่าสองไหมค แรกเป็นไหมดเด่น (the dominant modes)


รูปที่6 แสคงการสั้นของแขนกลกรณีใช้มอเตอร์ไคเร็กใคฟีและใม่มี ภาระที่ปลาอแขนเมื่ออังไม่ได้พิจารณาผลกระทบจากคัวหน่วง


รูปที่7 แสดงการตั้นของแขนกลกรณีใช้บอเดอร์โดเร็กไดฟและนี้ ภาระที่ปลายแขนเมื่อพิจารณาผลกระทบของตัวหน่วง

รูปที่8 แสคงการสั้นของแขนกลกรณีใช้มอเคอร์ไฮเกือร์และมีภาระที่ ปลาอแขนเมื่อพิจาณาผลภระทบของคัวหน่วง

ฏปที่9 แสคงการสั้นของแขนกอกรณีใช้บอเคอร์โคเร็กใคฟ์และไม่มี ภาระที่ปลาดแขนเมื่อพิจารณาผลกระทบของคัวหน่าง

รูปที่ 10 แสคงการสั่นของแขนกลกรณีใช้มอเคอร์ ไฮเกียร์และ ไม่มี ภาระที่ปลายแขนเมื่อพิจาณาผลกระทบของตัวหน่วง

7. เอกสารอ้างอิง

- [1] W.B. Gevarter, "Basic Relations for Control of Flexible Vehicles," AIAA Journal, Vol. 8, No. 4, pp. 666-672, April, 1970.
- [2] R.H.Jr. Canon, E. Schmitz, "Initial Experiment on the End-Point Control of flexible One-Link Robot," The International Journal of Robotic Research, Vol. 3, No. 3, pp. 62-75, 1984.
- [3] S.H.M Amin and A.S Morris, "A MRAC Scheme to Control Lightweight Flexible Robot Manipulators," IECON '91, International Conference Vol. 2, pp. 1246 - 1250, 1991.
- [4] H.R. Pota, "A prototype flexible robot arm-an interdisciplinary undergraduate Project," IEEE Trans. Education. Vol. 35, pp. 83-89, February, 1992
- [5] K. Yamanaka, G.R. Heppler and K. Huseyin, "The Stability of a Flexible Link with a Tip Rotor and a Compressive Tip Load," IEEE Trans. Robotics and Automation, Vol. 11, pp. 882-887, December, 1995.
- [6] Z.-H. Luo and B.-Z. Guo, "Shear Force Feedback Control of a Single-Link Flexible Robot with a Revolute Joint," IEEE Trans. Automatic Control, Vol. 42, pp. 53-65, No.1, January, 1997.

- [7] W.T. Qian and C.C.H. Ma, "Experiments on a Flexible One-Link Manipulator," IEEE Conference on Communications, Computers and Signal Processing. pp. 262-265, May, 1991.
- [8] F. Bellezza, L. Lanari and G. Ulivi, "Exact modeling of the flexible slewing link," Proc.IEEE Int. Conf. On Robotics and Automation, Cincinnati, Ohio, Vol. 3, pp. 734-739, 1990.
- [9] S.R. Singiresu "Mechanical Vibrations," Addison-Wesley Publishing Company, pp. 501-550, 1995.
- [10] D. J. Inman, "Engineering Vibration," Prentice-Hall, Inc, Ch. 6, 1994.
- [11] P. Sooraksa, "Mathematical Modeling of a Single Flexible-Link Robot Arm with Damping," EECON20, Thailand, November, pp. 313-318, 1997.
- [12] E. Bayo, "Finite-element approach to control the end-point motion of a single-link flexible robot," Journal of Robots and Systems, Vol. 4, No. 1, pp. 63-75, 1988.
- [13] Z.H. Jiang, "Kinematics and dynamics of flexible robot arms," Proc.IEEE Int. Conf. on Intelligent Robots and Systems, pp. 1681-1688, July, 1992.
- [14] J. Lin and F. Lewis, "Enhanced measurement and estimation methodology for flexible link arm control," Journal of Robotic System, Vol.11(5), pp. 367-385, 1994.
- / [15] A. Ibrahimbegovic, S. Mamouri, "Nonlinear dynamics of flexible beams in planar motion formulation and time-stepping scheme for stiff problems," Computers and Structures, pp.1-22, 1999.
 - [16] H. Krishnan and M. Vidyasagar, "Control of Singlelink Flexible Beam using a Hankel-Norm-Based Reduced Order Model," IEEE Conference on Robotics and Automation, Vol.1, pp.9-14, 1988.

eedings การประชุมวิชาการทางต้านวิทยาศาสตร์และเทคโนโลยีวัสดุแห่งประเทศไทย ครั้งที่

The First Thailand Materials Science and Technology Conference

19–20 กรกฎาคม 2543 โรงแธม อมาธี วอเดอร์เกท กรุงเทพฯ

MITEC

ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ (MTEC) สำนักงานเงัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (NSTDA) กระทรวงวิทยาศาสตร์ เทคโนโลยีและสิ่งแวดล้อม (MOSTE)

Thelland Meterials Science

การควบคุมตำแหน่งแขนกลน้ำหนักเบาชนิดสามแกน A POSITION CONTROL FOR LIGHTWEIGHT CARTESIAN ROBOT ARM

ณัฐพงศ์ จินจาคาม ผศ.คร.ปิติเขต ลู้รักษา

ภาควิชาเทคนิคอุตสาหกรรม คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

บทนำ

บทความนี้น้ำเสนอการออกแบบและสร้างฮาร์ดแวร์ลำหรับชุดควบคุมตำแหน่งแขนกลคาร์ทีเขียน [1] น้ำหนักเบาชนิดสามแกน โดยโครงสร้างแขนกลทำจากโลหะอลูมิเนียม ตัวควบคุมที่ออกแบบเป็นตัวควบคุมแบบ พีไอดี (PID) [2-4] สามชุดทำงานคู่ขนาน เพื่อควบคุมแต่ละแกน โดยสั่งงานผ่านคอมพิวเตอร์ส่วนบุคคล จาก โปรแกรมที่พัฒนาขึ้นด้วยภาษาเดลไฟ (DelphiTM)

ผลการทดลองแสดงเปรียบเทียบกับชุดควบคุมที่ใช้ตัวควบคุมแบบพี (P) โดยแลดงให้เห็นว่าฮาร์ดแวร์
และโปรแกรมควบคุมแบบพีไอดี (PID) ให้ผลดีโดยสามารถแก้ออฟเซตและตอบสนองได้เร็วกว่าตัวควบคุมแบบพี
ซึ่งผลที่ได้แลดงขีดความสามารถที่จะนำระบบที่ได้ออกแบบและสร้างขึ้นนี้มาใช้งานได้จริงและสามารถพัฒนาเพื่อ
ให้ใช้แทนเครื่องจักร CNC ที่ต้องนำเข้าจากต่างประเทศได้อีกด้วย

อุปกรณ์และวิธีการ วิธีการ

ในบทความนี้ใช้ตัวควบคุมแบบพีไอดี (PID) ซึ่งมีรูปของพังก์ขั้นถ่ายโอน (Transfer function) สามารถ เขียนเป็นลมการได้ดังนี้

$$G_{c}(s) = \frac{M(s)}{E(s)} = K_{c} \left(1 + \frac{1}{T_{i}s} + T_{d}s \right)$$
 (1)

โดยที่

 K_{ϵ} คือ เกนของระบบควบคุม

 T_i คือ เวลาที่ใช้ในการเพิ่มค่าของลัญญาณควบคุม (Integral action time)

 T_d คือ เวลาที่สัญญาณควบคุมน้ำหน้าสัญญาณผิดพลาด (Derivative action time)

ลมการข้างต้นนี้อยู่ในรูปของโดเมนความถี่ (Frequency domain) ซึ่งในบทความนี้เราจะสร้างตัว ควบคุมโดยอาคัยคอมพิวเตอร์ส่วนบุคคล ดังนั้นเราจึงต้องแปลงสมการที่ 1 ให้อยู่ในรูปของโดเมนเวลา (Time domain) เสียก่อน [5] โดยการแปลงจะอาคัยหลักการทางคณิตศาสตร์เข้ามาช่วยเพื่อให้สามารถออกแบบด้วย โปรแกรมได้ง่ายขึ้น ซึ่งสมการที่ 1 สามารถเขียนให้อยู่ในรูปของโดเมนเวลาได้ดังนี้

$$m(t) = K_c e(t) + \frac{K_c}{T_t} \int e(t)dt + K_c T_d \frac{de(t)}{dt}$$
 (2)

irst Thalland Materials Science

ล้าหรับสมการที่ 2 ในโดเมนเวลาแบบไม่ต่อเนื่อง (Discrete time domain) มีรูปเป็น

$$m_{n} = K_{c} \left[e_{n} + \frac{1}{T_{i}} \sum_{k=0}^{n} e_{k} \cdot \Delta t + T_{d} \frac{(e_{n} - e_{n-1})}{\Delta t} \right]$$
 (3)

โดยที่

 $T_s = \Delta t =$ ระยะเวลาระหว่างการสุ่ม (Sampling interval)

$$K_{\rho} = K_{c}$$
 , $K_{t} = K_{c} \times \frac{T_{t}}{T_{t}}$, $K_{d} = K_{c} \times \frac{T_{d}}{T_{t}}$

จัดรูปสมการที่ (3) ใหม่จะได้สมการ

$$S_n = S_{n-1} + e_n \tag{4}$$

$$m_n = K_p \times e_n + K_i \times S_n + K_d (e_n - e_{n-1})$$
 (5)

โดยที่

 S_n คือ ผลรวมของค่าผิดพลาดในปัจจุบัน m_n คือ เอาท์พุท

 S_{r-1} คือ ผลรวมของค่าผิดพลาดในอดีต K_r คือ ค่าเกนตัวควบคุมแบบพื

 e_{x} คือ ค่าความผิดพลาดในปัจจุบัน K_{z} คือ ค่าเกนตัวควบคุมแบบไอ

 e_{-} คือ ค่าความผิดพลาดในอดีต K_{σ} คือ ค่าเกนตัวควบคุมแบบดี

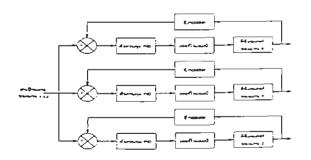
อุปกรณ์

อุปกรณ์ที่ใช้สร้างนั้นจะเป็นวัสดุที่มีน้ำหนักเบาและสามารถหาซื้อได้ง่ายภายในประเทศ ระบบควบคุม แขนกลที่สร้างขึ้นแสดงดังรูปที่ 1 การทำงานของระบบทั้งหมดจะทำงานผ่านอินเตอร์เฟสการ์ดบน (ISA Slot) [6] แสดงดังรูปที่ 2 และ 3 ชุดแขนกลที่สร้างขึ้นแสดงในรูปที่ 4 เป็นตัวควบคุมแบบพีไอดี (PID) จำนวน 3 ชุดทำงาน แบบขนานเพื่อควบคุมแต่ละแกนพร้อมๆกัน โดยใช้ค่า K_p=12 K_t=0.1 K_g=0.00002 (ค่าที่ใช้ในการทดลองได้จาก การจำลองผลจากโปรแกรม Matlab) เพื่อไปควบคุมตำแหน่งของดีซีเซอร์โวมอเตอร์ให้เคลื่อนที่ไปยังตำแหน่งที่ ต้องการได้อย่างแม่นยำและรวดเร็ว

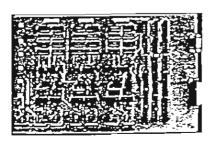
ส่วนของระบบอินเตอร์เฟสประกอบด้วย ส่วนน้ำข้อมูลออกและน้ำข้อมูลเข้า โดยส่วนน้ำข้อมูลออก ประกอบด้วย วงจรถอดรหัส (ประมวลผลโดยใช้ข้อมูลขนาด 8 บิท) วงจรแปลงสัญญาณดิจิตอลเป็นอะนาล็อก วงจรพัลชีวิธมอดูเลชั่น วงจรเซอร์โวแอมป์ และวงจรนำข้อมูลเข้าประกอบด้วย วงจรเข้ารหัส วงจรหารสืบหก และ วงจรนับ (ขนาด 16 บิท)

ส่วนของโปรแกรมควบคุมการทำงาน เมื่อรับข้อมูลจากวงจรนับของวงจรอินเตอร์เฟล ค่าที่รับเข้ามาคือ ค่าตำแหน่งป้อนกลับของแกน X,Y,Z (Feedback position for X,Y,Z axes) ซึ่งเป็นค่าที่คำนวณหาได้จากสมการ ที่ 4 และ 5 โดยใช้โปรแกรมเดลไฟ (DelphiTM) จากนั้นโปรแกรมจะส่งข้อมูลขนาด 8 บิท ไปที่วงจร อินเตอร์เฟสเพื่อไปควบคุมดีซีเซอร์โวมอเตอร์ เมื่อแกน X,Y,Z เคลื่อนที่ถึงตำแหน่งที่ต้องการ โปรแกรมจะสั่งให้ตัวจับ (Gripper) ทำงาน

st Thailand Materials Science

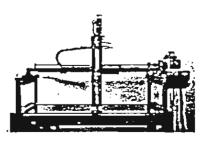

สรุปผลการทดลองและวิจารณ์

จากการทดลองพบว่า เมื่อสั่งให้แขนกลเคลื่อนที่ด้วยตัวควบคุมแบบพีไอดี (PID) มีผลตอบสนองที่เร็ว และ มีข้อผิดพลาดน้อยกว่าการใช้ตัวควบคุมแบบพี (P) เพียงอย่างเดียว ปัญหาที่เกิดขึ้นในการทดลองเนื่องจาก ดีจีเซอร์โวมอเตอร์ที่ใช้ในการทดลองเป็นของบริษัท ชันโยเคนกิ (Sanyo Denki) รุ่น Super U (U718-012E) ทำให้ ไม่สามารถหาค่าพารามิเตอร์ได้ เนื่องจากเป็นรุ่นที่ทางบริษัทเลิกผลิตแล้ว คณะผู้วิจัยจึงประสบปัญหาในการหา คำเกนของตัวควบคุมแบบพีโอดี (PID) จึงต้องใช้วิธีการจำลองผลเพื่อคำนวณหาคำเกนของระบบโดยใช้โปรแกรม Matlab และอาศัยฟังก์ชั่นถ่ายโอนของดีซีเซอร์โวมอเตอร์รุ่น Super R (R460BT011) จากงานวิจัย [7] ซึ่งมีค่า พารามิเตอร์ใกล้เคียงกันทำให้ค่าประมาณเบื้องต้น (Partial knowledge) และได้แบบจำลองคณิตศาลตร์ของดีจี เซอร์โวมอเตอร์ที่ใช้ในการคำนวณค่าเกนคือ


$$G(s) = \frac{0.51}{4.42 * 10^{-8} s^2 + 1.256 * 10^{-4} s + 2.55 * 10^{-2}}$$
 (6)

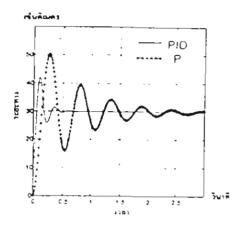
โดยที่ G(s) คือ ฟังก์ขั้นถ่ายโอนของดีขีเขอร์โวมอเตอร์

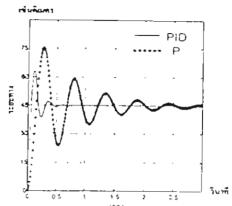
จากรูปที่ 5 เป็นผลตอบสนองของการเคลื่อนที่ของแขนกลในระนาบ X,Y,Z โดยได้ค่าเกนและพารา-มิเตอร์ในการควบคุมจากการเลียนแบบด้วยโปรแกรม Matlab โดยใช้หารามิเตอร์ของมอเตอร์จากสมการที่ 6 จะ เห็นได้ว่าตัวควบคุมที่นำเลนอสามารถนำมาใช้ควบคุมแขนกลคาร์ก็เรียนขนิดสามแกน อย่างไรก็ตามสิ่งที่น่าจะ ซึ่งในการพัฒนาแก้ไขครั้งต่อไปคณะผู้วิจัยจะใช้ตัวควบคุมแบบ ปรับปรงได้คือค่าพ่งเกิน (Overshoot) ตรรกศาสตร์พัชชี (Fuzzy logic controller) เพื่อแก้ปัญหาค่าพุ่งเกินและค่าหารามิเตอร์ของมอเตอร์ เนื่องจากการ ควบคุมแบบตรรกศาลตร์ฟัชซีไม่ต้องคำนึงถึงค่าพารามิเตอร์และเป็นระบบควบคุมที่สามารถสร้างได้อย่างรวดเร็ว และเหมาะกับแพลนที่ไม่เป็นเชิงเล้น (Non-linear plant)



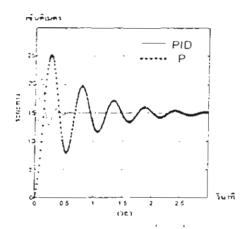
รูปที่ 1 บล็อคไดอะแกรมระบบควบคุมแขนกล

รูปที่ 3 แสดงภาพแผ่นวงจรอินเตอร์เฟส


รูปที่ 2 ระบบการทำงานของแขนกล


รูปที่ 4 แลดงภาพแขนกลที่สร้างขึ้นจริง

METALS and



÷ 0.5

(5) ก. ผลตอบสนองการเคลื่อนที่ของแกน X

(5) ข. ผลตอบสนองการเคลื่อนที่ของแกน Y

(5) ค. ผลตอบสนองการเคลื่อนที่ของแกน Z รูปที่ 5 ผลตอบสนองการเคลื่อนที่ของแกน X,Y,Z โดยใช้โปรแกรม Matlab

กิดดิกรรมประกาศ

งานวิจัยนี้ได้รับเงินอุดหนุนจากสำนักงานกองทุนสนับสนุนการวิจัย

เอกสารอ้างอิง

- [1] T. Yamamoto,K. Tanaka and M. Sumiyoshi, "Vibration Control for Cartesian 3 Axes Robot," Advanced Motion Control, 1996. AMC'96-MIE Proceeding., 1996, 4th International Workshop on Volume:2, 1996, Page(s).647-652 vol.2.
- [2] C.T. Kilian, "Modern Control Technology," West Publishing Company, 1996.
- [3] K. Ogata, "Modern Control Engineering," Prentice Hall, 1990.
- [4] โยธิน เปรมปราณีรัชต์, "ระบบเซอร์โวและอิเลคทรอนิกส์คอนโทรลมอเตอร์," คณะวิควกรรมศาสตร์ สจล., 2533.
- [5] S. Bennett "Real-Time Computer Control: An Introduction," Prentice Hall, 1988.
- [6] M.A. Mazidi and J.G. Mazidi, "The 80x86 IBM PC & Compatible Computer," Prentice Hall, 1995.
- [7] T. Pattaradet and P. Sooraksa, "A Position Control for Two-Link Flexible Robot Arms," Ladkrabang Engineer Journal, Vol.17, No.1 pp.55-60, March, 2000.

Theiland
Materials Science

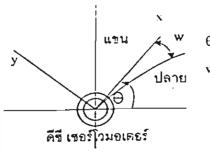
Conference

การลดการสั้นควบคู่การควบคุมตำแหน่งของแขนกลอ่อนตัว VIBRATION SUPPRESSION AND POSITION CONTROL OF A FLEXIBLE-LINK ROBOT ARM

ณัฐวุฒิ เพ็งจันทอง

ผศ.ดร.ปิติเขด สู้รักษา

ภาควิชาเทคนิคอุตสาหกรรม คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

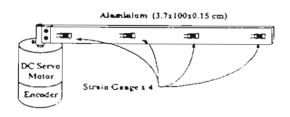

บทน้ำ

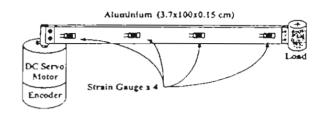
แซนกลที่พบโดยทั่วไปหรือแซนกลแบบดั้งเดิมมีโครงสร้างของลำแขนที่ทำมาจากเหล็กจึงทำให้มีน้ำหนัก มากต้องการกำลังหรือพลังงานในการขับเคลื่อนมากทำให้ต้องใช้ขนาดมอเตอร์ที่ใหญ่และลัดส่วนของภาระ (load) ต่อน้ำหนักตัวมีค่าน้อยจึงเป็นเหตุให้โครงสร้างของแขนกลแบบอ่อนตัวซึ่งมีน้ำหนักเบาได้รับความสนใจ จากนักวิทยาศาสตร์ วิศวกร และนักวิจัยจากทุกมุมโลกแต่การวิจัยที่ผ่านมานั้นส่วนใหญ่มักเป็นการสร้างแบบ จำลองทางคณิตศาสตร์หรือจากการจำลองผลโปรแกรมคอมพิวเตอร์เท่านั้น [1,2,3,4] การสร้างเป็นชุดงานจริงขึ้น มายังคงมีไม่มากนักโดยเฉพาะในประเทศไทยนั้นงานวิจัยนี้จึงได้สร้างแขนกลอ่อนตัวข้อต่อเดียวที่มีน้ำหนักเบา โดยใช้วัสดุอลูมิเนียมซึ่งให้น้ำหนักเบากว่าเหล็ก อย่างไรก็ตามแขนกลอนิตใหม่นี้มีปัญหาในเรื่องของการสั่นใหว อันเกิดจากการเคลื่อนที่ ทำให้เกิดปัญหากับการประยุกต์ใช้แขนกลประเภทนี้กับงานที่ต้องการความแม่นยำสูง เช่น งานแกะสลัก งานเชื่อมต่อหรือประกอบชิ้นส่วนอิเลคทรอนิคส์เพื่อสร้างวงจร บอร์ด หรือระบบ รวมทั้งการพ่น สีรถยนต์ในโรงงานอุตสาหกรรม ดังนั้นผู้วิจัยจึงได้ออกแบบและสร้างระบบควบคุมแบบ คอ สองวงโดยใช้ลเตรน เกจเป็นเชนเซอร์วัดการสั่นของลำแขน เพื่อขจัดปัญหาดังกล่าวให้หมดไปดังจะกล่าวถึงในหัวข้อต่อจากนี้ไปตาม ลำดับ

อุปกรณ์และวิธีการ

<u>โครงสร้างเชิงกล</u>

แขนกลอ่อนตัวข้อต่อเดียวที่สร้างขึ้นนี้จะประกอบไปด้วยลำแขนอลูมิเนียมยาว 100 เซนติเมตร กว้าง 3.7 เซนติเมตร หนา 0.15 เซนติเมตร โดยแต่ละจุดจะติดตัวเซนเซอร์สเตรนเกจเอาไว้ตามตำแหน่งต่าง ๆ เพื่อตรวจจับ การสั่นไหว ส่วนตัวขับเคลื่อนใช้ดีซีเซอร์โวมอเตอร์ทำหน้าที่ขับเคลื่อนให้แขนกลหมุนไปยังตำแหน่งที่ต้องการดัง แสดงในรูปที่ 1


θ = มุมที่อับบิดตัวจากแนวอ้างอิงw = ระยะโก่งงอจากแนวอ้างอิง


รูปที่ 1 ลักษณะแขนกลข้อต่อเดียว

METALS and

จากการออกแบบโครงสร้าง และระบบควบคุมจะประเมินสมรรถนะของระบบที่ออกแบบโดยการทดลองใช้งาน 2 ลักษณะตั้งนี้

- 1. ขณะไม่มีโหลด ดังแสดงในรูปที่ 2
- 2. ขณะมีโหลด ดังแลดงในรูปที่ 3

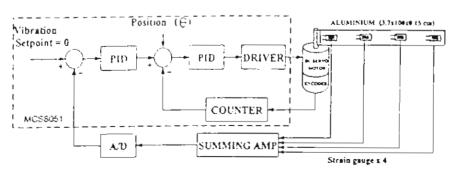
รูปที่ 2 แรนกลรณะไม่มีโทลส

รูปที่ 3 แขนกลขณะมีใหลด

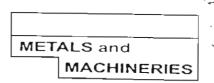
การออกแบบระบบควบคุมแรนกลรุกนี้จะประกอบไปด้วย 2 ส่วนด้วยกันคือ ส่วนแรกจะเป็นส่วนของการ ควบคุมตำแหน่งการเคลื่อนที่ของแยนกลให้เคลื่อนที่ไปยังคำแหน่งและทิศทางที่ต้องการ ส่วนที่สองก็จะเป็นส่วนที่ ควบคุมการสั้นโหวอันเกิดขึ้นกับลำแบนกล โดยทั้งสองส่วนของระบบควบคุมจะใช้การควบคุมแบบพีโอดี [5,6] ลำหรับระบบควบคุมแบบพีโอดีที่ได้จะเป็นการบรับเปลี่ยนค่าเกน 🛌 κ, และ κ。โดยวิธีการลองผิดลองถูกร่วมกับ การคำนวณหาย่านเลถือรภาพของเกนโดยอาศัยสมการ

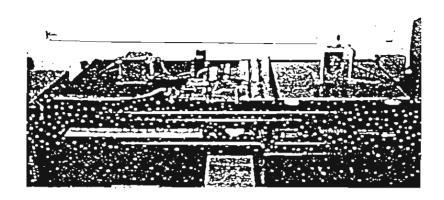
โดย outed : เข้าที่พทรองสัวควบคุมที่เอลี

e = ค่าผิดพลาด (ema)


_{ผู}่ ๑ คำเกนของตัวควบคุมที่

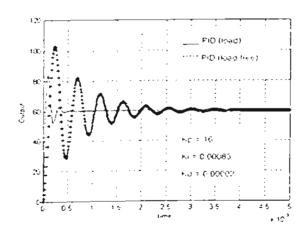
เ_{ปร.ปก} = อัตราค่าผิดหลาดที่เปลี่ยนแปลงไป


. - คำเกษของตัวควบคมไฮ


คำเกษของตัวควบคมสื

ในทางปฏิบัติตัวควบคุมพีโอดีที่ใช้ในระบบคือ ไมโครคอนโทรลเลอร์ MCS8051 เขียนเป็นภาษาแอลแขมบลีเพื่อควบ คุมระบบการทำงานของแขนกลในการเคลื่อนที่ไปยังตำแหน่งที่ต้องการและในขณะเดียวกันก็ใช้เป็นตัวควบคุม การลั้นของแขนกลอีกตัวยโดยมีระบบการทำงานแสดงดังรูปที่ 4 และแขนกลและระบบควบคุมที่สร้างจริงแลดงใน รูปที่ 5

รูปที่ 4 ระบบการทำงานของแขนกลอ่อนตัว



รูปที่ 5 ภาพระบบแขนกลและอุปกรณ์การทดลอง

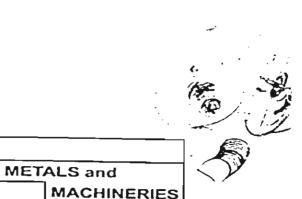
ผลการทดลองและวิจารณ์

จากการปรับคำเกน 💪 🧸 ซึ่งเลือกคาที่ดีที่สุดโดยการลองผิดลองถูก (tdal-error) รวมกับการคำนวณ จะได้ผลการทดลองดังรูปที่ 6 จากผลทดลองเปรียบเทียบระหว่างระบบควบคุม PID แบบสองวงที่ออกแบบกับ ระบบควบคุมแบบพีและแบบไม่มีการควบคุมจะเน็นได้โดยง่ายว่าระบบควบคุมที่ออกแบบมีสมรรถนะที่เหนือกว่า ทั้งการตอบลนองของระบบที่เร็วกว่า (rise time) ค่าพุ่งเกิน (overshoot) ที่ต่ำกว่าและค่าออฟเซท (offset) ที่ดีกว่า

รปที่ 6 ผลการหคลอง

บทสรุป

จากการทดลองจะเห็นว่าเมื่อนำเอาระบบควบคุมพื้ใอดีแบบสองวงเข้ามาช่วยในการลดการลั่นควบคู่การ ควบคุมตำแหน่งของแขนกลให้ผลที่ออกเป็นที่น่าพอใจ จึงเป็นการบ่งนัยในการสร้างและผลิตขุดควบคุมที่สามารถ ทำได้ภายในประเทศเพื่อทดแทนการนำเข้าขุดควบคุมหุ่นยนต์ที่มีราคาแพงจากต่างประเทศโดยเฉพาะอย่างยิ่งขุด ควบคุมแขนกลอ่อนตัวซึ่งยังไม่ปรากฏแพร่หลายทางการค้า


Pharago Markota la la Carlo de Com

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับทุนอุดหนุนจากสำนักงานกองทุนสนับสนุนการวิจัย

เอกสารอ้างอิง

- [1] Sooraksa, P. And Chen, G. "Mathematical modeling and Fuzzy control for a flexible-link robot arm", J. of Mathl. and Comput. Modeling. 27, 73-79, 1998.
- [2] P.Damrongporn and P. Sooraksa, "Multi-dynamic model of a thin single-link flexible manipulator", Ladkrabang Engineer Journal, Vol.17, No.1 pp.61-66, March, 2000.
- [3] G. Liu, X. And Onoda, J. "Controller design for vibration suppression of slewing flexible structures." Intl. J. Of Computers & Structures. 70, 119-128, 1999.
- [4] F. Bellezza, L. Lanari and G. Ulivi, "Exact modeling of the flexible slewing link." Proc.IEEE Int. Comt. On Robotics and Automation, Cincinnai, Ohio, Vol.3, pp.734-739, 1990.
- [5] C. T. Kilian, "Modern Control Technology", West Publishing Company, 1996.
- [6] "Manual of DC Servo Motor (Super R)", Sanyo Denki CO.,Ltd

การประเมินสมุรรถนะระบบควบคุมแบบพีไอดี แบบตารางเวลาเกน และแบบ LQR สำหรับแขนกลน้ำหนักเบาสองข้อต่อ

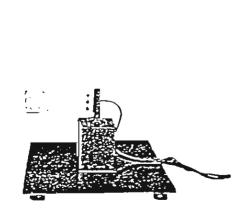
Performance Evaluation of PID, Gain Scheduling and LQR Control for Two-Link Lightweight Manipulator

ก้องเกียรติ เอนกพงศ์พันธ์

ผศ.คร.ปิติเขต ลู้รักษา

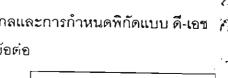
ภาควิชาเทคนิคอุตสาหกรรม คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

บทนำ


บทความนี้จะนำเลนอผลการประเมินสมรรถนะของระบบ เปรียบเทียบระหว่างการใช้ตัวควบคุมแบบพีโอ ดี (PID Controller) แบบดารางเวลาเกน (Gain Scheduling) และการใช้ตัวควบคุมแบบลิเนียร์ควอดราติกเรก-กูเลเตอร์ (Linear Quadratic Regulator หรือ LQR) [1,2] เพื่อการใช้งานกับแขนกลน้ำหนักเบาสองข้อต่อ [3] ใน ตอนแรกจะกล่าวถึงลักษณะการวางรัวของแขนกลในตำแหน่งโดๆ ซึ่งใช้พารามิเตอร์ตามการแปลงเมตริกซ์พิกัด แบบ Denavit-Hadenberg หรือ การแปลงคีกัดแบบ D-H [4]

ผลการทดลองที่ได้จะเปรียบเทียบผลจากการใช้ตัวควยคุมทั้ง 3 แบบที่มีต่อระบบ โดยใช้การจำลองผล ด้วยโปรแกรม MATLAB ซึ่งเราสามารถนำผลการจำลองที่ได้ไปประยุกต์ใช้กับระบบที่มีลักษณะเดียวกัน หรือใกล้ เคียงกันได้

วิธีการและอุปกรณ์


c.

ในเบื้องต้นจะกล่าวถึงการจัดตำแหน่งการวางตัวของแขนกล โดยใช้กำหนดพิกัดแบบคี-เอซ (D-H coordinate transformation) ก่อน เนื่องจากการก้ำหนดพารามิเตอร์ของตำแหน่งและการวางตัวของข้อแขน (iink) และข้อต่อ (joint) ของแขนกลโดยใช้พิกัดดี-เอช เป็นวิธีการที่เป็นระบบและใช้กันแพร่หลาย เมื่อพิจารณาพิกัดและ ตำแหน่งของกรอบอ้างอิงใด ๆ ในพิกัลฉาก จากพิกัดที่ฐาน (base frame) จนถึง พิกัดของกรอบที่ปลายแขน

(ก) แขนกลที่ใช้ในการทดลอง

(ข) แขนกลและการกำหนดพิกัดแบบ ดี-เอช รูปที่1 แขนกลน้ำหนักเบาสองข้อต่อ

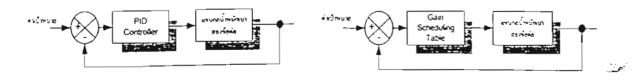
(tip frame) หรือที่เครื่องมือ (tool frame) พบว่ามีค่าพารามิเตอร์ที่เกี่ยวข้องอยู่ 4 ตัวคือ ค่ามุมบิดตัว (twisted angle: α ,) และค่าการขจัด (twisted angle: α ,) ตามแนวแกน x_{i} , ค่ามุมหมุนตัว (rotation angle: θ ,) และค่า การเลื่อนตัว (offset: α ,) ตามแนวแกน α , ซึ่งเราสามารถเขียนเมตริกซ์ของการเปลี่ยนตำแหน่งเมื่อใช้พารามิเตอร์ ดังตารางที่ 1 ได้ดังนี้

ดารางที่ 1 แลดงพารามิเตอร์ดี-เอช ของแขนกลในรูปที่ 1

ดี-เอช พารา มิเตอร์ พิกัดที่	α,	c,	θ,	D,
1	0	0	θ,	L,
2	+90°	L ₂	θ_{z}	ď
3	0	L ₃	0	0

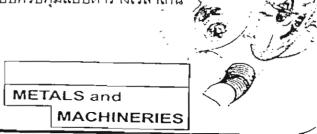
ดังนั้นเมตริกซ์การแปลงพิกัดจากปลายแขนเทียบกับพิกัดฐานจะเป็น

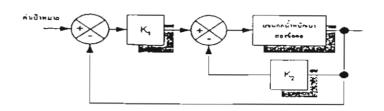
$$T^{\text{tick}} = T^3 = T^1 T^2 T^3$$


$$T^{\text{tick}} = 0 \quad 0 \quad 1 \quad 2$$
(4)

รากสมการ (1), (2), (3) และ (4) ระได้

$$T_{0}^{3} = \begin{bmatrix} \cos\theta_{1}\cos\theta_{2} & -\cos\theta_{1}\sin\theta_{2} & \sin\theta_{1} & L_{3}(\cos\theta_{1}\cos\theta_{2}) + (L_{2}\cos\theta_{1} - d\sin\theta_{1}) \\ \sin\theta_{1}\cos\theta_{2} & -\sin\theta_{1}\sin\theta_{2} & -\cos\theta_{1} & L_{3}(\sin\theta_{1}\cos\theta_{2}) + (L_{2}\sin\theta_{1} + d\cos\theta_{1}) \\ \sin\theta_{2} & \cos\theta_{2} & 0 & L_{3}\sin\theta_{2} + L_{1} \end{bmatrix}$$


$$(5)$$

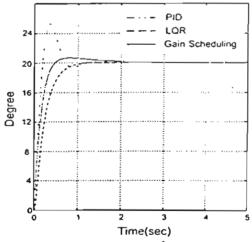

ตัวควบคุมแบบพีไอดี แบ่บตารางเวลาเกน และแบบ LQR เป็นตัวควบคุมที่นิยมใช้ในงานอุตลาหกรรมทั่วไปเนื่อง จากแต่ละแบบ ต่างมีข้อดีในตัวของมันเอง ลักษณะตัวควบคุมแบบต่างๆแสดงได้ดังบล็อคไดอะแกรมด้านล่าง

(n) ระบบควบคุมแบบ PID

(ข) ระบบควบคุมแบบตารางเวลาเกน

(ค) ระบบควบคุมแบบ LQRรูปที่ 2 ระบบควบคุมที่ใช้ในงานวิจัย

สรุปผลการทดลอง


จากฟังก์ขั้นถ่ายโอนของดีขีเซอร์โวมอเตอร์ ที่นำมาใช้เพื่อสร้างฮาร์ดแวร์คือ

$$G(s) = \frac{0.51}{4.42*10^{-4} s^2 + 1.256*10^{-4} s + 2.55*10^{-2}}$$

โดย G(s) คือ ฟังก์ชั่นถ่ายโอนของดีซีเซอร์โวมอเตอร์ เมื่อกำหนดค่าเกนของระบบในแบบต่างๆดังนี้

		•
<u>ตัวควบคุมแบบพีไอดี</u>	<u>ตัวควบคุมแบบ LQR</u>	<u>ตัวควบคุมแบบดารางเวลาเกน</u>
K _p =12	K,=0.0501	เกน K แปรค่าจาก 1 ถึง 6
K,=0.1	K₂=8.6667°10 ⁻⁶	
K _d =0.00002		

จะได้ผลการตอบสนองต่อระบบดังรูป

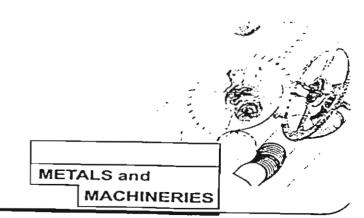
รูปที่3 ผลตอบลนองต่อระบบเมื่อใช้ตัวควบคุมแบบต่างๆ

จากรูป จะเห็นได้ว่าตัวควบคุมแต่ละแบบต่างมีข้อดีและข้อเสียแตกต่างกัน เช่น ตัวควบคุมแบบพีไอดีจะ มีข้อดีเนื่องจากมีผลตอบสนองต่อระบบเร็ว แต่จะมีค่าพุ่งเกิน (overshoot) มาก ส่วนแบบ LQR จะมีข้อได้เปรียบ กว่าแบบพีไอดีในส่วนนี้ แต่เพื่อต้องการลดค่าพุ่งเกิน จึงทำให้มีเวลาไต่ขึ้น (rise time) ซ้าทำให้ได้ผลตอบสนองต่อ ระบบซ้ากว่าแบบแรก จากผลการทดลองสรุปได้ว่าตัวควบคุมแบบตารางเวลาเกนเป็นตัวควบคุมที่ดีที่สุดสู้รู้หรับ

irst Thailand Waterials Science Materials Science Materials Science

ระบบที่ต้องการผลตอบสนองเร็วและมีค่าพุ่งเกินน้อย จึงเหมาะสมกับการเลือกนำไปใช้สร้างเป็นฮาร์ดแวร์ของ ระบบควบคุมที่ใช้ในงานวิจัยนี้

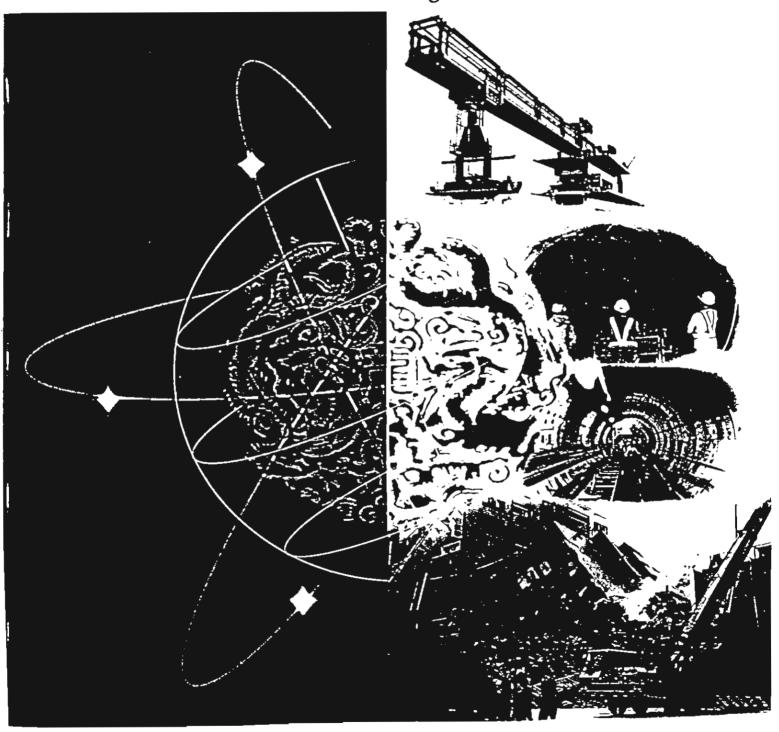
กิตติกรรมประกาศ


บทความนี้ได้รับการสนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

เอกสารอ้างอิง

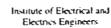
[1] K.S. Fu, R.C. Gonzalez and C.S.G. Lee, "Robotics: Control, Sensing, Vision, and Intelligent", McGraw-Hill,

Singapore, 1988.


- [2] K. Ogata, "Modern Control engineering", Prentrice-Hall, 1997.
- [3] ธนา ภัทรเดช ปิติเขต สู้รักษา "การควบคุมตำแหน่งแขนกลอ่อนตัวลองข้อต่อ", วิศวลารลาดกระบัง ปีที่ 17 จบับที่ 1,หน้า 55-60, มีนาคม 2543.
- [4] P. Whittle, "Optimum Control :Basics and Beyond", Wiley, 1996.

17th International Symposium on Automation and Robotics in Construction

Proceedings



18-20 September 2000, Taipei, Taiwan

and Robotics in Construction

A BICYCLE ROBOT: PART I MODELING AND CONTROL

Pitikhate Sooraksa, and Uthai Sritheeerawirojana

Department of Industrial Technology and Information Engineering,
Faculty of Engineering,
King Mongkut's Institute of Technology Ladkrabang,
Chalongkrung Rd., Ladkrabang, Bangkok, 10520, Thailand
Email kspiiikh@kmiil ac th

Abstract: In this paper, a simple fuzzy logic based intelligent architecture is developed for controlling a bicycle robot. The approximated model for membership functions and control gains can be obtained by simply considering the robot as an inverted pendulum in 3-dimensional space. The obtained model is merely a conceptually estimating one because the mismatch modeling and the uncertainty will be taken care by the intelligent controller. Simulation results are carried out. The hardware realization and implementation will be shown in Part 2.

Keywords: bicycle robot, fuzzy logic control, modeling, intelligent control, two wheeled robot

1 INTRODUCTION

In academia, design of an inverted pendulum control system may be considered as a "benchmark" for a course in control. Since the plant is inherently unstable and nonlinear, if the designed controller is successfully controlled the plant, it is adequately guaranteed for controlling a linear and stable one. In practice, the controller design for that problem yields a good experience on modeling, design, and stability analysis for various types of controller design.

To make an inverted pendulum control system more attractive and challenged, this paper describes design of a bicycle robot control system as a new benchmark for such a system paradigm. In this study, the robot named "Robobike" is designed and built as shown in Figure 1. Even though this type of robots is not popular, compared to robot arms, it has been attracted attention from some researches. In [1], the internal equilibrium controller is designed to track a target path, mathematical model and simulation results of a bicycle are given. However, the hardware realization, system implementation and experimental results to evaluate the real-world performance have not studied yet

Our study is divided into two parts. Part 1 focuses on modeling and design of the robot control system as shown in this paper. Part 2 concerns with

hardware realization and implementation as presented in [2].

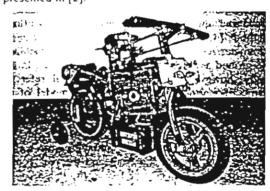


Figure 1. Robobike: A bicycle robot.

2. SYSTEM MODELING

It is not easy to model a complete mathematical model covered all behavior of the bicycle robot. Besides the nonholonomic constraints and nonlinear components, the vague behavior of the lateral tireroad forces makes complication in derivation of the exact mathematical model of the robot. Nevertheless, we can ride and control a bicycle without knowing its mathematical model. Obviously, this implies that this type of robots is completely

controllable by putting human in the loop of control and the suitable automatic control may be realized

As we have known for many years that a designed fuzzy control system has been successfully apply to solve many real-world engineering problems, especially, the problems or systems which are highly nonlinear, uncertainty, complex and having parameter fluctuation [3]. Fortunately, to design a fuzzy control system, an exact mathematical model of the plant is not required. However, the more we know about the plant information, the better the design would be. Since we plan to use a fuzzy controller combined with a hierarchy control scheme to control the robot, a mathematical approximation of physical model of the robot is first carried out in this section to estimate control parameters.

A simplified model of Robobike can be depicted in Figure 2. The objective of deriving a simple mathematical model is to use it in the simulation for a rough performance evaluation on implementing a fuzzy logic controller for the robot in order to track a given route while retaining balance. From Figure 1, for simplicity, we consider the robot as an inverted pendulum in the 3-dimensional space. The top view of the robot's lateral motion with respect to the reference line is illustrated in Figure 3.

Assigning a reference axis in the 3-dimensional space and applying the standard D-H conventional method [4], the location of the robot can be parameterized by using the rear wheel contact with the ground as the position on the x-y plane. In this study, however, we focus on the local reference frame of a ground track kinematics model of the robot. The forward velocity of the robot is V, L, is the distance from the rear wheel contact point to the center of gravity, L2 is the distance from the center of gravity to the front wheel contact point, L is a contact line between the front and the rear contact point defined as L₁+L₂, and H is the height of the center of gravity measured from the contact line along the pendulum axis in the vertical direction. To parameterize the balancing and tracking parameters, the steering angle α is considered as the system input and the roll angle β is the output parameter, whereas the yaw angle ϕ is an angle that the contact line makes with a reference line. Note that the lateral distance of the center of gravity projected on the contact line is ξ_{CG} , and the lateral distance of front and rear wheel contact are ξ_F and ξ_{R_1} respectively.

According to Figures 2 and 3, the following equations are obtained:

$$\frac{d\xi_F}{dt} = V \sin(\phi + \alpha) \tag{1}$$

$$\frac{d\xi_R}{dt} = V \sin(\phi) \tag{2}$$

$$\xi_{CG} = \frac{L_1 \xi_F + L_2 \xi_R}{L} \tag{3}$$

$$\phi = Arc\sin(\frac{\xi_F - \xi_R}{L})$$
 (4)

Consider the inverted pendulum aspect of the robot and use the method of Newton, we obtain:

$$(mH^{2} + I_{CC})\beta + mH\xi = mgH\sin(\beta)$$
 (5)

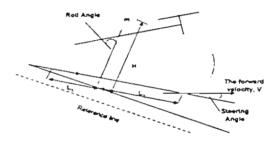


Figure 2. A simplified model of a bicycle robot.

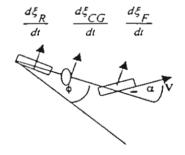


Figure 3. The top view of the ground contact kinematics.

Differentiating (3) with respect to time and with the aid of equations.(1) and (2), we have

$$\xi_{CG} = \frac{V(L_1 \sin(\phi + \alpha) + L_2 \sin(\phi))}{L}$$
 (6)

and

$$\frac{5}{5}CG = \frac{V(L_1\cos(\phi + \alpha)(\phi + \alpha) + L_2\cos(\phi)\phi)}{I}$$
 (7)

Solving the above equations and assuming that the lateral displacement can be considered as the perturbation of the forward motion resulting the linearized model, we get

$$(mH^2 + I_{CG})\beta - mgH\beta = L_1 \alpha + \frac{V^2}{L}\alpha \quad (8)$$

Equation (8) describes the relation between the roll angle β and the steering angle α as the input of the system. Based upon (8), we can construct a state space model, obtain a transfer function, or draw a simulation block diagram as desired. The right hand side of (8) also suggests the natural control law for balancing the robot. Two parameters will be considered in designing of a controller, which are the steering angle and its angular velocity. The controller design will be performed in the next section.

3. CONTROLLER DESIGN

Unlike a conventional bicycle, "Robobike" is designed for automatic running. Moreover, it can be controlled remotely by radio signals. In other words, there are two control modes, which are automatic and manual modes. The control specifications are that Robobike can track a target route while retaining balance.

In the light of system realization, using only a built-in gyro-servo regulator as a sensor and an actuator to take care of the balance task cannot accomplish the overall system performance. For example, in the bad road condition, a little stone on the road can make the robot falling down to the road. The abrupt disturbance as an unforeseen input disturbance could go beyond the threshold or capability of such a built-in gyro-servo regulator available in the market place. If this is the case, the system needs the extra sensors to inform the controller. As a solution, the mercury switches may be integrated to the system to detect an emergency If the switches send the signal to the controller, the appropriate action shall be taken urgently. The readers are referred to [2] for more detail about hardware implementation.

In this section, we focus on designing a fuzzy proportional-integral-derivative (PID) controller combined with a hierarchy control scheme to achieve the control specification mentioned in the above. The fuzzy PID controller used here is employed and

modified from [5]. A set of the control law is derived from the common sense along with utilizing a regulate function of a built-in gyro-servo device. The logical rule bases for selecting a controlling mode for the Robobike system are as follows

Rule A

IF the roll angle is small,

THEN let the gyroscope and the regulator inside it performs the task.

Rule B

IF the roll angle is medium,

THEN the fuzzy PID controller takes the action.

Rule C

IF the roll angle is big as the mercury switches sent the signals to the microcontroller,

THEN turn the steering angle to the opposite of the falling direction and increases the speed of the robot.

Three main principles of the overall control law can be fined tuned as desired. The block diagram of the designed control system is depicted in Figure 4. According to Figure 4., there are three major control loops. The loop called Human-in-the-loop of Control is in the manual mode. This loop can be performed remotely by using a radio remote control. The lower level loop and the upper level loop correspond to Rule A and Rule B of the overall aforementioned IF-THEN rules. In fact, Rules A, B, and C can be realized as the switches for selecting a control loop in Figure 4. Based upon the control architecture, the system can be considered as an intelligent system.

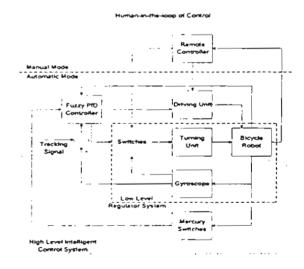


Figure 4. The designed control system.

The fuzzy PID controller for tracking the target and tetaining balance is shown in Figure 5. The shape of the membership function used in this work and the detailed derivation of this controller as referred to [5]

Figure S. A fuzzy PID controller.

In this paper, the control law as suggested by equation (8) can be assigned in the canonical form as the fuzzy PID control law upp :

$$v_{PID} = L_1 \tilde{\alpha} + \frac{r^2}{L} \tilde{\alpha} \tag{9}$$

Simulation results to validate the control specification including the tracking and balancing performance are shown in the next section.

4. SIMULATION RESULTS

Values used in simulation may be assumed, according to the dimension of the real physical system, to be the following: $L_1=0.4$ m, $L_2=0.24$ m, L (the base frame)=0.64, H=0.5 m, m=20 kg, and $L_{\rm CG}=1.5$ kg·m². The fuzzy PID control parameters are L (the membership parameter) = 1, $K_1=0.5$, $K_D=0.1$, $K_P=1.2$, $K_{\rm eff}=0.5$, and $K_{\rm eff}=1$. These initial control parameters are obtained from trial and error processes:

We assume that the forward velocity V is increased from 0 m/s to 5.5 m/s within 2 sec and then settled down at the constant speed of 5 m/s in the next second. Figure 6 presents simulation of the robot to track a given sinusoidal path of the steering angle. Assume also that the robot starts upright so that the roll angle is initially set to be zero. The steering angle is also assumed to have zero initial conditions. As can be seen from Figure 6, the response of the steering angle and the roll angle seems to agree with the law of inertia, in which the effect of countersteering is evident. While approaching to the target, the robot must overcome the inertia at the starting time, consequently, it turns

left first, their turns right, then turns left again, and, so on, and the tracking mission is achieved.

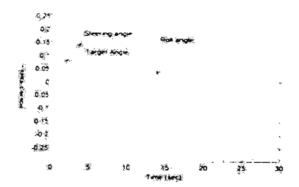


Figure 6. Roll angle and steering angle for tracking a target path.

Although this simulation shows a partial degree of satisfactory results, it is weak in the sense that it is not represent all complete dynamic behaviors of the real system for which the uncertainty and unforeseen road-tired conditions are presented. The simulation is merely a part of feasibility study before building a real system because we neglect the non-linearity effects including the backlash between gears and the chainwheel, the hidden constrains, and the disturbance by wind or road conditions.

5. CONCLUSION

We have developed a simple fuzzy logic based intelligent architecture for controlling a bicycle robot. The approximated model for membership functions and control gains can be obtained by simply considering the robot as an inverted pendulum in the 3-dimensional space. The obtained model is merely a conceptually estimating one for which the mismatch modeling and the uncertainty will be taken care by the intelligent controller.

Omining other uncertain dynamic effects, noise, friction and mismatch models in the simplified model obtained in Section 2 makes the modeling and simulation by no means perfect. Nevertheless, the linearized model and the crude simulation imply the potential and possibility to implement a real system. In addition, the fuzzy logic algorithm and intelligent control scheme is not required the costly exact model of Robobike. The next step is to perform the state-of-the-art by realizing the hardware components and

building the real system is a much that the real a world engineering application is judged by the performance in the real space, natural the cybes way.

Acknowledements

The first sudion is transmistly supported in the Theiland Research Fund. The sudions so which has a think Di. Vectapol Monyakul of the Sational Science and Technology Development Apone Ministry of Science Technology and Environment Thailand, for the valuable discussion, encouragement, and suggestion during the designorphisse.

REFERENCES

- [1] Getz, N. R., "internal Equilibrium Control of a Bicycle," Practeding of the 14th Conference on Decision & Control, pp. 4255-2281, 1995
- [2] Sootaksa P. Eihamat, T. Kaopestum, S. Sritheerawirojana, U., and Monyakul, V., "A Bicycle Robot: Pan 2 System Implementation." 17" IAARCIIFAC/IEEE Inil Symp on Automation and Robotics in Construction, 2000.
- [3] Wang, L. X., A Course in Fuzzy System and Control, Prentice-Hall, Inc., 1997.
- [4] Spong, M. W., and Vidyasagar, M.; Robot Dynamics and Control, John Wiley & Sons, 1989.
- [5] Sooraksa, P., and Chen, G., Mathematical Modeling and Euzzy Control of a Flexible-Link Robot Arm, A of Mathematical Computing and Modeling Vol. 27, pp. 73-93, 1998.

PHONON MECHANISMS: A KNOW-WHY FOR VIBRATION IN FLEXIBLE-LINK ROBOT ARMS

Pitikhate Sooraksa

Department of Industrial Technology and Information Engineering
Faculty of Engineering
King Mongkut's Institute of Technology Ladkrabang
Chalongkrung Rd., Ladkrabang Bangkok, 10520 Thailand
Email Asputkha kmil ac th

Abstract: Utilizing theory of the secondary quantization, a study of vibration behaviors in flexible-link robot arms is possible in microscopic viewpoints. This paper studies the relation of vibration related to phonon coupling interaction by means of Green's function method beginning with energy model. Results confirm analytically the existence of the relationship between the macroscopic study employing a classical beam theory such as the Euler-Bounouli theory and the proposed microscopic method. The approach presented in this paper may be an alternative way to gain some insight into the real vibration and damping mechanism of flexible-link robot arms.

Keywords: flexible arm, vibration theory, phonon mechanism, vibration behavior, flexible-link robot

1 INTRODUCTION

Due to some advantages of flexible-link robot arms over the conventional ones such as lower energy consumption, less overall mass, and faster system responses, various basic researches on flexible-link robot arms in both science and engineering aspects have been intensively carried out [1-5, to name a few]. However, the flexible nature of the link of the arm induces the vibration of the structure. Attempts to construct a model of the arms including the vibration behaviors have been an issue in this area. However, the perfect model has not yet been obtained because the correct damping mechanisms in beam have not perfectly understood yet [6,7].

Although the Kelvin-Voigt damping has a good physical meaning, by which the vibration modes lost there energy to the resistance of the beam material, but this types of damping overdamps the higher modes as reported in [7]. According to [7], the A^{1/2} operator damping in [8] seems to be mathematically fit the experimental data, but the insight of physical meaning is not obviously illustrated. Hence the correct damping mechanisms in beams are still illusive, and are required more studies and further investigation.

In recent years, the knowledge of quantum mechanics has been introduced to control engineering [9-10]. Few papers on quantum control have been published. The area of applying knowledge in quantum mechanics for problem in control system has considered as in its infancy stage. Not only the framework needs to be clarified in the areas, but also the knowledge about using the new thinking tools is also required for control engineers to carry out their work and apply to problem-solving processes fallen into the new paradigm.

This paper attempts to pioneer such an investigation on applying the secondary quantization known and used in physics since the World War II to introduce an alternative way of thinking for control engineering and robotics. At the same time, the equal important objective is paid on the search of understanding the vibration mechanism in the flexible-link robot arms, while relating and depicting the microscopic viewpoints to the macroscopic world. Some insight is expected to gain in this research along with the demonstration of applying tools in quantum mechanics to robotics and automation.

To begin, the energy model of phonons as the vibration quasi-particle acting quantum mechanically and as collective excitations together with their interaction on the whole lattices is given in Section 2. Section 3 shows mathematical methods such as the propagators, approximation and diagrams for many-body systems as relatively new tools in robotics, automation and control engineering. The finding results along with discussion and conclusion are presented in Section 4 and 5 as in fashion

2. ENERGY MODEL

Phonons are known as "bosons" or particles obeyed Bose-Einstein statistics [11]. Having considered a flexible-link robot arm as a beam, we now think microscopically that phonons are pumping into a flexible-link arm created from the excitation of input energy while the manipulator is in an operation mode. In atomic scale, the proposed Hamiltonian system for phonon mechanism in beam is formulated as

$$H = \sum_{k} \varepsilon_{k} b_{k}^{*} b_{k}^{*} + \sum_{k} \varepsilon_{0}^{*} - \sum_{k} V(k) (b_{k}^{*} + b_{-k}^{*}) (b_{-k}^{*} + b_{k}^{*})$$
(1)

Here the first two terms represent the unperturbed term or the Hamiltonian for a set of phonons as oscillators extending through the whole lattice, where the second term is the energy at the ground state level of the phonons. The operators b_k , b_k^* are the annihilation and creation operators obeyed boson commutation rules:

$$[b_{j}, b_{k}^{*}] \equiv b_{j}b_{k}^{*} - b_{k}^{*}b_{j} = \delta_{jk},$$

$$[b_{j}, b_{k}] \equiv b_{j}b_{k} - b_{k}b_{j} = 0,$$

$$[b_{j}^{*}, b_{k}^{*}] \equiv b_{j}^{*}b_{k}^{*} - b_{k}^{*}b_{j}^{*} = 0.$$
(2)

The third term in equation (1) involves the interaction among phonons with the lattices and themselves, and V(k) is the parametizing microscopic mechanism of interaction acquired a k-dependent frequency.

Since the perturbation term could be equally large as the unperturbed one, the formal perturbation technique cannot be used. Moreover, upon hitting, lattices could absorb the phonon energy effecting probability amplitude of the phonons, making V(k) as a time dependent function. To carry out the analysis, the Green's function propagator method will be employed in the next section.

3. GREEN'S FUNCTION AS PHONON PROPAGATOR

The propagator method treated by using Green's functions and diagrammatic techniques as shown in Section 4 have successful applied to extract "knowwhy" in many macroscopically physical phenomena such as low temperature superconductivity, phase transition of matter, ferromagnetic behaviors, and other problems in nuclear physics and quantum electronics. In the Green's function propagator method the poles of the propagator provides the energies of the excited states. Using the standard treatment of the Green's function and taking the Fourier transforms, we have the propagator in the forms of

$$G(k,\omega) = \int_{-\pi}^{\infty} dt e^{i\omega t} G(k,t) \qquad (3),$$

where

$$G(k,t) = -i < 0 |T\{b_k(t)b_k^*(0)\}|0>$$
 (4)

The ket vector | 0 > represents the ground state for the system of interacting phonons, where the T operator is the time operator for bosons having property.

$$T\{\alpha(t_1)\beta(t_2)\} = \alpha(t_1)\beta(t_2) \text{ if } t_1 > t_2$$

$$= \beta(t_1)\alpha(t_1) \text{ if } t_1 < t_2$$
(5).

The physical meaning of the Green's function propagator in (4) can be directly read off as the the probability amplitude that a phonon in the state k is pumped into the interacting ground state at time t=0 and propagates in the system, which the phonon in state k at time t=1 and t>0 can be observed. For the non-interacting case for which a phonon propagates freely, we assume G(k,t) in the form of

$$G_o(k,t) = -iA_i e^{-i\omega_o t}$$
 (6),

and the backward in time propagator for the free propagation of a phonon can be obtained by changing the +t in equation (6) to -t.

Taking the Fourier's transform of (6) as defined in (3), and using the residue theorem, we have

$$G_0(k,\omega) = \frac{1}{\omega - \omega_0 + i\delta}$$
 (7).

Here δ represents the positive infinitesimal used to remove the oscillating terms at time Lapproaching

to infinity, which may be related to the damping feature

Similarly, for the backward phonon propagation in time as aforementioned, we have

$$G_0^{\lambda_{\alpha, \alpha}}(k, \omega) = \frac{1}{\omega + \omega_{\alpha} - i\delta}$$
 (8)

4. ANALYTICAL RESULTS AND DISCUSSION

Using the Heisenberg picture and the Hamiltonian given in equation (1) and then taking the Fourier transform defined in (3), the equation of motion for each Green's function propagator can be obtained as shown by the Dyson's equation:

$$G(k,\omega) = G_0(k,w) + G_0(k,w) \Sigma G(k,\omega)$$
 (9).

where Σ is the self-energy defined as

$$\Sigma = V(k) + V(k)G_{...}^{\infty + 1/2}(k)[G_{...}^{\infty + 1/2}(k)] + \dots$$
(10)

Equation (8) can be found by summing all possibility sequences of interaction between each phonon and lattices or among phonon hitting other phonons. With the aid of Feynman diagrams, Figure I can be obtained

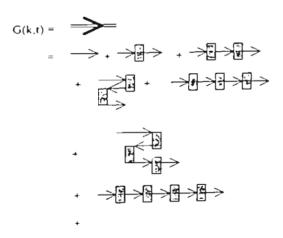


Figure 1. Expansion of phonon propagators.

The symbol represents an interaction at time t. Assume also that each interaction with the lattice the phonon lost its energy to the lattice resulting a vibration effect. The summing of all phonons propagators via statistical average would effect the

lattice to vibrate upon hitting. The more hitting rate of phonons to the whole lattice, the higher the lattice vibration and the more energy lost from the phonons. This physical phenomena associates damping mechanism would guarantee the convergent of the series in Figure 1.

Translating Figure 1 into an equation, we then eet

$$G = G_0 + G_0 \Gamma G_0 + G_0 \Gamma G_0^{hak} + G_0 \Gamma G_0 \Gamma G_0$$
$$+ G_0 \Gamma G_0^{hak} + \dots$$
(11)

We sum up the series in (11) by using the geometric series to get equation (9). Alternatively, the series can be summed graphically as shown in Figure 2.

$$\rightarrow$$
 \rightarrow $\Sigma \rightarrow$

Figure 2. Dyson's equation as shown in equation (9)

With the damping mechanism, thus the $G(k,\,\omega)$ form holds only for ω satisfying the convergence condition that

$$|G_0(k,w)\Sigma| < 1 \tag{12}.$$

From (10) with the aid of the geometric series, we have

$$\Sigma = \frac{V(k)}{1 - V(k)G^{hal}(k, \omega)}$$
 (13),

and

$$\left|V(k)G_{u}^{Nack}(k,w)\right| < 1 \tag{14}$$

We now reach the condition for ω range in which the phonon propagators to be valid as shown by the inequalities (11) and (14). Again with damping mechanism associated with phonon-lattice interaction of both forward and backward propagators, prove for convergence of equations (11) and (14) to hold can be omitted and further assumptions are not required

It is easy to see that we can get renormalized phonon frequencies from the poles of $G(k,\omega)$ by using equations (9) and (10) by direct substitution.

For example, if the interaction term is assumed to be in the form of

$$V(k) = \frac{1}{2}\omega_o\cos(ka) \tag{15}$$

, which is the form obtained from considering the atoms of the flexible material vibrated harmonically with coupling constant $\frac{1}{2}m\omega^2$ and interatomic distance a, we can obtain

$$G(k,\omega) = \frac{\omega + \frac{1}{2}\omega_{\alpha}(2 - \cos(k\alpha))}{\omega^2 + \omega_{\alpha}^2(1 - \cos(k\alpha))}$$
 (16)

In equation (16), we drop the damping associated term δ out for the sake of convenience. We then have the renormalized phonon frequencies from the poles of G

$$\omega = \omega_{\scriptscriptstyle S} (1 - \cos(ka))^{\frac{1}{2}} \tag{17}$$

As we can see, equation (7) is nothing but the phonon dispersion law. This implies that the phonon mechanism rules out the vibration, microscopically. The vibration modes also involve with this mechanism and the series truncation using only the dominant modes in consideration can be done by employing the inequalities (12) and (14). The question of how many modes exist or should be included in modeling and control of the flexible robot arms can be now partly answered, analytically and intuitively.

Referring to [3]. Figure 3 is plotted based on Timoshenko beam theory. The curves imply some insight into the effects of microscopic world by phonon mechanism resulting macroscopically via statistical average of the collective excitation phenomena. Some evidence relating to the damping effects and vibration modes due to the decreasing of the probability amplitudes of phonons upon hitting lattice and other interaction together with the macroscopic effects corresponding to phonon frequencies are shown.

Concerning a question of the control spill over effects in which the inappropriate control signal excites the neglected higher order vibration modes, there is no difficulty to answer this question intuitively in the light of inequalities (12) and (14). Let us recall the meaning of the 'self-energy.' This term here can be interpreted as the case that the ordinary phonon interacts with many-body system.

Consequently, the interaction creates the collective excitation effects viewed as 'the cloud' and the cloud in turn reacts back on the phonon. The phonon motion is then disturbed. Hence, the other way of looking at this phenomenon is that the phonon changes its own energy by interacting with itself via the system.

In normal case, the amplitudes of the higher order vibration modes are less than the lower order ones, which holds microscopically for probability amplitudes of the phonons. The control signal is generated in order to suppress all vibration modes. If this cannot be completely done, at least, the dominant lower order modes should be inherently preserved. In contrast to the good control law, the inappropriate control signal pumps more phonons into the system The pumping phonons then exchange energy with lattice and among themselves. With the collective excitation effect, either low frequency phonons or the environment around themselves could transfer their energy back to the high frequency phonons. The control spill over effect is now described microscopically. It is possible to show the explanation mathematically and should be a topic to be covered for the future work

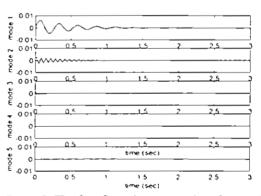


Figure 3. The first five vibration modes of a pinedpined model flexible-link robot arm [3]

5. CONCLUSION

In summary, we have used a theory of the secondary quantization in quantum mechanics to study vibration behaviors of flexible-link robot arms. The relation of vibration related to phonon coupling interaction is studied by means of Green's function method beginning with energy model.

The major result is analytically confirmed the high possibility to study the topic in microscopic viewpoints by employing the methods shown in this paper. Intuitively, the existence of the relationship among the macroscopic studies employing classical theories and the proposed microscopic ones should be agree in sense of looking at the macroscopic effects as a statistical average of the collectively microscopic behaviors

Based upon the best of the literature review of the author, this work is perhaps the first attempt to study the vibration of flexible-link robot arms in microscopic point of views using quantum field theory. The approach may be an alternative way to gain some insight into the real vibration mechanism and to reveal the correct damping mechanism of flexible-link robot arms, which would benefit for the future work and further investigation

Acknowledgments

This work is supported by the Thailand Research Fund under the contact PDF/40/2542. The author would like to thank Professor Dr. Suthat Yoksan of Srinakarinwirot University, Thailand, for giving him opportunity to get into the microscopic world and showing the methods for the investigation.

REFERENCES

- [1] Liu, X., and Onoda, J., "Controller design for vibration suppression of slewing flexible structures." Intl. J. of Computers & Structures, 70, pp. 119-128, 1999
- [2] Daafouz, J., Garcia, G. and Bernussou, J., "Robust control of a flexible robot arm using the quadratic d-stability approach." *IEEE Trans. on Control Systems Technology*, pp. 524-533, 1998.
- [3] Sooraksa, P., and Chen, G., "Mathematical Modeling and Fuzzy Control of a Flexible-Link Robot Arm," J. of Mathematical Computing and Modeling, Vol. 27, pp. 73-93, 1998.
- [4] Dogan, A., and Iftar, A., "Modeling and control of a two-link flexible robot manipulator," *Proc. of the 1998 IEEE Intl Conf on Control and Application*, pp. 761-765, 1998
- [5] Luo, Z. H., and Guo, B., "Further theoretical results on direct strain feedback control of flexible robot arms," *IEEE Trans on Automatic Control*, 40, pp. 747-751, 1995.
- [6] Bank, H. T. and Inman, D. J., "On damping mechanisms in beams", J. of Applied Mechanics, vol. 58, pp. 716-723, 1991.
- [7] Bank, H. T., Wang, Y. and Inman, D. J., "Bending and shear damping in beams: Frequency

- domain techniques", J. of Applied Mechanics, vol. 116, pp. 188-198, 1994
- [8] Russell, D. L., "On mathematical models for the elastic beam with frequency-proportional damping," SIAM Frontiers in Applied Math, vol. 11, pp. 125-169, 1992
- [9] Kwow, W. H., and Cho, G. H., "Modified quantum and phase control of series resonant converter," 22rd Annual IEEE Power Electronics Specialists Conference, pp. 498-503, 1991.
- [10] Lin, E. B., "Modelling of quantum control and inverse problem," Proc. of the First IEEE Regional Conference on Aerospace Control Systems, pp. 513-516, 1993.
- [11]Duffey, G. H., Quantum States & Processes, Prentice Hall, Inc., 1992.

A BICYCLE ROBOT: PART 2 SYSTEM IMPLEMENTATION

P. Sooraksa, T. Uthairat, S. Kaopratum, U. Sritheerawirojana, and V. Monyakul*

Department of Industrial Technology and Information Engineering

Faculty of Engineering,

King Mongkia's Institute of Technology Ladkrahang

Chalongkrung Rd., Ladkrahang, Bangkok, 10520, Thail, and

Email_kspitikh@kmitlac.th

*National Science and Technology Development Agency, Ministry of Science Technology and Environment, 73/1 Rama Vi Rd., Rajdhevee, Bangkok, 10400, Thailand Email: veerapol@mozart.inet.co.th

Abstract: This paper presents the realization and implementation of a bicycle robot using the control scheme designed in Part 1. The control hardware architecture of the robot consists of tilt sensors, a turning control unit, a driving unit and a microcontroller. In a control cycle, the functional mechanism can be described as follows: First, the tilt sensors sense the state of the robot's balance position and then send the signal to the microcontroller for generating a control decision based on the control law. After the final fuzzy control decision has been made, the output signal will be sent to the turning and the driving control units to track the desired path while retaining the robot in balance.

Keywords: bicycle robot, fuzzy logic control, modeling, intelligent control, two wheeled robot

1 INTRODUCTION

Implementation of a bicycle robot is a challenge topic in robotics and control engineering. This type of robot can be considered as an inherently unstable, nonlinear, and complex plant. This paper takes that challenge to be granted. Moreover, it is more challenge to build the successful system with a limit budget, "off-the-shelf" motors and other used hardware components. In doing so, a bicycle robot named "Robobike" is designed by two of the authors in [1], and is then built the real system as presented in Figure 1. Two small supporting wheels shown in all Figures appeared in this paper are used for safety reason and will be taken away during the test.

Since a bicycle has an inverted pendulum-like feature in the sense that it will fall into the ground if no control action from the rider or absence of a supporting stand, one might think that this problem can be solved easily by using a technique appeared in a control textbook. Unfortunately, the real world is

neither always linearized nor predictable in all cases, even the simulation shows a satisfactory result.

For instance, one may realize a built-in gyroservo regulator available in the market places as a sensor and an actuator to take care of the balance task for the system. Such an implementation seems to be finished because the gyroscope as a tilt sensor can detect the roll angle of the robot and the servo inside it can send the control signal to control the robot. Moreover, the gyro-servo popularly used for controlling a hobby vehicle such as a small helicopter has a balance regulator inside. With a DC motor to drive a rear wheel, the hardware components would be perfectly fit the control system as suggested by the simulation.

Like most of the cases, the simulation often performs under a certain assumption for sake of simplicity and convenience. The above hardware realization as suggested by simulation cannot accomplish the overall system performance because of lacking of consideration for robustness. For example, in the bad road condition, a little stone on the road can make the robot falling down to the road. The abrupt disturbance as an unforescen input disturbance could go beyond the threshold or capability of such a built-in gyro-servo regulator.

In addition, the above realization is not able to retain a balance at the first moment of the operation because the torque of the built-in gyro-servo for small helicopter is too small to drive a handlebar of the bicycle. Hence, the torque needs to be amplified by adding a bigger servomotor to produce adequate torque. As we have seen some limitation of using the simplified simulation alone for hardware implementation. Nevertheless, the simulation result informs us about the problem in hand is feasible to implement, but more robustness and the practical consideration need to be enhanced. The issue is presented in the next section.

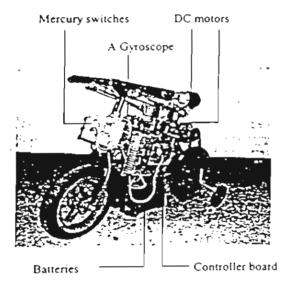


Figure 1 Robobike: A bicycle robot

2. OVERALL SYSTEM STRUCTURE

2 I Control Algorithm

"Robobike" is designed to operate in two modes, which are automatic and manual modes. In the manual mode, the robot is controlled remotely by radio signals. In the automatic mode, the control specifications are that the robot can track a target route while retaining balance. The control architecture is depicted in Figure 2.

The control hardware architecture of the robot consists of tilt sensors, a turning control unit, a driving unit and a microcontroller. The system operates in accordance with the selecting mode. In

the automatic mode, a control cycle can be described as follows. First, the filt sensors sense the state of the robot's balance position and then send the signal to the microcontroller for generating a control decision based on the control law. After the final fuzzy control decision has been made, the output signal will be sent to the turning and the driving control units to track the desired path while retaining the robot in balance.

The tilt sensors are a gyroscope and mercury We use these sensors for roll angle measurement. The gyroscope used here is SRM-206 SG-X of SANWA equipped with a servomotor SRM-1323. We add mercury switches to cope with the situation that the gyroscope cannot detect the monotonically small rate of change of the lean angle. We installed four mercury switches in 8°, 13°, 172°, and 167° orientation with respect to the horizontal line in the counterclockwise sense. For more smooth operation, one can add more mercury switches as desired. In the case of a tire of the robot hitting on a small stone and the gyro-servo mechanism cannot deal with the balance, one of the switches will be activated to inform the microcontroller. The control action based on the fuzzy control law will be urgently performed.

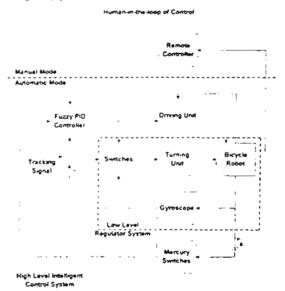


Figure 2 Control architecture.

According to Figure 2., the fuzzy PID controller for tracking a given path and retaining a target and a standard engineering approach called hierarchical control structure are realized. The fuzzy PID control is implemented in the form of software in Assembly language. To reduce the microcontroller cost, we

use AT89C52 produced by Atmel [2]. The microcontroller operates at the frequency of 11.0592 MHz. The microcontroller controls a turning unit by receiving 4 bits of a signal from the mercury switches via Port 1 and then send the control signal through the same port using the rest of the bits.

2.2 Power Supply

Energy source of the robot comes from two 12-Volt-DC batteries connected in series produced the total 24 V. Since there are many types of electronic circuits used in to control the robot, the switching supply circuit is required to transform the 24 V into required voltages corresponding to various circuits. Block diagram for switching power supply is shown in Figure 3. From Figure 3, the buck converter is not only used to transform the 24 V into 13 V for the turning unit, but also used for supplying power of 5V 1 A via IC L4960 to the microcontroller and mercury switches. To get the buck converter started up, we used IC UC3842 to control the current mode for power MOSFET of the converter.

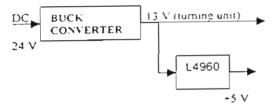


Figure 3. Switching power supply

3. MAIN COMPONENTS

3.1 Driving Unit

The main device of this unit is a 78 rpm 18 V DC motor with 1:30 gear block. We use IC L200 of SGS-Thomson as a programmable voltage regulator. The input of the control circuit is the voltage of 24 V from the batteries and the output is transformed into 18 V for the motor. A relay of 5 A 12 V is used to make the state of ON and OFF for the voltage output to drive the motor.

3.2 Turning Unit

Two wire-wound potentiometers are used as sensors for identifying position of the servomotor—one for the input of the turning circuit and the other for the feedback position—Figure 4 shows the installation of the potentiometers

In this subsystem, a linear power amplifier type is used as a servo amplifier for improving and

amplifying the control signal before feeding to the 12 V 3A DC servoinotor of TOYOTA TG 159100-953A. The driver of the motor is a Motorola IC MC33030 [3]. Since the IC specification at the Power H-switch requires only 1 A while the servoinceds 3 A. Hence the output of MC33030 at Port 14 and 15 need to be modified by connecting a power H-switch buffer (we used transistors TIP 2955 and TIP 3055 of SGS Thompson).

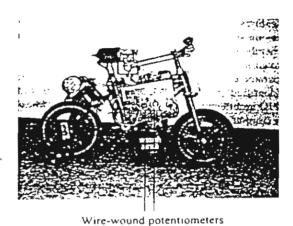


Figure 4. The side view of Robobike presents wire-wound potentiometers.

From the aforementioned about the above turning unit, the top view of the subsystem is shown in Figure 5.

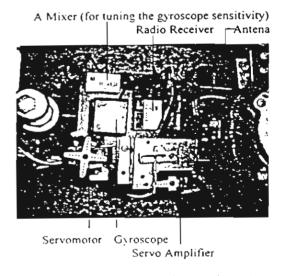


Figure 5. The top view of the turning unit.

4 CURRENT LIMITATION AND FUTURE WORK

Based on our testing, the Human-in-the-loop of Control yields a satisfactory result after we gain experience on controlling the robot via radio control In this manual mode, like any other radio control system, the more time and afford we play with the system, the more expertise we become.

Although the manual mode is successfully built, the automatic mode is still on trouble-shooting processes. With the intelligent fuzzy logic based features, the pulse encoding for control fuzzification is under working to seek for the appropriate membership function and its components quantitatively. Once the suitable membership parameters and the control parameters are clearly identified physically and experimentally, the fuzzy PID architecture will be implemented in the form of a computer program. In short, the implementation of the hardware is almost finished, whereas the software is still on going development.

5. CONCLUSION

We have presented the implementation of a bicycle robot in this paper. As the first attempt to control this type of robot, the manual mode is first built and the satisfactory result is obtained. The next step along with the challenge is still in the light of getting the automatic mode works well as in the simulation. Integration of collision avoidance sensors such as ultrasonic and infrared sensors is in the consideration for the future work.

Acknowledgments

The first author is financially supported by the Thailand Research Fund.

REFERENCES

- [1] Sooraksa, P., and Sritheerawirojana. U., "A Bicycle Robot: Part 1 Modeling and Control," 17th IAARC/IFAC/IEEE Intl. Symp on Automation and Robotics in Construction, 2000.
- [2] Atmel. AT89C52 8-Bit Microcontroller with 8K Bytes Flash, 1997.
- [3] Motolora, MC33030 DC Servo Motor Controller /Driver, Motolora, Inc., 1996

VIBRATION SUPPRESSION OF A TWO-LINK FLEXIBLE MANIPULATOR

Somehai Wiriyathornphan and Pitikhate Sooraksa

Department of Industrial Technology and Information Engineering,
Faculty of Engineering,
King Mongkut's Institute of Technology Ladkrabang,
Chalongkrung Rd., Ladkrabang, Bangkok, 10520, Thailand
Email: kspttkh@kmitl.ac.th

Abstract: Flexible-link robot arms have advantages over the conventional ones such as less weight, less energy consumption, and smaller actuators. However, a disadvantage of the manipulators is the vibration occurred inherently due to the flexible behavior of the arms during operation. This situation may effect control performance in some applications, for example, the use of the robot for fine painting or welding. This paper describes vibration suppression of a two-link flexible manipulator by means of fuzzy sliding mode control based neural network-like structure. Simulation and experimental results shows an effectiveness and control performance of the proposed method for vibration suppression of the robot links.

Keywords: bicycle robot, fuzzy logic control, modeling, intelligent control, two wheeled robot

1 INTRODUCTION

To improve the system response, energy consumption, and the overall mass components of robot manipulators, various types of flexible link manipulators have been modeled, designed, and implemented [1-3]. In [4], modeling and control of a single flexible-link robot arm was proposed and developed. However, the two-link counterpart, in general, is more versatile than the single-link robot arm at least in the sense of reachability. Since the dynamic model and other effects of a two-link flexible manipulator is not just simply developed by direct superposition of two models of two single flexible link robot arms, the interaction of dynamic coupling between one link to the other needs to be included in the working model.

One of the problems in control of a flexible-link manipulator is the vibration during operation of this type of robot arms. The vibration occurs due to the inherite properties of the material made of the arm and its dimension. Long and shim arms have more vibration than the short and thick ones. With this common sense, one may wish to choose the appropriate dimension for the robot arm's structure to reduce the flexible nature created the vibration. Intuitively, it seems to obtain an easy and inexpensive

way to suppress the vibration modes of the manipulator by enhancing the physical dimension and coping with some kind of vibration absorption material, instead of designing a sophisticate control scheme to suppress them. Some researcher prefers to work with very thin arms for the sake of enlightening the nature of vibration, while the others view the very thin arms as useless ones for many real-world applications dealt with loads. The key concept to adopt the ideas for the judgement of significant implementation between the two approaches would be the objective of the research — depending on for basic research or for applications. It is wise to investigate issues in both engineering applications and studying basic research.

Among various control schemes, variable structure control or sliding mode control (SLM) can be designed for handling nonlinear effects of the system, while having good disturbance rejection and trajectory tracking. Researchers have their own version of the similar approach for the flexible link structure. [5-7]. To enhance the controller performance and remedy the chattering effects, fuzzy control, both sliding mode approach to fuzzy control and fuzzy approach to sliding mode control, has been proposed for the nonlinear systems. These fuzzy SLM controllers have been reported that the

satisfactory performance is achieved for given tasks [8-9]

In this paper, a fuzzy sliding mode control has been designed for vibration suppression and tracking trajectory of a two-flexible link robot arm. Unlike the above literatures, our fuzzy SMC contains a neural network-like structure. In other words, it has a layered appearance for the standard fuzzy control procedure. The paper is organized as follows: Section 2 describes development of model. In section 3, a fuzzy sliding mode control is described in a neural network-like structure. Section 4 gives simulation results to validate the proposed control law and Section 5 summarizes the study.

2. MATHEMATICAL MODEL

A two-flexible link robot manipulator is illustrated in Figure 1 and 2. The hardware of the system is under construction. As can be seen from Figure 1, the flexible robot arms is planar ones, we then adopt the mathematical model developed by Scott in [10]. The model is derived by using the Euler-Lagrange method. The equations of motion are developed using the assume mode method. That is

$$w_1(x,t) = \sum_{j=0}^{\infty} \phi_j(x_1) \partial_j(t) = \phi^T \partial = \partial^T \phi$$

$$w_2(x,t) = \sum_{j=0}^{\infty} \psi_j(x_2) c_j(t) = \psi^T c = \partial^T \psi$$
(1).

The kinetic energy of the first and the second link

$$T = T_{\ell_1} + T_{\ell_2} \tag{2},$$

$$T_{L_1} = \frac{1}{2} J_1^{(1)} \stackrel{?}{\theta_1}^2 + \frac{1}{2} \stackrel{?}{a}^T M_a^{(1)} \stackrel{?}{a} + \stackrel{?}{\theta_1} \stackrel{?}{a}^T M_{1a}^{(1)}$$
(3),

$$T_{L_{2}} = \frac{1}{2} J_{1}^{(2)} \dot{\theta}_{1}^{2} + J_{12} \theta_{11} \dot{\theta}_{2} + \frac{1}{2} J_{2}^{(2)} \theta_{2}^{2}$$

$$+ \dot{\theta}_{1} \dot{a}^{T} M_{1a}^{2} + \dot{\theta}_{2} \dot{a}^{T} M_{2a} + \frac{1}{2} \dot{a}^{T} M_{a}^{(2)} \dot{a}$$

$$+ \dot{\theta}_{1} \dot{c}^{T} M_{1c} + \theta_{2} \dot{c}^{T} M_{2c} + \frac{1}{2} \dot{c}^{T} M_{c} \dot{c}$$

$$+ \dot{c}^{T} M_{ca} \dot{a}^{2}$$

$$(4),$$

where the subscripts L_1 and L_2 stand for the 1" and the 2^{nd} link, respectively. Parameters J and M with the superscripts and subscripts correspond to the mertia term of the 1-th link and the feedback (or

feedforward if it has transpose) from the joint angle to the generalized coordinate

The potential energy V is

$$V = \frac{1}{2} \int_0^{t_1} (EI)_1 (w_1^{''})^2 \, dx_1 + \frac{1}{2} \int_0^{t_2} (EI)_2 (w_2^{''})^2 \, dx_2 \ (5)$$

We now have the Lagrangian L = T-V by using (2)-(5). With some lengthy calculation by inserting the obtained Lagrangian L into the Euler-Lagrange equation and the aid of Mathcad software package, we can arrange the result in state-space form

$$x = Ax + BU \tag{6}$$

where the state vector is defined as

$$x = \begin{bmatrix} \theta_1 & \theta_2 & a^T & c^T & \theta_1 & \theta_2 & a^T & c^T \end{bmatrix}' \tag{7}$$

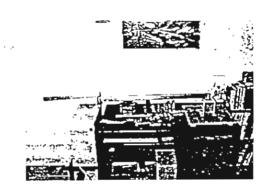


Figure 1. Photograph of the arms made of aluminum (under construction).

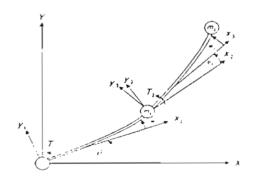


Figure 2. A two-link flexible robot manipulators. We now arrive at

$$\begin{bmatrix} u_1 \\ u_2 \\ v_1 \\ u_2 \\ v_1 \\ v_2 \\ v_1 \end{bmatrix} = \begin{bmatrix} 0 & I \\ \theta_2 \\ \phi_1 \\ w_1 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & I \\ \theta_2 \\ \phi_1 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & I \\ \theta_2 \\ \phi_1 \\ \vdots \\ w_L \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & \vdots \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_L \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & \vdots \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_L \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & \vdots \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_L \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & \vdots \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_L \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & \vdots \end{bmatrix} \begin{bmatrix} 0 & I \\ 0 & \vdots \end{bmatrix} \begin{bmatrix} 0 & I \\ 0 & \vdots \\ 0 &$$

For more detailed calculation and derivation, the reader is referred to [10].

3. FUZZY SLIDING MODE CONTROL DESIGN

The mathematical model of a two-flexible link robot arm is described in the last section. This section provides detailed design and analysis of a fuzzy sliding mode controller in a neural network structure. The neural network is structurally (not functionally) employed to illustrate the equivalent structure of the standard fuzzy control method (fuzzification, inference engine, and defuzzification). Figure 3 shows the hybrid digital-analog overall control system architecture, in which sampling and signal holding devices are not shown for the sake of convenience. The membership function and the singleton output membership function of S and dS are shown in Figure 4 and 5.

We now define the error signal e(t), according to Figure 3, as e(t) = r(t) - y(t), where r(t) is the tracking reference or set point value and y(t) is the output. These parameters are in vector forms and the elements of the vectors are corresponding to the link being consideration. The sliding variable and its derivative can be defined, as usual,

$$S = e + \lambda e$$

$$dS = \frac{S(t + T) - S(t)}{T}$$
(9).

and λ is a selected positive constant

Traditionally, the designed sliding mode control input u(t) is defined in the form of signum function $u = H \operatorname{sgn}(S)$, where H is the bounded control input signal. Upon observing this switching control law, it is easy to see that, as witness by many simulations and various practical applications, the signum or sign function can lead the system into chattering trajectory

around the sliding surface. To improve and remedy, the fuzzy control law based on the input variables can be categorized in Table 1. The control rule used here is derived based on natural tracking [4]. Parameters α and β in Figure 5 are two parameters to be determined from the trial and error process.

Table 1 The control rule for the action

IF		THEN	
S	dS	Decision	
>0	>0	Н,	
>0	0<	H ₂	
0<	>0	H ₃	
0<	0<	H ₄	

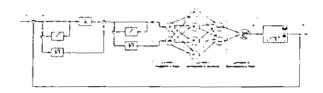


Figure 3. The fuzzy sliding mode based neural network-like structure.

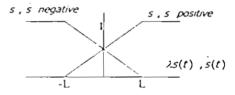


Figure 4. Input membership function of S and dS.

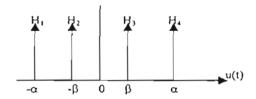


Figure 5. Output membership function.

4. SIMULATION RESULTS

Values used in simulation may be assumed, according to the dimension of the real physical system, to be shown in Table 2

Table 2 Link Parameters

Parameters	Link I	Link 2	
Beam thickness	0.002 (m)	0 002 (m)	
Beam width	0.038 (m)	0.038 (m)	
Beam length	1	0.50 (m)	
Flexural rigidaty	41(Nm ²)	0.5 (N m²)	
Mass unit length	0.3	0.3	

The simulations were performed based on the robot arm model and are presented in Figure 6 and 7. Figure 6 shows the simulation of the tracking trajectory, which the desired set points of the joint angles for the link 1 and link 2 are 60 and 40 degrees, respectively. Figure 7 illustrates the corresponding tracking errors. The Figures are shown much alleviation of vibration.

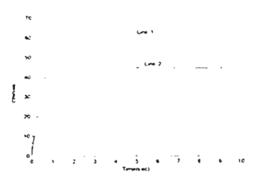


Figure 6. The tracking trajectory at the end point of the arm.

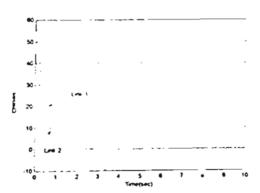


Figure 7. The tracking errors of the end point of the arm.

5. CONCLUSION

We have developed a fuzzy sliding mode controller based neural network-like structure. Our simulation results have shown that it is possible to implement the proposed control system. Further work is necessary to quantify the effectiveness of the proposed control scheme.

Acknowledgments

The research is supported by the Thailand Research Fund. The authors would like to thank Prof. D.: G. R. Chen of the University of Houston for his valuable suggestion to initialize this work.

REFERENCES

- [1] Canon, R. H. Jr., and Schmitz, E., "Initial Experiment on the End-Point Control of flexible one-Link Robot," *The international Journal of Robotic Research*, Vol. 3, No. 3, pp. 666-672, 1984
- [2] Lin, L, and Lewis, F., "Enhanced measurement and estimation methodology for flexible link arm control," *Journal of Robotic System*, Vol. 11(5), pp.367-385, 1994.
- [3] Ibrahimbegovic, A., and Mamouri, S., "Nonlinear dynamics of flexible beams in planar motion formulation and time-stepping scheme for stiff problems," *Computers and Structures*, pp. 1-22, 1999.
- [4] Sooraksa, P., and Chen, G., "Mathematical Modeling and Fuzzy Control of a Flexible-Link Robot Arm," J. of Mathematical Computing and Modeling, Vol. 27, pp. 73-93, 1998.
- [5] Drakunov, S. V., and Ozguner, U., "Vibration Suppression in Flexible Structures via the Sliding-Mode Control Approach," *Proceedings of the 31*" Conference on Decision and control, pp. 1365-1366, 1 9 9 2
- [6] Yeung, K. S., and Chen, Y. P., "Sliding mode controller design of a single link flexible manipulator under gravity," *Int. J. Contr.*, Vol. 52, No. 1, pp. I 0 I 1 I 7, J u I y 1 9 9 0.
- [7] Sabanovic, A., and Jezemik, K., "Chattering Free Sliding modes in Robotic Manipulators Control," Robotica (1996), Vol. 14, pp. 17-29, 1996.
- [8] Ha, Q. P., "Sliding performance enhancement with fuzzy tuning," *Electronics Letters 31*", Vol.33, No.16, pp.1421-1423, July 1997.
- [9] Lo, J. -C. and Kuo, Y. -H, "Decoupled Fuzzy Sliding-Mode Control" *IEEE Trans. on fuzzy systems*. Vol.6, No.3, pp.426-435, August 1998.
- [10] Scott, M. A., "Time Varying Compensator Design for Reconfiguable Structures using Non-Collocated Feedback," Ph.D. Dissertation, Aerospace Engineering Sciences, University of Colorado, 1995.

INTEGRATION OF RULE BASED AND SENSOR BASED CONTROL FOR A SIX-LEGGED INSECT-LIKE ROBOT

Pitikhate Sooraksa, Kangwan Sacnsawasd, Sorapon Bunjongsena Na Ayuttaya

Department of Industrial Technology and Information Engineering,
Faculty of Engineering,
King Mongkut's Institute of Technology Ladkrabang,
Chalongkrung Rd. Ladkrabang, Bangkok, 10520, Thailand
Email kspitikh@kmitl.ac.th

Abstract: This paper proposes the rule based and sensor based control strategies for a six-legged insect-like robot. This control scheme emulates the well-known insect behavior called "the reflex action." Three types of sensors are embedded in the body of the robot, which are infrared sensors, ultrasonic sensors and limit switches for tracking performance, collision avoidance, and touching perception, respectively. The walking and acting features are driven by servomotors using sets of common-sense instructions or rules. The results show that the satisfactory performance is achieved with this control approach. This implies that the designed robotic system can be used to perform inspection, maintenance or repair in construction tasks.

Keywords: insect-like robot, reflex control, walking robot, rule based control, sensor based control

1 INTRODUCTION

During the past years mobile robots have been used to inspect, repair, and maintenance in construction. The robots can navigate through the hazardous environment. They can also be used to inspect inaccessible places for human such as in a 500-millimeter pipe or repair some crack on the given surfaces [1]. Most of mobile robots are designed as wheeled systems that may get difficulty when navigate through some terrain. If this is the case, the walking systems should be considered and would be appropriated to implement.

Implementation of sensory systems for walking robots has been initially developed for such insect-like robotic systems [2]. Regarding the name insect-like robots, one might be questioned about the definition of them. Does the name of an insect-like robot imply its insect behavior or its appearance? The answer may be depended on the problem in hand. However, in this paper, the term "insect-like" is used because the robot in consideration is designed based on emulating insect features that typically have six legs and have reflex action behaviors [3, 4].

This paper considers the implementation of a control paradigm for a six-legged insect-like robot shown in Figure 1. The control approach used here is the integration of the rule based and sensor based control employed to imitate the reflex action behavior and sensor organs of insects such as vision, audition, and nervous systems. The inspiration of this approach emerges from the question that, while in motion, whether insects determine legs' torque or forces from the pole placement or poles-zeros cancellation methods. In fact, they don't even know their mathematical modeling or their transfer function. There are insects such as real cockroaches do not know their coordinate or frame of references unless their lateral sides touch something. With sensory organs and the natural responses under the law of the nature, insects are capable to navigate through their world. Detailed synthesis will be intuitively given in the following sections.

This paper is organized as follows: Section 2 describes the hardware description as mechanical elements and functional components of our robot. Section 3 proposes the control scheme. Section 4 shows experimental results and discussion. The last section, Section 5 summarizes the results and introduces some development that needs to be done for the future work.

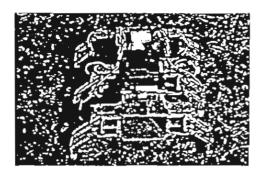


Figure 1. A prototype of the six-legged insect-like robot used in this research.

2. STRUCTURE DESCRIPTION

The system is a six-legged robot made of PVC plastic with 5.2-inch height x 11-inch width x12-inch length as shown in Figure 2. The weight of the robot is 2 kg. Each leg is designed as a Pantograph type having Futaba RC-servomotor model FP S148 at the upper thigh, which can be independently moved within 2-inch maximum radius. The movement of the legs can be classified as lifting, extending and rotating position.

There are three types of sensors used as the sensory organs of the robot. The limit switches located at the end of each leg are used as feelers. The infrared and ultrasonic sensors represent audition, and tracking systems. The electronic board equipped with the Motorola 68HC11 chip is embedded at the back of the robot to serve as the central nervous system. The programming code is written in Assembly language. The power supply is a 7.2V 1.7 A/hr battery.

The open-loop behavior leads unsatisfactory corporation among sensors and actuators. A closed-loop control law ensuring acceptable performance should be realized.

3. CONTROL SCHEME

This study employs the primitive behavior called reflex action and applies to the behavior of the six-legged robot. The reflex action occurs when an external stimulus causes an insect to act reflexly while simultaneous sense appears as attraction or repulsion to the stimulus. Actions such as chew, swallow, or changing body direction can be considered as reflex actions as far as they reflexly occur. The category of this low-intelligent behavior can be simply realized as the integration of rule-based and sensor-based control shown in Figure 3

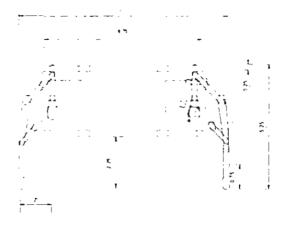


Figure 2 Front view of the robot

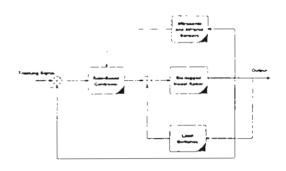


Figure 3. The control structure for a six-legged insect-like robot.

From Fig. 3, functionally, the control scheme comprises of two levels of feedback loops (structurally appeared in three loops); the inner loop is a rapid response level of control process called the lower level and the outer loop is the upper level functioned as an adaptive level based on the control rule bases. The basic idea of the lower level is that the motor organs act immediately upon receiving signals from the sensory ones. For example, if a robot's leg gets stuck or being touched by an obstacle object, the servos will promptly be activated to make it moved in the direction away from the difficulty.

Like insect being, the control rule bases are developed imitating the response of insects. Various functions of insect organs such as using eyes for tracking their foods or having lateral nervous systems for touching as a part of reflex action circuits will be intuitively considered and functionally imitated. The following common sense rules are used for tracking tasks.

Rule 1:

ſF

the robot orientation is in the direction

toward the target

THEN move to the target.

Rule 2.

1F the robot does not oriented in the direction

toward to the target

THEN turn the robot to the direction toward

the target

AND move to the target.

Rule 3:

1F the robot moves toward to the target AND the robot speed is greater than the

speed of the target

THEN retain moving to the same direction.

Rule 4:

IF the robot moves toward to the target AND the robot velocity is less than the

velocity of the target

THEN retain moving in the same direction AND increase the speed of the robot.

Rule 5:

1F the target is located within the operation

range

THEN activate the catching mode.

These rules can easily be fined tuning as desired. In an escaping mode or collision avoidance, it is easy to see that the above rules can be modified in the reverse situation and the control decision may be reversibly applied. The above control scheme is adopted and the results is presented in the next section.

4. EXPERIMENTAL RESULTS

To validate the proposed control scheme, three types of experiments are conducted. The first type is a test for the reflex action of the robot legs in which the limit switches as feelers are embedded. This type of the test simulates the situation when legs of insects perform reflex action. A result is shown in Figure 4.

In this test the left feelers are continuously stimulated causing the insect robot moves in circular motion with the frequency of 0.01, 0.015, and 0.02 Hz for the steps of 7, 15, and 18 degrees, respectively. The radius of the circular motion is about 20 cm. The measurement of the movement is recorded by attaching three pencils as shown in Figure 4.

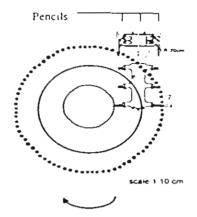


Figure 4. Reflex action test.

The second type is a test for the collision avoidance to evaluate the eyed function of the robot implemented by infrared and ultrasonic sensors. We found experimentally that this task cannot perform well by using only infrared sensors. According to our experiment, the reason is that the robot cannot avoid the given transparent objects since the infrared signal is transmitted through the objects rather than reflected back. That is why the ultrasonic sensors are added to the system for better performances. A result of the test is given in Fig. 5. In this test each leggedstep of the robot is set to 18 degrees, the given dimension of the obstacle is 15 cm x 20 cm x 30 cm, and the detection range of the sensor is set to 40 cm. When the robot senses the obstacle, it would step back two or three steps depending upon the measured signals.



Figure 5. Collision avoidance test.

Another finding of this test is that the twist angle to avoid an obstacle depends on the speed of the robot. The faster the robot movement, the wider the angle will be. Figure 6 shows the twist angle for the collision avoidance performing in Figure 5.

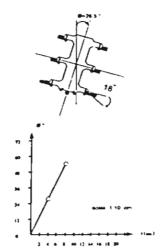


Figure 6. The twist angle versus time for collision avoidance.

The last type is a test for tracking performance. This test simulates the situation for which insects are catching or purchasing their food. With ultrasonic sensors, the insect robot can detect the movement of a prey whereas the infrared sensors can sense the color of the prey. A result of the test is shown in Figure 7. In this test, each leg can move about 18 degrees producing the robot speed at 5 cm/s. Hence the insect robot reaches the prey successfully in 20 seconds.

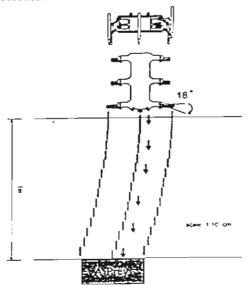


Figure 7. Tracking performance test.

5. CONCLUSION

We have proposed the rule based and sensor based control strategies for a six-legged insect-like robot. This control scheme emulates the well-known insect behavior called "the reflex action." Three types of sensors are embedded in the body of the robot, which are infrared sensors, ultrasonic sensors and limit switches for tracking performance, collision avoidance, and feelers, respectively. The walking and acting features are driven by servomotors using sets of common-sense instruction or rules.

The results show that the satisfactory performance is achieved with this control approach. However, it is a challenge to make this robot to perform more intelligent tasks, e.g. memorizing functions or path optimization. Integration of video camera and repair tools to the robot would also be a good topic for the future work.

Acknowledgments

The first author is financially supported by the Thailand Research Fund.

REFERENCES

- [1] Shilling, K., and Roth, H., "Sensor and Locomotion Concepts for Sewage Inspection and Repair Robots," 16th IAARC/IFAC/IEEE Intl. Symp. on Automation and Robotics in Construction, pp. 465-468, 1999.
- [2] Sooraksa, P., Miyamoto, S., and Aoyama, H., "A Low-Cost Passive Acoustic Resonator for Insect-like Microrobotic Systems," 16th IAARC/IFAC/IEEE Intl. Symp. on Automation and Robotics in Construction, pp. 725-729, 1999.
- [3] Wong, H. C., and Orin, D. E., "Reflex Control of the Prototype Leg During Contact and Slippage," IEEE Conf. on Robotics and Automation, Vol. 2, 1988, pp. 808-813.
- [4] Kitamura, T., Otsuka, Y., and Nakao, T., "Imitation of Animal Behavior with Use of a Model of Consciousness-Behavior Relation for a Small Robot," *IEEE Intl. Workshop on Robot and Human Communication*, pp. 311-317, 1995.

Infinite World & Electronics

& 21 February 2001

Kuala Lumpui

corporate sponsor:

general sponsor:

Paper No. 191 Basic Concept of a Low-Cost Biped-Robot

Thana Pattaradet, Puwanach Damrongporn and Pitikhate Sooraksa Department of Industrial Technology and Information Engineering, School of Graduate Studies, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok, 10520, Thailand, Tel/Fax: 66-2-3269084

E-mail: kspitikh@kmitl.ac.th

Like an inverted pendulum, an inherent behavior of a biped robot is instability. Stabilizing the robot motion is one of research topics in this field. Two-legged robots have advantages over the wheeled ones, when they are working in narrow workspaces, climbing stairs, travelling along uneven terrain, or navigating in human environment. With very limit budget. time constraint, lack of good working tools and environments, the hardware implementation of the robotic system can not be achieved within a short period of time. However, our biped robot is built under the aforementioned situation. "off-ofshelf' parts and components such as motors, sensors, and other mechanical, electrical, and electronic components can be used for substitution to the brand new ones. The objective of this paper is to describe a basic concept of generating simple control rule bases for a low-cost biped robot built by the authors. There are twelve joins of the robot to be controlled in the light of paralleled processing. Each joint has its own driver and inner feedback control loop. All inner circuit are coordinated by a microcontroller 68HC11 functioned as the brain. The principle of the posture control of the robot lies on the issue in dynamic balance. To retain balance, the actual total ground reaction force and the tipping moment produced by the trunk need to sum up for total zero moment point. This basic idea enacted from observing and simply analyzing of the human posture control is world-wide used by the biped robot developers. With the aid of sensors in order to produce the desired zero moment point, the errors and the rate of errors at each joint can be sensed. To utilize the know parameter, namely, the error and the rate of error, fuzzy sliding mode control, has been proposed for the nonlinear biped systems. Since specifications of parts and components are partially known or even unknown, our proposed control law is a sliding mode based fuzzy control in neural network-like structure. The neural network is structurally employed to illustrate the equivalent structure of the standard fuzzy control method (fuzzification, inference engine, and defuzzification) implemented in the software. Simulation results give a promising feasibility and applicability of the designed controller. Experimental results must be carried out to finalize the validation of the control scheme for further study.

Paper No 191 BASIC CONCEPT OF A LOW-COST BIPED-ROBOT

Thanà Pattaradej Phuwanat Damrongporn and Pitikhate Sooraksa

Department of Industrial Technology and Information Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok, Thailand 10520.

> Phone (66-2) 326-9084 Fax 326-9084, E-mail: kspitikh@kmitl.ac.th

Abstract: Like an inverted pendulum, an inherent behavior of a biped robot is instability. Stabilizing the robot motion is one of research topics in this field. Biped robots have advantages over the wheeled ones, when they are working in narrow workspaces, climbing stairs, traveling along uneven terrain, or navigating in human environment. This paper describes a basic concept of generating simple control rule and presented a study of natural gait control rule bases for a biped robot to be built by the authors. The control design and implementation of our system. A set of rule bases for balancing and tracking mechanisms derived from natural gaits for generating control law, which can be used in rule based or fuzzy control scheme, is proposed. Involved with our own version of a sliding mode based fuzzy logic control scheme in neural network-like structure. Simulation results are performed to validate the design. Suggestions for the improvement of the system implementation are also given

I. INTRODUCTION

Evolution of biped robot and other walking machines is well documented in [1], beginning with the first successful biped, "Steam Man", developed in 1893. Steam Man was driven by steam from gas fired boilergenerating power of 0.5 hp with a speed of 14 km/hr. In 1972, Waseda University in Japan developed a twolegged walking robot named WL-5. With big feet feature and hydraulic power, the static walking was achieved. However, the hip, knee, and ankle joints were over Later generations of the simplified in the first design. biped robot developed at the same university put the human-like features into the robot [1]. The current stateof-the-art of the of robots is summarized in [2]. The web provides excellent links to biped robot research around the world via WWW including the worldwide

recognized HONDA humanoid robot "P2" and "P3" [3]. It is well know that, among biped robot in the world, Japan has been leading in biped walking robot research [3-7, to name a few].

Having briefly reviewed the history and advantages of the bipeds. We might be curious to know about the state of this research carried out domestically. How many biped robots have successfully built in Thailand? To the best of the authors' knowledge, there is no claim for the successful implementation and built such a biped robot in Thailand. If it has been built, it must be a few. As it might be the first attempt, a biped robot shown in Fig 1 has been built and the research is in its infancy stage.

Researchers, in Thailand, experienced with the hardware implementation for building a robotic system may be easily realized how hard to find available parts and components that would perfectly fit into the designed system. With very limit budget, time constraint, lack of good working tools and environments, the hardware implementation of the robotic system can not be achieved within a short period of time. However, our biped robot in Fig 1 is built under the aforementioned situation. "off-the-shelf" parts and components such as motors, sensors, and other mechanical, electrical, and electronic components can be used for substitution to the brand new ones.

The objective of this paper are to describe an outline of control rules obtained intuitively from observation during movement of human legs and to design a nonlinear controller in order to control a biped robot. Among various nonlinear control schemes, variable structure control or sliding mode control (SLM) can be designed for handling nonlinear effects of the system, while having good disturbance rejection and trajectory Researchers have their own version of the similar approach for the sliding contro! structure [9-11]. To enhance the controller performance and remedy the chattering effects, fuzzy control, both sliding mode approach to fuzzy control and fuzzy approach to sliding mode control, has been proposed for the nonlinear These fuzzy SLM controllers have been reported that the satisfactory performance is achieved for given tasks [12-13].

Since specifications of parts and components are partially known or even unknown, our proposed control law is a sliding mode based fuzzy control in neural network-like structure. Next section gives more detail discussion.

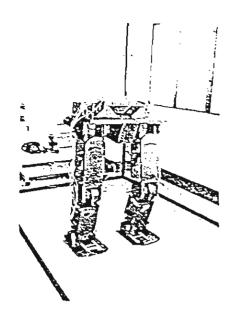


Fig 1. The KMITL biped robot built by the authors.

This paper is organized as follows: Section II describes system information. Section III proposes the concept of a framework for generating control rules for balance and postural tracking derived from observing natural gaits. Section IV proposes the concept of Fuzzy sliding mode control design. Section V gives simulation results. And section VI gives conclusion and suggestion for the future works.

II. SYSTEM INFORMATION

A. General Description

The main body of the robot built by using PVC plastic. Link parameters are summarized in Table 1.

Table 1. Link parameters.

10070 11 01111 1				
Parameters	Value			
Total height	122 cm			
Leg dimension (height x width)	97cm-x14 cm			
Trunk dimension	19cm x56cm x30			
(height x width x length)	cm			
Feet dimension	24 cm x30 cm			
Leg weight (each leg)	25 kg			
Hip weight	7 kg			

There are twelve joints included in the robc: corresponding to twelve degrees of freedom. Our biped robot is structurally built similar to the legs of Honda humanoid robot [3]. The sketch of the joints.

B. Sensors and Actuators

Unlike the Honda robot, we face difficulty in the limit budget and part availability. Economically, we use "off-the-shelf" motors and sensors, which parameters are

partially known even unknown. This situation forces us to select "a fuzzy control method combined with sliding mode control," which would not required the exact parameters and mathematical model of the plants. In doing so, we need to determine control rule bases to accommodate the inference engine procedure of the standard fuzzy control method. The next section proposes such control rules to be used as part of the control law.

C. Controller

Twelve joints of the robot will be controlled in the light of paralleled processing. Each joint has its own driving unit and the inner control loop structurally (not functionally) similar to a human leg having a reflex arc circuit. All inner circuits will be coordinated by a microcontroller 68HC11 functioned as the brain.

III. NATURAL GAIT CONTROL RULES

The principle of the posture control of the robot lies on the issue in dynamic balance. To retain balance, the actual total ground reaction force and the tipping moment produced by the trunk need to sum up for total zero moment point. This basic idea enacted from observing and simply analyzing of the human posture control is used by the biped robot developers [3-7]. With the aid of sensors in order to produce the desired zero moment point, the errors and the rate of errors at each joint can be sensed, and the simple tracking zero moment control rules base of the natural gait.

IV. FUZZY SLIDING MODE CONTROL DESIGN

There are twelve joints of the robot to be controlled in paralleled processing. Each joint has its own driver and inner feedback control loop. All inner circuit are coordinated by a microcontroller 68HC11 functioned as the brain. This section provides detailed design and analysis of a fuzzy sliding mode controller in a neural The neural network is structurally network structure. (not functionally) employed to illustrate the equivalent structure of the standard fuzzy control method (fuzzification, inference engine, and defuzzification) implemented in the solfware. The hybrid digital-analog control architecture, of the brain in which sampling and tignal holding devices are not shown for the sake of convenience. The membership function and the singleton output membership function of S and dS are shown in Fig. 2 and 3. Parameters α and β in Fig. 3 are two parameters to be determined from the trial and error process.

We now define the error signal e(t), according to Fig 4, as e(t) = r(t) - y(t), where r(t) is the tracking reference or set point value and y(t) is the output. These parameters are in vector forms and the elements of the vectors are corresponding to the links being consideration. The sliding variables and their derivative can be defined, as usual,

$$S = e + \lambda e$$

$$dS = \frac{S(t+T) - S(t)}{T}$$
(1),

and λ is a selected positive constant.

Traditionally, the designed sliding mode control input ut) is defined in the form of signum function

H_i sgn(S_i), where H_i is the bounded control input signal and the subscript ith stands for the ith joint. Upon observing this switching control law, it is easy to see that, as witness by many simulations and various practical applications, the signum or sign function can lead the system into chattering trajectory around the sliding surface. To improve and remedy, the fuzzy control law based on the input variables can be categorized in Table 1. The control rule used here is derived based on natural tracking rules.

Table 2. The control rule for the action

ae		_IF	THEN	
繋	S	DS	Decision	
R1:	>0	>0	Ht	
R2:	>0	0<	H ₂	
RG:	0<	>0	Н:	
R4:	0<	0<	Н,	

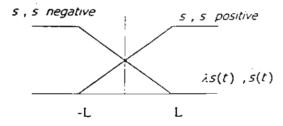


Fig 2. Input membership function of S and dS.

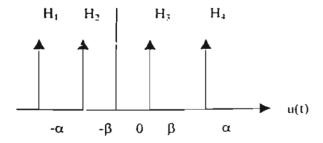


Fig 3. Output membership function.

In fuzzification step, membership functions in Fig 2 and 3 are facilitated. The control law in Table 2 then servers for inference engine. Finally, the gravity mean method is imployed. That is,

$$U_{i} = \frac{\sum_{j=4}^{4} \mu_{i}^{j} H_{i}^{j}}{\sum_{k=1}^{4} \mu_{i}^{j}} = \xi_{i}^{T} W_{i}, \quad i=1,...,n$$
 (2)

where μ_i^J is a membership function corresponding to jth rule for the ith inner loop controller.

$$w_i = [w_i^1 \ w_i^2 \ w_i^3 \ w_i^4]^T$$

$$w_i^J = \frac{\mu_i^J}{\sum_{k=1}^4 \mu_i^k}$$
, i=1,...,n, j=1,...,4 (3), and

$$\xi_i = [H_i^1 \ H_i^2 \ H_i^3 \ H_i^4]^T$$

The bounded input G, of the ith inner controller is bounded within

$$\begin{cases} G_i \leq \xi_i^* \mathcal{T} W_i & \text{if } S_i > 0 \\ -G_i \geq \xi_i^* \mathcal{T} W_i & \text{if } S_i < 0 \end{cases}$$
 (4)

Where ξ_t^T is the actual output

$$\dot{\xi}_{I} = \dot{\xi}_{I} - \dot{\xi}_{I}^{\bullet} \tag{5}$$

$$\dot{\xi}_{i} = \dot{\xi}_{i}, \qquad i=1,\dots,n$$
 (6)

We now define

$$r_{i} = U_{i}$$

$$= \bar{z}_{i}^{\mathsf{T}} W_{i}$$

$$i = 1 \dots n$$

$$(7)$$

Where r_i is torque produced at the i^{th} joint applied to produce the desired zero moment point. Let us define the Lyapunov-like function

$$V = \frac{1}{2} S^{T} M S + \frac{1}{2} \sum_{i=1}^{n} \eta_{i} \bar{z}_{i}^{T} \bar{z}_{i}^{T}$$
 (8)

where M is the effective and system matrix, can be proved to be positive definite, and satisfied the reduced equation of motion for sliding dynamic system.

$$MS + CS + \tau = G \tag{9}$$

We have

$$\dot{V} = S^{T} M \dot{S} + \frac{1}{2} S^{T} \dot{M} S + \sum_{i=1}^{n} \eta_{i} \dot{\xi}_{i}^{T} \dot{\xi}_{i}^{T}$$

$$= -S^{T} \tau + S^{T} (\frac{1}{2} \dot{M} - C) S + \sum_{i=1}^{n} \eta_{i} \dot{\xi}_{i}^{T} \dot{\xi}_{i}^{T}$$
(10)

The second term in (9) can be proved to be vanished [14]

$$\hat{\vec{V}} = \sum_{i=1}^{n} U_i S_i + \sum_{i=1}^{n} \eta_i \, \hat{\xi}_i \, \hat{\xi}_i$$

With (4) and (5) little algebra have

$$\gamma = -\sum_{i=1}^{n} H_{i} |S_{i}| + \sum_{i=1}^{n} H_{i} |S_{i}| - \sum_{i=1}^{n} U_{i} S_{i} + \sum_{i=1}^{n} \eta_{i} \xi_{i}^{T} \xi_{i}$$

$$= -\sum_{i=1}^{n} H_{i} |S_{i}| + \sum_{i=1}^{n} \xi_{i}^{T} (\eta_{i} \xi_{i} - W_{i} S_{i})$$
 (11)

Selecting $\xi = \eta_i^{-1} w_i s_i$, yields $v \le 0$, then the stability in Lyapunov sense is guaranteed. To achieve the tracking performance, we must assign

$$u_{i} = \xi_{i}^{T} W_{i}$$

$$\dot{\xi}_{i} = \eta_{i}^{-1} W_{i} S_{i}$$
(12)

Fig 4 Control architecture of the system.

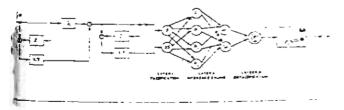


Fig 5. The main fuzzy sliding mode based neural network-like structure.

V. SIMULATION RESULTS

The data used in this simulation is the data collected from the response of the motor of the robot, not from the mathematical model. To see effectiveness of the designed

controller, a tracking evaluation for given curve path for walking is shown in Fig 6. Fig 7 shows the trajectory of the control signal on the S and dS plane, in which the satisfactory tracking performance is achieved. Fig 8 and 9 are for the inner loop regulator to track a step command. The steady state performance is also obtained along with acceptable transient performance.

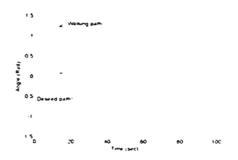


Fig 6. A tracking simulation for a given sinusoidal curve path for walking.

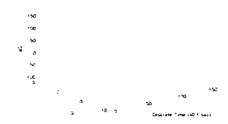


Fig 7. The trajectory of the control signal on the S and dS plane corresponding to Fig 6.

Fig 8. Step response of an inner loop regulator.

Fig 9. The trajectory of the control signal on the error phase plane corresponding to Fig 8.

VI. CONCLUSION

In this paper, we have introduced the framework of rule-base formulation for a biped robot. Useful fact from [8] may be adopted to construct more control rule bases for balancing and postural trajectory tracking of each joint of the robot. We have proposed a fuzzy sliding mode controller in neural network-like structure. Overall system realization of the control architecture is presented. Simulation results give a promising feasibility and application of the designed controller. Experimental results must be carried out to finalize the validation of the control scheme for further study.

VII. ACKNOWLEDGEMENT

Without financial support by the Faculty of Engineering, KMITL, this work would be impossible The authors would like to thank Assoc. Prof. Dr. Tawil Paungma, Dean of Faculty of Engineering, KMITL, for his support and encouragement. Special thank is to Prof. Dr. G. R. Chen of the university of Houston, Texas, USA. IEEE Fellow for his valuable suggestion and useful advice during the controller designing phase. The last author is financially supported by the Thailand Research Fund.

VIII. REFERENCES

- [1] M. E. Rosheim, "Robot Evolution". John Eiles & Sons, Inc., 1994.
- [2] "Biped Robot Research in the World." http://robby.caltech.edu/~kajitá/bipedsite/html
- [3] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. "The Development of Honda Humanoid Robot". Proceedings of the 1998 IEEE Intl. Conf. On Robotics & Automation, vol. 2, 1998, pp. 1321-1326.
- ([4] M. Kumagai, T. Emura, "Sensor-Based Walking of Human Type Biped Robot That Has 14 Degree of Freedoms,", Proc. of Mechatronics and Machine Vision in Practice, IEEE Intl. 1997, pp. 112-117.
- [5] J. Yamaguchi, N. Kinoshita, I. Kato, "Development of a Biped Walking Robot Adapting to an Unknown Uneven Surface", J. Robotic Soc. of Jpn.14-4, 1996, pp. 546-559.
- ([6] S. Kajita, K. Tani, "Control of Dynamic Biped Locomotion Base on Real time Sensing of the ground Profile", J. Robotic Soc. of Jpn.14-7,1996. pp.1062-1069.

- [7] Q. Li, A. Takanichi, I. Kato, "Learning of Robot Biped Walking with the Cooperation of Human", Procee, 1993 IEEE Intl. Conf. On Robot and Human, 1993, pp. 393-379.
- [8] G. T. Yamaguchi, F. E. Zajac, "Restoring Unassisted Natural Gapt to Paraplegics via Functional Neuromuscular Stimulation: A Computer Simulation Study", IEEE Trans. Biomed. Eng. vol.37, pp. 886-902. Sept. 1990.
- [9] Drakunov, S. V., and Ozguner, U., "Vibration Suppression in Flexible Structures via the Sliding-Mode Control Approach." Proceedings of the 31" Conference on Decision and control, pp. 1365-1366, 1992.
- [10] Yeung, K. S., and Chen, Y. P., "Sliding mode controller design of a single link flexible manipulator under gravity," *Int. J. Contr.*, Vol. 52, 86, 1, pp.104-117, July 1990:
- [11] Sabanovic, A., and Jezérnik, K., "Chartering Free Sliding modes in Robotic Manipulators Control," *Robotica* (1996), Vol. 14, pp. 17-29, 1996.
- [12] Ha, Q. P., "Sliding performance enhancement with fuzzy tuning." *Electronics Letters 31*", Vol.33, No.16, pp.1421-1423, July 1997.
- [13] Lö. J. -C. and Kuo, Y. -H. "Decoupled Fuzzy Sliding-Mode Control" *IEEE Trans. on fuzzy* systems. Vol.6. No.3, pp.426-435, August 1998.
- [14] J.J.E. Sloting and W. Li. "Applied Nonlinear Control". Prentice Hall, New Jersey, 1991.

Paper No. 192 An Appropriated Degree-of-Freedom Functional and Kinematics for Biped Robots

Playanach Dannongporn, Thana Pattaradet and Pitikhate Sooraksa
Department of Industrial Technology and Information Engineering
School of Graduate Studies, Faculty of Engineering,
King Mongkut's Insulate of Technology Ladkrabang,
Chalongkrung Rd., Ladkrabang, Bangkok, 10520, Thailand,
Tel-Fax: 66-2-3269084
E-mail: Aspinkharkmint of th

Robot is very rapidly developed. We build the robot to work and afford convenience instance of human, However, almost robots use wheeled vehicles, but sometimes the robot is based on the condition the same as human's, so it has the movement similar to human for working. Designing biped-robot moves similarly human, we must know about the human structure in the degree of freedom examination which the tobot needs and defines appropriately for robot be able to move Vigorously like human and considers forme values of each degree of freedom which robot needs. To find out static state which makes the robot has stability, a snould regard to the stability margin unich is the calculated point from the center of gravity to leg margin and other value is the stability index which is included. The DOF on hip should have three because the Hip joint is ball & socker which is able to walk encularly, on the knee has only one to help for lifting legs, on the ankle and the sole should have two to help for walking an rough area, and on the joes should have one more to help for working more distances, therefore 7-DUF is enough for building this robot. But increasing one DOF more on the ankle, it will help for the ankle retainen which helps malking better. To define traque value, each given DOF should regard to its property such as on the ankle-should have much more values to bely for lifting the body. This research presents the basic of Bipedfobot's movement included finding out the number of degree of freedom (DOF) which needs for movement because this part is the main point for developing to become the humanoid robot which is full-physics figure. Physiological aspects in action of human has to use the less of geology and dynamic in the action of bone and movement system. The model has to have inertia effects in the mass of legs, somes movement ratio, the movement of legs must be able to control torque and forces on every joints when acceleration increases. Since physiology of human is complex, to get rid of the complexity in the view of robot engineer by Mask E. Rosheim, he designed the movement rule for simple design, the robot controlling method which has many Degrees of freedom (DOF) by the invest kinematics method and D-If parameter. The built Bipedrobot is smalled in the term of agreements walking and using the supporting tool because this robot is designed model without waist part. The main body of the tener built by using PVC plastie, its total height is 122 cm; Leg dunension (height k width) is 97 x 12 cm. Truck dissersion thereby width y length; is 19 x 56 x 30 cm. Feet dimension is 24 x 30 cm. Leg weight is 25 kg. hip weight is " by The Fails hiped robot has 10 degree of freedom which each joint depends on the movement from DC meter and the providing of built schot such as walking, weight of robot, power supply, controlling Degree of freedom. Researchers warm hope that this paper will be the basic knowledge in the future for building the Humanial robot since the piles to me only able to move but though have wisdom for ability to do the complex works instance of huntan

Paper No 192 AN APPROPRIATED DEGREE-OF-FREEDOM FUNCTIONAL AND KINEMATICS FOR BIPED ROBOTS

Phuwanat Damrongporn Thana Pattaradej and Pitikhate Sooraksa

Department of Industrial Technology and Information Engineering,

School of Graduate Studies, Faculty of Engineering. King Mongkut's Institute of Technology Ladkrabang. Chalongkrung Rd., Ladkrabang, Bangkok, 10520. Thailand.

Tel/Fax: 66-2-3269084 E-mail: kspitikh@kmitl ac.th

Abstract: Robot is very rapidly developed. We build the robot to work and afford convenience instance of human. Most of mobile robots use wheeled vehicles, but sometimes the robots are based on the condition the same as human's, so it has the movement similar to human for working. This research presents the basic of Biped-robot's movement included finding out the number of degree of freedom (DOF) which needs for movement. This part is the main point for developing the robot to become the humanoid robot which is fully physical figure. Each joint depends on the movement of DC motors. The problems of building the robot such as walking, weight of robot. power supply, controlling Degree of freedom are also discussed. Researchers team hope that this paper will be established the basic knowledge in the future for building the Humanoid robot.

I. INTRODUCTION

A. The Study of human's movement

The study of mechanics of a biped robot is quite complex because of walking steps. The study is related to the study is copied from human's movement from hip to the ankle. From observation the movement of knee, ankle and feet, knee are the biggest joint in the human's body that it supports the body weight which is important for walking and running, therefore knee have the longer movement distance. Joint's structure is hinge that moves more than a plane that moves in Sagittal plane and transverse plane [1-2]. The ankle and feet are the part for supporting the body weight moreover it helps to save the body balance and coordinate working with ankle's working to put on the floor correctly in any positions or on any lean plans.

It helps to change figure and feet's curve to be able to adjust with rough area, it has the characteristic similar to spring that it helps to prevent vibration during walking. Further more it is flexible that helps to walk smoothly. Ankle's structure is a hinge joint, which moves around an axis. This event causes the tip of feet is dorsiflexion and plantarflexion. The ankle's joint is synovial joint [1-3].

II. WALKING CYCLE AND WALKING ANALYSIS

Walking cycle, as shown on Fig 1, [4] its distance, between the heels which touch the surface and that feet push off the surface, is about 60%. Walking is divided into 4 steps, that are Heel strike, Foot flat, Mid stance and Push off (or Toe off). Swing phase in normal level is about 40% of walking cycle, this phase is divided by 3 levels, that are Acceleration, Mid stance and Deceleration. The vertical movement of center of Gravity of body, in the normal walking, is on the highest level when the leg is on the Mid stance about 1 inch, and is on the lowest level when the legs support simultaneously the front toes about 1 inch. The total distance of the vertical movement is 2 inches. The width of walking base, which is normally the distance between the center point of oneside heel and the center point of other-side heel, is about 2-4 inches [5]. The length of walking is about 15 inches.

Walking Analysis is divided by 3 steps, that are Heel strike to Mid stance, Mid stance to Push off (or Toe off) and Swing phase [6], as shown on Fig 2, and is stated as follows.

A. Heel strike to Mid stance

The ankle tilts tiptoe up and stretch tiptoe down about 15 degrees. The knee stretches straight when the heel touches the surface and bends about 20 degrees. The hip bends about 30 degrees when the heel touch the surface and bends only 20 degrees when is on the foot flat.

B. Mid stance to Push off (or Toe off)

The ankle tilts about 3 degrees, and change to 15 degrees when the foot push off, and stretch down slowly about 20 degrees.

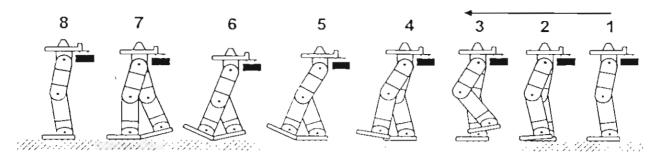


Fig L Walking Cycle

The knee bends about 15 degrees until before the heel strike. It bends only 4 degrees and change to 40 degrees when the heel struck to the toe off. The hip stretch as 0 degree before the heel strike about 15 degrees and change to 20 degrees when the heel struck.

C. Swing phase

The ankle, in swing phase, retracts thoroughly for lifting up the leg to push tiptoe off to be enough for swinging the leg. The knee, in the Push off, has the acceleration, which occurs from shoving away with the foot and bends at most about 65 degrees in the Swing phase. The hip, in this phase, bends about 25 degrees more and bends about 30 degrees when the heels touch the surface.

III. THE NUMBER OF DEGREE-OF-FREEDOM (DOF) OF A BIPED ROBOT

Due to the biped robot needs the two legs to move, meanwhile one-side feet is moving, the other-side feet touch the surface and push the shoving force to move forward. In the part of legs and feet of human, there are total 30 DOF [7]. By observation, the joint is divided by 2 types, that are hinge and ball socket which supports between two joints. There are many DOF in human, therefore designing the model for the biped robot construction is complex and difficult to control. So the robotic engineers find the method for the biped robot construction that it has few joints but it can move efficiently.

This research, our biped robot has 5 DOF on one leg, in accordance with the hip joint and the ankle joint have 2 DOF per each, and on

the knee has one DOF, as shown on Fig 3. Setting many DOF is to the robot has the agility similar to the human. If we increase 3 DOF more on the hip joint, the robot can change its direction with rotating just a little bit.

The biped robot of Tohoku University, Japan [8]. has 7 DOF on joint per side. By adding DOF more on the toe joint which is in testing, The dynamic direction of robot changes dexterously. When the robot has amount of DOF, it has to have the torque for each DOF. If the weight of the biped robot is on the average as same as the weight of human body (approximately 154 pounds), designing for the rotation on the hip, the knee joint and

the ankle joint have the torque as 250 Ft-pound [9] for adding more the strength on the joints.

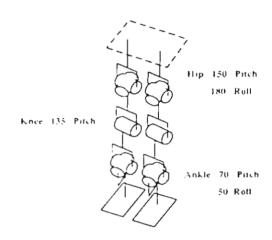


Fig 3. 10-DOF joints

IV. FORWARD KINEMATICS OF A BIPED ROBOT

As shown in Fig. 4, we can find the D-H parameter [10] written in Table 1. The transformation matrix can be obtained as equation (1).

Table 1 D-H Parameter

D-H Parameters	ı	2	3	4	5
	- 90	90	- 90	90	₋ 0
	L	O	L ₃	0	L;
	$\theta_{\scriptscriptstyle 1}$	θ_{2}	θ_3	θ_{4}	$ heta_{S}$
	0	L ₂	0	L ₄	0

Fig 4. DOF of biped robot

$$T_{l-1}^{I} = T_{\alpha l} T_{D} T_{O} T_{D}$$

$$= \begin{bmatrix} \cos \theta_{l} & -\sin \theta_{l} & 0 & \theta_{l} \\ \cos \alpha_{l} & \sin \theta_{l} & \cos \alpha_{l} & \cos \theta_{l} & \sin \alpha_{l} & -d_{l} & \sin \alpha_{l} \\ \sin \alpha_{l} & \sin \theta_{l} & \sin \alpha_{l} & \cos \theta_{l} & \cos \alpha_{l} & d & \cos \alpha_{l} \end{bmatrix}$$

$$\mathbf{7_{\bullet}^{1}} = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 & \zeta_{1} \\ 0 & 0 & 1 & 0 \\ -\sin \theta_{1} & -\cos \theta_{1} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{1}^{2} = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 & 0\\ 0 & 0 & -1 & -L_{2}\\ \sin \theta_{2} & \cos \theta_{1} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{2}^{3} = \begin{bmatrix} \cos \theta_{3} & -\sin \theta_{3} & 0 & L_{3} \\ 0 & 0 & 1 & 0 \\ -\sin \theta_{3} & -\cos \theta_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{3}^{4} = \begin{bmatrix} \cos \theta, & -\sin \theta_{4} & 0 & 0 \\ \vec{0} & 0 & -1 & -L_{4} \\ \sin \theta_{4} & \cos \theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_4^5 = \begin{bmatrix} \cos \theta_5 & -\sin \theta_5 & 0 & L_5 \\ 0 & \cos \theta_5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The coordinate transformation from link 1 to 5 has form equation (7).

$$T_0^5 = T_0^1 T_1^2 T_2^3 T_3^4 T_4^5$$

$$T_0^5 = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}$$
(7)

where

(1).

(2).

(3).

(4).

(5).

(6),

$$A_{11} = -(\cos\theta_{1234} + \cos\theta_{4}\sin\theta_{13} + \cos\theta_{1}\sin\theta_{24})\cos\theta_{5}$$

$$A_{12} = -\cos\theta_{1234}\sin\theta_{5} + \cos\theta_{4}\sin\theta_{135} + \cos\theta_{1}\sin\theta_{245} + \cos\theta_{1234}\sin\theta_{4} + \cos\theta_{5}\sin\theta_{134} + \cos\theta_{145}\sin\theta_{2}$$

$$A_{13} = \cos\theta_{12}\sin\theta_{5} + \cos\theta_{5}\sin\theta_{1}$$

$$A_{14} = L_{5}\cos\theta_{1234} + L_{5}\cos\theta_{4}\sin\theta_{13} + L_{5}\cos\theta_{1}\sin\theta_{24} + L_{1} + L_{5}\cos\theta_{12}\sin\theta_{3} + L_{5}\cos\theta_{12}\sin\theta_{2} + L_{2}\sin\theta_{1}$$

$$A_{21} = (\cos\theta_{12}\sin\theta_{2} + \cos\theta_{2}\sin\theta_{4} + L_{5}\cos\theta_{13}\sin\theta_{24} + L_{5}\sin\theta_{24} + \cos\theta_{245}\sin\theta_{25} + \cos\theta_{25}\sin\theta_{45} + \cos\theta_{35}\sin\theta_{24} + \cos\theta_{245}$$

$$A_{22} = -\cos\theta_{14}\sin\theta_{25} + \cos\theta_{25}\sin\theta_{45} + \cos\theta_{35}\sin\theta_{24} + L_{3}\sin\theta_{25}$$

$$A_{23} = \sin\theta_{23}$$

$$A_{24} = L_{5}\cos\theta_{14}\sin\theta_{25} + L_{5}\cos\theta_{25}\sin\theta_{4} + L_{4}\sin\theta_{25} + L_{5}\sin\theta_{2}$$

$$A_{31} = (-\cos\theta_{234}\sin\theta_{15} + \cos\theta_{14}\sin\theta_{35}\sin\theta_{124})\cos\theta_{5}$$

$$A_{42} = \cos\theta_{234}\sin\theta_{15} + \cos\theta_{14}\sin\theta_{35} + \sin\theta_{1245} + \cos\theta_{235}\sin\theta_{14} + \cos\theta_{15}\sin\theta_{24} + \cos\theta_{45}\sin\theta_{12}$$

$$A_{33} = -\cos\theta_{234}\sin\theta_{15} + \cos\theta_{14}\sin\theta_{35} + \sin\theta_{1245} + \cos\theta_{235}\sin\theta_{14} + \cos\theta_{15}\sin\theta_{15} + L_{5}\sin\theta_{12}$$

$$A_{43} = -\cos\theta_{234}\sin\theta_{15} + L_{5}\cos\theta_{15}\sin\theta_{15} + L_{5}\sin\theta_{124} + L_{4} + \cos\theta_{25}\sin\theta_{15} + L_{5}\cos\theta_{25}\sin\theta_{15} + L_{5}\cos\theta_{25}\sin\theta_{15} + L_{5}\cos\theta_{25}\sin\theta_{15} + L_{5}\cos\theta_{25}\sin\theta_{15} + L_{5}\sin\theta_{124} + L_{4} + \cos\theta_{25}\sin\theta_{15} + L_{5}\cos\theta_{25}\sin\theta_{15} + L_{5}\cos\theta_{15}\sin\theta_{15} + L_{5}\cos\theta_{15}\sin\theta_{15} + L_{5}\cos\theta_{15}\sin\theta_{15} + L_{5}\cos\theta_{15}\sin\theta_{15} + L_{5}\cos\theta_{15}\sin\theta_{15} + L_{5}\cos\theta_{15}\sin\theta_{15} + L_{$$

V. CONTRUCTION AND EXPEREMENT

To study the displacement of biped robot of each joint, it can be in visualized the 3-D form which is the static figure, as shown in Fig 5, by modeling from the construction which has 5 DOF in each leg.

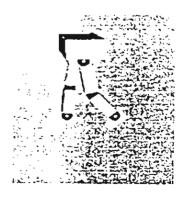


Fig.5. Show 3-D of the biped robot

Thus we use a microcontroller 68HC11 to control in each joint, as shown in Fig. 6

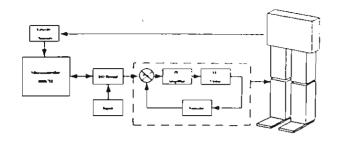


Fig 6. Controlling system block diagram

We use the potentiometer to control the angle in each joint to report its current position. The controller signal, as shown in Fig 7a, is the signal sending to the drive motor circuit. Fig 7b shows in the step response of the motor's angle position.

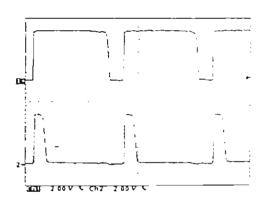


Fig 7a. Show signal in controller

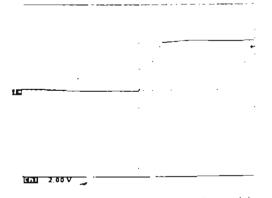


Fig 7b. Step of the motor's angle position

VI. CONCLUSION

From the experiment, the built robot can be controlled the position of each joint. When the robot steps its leg which is passed on its weight, we cannot control the hind leg to tilt the joint to push the force to the front leg because this biped robot doesn't have the waist to lean to pass its weight on the leg. Other

researchers create the robot's waist as Balancing Mechanism Beam [11]. Suck artificial waist can get the robot in balance under a good control law. The control law suggested in this paper is merely focused on the static movement. The dynamic control algorithm is more challenged and for the future work.

VII. ACKNOWLEDMENT

The authors would like to thank Assoc. Prof. Dr. Tawil Paungma, Dean of Faculty of Engineering, KMITL, for his support and encouragement. This research is supported by the Thailand Research Fund (TRF).

VIII. REFERENCES

- [1] Dovall, E..N. "Kinesiology", New York, Prentice-Hall Inc. 1959.
- [2] K. Kanda Jaipagdee "Kinesiology", 3rd., D.K. Book House 1999.
- [3] Cooper, J.M., and Glassow, R.B. "Kinesiology" saint Louis, The C.V. Mos by Company 1972.
- [4] Hoppenfeld, S. "Physical Examination of the spine and Extremities". New York. Appleton-Century-crofts, 1976.
- [5] Inman, V.T.etal "Human Walking", Baltimore. Williams & Wilkins 1981.
- [6] Ducroquet, E.etal "Walking and Limping", Philadephia, J.B. Lippincott Company, 1968.
- [7] A. Morechi, J. Ekiel, K. Fidelus. Cybernetic Systems of Limb Movements in Man, Animals and Robotics. John Wiley, New York, 1984.
- [8] M. Kumagai, T. Emura, "Sensor-Based Walking of Human Type Biped Robot That Has 14 Degree of Freedoms", Proc. of Mechatronics and Machine Vision in Practice, IEEE Intl. 1997, pp. 112-117.
- [9] Fred R, Sias Jr, Yuan F. Zheng, "How Many Degrees-of-Freedom Does a Biped Need", IEEE Intl. 1990, pp. 297-302.
- [10] J. J. Craig. "Introduction to Robotics Mechanics and Control", Addison-Wesley Publishing Company, 1989.
- [11] Y. Takahashi, H. Nagayama, T. Nagasawa, "Biped Robot to Assist Walking and Moving Up-and-Down Stairs", IEEE Intl. 1998, pp. 1140-1145.

THURSDAY, AUGUST 17, 2000 • 20 BAHT

INVENTIONS

Armed roboguard world's first

Web-run sentinel not thief-friendly

The world's first armed robot security guard that can open fire on intruders while controlled through the Internet was unveiled in Bangkok yesterday.

It is one of five Thai-made hi-tech robots revealed by the Thailand Research Fund.

Asst Prof Pitikhet Suraksa, of the King Mongkut Institute of Technology's Lat Krabang campus, said his roboguard was developed from an unarmed "telerobot" built in Australia in 1994.

"The robot is equipped with a camera and sensors that track movement and heat. It is armed with a pistol that can be programmed to shoot automatically or wait for a fire order delivered with a password from anywhere through the Internet," he said.

With further development the technology could be applied to building robot guards for important places, including museums that house precious artifacts, he said.

Other machines included a virtual reality system with a robotic arm, a force sensor and head-mounted display.

Assoc Prof Chid Laowattana, of the Thon Buri campus, said this could be developed into a simulator to train people in areas like surgery.

"It could memorise thousands of operations by veteran surgeons and simulate them to train new doctors. Patients will no longer be objects of experimentation for new doctors," he said. "It could also memorise Tiger Woods' strokes to train golfers."

The system was aimed only at teaching people how to use robots. Thai researchers did not have the funds for a manufacturing base to compete with countries like the US and Japan.

A Thai investor shows his steel beetle robot during a robot exhibition at Maha Nakhon Yipsum building on Sri Ayutthaya Road. — KOSOL NAKACHOL

NewScientist

2 SEPTEMBER 2000 No2254 WEEKLY £2 US\$3-75

THAT KNOWS
EVERYTHING

F LAST

F DIVIER

HTLL CRASH ELES PROVE

HE WORLD ROZE OVER

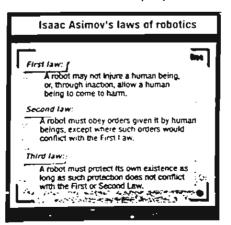
You have twenty seconds to comply

Robocop looks a pushover compared with a robotic security guard that shoots at will

IT'S been sixty years since writer Isaac Asimov dreamed up his laws governing robot behaviour. But the message still hasn't sunk in Researchers in Thailand have developed a robot security guard that comes armed with a gun, and has no qualms about whom it shoots.

Called "Roboguard", the gun-toting sentinel is designed as a cheap alternative to a human guard. It can be ordered to fire at will, or told to check first with a human via a secure Internet connection

As they appeared in Asimov's science fiction writings in 1940, the three laws of robotics were meant to prevent robots from harming people (see Table). Roboguard appears to have the potential to flout all three


The machine was built by Pitikhate Sooraksa of King Mongkin's Institute of Technology in Ladkrabang, Bangled. It consists of a handgun and a small video camera mounted on a motorised tiolder that can direct them automatically

"It has two modes, manual and automatic," says Sooraksa. Using the weapon in manual mode be car control the guit from a computer anywhere to the world. A laser pointer on top of the con marks its current target

For automatic operation, Roboguard is fitted with infrared sensors that allow it to track people as they move. Sooraksa has password-protected the "fire" command for when the robot is operated over the Internet. "We think the decision to fire should always be a human decision," he says, "Otherwise it could kill people,"

This doesn't reassure Kevin Warwick, a experneticist at Reading University who has long warned of the dangers of robots gaining too much power over human beings. "Things can always go wrong," he says. You can never allow for all eventualities. "We need to think about introducing laws like Asimov's, but even then robots will find ways to get round them."

Other researchers were equally concerned

about Roboguard. "I find this quitehorrific," says Chris Czarnecki of the Centre for Computational Intelligence at De Montfort University in Leicester. "What about time delays across the Internet when it's busy? What you'll be seeing and what the gun's pointing at will be two different things. You could end up shooting anything.

Czarnecki also suspects the robot's tracking system night be error-prone. "If the tracking's infrared, what happens when the Sun comes out? It's a big source of infrared radiation i

At the moment, Roboguard is tooled up with nothing more powerful than an air. gun. To test its accuracy, Sooraksa pinned balloons to the walls and took potshots at them from a computer. "It's very similar to a real gun," he says. It could easily be upgraded to a more powerful weapon such as a machine gun, he adds.

Sooraksa says Roboguard might be of interest to private companies, but sees the armed forces as a more likely buyer. "We'd like to show it to the military," he says. "It should be in good hands."

The current, static version of Roboguard could be just the start. Sooraksa hopes to develop his prototype further. "You could make it mobile, it could be designed as a walking system," he says. "We have the technology," lan Sample

2 September 2000

New Scientist . www.newscientist.com

DOWJONES

Hory Con Profession Profession

Killer App

Thai university team develops a security robot with a lethal punch

By Rodney Tasker/BANGKOK

BANG, YOU'RE DEAD! And, no, there was no warning-not even a human finger on the trigger.

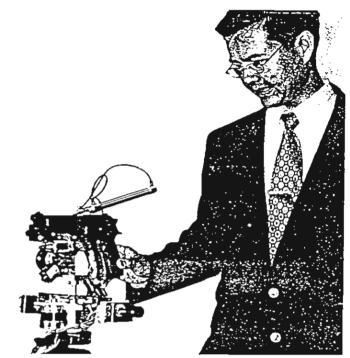
Is this the Robocop of the sci-fi movies? Almost, It's an all-too-real, gun-toting, Internet-controlled robot, dubbed Roboguard by its Thai inventors, that gives a whole new meaning to the technology buzzphrase "killer app."

Designed to provide security, Roboguard can be programmed to shoot automatically—and with deadly accuracy. It consists of a tiny video camera to monitor intruders, an infra-red sensor to track movements and heat, and a handgun with a laser pointer.

A user can control the weapon via a computer and the Internet from anywhere in the world, using a password to open fire. Roboguard is usually attached to a stationary tripod, but it can also go on patrol with the help of a pair of mechanical legs.

It's the brainchild of Pitikhate Sooraksa, a fresh-faced 34year-old lecturer in industrial technology at the King Mongkut Institute of Technology, just east of Bangkok. This lethal weapon came cheap. It took Pitikhate and 10 undergraduate students a year and just 70,000 baht (\$1,700) to develop.

Roboguard is being touted as Asia's first armed robot security guard. Thammachai Chaopreecha, a member of the government's Research Council of Thailand, calls it "a major breakthrough in Thailand's engineering field."


"I COULD BE A RICH MAN IF I SOLD this, but that's not what I want"

PITIKHATE SOORAKSA. KING MONGKUT INSTITUTE OF TECHNOLOGY

However, Pitikhate remains modest: "I'm very sure that the United States military has a much more sophisticated war machine than this."

If it does, the U.S. isn't saying. But shortly after a report on his invention aired on television. Pitikhate received a mysterious phone call from someone who asked if this was the start of robot warfare. Perhaps he's being a little paranoid. but Pitikhate earnestly asked his Review interviewer: "Are you from the CIA?

Pitikhate calls Roboguard "a necessary evil, given that

ARMED AND DANGEROUS: Pitikhate with Roboguard

there are a lot of bad guys out there, especially since the economic crisis began a few years ago." But he's keen to ensure the robot weapon doesn't fall into the wrong hands "This is not for home use, because it could be very dangerous. It is a double-edged sword and it could be used by the bad guys," he says.

INTEREST FROM THAI MILITARY

So far, he has said "no deal" to approaches from That companies interested in buying the machine. "I could be a rich man if I sold this, but that's not what I want-I'm a researcher, not a businessman."

Pitikhate says Roboguard should be used only by professionals such as the military or the police. Indeed, the That military has already expressed an interest, inviting him to give a talk on the weapon to the Thai air force.

It's plain to see Pitikhate is very fond of his little invention. He calls the potentially lethal device "guy" as he affectionately pats it and explains how its gun, camera and sensor can swivel vertically and horizontally, either controlled by someone using a computer, or automatically.

He's not too happy about the gun, which is a Japanese. made air gun. But he says it could easily be replaced by either a tear-gas launcher or even a machine gun

When Roboguard is operating under remote control the controller, responding to an intruder alarm sent to his computer, can issue a warning through a speaker. Bee the device can also be set up to automatically return tirif it's shot at-a soit of robot version of shoot first, asquestions later.

หนัวสือพิมพ์กุณภาพ เพื่อกุณภาพของประเทศ

วันพฤหัสบดีที่ 17 สิงหาคม พุทธศักราช 2543 ปีที่ 23 ฉบับที่ 8196 ราคา 8 บาท

ทุ่นยนตัวปภ. – สำนักงานกองทุนสนับสนุนการวิจัย(สกร.) โชว์หุ่นยนต์ฝีมือนพบีดีเขต สู้รักษา นักวิจัยจากสถาบันเทคโนโลยีพระจอมเกล้า เจ้าคุณทหารลาดกระบัง ที่ได้รับทุนสนับสนุนจาก สกร. ผลิตทุ่นยนต์รักษากรามปลกดภัยผ่านอินเตอร์เน็ตเป็นทุ่นยนต์ 6 ขา และทุ่นยนต์ 8 ขา ที่ใช้ระบบการนำทางด้วยแสงเลเซอร์ในการเคลื่อนไทร ทุ่นยนต์ตันแบบนี้ผลิตจากเงินเพียง 70,000 บาท เมื่อวันที่ 18 สิงหาคม

รปภ.ไฮเทค-สุดถูกแค่7หมื่น ปิดเงียบหวั่นผู้ก่อการร้ายชิง

นักวิจัยไทยเจ๋ง ผลิตหุ่นยนต์รักษาความปลอดภัย ผ่านอินเตอร์เน็ตสำเร็จ อยู่มุมไหนของโลกสามารถ กดปุ่มสั่งการจากจอคอมพิวเตอร์ได้ทันที ลงทุนแค่ 7 หมื่นบาท แจงเหมาะใช้เฝ้าระวังในสถานที่เก็บอาวุธ ยุทโธปกรณ์-เก็บสมบัติล้ำค่า

เมื่อวันที่ 16 สิงหากม ที่สำนักงานกองทุนสนับ สนุนการวิจัย(สกว.) มีการแถลงข่าวเรื่องหุ่นยนค์ฝีมือ คนไทย โดยนายปิดิเขต สู้รักษา นักวิจัยจากสถาบัน เทคในโลยีพระจอมเกล้าเจ้ากุณทหารลาคกระบัง ซึ่งได้ รับทุนสนับสนุนจาก สถว.ได้ผลิตหุ่นยนต์รักษาความ ปลอดภัยผ่านอินเคอร์เน็ต หุ่นยนต์ 6 ขา และหุ่นยนต์ 8 ขาที่ใช้ระบบการน่าด้วยแสงเลเซอร์ในการเถลื่อน ใหว นำหุ่นยนด์ดันแบบที่ผลิตมาแลดงด้วย

นายปีติเขคกล่าวว่า หุ่นยนค์รักษากวามปลอดกัย ผ่านระบบอินเตอร์เน็ดผลิตขึ้นมาจากงบประมาณเพียง 70,000 บาทเท่านั้น โดยได้พยายามหาวัสดุที่มีรากา ถูกที่สุดและมีกุณภาพที่สุดมาผลิตและประยุกด์ใช้ มี ประโยชน์ในการใช้เฝ้าระวังพื้นที่ที่เป็นอันตรายค่อ มนุษย์ ใช้ในระบบรักษากวามปลอดกัย มีความสะตวก สามารถควบคุมการทำงานระยะใกลผ่านเครือข่ายทาง อินเตอร์เน็ตใค้ ที่สำคัญคือมีสักยภาพในการตักเดือน และทำลายผู้ที่บุกรุกเข้ามาในรัสมีการควบกุมได้ด้วย

นายปีติเจคกล่าวอีกว่า หุ้นยนต์ตัวตั้งกล่าวประ กอบคั่วยกล้องโทรทัศน์ติดที่หุ้นยนต์จับภาพเป้าหมาย ใค้ด้วยรัศมีความร้อนและสามารถส่งภาพดังกล่าวไปที่ หน้าจอกอมพิวเคอร์ของเจ้าของผ่านระบบอินเตอร์เน็ด ที่สำคัญกือหุ้นยนค์จะมีระบบเล็งเป้า สามารถเคลื่อนที่ ตามเป้าหมายที่เคลื่อนที่ได้อย่างแม่นยำ ผู้ใช้จะเลือก ระบบได้เองว่าจะให้ระบบเล็งเป้าทำงานใค้อย่างอัดโน มัติ กือ เล็ง เดือน และยิงใด้เอง หรือตัวผู้ใช้เป็นคนกคุ ปุ่มกำสั่งยิงเองก็ได้ ซึ่งระบบนี้มีความแม่นยำในการยิง ถูนป้าถึง 99% ในระยะทางไม่เกิน 3 เมคร

ระบบการรักษาความปลอดภัยคังกล่าวนี้เรา สามารถใช้และตรวจสอบได้ในขณะที่อยู่ในมุมไหนของ โลกก็ได้ คือดิดดั้งหุ้นขนศ์ตัวนี้แอไว้ในพื้นที่ที่ค้องการ เฝ้าระวัง เช่นสถานที่เก็บอาวุธยุทโธปกรณ์ หรือสถาน ที่ที่ใช้เก็บสมบัติล้ำกำแล้วจะไปอยู่ที่ไทนของโลกที่ได้ โดยหากมีโทรศัพท์มือถือที่สามารถเชื่อมต่อถับระบา อินเตอร์เน็ตใต้ก็จะเปิดอินเตอร์เน็ตดูภาพในบริเวณ รอบๆ ที่คิดตั้งหุ่นยนต์เอาไว้ได้ทันที หากเจอกวามใน่ ชอบมาพากล เจ้าของก็สามารถสั่งให้หุ่นยนต์ตัวดัง กล่าวเล็งและยิงได้ โดยทุกขั้นตอนสามารถทำใต้โดย ผ่านระบบอินเตอร์เน็ตเลข นายปิติเขตกล่าว

เมื่อถามว่า หากหุ่นยนต์ตั้งกล่าวถูกทำลายจะยัง สามารถสั่งการได้อีกหรือไม่ นายปิติเขตกล่าวว่า โดย ปิกคิหุ่นยนต์ที่ใช้งานมีขนาดไม่ใหญ่มากนัก เมื่อต้อง การใช้งานจะต้องนำไปช่อนไว้ให้มิดชิด แค่เพื่อความ มั่นคงแน่นอนในการปฏิบัติการจริง จะต้องใช้หุ่นยนต์ อย่างน้อย 2 ตัวหากตัวใดตัวหนึ่งถูกท่าลายลง อีกตัว จะปฏิบัติหน้าที่ได้เหมือนเดิมทุกประการ

ังานชิ้นนี้ผมและกณะทำสำเร็จมาแล้วเป็นเวลา 6 เคือน ที่เพิ่งจะออกมาเปิดเผยเป็นเพราะคอนแรกกลัว ว่าหากงานวิจัยชิ้นนี้ตกไปอยู่กับกลุ่มผู้ก่อการร้ายหรือผู้ ใม่หวังดีจะเป็นอันดรายอย่างใหญ่หลวง เพราะหากมี กนคายขึ้นมาจะหาตัวผู้ที่เป็นดันเหตุใค้ยากมาก หุ่น ยนต์ตัวนี้จึงใม่เหมาะสมที่จะใช้กับงานส่วนตัวอย่างยิ่ง แค่เหมาะที่จะทำงานในระบบงานของส่วนรวมมากกว่า และผมคิดว่าการใช้หุ่นยนต์รักษากวามปลอดภัยระบบ นี้ยังไม่เคยมีใครในโลกทำอย่างเปิดเผยมาก่อน อาจจะมี สำหรับระบบการรักษากวามปลอดภัยของประเทศสหรัฐอเมริกา แต่ใม่มีการเปิดเผยในสาธารณะกัน นาย ปิดีเขดกล่าว

นายปีคิเขตกล้าวค่อว่า นอกจากนี้ที่สถาบันเทคใน โลยีพระจอมเกล้าเจ้ากุณทหารลาดกระบังยังใค้ประ คิษฐ์หุ่นยนค์ 6 ขา และ 8 ขา สร้างขึ้นเลียนแบบการ เคลื่อนที่ของแมลง หรือแมง โดยหุ่นยนต์ 6 ขามีจุด ประสงค์ใช้ในโรงงานอุตสาหกรรมขนาดใหญ่เพื่อการ บำรุงรักษาระบบท่อขนส่งคังกล่าวสามารถเคลื่อนที่ลัด เลาะไปตามท่อที่กดเกี้ยวเพื่อทำกวามสะอาดหรือครวจ สอบระบบท่ออย่างรวดเร็วและมีประสิทธิภาพ ในขณะ ที่หุ่นแนค์ 6 ขาจะใช้ระบบการนำทางด้วยแสงเลเซอร์ หุ่นยนค์จะหุ่งจะเคลื่อนที่ไปยังแหล่งคันกำเนิดของแสง ทันทีที่ได้รับสัญญาณ

นายชิด เหล่าวัฒนา นักวิชาการจากศูนย์ปฏิบัติการ พัฒนาหุ่นยนต์ภาคสนาม มหาวิทยาลัยเทคในโลยีพระ จอมเกล้าธนบุรี ซึ่งได้นำหุ่นยนด์ระบบสัมผัสมาแสดง กล่าวว่า ได้รับเงินสนับสนุนจาก สกว.ทำวิจัยหุ่นยนด์ -ดังกล่าวเพื่อใช้ประโยชน์ในการทำงานที่ด้องใช้ความ ละเอียดแม่นยำสูง เช่น การผ่าดัดที่ด้องใช้แพทย์ที่ได้ รับการฝึกฝนมาเป็นอย่างดี โดยหุ่นยนต์ตัวนี้จะเป็นอุป กรณ์สำหรับการฝึกหัดที่ดี สามารถที่จะกำหนดทุ่น ขนก์ตัวที่ให้มีแรงสมองคอบค่อแรงกดค้วยน้ำหนักที่ผู้ บังกับกำหนด เพราะจะนั้นหากผู้ใช้สับผัสกับส่วนหนึ่ง ของทุ่นขนค์คังมะเรงกอเท่าใดทุ่นขนค์ก็จะสนองคอบ คั่วขะรงกอเท่านั้น หรือเปรือบเสมือนว่าทุ่นขนค์ตัวนี้ สามารถจำสองสะบบการณ์ให้ผู้ฝึกที่ครู้สึกเหมือนปฏิ บัติงานในเหลุการณ์จริง อย่างไรก็ตามทุ่นขนค์ตัวนี้ยัง ต้องพัฒนาศักยะเพลที่มนากขึ้นจึงจะสามารถนำออก มาใช้ได้จริง

ผู้สื่อที่เวรายงานว่า หุ่นยนด์ของนายปีคิเขตจะถูก นำไปแสดงในงานสัปดาห์วิทยาศาสตร์ของโรงเรียนอนุ นาลจุดิมา ถนนสวีนอรินทร์ ในวันที่ 18-21 สิงหาคม

ศิลปินอวตาร กวัลย์ ดังนี้ ปราชญ์ผู้รังสรรค์ศิลปะ รอคอยคนเกิดมาเข้าใจ

Roboguard

ยามหุ่นยนต์สัญชาติไทย

เป้าหมายเราอยากให้เห็นภาพ รวมว่าความรู้ที่อยู่ในตำราและ ความรู้ต่างๆ สามารถนำมา ประยุกต์ใช้และประมวลผล รวมกันได้ ณะที่ภาพ ด็กไทยที่ฉายผ่านลังคม
เซ็นเตอร์ พอยท์ ทำเอาผู้ใหญ่หลาย
คนคิดว่าอนาคตของชาติไทยกำลังรอวันล่ม
สลายเลียแล้วกระมัง แต่ข่าวที่ผุดพรายขึ้นมา
ของกลุ่มของนักคิดคันที่ประกอบกันขึ้นมา
จากกลุ่มคนกลุ่มเล็กๆ ของลถาบันเทคโนโลยี
พระจอมเกล้าเจ้าคุณทหารลาศกระบัง ที่
กำลังได้รับความสนใจจากทั่วโลกได้กลายเป็น
ประกายและคัวแทนของคนรุ่นใหม่ที่บอกเล่า
คุณภาพของคนรุ่นแขาว่าไม่ได้ด้อยกว่าคนรุ่นเก่า
และสามารถยืนอย่างเท่าเทียมกับคนในระดับ
นาบาราดี

โรโบการ์คไทย

โรโบการ์ค หรือหุ่นยนต์รักษาการณ์
คือผลงานค้นคิดของคนไทยคือ ผศ คร
ปิติเชต สู้รักษา และนักศึกษาคณะวิศวกรรม ประกอบด้วย วัขระ ดาราบาศ นเรศ
เปาะทองคำ และทศพล อ่อนเกื้อ เวลาเกือบ
ป ปิที่ทุกคนทุ่มเทแรงภาย แรงใจ และ
ความคิด พร้อมกับการสนับสนุนจากผู้ใหญ่
และสำนักงานวิจัยอย่าง สกว. หุ่นยนต์
ดับแบบสัญชาติไทย ราคาประมาณ 70,000
บาท ก็สามารถยืนอวดโฉมในประสิทธิภาพ
ของการใช้งานได้ดีในระดับหนึ่ง

พุ่นยนต์รักษาการณ์ตัวนี้ ถือว่าเป็น พุ่นยนต์ต้นแบบ ซึ่งเรามึงบจำกัดก็อาจจะไม่ สมบูรณ์มากนัก อย่างปืนอัดก๊าซ เราได้รับ ความเอื้อเพื่อจากคณบดี ให้ยืม ซึ่งเราก็มา ติดตัวคานเพื่อที่จะรองรับการสะบัด ซึ่งปืน ขนิดนี้จะมีลักษณะการยิงเหมือนปืนบาเร็ตด้า ผศ.ดร.ปิดีเขต สู้รักษา กล่าวถึงหุ่นยนด์ ดันแบบที่กำลังกลายเป็นพระเอกของทุกงานที่ มีการพาไปใชว์ดัว

ในฐานะของหนึ่งในผู้คร้างสรรค์ อาจารย์ปิติเขต อดีตอาจารย์สาขาพิลีกส์ จาก มหาวิทยาลัยครีนครินทรวิโรฒ ประสานมิตร คอกเตอร์สาขาวิศวกรรมไฟฟ้าจากสหรัฐ-อเมริกา กล่าวถึงการสร้างสรรค์ครั้งนี้ ก็เพื่อ ให้เห็นถึงการประสานความรู้ในสาขาต่างๆ ซึ่งไม่ต่างกับปัจจุบันที่การทำงานในวิชาชีพ ต่างๆ ให้เกิดประสิทธิภาพต้องเกิดจากการ ประสานหลากความรู้เข้ามาใช้ร่วมกัน

าเป้าหมายเราอยากให้เห็นภาพรวม
ว่าความรู้ที่อยู่ในตำราและความรู้ต่าง ๆ
สามารถนำมาประยุกต์ใช้และประมวลผล
รวมกับได้ เช่น การทำงานของหุ่นยนต์
โรโบการ์ด เราก็ใช้เทคโนโลยีการสื่อสาร
ข้อมูลโดยอินเตอร์เนต ทางด้านเครื่องกล
กลไกของปืน การทำงานของเพืองทำให้ปืน
ขยับขึ้นลงได้ การจับภาพเคลื่อนไหวก็เป็น
วิชาคลื่นแม่เหล็กไฟฟ้า คลื่นแม่เหล็กไฟฟ้า
ส่งรังสีอินฟราเรคไปใช้แลงเป็นตัวจับภาพ
เคลื่อนไหว เป็นการผลมผลานวิชาคอมพิวเตอร์
และยังรวมถึงฟิสิกส์ คณิตศาสตร์ การเขียน
โปรแกรม"

หุ่นยนศ์ผู้พิทักษ์?

นับตั้งแต่โรโบการ์ดเปิดตัวสู่ สาธารณชนในฐานะหุ่นยนต์ที่สามารถ นำมาใช้ในการรักษาความปลอดภัย ใบ อนาคต แต่คำถามก็เกิดขึ้นตามมามากมาย ตามแต่คนจะมอง

ำหุ่นตัวนี้มาจากการแต่งงานของ 2
เทคโนโลยี คือการควบคุมระยะไกล และ
ระบบรักษาความปลอดภัย และเรามาเพิ่ม
คักยภาพโดยการใช้กล้องวงจรปิด ทำให้เห็น
ได้ในระยะไกล โดยสามารถรับภาพได้จาก
อื่นเคอร์เนต ซึ่งถ้าใช้ในการรักษาบุคคล
หรือสิ่งของสำคัญก็สามารถปฏิบัติการ
เบ็ดเสร็จได้ คือ จะมีการติดอาวุธ ซึ่งใน
อนาคดเราสามารถติดอาวุธได้หลายรูปแบบ
จึ้นอยู่กับการใช้งาน

ส่วนปัญหาที่หลายคนมีเข้ามาอย่าง จากประเทศอังกฤษที่พูดถึงเรื่องของไทม์ ดีเลย์ ซึ่งเราก็มีการทดลองล่วงหน้าไว้แล้วว่าถ้าจะ เอาไปใช้จริง เราแก้ปัญหาตรงนี้ได้ หรือระบบ การสั่งยิง เราก็มีการใช้รหัสผ่าน ซึ่งเราจะมี ระบบเดือนด้วยเลียง หรืออะไรต่างๆ หาก เซ็นเซอร์ที่ติดไว้จับภาพการเคลื่อนไหวได้ หรือมีการรุกล้ำ เราจะเตือนก่อน ถ้าเตือนไม่ พังเราถึงจะบอกว่าจะยิง ซึ่งการยิงเราก็ต้อง ใส่รหัสเพื่อยืนยันครั้งที่ 1 เมื่อปุ่มเตือนขึ้น จะต้องยิงรริงๆ ก็ต้องใส่รหัสยืนยันคำลัง ก็กครั้ง

และแน่นอนว่าเทคโนโลยีที่เรา คิดขึ้นมาเราอยากให้ไปอยู่ในมือของคนที่ สะอาศ โดยเฉพาะในวงการทหาร หรือ คำรวจ เพื่อใช้ในการรักษาความปลอดภัย ในการคุ้มครองความปลอดภัยของประชาชน หรือใช้ในธนาคารแห่งประเทศไทยใน การรักษาสมบัติของประเทศ เพราะฉะนั้น ศอนที่เราคิดโครงการนี้เราต้องคำนึงเรื่อง ของสังคมวิทยา เรื่องของความเหมาะสมใน การใช้งาน

ข้อความสุดท้ายของอาจารย์ปิติเขต สำหรับนักวิทยาศาสตร์ หรือนักวิชาการอาจ จะกลายเป็นสิ่งที่สะคุดใจ เพราะสิ่งที่เขา ประดิษฐ์ไม่ได้คำนึงเพียงแค่ผลของการใช้งาน เชิงเทคนิคเท่านั้น แต่เขาให้ความสำคัญกับ ผลกระทบทางลังคบ ซึ่ง
เป็นสิ่งที่มักขาดแคลน
อย่างมากในหมู่ของ
นักวิทยาศาสตร์ หรือ
นักเทคนิคทั้งหลาย ทำให้
"การพัฒนา" กลายเป็น
ผู้ก่อปัญหาสังคบใน
ปัจจุบัน


พัฒนานักคิด

แน่นอนว่าสำหรับ หุ่นยนต์ต้นแบบโรโบ-การ์ดไทย จะประสบ ความสำเร็จสร้างความ อือฮาระดับนานาชาติ อนาคดวงการหุ่นยนต์

ไทยอาจจะก้าวหน้าและได้รับการพัฒนามากขึ้น มีการสนัยสนุนมากขึ้น เด็กไทยได้มีโอกาส มี เวที เพื่อที่จะอวลศักยภาพทางด้านบาวเพิ่มขึ้น แต่สำหรับอาจารย์ปิติเขตทีศลุกคลีกับเด็กนัก ศึกษาไทย กล่าวให้ความเห็นว่า

เรื่องของโบว์ ฮาว์ เรื่องของ
เทคโนโลยีเราไม่ขาด ถ้าเราได้รับการคนับสนุน
ส่งเลริมให้เด็กได้เน้นคักยภาพของเราออกมา
เด็กไทยทำได้ ความฉลาดของคบไทยไม่ได้
แพ้ชาติอื่น เพียงแต่เราถูกปิดกั้นความคิด
ในเรื่องของการศึกษา ที่ต้องปรับ ต้องให้
เด็กกล้าคิดมากขึ้น และคิดนอกกรอบ แทนที่
จะจำ แต่เป็นการเข้าใจและนำไปให้ โดย
เฉพาะเรื่องของเทคโนโลยีสำคัญ เพราะ
ทฤษฎีต่างๆ มันก็เป็นเพียงหนังสือ ย่อม
มีข้อยกเว้นที่จะสามารถคิดนอกกรอบ
และเรื่องของการนำไปใช้ ต้องมีการคำนึงถึง
เรื่องคืดธรรมจรรยา เพราะฉะนั้นสิ่งสำคัญ
ไม่ใช่หุ่นยนด์ แต่เป็นคน การสร้างคนสำคัญ
กว่าการสร้างของ

เป็นคำกล่าวปิดท้ายที่ชัดเจนถึง ถารสร้างคน ของ ผศ.คร.ปิติเขต ผู้นิยาม ตัวคนว่าเป็นนักการศึกษา เป็นวิศวกรและ นักปรัชญา ที่แม้จะมีโอกาสที่จะทำกำโรงาม จากความรู้ของคนเองในค่างแคนแค่ขอเลือก กลับมาเป็นส่วนหนึ่งของการเป็นผู้สร้างให้กับ สังคมโทย

เรื่องของโนว์ ฮาว์ เรื่องของ
เทคโนโลยีเราไม่ขาด ถ้าเราได้
รับการสนับสนุน ส่งเสริมให้เด็ก
ได้เน้นศักยภาพของเขาออกมา
เด็กไทยทำได้ ความฉลาดของ
คนไทยไม่ได้แพ้ชาติอื่น เพียงแต่
เราถูกปิดกั้นความคิด

15 ก.ย. - 15 ศ.ค. 2643 People 105